WO2023283878A1 - Tsn fully distributed model enhancement - Google Patents

Tsn fully distributed model enhancement Download PDF

Info

Publication number
WO2023283878A1
WO2023283878A1 PCT/CN2021/106475 CN2021106475W WO2023283878A1 WO 2023283878 A1 WO2023283878 A1 WO 2023283878A1 CN 2021106475 W CN2021106475 W CN 2021106475W WO 2023283878 A1 WO2023283878 A1 WO 2023283878A1
Authority
WO
WIPO (PCT)
Prior art keywords
ieee
information
signaling protocol
protocol information
signaling
Prior art date
Application number
PCT/CN2021/106475
Other languages
French (fr)
Inventor
Hua Chao
Christian Markwart
Borislava GAJIC
Rakash SIVASIVA GANESAN
Pilar ANDRÉS MALDONADO
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/106475 priority Critical patent/WO2023283878A1/en
Priority to CN202180100488.3A priority patent/CN117643034A/en
Publication of WO2023283878A1 publication Critical patent/WO2023283878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication and in particular, to method, device, apparatus and computer readable storage medium for Time-Sensitive Networking (TSN) fully distributed model enhancement.
  • TSN Time-Sensitive Networking
  • TSN In industrial communication networks, there may be a challenge to obtain high availability and bounded latency for a given communication protocol, its parameters and the physical environment in which the communications network is deployed.
  • TSN is being standardized by Institute of Electrical and Electronics Engineers (IEEE) 802.1 to provide industrial networks with deterministic delay to handle time sensitive traffic.
  • IEEE Institute of Electrical and Electronics Engineers
  • example embodiments of the present disclosure provide a solution for TSN fully distributed model. Embodiments that do not fall under the scope of the claims, if any, are to be interpreted as examples useful for understanding various embodiments of the disclosure.
  • a first device comprising at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; receive the IEEE signaling protocol information from a second device or a third device; and process the IEEE signaling protocol information based on the at least one parameter.
  • IEEE Institute of Electrical and Electronics Engineers
  • a method comprises determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
  • an apparatus comprising means for determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; means for receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and means for processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
  • a computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the second aspect.
  • Fig. 1 illustrates an example communication environment in which example embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates a flowchart of a method implemented at a device according to some example embodiments of the present disclosure
  • Fig. 3 illustrates a signaling flow for communication according to some example embodiments of the present disclosure
  • Fig. 4 illustrates another signaling flow for communication according to some example embodiments of the present disclosure
  • Fig. 5 illustrates another signaling flow for communication according to some example embodiments of the present disclosure
  • Fig. 6 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 7 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first, ” “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and
  • radio access network (RAN) split architecture comprises a Centralized Unit (CU) and a Distributed Unit (DU) at an IAB donor node.
  • An IAB node comprises a Mobile Terminal (IAB-MT) part that behaves like a UE toward the parent node, and a DU part of an IAB node behaves like a base station toward the next-hop IAB node.
  • IAB-MT Mobile Terminal
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to a Mobile Termination (MT) part of an IAB node (e.g., a relay node) .
  • MT Mobile Termination
  • IAB node e.g., a relay node
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • resource may refer to any resource for performing a communication, for example, a communication between a terminal device and a network device, such as a resource in time domain, a resource in frequency domain, a resource in space domain, a resource in code domain, or any other resource enabling a communication, and the like.
  • a resource in both frequency domain and time domain will be used as an example of a transmission resource for describing some example embodiments of the present disclosure. It is noted that example embodiments of the present disclosure are equally applicable to other resources in other domains.
  • Fig. 1 shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented.
  • a bridge 110 is connected to device 140-1 and device 140-2 via an ingress port or an egress port.
  • the devices 140-1 and 140-2 are collectively or individually referred to as devices 140 or device 140.
  • the device 140 may be a TSN end station (ES) which may also be referred to as talker or listener.
  • ES TSN end station
  • Devices 140 are inner-connected to each other via one or more multiple bridges with time-sensitive (deterministic) transmission capability.
  • NF network function
  • apparatus 130-1, apparatus 130-2, apparatus 130-3 and apparatus 130-4 are collectively or individually referred to as apparatuses 130 or apparatus 130.
  • apparatuses 130 or apparatus 130 may be connected to the NF 120.
  • One or more of the apparatuses 130 may be connected to the device 140 via the ingress port or the egress port of the bridge 110.
  • the apparatus 130-1 may be connected to the device 140-1
  • the apparatus 130-4 may be connected to the device 140-2, as shown in Fig. 1.
  • One or more apparatuses 130 may be connected to a centralized network controller (CNC) 150 as shown in Fig. 1.
  • CNC centralized network controller
  • Some of the apparatuses 130 may be connected to each other.
  • apparatus 130-3 and apparatus 130-3 or apparatus 130-4 may be connected to each other.
  • the bridge 110 may be located as the user-plane (UP) and/or as the control-plane (CP) .
  • the bridge 110 is enabled to host additional network functions and apparatuses for the respective UP or CP.
  • the apparatus 130 may comprise various types of apparatuses to host additional function entities for the respective UP or CP.
  • the apparatus 130-1 may be an apparatus which functions as a Device Side TSN Translator (DS-TT) or a user equipment (UE) at the UP.
  • the apparatus 130-4 may be an apparatus which functions as a Network Side TSN Translator (NW-TT) or a user plane function (UPF) at the UP.
  • the apparatus 130-2 may be a TSN Application Function (AF) at the CP.
  • the apparatus 130-2 may be connected to the CNC 150.
  • the apparatus 130-3 may be an AF.
  • the apparatus 130 may comprise at least one of: a Network Exposure Function (NEF) , a Policy Control Function (PCF) , a Session Management Function (SMF) and/or any signaling protocol specific AF at the CP.
  • NEF Network Exposure Function
  • PCF Policy Control Function
  • SMF Session Management Function
  • the bridge 110 will deliver data via the egress port at a specific time window (not too early, not too late) to the next device 140 (or ES) , given that the data arrives at the ingress within another distinct time window.
  • FIG. 1 The environment 100 may include any suitable number of devices, apparatuses adapted for implementing embodiments of the present disclosure.
  • Communications in the communication environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • TSN configuration model of fully centralized model has been proposed.
  • the 5GS functional architecture is integrated into an IEEE TSN network as a TSN bridge to support periodic deterministic time-sensitive traffic flows.
  • a Centralized Network Controller (CNC) provides the 5GS TSN bridge with port gate timing information.
  • CNC Centralized Network Controller
  • a first device determines information comprising at least one parameter related to processing an IEEE signaling protocol information.
  • the first device receives the IEEE signaling protocol information from a second device or a third device.
  • the first device process the IEEE signaling protocol information based on the at least one parameter.
  • This solution enables the first device to forward any/arbitrary IEEE signaling message from ingress port to any AF within a bridge for further processing while considering locally stored information of the bridge and its ports and/or IEEE signaling protocol assistance information. By this way, it can comply with externally observable behavior specified in IEEE specification for any specified signaling protocols.
  • Fig. 2 shows an example flowchart of a method 200 implemented at a device according to some example embodiments of the present disclosure.
  • the method 200 will be described from the perspective of a first device, which may be the apparatus 130 as shown Fig. 1.
  • the first device may be a NW-TT, UPF or DS-TT, UE at the UP.
  • the first device may be an AF or a TSN AF at the CP.
  • the first device determines information comprising at least one parameter related to processing an IEEE signaling protocol information.
  • the first device may obtain the information from a locally stored configuration stored in the first device.
  • the first device may extract the information from a locally stored configuration. The first device may also transfer the information to the second device.
  • the first device may receive the information from a second device or a third device.
  • the first device and the second device may be located at different planes.
  • the second device may be a TSN bridge, end station, network function (NF) in the different plane.
  • the first device and the third device may be located at the same plane.
  • the third device may be a TSN bridge, end station, network function (NF) in the same plane.
  • the first device is the apparatus 130-4 (i.e., the NW-TT or the UPF at the UP)
  • the second device may be any AF at the CP, such as the apparatus 130-2 or apparatus 130-3.
  • the third device may be the apparatus 130-1 (i.e., the DS-TT or the UE) at the UP.
  • the apparatus 130-4 may receive the information from the apparatus 130-3 or other AF within the bridge 110 as shown in Fig. 1, or receive the information from the apparatus 130-1 or other apparatus at the UP.
  • the first device is the apparatus 130-2 (i.e., the TSN AF)
  • the second device may be the apparatus 130-1 (i.e., the DS-TT or the UE) or the apparatus 130-4 (i.e., the NW-TT or the UPF) or other device at the UP
  • the third device may be the apparatus 130-3 (i.e., the AF) or other devices at the CP.
  • the apparatus 130-2 may receive the information from the apparatus 130-1, or the apparatus 130-4 or other device at the UP, or receive the information from the apparatus 130-3 or other AF at the CP.
  • the first device may receive the information from the second device.
  • the first device may also store the information at the first device.
  • the information may comprise at least one of: first information for processing the IEEE signaling protocol information related to a receiving port, second information for processing the IEEE signaling protocol information related to a transmitting port, third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device, fourth information for checking consistency of the IEEE signaling protocol information, or fifth information processing an Ethernet header of the IEEE signaling protocol information.
  • the first information may comprise specific rules for each possible receiving port.
  • the second information may comprise specific rules for each possible transmitting port.
  • the third information may comprise specific rules related to bridge capabilities of the first device.
  • the examples of the first, second and third information may include but not limited to: a parameter for link layer discovery protocol (LLDP) , a parameter for multiple reservation virtual local area network protocol (MVRP) , a parameter for multiple medium access control reservation protocol (MMRP) or a parameter for multiple stream reservation protocol (MSRP) .
  • LLDP link layer discovery protocol
  • MVRP virtual local area network protocol
  • MMRP parameter for multiple medium access control reservation protocol
  • MSRP parameter for multiple stream reservation protocol
  • the fourth information may comprise specific rules to check consistency of IEEE signaling protocol information.
  • the fifth information may comprise Ethernet header related rules.
  • the term “Ethertype” used herein can refer to a two-octet field in an Ethernet frame and it is used to indicate which protocol is encapsulated in the payload of the frame.
  • Examples of the fifth information may include but not limited to medium access control (MAC) addresses, priority code point (PCP) and virtual local area network (VLAN) , Ethertype, etc. It is to be understood that that the examples of parameters are only for the purpose of illustration without suggesting any limitations, the information may further comprise any other suitable parameters.
  • the first device receives the IEEE signaling protocol information from the second device or the third device.
  • the first, second and third devices may be the devices discussed above.
  • the first device is the apparatus 130-4 (i.e., the NW-TT or the UPF at the UP)
  • the second device may be any AF at the CP, such as the apparatus 130-2 or apparatus 130-3
  • the third device may be the apparatus 130-1 (i.e., the DS-TT or the UE) at the UP.
  • the apparatus 130-4 may receive an IEEE signaling protocol information from the apparatus 130-3 or other AF within the bridge 110 as shown in Fig. 1, or receive the receive an IEEE signaling protocol information from the apparatus 130-1 or other apparatus at the UP.
  • the first device is the apparatus 130-2 (i.e., the TSN AF)
  • the second device may be the apparatus 130-1 (i.e., the DS-TT or the UE) or the apparatus 130-4 (i.e., the NW-TT or the UPF) or other device at the UP
  • the third device may be the apparatus 130-3 (i.e., the AF) or other devices at the CP.
  • the apparatus 130-2 may receive an IEEE signaling protocol information from the apparatus 130-1, or the apparatus 130-4 or other device at the UP, or receive an IEEE signaling protocol information from the apparatus 130-3 or other AF at the CP.
  • the first device processes the IEEE signaling protocol information based on the at least one parameter.
  • Another processing option is to forward the IEEE signaling protocol information to the third device located at the same plane. For example, in the case that the first device is the apparatus 130-2 (i.e., the TSN AF) , and the third device is the apparatus 130-3 or other AF at the CP, the apparatus 130-2 may forward the IEEE signaling protocol information to the apparatus 130-3 or other AF at the CP.
  • the apparatus 130-2 may forward the IEEE signaling protocol information to the apparatus 130-3 or other AF at the CP.
  • Another processing option is to redirect the IEEE signaling protocol information to the second device located at a different plane.
  • Another processing option is to update a local data base (e.g. management information base (MIB) ) according to the IEEE signaling protocol information.
  • MIB management information base
  • Still another processing option is to generate an IEEE frame based on the IEEE signaling protocol information and further transfer the IEEE frame based on the IEEE signaling protocol information.
  • the first device may generate and transfer a full IEEE frame complying with any IEEE signaling protocol information by using the IEEE signaling protocol information.
  • the IEEE signaling protocol information may comprise a first information element and/or a second information element which form the IEEE signaling protocol information.
  • the first information element may comprise at least one of: an IEEE frame which complies with a range of IEEE signaling protocols, or a portion of the IEEE frame.
  • the first information element may comprise the full IEEE frame complying with any IEEE signaling protocol.
  • the first information element may otherwise comprise selected parts of the IEEE frame complying with any IEEE signaling protocol.
  • the selected parts of the IEEE frame may comprise information from Ethernet header and elements that are contained in the frame payload.
  • the IEEE frame may comprise at least one of: header key information or payload key information.
  • header key information may comprise but not limited to source (and destination) medium access control (MAC) address, Ethertype, or PCP and vlan identifier.
  • payload key information may comprise but not limited to ProtocolVersion, AttributeType, FirstValue, or NumberofValues.
  • the second information element may comprise IEEE signaling protocol assistance information.
  • the IEEE signaling protocol assistance information may comprise at least one of: a port identifier of a receiving port from which the IEEE signaling is received; one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols; one or more configuration parameters related to the IEEE signaling protocol information; or one or more configuration identifiers for identifying the at least one parameter for the IEEE signaling protocol information such as bridge identity (ID) , protocol ID, etc.
  • ID bridge identity
  • determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise at least parameter describing a bridge MVRP enabled status (i.e., BridgeMvrpEnabledStatus) and/or a bridge port MVRP enabled status (i.e., BridgePortMvrpEnabledStatus) .
  • a bridge MVRP enabled status i.e., BridgeMvrpEnabledStatus
  • BridgePortMvrpEnabledStatus i.e., BridgePortMvrpEnabledStatus
  • the second device may be another apparatus at the CP.
  • MVRPDU full received IEEE protocol frame
  • the second device located at a different plane may be the apparatus 130-3 (such as an AF) located at the CP.
  • the first device then may forward the new container to the second device.
  • determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise receiving the information from the second device.
  • the first device for example, the apparatus 130-4, i.e., NW-TT or UPF
  • the second device for example, the apparatus 130-3, i.e. AF
  • the first device stores the received information as local stored configuration information.
  • the first device may determine that a DS-TT (port) does not support the IEEE signaling protocol information (i.e., the MSRP frame in this case) based on the information. In accordance with the determination that the DS-TT (port) does not support the IEEE signaling protocol information, the first device may cause the IEEE signaling protocol information to be dropped.
  • the IEEE signaling protocol information i.e., the MSRP frame in this case
  • the first device may determine that a NW-TT (port) does support the IEEE signaling protocol information (i.e., the MSRP frame in this case) based on the information.
  • the first device may redirect the IEEE signaling protocol information to the second device (for example, the apparatus 130-3, i.e. AF) .
  • the first device may generate an IEEE frame (i.e., a MSRP frame in this case) based on the received IEEE signaling protocol information from the second device (for example, a TSN bridge, or an UE/DS-TT) .
  • the IEEE frame may be encapsulated in the IEEE signaling protocol information.
  • the first device may further generate IEEE signaling protocol assistance information based on the IEEE signaling protocol information.
  • the first device may encapsulate the IEEE signaling protocol information and/or the IEEE signaling protocol assistance into a new container. The first device then may forward the new container to the second device.
  • determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise receiving the information from the second device.
  • the first device may be the apparatus 130-2 (i.e., the TSN AF) which is connected to the CNC 150
  • the second device may be the apparatus 130-1 (i.e., UE or DS-TT) or the apparatus 130-4 (i.e., UPF or NW-TT)
  • the third device is the apparatus 130-3 or other AF at the CP
  • the apparatus 130-2 may forward the IEEE signaling protocol information to the apparatus 130-3 or other AF at the CP.
  • the MSRP frame is sent from the apparatus 130-4 (i.e., UPF or NW-TT) to apparatus 130-3 (AF) which processed the MSRP frame.
  • CNC 150 may configure the traffic class table for each port and this configuration will be provided to the first device, i.e., the apparatus 130-2 (the TSN AF) .
  • the first device may update the third device (i.e., the apparatus 130-3, the AF) handling the MSRP whenever a change happens.
  • the third device i.e., the apparatus 130-3, the AF
  • the third device i.e., the apparatus 130-3, the AF
  • the third device may need to inform the first device (i.e., the apparatus 130-2, the TSN AF) that this port and traffic class will have after the reservation an increased credit-based shaper parameter (such as OperldleSlope) that may be used by CNC 150.
  • an increased credit-based shaper parameter such as OperldleSlope
  • the first device may generate an IEEE frame (i.e., a MSRP frame in this case) based on the received IEEE signaling protocol information from the second device (for example, an UE/DS-TT, a UPF/NW-TT) .
  • the IEEE frame may be encapsulated in the IEEE signaling protocol information.
  • the first device may further generate IEEE signaling protocol assistance information based on the IEEE signaling protocol information.
  • the first device may encapsulate the IEEE signaling protocol information and/or the IEEE signaling protocol assistance into a new container.
  • the first device then may forward the new container to the third device (for example, an AF) .
  • IEEE signaling message from ingress port can be forwarded to any AF within the bridge 110 for further processing. It can also guarantee the locally stored information of the bridge 110 and/or its ports and/or IEEE signaling protocol assistance information be considered. In addition, IEEE signaling protocol assistance information can be provided in a flexible way to/from the AF.
  • the signaling flow 300 involves apparatus 301, apparatus 302, apparatus 303 and optional SMF 304 and PCF 306.
  • the apparatus 301 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 311 and a UE 313.
  • the apparatus 302 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 315 and a NW-TT 317.
  • the apparatus 302 may be located as the UP and host the UP functionalities.
  • the apparatus 303 may be the apparatus 130-3 in Fig. 1.
  • the apparatus 303 may act as an AF.
  • the apparatus 302 may by the first device as described with respect to Fig. 2.
  • the apparatus 303 may be the second device as described with respect to Fig. 2.
  • Fig. 3 there are three apparatuses and SMF 304 and PCF 306 illustrated in Fig. 3. It is to be understood that the signaling flow 300 may involve more apparatuses or less apparatuses, and the number of apparatuses illustrated in Fig. 3 is only for the purpose of illustration without suggesting any limitations.
  • the apparatus 302 determines 320 information which comprises at least one parameter related to processing an IEEE signaling protocol information.
  • the apparatus 302 may determine 320 the information by obtaining information from a locally stored configuration.
  • the apparatus 302 may obtain locally stored configuration information for MVRP per port.
  • the locally stored information includes BridgeMvrpEnabledStatus and/or BridgePortMvrpEnabledStatus indicating that the MVRP protocol usage on the bridge 110 and/or a specific port.
  • the apparatus 302 receives 325 an IEEE signaling protocol information from a second device, for example a TSN bridge. Upon receiving 325 the IEEE signaling protocol information from the second device, the apparatus 302 may process the IEEE signaling protocol information based on the at least one parameter and an Ethertype of the received IEEE signaling protocol information. In some example embodiments, in processing the IEEE signaling protocol information, the apparatus 302 may detect Ethertype as MVRP from received IEEE signaling protocol information and determine processing options based on detected Ethertype and locally stored information.
  • BridgeMvrpEnabledStatus FALSE
  • the BridgeMvrpEnabledStatus parameter is ignored, MVRP protocol is disabled by apparatus 302, and all MVRP packets are redirected to apparatus 303 transparently for further processing (not shown in Fig. 3) .
  • the apparatus 302 may determine 330 to redirect received IEEE signaling protocol information to apparatus 303.
  • the apparatus 302 may select 335 parts of the IEEE signaling protocol information from the received IEEE signaling. For example, the apparatus 302 may generate the IEEE signaling protocol information with the exacted header key information and payload key information. The apparatus 302 may also generate the IEEE signaling protocol assistance information with the ingress port number of the DS-TT port 311. The IEEE signaling protocol information and/or IEEE signaling protocol assistance information may be encapsulated into a new container. In some example embodiments, the first device may only redirect the IEEE signaling protocol information to the second device for transparently processing.
  • the IEEE signaling protocol information carried by the container may comprise one or more following information but not limited to: header key information which may comprises at least one of: source (and destination) MAC address, Ethertype, or PCP and vlan identifier; and payload key information which may comprise at least one of: ProtocolVersion, AttributeType, FirstValue, or NumberOfValues.
  • the IEEE signaling protocol assistance information carried by the container may comprise one or more following information but not limited to: ingress port information, egress port information, or bridge ID.
  • the apparatus 302 may forward the container with the IEEE signaling protocol information and/or the IEEE signaling protocol assistance information to the apparatus 303.
  • the container may be forwarded 340 from the ingress port of the NW-TT 317 of the apparatus 302 to the UPF 315 of the apparatus 302, and then though the optional SMF 304 and PCF 306 to the apparatus 303.
  • the apparatus 303 may extract 345 Ethertype from received IEEE signaling protocol information and perform further processing.
  • the apparatus 302 may be replaced with the apparatus 301 which may act as a UE 313/DS-TT 311 hosting the UP functionalities. If the locally stored information is available at the apparatus 301, operations similar to 320, 325, 330 and 335 will be performed at the apparatus 301.
  • the apparatus 301 may forward the container with the IEEE signaling protocol information and/or the IEEE signaling protocol assistance information from the ingress port of the DS-TT 311 to the UE 313, and then though the optional SMF 304 and PCF 306 to the apparatus 303.
  • any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110.
  • IEEE standards can be decoupled with other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
  • Fig. 4 illustrates another signaling flow 400 for communication according to some example embodiments of the present disclosure.
  • the signaling flow 400 involves apparatus 401, apparatus 402, apparatus 403 and optional SMF 404 and PCF 406.
  • the apparatus 401 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 411 and a UE 413.
  • the apparatus 402 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 415 and a NW-TT 417. Both the apparatus 401 and the apparatus 402 may be located as the UP and host the UP functionalities.
  • the apparatus 403 may be the apparatus 130-3 in Fig. 1.
  • the apparatus 403 may be located as the CP and act as an AF.
  • the apparatus 402 may by the first device as described with respect to Fig. 2.
  • the apparatus 403 may be the second device as described with respect to Fig. 2.
  • the apparatus 401 may be the third device as described with respect to Fig. 2.
  • Fig. 4 there are three apparatuses and SMF and PCF illustrated in Fig. 4. It is to be understood that the signaling flow 400 may involve more apparatuses or less apparatuses, and the number of apparatuses illustrated in Fig. 4 is only for the purpose of illustration without suggesting any limitations.
  • the locally stored information is not available at the UP, but available at the CP.
  • the bridge 110 may be configured to support the MSRP while some of the ports of the bridge 110 may not support the MSRP.
  • the apparatus 401 may obtain 420 locally stored information.
  • the locally stored information may only include rules to check consistency of IEEE signaling protocol information.
  • the apparatus 403 may obtain 425 locally stored information.
  • locally stored information in apparatus 403 may include msrpEnabledStatus and/or msrpPortEnabledStatus.
  • locally stored information in apparatus 402 may include BridgeBaseMmrpEnabledStatus and/or BridgePortMmrpEnabledStatus.
  • the apparatus 403 may extract 430 from locally stored information for configuration of MSRP that describes the externally observable behavior of the bridge 110. Then, the apparatus 403 may transfer the configuration of MSRP to the apparatus 402. In some example embodiments, the configuration of MSRP may be transferred to the apparatus 402 via Port Management Information Container (PMIC) . For example, as shown in Fig. 4, the configuration of MSRP will be transferred from the apparatus 403 though the PCF 406 and the SMF 404 to the UPF 415 of the apparatus 402 and then to the NW-TT 417 of the apparatus 402.
  • PMIC Port Management Information Container
  • the apparatus 402 may store 440 the configuration of MSRP describing the externally observable behavior of the bridge 110 for MSRP.
  • the apparatus 401 receives 445 the IEEE signaling protocol information from a second device.
  • the apparatus 401 may also receive locally stored information.
  • the apparatus 401 may determine 450 the processing option as forwarding the received IEEE signaling protocol information to apparatus 402 via UP, e.g. established PDU session.
  • the apparatus 401 transmits 455 the received IEEE signaling protocol information to the apparatus 402. For example, the received IEEE signaling protocol information will be transmitted to the UPF 415 and then to the NW-TT 417 of the apparatus 402.
  • the apparatus 402 may decide 460 to drop the received MSRP frame to the apparatus 403. The following operations including dropping the received MSRP frame will not be described in detail and will not be shown in Fig. 4.
  • the apparatus 402 may determine 470 the processing option (s) . If the apparatus 402 finds that the ingress port of the NW-TT 417 does support the received MSRP frame by using received configuration of MSRP, then the apparatus 402 may determine to redirect the received MSRP frame to the apparatus 403.
  • the apparatus 402 may encapsulate 475 the full IEEE frame (without preamble) in the IEEE signaling protocol information.
  • the apparatus 402 may also generate the IEEE signaling protocol assistance information with the ingress port number of the NW-TT from which the NW-TT receives the IEEE signaling protocol information417. In this case, both IEEE signaling protocol information and IEEE signaling protocol assistance information may be encapsulated into a new container.
  • the apparatus 402 may transmit 480 the container to the apparatus 403.
  • the container may be transmitted from the ingress port of the NW-TT 417 of the apparatus 402 to the UPF 415 of the apparatus 402, and then (optional) through the SMF 404 and the PCF 406 to the apparatus 403.
  • the apparatus 403 may detect 485 Ethertype from received IEEE signaling protocol information and determine processing options based on detected Ethertype and locally stored information. For example, the apparatus 403 may determine 485 to use the received MSRP frame to generate updated IEEE signaling protocol information, for example an updated MSRP frame.
  • the apparatus 403 may generate or encapsulate 490 the IEEE signaling protocol information with the updated IEEE signaling protocol information and/or the IEEE signaling protocol assistance information in a new container.
  • the apparatus 403 may forward the generated updated IEEE signaling protocol information (for example the generated updated MSRP frame) to the egress port via the container.
  • the egress port is a port of the DS-TT 411 of the apparatus 401.
  • FIG. 4 is illustrated with the MSRP protocol as an example of IEEE signaling protocol, other suitable IEEE signaling protocol may be used according to the present disclosure.
  • any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110.
  • IEEE standards can be decoupled with other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
  • Fig. 5 shows another signaling flow 500 for communication according to some example embodiments of the present disclosure.
  • the signaling flow 500 involves apparatus 501, apparatus 502, apparatus 503 apparatus 504 and CNC 505.
  • the apparatus 501 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 511 and a UE 513.
  • the apparatus 502 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 515 and a NW-TT 517. Both the apparatus 501 and the apparatus 502 may be located at the UP and host the UP functionalities.
  • the apparatus 503 may be the apparatus 130-3 in Fig. 1.
  • the apparatus 503 may be located at the CP and act as an AF which is responsible to handle fully distributed model IEEE signaling.
  • the apparatus 504 may be the apparatus 130-2 in Fig. 1 which is connected to the CNC 505 (for example, the CNC 150 as shown in Fig. 1) .
  • the apparatus 504 may act as a TSN AF communicating with the CNC 505.
  • the apparatus 504 may be located at the CP.
  • Fig. 5 uses the MSRP protocol as an example IEEE signaling protocol. It is to be understood that the signaling flow 500 may also use any other suitable types of IEEE signaling protocol.
  • the CNC 505 may configure the traffic class table for each port and may provide 520 this configuration to the apparatus 504.
  • the CNC 505 may schedule 525 a stream in a traffic class.
  • the CNC 505 may transmit 530 the configuration information comprising the static filtering entries, PSFP information and updated CBS parameter for the traffic class to the apparatus 504.
  • the apparatus 504 may extract 535 locally stored information and determine to transfer locally stored information to the apparatus 503. In accordance with a determination to transfer locally stored information to the apparatus 503, the apparatus 504 may transmit 540 a new container to the apparatus 503.
  • the new container may comprise the IEEE signaling protocol assistance information, such as configuration parameters for MSRP, and the port number of the NW-TT 517.
  • the IEEE signaling protocol assistance information carried by the new container may comprise one or more following information but not limited to: a list of configuration parameters related to IEEE signaling protocol information, ingress port information, egress port information, or bridge ID.
  • the list of configuration parameters may comprise at least one of: traffic class, OperIdleSlope or egress port.
  • the apparatus 502 receives 550 an IEEE signaling protocol information from a second device.
  • the IEEE signaling protocol information may be transmitted to an ingress port of the NW-TT 517 of the apparatus 502.
  • the apparatus 502 may determine 555 the processing option. For example, if the apparatus 502 finds that the ingress port of NW-TT 517 does not support the received MSRP frame by using received MSRP configuration information, then the apparatus 502 may determine to redirect the received MSRP frame to the apparatus 503.
  • the apparatus 502 may encapsulate 560 the full IEEE frame (without preamble) in the IEEE signaling protocol information.
  • the apparatus 502 may also build the IEEE signaling protocol assistance information with the ingress port number of the NW-TT 517 from which the MSRP frame is received. Both IEEE signaling protocol information and/or IEEE signaling protocol assistance information may be encapsulated into the new container.
  • the apparatus 502 may transmit 565 the proposed new container to the apparatus 503.
  • the new container may be transmitted from an ingress port of the NW-TT 517 of the apparatus 502 to the UPF 515 of the apparatus 502, and then to the apparatus 503.
  • the apparatus 603 may determine 570 processing options based on detected Ethertype and locally stored information. For example, the apparatus 503 may determine 570 to use the received MSRP frame to generate updated IEEE signaling protocol information. For example, the updated IEEE signaling protocol information may be generated depending on locally stored configuration information and detected Ethertype as MSRP.
  • the apparatus 503 may transmit the new container to the apparatus 504. For example, when the apparatus 502 finishes the MSRP frame processing, such as reserved the bandwidth for the TSN stream in a certain egress port, the apparatus 502 may need to inform 575 the apparatus 504 that this port and traffic class will have after the reservation an increased credit-based shaper parameter (such as OperldleSlope) that may be used by the CNC 505.
  • an increased credit-based shaper parameter such as OperldleSlope
  • FIG. 5 is illustrated with the MSRP protocol as an example of IEEE signaling protocol, other suitable IEEE signaling protocol may be used according to the present disclosure.
  • any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110.
  • IEEE standards can be decoupled with other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
  • a first apparatus capable of performing any of the method 200 may comprise means for performing the respective operations of the method 200.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the apparatus 130 in Fig. 1.
  • the first apparatus comprises means for determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; means for receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and means for processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
  • the means for determining the information comprises means for obtaining the information from a locally stored configuration; or means for receiving the information from the second device or the third device.
  • the information comprises at least one of: first information for processing the IEEE signaling protocol information related to a receiving port, second information for processing the IEEE signaling protocol information related to a transmitting port, third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device, fourth information for checking consistency of the IEEE signaling protocol information, or fifth information processing an Ethernet header of the IEEE signaling protocol information.
  • the first apparatus further comprises means for extracting the information from a locally stored configuration; and means for transferring the information to the second device.
  • the first apparatus further comprises means for receiving the information from the second device; and means for storing the information at the first device.
  • the means for processing the IEEE signaling protocol information comprises at least one of: means for causing the IEEE signaling protocol information to be discarded; means for redirecting the IEEE signaling protocol information to the second device; means for forwarding the IEEE signaling protocol information to the third device; or means for updating a local data base based on the IEEE signaling protocol information.
  • the first apparatus further comprises means for generating an IEEE frame based on the IEEE signaling protocol information.
  • the first apparatus further comprises means for transferring the IEEE frame based on the IEEE signaling protocol information.
  • the IEEE signaling protocol information comprises at least one of: a first and/or second information elements which form the IEEE signaling protocol information.
  • the first information element comprises at least one of: an IEEE frame which complies with a range of IEEE signaling protocols, or a portion of the IEEE frame.
  • the second information element comprises IEEE signaling protocol assistance information.
  • the IEEE signaling protocol assistance information comprises at least one of: a port identifier of a receiving port from which the IEEE signaling is received, one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols, one or more configuration parameters related to the IEEE signaling protocol information, or one or more configuration identifiers for identifying the at least one parameter for the IEEE signaling protocol information.
  • the first device is a user-plane device
  • the second device is a control-plane device
  • the third device is another user-plane device.
  • the first device is a control-plane device
  • the second device is a user-plane device
  • the third device is another control-plane device.
  • the user-plane device comprises one of: a terminal device, a device-side time sensitive networking translator, a user plane function, or a network-side time sensitive networking translator.
  • the control-plane device comprises an application function.
  • the first apparatus further comprises means for encapsulating at least one of: a first or second information elements which forms the IEEE signaling protocol information into a container; and means for forwarding the container to the second device.
  • Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing example embodiments of the present disclosure.
  • the device 600 may be provided to implement a communication device, for example, the apparatus 130 as shown in Fig. 1 or the first device and the second device with respect to Fig. 2.
  • the device 600 includes one or more processors 610, one or more memories 620 coupled to the processor 610, and one or more communication modules 640 coupled to the processor 610.
  • the communication module 640 is for bidirectional communications.
  • the communication module 640 has one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 640 may include at least one antenna.
  • the processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 620 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage.
  • ROM Read Only Memory
  • EPROM electrically programmable read only memory
  • flash memory a hard disk
  • CD compact disc
  • DVD digital video disk
  • optical disk a laser disk
  • RAM random access memory
  • a computer program 630 includes computer executable instructions that are executed by the associated processor 610.
  • the program 630 may be stored in the memory, e.g., ROM 624.
  • the processor 610 may perform any suitable actions and processing by loading the program 630 into the RAM 622.
  • the example embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure as discussed with reference to Figs. 2 to 5.
  • the example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as in the memory 620) or other storage devices that are accessible by the device 600.
  • the device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 7 shows an example of the computer readable medium 700 which may be in form of CD, DVD or other optical storage disk.
  • the computer readable medium has the program 630 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target physical or virtual processor, to carry out any of the methods as described above with reference to Fig. 2.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Communication Control (AREA)

Abstract

Example embodiments of the present disclosure relate to TSN fully distributed model enhancement. A first device determines information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; receives the IEEE signaling protocol information from a second device or a third device; and processes the IEEE signaling protocol information based on the at least one parameter. This solution enables the first device to forward or redirect the IEEE signaling protocol information to any other devices in the TSN fully distributed model. By doing so, IEEE standards can be decoupled with other communication standards, which can thus achieve a pre-defined externally observable behavior.

Description

TSN FULLY DISTRIBUTED MODEL ENHANCEMENT FIELD
Embodiments of the present disclosure generally relate to the field of communication and in particular, to method, device, apparatus and computer readable storage medium for Time-Sensitive Networking (TSN) fully distributed model enhancement.
BACKGROUND
In industrial communication networks, there may be a challenge to obtain high availability and bounded latency for a given communication protocol, its parameters and the physical environment in which the communications network is deployed. For example, TSN is being standardized by Institute of Electrical and Electronics Engineers (IEEE) 802.1 to provide industrial networks with deterministic delay to handle time sensitive traffic. Works are ongoing to introduce enhancements to TSN model to meet the emerging application requirements for industrial automation.
SUMMARY
The scope of protection sought for various embodiments of the invention is set out by the independent claims. The embodiments/examples and features, if any, described in this specification that do not fall under the scope of the independent claims are to be interpreted as examples useful for understanding various embodiments of the invention. ” Please note that the term “embodiments” or “examples” should be adapted accordingly to the terminology used in the application, i.e. if the term “examples” is used, then the statement should talk of “examples” accordingly, or if the term “embodiments” is used, then the statement should talk of “embodiments” accordingly.
In general, example embodiments of the present disclosure provide a solution for TSN fully distributed model. Embodiments that do not fall under the scope of the claims, if any, are to be interpreted as examples useful for understanding various embodiments of the disclosure.
In a first aspect, there is provided a first device. The first device comprises at  least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to determine information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; receive the IEEE signaling protocol information from a second device or a third device; and process the IEEE signaling protocol information based on the at least one parameter.
In a second aspect, there is provided a method. The method comprises determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
In a third aspect, there is provided an apparatus. The apparatus comprises means for determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; means for receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and means for processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
In a fourth aspect, there is provided a computer readable medium. The computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to the second aspect.
It is to be understood that the Summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication environment in which example embodiments of the present disclosure can be implemented;
Fig. 2 illustrates a flowchart of a method implemented at a device according to some example embodiments of the present disclosure;
Fig. 3 illustrates a signaling flow for communication according to some example embodiments of the present disclosure;
Fig. 4 illustrates another signaling flow for communication according to some example embodiments of the present disclosure;
Fig. 5 illustrates another signaling flow for communication according to some example embodiments of the present disclosure;
Fig. 6 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure; and
Fig. 7 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element. Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. Embodiments described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature,  structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first, ” “second” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and technology. In some example embodiments, radio access network (RAN) split architecture comprises a Centralized Unit (CU) and a Distributed Unit (DU) at an IAB  donor node. An IAB node comprises a Mobile Terminal (IAB-MT) part that behaves like a UE toward the parent node, and a DU part of an IAB node behaves like a base station toward the next-hop IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to a Mobile Termination (MT) part of an IAB node (e.g., a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As used herein, the term “resource, ” “transmission resource, ” “resource block, ” “physical resource block” (PRB) , “uplink resource, ” or “downlink resource” may refer to any resource for performing a communication, for example, a communication between a terminal device and a network device, such as a resource in time domain, a resource in frequency domain, a resource in space domain, a resource in code domain, or any other resource enabling a communication, and the like. In the following, a resource in both frequency domain and time domain will be used as an example of a transmission resource for describing some example embodiments of the present disclosure. It is noted that example embodiments of the present disclosure are equally applicable to other resources in other domains.
Fig. 1 shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented. In the communication environment 100, a bridge 110 is connected to device 140-1 and device 140-2 via an ingress port or an egress port. For ease of discussion, the devices 140-1 and 140-2 are collectively or individually referred to as devices 140 or device 140. Although not shown, it would be appreciated that one or more additional devices 140 may be connected to the bridge 110. In some embodiments, the device 140 may be a TSN end station (ES) which may also be referred to as talker or listener. Devices 140 are inner-connected to each other via one or more multiple bridges with time-sensitive (deterministic) transmission capability.
Inside the bridge 110, there are a network function (NF) 120 connected to apparatus 130-1, apparatus 130-2, apparatus 130-3 and apparatus 130-4. For ease of discussion, the apparatus 130-1, apparatus 130-2, apparatus 130-3 and apparatus 130-4 are collectively or individually referred to as apparatuses 130 or apparatus 130. Although not shown, it would be appreciated that one or more additional apparatuses 130 may be connected to the NF 120.
One or more of the apparatuses 130 may be connected to the device 140 via the ingress port or the egress port of the bridge 110. For example, the apparatus 130-1 may be connected to the device 140-1, and the apparatus 130-4 may be connected to the device 140-2, as shown in Fig. 1. One or more apparatuses 130 may be connected to a centralized network controller (CNC) 150 as shown in Fig. 1. Some of the apparatuses 130 may be connected to each other. For example, apparatus 130-3 and apparatus 130-3 or apparatus 130-4 may be connected to each other.
The bridge 110 may be located as the user-plane (UP) and/or as the control-plane (CP) . The bridge 110 is enabled to host additional network functions and apparatuses for the respective UP or CP. That is, the apparatus 130 may comprise various types of apparatuses to host additional function entities for the respective UP or CP. For example, the apparatus 130-1 may be an apparatus which functions as a Device Side TSN Translator (DS-TT) or a user equipment (UE) at the UP. The apparatus 130-4 may be an apparatus which functions as a Network Side TSN Translator (NW-TT) or a user plane function (UPF) at the UP. The apparatus 130-2 may be a TSN Application Function (AF) at the CP. The apparatus 130-2 may be connected to the CNC 150. The apparatus 130-3 may be an AF. In addition or alternatively, in some example embodiments, the apparatus 130 may comprise at least one of: a Network Exposure Function (NEF) , a Policy Control Function  (PCF) , a Session Management Function (SMF) and/or any signaling protocol specific AF at the CP. It is to be understood that the above described examples of apparatus 130 are only for the purpose of illustration, without suggesting any limitation.
The bridge 110 will deliver data via the egress port at a specific time window (not too early, not too late) to the next device 140 (or ES) , given that the data arrives at the ingress within another distinct time window.
It is to be understood that the number of devices, apparatuses and their connections shown in Fig. 1 are only for the purpose of illustration without suggesting any limitation. The environment 100 may include any suitable number of devices, apparatuses adapted for implementing embodiments of the present disclosure.
Communications in the communication environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
Conventionally, TSN configuration model of fully centralized model has been proposed. In this fully centralized model, the 5GS functional architecture is integrated into an IEEE TSN network as a TSN bridge to support periodic deterministic time-sensitive traffic flows. A Centralized Network Controller (CNC) provides the 5GS TSN bridge with port gate timing information. However, due to service deployment limitation, this fully centralized model cannot meet the emerging application requirements from vertical domains.
To this end, it has been proposed to support the TSN fully distributed model by restricting tight dependencies between IEEE and 3GPP protocols and performing the  protocol specific processing at the Application Function (AF) . However, this approach requires that all signaling protocol messages need to be forwarded to the AF. Due to the limitation by 3GPP Rel-16 and Rel-17 that only a single TSN AF serving a TSN domain, this approach cannot support multiple TSN AFs. In addition, this approach cannot support signaling protocol specific AFs either. Moreover, a single TSN AF for all TSN domains may have scalability issues in larger deployments.
It also has been proposed to decouple 3GPP and IEEE standards to support the TSN fully distributed model. However, it cannot achieve a pre-defined externally observable behavior based on configuration.
As discussed above, it is challenging to support TSN fully distributed model or IEEE signaling protocol. According to some example embodiments of the present application, there is provided a solution for bridge for TSN fully distributed model. In this solution, a first device determines information comprising at least one parameter related to processing an IEEE signaling protocol information. The first device receives the IEEE signaling protocol information from a second device or a third device. The first device process the IEEE signaling protocol information based on the at least one parameter. This solution enables the first device to forward any/arbitrary IEEE signaling message from ingress port to any AF within a bridge for further processing while considering locally stored information of the bridge and its ports and/or IEEE signaling protocol assistance information. By this way, it can comply with externally observable behavior specified in IEEE specification for any specified signaling protocols.
The example embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
Reference is now made to Fig. 2, which shows an example flowchart of a method 200 implemented at a device according to some example embodiments of the present disclosure. For the purpose of discussion, the method 200 will be described from the perspective of a first device, which may be the apparatus 130 as shown Fig. 1. For example, the first device may be a NW-TT, UPF or DS-TT, UE at the UP. Alternatively, the first device may be an AF or a TSN AF at the CP.
At block 210, the first device determines information comprising at least one parameter related to processing an IEEE signaling protocol information. In some example embodiments, in determining the information, the first device may obtain the information  from a locally stored configuration stored in the first device. In addition or alternatively, in some example embodiments, the first device may extract the information from a locally stored configuration. The first device may also transfer the information to the second device.
Alternatively, in some example embodiments, the first device may receive the information from a second device or a third device. The first device and the second device may be located at different planes. The second device may be a TSN bridge, end station, network function (NF) in the different plane. The first device and the third device may be located at the same plane. The third device may be a TSN bridge, end station, network function (NF) in the same plane. For example, if the first device is the apparatus 130-4 (i.e., the NW-TT or the UPF at the UP) , then the second device may be any AF at the CP, such as the apparatus 130-2 or apparatus 130-3. In this case, the third device may be the apparatus 130-1 (i.e., the DS-TT or the UE) at the UP. The apparatus 130-4 may receive the information from the apparatus 130-3 or other AF within the bridge 110 as shown in Fig. 1, or receive the information from the apparatus 130-1 or other apparatus at the UP.
For another example, if the first device is the apparatus 130-2 (i.e., the TSN AF) , then the second device may be the apparatus 130-1 (i.e., the DS-TT or the UE) or the apparatus 130-4 (i.e., the NW-TT or the UPF) or other device at the UP, and the third device may be the apparatus 130-3 (i.e., the AF) or other devices at the CP. The apparatus 130-2 may receive the information from the apparatus 130-1, or the apparatus 130-4 or other device at the UP, or receive the information from the apparatus 130-3 or other AF at the CP.
In addition or alternatively, in some example embodiments, the first device may receive the information from the second device. The first device may also store the information at the first device.
In some example embodiments, the information may comprise at least one of: first information for processing the IEEE signaling protocol information related to a receiving port, second information for processing the IEEE signaling protocol information related to a transmitting port, third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device, fourth information for checking consistency of the IEEE signaling protocol information, or fifth information processing an Ethernet header of the IEEE signaling protocol information.
For example, the first information may comprise specific rules for each possible  receiving port. The second information may comprise specific rules for each possible transmitting port. The third information may comprise specific rules related to bridge capabilities of the first device. The examples of the first, second and third information may include but not limited to: a parameter for link layer discovery protocol (LLDP) , a parameter for multiple reservation virtual local area network protocol (MVRP) , a parameter for multiple medium access control reservation protocol (MMRP) or a parameter for multiple stream reservation protocol (MSRP) .
The fourth information may comprise specific rules to check consistency of IEEE signaling protocol information. The fifth information may comprise Ethernet header related rules. The term “Ethertype” used herein can refer to a two-octet field in an Ethernet frame and it is used to indicate which protocol is encapsulated in the payload of the frame. Examples of the fifth information may include but not limited to medium access control (MAC) addresses, priority code point (PCP) and virtual local area network (VLAN) , Ethertype, etc. It is to be understood that that the examples of parameters are only for the purpose of illustration without suggesting any limitations, the information may further comprise any other suitable parameters.
At block 220, the first device receives the IEEE signaling protocol information from the second device or the third device. The first, second and third devices may be the devices discussed above.
For example, if the first device is the apparatus 130-4 (i.e., the NW-TT or the UPF at the UP) , then the second device may be any AF at the CP, such as the apparatus 130-2 or apparatus 130-3, and the third device may be the apparatus 130-1 (i.e., the DS-TT or the UE) at the UP. In this case, the apparatus 130-4 may receive an IEEE signaling protocol information from the apparatus 130-3 or other AF within the bridge 110 as shown in Fig. 1, or receive the receive an IEEE signaling protocol information from the apparatus 130-1 or other apparatus at the UP.
For another example, if the first device is the apparatus 130-2 (i.e., the TSN AF) , then the second device may be the apparatus 130-1 (i.e., the DS-TT or the UE) or the apparatus 130-4 (i.e., the NW-TT or the UPF) or other device at the UP, and the third device may be the apparatus 130-3 (i.e., the AF) or other devices at the CP. In this case, the apparatus 130-2 may receive an IEEE signaling protocol information from the apparatus 130-1, or the apparatus 130-4 or other device at the UP, or receive an IEEE signaling  protocol information from the apparatus 130-3 or other AF at the CP.
At block 230, the first device processes the IEEE signaling protocol information based on the at least one parameter. There may be several processing options for the first device to process the IEEE signaling. For example, one processing option is to cause the IEEE signaling protocol information to be discarded. Another processing option is to forward the IEEE signaling protocol information to the third device located at the same plane. For example, in the case that the first device is the apparatus 130-2 (i.e., the TSN AF) , and the third device is the apparatus 130-3 or other AF at the CP, the apparatus 130-2 may forward the IEEE signaling protocol information to the apparatus 130-3 or other AF at the CP.
Another processing option is to redirect the IEEE signaling protocol information to the second device located at a different plane. Another processing option is to update a local data base (e.g. management information base (MIB) ) according to the IEEE signaling protocol information.
Still another processing option is to generate an IEEE frame based on the IEEE signaling protocol information and further transfer the IEEE frame based on the IEEE signaling protocol information. For example, the first device may generate and transfer a full IEEE frame complying with any IEEE signaling protocol information by using the IEEE signaling protocol information.
In some example embodiments, the IEEE signaling protocol information may comprise a first information element and/or a second information element which form the IEEE signaling protocol information. The first information element may comprise at least one of: an IEEE frame which complies with a range of IEEE signaling protocols, or a portion of the IEEE frame. For example, the first information element may comprise the full IEEE frame complying with any IEEE signaling protocol. The first information element may otherwise comprise selected parts of the IEEE frame complying with any IEEE signaling protocol. The selected parts of the IEEE frame may comprise information from Ethernet header and elements that are contained in the frame payload.
In addition or alternatively, in some example embodiments, the IEEE frame may comprise at least one of: header key information or payload key information. Examples of header key information may comprise but not limited to source (and destination) medium access control (MAC) address, Ethertype, or PCP and vlan identifier. Examples of  payload key information may comprise but not limited to ProtocolVersion, AttributeType, FirstValue, or NumberofValues.
In some example embodiments, the second information element may comprise IEEE signaling protocol assistance information. For example, the IEEE signaling protocol assistance information may comprise at least one of: a port identifier of a receiving port from which the IEEE signaling is received; one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols; one or more configuration parameters related to the IEEE signaling protocol information; or one or more configuration identifiers for identifying the at least one parameter for the IEEE signaling protocol information such as bridge identity (ID) , protocol ID, etc.
Several examples of determining the above processing options will be described as below with the Ethertype is MVRP. In some example embodiments, determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise at least parameter describing a bridge MVRP enabled status (i.e., BridgeMvrpEnabledStatus) and/or a bridge port MVRP enabled status (i.e., BridgePortMvrpEnabledStatus) . Depending on the implementation, it can be processed either in the control plane or in the user plane.
In some example embodiments, if the BridgeMvrpEnabledStatus = TRUE and BridgePortMvrpEnabledStatus = FALSE, the first device may determine to discard the received IEEE protocol frame (i.e. MVRPDU) . If the BridgeMvrpEnabledStatus =FALSE, the first device may determine to redirect the IEEE protocol frame (i.e. MVRPDU) to the third device located at the same plane for transparent processing. In this case, the first device may build the IEEE signaling protocol information with the full received IEEE protocol frame (i.e. MVRPDU) . And the first device may only encapsulate the IEEE signaling protocol information into a new container. In the example that the first device is an apparatus at the UP, then the second device may be another apparatus at the CP. The second device processes the received IEEE signaling protocol information based on locally configuration information. If the BridgeMvrpEnabledStatus = TRUE and BridgePortMvrpEnabledStatus = TRUE, the first device may determine to redirect the IEEE signaling protocol information to the second device located at a different plane. The first device generates the IEEE signaling protocol information with the full received IEEE protocol frame (i.e. MVRPDU) or part of the received IEEE frame. In this case, the first  device may capsulate both the IEEE signaling protocol information and IEEE signaling protocol assistance information into a new container. In the example that the first device is the apparatus 130-4 (such as the UPF or the NW-TT) , the second device located at a different plane may be the apparatus 130-3 (such as an AF) located at the CP. The first device then may forward the new container to the second device.
Additional examples of determining the above processing options will be described as below where the Ethertype is MSRP. In some example embodiments, if the Ethertype is MSRP, determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise receiving the information from the second device. In this case, the first device (for example, the apparatus 130-4, i.e., NW-TT or UPF) may receive the information that describes the externally observable behaviour of the 5GS TSN Bridge for MSRP from the second device (for example, the apparatus 130-3, i.e. AF) . The first device stores the received information as local stored configuration information.
The first device may determine that a DS-TT (port) does not support the IEEE signaling protocol information (i.e., the MSRP frame in this case) based on the information. In accordance with the determination that the DS-TT (port) does not support the IEEE signaling protocol information, the first device may cause the IEEE signaling protocol information to be dropped.
Alternatively, the first device may determine that a NW-TT (port) does support the IEEE signaling protocol information (i.e., the MSRP frame in this case) based on the information. In accordance with the determination that the NW-TT (port) does support the IEEE signaling protocol information, the first device may redirect the IEEE signaling protocol information to the second device (for example, the apparatus 130-3, i.e. AF) .
In some example embodiments, in the case that the Ethertype is MSRP, the first device may generate an IEEE frame (i.e., a MSRP frame in this case) based on the received IEEE signaling protocol information from the second device (for example, a TSN bridge, or an UE/DS-TT) . The IEEE frame may be encapsulated in the IEEE signaling protocol information. The first device may further generate IEEE signaling protocol assistance information based on the IEEE signaling protocol information. Then the first device may encapsulate the IEEE signaling protocol information and/or the IEEE signaling protocol assistance into a new container. The first device then may forward the new container to  the second device.
Further examples of determining the above processing options will be described as below where the Ethertype is MSRP. In some example embodiments, if the Ethertype is MSRP, determining the information comprising at least one parameter related to processing an IEEE signaling protocol information may comprise receiving the information from the second device. In the case that the first device may be the apparatus 130-2 (i.e., the TSN AF) which is connected to the CNC 150, the second device may be the apparatus 130-1 (i.e., UE or DS-TT) or the apparatus 130-4 (i.e., UPF or NW-TT) and the third device is the apparatus 130-3 or other AF at the CP, the apparatus 130-2 may forward the IEEE signaling protocol information to the apparatus 130-3 or other AF at the CP. In this scenario, the MSRP frame is sent from the apparatus 130-4 (i.e., UPF or NW-TT) to apparatus 130-3 (AF) which processed the MSRP frame.
In this case, CNC 150 may configure the traffic class table for each port and this configuration will be provided to the first device, i.e., the apparatus 130-2 (the TSN AF) . When CNC configures a stream for this traffic class, the remained bandwidth will need to be updated at the first device. The first device may update the third device (i.e., the apparatus 130-3, the AF) handling the MSRP whenever a change happens. The third device (i.e., the apparatus 130-3, the AF) may store this information locally and process the MSRP frame by using the processes according to the present disclosure.
When the third device (i.e., the apparatus 130-3, the AF) finishes the MSRP frame processing, for example, reserved the bandwidth for the TSN stream in a certain egress port, the third device (i.e., the apparatus 130-3, the AF) may need to inform the first device (i.e., the apparatus 130-2, the TSN AF) that this port and traffic class will have after the reservation an increased credit-based shaper parameter (such as OperldleSlope) that may be used by CNC 150.
In some example embodiments, in the case that the Ethertype is MSRP and the first device is the apparatus 130-2, the first device may generate an IEEE frame (i.e., a MSRP frame in this case) based on the received IEEE signaling protocol information from the second device (for example, an UE/DS-TT, a UPF/NW-TT) . The IEEE frame may be encapsulated in the IEEE signaling protocol information. The first device may further generate IEEE signaling protocol assistance information based on the IEEE signaling protocol information. Then the first device may encapsulate the IEEE signaling protocol  information and/or the IEEE signaling protocol assistance into a new container. The first device then may forward the new container to the third device (for example, an AF) .
Several example embodiments about several processing options have been discussed above, more example embodiments regarding the various processing options will be illustrated in detail with respect to Figs. 3-5 later.
By using method 200, IEEE signaling message from ingress port can be forwarded to any AF within the bridge 110 for further processing. It can also guarantee the locally stored information of the bridge 110 and/or its ports and/or IEEE signaling protocol assistance information be considered. In addition, IEEE signaling protocol assistance information can be provided in a flexible way to/from the AF.
Reference is now made to Fig. 3, which shows a signaling flow 300 for communication according to some example embodiments of the present disclosure. As shown in Fig. 3, the signaling flow 300 involves apparatus 301, apparatus 302, apparatus 303 and optional SMF 304 and PCF 306. In some example embodiments, the apparatus 301 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 311 and a UE 313. The apparatus 302 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 315 and a NW-TT 317. The apparatus 302 may be located as the UP and host the UP functionalities. The apparatus 303 may be the apparatus 130-3 in Fig. 1. The apparatus 303 may act as an AF. The apparatus 302 may by the first device as described with respect to Fig. 2. The apparatus 303 may be the second device as described with respect to Fig. 2.
For the purpose of discussion, there are three apparatuses and SMF 304 and PCF 306 illustrated in Fig. 3. It is to be understood that the signaling flow 300 may involve more apparatuses or less apparatuses, and the number of apparatuses illustrated in Fig. 3 is only for the purpose of illustration without suggesting any limitations.
In operation, the apparatus 302 determines 320 information which comprises at least one parameter related to processing an IEEE signaling protocol information. In some example embodiments, the apparatus 302 may determine 320 the information by obtaining information from a locally stored configuration. For example, the apparatus 302 may obtain locally stored configuration information for MVRP per port. The locally stored information includes BridgeMvrpEnabledStatus and/or BridgePortMvrpEnabledStatus indicating that the MVRP protocol usage on the bridge 110 and/or a specific port.
The apparatus 302 receives 325 an IEEE signaling protocol information from a second device, for example a TSN bridge. Upon receiving 325 the IEEE signaling protocol information from the second device, the apparatus 302 may process the IEEE signaling protocol information based on the at least one parameter and an Ethertype of the received IEEE signaling protocol information. In some example embodiments, in processing the IEEE signaling protocol information, the apparatus 302 may detect Ethertype as MVRP from received IEEE signaling protocol information and determine processing options based on detected Ethertype and locally stored information.
In some example embodiments, if BridgeMvrpEnabledStatus = FALSE, in this case the BridgeMvrpEnabledStatus parameter is ignored, MVRP protocol is disabled by apparatus 302, and all MVRP packets are redirected to apparatus 303 transparently for further processing (not shown in Fig. 3) .
In some example embodiments, if BridgeMvrpEnabledStatus = TRUE and BridgePortMvrpEnabledStatus = FALSE at the port where the apparatus 302 received the MVRPDU, MVRP protocol is disabled on this port, any received MVRP packets will be discarded silently by apparatus 302 (not shown in Fig. 3) .
In some example embodiments, as shown in Fig. 3, if BridgeMvrpEnabledStatus =TRUE and BridgePortMvrpEnabledStatus = TRUE, the apparatus 302 may determine 330 to redirect received IEEE signaling protocol information to apparatus 303.
In accordance with a determination 330 to redirect received IEEE signaling protocol information to apparatus 303, the apparatus 302 may select 335 parts of the IEEE signaling protocol information from the received IEEE signaling. For example, the apparatus 302 may generate the IEEE signaling protocol information with the exacted header key information and payload key information. The apparatus 302 may also generate the IEEE signaling protocol assistance information with the ingress port number of the DS-TT port 311. The IEEE signaling protocol information and/or IEEE signaling protocol assistance information may be encapsulated into a new container. In some example embodiments, the first device may only redirect the IEEE signaling protocol information to the second device for transparently processing.
In some example embodiments, the IEEE signaling protocol information carried by the container may comprise one or more following information but not limited to: header key information which may comprises at least one of: source (and destination) MAC  address, Ethertype, or PCP and vlan identifier; and payload key information which may comprise at least one of: ProtocolVersion, AttributeType, FirstValue, or NumberOfValues.
In some example embodiment, the IEEE signaling protocol assistance information carried by the container may comprise one or more following information but not limited to: ingress port information, egress port information, or bridge ID.
After encapsulating the IEEE signaling protocol information and/or the IEEE signaling protocol assistance information in the container, the apparatus 302 may forward the container with the IEEE signaling protocol information and/or the IEEE signaling protocol assistance information to the apparatus 303. For example, as shown in Fig. 3, the container may be forwarded 340 from the ingress port of the NW-TT 317 of the apparatus 302 to the UPF 315 of the apparatus 302, and then though the optional SMF 304 and PCF 306 to the apparatus 303. After that, the apparatus 303 may extract 345 Ethertype from received IEEE signaling protocol information and perform further processing.
Alternatively, the apparatus 302 may be replaced with the apparatus 301 which may act as a UE 313/DS-TT 311 hosting the UP functionalities. If the locally stored information is available at the apparatus 301, operations similar to 320, 325, 330 and 335 will be performed at the apparatus 301. The apparatus 301 may forward the container with the IEEE signaling protocol information and/or the IEEE signaling protocol assistance information from the ingress port of the DS-TT 311 to the UE 313, and then though the optional SMF 304 and PCF 306 to the apparatus 303.
By doing so, any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110. Thus, IEEE standards can be decoupled with other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
Fig. 4 illustrates another signaling flow 400 for communication according to some example embodiments of the present disclosure. As shown in Fig. 4, the signaling flow 400 involves apparatus 401, apparatus 402, apparatus 403 and optional SMF 404 and PCF 406. In some example embodiments, the apparatus 401 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 411 and a UE 413. The apparatus 402 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 415 and a NW-TT 417. Both the apparatus 401 and the apparatus 402 may be located as the UP and host the UP functionalities. The apparatus 403 may be the apparatus 130-3 in Fig. 1. The apparatus  403 may be located as the CP and act as an AF. The apparatus 402 may by the first device as described with respect to Fig. 2. The apparatus 403 may be the second device as described with respect to Fig. 2. The apparatus 401 may be the third device as described with respect to Fig. 2.
For the purpose of discussion, there are three apparatuses and SMF and PCF illustrated in Fig. 4. It is to be understood that the signaling flow 400 may involve more apparatuses or less apparatuses, and the number of apparatuses illustrated in Fig. 4 is only for the purpose of illustration without suggesting any limitations.
In some example embodiments described with respect to Fig. 4, the locally stored information is not available at the UP, but available at the CP. In some example embodiments described with respect to Fig. 4, taking MSRP protocol as an example, the bridge 110 may be configured to support the MSRP while some of the ports of the bridge 110 may not support the MSRP.
In operation, the apparatus 401 may obtain 420 locally stored information. For example, the locally stored information may only include rules to check consistency of IEEE signaling protocol information.
The apparatus 403 may obtain 425 locally stored information. Taking MSRP protocol as an example, locally stored information in apparatus 403 may include msrpEnabledStatus and/or msrpPortEnabledStatus. In another embodiment, taking MMRP protocol as an example, locally stored information in apparatus 402 may include BridgeBaseMmrpEnabledStatus and/or BridgePortMmrpEnabledStatus.
In some example embodiments, the apparatus 403 may extract 430 from locally stored information for configuration of MSRP that describes the externally observable behavior of the bridge 110. Then, the apparatus 403 may transfer the configuration of MSRP to the apparatus 402. In some example embodiments, the configuration of MSRP may be transferred to the apparatus 402 via Port Management Information Container (PMIC) . For example, as shown in Fig. 4, the configuration of MSRP will be transferred from the apparatus 403 though the PCF 406 and the SMF 404 to the UPF 415 of the apparatus 402 and then to the NW-TT 417 of the apparatus 402.
Upon receiving the configuration of the MSRP, the apparatus 402 may store 440 the configuration of MSRP describing the externally observable behavior of the bridge 110 for MSRP.
The apparatus 401 receives 445 the IEEE signaling protocol information from a second device. The apparatus 401 may also receive locally stored information. Upon receiving 445 the IEEE signaling protocol information and locally stored information, the apparatus 401 may determine 450 the processing option as forwarding the received IEEE signaling protocol information to apparatus 402 via UP, e.g. established PDU session. In accordance with a determination 450 to forward the received IEEE signaling protocol information, the apparatus 401 transmits 455 the received IEEE signaling protocol information to the apparatus 402. For example, the received IEEE signaling protocol information will be transmitted to the UPF 415 and then to the NW-TT 417 of the apparatus 402.
In some example embodiments, upon receiving the IEEE signaling protocol information from the apparatus 401, if the apparatus 402 determines that the ingress port number of the DS-TT 411 associated with the PDU session does not support the received MSRP frame by using received configuration of MSRP, then the apparatus 402 may decide 460 to drop the received MSRP frame to the apparatus 403. The following operations including dropping the received MSRP frame will not be described in detail and will not be shown in Fig. 4.
In some example embodiments, upon receiving 465 the IEEE signaling protocol information from a second device, the apparatus 402 may determine 470 the processing option (s) . If the apparatus 402 finds that the ingress port of the NW-TT 417 does support the received MSRP frame by using received configuration of MSRP, then the apparatus 402 may determine to redirect the received MSRP frame to the apparatus 403.
In accordance with a determination 470 to redirect the received MSRP frame to the apparatus 403, the apparatus 402 may encapsulate 475 the full IEEE frame (without preamble) in the IEEE signaling protocol information. The apparatus 402 may also generate the IEEE signaling protocol assistance information with the ingress port number of the NW-TT from which the NW-TT receives the IEEE signaling protocol information417. In this case, both IEEE signaling protocol information and IEEE signaling protocol assistance information may be encapsulated into a new container.
After that, the apparatus 402 may transmit 480 the container to the apparatus 403. For example, the container may be transmitted from the ingress port of the NW-TT 417 of the apparatus 402 to the UPF 415 of the apparatus 402, and then (optional) through the  SMF 404 and the PCF 406 to the apparatus 403.
Upon receiving the new container from the apparatus 402, the apparatus 403 may detect 485 Ethertype from received IEEE signaling protocol information and determine processing options based on detected Ethertype and locally stored information. For example, the apparatus 403 may determine 485 to use the received MSRP frame to generate updated IEEE signaling protocol information, for example an updated MSRP frame.
In accordance with a determination 485 to generate updated IEEE signaling protocol information, the apparatus 403 may generate or encapsulate 490 the IEEE signaling protocol information with the updated IEEE signaling protocol information and/or the IEEE signaling protocol assistance information in a new container.
After that, the apparatus 403 may forward the generated updated IEEE signaling protocol information (for example the generated updated MSRP frame) to the egress port via the container. In the example in Fig. 4, the egress port is a port of the DS-TT 411 of the apparatus 401.
It is to be understood that although Fig. 4 is illustrated with the MSRP protocol as an example of IEEE signaling protocol, other suitable IEEE signaling protocol may be used according to the present disclosure.
By doing so, any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110. Thus, IEEE standards can be decoupled with other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
Fig. 5 shows another signaling flow 500 for communication according to some example embodiments of the present disclosure. As shown in Fig. 5, the signaling flow 500 involves apparatus 501, apparatus 502, apparatus 503 apparatus 504 and CNC 505. In some example embodiments, the apparatus 501 may be the apparatus 130-1 in Fig. 1 which may comprise a DS-TT 511 and a UE 513. The apparatus 502 may be the apparatus 130-4 in Fig. 1 which may comprise a UPF 515 and a NW-TT 517. Both the apparatus 501 and the apparatus 502 may be located at the UP and host the UP functionalities. The apparatus 503 may be the apparatus 130-3 in Fig. 1. The apparatus 503 may be located at the CP and act as an AF which is responsible to handle fully distributed model IEEE signaling. The apparatus 504 may be the apparatus 130-2 in Fig. 1 which is connected to the CNC 505 (for example, the CNC 150 as shown in Fig. 1) . The apparatus 504 may act as a TSN AF  communicating with the CNC 505. The apparatus 504 may be located at the CP.
For the purpose of discussion, there are five apparatuses and one CNC illustrated in Fig. 5. It is to be understood that the signaling flow 500 may involve more apparatuses or less apparatuses, and the number of apparatuses illustrated in Fig. 65 is only for the purpose of illustration without suggesting any limitations. For the purpose of discussion, Fig. 5 uses the MSRP protocol as an example IEEE signaling protocol. It is to be understood that the signaling flow 500 may also use any other suitable types of IEEE signaling protocol.
In operation, the CNC 505 may configure the traffic class table for each port and may provide 520 this configuration to the apparatus 504. In some example embodiments, the CNC 505 may schedule 525 a stream in a traffic class. Upon scheduling (or configuring) 525 a stream in a traffic class, the remained bandwidth may need to be updated as the apparatus 504. For example, the CNC 505 may transmit 530 the configuration information comprising the static filtering entries, PSFP information and updated CBS parameter for the traffic class to the apparatus 504.
Upon receiving the configuration information from the CNC 505, the apparatus 504 may extract 535 locally stored information and determine to transfer locally stored information to the apparatus 503. In accordance with a determination to transfer locally stored information to the apparatus 503, the apparatus 504 may transmit 540 a new container to the apparatus 503. For example, the new container may comprise the IEEE signaling protocol assistance information, such as configuration parameters for MSRP, and the port number of the NW-TT 517.
In some example embodiments, the IEEE signaling protocol assistance information carried by the new container may comprise one or more following information but not limited to: a list of configuration parameters related to IEEE signaling protocol information, ingress port information, egress port information, or bridge ID. The list of configuration parameters may comprise at least one of: traffic class, OperIdleSlope or egress port.
The apparatus 502 receives 550 an IEEE signaling protocol information from a second device. For example, the IEEE signaling protocol information may be transmitted to an ingress port of the NW-TT 517 of the apparatus 502. In some example embodiments, upon receiving 550 the IEEE signaling protocol information from a second device, the apparatus 502 may determine 555 the processing option. For example, if the apparatus  502 finds that the ingress port of NW-TT 517 does not support the received MSRP frame by using received MSRP configuration information, then the apparatus 502 may determine to redirect the received MSRP frame to the apparatus 503.
In accordance with a determination 555 to redirect the received MSRP frame to the apparatus 503, the apparatus 502 may encapsulate 560 the full IEEE frame (without preamble) in the IEEE signaling protocol information. The apparatus 502 may also build the IEEE signaling protocol assistance information with the ingress port number of the NW-TT 517 from which the MSRP frame is received. Both IEEE signaling protocol information and/or IEEE signaling protocol assistance information may be encapsulated into the new container.
After that, the apparatus 502 may transmit 565 the proposed new container to the apparatus 503. For example, the new container may be transmitted from an ingress port of the NW-TT 517 of the apparatus 502 to the UPF 515 of the apparatus 502, and then to the apparatus 503.
Upon receiving the new container from the apparatus 502, the apparatus 603 may determine 570 processing options based on detected Ethertype and locally stored information. For example, the apparatus 503 may determine 570 to use the received MSRP frame to generate updated IEEE signaling protocol information. For example, the updated IEEE signaling protocol information may be generated depending on locally stored configuration information and detected Ethertype as MSRP.
In accordance with a determination 570 to generate updated IEEE signaling protocol information, the apparatus 503 may transmit the new container to the apparatus 504. For example, when the apparatus 502 finishes the MSRP frame processing, such as reserved the bandwidth for the TSN stream in a certain egress port, the apparatus 502 may need to inform 575 the apparatus 504 that this port and traffic class will have after the reservation an increased credit-based shaper parameter (such as OperldleSlope) that may be used by the CNC 505.
It is to be understood that although Fig. 5 is illustrated with the MSRP protocol as an example of IEEE signaling protocol, other suitable IEEE signaling protocol may be used according to the present disclosure.
By doing so, any/arbitrary IEEE signaling message from ingress port may be forwarded to any AF within the bridge 110. Thus, IEEE standards can be decoupled with  other communication standards such as the 3GPP standards, which can thus achieve a pre-defined externally observable behavior for the bridge 110.
In some example embodiments, a first apparatus capable of performing any of the method 200 (for example, the apparatus 130 or Fig. 1) may comprise means for performing the respective operations of the method 200. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The first apparatus may be implemented as or included in the apparatus 130 in Fig. 1.
In some example embodiments, the first apparatus comprises means for determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information; means for receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and means for processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
In some example embodiments, the means for determining the information comprises means for obtaining the information from a locally stored configuration; or means for receiving the information from the second device or the third device.
In some example embodiments, the information comprises at least one of: first information for processing the IEEE signaling protocol information related to a receiving port, second information for processing the IEEE signaling protocol information related to a transmitting port, third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device, fourth information for checking consistency of the IEEE signaling protocol information, or fifth information processing an Ethernet header of the IEEE signaling protocol information.
In some example embodiments, the first apparatus further comprises means for extracting the information from a locally stored configuration; and means for transferring the information to the second device..
In some example embodiments, the first apparatus further comprises means for receiving the information from the second device; and means for storing the information at the first device.
In some example embodiments, the means for processing the IEEE signaling protocol information comprises at least one of: means for causing the IEEE signaling  protocol information to be discarded; means for redirecting the IEEE signaling protocol information to the second device; means for forwarding the IEEE signaling protocol information to the third device; or means for updating a local data base based on the IEEE signaling protocol information.
In some example embodiments, the first apparatus further comprises means for generating an IEEE frame based on the IEEE signaling protocol information. The first apparatus further comprises means for transferring the IEEE frame based on the IEEE signaling protocol information.
In some example embodiments, the IEEE signaling protocol information comprises at least one of: a first and/or second information elements which form the IEEE signaling protocol information. The first information element comprises at least one of: an IEEE frame which complies with a range of IEEE signaling protocols, or a portion of the IEEE frame.
In some example embodiments, the second information element comprises IEEE signaling protocol assistance information. The IEEE signaling protocol assistance information comprises at least one of: a port identifier of a receiving port from which the IEEE signaling is received, one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols, one or more configuration parameters related to the IEEE signaling protocol information, or one or more configuration identifiers for identifying the at least one parameter for the IEEE signaling protocol information.
In some example embodiments, the first device is a user-plane device, the second device is a control-plane device, and the third device is another user-plane device. Alternatively, the first device is a control-plane device, the second device is a user-plane device, and the third device is another control-plane device.
In some example embodiments, the user-plane device comprises one of: a terminal device, a device-side time sensitive networking translator, a user plane function, or a network-side time sensitive networking translator. In some example embodiments, the control-plane device comprises an application function.
In some example embodiments, the first apparatus further comprises means for encapsulating at least one of: a first or second information elements which forms the IEEE signaling protocol information into a container; and means for forwarding the container to  the second device.
Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing example embodiments of the present disclosure. The device 600 may be provided to implement a communication device, for example, the apparatus 130 as shown in Fig. 1 or the first device and the second device with respect to Fig. 2. As shown, the device 600 includes one or more processors 610, one or more memories 620 coupled to the processor 610, and one or more communication modules 640 coupled to the processor 610.
The communication module 640 is for bidirectional communications. The communication module 640 has one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 640 may include at least one antenna.
The processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 620 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 622 and other volatile memories that will not last in the power-down duration.
computer program 630 includes computer executable instructions that are executed by the associated processor 610. The program 630 may be stored in the memory, e.g., ROM 624. The processor 610 may perform any suitable actions and processing by loading the program 630 into the RAM 622.
The example embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure  as discussed with reference to Figs. 2 to 5. The example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as in the memory 620) or other storage devices that are accessible by the device 600. The device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 7 shows an example of the computer readable medium 700 which may be in form of CD, DVD or other optical storage disk. The computer readable medium has the program 630 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target physical or virtual processor, to carry out any of the methods as described above with reference to Fig. 2. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (30)

  1. A first device, comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to:
    determine information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information;
    receive the IEEE signaling protocol information from a second device or a third device; and
    process the IEEE signaling protocol information based on the at least one parameter.
  2. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to determine the information by:
    obtaining the information from a locally stored configuration; or
    receiving the information from the second device or the third device.
  3. The first device of claim 1, wherein the information comprises at least one of:
    first information for processing the IEEE signaling protocol information related to a receiving port,
    second information for processing the IEEE signaling protocol information related to a transmitting port,
    third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device,
    fourth information for checking consistency of the IEEE signaling protocol information, or
    fifth information processing an Ethernet header of the IEEE signaling protocol information.
  4. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the first  device to:
    extract the information from a locally stored configuration; and
    transfer the information to the second device.
  5. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the first device to:
    receive the information from the second device; and
    store the information at the first device.
  6. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to process the IEEE signaling protocol information by:
    performing at least one of:
    causing the IEEE signaling protocol information to be discarded;
    redirecting the IEEE signaling protocol information to the second device;
    forwarding the IEEE signaling protocol information to the third device, or
    updating a local data base based on the IEEE signaling protocol information.
  7. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the first device to:
    generate an IEEE frame based on the IEEE signaling protocol information.
  8. The first device of claim 7, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the first device to:
    transfer the IEEE frame based on the IEEE signaling protocol information.
  9. The first device of claim 1, wherein the IEEE signaling protocol information comprises:
    a first and/or second information elements which form the IEEE signaling protocol information.
  10. The first device of claim 9, wherein the first information element comprises at least one of:
    an IEEE frame which complies with a range of IEEE signaling protocols, or
    a portion of the IEEE frame.
  11. The first device of claim 9, wherein the second information element comprises IEEE signaling protocol assistance information, and wherein the IEEE signaling protocol assistance information comprises at least one of:
    a port identifier of a receiving port from which the IEEE signaling is received,
    one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols,
    one or more configuration parameters related to the IEEE signaling protocol information, or
    one or more configuration identifiers for identifying the at least one parameter for the IEEE signaling protocol information.
  12. The first device of any one of claims 1-11, wherein the first device is a user-plane device, the second device is a control-plane device, and the third device is another user-plane device, or
    wherein the first device is a control-plane device, the second device is a user-plane device, and the third device is another control-plane device.
  13. The first device of claim 12, wherein the user-plane device comprises one of: a terminal device, a device-side time sensitive networking translator, a user plane function, or a network-side time sensitive networking translator; and
    wherein the control-plane device comprises an application function.
  14. The first device of claim 1, wherein the at least one memory and the computer program codes are configured to, with the at least one processor, further cause the first device to:
    encapsulate at least one of: a first or second information elements which forms the IEEE signaling protocol information into a container; and
    forward the container to the second device.
  15. A method, comprising:
    determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information;
    receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and
    processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
  16. The method of claim 15, wherein determining the information comprises:
    obtaining the information from a locally stored configuration; or
    receiving the information from the second device or the third device.
  17. The method of claim 15, wherein the information comprises at least one of:
    first information for processing the IEEE signaling protocol information related to a receiving port,
    second information for processing the IEEE signaling protocol information related to a transmitting port,
    third information for processing the IEEE signaling protocol information related to bridge capabilities of the first device,
    fourth information for checking consistency of the IEEE signaling protocol information, or
    fifth information processing an Ethernet header of the IEEE signaling protocol information.
  18. The method of claim 15, further comprising:
    extracting, at the first device, the information from a locally stored configuration; and
    transferring the information to the second device.
  19. The method of claim 15, further comprising:
    receiving the information from the second device; and
    storing the information at the first device.
  20. The method of claim 15, wherein processing the IEEE signaling protocol information comprises:
    performing at least one of:
    causing the IEEE signaling protocol information to be discarded;
    redirecting the IEEE signaling protocol information to the second device;
    forwarding the IEEE signaling protocol information to the third device, or
    updating a local data base based on the IEEE signaling protocol information.
  21. The method of claim 15, further comprising:
    generating an IEEE frame based on the IEEE signaling protocol information.
  22. The method of claim 21, further comprising:
    transferring the IEEE frame based on the IEEE signaling protocol information.
  23. The method of claim 15, wherein the IEEE signaling protocol information comprises:
    a first and/or second information elements which form the IEEE signaling protocol information.
  24. The method of claim 23, wherein the first information element comprises at least one of:
    an IEEE frame which complies with a range of IEEE signaling protocols, or
    a portion of the IEEE frame.
  25. The method of claim 23, wherein the second information element comprises IEEE signaling protocol assistance information, and wherein the IEEE signaling protocol assistance information comprises at least one of:
    a port identifier of a receiving port from which the IEEE signaling is received,
    one or more port identifiers for identifying one or more ports via which a IEEE frame is transferred, the IEEE frame complying a range of IEEE signaling protocols,
    one or more configuration parameters related to the IEEE signaling protocol information, or
    one or more configuration identifiers for identifying the at least one parameter for  the IEEE signaling protocol information.
  26. The method of any one of claims 15-25, wherein the first device is a user-plane device, the second device is a control-plane device, and the third device is another user-plane device, or
    wherein the first device is a control-plane device, the second device is a user-plane device, and the third device is another control-plane device.
  27. The method of claim 26, wherein the user-plane device comprises one of: a terminal device, a device-side time sensitive networking translator, a user plane function, or a network-side time sensitive networking translator; and
    wherein the control-plane device comprises an application function.
  28. The method of claim 15, further comprising:
    encapsulating at least one of: a first or second information elements which forms the IEEE signaling protocol information into a container; and
    forwarding the container to the second device.
  29. An apparatus comprising:
    means for determining, at a first device, information comprising at least one parameter related to processing an Institute of Electrical and Electronics Engineers, IEEE, signaling protocol information;
    means for receiving, at the first device, the IEEE signaling protocol information from a second device or a third device; and
    means for processing, at the first device, the IEEE signaling protocol information based on the at least one parameter.
  30. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 15-28.
PCT/CN2021/106475 2021-07-15 2021-07-15 Tsn fully distributed model enhancement WO2023283878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/106475 WO2023283878A1 (en) 2021-07-15 2021-07-15 Tsn fully distributed model enhancement
CN202180100488.3A CN117643034A (en) 2021-07-15 2021-07-15 TSN fully distributed model enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106475 WO2023283878A1 (en) 2021-07-15 2021-07-15 Tsn fully distributed model enhancement

Publications (1)

Publication Number Publication Date
WO2023283878A1 true WO2023283878A1 (en) 2023-01-19

Family

ID=84918901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106475 WO2023283878A1 (en) 2021-07-15 2021-07-15 Tsn fully distributed model enhancement

Country Status (2)

Country Link
CN (1) CN117643034A (en)
WO (1) WO2023283878A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113463A (en) * 2014-07-24 2014-10-22 深圳市共进电子股份有限公司 Network bridge based data message processing method, device and network bridge
WO2020106274A1 (en) * 2018-11-19 2020-05-28 Nokia Technologies Oy Method to support 5g time sensitive communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113463A (en) * 2014-07-24 2014-10-22 深圳市共进电子股份有限公司 Network bridge based data message processing method, device and network bridge
WO2020106274A1 (en) * 2018-11-19 2020-05-28 Nokia Technologies Oy Method to support 5g time sensitive communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, ZTE, SIEMENS AG: "Key issue proposal on supporting fully distributed TSN model", 3GPP DRAFT; S2-1912393, vol. SA WG2, 22 November 2019 (2019-11-22), Reno, NV, USA, pages 1 - 2, XP051828367 *
NOKIA, NOKIA SHANGHAI BELL: "Integration of the 5G System in a TSN network", 3GPP DRAFT; S2-188459-ARCHITECTURE_FOR_TSN_INTEGRATION_WITH_5G-V3, vol. SA WG2, 26 August 2018 (2018-08-26), Sophia Antipolis, pages 1 - 6, XP051537344 *

Also Published As

Publication number Publication date
CN117643034A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
EP3991471B1 (en) Apparatus, system, method and computer-readable medium for performing beam failure recovery
WO2022067542A1 (en) Configuration of small data transmission
WO2016074211A1 (en) Data forwarding method and controller
WO2021072658A1 (en) Service based uplink retransmission
US20230328625A1 (en) Transferring traffic in integrated access and backhaul communication
WO2023283878A1 (en) Tsn fully distributed model enhancement
US20230262117A1 (en) Methods, apparatus, and systems for enabling wireless reliability and availability in multi-access edge deployments
WO2022027391A1 (en) Devices, methods, apparatuses and computer readable media for topology redundancy
CN113348652B (en) Marking uplink data packets
EP4022977B1 (en) Signaling reduction at handover of an iab node
WO2023236065A1 (en) Configuration of time sensitive networking
WO2021217424A1 (en) Backup traffic handling
WO2022226838A1 (en) Packets re-routing
WO2023151096A1 (en) Service request in an integrated access and backhaul network
WO2024055172A1 (en) Traffic transferring in user equipment-to-network relay scenario
WO2024036621A1 (en) Uplink grant selection for power saving of user equipment
US11876878B2 (en) Data transport for event machine based application
WO2023212882A1 (en) Ip routing and forwarding operation and management of ip router node
WO2024065209A1 (en) Mobile terminated early data transmission for internet of things
US20240015530A1 (en) Routing in Integrated Access and Backhaul Communication
US20240064797A1 (en) Prioritized Data Transmission
WO2023230882A1 (en) Traffic offloading
EP4344087A1 (en) Transmission configuration mechanisms for a network controlled repeater
WO2020227942A1 (en) Mechanism for improving security of communication system
WO2024026847A1 (en) Optimized uplink transmission with ue assisted information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100488.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE