WO2023283832A1 - 一种储能飞轮组合壳体及储能飞轮 - Google Patents

一种储能飞轮组合壳体及储能飞轮 Download PDF

Info

Publication number
WO2023283832A1
WO2023283832A1 PCT/CN2021/106307 CN2021106307W WO2023283832A1 WO 2023283832 A1 WO2023283832 A1 WO 2023283832A1 CN 2021106307 W CN2021106307 W CN 2021106307W WO 2023283832 A1 WO2023283832 A1 WO 2023283832A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
flywheel
housing
flange
storage flywheel
Prior art date
Application number
PCT/CN2021/106307
Other languages
English (en)
French (fr)
Inventor
王世琥
朱肇祺
Original Assignee
西安修远机电科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安修远机电科技有限责任公司 filed Critical 西安修远机电科技有限责任公司
Priority to PCT/CN2021/106307 priority Critical patent/WO2023283832A1/zh
Publication of WO2023283832A1 publication Critical patent/WO2023283832A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/315Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the application belongs to the technical field of energy storage flywheels, and in particular relates to an energy storage flywheel combined housing and an energy storage flywheel.
  • the flywheel energy storage system is highly valued and favored by the industry due to its outstanding advantages such as high efficiency, large capacity, fast response, flexibility, convenience, safety, reliability, and environmental protection.
  • the flywheel housing is the basic component of the flywheel energy storage system, which not only provides a solid support foundation for the flywheel rotor system, but also provides a high-vacuum environment for the high-speed rotation of the flywheel.
  • the stress state of the flywheel shell is very complicated. It must not only bear the radial force, axial force, flywheel gravity, gyro torque and other static and dynamic reaction forces of the flywheel rotor system, but also bear the atmospheric pressure caused by the vacuum pumping after the shell is closed. pressure.
  • flywheel housing In the prior art, a single housing is usually used as the flywheel housing. With the development of flywheel energy storage technology, the capacity of flywheel continues to expand and develop in the direction of large capacity or super large capacity. In order to solve the stability of the shell and control the deformation of the shell, the structural size must be increased to ensure the reliability and safety of the flywheel energy storage system; at the same time, due to the requirements of vacuum working conditions, the shell must generally be made of high-quality stainless steel, and the added The large-sized flywheel shell structure further increases the manufacturing cost, and also causes a great waste of materials and resources, which not only hinders the application of flywheel energy storage technology and market development to a large extent, but also goes against the country's construction of an energy-saving green purpose of social development.
  • the purpose of the embodiments of the present application is to provide an energy storage flywheel combination housing and an energy storage flywheel, which can solve the problem that the energy storage flywheel housing in the prior art adopts a single housing structure, which requires high overall structural strength of the housing. , it is easy to cause the weight of the energy storage flywheel shell to be relatively large, resulting in the problems of high production cost and waste of materials.
  • the embodiment of the present application provides an energy storage flywheel combined housing, which includes a support frame and a housing;
  • the inside of the housing is set as a vacuum chamber, and the supporting frame is arranged in the vacuum chamber;
  • the support frame is used to support the flywheel rotor system of the energy storage flywheel.
  • an embodiment of the present application provides an energy storage flywheel, wherein the energy storage flywheel includes a flywheel rotor system and the combined casing as described in the first aspect, and the flywheel rotor system is assembled on the support frame superior.
  • the housing design of the energy storage flywheel is split into two parts, one part is the supporting frame of the flywheel rotor, which only provides a safe and stable support for the flywheel rotor system; the other part is used as The shell of the vacuum container, the above-mentioned support frame is decoupled and arranged in the above-mentioned shell, and the shell only resists the external pressure of the atmosphere; the organic combination of the above-mentioned support frame and the shell is combined into an energy storage flywheel shell, which can significantly reduce the size of the energy storage flywheel shell body weight, effectively saving material costs, thereby solving the problem that the energy storage flywheel shell in the prior art adopts a single shell structure, which has high requirements for the overall structural strength of the shell, which easily leads to a large weight of the energy storage flywheel shell. Cause the problem of high production cost and material waste.
  • Fig. 1 is a schematic diagram of force analysis of an energy storage flywheel housing with a single housing structure
  • Fig. 2 is a first angle structural schematic diagram of the energy storage flywheel combination housing provided in the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the structure of the second angle of the combined housing of the energy storage flywheel provided in the embodiment of the present application;
  • Fig. 4 is a schematic diagram of the overall structure of the support frame in the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the first angle of the upper support frame in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of a second angle of the upper support frame in the embodiment of the present application.
  • Fig. 7 is a schematic diagram of the first angle of the lower support frame in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of a second angle of the lower support frame in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the overall structure of the housing in the embodiment of the present application.
  • Fig. 10 is a schematic structural view of the upper casing in the embodiment of the present application.
  • Fig. 11 is a schematic structural view of the lower casing in the embodiment of the present application.
  • Fig. 12 is a schematic diagram of the overall structure of the support frame in the preferred embodiment of the present application.
  • Fig. 13 is a schematic diagram of the first angle of the lower support frame in the preferred embodiment of the present application.
  • Fig. 14 is a schematic diagram of a second angle of the lower support frame in the preferred embodiment of the present application.
  • Fig. 15 is a schematic diagram of the structure of the lower housing in the preferred embodiment of the present application.
  • Fig. 16 is a schematic diagram of the overall structure of the housing in the preferred embodiment of the present application.
  • Fig. 17 is a first angle schematic diagram of the combination housing in the preferred embodiment of the present application.
  • Fig. 18 is a second perspective view of the combined casing in the preferred embodiment of the present application.
  • FIG. 1 shows a schematic diagram of force analysis of an energy storage flywheel housing with a single housing structure design.
  • the flywheel shell is mainly subjected to two external forces, one is the electromagnetic reaction force W of the flywheel rotor, and the other is the external atmospheric pressure P caused by vacuuming inside the flywheel shell.
  • the finite element analysis and calculation of the deformation of the flywheel shell shows that if the electromagnetic reaction force W is equal to 900kg and the atmospheric pressure 0.1MPa acts on the flywheel shell at the same time, the difference between the two surfaces a and b in Figure 1
  • the maximum allowable reduction of distance ⁇ mm is used as the target parameter for shell deformation design control, then the mass of the designed flywheel shell is 1500kg.
  • the distance between the two surfaces of a and b is only reduced by about 0.1 ⁇ m. It can be seen that the electromagnetic reaction force W has no substantial influence on the deformation of the housing, that is, Only from the perspective of the stable suspension technology of the flywheel rotor, the design of the shell is relatively safe; when the flywheel shell is only subjected to external atmospheric pressure, the distance between the two surfaces of a and b decreases by about ⁇ mm ( ⁇ mm>>0.1 ⁇ m), which satisfies Design control target; it can be known that the deformation of the flywheel shell mainly comes from the external pressure of the atmosphere.
  • the combined energy storage flywheel housing 100 provided by an embodiment of this application includes a support frame 10 and a housing 20
  • the inside of the above-mentioned housing 20 is set as a vacuum chamber 30, and the above-mentioned support frame 10 is arranged in the above-mentioned vacuum chamber 30; the above-mentioned support frame 10 is used to support and fix the flywheel rotor system of the energy storage flywheel, and the above-mentioned flywheel rotor system is fixedly arranged on the above-mentioned support
  • the frame 10 that is, the entire supporting frame 10 and the flywheel rotor system are arranged in the vacuum chamber 30 , so that the supporting frame 10 and the flywheel rotor system are in a vacuum environment.
  • the design of the flywheel casing is divided into a support frame 10 and a casing 20, wherein the support frame 10 is the support frame of the flywheel rotor, and only provides a support foundation for the flywheel rotor system to operate safely and stably; while the casing 20 is A vacuum container is decoupled from the supporting frame 10 and only needs to resist atmospheric pressure; the above supporting frame 10 and the casing 20 are completely combined into a flywheel housing.
  • the support frame 10 is decoupled from the housing 20 , that is, the support frame 10 is decoupled and disposed in the vacuum chamber 30 of the housing 20 .
  • the above-mentioned support frame 10 includes an upper support frame 11 and a lower support frame 12 that are snap-fitted; the above-mentioned upper support frame 11 is used to fix the first shaft end of the flywheel rotor system, and the following support frame 12 is used to fix the flywheel rotor
  • the second rotating shaft end of the system, and the rotation space of the flywheel rotor system is jointly formed by the upper support frame and the lower support frame, so that the above support frame can provide support for the flywheel rotor system stably.
  • the upper support frame 11 includes a first sleeve 111, a first flange 112 and a plurality of first support rods 113; the first shaft end of the flywheel rotor system is rotatably arranged in the first sleeve 11; One end of the rod 113 is fixedly connected to the outer wall of the first sleeve 111 by welding or the like, and the other end of the first support rod 113 is fixedly connected to the first flange 112 by welding or the like; and several first support rods 113 are wound around the first
  • the sleeves 111 are evenly arranged, that is, one end of the first supports 113 is welded and fixedly connected around the first sleeve 111 in a circumferential array, and the other ends of the plurality of first support rods 113 are welded and fixedly connected with the first flange 112 in a circumferential array, so that the first The surrounding force of a sleeve is uniform, which improves the structural strength;
  • the above-mentioned lower support frame 12 includes a second sleeve 121, a second flange 122 and a plurality of second support rods 123; the second rotating shaft end of the above-mentioned flywheel rotor system is rotatably arranged in the second sleeve 121; the second One end of the support rod 123 is fixedly connected to the outer wall of the second sleeve 121 by welding or the like, and the other end of the second support rod 123 is fixedly connected to the second flange 122 by welding or the like;
  • the second sleeves 121 are evenly arranged, that is, one end of several second supports 123 is welded and fixedly connected around the second sleeve 121 in a circumferential array, and the other ends of several second support rods 121 are welded and fixedly connected with the second flange 122 in a circumferential array , so that the force around the second sleeve 121 is uniform, and the overall structural strength is improved
  • the second flange 122 has the same size and structure as the first flange 112, and both are provided with concentric positioning notches and screw holes (not shown).
  • the second flange 122 is the same as the first flange.
  • the discs 112 are concentrically positioned through the above-mentioned concentric positioning notches, and fastened by centering bolts, so that the upper support frame 11 and the lower support frame 12 are fastened and assembled as a whole.
  • both the first support rod 113 and the second support rod 123 are L-shaped or arc-shaped, and the L-shaped protrusion or arc-shaped protrusion of the first support rod 113 faces away from the lower On one side of the support frame 12, the L-shaped projection of the second support rod 123 faces away from the side of the upper support frame 11, so that the first support rod 113 and the second support rod 123 form a rotating space for the flywheel rotor system to rotate.
  • first support rods 113 and second support rods 123 can be specifically provided with 12 pieces, and can be made of hollow section steel, specifically, rectangular cold-formed hollow section steel conforming to GB/T6728-2002.
  • the above-mentioned housing 20 includes an upper housing 21 and a lower housing 22 that are snap-fitted; the upper housing 21 and the lower housing 22 are jointly formed A vacuum chamber 30 , and the support frame 10 is placed in the vacuum chamber 30 and fixed at the connection between the upper shell 21 and the lower shell 22 .
  • the upper casing 21 and the lower casing 22 can be fixedly connected as a whole by means of concentric buckles.
  • the above-mentioned upper casing 21 includes a first cylinder body 211, a first seal head 212 and a first vacuum flange 213.
  • the first annular surface of the vacuum flange 213 is sealed and welded;
  • the lower shell 22 includes a second cylinder 221, a second head 222 and a second vacuum flange 223, and the two ends of the second cylinder 221 are connected to the second head respectively.
  • the ring opening end of 222 and the first ring surface of the second vacuum flange 223 are sealed and welded;
  • the above-mentioned first sealing head 212 and the second sealing head 222 may specifically be elliptical or circular sealing heads.
  • first vacuum flange 213 and the second vacuum flange 223 are correspondingly provided with concentric positioning notches and screw holes (not shown), and the first vacuum flange 213 and the second vacuum flange 223 pass through
  • the above-mentioned concentric positioning spigot is concentrically positioned, and the second annular surface of the first vacuum flange 213 and the second annular surface of the second vacuum flange 223 are sealed and connected by centering bolts, thereby connecting the first vacuum flange 213 to the second annular surface of the second vacuum flange 223.
  • the second vacuum flange 223 is fixedly connected, so that the upper casing 21 and the lower casing 22 are buckled and assembled as one.
  • the inner circle side of the second vacuum flange 223 extends inwardly to form a receiving portion 224 for receiving the second flange 122, and the receiving portion 224 is provided with a notch 225 for the above-mentioned second support rod 123 to be embedded, so that The receiving portion 224 is in a sawtooth shape; the receiving portion 224 and the second flange 122 are concentrically positioned through a concentric positioning notch, and are fixedly connected by bolts.
  • the material of the above-mentioned housing 20 is stainless steel, specifically 0Cr18Ni9, wherein the thickness of the first cylinder 211, the second cylinder 221, the first head 212 and the second head 222 is 6 mm, and the first vacuum method
  • the design of the flange 213 and the second vacuum flange 223 complies with the requirements of the high vacuum design specification stipulated in GB/T6070-2007.
  • the first sleeve is used to fix the first motor
  • the first shaft end of the flywheel rotor system is connected to the output end of the first motor
  • the second sleeve is used to
  • the second shaft end of the flywheel rotor system is rotatably connected, that is, the first motor of the flywheel rotor system is fixedly arranged in the above-mentioned first sleeve, and the second shaft end of the flywheel rotor system and the rotation are arranged in the second sleeve, so that
  • the support frame mentioned above is a single-motor support frame, which can satisfy the installation and fixation of a single-motor energy storage flywheel.
  • the energy storage flywheel combination housing 100 provided, please refer to Figures 12-18, the above-mentioned first sleeve 111 is used to fix the first motor, and the second sleeve 121 is used to fix the second motor, the first shaft end of the flywheel rotor system is connected to the output end of the first motor, the second shaft end of the flywheel rotor system is connected to the output end of the second motor, that is, the flywheel rotor system
  • the first motor is fixedly arranged in the above-mentioned first sleeve 111, and the second motor of the flywheel rotor system is fixedly arranged in the above-mentioned second sleeve 121.
  • the support frame 10 is a dual-motor support frame, which can satisfy the installation and fixing of the dual-motor energy storage flywheel.
  • the lower casing 22 has a larger depth dimension to accommodate the above-mentioned second sleeve 121 with the second motor fixed thereon, and the lower casing 22 is snapped together with the upper casing 21 to form a
  • the casing 20 of the housing 100 is shown in FIG. 16 , and correspondingly, the assembled state of the combined casing 100 is shown in FIGS. 17-18 .
  • the 100kWh energy storage flywheel casing designed according to the traditional method weighs 1500kg
  • the 100kWh energy storage flywheel composite casing designed by this patented design method weighs about 1000kg, which is about 500kg lighter.
  • 12 L-shaped support rods are designed in the upper and lower support frames, which are made of rectangular cold-formed hollow steel (GB/T6728-2002).
  • the thickness is 6mm, and the design of the vacuum flange complies with the requirements of the high vacuum design specification stipulated in GB/T6070-2007, and the implementation effect meets the engineering requirements of the flywheel composite shell.
  • the corresponding design of the lower support frame of the single motor and the lower support frame of the double motors, as well as the design of the lower housing of the single motor and the lower housing of the double motors are designed.
  • weights are 370kg for single-motor support frame, 380kg for double-motor support frame, 470kg for single-motor housing, and 490kg for double-motor housing; 840kg for single-motor combined housing and 870kg for double-motor combined housing;
  • 1500kg shell its weight has been greatly reduced to nearly half; although a high-quality rectangular cold-formed hollow steel is added to the design, the amount is 370kg (single motor)/380kg (double motor), but the amount of stainless steel is greatly reduced. 1030kg and 1010kg; a wind farm needs to build a small wind power storage power station with an installed capacity of about 6750MWh.
  • An embodiment of the present application also provides an energy storage flywheel, wherein the energy storage flywheel includes a flywheel rotor system and the combined housing as described above, and the flywheel rotor system is assembled on the above support frame.
  • the above-mentioned energy storage flywheel has the same advantages as that of the above-mentioned combined housing compared with the prior art, and will not be repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种储能飞轮组合壳体及储能飞轮,储能飞轮组合壳体(100)包括:支承框架(10)和外壳(20);外壳(20)内部设置为真空容纳腔(30),支承框架(10)固定设置于真空容纳腔(30)内;支承框架(10)用于固定储能飞轮的飞轮转子系统。储能飞轮组合壳体(100)可以显著减小储能飞轮壳体重量,有效节约物料成本,从而解决了现有技术中储能飞轮壳体采用单一壳体的结构方式,对壳体的整体结构强度要求较高,容易导致储能飞轮壳体重量较大,造成生产成本过高、物料浪费的问题。

Description

一种储能飞轮组合壳体及储能飞轮 技术领域
本申请属于储能飞轮技术领域,具体涉及一种储能飞轮组合壳体及储能飞轮。
背景技术
当前,在众多储能技术中,飞轮储能系统以其效率高、容量大、响应快、灵活方便、安全可靠、绿色环保等突出优点,受到业界高度重视和青睐。
飞轮壳体是飞轮储能系统的基础部件,其既要为飞轮转子系统提供一个稳固支承基础,又要为飞轮高速旋转提供一个高真空环境。飞轮壳体的受力状态非常复杂,既要承担飞轮转子系统的径向力、轴向力、飞轮重力、陀螺力矩等静动态支反力,还要承受壳体闭合后抽真空带来的大气压力。
现有技术中,通常是采用单一壳体作为飞轮壳体。而随着飞轮储能技术的发展,飞轮容量不断扩大向着大容量或者超大容量方向发展。为了解决壳体的稳定性和控制壳体形变,必须加大结构尺寸来确保飞轮储能系统的可靠性和安全性;同时,由于真空工作条件要求,壳体一般都必须选取优质不锈钢,而加大尺寸的飞轮壳体结构则进一步推高了制造成本,也造成了极大的材料和资源浪费,不仅很大程度上阻碍了飞轮储能技术应用和市场发展,也有悖于国家建设节约型绿色社会的发展宗旨。
发明内容
本申请实施例的目的是提供一种储能飞轮组合壳体及储能飞轮,能够解决现有技术中储能飞轮壳体采用单一壳体的结构方式,对壳体的整体结构强度要求较高,容易导致储能飞轮壳体重量较大,造成生产成本过高、物料浪费的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种储能飞轮组合壳体,其中,包括支承框架和外壳;
所述外壳内部设置为真空容纳腔,所述支承框架设置于所述真空容纳腔内;
所述支承框架用于支承储能飞轮的飞轮转子系统。
第二方面,本申请实施例提供了一种储能飞轮,其中,所述储能飞轮包括飞轮转子系统及如第一方面所述的组合壳体,所述飞轮转子系统装配于所述支承框架上。
在本申请实施例中,将储能飞轮的壳体设计拆分成两部分,其中一部分是飞轮转子的支承框架,它仅仅为飞轮转子系统提供一个安全稳定运行的支承基础;另一部分则是作为真空容器的外壳,上述支承框架解耦设置于上述外壳内,该外壳仅仅抵抗大气外压力;由上述支承框架与外壳组合为储能飞轮壳体的有机组合体,可以显著减小储能飞轮壳体重量,有效节约物料成本,从而解决了现有技术中储能飞轮壳体采用单一壳体的结构方式,对壳体的整体结构强度要求较高,容易导致储能飞轮壳体重量较大,造成生产成本过高、物料浪费的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是单一壳体结构的储能飞轮壳体的受力分析示意图;
图2是本申请实施例中提供的储能飞轮组合壳体的第一角度结构示意图;
图3是本申请实施例中提供的储能飞轮组合壳体的第二角度结构示意 图;
图4是本申请实施例中支承框架的整体结构示意图;
图5是本申请实施例中上支承框架的第一角度示意图;
图6是本申请实施例中上支承框架的第二角度示意图;
图7是本申请实施例中下支承框架的第一角度示意图;
图8是本申请实施例中下支承框架的第二角度示意图;
图9是本申请实施例中外壳的整体结构示意图;
图10是本申请实施例中上壳体的结构示意图;
图11是本申请实施例中下壳体的结构示意图;
图12是本申请优选实施例中支承框架的整体结构示意图;
图13是本申请优选实施例中下支承框架的第一角度示意图;
图14是本申请优选实施例中下支承框架的第二角度示意图;
图15是本申请优选实施例中下壳体结构示意图;
图16是本申请优选实施例中外壳的整体结构示意图;
图17是本申请优选实施例中组合壳体的第一角度示意图;
图18是本申请优选实施例中组合壳体的第二角度示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的 储能飞轮组合壳体进行详细地说明。
请参阅图1,示出了单一壳体结构设计的储能飞轮壳体的受力分析示意图。
如图1所示,飞轮转子稳态悬浮情况下,飞轮壳体主要受到两个外力,一个是飞轮转子的电磁反力W,一个是飞轮壳体内部抽真空造成的大气外压力P。在外力作用下,对飞轮壳体变形量进行有限元分析计算得知,如果电磁反力W等于900kg和大气压力0.1MPa同时作用在飞轮壳体上时,图1中a、b两个表面之间距离最大允许减小量Δmm,以此数据作为壳体变形设计控制目标参数,那么设计出来的飞轮壳体质量为1500kg。
当飞轮壳体只施加电磁反力W时,a、b两个表面之间距离仅仅了减小量为0.1μm左右,可见电磁反力W对壳体的变形没有实质的影响,也就是说,仅从飞轮转子稳定悬浮技术角度看壳体设计偏安全了;当飞轮壳体只施加大气外压力时,a、b两个表面之间距离减小量大约Δmm(Δmm>>0.1μm),满足设计控制目标;由此可以得知,飞轮壳体变形主要来自大气外压力。
根据以上分析而可以得知,如果仅仅承担转子质量,飞轮壳体结构没有必要设计如此庞大尺寸结构;如果仅仅考虑承受大气外压力,飞轮壳体结构只需按照真空压力容器设计即可。
本申请提供的储能飞轮组合壳体基于上述分析设计得到,具体地,本申请一实施例所提供的储能飞轮组合壳体100,如图2~11所示,包括支承框架10和外壳20;上述外壳20内部设置为真空容纳腔30,上述支承框架10设置于上述真空容纳腔30内;上述支承框架10用于支承固定储能飞轮的飞轮转子系统,上述飞轮转子系统固定设置于上述支承框架10内,也即整个支承框架10及飞轮转子系统均设置在上述真空容纳腔30内,使得支承框架10及飞轮转子系统均处于真空环境下。
本申请中,将飞轮壳体设计拆分成支承框架10和外壳20,其中,支承框架10是飞轮转子的支承框架,仅仅为飞轮转子系统提供一个安全稳定运行的支承基础;而外壳20则是一个真空容器,与支承框架10解耦,仅需抵 抗大气外压力;由上述支承框架10和外壳20完整组合为一个飞轮壳体。
其中,上述支承框架10与上述外壳20之间解耦配合,即支承框架10解耦设置于上述外壳20的真空容纳腔30内。
可选地,上述支承框架10包括扣合装配的上支承框架11及下支承框架12;上述上支承框架11用于固定飞轮转子系统的第一转轴端,下述支承框架12用于固定飞轮转子系统的第二转轴端,且由上支承框架及下支承框架共同形成飞轮转子系统的转动空间,从而使得上述支承框架可以稳固地为飞轮转子系统提供支承。
具体地,上支承框架11包括第一套筒111、第一法兰盘112及若干第一支承杆113;上述飞轮转子系统的第一转轴端转动设置于第一套筒11内;第一支承杆113的一端与第一套筒111外壁通过焊接等方式固定连接,第一支承杆113的另一端与第一法兰盘112通过焊接等方式固定连接;且若干第一支承杆113绕第一套筒111均匀布设,也即若干第一支承113一端围绕第一套筒111圆周阵列焊接固联,若干第一支承杆113的另一端与第一法兰盘112圆周阵列焊接固联,使得第一套筒四周受力均匀,提升结构强度;
相应地,上述下支承框架12包括第二套筒121、第二法兰盘122及若干第二支承杆123;上述飞轮转子系统的第二转轴端转动设置于第二套筒121内;第二支承杆123的一端与第二套筒121外壁通过焊接等方式固定连接,第二支承杆123的另一端与第二法兰盘122通过焊接等方式固定连接;且若干第二支承杆123绕所述第二套筒121均匀布设,也即若干第二支承123一端围绕第二套筒121圆周阵列焊接固联,若干第二支承杆121的另一端与第二法兰盘122圆周阵列焊接固联,使得第二套筒121四周受力均匀,提升整体结构强度;第二法兰盘122与第一法兰盘112对应,且相互固定;上述第一套筒111与上述第二套筒121同心设置。
可选地,第二法兰盘122与第一法兰盘112的大小、结构相同,且均设置同心定位止口及螺孔(未图示),第二法兰盘122与第一法兰盘112之间通过上述同心定位止口进行同心定位,并通过定心螺栓紧固,从而将上支承 框架11与下支承框架12扣合装配为一体。
可选地,上述储能飞轮组合壳体100中,第一支承杆113及第二支承杆123均为L形或弓形,且第一支承杆113的L形凸起或弓形凸起朝向远离下支承框架12的一侧,第二支承杆123的L形凸起朝向远离上支承框架11的一侧,从而由第一支承杆113及第二支承杆123形成供飞轮转子系统转动的转动空间。
其中,上述第一支承杆113及第二支承杆123具体可以设置12个,可以采用空心型钢制作而成,具体可以采用符合GB/T6728-2002的矩形冷弯空心型钢。
可选地,本申请提供的储能飞轮组合壳体100,上述外壳20包括扣合装配的上壳体21及下壳体22;由所述上壳体21及所述下壳体22共同形成真空容纳腔30,且上述支承框架10置于真空容纳腔30内,并固定于上壳体21及所述下壳体22的连接处。其中,上壳体21与下壳体22可以采用同心对扣固定连接为一个整体。
具体地,上述上壳体21包括第一筒体211、第一封头212及第一真空法兰213,第一筒体211的两端分别与第一封头212的环形开口端及第一真空法兰213的第一环面密封焊接;下壳体22包括第二筒体221、第二封头222及第二真空法兰223,第二筒体221的两端分别与第二封头222的环形开口端及第二真空法兰223的第一环面密封焊接;第一真空法兰213的第二环面与第二真空法兰223的第二环面密封连接。其中,上述第一封头212及第二封头222具体可以为椭圆形或圆形封头。
可选地,第一真空法兰213与第二真空法兰223上对应设置有同心定位止口及螺孔(未图示),第一真空法兰213与第二真空法兰223之间通过上述同心定位止口进行同心定位,并通过定心螺栓将第一真空法兰213的第二环面与第二真空法兰223的第二环面密封连接,从而将第一真空法兰213与第二真空法兰223固定连接,使得上壳体21与下壳体22扣合装配为一体。
可选地,第二真空法兰223的内圆侧向内沿伸形成承接第二法兰盘122 的承接部224,承接部224设置有供上述第二支承杆123嵌入的凹口225,使得上述承接部224呈锯齿状;上述承接部224与第二法兰盘122通过同心定位止口进行同心定位,并通过螺栓固定连接。
可选地,上述外壳20的材料为不锈钢,具体为0Cr18Ni9,其中,第一筒体211、第二筒体221、第一封头212及第二封头222的厚度为6mm,第一真空法兰213及第二真空法兰223的设计符合GB/T6070-2007规定的高真空度设计规范要求。
本申请实施例所提供的组合壳体中,上述第一套筒用于固定设置第一电机,上述飞轮转子系统的第一转轴端与第一电机的输出端连接,且第二套筒用于转动连接飞轮转子系统的第二转轴端,也即飞轮转子系统的第一电机固定设置在上述第一套筒内,而飞轮转子系统的第二转轴端与转动设置在第二套筒内,使得上述支承框架为单电机支承框架,可以满足单电机储能飞轮的安装、固定。
可选地,在本申请一优选实施例中,所提供的储能飞轮组合壳体100,请参阅图12~18,上述第一套筒111用于固定设置第一电机,且第二套筒121用于固定设置第二电机,上述飞轮转子系统的第一转轴端与第一电机的输出端连接,飞轮转子系统的第二转轴端与第二电机的输出端连接,也即飞轮转子系统的第一电机固定设置在上述第一套筒111内,且飞轮转子系统的第二电机固定设置在上述第二套筒121内,此时下支承框架12的结构如图13~14所示,使得上述支承框架10为双电机支承框架,可以满足双电机储能飞轮的安装、固定。相应地,如图15所示,下壳体22具体更大的深度尺寸,以容置上述固定设置有第二电机的第二套筒121,下壳体22与上壳体21扣合后形成的外壳20如图16所示,相应地,组合壳体100的组合状态如图17~18所示。
在实际应用中,按照传统方法设计的容量100kWh储能飞轮壳体重1500kg,采用本专利设计方法设计的容量100kWh储能飞轮组合壳体重约1000kg减轻了约500kg。
在一具体实施方式中,上、下支承框架中L形支承杆设计了12个,采用矩形冷弯空心型钢(GB/T6728-2002)制作,外壳全部采用材料0Cr18Ni9,其中筒体和椭圆封头厚度6mm,真空法兰设计符合GB/T6070-2007规定的高真空度设计规范要求,实施效果满足飞轮组合壳体的工程要求。
同时,根据储能飞轮单、双电机在结构上的要求,设计了对应设计单电机下支承框架及双电机下支承框架,以及设计单电机下壳体及双电机下壳体。其中,它们的重量分别为单电机支承框架370kg,双电支承框架380kg,单电机外壳470kg,双电机外壳490kg;得到单电机组合壳体840kg,双电机组合壳体870kg;相比现行方法设计的1500kg壳体来说,其重量已经大幅降到接近一半;设计中虽然增加了一种优质矩形冷弯空心型钢,用量分别为370kg(单电机)/380kg(双电机),但是不锈钢用量大幅减少了1030kg和1010kg;某风场需要建设一个装机容量大约为6750MWh小型风力发电储能电站,若以100kWh产品测算,最少需要飞轮储能系统67500台套,最少节约不锈钢67500吨,折算节约生产成本13亿元,可见节约人力、物力、工时、材料等生产成本非常显著。
本申请实施例还提供了一种储能飞轮,其中,该储能飞轮包括飞轮转子系统及如上述的组合壳体,上述飞轮转子系统装配于上述支承框架上。
上述储能飞轮与上述一种组合壳体相对于现有技术所具有的优势相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功 能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (10)

  1. 一种储能飞轮组合壳体,其特征在于,包括支承框架和外壳;
    所述外壳内部设置为真空容纳腔,所述支承框架固定设置于所述真空容纳腔内;
    所述支承框架用于支承储能飞轮的飞轮转子系统。
  2. 根据权利要求1所述的储能飞轮组合壳体,其特征在于,所述支承框架包括扣合装配的上支承框架及下支承框架;
    所述上支承框架用于固定所述飞轮转子系统的第一转轴端,所述下述支承框架用于固定所述飞轮转子系统的第二转轴端,且由所述上支承框架及所述下支承框架共同形成所述飞轮转子系统的转动空间。
  3. 根据权利要求2所述的储能飞轮组合壳体,其特征在于,所述上支承框架包括第一套筒、第一法兰盘及若干第一支承杆;
    所述飞轮转子系统的第一转轴端转动设置于所述第一套筒内;
    所述第一支承杆的一端与所述第一套筒外壁固定连接,所述第一支承杆的另一端与所述第一法兰盘固定连接;
    且若干所述第一支承杆绕所述第一套筒均匀布设;
    所述下支承框架包括第二套筒、第二法兰盘及若干第二支承杆;
    所述飞轮转子系统的第二转轴端转动设置于所述第二套筒内;所述第二法兰盘与所述第一法兰盘对应,且相互固定;
    所述第二支承杆的一端与所述第二套筒外壁固定连接,所述第二支承杆的另一端与所述第二法兰盘固定连接;
    且若干所述第二支承杆绕所述第二套筒均匀布设。
  4. 根据权利要求3所述的储能飞轮组合壳体,其特征在于,所述第一支承杆及所述第二支承杆均为L形或弓形,且所述第一支承杆的L形凸起或弓形凸起朝向远离所述下支承框架的一侧,所述第二支承杆的L形凸起朝向 远离所述上支承框架的一侧。
  5. 根据权利要求3所述的储能飞轮组合壳体,其特征在于,所述外壳包括扣合装配的上壳体及下壳体;
    由所述上壳体及所述下壳体共同形成所述真空容纳腔,且所述支承框架置于所述真空容纳腔内,并固定于所述上壳体及所述下壳体的连接处。
  6. 根据权利要求5所述的储能飞轮组合壳体,其特征在于,所述上壳体包括第一筒体、第一封头及第一真空法兰,所述第一筒体的两端分别与所述第一封头的环形开口端及所述第一真空法兰的第一环面密封焊接;
    所述下壳体包括第二筒体、第二封头及第二真空法兰,所述第二筒体的两端分别与所述第二封头的环形开口端及所述第二真空法兰的第一环面密封焊接;
    所述第一真空法兰的第二环面与所述第二真空法兰的第二环面密封连接。
  7. 根据权利要求6所述的储能飞轮组合壳体,其特征在于,所述第二真空法兰的内圆侧向内沿伸形成承接所述第二法兰盘的承接部,所述承接部设置有供上述第二支承杆嵌入的凹口。
  8. 根据权利要求3所述的储能飞轮组合壳体,其特征在于,所述第一套筒用于固定设置第一电机,所述飞轮转子系统的第一转轴端与所述第一电机的输出端连接。
  9. 根据权利要求8所述的储能飞轮组合壳体,其特征在于,所述第二套筒用于固定设置第二电机,所述飞轮转子系统的第二转轴端与所述第二电机的输出端连接。
  10. 一种储能飞轮,其特征在于,所述储能飞轮包括飞轮转子系统及如权利要求1~9任一所述的组合壳体,所述飞轮转子系统装配于所述支承框架上。
PCT/CN2021/106307 2021-07-14 2021-07-14 一种储能飞轮组合壳体及储能飞轮 WO2023283832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106307 WO2023283832A1 (zh) 2021-07-14 2021-07-14 一种储能飞轮组合壳体及储能飞轮

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106307 WO2023283832A1 (zh) 2021-07-14 2021-07-14 一种储能飞轮组合壳体及储能飞轮

Publications (1)

Publication Number Publication Date
WO2023283832A1 true WO2023283832A1 (zh) 2023-01-19

Family

ID=84918897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106307 WO2023283832A1 (zh) 2021-07-14 2021-07-14 一种储能飞轮组合壳体及储能飞轮

Country Status (1)

Country Link
WO (1) WO2023283832A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907624U (zh) * 2010-03-16 2011-07-27 卢国骥 一种节能电动车动力装置
CN106884932A (zh) * 2017-02-07 2017-06-23 上海航天控制技术研究所 一种反作用飞轮密封结构
CN106992626A (zh) * 2017-05-10 2017-07-28 哈尔滨工程大学 一种双支承磁悬浮飞轮储能装置
US20190199164A1 (en) * 2017-12-26 2019-06-27 Hamilton Sundstrand Corporation Flywheel energy storage with pm, induction, or variable reluctance machine
CN112018945A (zh) * 2019-05-29 2020-12-01 深圳市中科超临技术有限公司 模块化飞轮储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907624U (zh) * 2010-03-16 2011-07-27 卢国骥 一种节能电动车动力装置
CN106884932A (zh) * 2017-02-07 2017-06-23 上海航天控制技术研究所 一种反作用飞轮密封结构
CN106992626A (zh) * 2017-05-10 2017-07-28 哈尔滨工程大学 一种双支承磁悬浮飞轮储能装置
US20190199164A1 (en) * 2017-12-26 2019-06-27 Hamilton Sundstrand Corporation Flywheel energy storage with pm, induction, or variable reluctance machine
CN112018945A (zh) * 2019-05-29 2020-12-01 深圳市中科超临技术有限公司 模块化飞轮储能系统

Similar Documents

Publication Publication Date Title
CN206514066U (zh) 一种压缩天然气装卸臂
CN108194374B (zh) 一种磁悬浮内流式转子管道泵
KR20120073154A (ko) 풍력 발전 장치 및 풍차용 타워 시공 방법
WO2023283832A1 (zh) 一种储能飞轮组合壳体及储能飞轮
WO2020000821A1 (zh) 支撑组件、拼装工装以及拼装方法
CN113417969B (zh) 一种储能飞轮组合壳体及储能飞轮
CN214197077U (zh) 一种磁场外置式磁流变阻尼装置
US20220200381A1 (en) Rotor of motor, method for maintaining rotor of motor, motor and wind-power electric generator set
CN113653932A (zh) 一种缠绕式法兰底座及其制作方法
US20060038073A1 (en) Light weight vacuum vessel provides lift for airships
CN215370115U (zh) 一种分片式风电塔架
JPH02301603A (ja) 軸流排気タービン支持装置
WO2020238266A1 (zh) 定子支架及定子
CN209799110U (zh) 一种大型弯弧亚克力石材幕墙安装结构
CN202087848U (zh) 一种高速电主轴的上轴承座结构
CN114197462B (zh) 管桩抗振连接头和管桩笼结构
CN109604387A (zh) 一种塔节椭圆度矫正工具
JP2015227651A (ja) 風力発電装置
CN215378731U (zh) 一种永磁电机装配胎具
CN214662978U (zh) 一种带有双层缓冲结构的纳米保温油管
CN217634422U (zh) 一种便于装卸的石油法兰
CN219135076U (zh) 风力发电机的定转子固定装置
CN221321878U (zh) 一种具有卸荷作用的连接套
CN220254223U (zh) 一种分段斜极骨架外转子电机
CN217927604U (zh) 一种用于双壁燃气管的弹性支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE