WO2023282696A1 - Liquid-air contact device for preventing droplet - Google Patents

Liquid-air contact device for preventing droplet Download PDF

Info

Publication number
WO2023282696A1
WO2023282696A1 PCT/KR2022/009951 KR2022009951W WO2023282696A1 WO 2023282696 A1 WO2023282696 A1 WO 2023282696A1 KR 2022009951 W KR2022009951 W KR 2022009951W WO 2023282696 A1 WO2023282696 A1 WO 2023282696A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
liquid contact
air
splash
Prior art date
Application number
PCT/KR2022/009951
Other languages
French (fr)
Korean (ko)
Inventor
김보선
Original Assignee
엔트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔트 주식회사 filed Critical 엔트 주식회사
Publication of WO2023282696A1 publication Critical patent/WO2023282696A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • F24F8/133Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering by direct contact with liquid, e.g. with sprayed liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • A61L9/145Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes air-liquid contact processes, e.g. scrubbing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants

Definitions

  • the present invention relates to an anti-splash gas-liquid contact device including a structure in which gas and liquid contact each other.
  • Gas conditions temperature, humidity, gaseous pollutants, particulate pollutants, radioactive materials, germs, viruses, etc.
  • treatment of liquids oxidation, dissolved concentration control, moisture control, temperature control, sterilization
  • a post-removal method by applying a post-filter can be mainly applied, but the application of a post-filter causes many problems such as enlargement of the device due to static pressure loss, excessive energy consumption due to high static pressure loss, noise and vibration, etc. cause In addition, the post-filter cannot completely solve the problem of splashing or droplets of liquid.
  • the present invention is to solve the problems of the prior art, and an object of the present invention is to provide a gas-liquid contact device capable of preventing splashes.
  • the present invention provides the following gas-liquid contact device in order to achieve the above object.
  • the present invention an air supply; a gas-liquid contact cell disposed at a position through which introduced air passes; an exhaust port through which the air passing through the gas-liquid contact cell is discharged; a fan disposed on a path through which the air passes; a liquid tank disposed below the gas-liquid contact cell; and a liquid supply line for supplying liquid to the gas-liquid contact cell, wherein the gas-liquid contact cell includes a gas-liquid contact structure in which a liquid film is formed so that the air passes through the gas-liquid contact structure, and the fan and A liquid supply line provides an anti-splash gas-liquid contact device for supplying air and liquid to maintain a liquid film in the gas-liquid contact cell.
  • the liquid film may have a thickness of 0.1 to 0.5 mm.
  • the gas-liquid contact cell is connected to the liquid supply pipe of the liquid supply line and includes a supply jacket disposed on an upper side; a filter pad disposed on a lower surface of the supply jacket; and a gas-liquid contact structure connected to the filter pad, wherein the gas-liquid contact structure includes micropores through which the liquid that has passed through the filter pad passes, and the filter pad and the gas-liquid contact structure are formed by capillary action and membrane permeation.
  • the liquid film may be formed on the surface of the gas-liquid contact structure.
  • the liquid supply pipe is inserted from one side of the supply jacket, and holes are formed in the liquid supply pipe at regular intervals to supply liquid into the supply jacket at a plurality of locations.
  • the gas-liquid contact structure has fine protrusions, and may be configured to have a contact angle of 60° or less by the protrusions.
  • the gas-liquid contact structure may include a plurality of wick tubes configured to move the liquid by a capillary or pore absorption phenomenon due to micropores and the liquid's own weight.
  • a plurality of wick tubes are connected to the filter pad, the wick tubes have a streamlined horizontal cross section, the wick tubes are arranged in a plurality of rows, and the wick pipes are alternately arranged in adjacent rows. It can be.
  • the wick tube may have a lower end extending into the liquid accommodated in the liquid tank.
  • the wick tube may include an inner tube through which liquid flows, and a wick portion surrounding the inner tube and formed of a membrane-permeable functional member.
  • the wick tube may include a hydrophilic coating layer having an equilibrium contact angle of 60° or less on an outer surface.
  • the wick can also include a filter layer on the outer surface.
  • a control unit connected to the fan and a pump installed in the liquid supply line is included, and the control unit can adjust a constant flow rate of liquid to contact air.
  • a rectifier disposed between the air supply port and the gas-liquid contact cell may be further included.
  • a wind pressure sensor is installed at the front and rear ends of the gas-liquid contact cell, and the controller may be connected to the wind pressure sensor.
  • the liquid/gas weight ratio controlled by the control unit may be in the range of 0.1 to 1.5.
  • the wind speed supplied by the fan may be 1.5 to 2.5 m/s.
  • vanes for guiding air may be included behind the supply port and in front of the exhaust port through which the air is discharged so that turbulence does not occur inside the device.
  • the liquid tank further comprises a porous medium configured to be positioned above the liquid, the upper surface of the porous medium may be disposed at a higher position than the upper surface of the liquid, the liquid may include LiCl there is.
  • generation of droplets inside an air conditioner can be prevented and secondary contamination caused by droplets can be prevented without providing an additional filter through the anti-splash gas-liquid contact device as described above.
  • 1 is a photograph of a conventional gas-liquid contact cell.
  • FIG. 2 is a schematic diagram of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • FIG 3 is a photograph of the inside of a jacket in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of a gas-liquid contact cell according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of another embodiment of a gas-liquid contact cell according to another embodiment of the present invention.
  • FIG. 6 is a schematic enlarged view of a surface of a wick tube in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • Fig. 8 is an enlarged view of A in Fig. 7;
  • gas-liquid contact device 10 gas-liquid contact cell
  • FIG. 1 shows a photograph of a conventional gas-liquid contact cell 1.
  • gas-liquid contact is achieved while passing air through the contact structure 3 in a state in which liquid such as water flows through the pipe 2 on the contact structure 3 for gas-liquid contact.
  • droplets are intentionally formed to increase gas-liquid contact, and liquid is blown by supplied air to form droplets.
  • the specific component is changed into ultra-fine dust by droplets when a gas and a liquid containing a specific component, such as LiCl, are brought into contact.
  • the present invention relates to a gas-liquid contact device that does not generate ultrafine dust by droplets, and the gas-liquid contact device may be an air conditioner for adjusting at least one of temperature/humidity/condition of air, but is not limited thereto, and is not limited thereto. It can be applied to the device and used.
  • FIG. 2 is a schematic diagram of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • the anti-splash gas-liquid contact device 100 includes a gas-liquid contact cell 10, an air supply unit 20 disposed at the front end of the gas-liquid contact cell 10, an exhaust unit 30 disposed at the rear end of the gas-liquid contact cell 10, On the air path, there is a fan 40 for moving air, a liquid tank unit 50 disposed below the gas-liquid contact cell 10, and a liquid supply line connecting the liquid tank and the gas-liquid contact cell 10.
  • a pump 60 disposed, pressure sensors 71 and 72 disposed in front and rear of the gas-liquid contact cell 10, and a control unit connected to the fan 40, the pump 60, and the pressure sensors 71 and 72 (90).
  • the fan 40 is illustrated as being disposed in the exhaust unit 30, but the fan 40 may be disposed in another location as long as it is on the air path.
  • the gas-liquid contact cell 10 is connected to the liquid supply pipe 12 of the liquid supply line and includes a supply jacket 11 disposed on the upper side; a filter pad (13) disposed on a lower surface of the supply jacket; and a gas-liquid contact structure 14 connected to the filter pad.
  • the gas-liquid contact structure 14 includes micropores through which the liquid passing through the filter pad 13 passes, and the filter pad 13 and the gas-liquid contact structure 14 are formed by capillary action and membrane permeation.
  • the liquid film is formed on the surface of the gas-liquid contact structure 14 .
  • the supply jacket 11 is located on the upper part of the gas-liquid contact cell 10, and the side and upper surfaces can be sealed so that the liquid can stay after being supplied through the liquid supply pipe 12, and the lower surface has a filter pad 13 ) is disposed so that the supplied liquid is discharged through the filter pad 13.
  • the liquid supply pipe 12 is inserted from one side of the supply jacket 11, and the liquid supply pipe 12 is formed with holes at regular intervals inside the supply jacket 11, so that the supply jacket 11 ) may be configured to supply liquid to the inside.
  • the filter pad 13 is formed of a porous material and is disposed on the lower surface of the supply jacket 11 so that the liquid supplied to the supply jacket 11 passes through the porous material due to the weight of the liquid.
  • the gas-liquid contact structure 14 is connected as a whole to the lower surface of the filter pad 13 so that all liquid passing through flows to the gas-liquid contact structure 14 . All of the liquid passing through the filter pad 13 goes down through the gas-liquid contact structure 14, and therefore, droplets may not be generated from the filter pad 13.
  • the gas-liquid contact structure 14 will be described in detail later.
  • the air supply unit 20 has a structure through which air is introduced, and includes an air supply port 21, a vane 22 arranged consecutively to the air supply port 21, and a rectifying part 23 arranged consecutively behind the vane 22.
  • the air supply port 21 of the air supply unit 20 is connected to the outside, but is not limited thereto, and may be air supplied to the device after passing through another structure.
  • the vane 22 is a structure in which the cross-sectional area is expanded and is used to control the air speed, but if the air speed can be controlled by another structure, it is possible to omit it.
  • the rectifying unit 23 is disposed in front of the gas-liquid contact cell 10 and uniformly rectifies air supplied to the gas-liquid contact cell 10 .
  • the structure of the rectifying unit 23 may be composed of pins arranged at regular intervals, and the rectifying unit 23 allows air to have a constant flow without forming turbulence in the gas-liquid contact cell 10 without loss of static pressure, Accordingly, formation of droplets from the liquid film of the gas-liquid contact structure 14 while passing through the gas-liquid contact cell 10 can be suppressed.
  • the exhaust unit 30 is a structure through which air is discharged and has a structure symmetrical to that of the air supply unit 20 .
  • the exhaust unit 30 may include a vane 32 through which the air passing through the gas-liquid contact cell 10 passes, and an exhaust port 31 through which the air passing through the vane 32 passes.
  • the vane 32 has a structure in which the cross-sectional area decreases according to the flow of air, and the speed of the air increases while passing through the vane 32, so that the vane 32 quickly exits the exhaust port 31.
  • the fan 40 may use any structure as long as it flows air, and may be positioned anywhere on the air path, but in this embodiment, it is located in the exhaust unit 30.
  • the fan 40 is connected to the controller 90 to control the amount of air supplied.
  • the liquid tank 50 is disposed inside the tank body 51 in which the liquid that has passed through the gas-liquid contact cell 10 is stored and is disposed inside the tank body 51, and is made of a material that floats on the liquid because its specific gravity is lighter than that of the liquid F. It includes a porous medium 52, for example, a sponge, and a connection pipe of a liquid supply line is connected to the lower part of the tank body 51 so that the liquid F of the tank body 51 passes through the pump 60. Through this, it is again supplied to the supply jacket 11 of the upper gas-liquid contact cell 10.
  • the porous medium 52 can prevent the formation of droplets in the tank by preventing the flow inside the liquid tank 50, and also prevents the formation of additional droplets due to possible droplets falling from the gas-liquid contact cell 10.
  • the gas-liquid contact structure 14 of the gas-liquid contact cell 10 has a length such that a part of it comes into contact with the liquid F stored in the tank body 51, and therefore, the liquid F passing through the gas-liquid contact structure 14 ) may become droplets and not enter the tank body 51.
  • the pump 60 is disposed in the liquid supply line and supplies the liquid F inside the tank body 51 to the supply jacket 11 of the gas-liquid contact cell 10.
  • a filter for filtering foreign substances of the liquid F may be disposed at a front end of the pump 60 .
  • a liquid supply unit may be connected to the liquid supply line to replenish liquid evaporated by contact with air.
  • the liquid supply may be directly connected to the supply line, but it is also possible that the user directly supplies it.
  • a flow rate sensor 62 or a flow rate sensor for measuring the flow rate of the liquid may be disposed in the liquid supply line. This flow rate/flow sensor is connected to the controller 90 and provides an accurate amount of liquid circulated by the pump 60.
  • Air pressure sensors 71 and 72 for measuring air pressure may be disposed in front and rear of the gas-liquid contact cell 10 .
  • the air pressure sensors 71 and 72 are connected to the control unit 90 and measure a pressure loss in the gas-liquid contact cell 10 and a supplied wind speed.
  • the controller 90 may control the fan 40 based on the measured values of the air pressure sensors 71 and 72 .
  • the control unit 90 is connected to the pressure sensors 71 and 72, the flow sensor 62, the pump 60 and the fan 40 to maintain a constant liquid film in the gas-liquid contact cell 10 so that no droplets are issued. Adjust the gas/liquid supply ratio so that The liquid/gas ratio and liquid-gas ratio (sol(kg/h)/air(kg/h)) for optimizing the contact action between liquid and gas can be set differently depending on the type of gas and liquid within 0.1 to 1.5. can The control unit 90 sets a target value according to the type of gas and liquid in the liquid-to-liquid ratio within the above range, and adjusts the liquid supply amount and the gas supply amount accordingly. At this time, follow-up control is performed while checking whether supply is properly performed through the sensor.
  • the controller 90 controls the fan 40 so that the wind speed in the gas-liquid contact cell 10 is in the range of 1.5 m/s to 2.5 m/s.
  • the wind speed of the gas increases the contact action, but when the wind speed of the gas increases, the liquid film of the gas-liquid contact cell 10 may be scattered.
  • less than 1.5m ⁇ s can overcome the surface tension of the liquid and cannot cause scattering, so it is advantageous for scattering, but the contact action is weak, and mass objects such as particles cannot be accelerated to collide with the liquid.
  • it is not used in the gas-liquid contact cell 10 because it breaks the surface equilibrium of the liquid and increases the contact angle to cause scattering.
  • the controller 90 may also measure the pressure loss of the gas-liquid contact structure 14 through the pressure sensors 71 and 72 .
  • the measurement of the pressure loss is not only used for controlling the fan, but also can give a notification to the user because contamination of the gas-liquid contact cell 10 and imbalance of the liquid film can be predicted when the differential pressure is changed.
  • FIG. 3 to 8 show the gas-liquid contact cell 10 of the anti-splash gas-liquid contact device 100 according to an embodiment of the present invention in detail.
  • FIG. 3 shows a picture of the inside of a jacket in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention
  • FIG. 4 is a schematic perspective view of the gas-liquid contact cell according to an embodiment of the present invention.
  • 5 is a schematic perspective view of another embodiment of a gas-liquid contact cell according to another embodiment of the present invention
  • FIG. 6 is a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
  • a schematic enlarged view of the wick tube surface is shown.
  • 7 is a schematic diagram of a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention
  • FIG. 8 is an enlarged view of A of FIG. 7 .
  • the liquid supply pipe 12 extends horizontally inside the supply jacket 11, and the liquid supply pipe 12 extends inside the supply jacket 11 at regular intervals. A hole is formed, and the liquid flows into the inside of the jacket 11 through the hole.
  • the liquid supplied in this way flows into the gas-liquid contact structure 14 connected to the lower part by capillary action due to the porous structure of the filter member 13 at the lower part of the jacket, membrane permeation, and its own weight.
  • the supply jacket 11 may be provided with a shielding material for shielding gas so that an air flow path is not formed around the supply jacket 11 so that liquid does not flow out through other paths except for the filter member 13 on the lower surface.
  • the gas-liquid contact structure 14 it is also possible to use a conventional gas-liquid contact structure 14 as shown in FIG. That is, any structure capable of forming/maintaining a certain liquid film when a certain amount of liquid is supplied to the conventional gas-liquid contact structure 14 through the filter member 13 is applicable.
  • the liquid film preferably has a thickness of 0.1 to 0.5 mm.
  • the thickness of the liquid film is a material that is in direct contact with the gas to optimize the contact action on the specific surface of the gas-liquid contact cell 10. If the thickness is less than 0.1 mm, the liquid film thickness is too small and the amount of liquid on the surface is small, so the material is exchanged by the contact action.
  • the material of the gas-liquid contact structure 14 may be paper, fiber, non-woven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and a hydrophilic surface coating such as carbon coating or zeolite coating may be applied to the material.
  • a hydrophilic surface coating such as carbon coating or zeolite coating may be applied to the material.
  • a hydrophilic surface is formed by microstructure protrusions, capillaries, and pores, and since the hydrophilic microprotrusions or concavo-convex voids are filled with liquid, the equilibrium contact angle is very small and is less than 60 degrees, so that the gas Scattering and water droplets can be prevented.
  • the gas-liquid contact structure 14 extends in the vertical direction, but it is also possible to extend in a direction inclined to the vertical direction instead of the vertical direction. However, even in this case, the angle of inclination is limited to the degree to which the liquid can flow along the surface along the inclined surface.
  • the gas-liquid contact cell 10 has a supply jacket 11 disposed thereon, and a liquid supply pipe 12 connected to a liquid supply line is connected to the supply jacket 11.
  • a filter pad 13 is disposed on the lower surface of the supply jacket 11, and a gas-liquid contact structure 14 is disposed under the filter pad 13.
  • the gas-liquid contact structure 14 is formed in a columnar shape with a porous material having a streamlined horizontal section.
  • the gas-liquid contact structure 14 may be paper, fiber, nonwoven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and may be referred to as a wick tube.
  • the wick tube extends in the vertical direction, and a plurality of wick tubes are arranged in a plurality of rows under the filter pad 13 .
  • the wick tubes are arranged in a plurality of rows, and the wick tubes in adjacent rows are staggered with each other.
  • the wick tube controls the free-falling flow of the liquid and can obtain even contact efficiency with the air flow.
  • the horizontal cross-sectional shape of the wick tube is approximately a diamond shape, but is not limited thereto, and may have an elliptical, circular, or angular shape suitable for air flow.
  • the wick pipe has a length in the vertical direction shorter than the distance from the supply jacket 11 to the inner bottom surface of the tank body 51, but is formed longer than the distance to the upper surface of the liquid F, so that the wick tube is liquid ( It is configured so that it can be contained in F).
  • the wick tube may extend about 5 to 10 mm away from the inner bottom surface of the tank body 51 .
  • the surface of the wick tube has a filter function for maintaining the cleanliness of the liquid, and it is possible to perform selective coating of carbon, zeolite, activated carbon, molecular adsorbent, etc. for the purification function of the filter.
  • fine protrusions may be formed on the surface of the wick tube, and this appearance is shown in FIG. 6 .
  • fine protrusions 14b may be formed on the surface of the wick tube having a gas-liquid contact structure 14, and the liquid F may be evenly distributed on the surface of the wick tube by these protrusions.
  • the surface contact angle ( ⁇ ) of the liquid is 60 degrees or less due to the capillarity of the fine protrusions 14b.
  • the contact angle means an angle when the liquid is in equilibrium when it is present on the fine protrusions 14b. If the contact angle is less than 90 degrees, it is classified as hydrophilic, and if it exceeds 90 degrees, it is classified as hydrophobic. Since the gas-liquid contact cell 10 operates in an unstable state, the equilibrium contact angle must be in a stable state of 60 degrees or less to form fine protrusions 14b.
  • the liquid to be filled has a negative contact angle, making it safe from splashing.
  • the contact angle in the fine pores of the gas-liquid contact structure 14 is preferably 60 degrees or less.
  • FIG. 5 shows another embodiment of a gas-liquid contact cell 10 .
  • the gas-liquid contact structure 14 is formed in a columnar shape with a porous structure material having a streamlined horizontal cross section.
  • the gas-liquid contact structure 14 may be paper, fiber, nonwoven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and may be referred to as a wick tube.
  • the wick tube extends in the vertical direction, and a plurality of wick tubes are arranged in a plurality of rows under the filter pad 13 .
  • An inner tube 14a is formed inside the wick tube, and the liquid passing through the filter member 13 is supplied to the inner tube 14a and flows along the inner wall of the inner tube 14a to the wick around the inner tube 14a, causing capillarity or voids. It moves to the surface through the absorption phenomenon and comes into contact with the air.
  • FIG. 7 and 8 show schematic diagrams of a gas-liquid contact cell 10 according to the present invention.
  • the gas-liquid contact cell 10 when liquid is supplied to the upper supply jacket 11, the liquid passes through the filter pad 13 and is supplied to the gas-liquid contact structure 14. Since the gas-liquid contact structure 14 is made of a porous material, the liquid discharged through the filter pad 13 goes down along the gas-liquid contact structure 14 .
  • the filter pad 13 includes a capillary permeable membrane 13a so that a certain liquid permeates into the gas-liquid contact structure 14 through the capillary permeable membrane 13a, and droplets may not be formed as the liquid moves in this way.
  • the present invention has the structure of the gas-liquid contact cell 10 as described above, and since the gas-liquid contacts in a state in which the supply amount of the liquid and the supply amount of the gas are controlled, the liquid does not scatter during contact and no droplets are formed, and the filter Since the liquid that has passed through the pad 13 is also moved to the tank 50 along the gas-liquid contact structure 14, there is no generation of droplets. Therefore, since there is no generation of ultrafine dust due to scattering particles, even if a specific component is included in the liquid, there is no concern about affecting the human body.
  • the liquid passes from the tank 50 through the pump 60, the liquid supply pipe 12, the supply jacket 11, the filter member 13, and the gas-liquid contact structure 14, and then returns to the tank 50. , while passing through the gas-liquid contact structure 14, it contacts air. It is managed by the sensor 62 between the tank 50 and the pump 60, and a filter or the like can be placed in the middle, and clogging of the filter can be managed by the sensor 62. Therefore, in the present invention, the liquid can be continuously circulated without interruption of the flow and generation of droplets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention provides a liquid-air contact device capable of preventing a droplet, and provides, according to one embodiment of the present invention, a liquid-air contact device for preventing a droplet, comprising: an air supply port; a liquid-air contact cell disposed at a location where inflowing air passes; an exhaust port for discharging the air that has passed through the liquid-air contact cell; a fan disposed on a path through which the air passes; a liquid tank disposed at the lower portion of the liquid-air contact cell; and a liquid supply line for supplying a liquid to the liquid-air contact cell, wherein the liquid-air contact cell comprises a liquid-air contact structure having a liquid film formed, and thus the air passes through the liquid-air contact structure, and the fan and the liquid supply line supply the air and the liquid so that the liquid film may be maintained in the liquid-air contact cell.

Description

비말 방지 기액 접촉 장치Anti-splash gas-liquid contact device
본 발명은 기체와 액체가 접촉하는 구조를 포함하는 비말 방지 기액 접촉 장치에 대한 것이다. The present invention relates to an anti-splash gas-liquid contact device including a structure in which gas and liquid contact each other.
기체액체접촉에 의한 방식으로는 분무, 접촉, 투과등의 방식으로 기체와 액체의 접촉효율을 향상시키기 위한 방법이 모색되어 이용하고 있다.As a method by gas-liquid contact, a method for improving the contact efficiency of gas and liquid in a method such as spraying, contact, permeation, etc. has been sought and used.
액체를 이용하여 기체의 조건(온도, 습도, 가스상 오염 물질, 입자상오염물질, 방사선물질, 세균, 바이러스 등)과 기체를 이용하여 액체의 처리(산화, 용존농도조절, 수분조절, 온도조절, 살균 등)를 할 경우 정해진 장치의 면적 혹은 체적과 공간에서 희망하는 기체와 액체의 접촉 효율을 극대화하여야 한다.Gas conditions (temperature, humidity, gaseous pollutants, particulate pollutants, radioactive materials, germs, viruses, etc.) and treatment of liquids (oxidation, dissolved concentration control, moisture control, temperature control, sterilization) using liquids etc.), it is necessary to maximize the contact efficiency of the desired gas and liquid in the area or volume and space of the device.
액체와 기체의 접촉효율을 극대화 하기 위해서 기체의 풍속과 액체의 유속과 유량을 확대하고, 액체를 노즐 분사 혹은 여러 방법으로 접촉장치에 흐르게 하여 접촉작용을 극대화하는 기술이 개발되고 있는데, 이때 액체가 비산하여 공기와 함께 토출되어 본래 목적하는 조건의 제어 이외의 액체 오염과 액체비산에 의한 2차오염 등의 큰 문제를 야기한다. 이는 생산제품에 혼입되어 품질저하를 야기하고, 거주 체류공간의 공기조화에서는 비산오염을 야기하여 호흡기에 흡입되는 문제를 발생시킨다.In order to maximize the contact efficiency between liquid and gas, a technology is being developed to maximize the contact action by increasing the wind speed of the gas and the flow rate and flow rate of the liquid, and flowing the liquid through the contact device through nozzle spraying or various methods. At this time, the liquid It scatters and is discharged together with air, causing big problems such as liquid contamination other than the control of originally intended conditions and secondary contamination by liquid scattering. It is mixed with manufactured products to cause quality deterioration, and in the air conditioning of the residence space, it causes scattering pollution, causing a problem of being inhaled into the respiratory system.
이러한 문제를 해결하기 위하여 후단필터를 적용하여 사후 제거하는 방식을 주로 적용할 수 있으나, 후단필터의 적용은 정압손실 등으로 장치의 비대화와 높은 정압손실에 의한 에너지 과다소비, 소음 진동 등의 많은 문제를 야기한다. 또한 후단필터는 액체의 비산이나 비말의 완벽한 원천적인 해결도 불가능하다.In order to solve this problem, a post-removal method by applying a post-filter can be mainly applied, but the application of a post-filter causes many problems such as enlargement of the device due to static pressure loss, excessive energy consumption due to high static pressure loss, noise and vibration, etc. cause In addition, the post-filter cannot completely solve the problem of splashing or droplets of liquid.
본 발명은 종래 기술의 문제를 해결하기 위한 것으로, 비말 방지 가능한 기액 접촉 장치를 제공하는 것을 목적으로 한다. The present invention is to solve the problems of the prior art, and an object of the present invention is to provide a gas-liquid contact device capable of preventing splashes.
본 발명은 위와 같은 목적을 달성하기 위하여 다음과 같은 기액 접촉 장치를 제공한다. The present invention provides the following gas-liquid contact device in order to achieve the above object.
본 발명은 일실시예에서, 급기구; 유입된 공기가 지나가는 위치에 배치되는 기액 접촉 셀; 상기 기액 접촉 셀을 통과한 공기가 배출되는 배기구; 상기 공기가 통과하는 경로상에 배치되는 팬; 상기 기액 접촉 셀의 하부에 배치되는 액체 탱크; 및 상기 기액 접촉 셀로 액체를 공급하는 액체 공급 라인;을 포함하는 기액 접촉 장치로, 상기 기액 접촉 셀은 액체막이 형성되는 기액 접촉 구조를 포함하여 상기 기액 접촉 구조로 상기 공기가 지나가며, 상기 팬 및 액체 공급 라인은 상기 기액 접촉 셀에서 액체막이 유지되게 공기 및 액체를 공급하는 비말 방지 기액 접촉 장치를 제공한다. In one embodiment, the present invention, an air supply; a gas-liquid contact cell disposed at a position through which introduced air passes; an exhaust port through which the air passing through the gas-liquid contact cell is discharged; a fan disposed on a path through which the air passes; a liquid tank disposed below the gas-liquid contact cell; and a liquid supply line for supplying liquid to the gas-liquid contact cell, wherein the gas-liquid contact cell includes a gas-liquid contact structure in which a liquid film is formed so that the air passes through the gas-liquid contact structure, and the fan and A liquid supply line provides an anti-splash gas-liquid contact device for supplying air and liquid to maintain a liquid film in the gas-liquid contact cell.
일실시예에서, 상기 액체막은 0.1~0.5㎜ 의 두께를 가질 수 있다. In one embodiment, the liquid film may have a thickness of 0.1 to 0.5 mm.
일실시예에서, 상기 기액 접촉 셀은 상기 액체 공급 라인의 액체 공급관에 연결되며 상측에 배치되는 공급 자켓; 상기 공급 자켓의 하면에 배치되는 필터 패드; 및 상기 필터 패드에 연결된 기액 접촉 구조;를 포함하며, 상기 기액 접촉 구조는 상기 필터 패드를 통과한 액체가 통과하는 미세 공극을 포함하며, 상기 필터 패드와 상기 기액 접촉 구조는 모세관 현상 및 막투과 방식으로 상기 기액 접촉 구조의 표면에 상기 액체막이 형성될 수 있다. In one embodiment, the gas-liquid contact cell is connected to the liquid supply pipe of the liquid supply line and includes a supply jacket disposed on an upper side; a filter pad disposed on a lower surface of the supply jacket; and a gas-liquid contact structure connected to the filter pad, wherein the gas-liquid contact structure includes micropores through which the liquid that has passed through the filter pad passes, and the filter pad and the gas-liquid contact structure are formed by capillary action and membrane permeation. As a result, the liquid film may be formed on the surface of the gas-liquid contact structure.
일실시예에서, 상기 액체 공급관은 상기 공급 자켓의 일측면으로부터 삽입되며, 상기 액체 공급관은 일정 간격으로 구멍이 형성되어 복수의 위치에서 상기 공급 자켓 내부로 액체를 공급할 수 있다. In one embodiment, the liquid supply pipe is inserted from one side of the supply jacket, and holes are formed in the liquid supply pipe at regular intervals to supply liquid into the supply jacket at a plurality of locations.
일실시예에서, 상기 기액 접촉 구조는 미세 돌기를 가지며, 상기 돌기에 의해서 60°이하의 접촉각을 갖도록 구성될 수 있다. In one embodiment, the gas-liquid contact structure has fine protrusions, and may be configured to have a contact angle of 60° or less by the protrusions.
일실시예에서, 상기 기액 접촉 구조는 미세 공극으로 인한 모세관 혹은 공극 흡수 현상과 액체 자중에 의하여 액체가 이동하게 구성되는 복수의 심지관을 포함하여 구성될 수 있다. In one embodiment, the gas-liquid contact structure may include a plurality of wick tubes configured to move the liquid by a capillary or pore absorption phenomenon due to micropores and the liquid's own weight.
일실시예에서, 상기 심지관이 상기 필터 패드에 복수 개가 연결되며, 상기 심지관은 유선형의 수평 단면을 가지며, 상기 심지관은 복수의 열로 배치되며, 이웃하는 열에서 상기 심지관은 서로 엇갈려 배치될 수 있다. In one embodiment, a plurality of wick tubes are connected to the filter pad, the wick tubes have a streamlined horizontal cross section, the wick tubes are arranged in a plurality of rows, and the wick pipes are alternately arranged in adjacent rows. It can be.
일실시예에서, 상기 심지관은 하단부가 상기 액체 탱크에 수용되는 액체 안까지 연장되는 길이를 가질 수 있다. In one embodiment, the wick tube may have a lower end extending into the liquid accommodated in the liquid tank.
일실시예에서, 상기 심지관은 내부에 액체가 흐르는 내관과 상기 내관을 둘러싸며 막투과성 기능성 부재로 형성된 심지부를 포함할 수 있다. In one embodiment, the wick tube may include an inner tube through which liquid flows, and a wick portion surrounding the inner tube and formed of a membrane-permeable functional member.
일실시예에서, 상기 심지관은 외면에 평형접촉각을 60°이하로 갖게 하는 친수성 코팅층을 포함할 수 있다. In one embodiment, the wick tube may include a hydrophilic coating layer having an equilibrium contact angle of 60° or less on an outer surface.
일실시예에서 상기 심지관은 외면에 필터층을 포함하는 것도 가능하다. In one embodiment, the wick can also include a filter layer on the outer surface.
일실시예에서, 상기 팬 및 상기 액체 공급 라인에 설치되는 펌프에 연결되는 제어부를 포함하며, 상기 제어부는 일정한 유량의 액체가 공기에 접촉하도록 조절할 수 있다. In one embodiment, a control unit connected to the fan and a pump installed in the liquid supply line is included, and the control unit can adjust a constant flow rate of liquid to contact air.
일실시예에서 상기 급기구와 상기 기액 접촉 셀 사이에 배치되는 정류기를 더 포함할 수 있다. In one embodiment, a rectifier disposed between the air supply port and the gas-liquid contact cell may be further included.
일실시예에서, 상기 기액 접촉 셀의 전단 및 후단에 설치되는 풍압센서를 더 포함하며, 상기 제어부는 상기 풍압센서에 연결될 수 있다. In one embodiment, a wind pressure sensor is installed at the front and rear ends of the gas-liquid contact cell, and the controller may be connected to the wind pressure sensor.
일실시예에서, 상기 제어부가 조절하는 액체/기체 시간당 중량의 비율은 0.1 ~ 1.5 범위일 수 있다. In one embodiment, the liquid/gas weight ratio controlled by the control unit may be in the range of 0.1 to 1.5.
일실시예에서, 상기 팬에 의해서 공급되는 풍속은 1.5 ~ 2.5 m/s 일 수 있다. In one embodiment, the wind speed supplied by the fan may be 1.5 to 2.5 m/s.
일실시예에서, 장치 내부에서 난류가 발생하지 않도록 상기 급기구 후방 및 공기가 빠져나가는 배기구 전방에는 공기를 안내하는 베인을 포함할 수 있다. In one embodiment, vanes for guiding air may be included behind the supply port and in front of the exhaust port through which the air is discharged so that turbulence does not occur inside the device.
일실시예에서, 상기 액체 탱크의 액체 상부에 위치하게 구성되는 다공성 매체를 더 포함하며, 상기 다공성 매체의 상면은 상기 액체의 상면보다 높은 위치에 배치될 수 있으며, 상기 액체는 LiCl 을 포함할 수 있다. In one embodiment, the liquid tank further comprises a porous medium configured to be positioned above the liquid, the upper surface of the porous medium may be disposed at a higher position than the upper surface of the liquid, the liquid may include LiCl there is.
본 발명은 위와 같은 비말 방지 기액 접촉 장치를 통하여, 공기 조화기 내부에서 비말의 생성을 막으며, 비말로 인한 2차 오염을 추가 필터 제공 없이 막을 수 있다. According to the present invention, generation of droplets inside an air conditioner can be prevented and secondary contamination caused by droplets can be prevented without providing an additional filter through the anti-splash gas-liquid contact device as described above.
도 1 은 종래의 기액 접촉 셀의 사진이다. 1 is a photograph of a conventional gas-liquid contact cell.
도 2 는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 개략도이다. 2 is a schematic diagram of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
도 3 은 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀에서 자켓 내부 사진이다. 3 is a photograph of the inside of a jacket in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
도 4 는 본 발명의 일실시예에 따른 기액 접촉 셀의 개략 사시도이다. 4 is a schematic perspective view of a gas-liquid contact cell according to an embodiment of the present invention.
도 5 는 본 발명의 다른 실시예에 따른 기액 접촉 셀의 다른 실시예의 개략 사시도이다. 5 is a schematic perspective view of another embodiment of a gas-liquid contact cell according to another embodiment of the present invention.
도 6 은 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀에서 심지관 표면의 개략 확대도이다. 6 is a schematic enlarged view of a surface of a wick tube in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
도 7 은 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀의 개략도이다. 7 is a schematic diagram of a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
도 8 은 도 7 의 A의 확대도이다. Fig. 8 is an enlarged view of A in Fig. 7;
* 부호의 설명 ** Description of code *
100: 기액 접촉 장치 10: 기액 접촉 셀100: gas-liquid contact device 10: gas-liquid contact cell
11: 공급 자켓 12: 액체 공급관11: supply jacket 12: liquid supply pipe
13: 필터 패드 14: 기액 접촉 구조13: filter pad 14: gas-liquid contact structure
20: 급기부 30: 배기부20: air supply unit 30: exhaust unit
40: 팬 50: 액체 탱크40: fan 50: liquid tank
60: 펌프 71, 72: 압력 센서60: pump 71, 72: pressure sensor
90: 제어부90: control unit
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. 또한, 본 명세서에서, '상', '상부', '상면', '하', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자나 구성요소가 배치되는 방향에 따라 달라질 수 있을 것이다.Hereinafter, preferred embodiments will be described in detail so that those skilled in the art can easily practice the present invention with reference to the accompanying drawings. However, in describing a preferred embodiment of the present invention in detail, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and actions. In addition, in this specification, terms such as 'upper', 'upper', 'upper surface', 'lower', 'lower', 'lower surface', and 'side surface' are based on the drawings, and are actually elements or components may vary depending on the direction in which is placed.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, throughout the specification, when a part is said to be 'connected' to another part, this is not only the case where it is 'directly connected', but also the case where it is 'indirectly connected' with another element in between. include In addition, 'including' a certain component means that other components may be further included, rather than excluding other components unless otherwise stated.
도 1 에는 종래의 기액 접촉 셀(1)의 사진이 도시되어 있다. 도 1 에서 보이듯이, 종래에는 기액 접촉을 위한 컨텍트 구조(3) 위에 물과 같은 액체를 관(2)을 통하여 흘리는 상태에서 컨텍트 구조(3)로 공기를 통과시키면서 기-액 접촉을 달성하였다. 이러한 구조의 경우에 기액 접촉을 늘리기 위하여 고의적으로 비말을 형성하기도 하고, 공급되는 공기에 의해서 액체가 날려 비말이 형성되기도 한다. 특히, LiCl 과 같이 특정 성분을 포함하는 액체와 기체를 접촉시키는 경우에 비말에 의해서 특정 성분이 초미세먼지로 변한다는 문제가 있다. 1 shows a photograph of a conventional gas-liquid contact cell 1. As shown in FIG. 1, in the prior art, gas-liquid contact is achieved while passing air through the contact structure 3 in a state in which liquid such as water flows through the pipe 2 on the contact structure 3 for gas-liquid contact. In the case of this structure, droplets are intentionally formed to increase gas-liquid contact, and liquid is blown by supplied air to form droplets. In particular, there is a problem that the specific component is changed into ultra-fine dust by droplets when a gas and a liquid containing a specific component, such as LiCl, are brought into contact.
본 발명은 비말에 의한 초미세먼지가 발생되지 않는 기액 접촉 장치에 대한 것으로, 기액 접촉 장치는 공기의 온도/습도/상태 중 적어도 하나를 조절하기 위한 공기 조화기일 수 있으나, 이에 제한되는 것은 아니며 다양한 장치에 적용되어 사용될 수 있다. The present invention relates to a gas-liquid contact device that does not generate ultrafine dust by droplets, and the gas-liquid contact device may be an air conditioner for adjusting at least one of temperature/humidity/condition of air, but is not limited thereto, and is not limited thereto. It can be applied to the device and used.
도 2 에는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 개략도가 도시되어 있다. 2 is a schematic diagram of an anti-splash gas-liquid contact device according to an embodiment of the present invention.
도 2 에서 보이듯이, 비말 방지 기액 접촉 장치(100)는 기액 접촉 셀(10), 상기 기액 접촉 셀(10)의 전단에 배치되는 급기부(20), 후단에 배치되는 배기부(30), 공기의 경로상에는 공기를 이동시키는 팬(40), 기액 접촉 셀(10)의 하부에 배치되는 액체 탱크부(50), 상기 액체 탱크와 상기 기액 접촉 셀(10)을 연결하는 액체 공급 라인 상에 배치되는 펌프(60), 상기 기액 접촉 셀(10)의 전방 및 후방에 배치되는 압력 센서(71, 72) 및 상기 팬(40), 펌프(60), 압력 센서(71, 72)에 연결된 제어부(90)를 포함한다. 이실시예에서는 팬(40)이 배기부(30)에 배치되는 것으로 도시되었으나, 팬(40)은 공기 경로 상이라면 다른 위치에 배치되는 것도 가능하다.As shown in FIG. 2, the anti-splash gas-liquid contact device 100 includes a gas-liquid contact cell 10, an air supply unit 20 disposed at the front end of the gas-liquid contact cell 10, an exhaust unit 30 disposed at the rear end of the gas-liquid contact cell 10, On the air path, there is a fan 40 for moving air, a liquid tank unit 50 disposed below the gas-liquid contact cell 10, and a liquid supply line connecting the liquid tank and the gas-liquid contact cell 10. A pump 60 disposed, pressure sensors 71 and 72 disposed in front and rear of the gas-liquid contact cell 10, and a control unit connected to the fan 40, the pump 60, and the pressure sensors 71 and 72 (90). In this embodiment, the fan 40 is illustrated as being disposed in the exhaust unit 30, but the fan 40 may be disposed in another location as long as it is on the air path.
기액 접촉 셀(10)은 상기 액체 공급 라인의 액체 공급관(12)에 연결되며 상측에 배치되는 공급 자켓(11); 상기 공급 자켓의 하면에 배치되는 필터 패드(13); 및 상기 필터 패드에 연결된 기액 접촉 구조(14);를 포함한다. 상기 기액 접촉 구조(14)는 상기 필터 패드(13)를 통과한 액체가 통과하는 미세 공극을 포함하며, 상기 필터 패드(13)와 상기 기액 접촉 구조(14)는 모세관 현상 및 막투과 방식으로 상기 기액 접촉 구조(14)의 표면에 상기 액체막이 형성되게 구성된다. The gas-liquid contact cell 10 is connected to the liquid supply pipe 12 of the liquid supply line and includes a supply jacket 11 disposed on the upper side; a filter pad (13) disposed on a lower surface of the supply jacket; and a gas-liquid contact structure 14 connected to the filter pad. The gas-liquid contact structure 14 includes micropores through which the liquid passing through the filter pad 13 passes, and the filter pad 13 and the gas-liquid contact structure 14 are formed by capillary action and membrane permeation. The liquid film is formed on the surface of the gas-liquid contact structure 14 .
상기 공급 자켓(11)은 상기 기액 접촉 셀(10)의 상부에 위치하며, 액체가 액체 공급관(12)을 통하여 공급된 후 머무를 수 있도록 측면 및 상면은 밀봉될 수 있으며, 하면은 필터 패드(13)가 배치되어 필터 패드(13)를 통하여 상기 공급된 액체가 배출되게 된다. The supply jacket 11 is located on the upper part of the gas-liquid contact cell 10, and the side and upper surfaces can be sealed so that the liquid can stay after being supplied through the liquid supply pipe 12, and the lower surface has a filter pad 13 ) is disposed so that the supplied liquid is discharged through the filter pad 13.
상기 액체 공급관(12)은 상기 공급 자켓(11)의 일측면으로부터 삽입되며, 상기 액체 공급관(12)은 공급 자켓(11) 내부에서 일정 간격으로 구멍이 형성되어 복수의 위치에서 상기 공급 자켓(11) 내부로 액체를 공급하게 구성될 수 있다. The liquid supply pipe 12 is inserted from one side of the supply jacket 11, and the liquid supply pipe 12 is formed with holes at regular intervals inside the supply jacket 11, so that the supply jacket 11 ) may be configured to supply liquid to the inside.
필터 패드(13)는 다공성 재질로 형성되며, 공급 자켓(11)의 하면에 배치되어 공급 자켓(11)으로 공급된 액체가 액체의 자중에 의해서 다공성 재질을 통과하게 된다. 통과하는 액체가 모두 기액 접촉 구조(14)로 흐르도록 필터 패드(13)의 하면에는 기액 접촉 구조(14)가 전체적으로 연결된다. 필터 패드(13)를 통과하는 액체 모두는 상기 기액 접촉 구조(14)를 통하여 아래로 내려가며, 따라서, 필터 패드(13)로부터 비말은 발생하지 않을 수 있다. 기액 접촉 구조(14)에 대하여는 뒤에서 다시 자세하게 설명하도록 한다. The filter pad 13 is formed of a porous material and is disposed on the lower surface of the supply jacket 11 so that the liquid supplied to the supply jacket 11 passes through the porous material due to the weight of the liquid. The gas-liquid contact structure 14 is connected as a whole to the lower surface of the filter pad 13 so that all liquid passing through flows to the gas-liquid contact structure 14 . All of the liquid passing through the filter pad 13 goes down through the gas-liquid contact structure 14, and therefore, droplets may not be generated from the filter pad 13. The gas-liquid contact structure 14 will be described in detail later.
급기부(20)는 공기가 유입되는 구조로, 급기구(21)와 상기 급기구(21)에 연이어 배치되는 베인(22) 및 상기 베인(22)의 후방에 연이어 배치되는 정류부(23)를 포함한다. 급기부(20)의 급기구(21)는 외부와 연결되어 있으나, 이에 제한되는 것은 아니며, 다른 구조를 통과한 후 장치로 공급되는 공기일 수도 있다. 베인(22)은 단면적이 확장되는 구조로 공기의 속도를 조절하기 위하여 사용되나, 다른 구조에 의해서 공기 속도가 조절될 수 있다면, 생략하는 것도 가능하다. 정류부(23)는 상기 기액 접촉 셀(10)의 전방에 배치되며, 상기 기액 접촉 셀(10)로 공급되는 공기가 일정하게 정류되게 한다. 정류부(23)의 구조는 일정 간격으로 배치되는 핀으로 구성될 수 있으며, 정류부(23)에 의해서 공기가 정압손실 없이 상기 기액 접촉 셀(10)에서 난류를 형성하지 않고 일정한 흐름을 가질 수 있으며, 그에 따라서, 상기 기액 접촉 셀(10)을 통과하면서 기액 접촉 구조(14)의 액체 피막으로부터 비말이 형성되는 것을 억제할 수 있다. The air supply unit 20 has a structure through which air is introduced, and includes an air supply port 21, a vane 22 arranged consecutively to the air supply port 21, and a rectifying part 23 arranged consecutively behind the vane 22. include The air supply port 21 of the air supply unit 20 is connected to the outside, but is not limited thereto, and may be air supplied to the device after passing through another structure. The vane 22 is a structure in which the cross-sectional area is expanded and is used to control the air speed, but if the air speed can be controlled by another structure, it is possible to omit it. The rectifying unit 23 is disposed in front of the gas-liquid contact cell 10 and uniformly rectifies air supplied to the gas-liquid contact cell 10 . The structure of the rectifying unit 23 may be composed of pins arranged at regular intervals, and the rectifying unit 23 allows air to have a constant flow without forming turbulence in the gas-liquid contact cell 10 without loss of static pressure, Accordingly, formation of droplets from the liquid film of the gas-liquid contact structure 14 while passing through the gas-liquid contact cell 10 can be suppressed.
배기부(30)는 공기가 배출되는 구조로 급기부(20)와 대칭되는 구조를 가진다. 배기부(30)는 기액 접촉 셀(10)을 통과한 공기가 지나가는 베인(32)과 상기 베인(32)을 통과한 공기가 지나가는 배기구(31)를 포함할 수 있다. 베인(32)은 공기의 흐름에 따라 단면적이 감소하는 구조로 통과하면서 공기의 속도가 증가되어, 빠르게 상기 배기구(31)를 빠져나가게 된다.The exhaust unit 30 is a structure through which air is discharged and has a structure symmetrical to that of the air supply unit 20 . The exhaust unit 30 may include a vane 32 through which the air passing through the gas-liquid contact cell 10 passes, and an exhaust port 31 through which the air passing through the vane 32 passes. The vane 32 has a structure in which the cross-sectional area decreases according to the flow of air, and the speed of the air increases while passing through the vane 32, so that the vane 32 quickly exits the exhaust port 31.
팬(40)은 공기를 유동시키는 구조라면 어떤 구조가 사용될 수 있으며, 공기 경로상에 어느 위치에 있어도 무방하나, 이 실시예에서는 배기부(30)에 위치된다. 팬(40)은 제어부(90)에 연결되어, 공급되는 공기량을 조절한다. The fan 40 may use any structure as long as it flows air, and may be positioned anywhere on the air path, but in this embodiment, it is located in the exhaust unit 30. The fan 40 is connected to the controller 90 to control the amount of air supplied.
액체 탱크(50)는 상기 기액 접촉 셀(10)을 통과한 액체가 저장되는 탱크 본체(51)와 상기 탱크 본체(51) 내부에 배치되며, 액체(F)보다 비중이 가벼워 액체에 뜨는 재질의 다공성 매체(52), 예를 들면 스펀지를 포함하며, 상기 탱크 본체(51)의 하부에는 액체 공급 라인의 연결관이 연결되어, 상기 탱크 본체(51)의 액체(F)가 펌프(60)를 통하여 다시 상부의 기액 접촉 셀(10)의 공급 자켓(11)으로 공급된다. 다공성 매체(52)는 액체 탱크(50) 내부의 유동을 방지하여 탱크에서의 비말형성을 방지할 수 있으며, 혹시 있을 기액 접촉 셀(10)로부터의 물방울 낙하로 인한 추가 비말 형성을 차단한다. The liquid tank 50 is disposed inside the tank body 51 in which the liquid that has passed through the gas-liquid contact cell 10 is stored and is disposed inside the tank body 51, and is made of a material that floats on the liquid because its specific gravity is lighter than that of the liquid F. It includes a porous medium 52, for example, a sponge, and a connection pipe of a liquid supply line is connected to the lower part of the tank body 51 so that the liquid F of the tank body 51 passes through the pump 60. Through this, it is again supplied to the supply jacket 11 of the upper gas-liquid contact cell 10. The porous medium 52 can prevent the formation of droplets in the tank by preventing the flow inside the liquid tank 50, and also prevents the formation of additional droplets due to possible droplets falling from the gas-liquid contact cell 10.
한편, 기액 접촉 셀(10)의 기액 접촉 구조(14)는 탱크 본체(51)에 저장된 액체(F)에 일부분이 접촉되도록 길이를 가지며, 따라서, 기액 접촉 구조(14)를 통과한 액체(F)는 비말이 되어 탱크 본체(51)로 들어가지 않을 수 있다. On the other hand, the gas-liquid contact structure 14 of the gas-liquid contact cell 10 has a length such that a part of it comes into contact with the liquid F stored in the tank body 51, and therefore, the liquid F passing through the gas-liquid contact structure 14 ) may become droplets and not enter the tank body 51.
펌프(60)는 액체 공급 라인에 배치되며, 탱크 본체(51) 내부의 액체(F)를 상기 기액 접촉 셀(10)의 공급 자켓(11)으로 공급한다. 펌프(60)의 전단에는 액체(F)의 이물을 거르는 필터가 배치될 수 있다. The pump 60 is disposed in the liquid supply line and supplies the liquid F inside the tank body 51 to the supply jacket 11 of the gas-liquid contact cell 10. A filter for filtering foreign substances of the liquid F may be disposed at a front end of the pump 60 .
한편, 도시하지는 않았지만, 상기 액체 공급 라인에는 공기와의 접촉에 의해서 증발되는 액체를 보충할 수 있도록 액체 공급부가 연결될 수 있다. 액체 공급은 공급라인에 직접 연결될 수도 있지만, 사용자가 직접 공급하는 것도 가능함은 물론이다. 또한, 액체 공급 라인에는 액체의 유속을 측정하는 유속 센서(62) 혹은 유량 센서가 배치될 수도 있다. 이러한 유속/유량 센서는 제어부(90)에 연결되며, 펌프(60)에 의해서 순환되는 액체의 양을 정확하게 제공한다. Meanwhile, although not shown, a liquid supply unit may be connected to the liquid supply line to replenish liquid evaporated by contact with air. The liquid supply may be directly connected to the supply line, but it is also possible that the user directly supplies it. In addition, a flow rate sensor 62 or a flow rate sensor for measuring the flow rate of the liquid may be disposed in the liquid supply line. This flow rate/flow sensor is connected to the controller 90 and provides an accurate amount of liquid circulated by the pump 60.
기액 접촉 셀(10)의 전방 및 후방에는 공기압을 측정하는 공기 압력 센서(71, 72)가 배치될 수 있다. 공기 압력 센서(71, 72)는 제어부(90)에 연결되며, 기액 접촉 셀(10)에서의 압력 손실을 측정하며, 공급되는 풍속을 측정한다. 제어부(90)는 공기 압력 센서(71, 72)의 측정값에 근거하여 상기 팬(40)을 제어할 수 있다. Air pressure sensors 71 and 72 for measuring air pressure may be disposed in front and rear of the gas-liquid contact cell 10 . The air pressure sensors 71 and 72 are connected to the control unit 90 and measure a pressure loss in the gas-liquid contact cell 10 and a supplied wind speed. The controller 90 may control the fan 40 based on the measured values of the air pressure sensors 71 and 72 .
제어부(90)는 압력 센서(71, 72), 유속 센서(62), 펌프(60) 및 팬(40)에 연결되어, 기액 접촉 셀(10)에 일정한 액체막을 유지하게 하여, 비말이 발행되지 않도록 기체/액체 공급비를 조절한다. 액체와 기체간의 접촉작용 최적화를 위한 액체/기체 비율, 액기비 비율(sol(kg/h)/air(kg/h))을 0.1 ~ 1.5 이내에서 기체의 종류와 액체의 종류에 따라 다르게 설정될 수 있다. 제어부(90)는 상기 범위의 액기비에서 기체와 액체의 종류에 따라서 목표치를 정하고, 그에 맞게 액체 공급량 및 기체 공급량을 조절한다. 이때, 제대로 공급되고 있는지를 상기 센서를 통하여 점검하면서 추종 제어한다. The control unit 90 is connected to the pressure sensors 71 and 72, the flow sensor 62, the pump 60 and the fan 40 to maintain a constant liquid film in the gas-liquid contact cell 10 so that no droplets are issued. Adjust the gas/liquid supply ratio so that The liquid/gas ratio and liquid-gas ratio (sol(kg/h)/air(kg/h)) for optimizing the contact action between liquid and gas can be set differently depending on the type of gas and liquid within 0.1 to 1.5. can The control unit 90 sets a target value according to the type of gas and liquid in the liquid-to-liquid ratio within the above range, and adjusts the liquid supply amount and the gas supply amount accordingly. At this time, follow-up control is performed while checking whether supply is properly performed through the sensor.
제어부(90)는 기액 접촉 셀(10)에서 풍속이 1.5㎧ ~ 2.5㎧ 범위가 되도록 팬(40)을 제어한다. 기체의 풍속은 접촉 작용을 크게하나, 기체의 풍속이 높아지는 경우에 기액 접촉 셀(10)의 액체막이 비산될 수 있다. 구체적으로, 1.5㎧ 미만에서는 액체의 표면장력을 극복하고 비산을 일으킬 수 없어 비산에는 유리하나 접촉작용이 미약하고 입자등의 질량물을 가속하여 액체와 충돌시킬 수 없고, 2.5㎧ 초과서는 접촉작용에 유리하지만, 액체의 표면평형을 깨트리고 접촉각을 크게하여 비산을 일으키기 쉬워 기액 접촉 셀(10)에서는 사용하지 않는다.The controller 90 controls the fan 40 so that the wind speed in the gas-liquid contact cell 10 is in the range of 1.5 m/s to 2.5 m/s. The wind speed of the gas increases the contact action, but when the wind speed of the gas increases, the liquid film of the gas-liquid contact cell 10 may be scattered. Specifically, less than 1.5㎧ can overcome the surface tension of the liquid and cannot cause scattering, so it is advantageous for scattering, but the contact action is weak, and mass objects such as particles cannot be accelerated to collide with the liquid. Although advantageous, it is not used in the gas-liquid contact cell 10 because it breaks the surface equilibrium of the liquid and increases the contact angle to cause scattering.
제어부(90)는 상기 압력 센서(71, 72)를 통하여 기액 접촉 구조(14)의 압력 손실을 측정하는 것도 가능하다. 압력 손실의 측정은 팬 조절에 활용될 뿐만 아니라, 차압이 변화되는 경우에 기액 접촉 셀(10)의 오염 및 액체막의 불균형을 예상할 수 있으므로, 사용자에게 알림을 주는 것도 가능하다. The controller 90 may also measure the pressure loss of the gas-liquid contact structure 14 through the pressure sensors 71 and 72 . The measurement of the pressure loss is not only used for controlling the fan, but also can give a notification to the user because contamination of the gas-liquid contact cell 10 and imbalance of the liquid film can be predicted when the differential pressure is changed.
도 3 내지 8 에는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치(100)의 기액 접촉 셀(10)이 자세히 도시되어 있다. 구체적으로, 도 3 에는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀에서 자켓 내부 사진이 도시되어 있으며, 도 4 에는 본 발명의 일실시예에 따른 기액 접촉 셀의 개략 사시도가 도시되어 있고, 도 5 에는 본 발명의 다른 실시예에 따른 기액 접촉 셀의 다른 실시예의 개략 사시도가 도시되어 있으며, 도 6 에는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀에서 심지관 표면의 개략 확대도가 도시되어 있다. 도 7 에는 본 발명의 일실시예에 따른 비말 방지 기액 접촉 장치의 기액 접촉 셀의 개략도가 도시되어 있으며, 도 8 에는 도 7 의 A의 확대도가 도시되어 있다. 3 to 8 show the gas-liquid contact cell 10 of the anti-splash gas-liquid contact device 100 according to an embodiment of the present invention in detail. Specifically, FIG. 3 shows a picture of the inside of a jacket in a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention, and FIG. 4 is a schematic perspective view of the gas-liquid contact cell according to an embodiment of the present invention. 5 is a schematic perspective view of another embodiment of a gas-liquid contact cell according to another embodiment of the present invention, and FIG. 6 is a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention. A schematic enlarged view of the wick tube surface is shown. 7 is a schematic diagram of a gas-liquid contact cell of an anti-splash gas-liquid contact device according to an embodiment of the present invention, and FIG. 8 is an enlarged view of A of FIG. 7 .
도 3 에서 보이듯이, 기액 접촉 셀(10)에서 액체 공급관(12)은 공급 자켓(11) 내부에서 수평 방향으로 연장하며, 상기 액체 공급관(12)은 공급 자켓(11)의 내부에서 일정 간격으로 구멍이 형성되어, 액체가 상기 구멍을 통하여 자켓(11)내부로 유입된다. 이렇게 공급되는 액체는 자켓 하부의 필터 부재(13)의 다공성 구조로 인한 모세관 현상, 막투과 및 자중에 의해서 하부에 연결된 기액 접촉 구조(14)로 흘러간다. As shown in FIG. 3, in the gas-liquid contact cell 10, the liquid supply pipe 12 extends horizontally inside the supply jacket 11, and the liquid supply pipe 12 extends inside the supply jacket 11 at regular intervals. A hole is formed, and the liquid flows into the inside of the jacket 11 through the hole. The liquid supplied in this way flows into the gas-liquid contact structure 14 connected to the lower part by capillary action due to the porous structure of the filter member 13 at the lower part of the jacket, membrane permeation, and its own weight.
공급 자켓(11)은 주변으로 공기의 유로가 형성되지 않도록 기체 차폐를 위한 차폐제를 구비하여 하면의 필터 부재(13)를 제외한 다른 경로로는 액체가 유출되지 않게 실링될 수 있다. The supply jacket 11 may be provided with a shielding material for shielding gas so that an air flow path is not formed around the supply jacket 11 so that liquid does not flow out through other paths except for the filter member 13 on the lower surface.
기액 접촉 구조(14)는 표면에서 일정한 액체막 두께를 유지할 수 있다면 도 1 에 도시된 바와 같이 종래의 기액 접촉 구조(14)를 사용하는 것도 가능하다. 즉, 종래의 기액 접촉 구조(14)에 상기 필터 부재(13)를 통하여 일정량의 액체를 공급해주는 경우에 일정한 액체막이 형성/유지될 수 있는 구조라면 적용가능하다. 이때, 액체막은 0.1~0.5㎜ 의 두께를 가지는 것이 바람직하다. 액체막의 두께는 기액 접촉 셀(10) 비표면에서의 접촉작용을 최적화하기 위한 기체와의 직접접촉하는 물질로서, 0.1㎜ 미만일 경우는 액체막 두께가 너무 작아서 표면의 액체량이 적어 접촉작용에 의한 물질교환 짧은 시간에 포화되어 접촉효율이 저하될 뿐만 아니라, 신선액체의 공급이 원활하지 않게 된다. 0.5㎜ 초과일 경우는 충분한 신선액체의 공급이 원활하여 물질교환이 용이하고 접촉작용이 극대화 될 수 있으나 액체막의 두께가 너무 두터워서 중력에 의한 자연낙하, 미세공극의 채움, 미세돌기의 채움 등의 모세관현상을 이용한 기액 접촉 셀의 표면을 흐르는 액체의 유속을 통제할 수 없어, 자연낙하 폭포, 접촉각의 증대 등에 의한 액체의 비산을 유발하게 된다.As for the gas-liquid contact structure 14, it is also possible to use a conventional gas-liquid contact structure 14 as shown in FIG. That is, any structure capable of forming/maintaining a certain liquid film when a certain amount of liquid is supplied to the conventional gas-liquid contact structure 14 through the filter member 13 is applicable. At this time, the liquid film preferably has a thickness of 0.1 to 0.5 mm. The thickness of the liquid film is a material that is in direct contact with the gas to optimize the contact action on the specific surface of the gas-liquid contact cell 10. If the thickness is less than 0.1 mm, the liquid film thickness is too small and the amount of liquid on the surface is small, so the material is exchanged by the contact action. It is saturated in a short time and the contact efficiency is lowered, and the supply of fresh liquid is not smooth. If it exceeds 0.5mm, enough fresh liquid can be supplied smoothly, so material exchange is easy and contact action can be maximized. Since the flow rate of the liquid flowing on the surface of the gas-liquid contact cell using the phenomenon cannot be controlled, scattering of the liquid occurs due to a natural fall waterfall, an increase in the contact angle, and the like.
기액 접촉 구조(14)의 소재는 종이, 섬유, 부직포, 다공성 물질, 필터, 목재나 제올라이트 등의 천연물질, 화학물질이나 조직일 수 있으며, 해당 소재에 카본코팅, 제올라이트 코팅 등 친수성 표면 코팅을 할 수도 있다. 기액 접촉 구조(14)의 표면에는 미세구조의 돌기 요철,모세관, 공극 등에 의하여 친수성 표면이 형성되고 그 친수성 미세 돌기나 요철 공극에는 액체가 채워지므로 평형접촉각은 매우 작아 60도 이하가 되어 기체에 의한 비산이나 수적의 발생 방지할 수 있다. The material of the gas-liquid contact structure 14 may be paper, fiber, non-woven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and a hydrophilic surface coating such as carbon coating or zeolite coating may be applied to the material. may be On the surface of the gas-liquid contact structure 14, a hydrophilic surface is formed by microstructure protrusions, capillaries, and pores, and since the hydrophilic microprotrusions or concavo-convex voids are filled with liquid, the equilibrium contact angle is very small and is less than 60 degrees, so that the gas Scattering and water droplets can be prevented.
또한, 앞에서 말한 바와 같이, 기액 접촉 구조(14)는 탱크의 액체(F) 안쪽까지 연장되므로, 액체 흐름의 단절이나 경사 등에 의한 낙차, 중력가속으로 인한 날림이나 수적, 폭포현상에 의한 기포 비산 등이 발생하지 않는다. In addition, as mentioned above, since the gas-liquid contact structure 14 extends to the inside of the liquid F in the tank, drop due to disconnection or inclination of the liquid flow, splashing or droplets due to gravity acceleration, bubble scattering due to waterfall, etc. this doesn't happen
기액 접촉 구조(14)는 연직 방향으로 연장형성되는데, 연직 방향이 아니라 연직 방향에 대하여 경사진 방향으로 연장형성되는 것도 가능하다. 다만, 이 경우에도 경사각은 경사면을 따라서 액체가 표면으 따라서 타고 흐를 수 있는 정도에 제한된다. The gas-liquid contact structure 14 extends in the vertical direction, but it is also possible to extend in a direction inclined to the vertical direction instead of the vertical direction. However, even in this case, the angle of inclination is limited to the degree to which the liquid can flow along the surface along the inclined surface.
도 4 및 도 5 에는 기액 접촉 셀(10)의 실시예가 도시되어 있다. 도 4 에서 보이듯이, 기액 접촉 셀(10)은 상부에 공급 자켓(11)이 배치되며, 상기 공급 자켓(11)로 액체 공급 라인에 연결된 액체 공급관(12)이 연결된다. 공급 자켓(11)의 하면에는 필터패드(13)이 배치되며, 필터 패드(13)의 하부에 기액 접촉 구조(14)가 배치된다. 4 and 5 show an embodiment of a gas-liquid contact cell 10 . As shown in FIG. 4, the gas-liquid contact cell 10 has a supply jacket 11 disposed thereon, and a liquid supply pipe 12 connected to a liquid supply line is connected to the supply jacket 11. A filter pad 13 is disposed on the lower surface of the supply jacket 11, and a gas-liquid contact structure 14 is disposed under the filter pad 13.
도 4 에서는 기액 접촉 구조(14)는 수평 단면이 유선형 형상을 가지는 다공성 구조의 소재로 기둥형상으로 형성된다. 기액 접촉 구조(14)는 종이, 섬유, 부직포, 다공성 물질, 필터, 목재나 제올라이트 등의 천연물질, 화학물질이나 조직일 수 있으며, 심지관이라고 할 수 있다. 심지관은 상하 방향으로 연장하며, 복수개가 필터 패드(13)의 하부에 복수의 열을 이루어 배치된다. 심지관은 복수의 열로 배치되며, 이웃하는 열에서 상기 심지관은 서로 엇갈려 배치된다. 심지관은 액체의 자유낙하흐름을 제어하며, 공기 흐름에 고른 접촉 효율을 얻을 수 있다. 이 실시예에서, 심지관의 수평 단면 형상은 대략 다이아몬드 형상이나, 이에 제한되는 것은 아니며 타원형, 원형, 각형등 공기흐름에 적합한 형상을 가질 수 있다. In FIG. 4 , the gas-liquid contact structure 14 is formed in a columnar shape with a porous material having a streamlined horizontal section. The gas-liquid contact structure 14 may be paper, fiber, nonwoven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and may be referred to as a wick tube. The wick tube extends in the vertical direction, and a plurality of wick tubes are arranged in a plurality of rows under the filter pad 13 . The wick tubes are arranged in a plurality of rows, and the wick tubes in adjacent rows are staggered with each other. The wick tube controls the free-falling flow of the liquid and can obtain even contact efficiency with the air flow. In this embodiment, the horizontal cross-sectional shape of the wick tube is approximately a diamond shape, but is not limited thereto, and may have an elliptical, circular, or angular shape suitable for air flow.
심지관은 상하 방향의 길이가 상기 공급 자켓(11)로부터 탱크 본체(51) 내측저면까지의 거리보다는 짧게 형성되되, 상기 액체(F)의 상면까지의 거리보다는 길게 형성되어 상기 심시관은 액체(F)에 담길 수 있도록 구성된다. 일예로, 심지관은 탱크 본체(51) 내측저면으로부터 5~10㎜ 정도 떨어지게 연장될 수 있다. The wick pipe has a length in the vertical direction shorter than the distance from the supply jacket 11 to the inner bottom surface of the tank body 51, but is formed longer than the distance to the upper surface of the liquid F, so that the wick tube is liquid ( It is configured so that it can be contained in F). For example, the wick tube may extend about 5 to 10 mm away from the inner bottom surface of the tank body 51 .
심지관의 표면에는 액체의 청정도 유지를 위한 필터기능을 갖으며 필터의 정화기능을 위하여 카본, 제올라이트, 활성탄, 분자 흡착제등의 선택적 코팅이 수행되는 것도 가능하다. The surface of the wick tube has a filter function for maintaining the cleanliness of the liquid, and it is possible to perform selective coating of carbon, zeolite, activated carbon, molecular adsorbent, etc. for the purification function of the filter.
또한, 심지관의 표면은 미세 돌기가 형성될 수도 있으며, 이러한 모습은 도 6 에 도시되어 있다. 도 6 에서 보이듯이, 기액 접촉 구조(14)인 심지관의 표면에는 미세 돌기(14b)가 형성될 수 있으며, 이러한 돌기에 의해서 액체(F)가 심지관의 표면에 고르게 분포될 수 있다. 이때, 액체가 미세 돌기(14b)의 모세관 현상에 의한 표면 접촉각(θ)이 60도 이하인 것이 바람직하다. 여기서 접촉각이란, 액체가 미세 돌기(14b)에 있을 때 평형을 이뤘을 때의 각을 의미한다. 접촉각이 90도 이하인 경우에 친수성, 90도 초과인 경우에 소수성으로 구분하는데, 기액 접촉 셀(10)은 불안정한 상태에서 가동되므로, 평형 접촉각이 60도 이하로 안정적인 상태에 되어야 미세 돌기(14b)에 채워지는 액체가 음각의 접촉각을 가져서 비산의 문제로부터 안전하게 된다. In addition, fine protrusions may be formed on the surface of the wick tube, and this appearance is shown in FIG. 6 . As shown in FIG. 6, fine protrusions 14b may be formed on the surface of the wick tube having a gas-liquid contact structure 14, and the liquid F may be evenly distributed on the surface of the wick tube by these protrusions. At this time, it is preferable that the surface contact angle (θ) of the liquid is 60 degrees or less due to the capillarity of the fine protrusions 14b. Here, the contact angle means an angle when the liquid is in equilibrium when it is present on the fine protrusions 14b. If the contact angle is less than 90 degrees, it is classified as hydrophilic, and if it exceeds 90 degrees, it is classified as hydrophobic. Since the gas-liquid contact cell 10 operates in an unstable state, the equilibrium contact angle must be in a stable state of 60 degrees or less to form fine protrusions 14b. The liquid to be filled has a negative contact angle, making it safe from splashing.
미세 돌기(14b)가 없는 경우에도 기액 접촉 구조(14)의 미세 공극에서의 접촉각은 60도 이하인 것이 바람직하다.Even in the case where there are no fine protrusions 14b, the contact angle in the fine pores of the gas-liquid contact structure 14 is preferably 60 degrees or less.
도 5 에는 기액 접촉 셀(10)의 다른 실시예가 도시되어 있다. 도 5 의 경우에 도 4 와 유사하게 기액 접촉 구조(14)는 수평 단면이 유선형 형상을 가지는 다공성 구조의 소재로 기둥형상으로 형성된다. 기액 접촉 구조(14)는 종이, 섬유, 부직포, 다공성 물질, 필터, 목재나 제올라이트 등의 천연물질, 화학물질이나 조직일 수 있으며, 심지관이라고 할 수 있다. 심지관은 상하 방향으로 연장하며, 복수개가 필터 패드(13)의 하부에 복수의 열을 이루어 배치된다. 심지관은 내부에 내관(14a)이 형성되며, 필터 부재(13)를 통과한 액체는 내관(14a)으로 공급되어 내관(14a) 내벽을 따라 흐르면서 내관(14a) 주변의 심지부로 모세관현상 혹은 공극 흡수 현상을 통하여 표면으로 이동되어 공기와 접촉하게 된다.5 shows another embodiment of a gas-liquid contact cell 10 . In the case of FIG. 5, similar to FIG. 4, the gas-liquid contact structure 14 is formed in a columnar shape with a porous structure material having a streamlined horizontal cross section. The gas-liquid contact structure 14 may be paper, fiber, nonwoven fabric, porous material, filter, natural material such as wood or zeolite, chemical material or tissue, and may be referred to as a wick tube. The wick tube extends in the vertical direction, and a plurality of wick tubes are arranged in a plurality of rows under the filter pad 13 . An inner tube 14a is formed inside the wick tube, and the liquid passing through the filter member 13 is supplied to the inner tube 14a and flows along the inner wall of the inner tube 14a to the wick around the inner tube 14a, causing capillarity or voids. It moves to the surface through the absorption phenomenon and comes into contact with the air.
도 7 및 도 8 에는 본 발명에 따른 기액 접촉 셀(10)의 개략도가 도시되어 있다. 본 발명에 따른 기액 접촉 셀(10)에서 액체가 상부의 공급 자켓(11)에 공급되면, 액체는 필터 패드(13)를 통과하여 기액 접촉 구조(14)로 공급된다. 기액 접촉 구조(14)의 경우에 다공성 구조의 재질로 형성되어 있어서, 필터 패드(13)를 통과하여 배출되는 액체는 상기 기액 접촉 구조(14)를 타고 하부로 내려가게 된다. 필터 패드(13)는 모세관 투과막(13a)을 포함하여 상기 모세관 투과막(13a)을 통하여 일정한 액체가 기액 접촉 구조(14)로 스며들며, 이렇게 액체가 이동됨으로써 비말이 형성되지 않을 수 있다. 7 and 8 show schematic diagrams of a gas-liquid contact cell 10 according to the present invention. In the gas-liquid contact cell 10 according to the present invention, when liquid is supplied to the upper supply jacket 11, the liquid passes through the filter pad 13 and is supplied to the gas-liquid contact structure 14. Since the gas-liquid contact structure 14 is made of a porous material, the liquid discharged through the filter pad 13 goes down along the gas-liquid contact structure 14 . The filter pad 13 includes a capillary permeable membrane 13a so that a certain liquid permeates into the gas-liquid contact structure 14 through the capillary permeable membrane 13a, and droplets may not be formed as the liquid moves in this way.
이때, 기액 접촉 구조(14)의 표면에 액체막이 형성되게 되며, 이렇게 형성된 액체막과 상기 기액 접촉 셀(10)을 통과하는 공기가 만나면서 물질교환, 에너지교환, 화학 반응, 살균, 세정 등의 효과가 발생된다. 특히, 본 발명에서는 위와 같은 기액 접촉 셀(10)의 구조를 가지며, 액체의 공급량과 기체의 공급량이 조절되는 상태에서 기액이 접촉하기 때문에, 접촉 시 액체가 비산하지 않아서 비말이 형성되지 않으며, 필터 패드(13)를 통과한 액체도 기액 접촉 구조(14)를 타고 탱크(50)로 이동되기 때문에 비말 발생이 없다. 따라서, 비산 입자로 인한 초미세먼지의 생성이 없어서 액체에 특정 성분이 포함된다고 하더라도 인체에 영향을 끼칠 우려가 없다. At this time, a liquid film is formed on the surface of the gas-liquid contact structure 14, and as the liquid film thus formed and the air passing through the gas-liquid contact cell 10 meet, effects such as material exchange, energy exchange, chemical reaction, sterilization, and cleaning are achieved. occurs In particular, the present invention has the structure of the gas-liquid contact cell 10 as described above, and since the gas-liquid contacts in a state in which the supply amount of the liquid and the supply amount of the gas are controlled, the liquid does not scatter during contact and no droplets are formed, and the filter Since the liquid that has passed through the pad 13 is also moved to the tank 50 along the gas-liquid contact structure 14, there is no generation of droplets. Therefore, since there is no generation of ultrafine dust due to scattering particles, even if a specific component is included in the liquid, there is no concern about affecting the human body.
액체는 탱크(50)로부터 펌프(60)를 지나 액체 공급관(12)를 거쳐 공급 자켓(11), 필터 부재(13) 및 기액 접촉 구조(14)를 통과한 후 다시 탱크(50)로 돌아오며, 기액 접촉 구조(14)를 통과하면서 공기와 접촉한다. 탱크(50)로부터 펌프(60)사이의 센서(62)에 의해서 관리되며, 중간에 필터 등이 배치될 수 있으며, 필터의 막힘 등은 센서(62)로 관리할 수 있다. 따라서, 본 발명에서 액체는 흐름의 단절 및 비말의 생성 없이 연속적으로 순환될 수 있다. The liquid passes from the tank 50 through the pump 60, the liquid supply pipe 12, the supply jacket 11, the filter member 13, and the gas-liquid contact structure 14, and then returns to the tank 50. , while passing through the gas-liquid contact structure 14, it contacts air. It is managed by the sensor 62 between the tank 50 and the pump 60, and a filter or the like can be placed in the middle, and clogging of the filter can be managed by the sensor 62. Therefore, in the present invention, the liquid can be continuously circulated without interruption of the flow and generation of droplets.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 본 발명은 이에 제한되지 않고 변형되어 실시될 수 있음은 물론이다.In the above, the embodiment of the present invention has been mainly described, but the present invention is not limited thereto and may be modified and implemented.

Claims (19)

  1. 급기구;air supply;
    유입된 공기가 지나가는 위치에 배치되는 기액 접촉 셀; a gas-liquid contact cell disposed at a position through which introduced air passes;
    상기 기액 접촉 셀을 통과한 공기가 배출되는 배기구; an exhaust port through which the air passing through the gas-liquid contact cell is discharged;
    상기 공기가 통과하는 경로상에 배치되는 팬; a fan disposed on a path through which the air passes;
    상기 기액 접촉 셀의 하부에 배치되는 액체 탱크; 및a liquid tank disposed below the gas-liquid contact cell; and
    상기 기액 접촉 셀로 액체를 공급하는 액체 공급 라인;을 포함하는 기액 접촉 장치로, A gas-liquid contact device comprising a liquid supply line for supplying liquid to the gas-liquid contact cell,
    상기 기액 접촉 셀은 액체막이 형성되는 기액 접촉 구조를 포함하여 상기 기액 접촉 구조로 상기 공기가 지나가며,The gas-liquid contact cell includes a gas-liquid contact structure in which a liquid film is formed, and the air passes through the gas-liquid contact structure,
    상기 팬 및 액체 공급 라인은 상기 기액 접촉 셀에서 액체막이 유지되게 공기 및 액체를 공급하는 비말 방지 기액 접촉 장치.The fan and the liquid supply line supply air and liquid so that a liquid film is maintained in the gas-liquid contact cell.
  2. 제 1 항에 있어서, According to claim 1,
    상기 액체막은 0.1~0.5㎜ 의 두께를 가지는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the liquid film has a thickness of 0.1 ~ 0.5 mm.
  3. 제 2 항에 있어서,According to claim 2,
    상기 기액 접촉 셀은 상기 액체 공급 라인의 액체 공급관에 연결되며 상측에 배치되는 공급 자켓; 상기 공급 자켓의 하면에 배치되는 필터 패드; 및 상기 필터 패드에 연결된 기액 접촉 구조;를 포함하며, The gas-liquid contact cell is connected to the liquid supply pipe of the liquid supply line and includes a supply jacket disposed on an upper side; a filter pad disposed on a lower surface of the supply jacket; And a gas-liquid contact structure connected to the filter pad; includes,
    상기 기액 접촉 구조는 상기 필터 패드를 통과한 액체가 통과하는 미세 공극을 포함하며, 상기 필터 패드와 상기 기액 접촉 구조는 모세관 현상 및 막투과 방식으로 상기 기액 접촉 구조의 표면에 상기 액체막이 형성되는 비말 방지 기액 접촉 장치. The gas-liquid contact structure includes micropores through which the liquid passing through the filter pad passes, and the filter pad and the gas-liquid contact structure are droplets in which the liquid film is formed on the surface of the gas-liquid contact structure by capillary action and membrane permeation. Anti-gas-liquid contact device.
  4. 제 3 항에 있어서,According to claim 3,
    상기 액체 공급관은 상기 공급 자켓의 일측면으로부터 삽입되며,The liquid supply pipe is inserted from one side of the supply jacket,
    상기 액체 공급관은 일정 간격으로 구멍이 형성되어 복수의 위치에서 상기 공급 자켓 내부로 액체를 공급하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The liquid supply pipe is formed with holes at regular intervals to supply liquid to the inside of the supply jacket at a plurality of positions.
  5. 제 3 항에 있어서, According to claim 3,
    상기 기액 접촉 구조는 상기 액체 탱크에 수용되는 액체에 일부분이 접촉되며,The gas-liquid contact structure is partially in contact with the liquid contained in the liquid tank,
    상기 기액 접촉 구조는 미세 돌기를 가지며, 상기 돌기에 의해서 60°이하의 접촉각을 갖도록 구성되는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The gas-liquid contact structure has fine protrusions, and the anti-splash gas-liquid contact device, characterized in that configured to have a contact angle of 60 ° or less by the protrusions.
  6. 제 3 항에 있어서, According to claim 3,
    상기 기액 접촉 구조는 미세 공극으로 인한 모세관 혹은 공극 흡수 현상과 액체 자중에 의하여 액체가 이동하게 구성되는 복수의 심지관을 포함하여 구성되는 비말 방지 기액 접촉 장치. The gas-liquid contact structure comprises a plurality of wick tubes configured to move the liquid by capillary or void absorption phenomenon due to micropores and the liquid's own weight.
  7. 제 6 항에 있어서, According to claim 6,
    상기 심지관이 상기 필터 패드에 복수 개가 연결되며, A plurality of the wick tubes are connected to the filter pad,
    상기 심지관은 유선형의 수평 단면을 가지며, The wick pipe has a streamlined horizontal cross section,
    상기 심지관은 복수의 열로 배치되며, 이웃하는 열에서 상기 심지관은 서로 엇갈려 배치되는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the wick tubes are arranged in a plurality of rows, and in adjacent rows, the wick pipes are alternately arranged.
  8. 제 7 항에 있어서, According to claim 7,
    상기 심지관은 하단부가 상기 액체 탱크에 수용되는 액체 안까지 연장되는 길이를 가지는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The splash-proof gas-liquid contact device, characterized in that the lower end of the wick tube has a length extending into the liquid accommodated in the liquid tank.
  9. 제 6 항에 있어서, According to claim 6,
    상기 심지관은 내부에 액체가 흐르는 내관과 상기 내관을 둘러싸며 막투과성 기능성 부재로 형성된 심지부를 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the wick tube includes an inner tube through which liquid flows and a wick part surrounding the inner tube and formed of a membrane-permeable functional member.
  10. 제 6 항에 있어서, According to claim 6,
    상기 심지관은 외면에 평형접촉각을 60°이하로 갖게 하는 친수성 코팅층을 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the wick tube comprises a hydrophilic coating layer having an equilibrium contact angle of 60 ° or less on the outer surface.
  11. 제 6 항에 있어서, According to claim 6,
    상기 심지관은 외면에 필터층을 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the wick tube includes a filter layer on the outer surface.
  12. 제 1 항에 있어서, According to claim 1,
    상기 팬 및 상기 액체 공급 라인에 설치되는 펌프에 연결되는 제어부를 포함하며, A control unit connected to the fan and a pump installed in the liquid supply line,
    상기 제어부는 일정한 유량의 액체가 공기에 접촉하도록 조절하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the control unit adjusts a constant flow rate of liquid to contact air.
  13. 제 12 항에 있어서, According to claim 12,
    상기 급기구와 상기 기액 접촉 셀 사이에 배치되는 정류기를 더 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device further comprises a rectifier disposed between the air supply port and the gas-liquid contact cell.
  14. 제 12 항에 있어서, According to claim 12,
    상기 기액 접촉 셀의 전단 및 후단에 설치되는 풍압센서를 더 포함하며, Further comprising wind pressure sensors installed at the front and rear ends of the gas-liquid contact cell,
    상기 제어부는 상기 풍압센서에 연결되는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The control unit is a splash-proof gas-liquid contact device, characterized in that connected to the wind pressure sensor.
  15. 제 12 항에 있어서, According to claim 12,
    상기 제어부가 조절하는 액체/기체 시간당 중량의 비율은 0.1 ~ 1.5 범위인 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the ratio of weight per hour of liquid / gas controlled by the controller is in the range of 0.1 to 1.5.
  16. 제 11 항에 있어서, According to claim 11,
    상기 팬에 의해서 공급되는 풍속은 1.5 ~ 2.5 m/s 인 것을 특징으로 하는 비말 방지 기액 접촉 장치. Anti-splash gas contact device, characterized in that the wind speed supplied by the fan is 1.5 ~ 2.5 m / s.
  17. 제 1 항에 있어서, According to claim 1,
    장치 내부에서 난류가 발생하지 않도록 상기 급기구 후방 및 공기가 빠져나가는 배기구 전방에는 공기를 안내하는 베인을 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. An anti-splash gas-liquid contact device comprising vanes for guiding air behind the supply port and in front of the exhaust port through which air escapes so that turbulence does not occur inside the device.
  18. 제 16 항에 있어서, According to claim 16,
    상기 액체 탱크의 액체 상부에 위치하게 구성되는 다공성 매체를 더 포함하며, 상기 다공성 매체의 상면은 상기 액체의 상면보다 높은 위치에 배치되는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device of claim 1, further comprising a porous medium configured to be positioned above the liquid in the liquid tank, wherein an upper surface of the porous medium is disposed at a position higher than an upper surface of the liquid.
  19. 제 11 항에 있어서, According to claim 11,
    상기 액체는 LiCl 을 포함하는 것을 특징으로 하는 비말 방지 기액 접촉 장치. The anti-splash gas-liquid contact device, characterized in that the liquid contains LiCl.
PCT/KR2022/009951 2021-07-09 2022-07-08 Liquid-air contact device for preventing droplet WO2023282696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210090394A KR102549851B1 (en) 2021-07-09 2021-07-09 Liquid-Air Contact Device for Preventing Droplet
KR10-2021-0090394 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282696A1 true WO2023282696A1 (en) 2023-01-12

Family

ID=84801773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009951 WO2023282696A1 (en) 2021-07-09 2022-07-08 Liquid-air contact device for preventing droplet

Country Status (2)

Country Link
KR (1) KR102549851B1 (en)
WO (1) WO2023282696A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070053A (en) * 1998-02-16 1999-09-06 윤종용 Wet air cleaner with cooling condenser
KR100986636B1 (en) * 2008-11-12 2010-10-08 김재옥 Air Cleanner Having Nature humidification function
JP2011052876A (en) * 2009-08-31 2011-03-17 Sharp Corp Humidification device
KR101760329B1 (en) * 2016-07-27 2017-07-31 주식회사웰트리 Wet type purifying apparatus using plasma and ozon
KR101793695B1 (en) * 2014-08-26 2017-11-03 주식회사웰트리 Wet Air Cleaning Unit using Electrostatic Precipitator
KR20180083234A (en) * 2017-01-12 2018-07-20 주식회사 테디아일랜드 A water filter equipped a cylindrical bar,apply to an air purifier and a chimney dust reduction device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990070053A (en) * 1998-02-16 1999-09-06 윤종용 Wet air cleaner with cooling condenser
KR100986636B1 (en) * 2008-11-12 2010-10-08 김재옥 Air Cleanner Having Nature humidification function
JP2011052876A (en) * 2009-08-31 2011-03-17 Sharp Corp Humidification device
KR101793695B1 (en) * 2014-08-26 2017-11-03 주식회사웰트리 Wet Air Cleaning Unit using Electrostatic Precipitator
KR101760329B1 (en) * 2016-07-27 2017-07-31 주식회사웰트리 Wet type purifying apparatus using plasma and ozon
KR20180083234A (en) * 2017-01-12 2018-07-20 주식회사 테디아일랜드 A water filter equipped a cylindrical bar,apply to an air purifier and a chimney dust reduction device

Also Published As

Publication number Publication date
KR102549851B9 (en) 2024-01-11
KR102549851B1 (en) 2023-07-03
KR20230009684A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2016190527A1 (en) Supraparticle atomizing device
US5976220A (en) Diffusional gas transfer system and method using same
EP0882487B1 (en) Apparatus for desulfurizing exhaust gas
WO2014065268A1 (en) Aeration device, operation method therefor, and water treatment apparatus
JPH06507335A (en) Bubble-free gas conveying device and method
WO2017098698A1 (en) Liquid curtain dust removal device and flue gas desulfurization device
WO2023282696A1 (en) Liquid-air contact device for preventing droplet
JP4734216B2 (en) Decontamination system
KR960030434A (en) Treatment agent supply device
WO2020180023A1 (en) Clean air generator
EP0713060A1 (en) Water supply device for humidification and air conditioner with the same
JP6615080B2 (en) Humidifier, ventilator and air conditioner
WO2020130504A1 (en) Air purification and ventilation system for transport means
CN210645660U (en) Spray purification tower
JP2002102661A (en) Solid-liquid separation apparatus
JP2019188351A (en) Diffuser pipe and intermittent bubble generating module
WO2020122356A1 (en) Highly efficient wet scrubber
WO2023282695A1 (en) Purification and ventilation apparatus using liquid humidity-control material
JP2010038515A (en) Water spray pipe, humidifier and water spraying method of humidifier
SU724207A1 (en) Apparatus for obtaining aerosols of flotation agents
CA1097390A (en) Microcapillary nebulizer and method
JP4828099B2 (en) Substance diffusion device and air conditioner
KR100594386B1 (en) Humidifying apparatus
WO2018186722A2 (en) Multi-oxygen nozzle type oxygen supply device
Agranovski et al. Removal of aerosols by bubbling through porous media submerged in organic liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22838048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE