WO2023282525A1 - Hydrogel patch for skin disease, and method for manufacturing same - Google Patents
Hydrogel patch for skin disease, and method for manufacturing same Download PDFInfo
- Publication number
- WO2023282525A1 WO2023282525A1 PCT/KR2022/009282 KR2022009282W WO2023282525A1 WO 2023282525 A1 WO2023282525 A1 WO 2023282525A1 KR 2022009282 W KR2022009282 W KR 2022009282W WO 2023282525 A1 WO2023282525 A1 WO 2023282525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogel
- nanoparticles
- skin diseases
- present application
- skin
- Prior art date
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 153
- 208000017520 skin disease Diseases 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 14
- 239000002105 nanoparticle Substances 0.000 claims abstract description 103
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- 239000000243 solution Substances 0.000 claims description 34
- 238000004132 cross linking Methods 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 239000011259 mixed solution Substances 0.000 claims description 13
- 239000003642 reactive oxygen metabolite Substances 0.000 claims description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 10
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 claims description 10
- 229920000615 alginic acid Polymers 0.000 claims description 9
- -1 polynipam (PNIPAM) Polymers 0.000 claims description 9
- 235000010443 alginic acid Nutrition 0.000 claims description 8
- 229940072056 alginate Drugs 0.000 claims description 7
- 235000012209 glucono delta-lactone Nutrition 0.000 claims description 7
- 239000000182 glucono-delta-lactone Substances 0.000 claims description 7
- 229960003681 gluconolactone Drugs 0.000 claims description 7
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical group O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229920000877 Melamine resin Polymers 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 6
- 239000002041 carbon nanotube Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 229920005610 lignin Polymers 0.000 claims description 6
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 6
- RBFRVUKIVGOWND-UHFFFAOYSA-L oxygen(2-);vanadium(4+);sulfate Chemical compound [O-2].[V+4].[O-]S([O-])(=O)=O RBFRVUKIVGOWND-UHFFFAOYSA-L 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- 239000004584 polyacrylic acid Substances 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 6
- 235000013824 polyphenols Nutrition 0.000 claims description 6
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- 229920001661 Chitosan Polymers 0.000 claims description 5
- 108010010803 Gelatin Proteins 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 5
- 229920000159 gelatin Polymers 0.000 claims description 5
- 239000008273 gelatin Substances 0.000 claims description 5
- 235000019322 gelatine Nutrition 0.000 claims description 5
- 235000011852 gelatine desserts Nutrition 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- LUGVQQXOGHCZNN-UHFFFAOYSA-N 2-phenyliodoniobenzoate Chemical compound [O-]C(=O)C1=CC=CC=C1[I+]C1=CC=CC=C1 LUGVQQXOGHCZNN-UHFFFAOYSA-N 0.000 claims description 4
- CQZCVYWWRJDZBO-UHFFFAOYSA-N diphenyliodanium;nitrate Chemical compound [O-][N+]([O-])=O.C=1C=CC=CC=1[I+]C1=CC=CC=C1 CQZCVYWWRJDZBO-UHFFFAOYSA-N 0.000 claims description 4
- 229920001817 Agar Polymers 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 3
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 claims 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims 1
- 210000003491 skin Anatomy 0.000 description 62
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 47
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 47
- 238000011282 treatment Methods 0.000 description 37
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 36
- 230000000694 effects Effects 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 206010012438 Dermatitis atopic Diseases 0.000 description 11
- 206010052428 Wound Diseases 0.000 description 11
- 208000027418 Wounds and injury Diseases 0.000 description 11
- 201000008937 atopic dermatitis Diseases 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 150000003431 steroids Chemical class 0.000 description 8
- 206010003645 Atopy Diseases 0.000 description 7
- 210000002615 epidermis Anatomy 0.000 description 7
- 208000012657 Atopic disease Diseases 0.000 description 6
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 230000036542 oxidative stress Effects 0.000 description 6
- VYZAHLCBVHPDDF-UHFFFAOYSA-N Dinitrochlorobenzene Chemical compound [O-][N+](=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 VYZAHLCBVHPDDF-UHFFFAOYSA-N 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 239000000739 antihistaminic agent Substances 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000002674 ointment Substances 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 4
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 4
- 229940125715 antihistaminic agent Drugs 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000006143 cell culture medium Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 208000014311 Cushing syndrome Diseases 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 3
- 239000004909 Moisturizer Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 230000006020 chronic inflammation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- 210000003630 histaminocyte Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000001333 moisturizer Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 3
- 230000008591 skin barrier function Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- 206010041349 Somnolence Diseases 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000000441 X-ray spectroscopy Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 239000003874 central nervous system depressant Substances 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000009975 flexible effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229960001340 histamine Drugs 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 238000010632 SOD assay Methods 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- AERUOEZHIAYQQL-UHFFFAOYSA-K cerium(3+);triacetate;hydrate Chemical compound O.[Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O AERUOEZHIAYQQL-UHFFFAOYSA-K 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 230000037380 skin damage Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7007—Drug-containing films, membranes or sheets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
Definitions
- the present application relates to a hydrogel patch for skin diseases and a method for manufacturing the same.
- Atopic disease is a type of inflammatory disease that occurs in the skin, and is caused by various environmental and genetic factors. Reactive oxygen species are generally rapidly increased in the skin with atopic disease, and thus the abnormally increased oxidative stress acts as a factor that further exacerbates the atopic disease.
- moisturizers such as oil, lotion, and cream to alleviate the symptoms of atopic dermatitis.
- atopic dermatitis often develops chronically, a combination of treatments such as antihistamines, steroid ointments, and antibiotics is required in addition to moisturizers.
- steroid ointment In the case of steroid ointment, it alleviates the disease by suppressing the inflammatory response and immune action. However, if the steroid is continuously exposed to a certain level or higher and then the steroid is stopped, the function of the adrenal glands cannot be restored to normal, and glucocorticoids are excessively secreted from the adrenal cortex, resulting in Cushing's syndrome. In the case of Cushing's syndrome, it is considered the biggest side effect of steroids because it leads to emotional changes as well as physical changes such as weight gain and poor wound healing.
- antibiotics In the case of antibiotics, it is used when the skin is constantly scratched and the mucous membrane is exposed, and bacteria infect this place and the inflammation intensifies. When an antigen is introduced, the immune response is further increased and the disease may be aggravated. However, there is a problem that indiscriminate use of antibiotics also causes antibiotic resistance.
- Korean Patent Registration No. 10-1848272 is a patent for a hydrogel for treating atopic dermatitis and a method for manufacturing the same.
- the patent discloses a hydrogel for treating atopic dermatitis that protects the skin from external stimuli such as scratching by forming a film-type film about an hour after application to the skin using a polyvinyl alcohol-alginate hydrogel. No mention is made of a method for removing oxygen species.
- the present application is to solve the problems of the prior art described above, and aims to provide a hydrogel patch for skin diseases.
- an object of the present invention is to provide a method for manufacturing a hydrogel patch for skin diseases.
- the first aspect of the present application is a hydrogel comprising a polymer; and nanoparticles dispersed within the hydrogel; Including, the hydrogel and the nanoparticles provide a hydrogel patch for skin disease that has a different charge.
- the bonding strength of the hydrogel and the nanoparticles may be increased, but is not limited thereto.
- the hydrogel may further include a crosslinking accelerator, but is not limited thereto.
- the mechanical properties of the hydrogel patch for skin diseases may be improved by the crosslinking accelerator, but is not limited thereto.
- the crosslinking accelerator is gluconodeltalactone (GDL), diphenyliodonium nitrate, diphenyliodonium-2-carboxylate and It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- GDL gluconodeltalactone
- diphenyliodonium nitrate diphenyliodonium-2-carboxylate
- It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- active oxygen species that cause skin diseases may be removed by the nanoparticles, but is not limited thereto.
- the nanoparticles are ceria, iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon It may include one selected from the group consisting of quantum dots and combinations thereof, but is not limited thereto.
- the polymer is alginate (Alg), polyethylene glycol (PEG), chitosan (Chitosan), gelatin (Gelatin), polyacrylic acid (PAAc), polyacrylamide (PAM), polynipam (PNIPAM) , Agar, poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS), and combinations thereof, but is not limited thereto.
- the second aspect of the present application is to prepare a first solution containing nanoparticles; preparing a second solution containing a crosslinking agent and a polymer; and preparing a mixed solution by adding the first solution and a crosslinking accelerator to the second solution. It provides a method for producing a hydrogel patch for skin diseases comprising a.
- a step of solidifying the mixed solution by pouring it into a mold may be further included, but is not limited thereto.
- the metal oxide is iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- the crosslinking agent may include one selected from the group consisting of calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and combinations thereof, but is limited thereto. it is not going to be
- the hydrogel patch for skin diseases contains metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and attaches the patch to the skin disease area to reduce active oxygen species. By continuously removing it, it is possible to suppress chronic inflammation and restore the damaged skin barrier and thickened epidermal layer.
- the hydrogel patch for skin disease can improve skin disease by providing a wet environment where the skin disease occurs by using the hydrogel.
- the hydrogel patch for skin diseases according to the present application is strongly bonded to the nanoparticles, the nanoparticles do not remain on the skin when the patch is removed.
- the hydrogel patch for skin diseases according to the present application is a hydrogel-type patch with soft and flexible properties, it can be easily attached to and detached from joints and protruding areas, and the patient's convenience can be increased when the patch is attached for a long time. there is.
- hydrogel patch for skin diseases can be used as a drug delivery system by carrying an additional drug for treatment therein.
- FIG. 1 is a schematic diagram showing the removal of active oxygen species by attaching a hydrogel patch for skin diseases according to an embodiment of the present application to the skin.
- Figure 2 is a flow chart of a method for manufacturing a hydrogel patch for skin diseases according to one embodiment of the present application.
- FIG 3 is an image of a hydrogel patch according to an embodiment of the present application.
- (A) is an image of a solution in which ceria nanoparticles according to one embodiment of the present application are dispersed in water
- (B) is a TEM image of ceria nanoparticles according to one embodiment of the present application.
- 5 is a surface potential measurement result of ceria nanoparticles dispersed in deionized water measured by DLS according to an experimental example of the present application.
- FIG. 9 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
- 10 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
- FIG. 11 is a result of scanning electron microscope images and X-ray spectroscopy of hydrogels according to an example and a comparative example of the present application.
- Figure 12 (A) is a graph measuring the transmittance in the visible light region according to the addition amount of nanoparticles of the hydrogel according to an experimental example of the present application
- (B) is a hydrogel according to an embodiment and a comparative example of the present application It is the measurement result of the water content of the gel.
- Figure 16 (A) is the result of measuring the cytotoxicity of the hydrogel according to one experimental example of the present application, (B) is the result of measuring the cell rescue effect in the cell culture medium containing hydrogen peroxide, (C) is This is the result of measuring the cell rescue effect in the cell culture medium containing DNCB.
- 17 is a result of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application.
- FIG. 18 (A) is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 18, and (B) is a graph showing the result of epidermal thickness measurement.
- Figure 19 (A) is an image of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application, (B) is a graph measuring the size of the wound on the skin over time.
- Figure 20 (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 20, and (B) is a graph showing the result of measuring epidermal thickness.
- 21 is an image observing the atopic treatment effect of the hydrogel patch according to an experimental example of the present application.
- (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 22, and (B) is an image obtained by observing mast cells by recovering the skin tissue of FIG. 22.
- ELISA 23 is an enzyme-linked immunosorbent assay (ELISA) analysis result according to an experimental example of the present application.
- FIG. 24 is a result of analyzing the amount of ceria nanoparticles remaining in the tissue after recovering the skin tissue of FIG. 21 .
- the term "combination thereof" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, and the components It means including one or more selected from the group consisting of.
- the first aspect of the present application is a hydrogel comprising a polymer; and nanoparticles dispersed within the hydrogel; Including, the hydrogel and the nanoparticles provide a hydrogel patch for skin disease that has a different charge.
- atopic dermatitis which is a type of inflammatory skin disease caused by an excessive amount of active oxygen
- a method of alleviating atopic dermatitis by using an antihistamine, a steroid ointment, and an antibiotic in addition to a moisturizer is used.
- the antihistamines, steroid ointments, and antibiotics have side effects such as drowsiness due to central nervous system depressant action, Cushing's syndrome, and resistance to drugs when taken continuously.
- Reactive oxygen species are generally rapidly increased in the skin with inflammatory skin disease, and thus abnormally increased oxidative stress acts as a factor that further exacerbates the skin disease. Therefore, removing reactive oxygen species from skin with skin disease is very important in the treatment of skin disease.
- the hydrogel patch for skin diseases contains metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and attaches the patch to the skin disease area to reduce active oxygen species. By continuously removing it, it is possible to suppress chronic inflammation and restore the damaged skin barrier and thickened epidermal layer.
- the hydrogel patch for skin disease can improve skin disease by providing a wet environment where the skin disease occurs by using the hydrogel.
- the hydrogel patch for skin diseases according to the present application is strongly bonded to the nanoparticles, the nanoparticles do not remain on the skin when the patch is removed.
- the hydrogel patch for skin diseases according to the present application is a hydrogel-type patch with soft and flexible properties, it can be easily attached to and detached from joints and protruding areas, and the patient's convenience can be increased when the patch is attached for a long time. there is.
- hydrogel patch for skin diseases can be used as a drug delivery system by carrying an additional drug for treatment therein.
- the bonding strength of the hydrogel and the nanoparticles may be increased, but is not limited thereto.
- the bonding force between the hydrogel and the nanoparticles is weak, so that the nanoparticles remain on the skin when the patch is detached from the skin.
- the hydrogel and the nanoparticles dispersed in the hydrogel have different charges, and as a result, the bonding force between the hydrogel and the nanoparticles increases to detach the patch from the skin. When doing so, the problem that the nanoparticles remain on the skin may not occur.
- the hydrogel may further include a crosslinking accelerator, but is not limited thereto.
- the mechanical properties of the hydrogel patch for skin diseases may be improved by the crosslinking accelerator, but is not limited thereto.
- the hydrogel patch for skin diseases contains a crosslinking accelerator and may have improved mechanical properties compared to conventional hydrogels, and thus may be a material suitable for use as a patch.
- alginate hydrogels having uniform properties calcium salts such as CaSO 4 or CaCO 3 that can slowly release Ca 2+ ions due to their low solubility in water are used, and the Ca 2+ ions are alginate polymers. It serves as an ionic cross-linking agent for the liver.
- CaCO 3 the solubility is very low and the rate of ionization into Ca 2+ ions in the solution is too slow. Therefore, in the present application, by additionally using a crosslinking accelerator, the ionization rate is increased to promote crosslinking of the hydrogel, thereby improving the mechanical properties of the hydrogel.
- the crosslinking accelerator is gluconodeltalactone (GDL), diphenyliodonium nitrate, diphenyliodonium-2-carboxylate and It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- GDL gluconodeltalactone
- diphenyliodonium nitrate diphenyliodonium-2-carboxylate
- It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- photoacid generators that generate acids by being decomposed by light in addition to diphenyliodonium nitrate and diphenyliodonium-2-carboxylate ) can be used, but is not limited thereto.
- active oxygen species that cause skin diseases may be removed by the nanoparticles, but is not limited thereto.
- Reactive oxygen species are generally rapidly increased in the skin with inflammatory skin disease, and thus abnormally increased oxidative stress acts as a factor that further exacerbates the skin disease.
- the hydrogel patch for skin diseases includes metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and the metal oxide nanoparticles remove active oxygen species to treat skin diseases. can be improved
- FIG. 1 is a schematic diagram showing the removal of active oxygen species by attaching a hydrogel patch for skin diseases according to an embodiment of the present application to the skin.
- the hydrogel patch for skin diseases of the present application is attached to the epidermis, and the nanoparticles present in the patch remove active oxygen species, thereby suppressing chronic inflammation and helping to recover the damaged skin barrier and the thickened epidermal layer. You can check.
- the nanoparticles are iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- the nanoparticles may have a strong positive charge on the surface so that they can be uniformly dispersed in the negatively charged hydrogel, but are not limited thereto.
- the polymer is alginate (Alg), polyethylene glycol (PEG), chitosan (Chitosan), gelatin (Gelatin), polyacrylic acid (PAAc), polyacrylamide (PAM), polynipam (PNIPAM) , Agar, poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS), and combinations thereof, but is not limited thereto.
- the polymer may use a polymer derived from natural materials, but is not limited thereto.
- the second aspect of the present application is to prepare a first solution containing nanoparticles; preparing a second solution containing a crosslinking agent and a polymer; and preparing a mixed solution by adding the first solution and a crosslinking accelerator to the second solution. It provides a method for producing a hydrogel patch for skin diseases comprising a.
- Figure 2 is a flow chart of a method for manufacturing a hydrogel patch for skin diseases according to one embodiment of the present application.
- the nanoparticles are iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
- the nanoparticles have a strong positive charge of +20 mV on the surface, and thus can be uniformly dispersed in the negatively charged hydrogel, and the hydrogel and the nanoparticles have different charges, so the bonding strength can be increased there is.
- the crosslinking agent may include one selected from the group consisting of calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and combinations thereof, but is limited thereto. it is not going to be
- the hydrogel patch for skin diseases according to the present application may be prepared by adding a crosslinking material to improve the physical properties of the hydrogel.
- a mixed solution is prepared by adding the first solution and the crosslinking accelerator to the second solution (S300).
- the hydrogel patch for skin diseases according to the present application may be prepared by adding a crosslinking accelerator to improve the physical properties of the hydrogel.
- the crosslinking accelerator may be added in the order of adding.
- crosslinking agent Due to the addition of the crosslinking agent and the crosslinking accelerator, it may have mechanical properties suitable for use as a patch.
- a calcium salt such as CaCO 3 capable of releasing Ca 2+ ions is used to prepare a hydrogel, and the Ca 2+ ions serve as a cross-linking agent in a solution.
- the solubility is very low and the rate of ionization into Ca 2+ ions in the solution is slow. Therefore, in the present application, by additionally using a crosslinking accelerator, the ionization rate is increased to promote crosslinking of the hydrogel, thereby improving the mechanical properties of the hydrogel.
- a step of solidifying the mixed solution by pouring it into a mold may be further included, but is not limited thereto.
- Cerium (III) acetate hydrate and imidazole were dissolved in distilled water, respectively, and the respective solutions were mixed and stirred to react at room temperature for 3 hours. As the reaction proceeds, the reaction solution turns cloudy within about 3 minutes, and turns into a brown solution while becoming transparent again after about 1 hour and 45 minutes. Thereafter, after washing with acetone three times, particles are obtained and dispersed in distilled water to prepare a first solution containing nanoparticles.
- alginic acid sodium salt from brown algae and calcium carbonate are dissolved in distilled water, respectively, and each solution is mixed in a certain ratio and then mixed uniformly by vortexing. Thereafter, the mixed solution is degassed to prepare a second solution containing a crosslinking agent and a polymer.
- the first solution and GDL D-(+)-Gluconic acid ⁇ -lactone are sequentially added to the second solution, and then stirred with vortexin to prepare a mixed solution.
- the mixed solution is poured into a mold and hardened for one day to obtain a hydrogel carrying ceria nanoparticles.
- FIG 3 is an image of a hydrogel patch according to an embodiment of the present application.
- Alginic acid sodium salt from brown algae and calcium carbonate are dissolved in distilled water, respectively, and each solution is mixed in a certain ratio, and then mixed uniformly by vortexing. Thereafter, the mixed solution is degassed to prepare a second solution containing a crosslinking agent and a polymer.
- a predetermined amount of distilled water and D-(+)-Gluconic acid ⁇ -lactone are sequentially added to the second solution, followed by stirring with vortexin to prepare a mixed solution.
- the mixed solution is poured into a mold and hardened for one day to obtain a hydrogel.
- (A) is an image of a solution in which ceria nanoparticles according to one embodiment of the present application are dispersed in water
- (B) is a TEM image of ceria nanoparticles according to one embodiment of the present application.
- the ceria nanoparticles can be stably dispersed in water.
- 5 is a surface potential measurement result of ceria nanoparticles dispersed in deionized water measured by DLS according to an experimental example of the present application.
- the zeta potential of the surface of the nanoparticles is 25.37 ⁇ 1.63 mV, long-term storage in a highly dispersed state in an aqueous solution is possible, and uniform dispersion without being strongly bound and released even on a negatively charged alginate hydrogel matrix this is possible
- the measured peak has a structure of CeO 2 .
- the catalase-mimetic activity of the material was measured using the AmplexTM Red Hydrogen Peroxide/Peroxidase Assay, and it was confirmed that the amount of remaining hydrogen peroxide decreased as the amount of cerium increased.
- FIG. 9 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
- the superoxide dismutase-mimetic activity of the material was measured using the SOD Assay, and it was confirmed that the SOD activity increased as the amount of cerium increased.
- 10 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
- the degree of hydroxyl radical removal of the material was measured using the Hydroxyl Radical Antioxidant Capacity Assay, and it was confirmed that the amount of hydroxyl radicals generated decreased as the amount of cerium increased.
- ceria nanoparticles which are nanoparticles used in the hydrogel patch for skin diseases of the present application, effectively remove representative active oxygen species such as H 2 O 2 , oxygen radicals, and hydroxyl radicals.
- FIG. 11 is a result of scanning electron microscope images and X-ray spectroscopy of hydrogels according to an example and a comparative example of the present application.
- both the hydrogels of Example and Comparative Example have a pore structure, and in the case of Example, ceria nanoparticles are uniformly distributed inside the hydrogel.
- Figure 12 (A) is a graph measuring the transmittance in the visible light region according to the addition amount of nanoparticles of the hydrogel according to an experimental example of the present application
- (B) is a hydrogel according to an embodiment and a comparative example of the present application It is the measurement result of the water content of the gel.
- the catalase-mimetic activity of the material was measured using AmplexTM Red Hydrogen Peroxide/Peroxidase Assay. It was confirmed that the amount of remaining hydrogen peroxide decreased as the amount of ceria nanoparticles increased.
- the degree of hydroxyl radical removal of the material was measured using a Hydroxyl Radical Antioxidant Capacity Assay. It was confirmed that as the amount of ceria nanoparticles increased, the number of hydroxyl radicals generated decreased.
- Figure 16 (A) is the result of measuring the cytotoxicity of the hydrogel according to one experimental example of the present application, (B) is the result of measuring the cell rescue effect in the cell culture medium containing hydrogen peroxide, (C) is This is the result of measuring the cell rescue effect in the cell culture medium containing DNCB.
- 17 is a result of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application.
- the normal group is healthy skin to which hydrogen peroxide gauze is not applied
- the control group is skin to which hydrogen peroxide gauze is applied to the skin to give strong oxidative stimulation and is not treated
- the comparative example treatment group is the skin to which hydrogen peroxide gauze is applied to the skin
- the hydrogel on which the ceria nanoparticles are not supported according to the comparative example is attached to the skin
- the treatment group in the example is a hydrogen peroxide gauze applied to the skin
- the hydrogel on which the ceria nanoparticles are supported according to the example is applied. It means attached skin.
- FIG. 18 is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 17, and (B) is a graph showing the result of epidermal thickness measurement.
- the skin tissues of the normal group, the comparative group, the comparative example treatment group, and the example treatment group were recovered and stained with hematoxylin & eosin (H&E) to show changes in epidermis thickness (arrow)
- H&E hematoxylin & eosin
- Figure 19 (A) is an image of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application, (B) is a graph measuring the size of the wound on the skin over time.
- the normal group is skin that is not stimulated with hydrogen peroxide gauze
- the control group is skin that is not treated after giving strong oxidative stimulation by attaching hydrogen peroxide gauze and removing it
- the comparative example treatment group is skin that is not treated with hydrogen peroxide gauze After giving a strong oxidative stimulus and removing it
- the treated skin was treated by attaching a hydrogel not loaded with ceria nanoparticles according to the comparative example. It means the skin treated by attaching the hydrogel carrying the ceria nanoparticles according to the embodiment.
- FIG. 20 is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 19, and (B) is a graph showing the result of epidermal thickness measurement.
- the comparison group and the comparative example when comparing the change in epidermal thickness (arrow) by recovering the skin tissues of the normal group, the comparative group, the comparative example treatment group, and the example treatment group and staining with hematoxylin & eosin, the comparison group and the comparative example It can be seen that the thickness of the epidermis of the Example treatment group was thinner than that of the treatment group. Through this, it can be seen that the hydrogel patch for skin diseases according to an embodiment of the present application has a positive effect on healing skin tissue damaged by exposure to hydrogen peroxide.
- 21 is an image observing the atopic treatment effect of the hydrogel patch according to an experimental example of the present application.
- the normal group is the skin of healthy mice without any treatment
- the control group is the skin that has not been treated after inducing atopic dermatitis with DNCB
- the comparative example treatment group is the comparison after inducing atopic dermatitis with DNCB Skin treated by attaching the hydrogel without carrying ceria nanoparticles according to the example, and in the treatment group of the example, after inducing atopic dermatitis with DNCB, the skin treated by attaching the hydrogel carrying ceria nanoparticles according to the example means
- Example treatment group in the case of the Example treatment group, unlike the other groups, it can be visually confirmed that the scars present on the skin have almost disappeared.
- FIG. 22 (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 21, and (B) is an image obtained by observing mast cells by recovering the skin tissue of FIG. 21.
- ELISA 23 is an enzyme-linked immunosorbent assay (ELISA) analysis result according to an experimental example of the present application.
- IgE antibody which is a biomarker of atopic disease
- IL-1 ⁇ which is an inflammatory cytokine
- IL-4 which is a Th2 cytokine
- FIG. 24 is a result of analyzing the amount of ceria nanoparticles remaining in the tissue after recovering the skin tissue of FIG. 21 .
- the hydrogel patch for skin diseases of the present application can not only greatly recover the damage of skin tissue caused by atopy, but also have a positive effect on the improvement and treatment of atopic disease by exhibiting an immunosuppressive action. there was.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present application relates to a hydrogel patch comprising: a hydrogel including a polymer; and nanoparticles dispersed in the hydrogel, wherein the hydrogel and the nanoparticles have different charges.
Description
본원은 피부질환용 하이드로겔 패치 및 이의 제조 방법에 관한 것이다.The present application relates to a hydrogel patch for skin diseases and a method for manufacturing the same.
아토피 질환은 피부에 발생하는 염증성 질환의 한 종류로, 다양한 환경적·유전적 요인으로 인해 발생하게 된다. 아토피 질환이 발생한 피부에서는 일반적으로 활성 산소종이 급격히 증가하게 되고, 이로 인해 비정상적으로 증가된 산화 스트레스는 아토피 질환을 더욱 악화시키는 요인으로 작용하게 된다.Atopic disease is a type of inflammatory disease that occurs in the skin, and is caused by various environmental and genetic factors. Reactive oxygen species are generally rapidly increased in the skin with atopic disease, and thus the abnormally increased oxidative stress acts as a factor that further exacerbates the atopic disease.
일반적으로 아토피 피부염의 증상 완화를 위해 오일, 로션, 크림 등의 보습제 사용이 권장되는데, 이는 아토피 피부염의 경우 피부 장벽이 무너져서 수분 손실 및 알레르겐 침투 등이 발생하여 더욱 악화되는 경우가 많아 습윤한 환경을 만들어 줌으로써 질병을 완화시키기 위함이다. 또한, 아토피는 만성적으로 발병하는 경우가 많기 때문에 보습제와 더불어 항히스타민제, 스테로이드 연고 및 항생제와 같은 치료제의 병행이 필요하다.In general, it is recommended to use moisturizers such as oil, lotion, and cream to alleviate the symptoms of atopic dermatitis. to alleviate the disease by making In addition, since atopic dermatitis often develops chronically, a combination of treatments such as antihistamines, steroid ointments, and antibiotics is required in addition to moisturizers.
아토피가 발생한 피부 부위에서는 히스타민의 과발현으로 심한 가려움증이 유발되어 환자들이 피부를 긁게 되며, 이로 인한 이차적인 피부 손상은 아토피를 더욱 심하게 만들고, 상처의 회복을 더디게 한다. 히스타민을 억제하기위해 항히스타민을 이용하고 있으나, 이를 지속적으로 복용할 경우 중추신경억제 작용으로 인해 졸음이 유발되고 장기간으로 사용할 경우 내성이 발생한다는 문제점이 존재한다.In the skin area where atopy occurs, severe itching is induced due to overexpression of histamine, and patients scratch the skin, which causes secondary skin damage to make atopy more severe and slow recovery of wounds. Although antihistamines are used to suppress histamine, when they are continuously taken, there is a problem that drowsiness is induced due to the central nervous system depressant action and resistance occurs when used for a long time.
스테로이드 연고의 경우 염증 반응과 면역 작용을 억제하는 방식으로 질병을 완화시킨다. 하지만 일정 수준 이상의 스테로이드에 지속적으로 노출되다가 스테로이드를 끊게 되면 부신의 기능이 정상적으로 회복되지 못하면서 부신피질에서 당질코르티코이드가 과다하게 분비되는 쿠싱 증후군(Cushing's syndrome)이 발생할 수 있다. 쿠싱 증후군의 경우 몸무게가 증가하고 상처 치유가 잘 되지 않는 등의 신체적인 변화와 더불어 감정적인 변화까지 이끌게 되어 스테로이드의 가장 큰 부작용으로 꼽히고 있다.In the case of steroid ointment, it alleviates the disease by suppressing the inflammatory response and immune action. However, if the steroid is continuously exposed to a certain level or higher and then the steroid is stopped, the function of the adrenal glands cannot be restored to normal, and glucocorticoids are excessively secreted from the adrenal cortex, resulting in Cushing's syndrome. In the case of Cushing's syndrome, it is considered the biggest side effect of steroids because it leads to emotional changes as well as physical changes such as weight gain and poor wound healing.
항생제의 경우 지속적으로 피부를 긁게 되면서 점막이 노출되고, 이 곳으로 세균이 감염되어 염증이 심화되는 경우에 사용한다. 항원이 유입되는 경우 면역 반응이 더욱 증가되어 병이 악화될 수 있다. 하지만 무분별한 항생제의 복용 또한 항생제 내성을 야기한다는 문제가 있다.In the case of antibiotics, it is used when the skin is constantly scratched and the mucous membrane is exposed, and bacteria infect this place and the inflammation intensifies. When an antigen is introduced, the immune response is further increased and the disease may be aggravated. However, there is a problem that indiscriminate use of antibiotics also causes antibiotic resistance.
앞서 말한 항히스타민제, 스테로이드 연고 및 항생제 모두 단기적 복용은 괜찮지만, 지속적으로 복용할 경우 부작용이 발생한다. 아토피 피부염의 경우 만성 질환이 될 가능성이 높을 뿐만 아니라 높은 재발 가능성으로 인한 지속적인 약물 복용의 경우가 일반적이므로, 부작용 발생율을 낮춘 치료약의 개발이 필요한 실정이다.All of the aforementioned antihistamines, steroid ointments, and antibiotics are okay for short-term use, but side effects occur when taken continuously. In the case of atopic dermatitis, since the possibility of becoming a chronic disease is high and continuous drug use is common due to the high possibility of recurrence, it is necessary to develop a treatment drug that reduces the incidence of side effects.
대한민국 등록특허 제10-1848272호는 아토피 피부염 치료용 하이드로겔 및 이의 제조방법에 관한 특허이다. 상기 특허에서는 폴리비닐알콜-알지네이트 하이드로겔을 이용하여 피부 도포 후 약 한 시간 후에 필름 형태의 막을 형성하여 긁는 현상과 같은 외부 자극으로부터 피부를 보호하는 아토피 피부염 치료용 하이드로겔에 관해 개시하고 있으나, 활성 산소종을 제거하기 위한 방법에 대해서는 언급하고 있지 않다.Korean Patent Registration No. 10-1848272 is a patent for a hydrogel for treating atopic dermatitis and a method for manufacturing the same. The patent discloses a hydrogel for treating atopic dermatitis that protects the skin from external stimuli such as scratching by forming a film-type film about an hour after application to the skin using a polyvinyl alcohol-alginate hydrogel. No mention is made of a method for removing oxygen species.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 피부질환용 하이드로겔 패치를 제공하는 것을 목적으로 한다.The present application is to solve the problems of the prior art described above, and aims to provide a hydrogel patch for skin diseases.
또한, 상기 피부질환용 하이드로겔 패치의 제조 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for manufacturing a hydrogel patch for skin diseases.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the embodiments of the present application is not limited to the technical problems described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 고분자를 포함하는 하이드로겔; 및 상기 하이드로겔 내에 분산된 나노입자; 를 포함하고, 상기 하이드로겔 및 상기 나노입자는 상이한 전하를 가지는 것인, 피부질환용 하이드로겔 패치를 제공한다.As a technical means for achieving the above technical problem, the first aspect of the present application is a hydrogel comprising a polymer; and nanoparticles dispersed within the hydrogel; Including, the hydrogel and the nanoparticles provide a hydrogel patch for skin disease that has a different charge.
본원의 일 구현예에 따르면, 상기 하이드로겔 및 상기 나노입자가 상이한 전하를 가지는 것으로 인해 상기 하이드로겔 및 상기 나노입자의 결합력이 증가하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, due to the hydrogel and the nanoparticles having different charges, the bonding strength of the hydrogel and the nanoparticles may be increased, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 하이드로겔은 가교촉진제를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the hydrogel may further include a crosslinking accelerator, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 가교촉진제에 의해 상기 피부질환용 하이드로겔 패치의 기계적 물성이 향상되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the mechanical properties of the hydrogel patch for skin diseases may be improved by the crosslinking accelerator, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 가교촉진제는 글루코노델타락톤(GDL), 다이페닐아이오도늄 나이트레이트(diphenyliodonium nitrate), 다이페닐아이오도늄-2-카복실레이트(diphenyliodonium-2-carboxylate) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the crosslinking accelerator is gluconodeltalactone (GDL), diphenyliodonium nitrate, diphenyliodonium-2-carboxylate and It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 나노입자에 의해 피부 질환을 유발하는 활성 산소종이 제거되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, active oxygen species that cause skin diseases may be removed by the nanoparticles, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 나노입자는 세리아, 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the nanoparticles are ceria, iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon It may include one selected from the group consisting of quantum dots and combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 고분자는 알지네이트(Alg), 폴리에틸렌글리콜(PEG), 키토산(Chitosan), 젤라틴(Gelatin), 폴리아크릴산(PAAc), 폴리아크릴아마이드(PAM), 폴리나이팜(PNIPAM), 아가(Agar), 폴리(2-아크릴아미도-2-메틸프로판술폰산)(PAMPS) 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the polymer is alginate (Alg), polyethylene glycol (PEG), chitosan (Chitosan), gelatin (Gelatin), polyacrylic acid (PAAc), polyacrylamide (PAM), polynipam (PNIPAM) , Agar, poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS), and combinations thereof, but is not limited thereto.
또한, 본원의 제 2 측면은 나노입자를 포함하는 제 1 용액을 제조하는 단계; 가교제 및 고분자를 포함하는 제 2 용액을 제조하는 단계; 및 상기 제 2 용액에 상기 제 1 용액 및 가교촉진제를 첨가하여 혼합 용액을 제조하는 단계; 를 포함하는, 피부질환용 하이드로겔 패치의 제조 방법을 제공한다.In addition, the second aspect of the present application is to prepare a first solution containing nanoparticles; preparing a second solution containing a crosslinking agent and a polymer; and preparing a mixed solution by adding the first solution and a crosslinking accelerator to the second solution. It provides a method for producing a hydrogel patch for skin diseases comprising a.
본원의 일 구현예에 따르면, 상기 혼합 용액을 몰드에 부어 고형화 시키는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, a step of solidifying the mixed solution by pouring it into a mold may be further included, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속산화물은 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal oxide is iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 가교제는 탄산칼슘(CaCO3), 염화칼슘(CaCl2), 황산칼슘(CaSO4) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the crosslinking agent may include one selected from the group consisting of calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and combinations thereof, but is limited thereto. it is not going to be
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary and should not be construed as intended to limit the present disclosure. In addition to the exemplary embodiments described above, additional embodiments may exist in the drawings and detailed description of the invention.
본원에 따른 피부질환용 하이드로겔 패치는 체내의 산화 스트레스의 주요 원인인 활성 산소종을 제거할 수 있는 금속산화물 나노 입자를 포함하고 있고, 상기 패치를 피부질환이 발생한 부위에 부착하여 활성 산소종을 지속적으로 제거함으로써 만성 염증을 억제하여 훼손된 피부 장벽과 두꺼워진 표피층을 회복시킬 수 있다.The hydrogel patch for skin diseases according to the present application contains metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and attaches the patch to the skin disease area to reduce active oxygen species. By continuously removing it, it is possible to suppress chronic inflammation and restore the damaged skin barrier and thickened epidermal layer.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔을 사용함으로써 피부질환이 발생한 곳에 습윤 환경을 제공하여 피부질환을 개선시킬 수 있다.In addition, the hydrogel patch for skin disease according to the present application can improve skin disease by providing a wet environment where the skin disease occurs by using the hydrogel.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔 및 상기 나노입자가 강하게 결합하고 있어, 패치를 제거하였을 때 상기 나노입자가 피부에 잔존하는 문제가 발생하지 않는다.In addition, since the hydrogel patch for skin diseases according to the present application is strongly bonded to the nanoparticles, the nanoparticles do not remain on the skin when the patch is removed.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 부드럽고 유연한 성질을 가진 하이드로겔 형태의 패치이기 때문에 관절 및 돌출 부위에 용이하게 탈부착이 가능하며, 장시간 패치를 부착할 시 환자의 사용 편의성이 증가할 수 있다.In addition, since the hydrogel patch for skin diseases according to the present application is a hydrogel-type patch with soft and flexible properties, it can be easily attached to and detached from joints and protruding areas, and the patient's convenience can be increased when the patch is attached for a long time. there is.
또한, 항산화 역할을하는 나노입자의 용량 조절, 하이드로겔 두께 조절 및 대면적 제작 등이 가능하여 피부질환 부위의 상태 및 크기에 따라 다양한 형태의 패치로 제작이 가능하다.In addition, it is possible to adjust the capacity of nanoparticles that play an antioxidant role, adjust the thickness of the hydrogel, and manufacture a large area, so that various types of patches can be manufactured according to the condition and size of the skin disease area.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 내부에 추가적인 치료용 약물을 담지하여 약물전달체로 사용할 수 있다.In addition, the hydrogel patch for skin diseases according to the present application can be used as a drug delivery system by carrying an additional drug for treatment therein.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effects obtainable herein are not limited to the effects described above, and other effects may exist.
도 1 은 본원의 일 구현예에 따른 피부질환용 하이드로겔 패치를 피부에 부착하여 활성 산소종을 제거하는 것을 나타낸 모식도이다.1 is a schematic diagram showing the removal of active oxygen species by attaching a hydrogel patch for skin diseases according to an embodiment of the present application to the skin.
도 2 는 본원의 일 구현예에 따른 피부질환용 하이드로겔 패치의 제조 방법의 순서도이다.Figure 2 is a flow chart of a method for manufacturing a hydrogel patch for skin diseases according to one embodiment of the present application.
도 3 은 본원의 일 실시예에 따른 하이드로겔 패치의 이미지이다.3 is an image of a hydrogel patch according to an embodiment of the present application.
도 4 의 (A)는 본원의 일 실시예의 세리아 나노입자를 물에 분산시킨 용액의 이미지이며, (B)는 본원의 일 실시예의 세리아 나노입자의 TEM 이미지이다.4 (A) is an image of a solution in which ceria nanoparticles according to one embodiment of the present application are dispersed in water, and (B) is a TEM image of ceria nanoparticles according to one embodiment of the present application.
도 5 는 본원의 일 실험예에 따른 DLS에서 측정된 탈이온수에 분산된 세리아 나노입자의 표면 전위 측정 결과이다.5 is a surface potential measurement result of ceria nanoparticles dispersed in deionized water measured by DLS according to an experimental example of the present application.
도 6 은 본원의 일 실험예에 따른 세리아 나노입자의 XRD 결과이다.6 is an XRD result of ceria nanoparticles according to an experimental example of the present application.
도 7 은 본원의 일 실험예에 따른 세리아 나노입자의 XPS 결과이다.7 is an XPS result of ceria nanoparticles according to an experimental example of the present application.
도 8 은 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.8 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 9 는 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.9 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 10 은 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.10 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 11 은 본원의 일 실시예 및 비교예에 따른 하이드로겔의 주사전자 현미경 이미지 및 X선 분광분석의 결과이다.11 is a result of scanning electron microscope images and X-ray spectroscopy of hydrogels according to an example and a comparative example of the present application.
도 12 의 (A)는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 첨가량에 따른 가시광선 영역에서의 투과도를 측정한 그래프이며, (B)는 본원의 일 실시예 및 비교예에 따른 하이드로겔의 수분 함유량의 측정 결과이다. Figure 12 (A) is a graph measuring the transmittance in the visible light region according to the addition amount of nanoparticles of the hydrogel according to an experimental example of the present application, (B) is a hydrogel according to an embodiment and a comparative example of the present application It is the measurement result of the water content of the gel.
도 13 은 본원의 일 실시예 및 비교예에 따른 하이드로겔의 기계적 물성을 측정한 결과이다. 13 is a result of measuring mechanical properties of hydrogels according to one embodiment and comparative example of the present application.
도 14 는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 함량에 따른 활성산소종 제거능력을 측정한 결과이다.14 is a result of measuring the ability to remove reactive oxygen species according to the content of nanoparticles of a hydrogel according to an experimental example of the present application.
도 15 는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 함량에 따른 활성산소종 제거능력을 측정한 결과이다.15 is a result of measuring the ability to remove reactive oxygen species according to the content of nanoparticles of a hydrogel according to an experimental example of the present application.
도 16 의 (A)는 본원의 일 실험예에 따른 하이드로겔의 세포독성을 측정한 결과이며, (B)는 과산화수소가 포함된 세포배양액에서의 세포구제효과를 측정한 결과이며, (C)는 DNCB가 포함된 세포 배양액에서의 세포구제효과를 측정한 결과이다. Figure 16 (A) is the result of measuring the cytotoxicity of the hydrogel according to one experimental example of the present application, (B) is the result of measuring the cell rescue effect in the cell culture medium containing hydrogen peroxide, (C) is This is the result of measuring the cell rescue effect in the cell culture medium containing DNCB.
도 17 은 본원의 일 실험예에 따른 하이드로겔 패치의 피부에서의 치료 효과를 관찰한 결과이다. 17 is a result of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application.
도 18 의 (A)는 도 18 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 표피 두께를 측정한 결과를 나타낸 그래프이다.18 (A) is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 18, and (B) is a graph showing the result of epidermal thickness measurement.
도 19 의 (A)는 본원의 일 실험예에 따른 하이드로겔 패치의 피부에서의 치료 효과를 관찰한 이미지이며, (B)는 시간 경과에 따른 피부에서의 상처의 크기를 측정한 그래프이다.Figure 19 (A) is an image of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application, (B) is a graph measuring the size of the wound on the skin over time.
도 20 의 (A)는 도 20 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 표피 두께를 측정한 결과를 나타낸 그래프이다.Figure 20 (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 20, and (B) is a graph showing the result of measuring epidermal thickness.
도 21 은 본원의 일 실험예에 따른 하이드로겔 패치의 아토피 치료 효과를 관찰한 이미지이다. 21 is an image observing the atopic treatment effect of the hydrogel patch according to an experimental example of the present application.
도 22 의 (A)는 도 22 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 도 22 의 피부 조직을 회수하여 비만세포(Mast cell)를 관찰한 이미지이다.22 (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 22, and (B) is an image obtained by observing mast cells by recovering the skin tissue of FIG. 22.
도 23 은 본원의 일 실험예에 따른 효소결합면역흡착검사(ELISA) 분석 결과이다.23 is an enzyme-linked immunosorbent assay (ELISA) analysis result according to an experimental example of the present application.
도 24 는 도 21 의 피부 조직을 회수하여 조직에 남아있는 세리아 나노 입자의 양을 분석한 결과이다.FIG. 24 is a result of analyzing the amount of ceria nanoparticles remaining in the tissue after recovering the skin tissue of FIG. 21 .
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present application will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present disclosure may be implemented in many different forms and is not limited to the embodiments described herein. And in order to clearly describe the present application in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a part is said to be "connected" to another part, this includes not only the case of being "directly connected" but also the case of being "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the present specification, when a member is referred to as being “on,” “above,” “on top of,” “below,” “below,” or “below” another member, this means that a member is located in relation to another member. This includes not only the case of contact but also the case of another member between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used herein, the terms "about," "substantially," and the like are used at or approximating that number when manufacturing and material tolerances inherent in the stated meaning are given, and are intended to assist in the understanding of this disclosure. Accurate or absolute figures are used to prevent undue exploitation by unscrupulous infringers of the stated disclosure. In addition, throughout the present specification, “steps of” or “steps of” do not mean “steps for”.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout the present specification, the term "combination thereof" included in the expression of the Markush form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the Markush form, and the components It means including one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는, A 및 B" 를 의미한다.Throughout this specification, reference to "A and/or B" means "A or B, or A and B".
이하에서는 본원의 피부질환용 하이드로겔 패치 및 이의 제조 방법에 대하여, 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.Hereinafter, the hydrogel patch for skin diseases of the present application and its manufacturing method will be described in detail with reference to embodiments and examples and drawings. However, the present application is not limited to these embodiments and examples and drawings.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 고분자를 포함하는 하이드로겔; 및 상기 하이드로겔 내에 분산된 나노입자; 를 포함하고, 상기 하이드로겔 및 상기 나노입자는 상이한 전하를 가지는 것인, 피부질환용 하이드로겔 패치를 제공한다.As a technical means for achieving the above technical problem, the first aspect of the present application is a hydrogel comprising a polymer; and nanoparticles dispersed within the hydrogel; Including, the hydrogel and the nanoparticles provide a hydrogel patch for skin disease that has a different charge.
과다한 양의 활성산소로 인해 발생하는 염증성 피부질환의 한 종류인 아토피 피부염의 치료를 위한 종래의 방법에서는 보습제와 더불어 항히스타민제, 스테로이드 연고 및 항생제를 사용하여 아토피 피부염을 완화시키는 방법을 사용하고 있다. 그러나, 상기 항히스타민제, 스테로이드 연고 및 항생제는 지속적인 복용을 할 경우 중추신경억제 작용으로 인한 졸음유발, 쿠싱 증후군 발생, 약물에 대한 내성 발생 등의 부작용이 존재한다는 문제점이 존재한다.In a conventional method for the treatment of atopic dermatitis, which is a type of inflammatory skin disease caused by an excessive amount of active oxygen, a method of alleviating atopic dermatitis by using an antihistamine, a steroid ointment, and an antibiotic in addition to a moisturizer is used. However, the antihistamines, steroid ointments, and antibiotics have side effects such as drowsiness due to central nervous system depressant action, Cushing's syndrome, and resistance to drugs when taken continuously.
염증성 피부질환이 발생한 피부에서는 일반적으로 활성 산소종이 급격히 증가하게 되고, 이로 인해 비정상적으로 증가된 산화 스트레스가 피부질환을 더욱 악화시키는 요인으로 작용하게 된다. 따라서, 피부질환이 발생한 피부에서 활성 산소종을 제거하는 것은 피부질환의 치료에 있어서 매우 중요하다.Reactive oxygen species are generally rapidly increased in the skin with inflammatory skin disease, and thus abnormally increased oxidative stress acts as a factor that further exacerbates the skin disease. Therefore, removing reactive oxygen species from skin with skin disease is very important in the treatment of skin disease.
본원에 따른 피부질환용 하이드로겔 패치는 체내의 산화 스트레스의 주요 원인인 활성 산소종을 제거할 수 있는 금속산화물 나노 입자를 포함하고 있고, 상기 패치를 피부질환이 발생한 부위에 부착하여 활성 산소종을 지속적으로 제거함으로써 만성 염증을 억제하여 훼손된 피부 장벽과 두꺼워진 표피층을 회복시킬 수 있다.The hydrogel patch for skin diseases according to the present application contains metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and attaches the patch to the skin disease area to reduce active oxygen species. By continuously removing it, it is possible to suppress chronic inflammation and restore the damaged skin barrier and thickened epidermal layer.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔을 사용함으로써 피부질환이 발생한 곳에 습윤 환경을 제공하여 피부질환을 개선시킬 수 있다.In addition, the hydrogel patch for skin disease according to the present application can improve skin disease by providing a wet environment where the skin disease occurs by using the hydrogel.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔 및 상기 나노입자가 강하게 결합하고 있어, 패치를 제거하였을 때 상기 나노입자가 피부에 잔존하는 문제가 발생하지 않는다.In addition, since the hydrogel patch for skin diseases according to the present application is strongly bonded to the nanoparticles, the nanoparticles do not remain on the skin when the patch is removed.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 부드럽고 유연한 성질을 가진 하이드로겔 형태의 패치이기 때문에 관절 및 돌출 부위에 용이하게 탈부착이 가능하며, 장시간 패치를 부착할 시 환자의 사용 편의성이 증가할 수 있다.In addition, since the hydrogel patch for skin diseases according to the present application is a hydrogel-type patch with soft and flexible properties, it can be easily attached to and detached from joints and protruding areas, and the patient's convenience can be increased when the patch is attached for a long time. there is.
또한, 항산화 역할을하는 나노입자의 용량 조절, 하이드로겔 두께 조절 및 대면적 제작 등이 가능하여 피부질환 부위의 상태 및 크기에 따라 다양한 형태의 패치로 제작이 가능하다.In addition, it is possible to adjust the capacity of nanoparticles that play an antioxidant role, adjust the thickness of the hydrogel, and manufacture a large area, so that various types of patches can be manufactured according to the condition and size of the skin disease area.
또한, 본원에 따른 피부질환용 하이드로겔 패치는 내부에 추가적인 치료용 약물을 담지하여 약물전달체로 사용할 수 있다.In addition, the hydrogel patch for skin diseases according to the present application can be used as a drug delivery system by carrying an additional drug for treatment therein.
본원의 일 구현예에 따르면, 상기 하이드로겔 및 상기 나노입자가 상이한 전하를 가지는 것으로 인해 상기 하이드로겔 및 상기 나노입자의 결합력이 증가하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, due to the hydrogel and the nanoparticles having different charges, the bonding strength of the hydrogel and the nanoparticles may be increased, but is not limited thereto.
종래의 피부질환용 하이드로겔 패치에서는 하이드로겔과 나노입자의 결합력이 약해서 패치를 피부에서 탈착할 때 상기 나노입자가 피부에 잔존하는 문제가 존재하였다.In conventional hydrogel patches for skin diseases, the bonding force between the hydrogel and the nanoparticles is weak, so that the nanoparticles remain on the skin when the patch is detached from the skin.
그러나, 본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔과 상기 하이드로겔 내에 분산되어있는 나노입자가 상이한 전하를 가지고 있으며, 이로 인해 상기 하이드로겔 및 상기 나노입자의 결합력이 증가하여 패치를 피부에서 탈착할 때 상기 나노입자가 피부에 잔존하게되는 문제점이 발생하지 않을 수 있다.However, in the hydrogel patch for skin diseases according to the present application, the hydrogel and the nanoparticles dispersed in the hydrogel have different charges, and as a result, the bonding force between the hydrogel and the nanoparticles increases to detach the patch from the skin. When doing so, the problem that the nanoparticles remain on the skin may not occur.
본원의 일 구현예에 따르면, 상기 하이드로겔은 가교촉진제를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the hydrogel may further include a crosslinking accelerator, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 가교촉진제에 의해 상기 피부질환용 하이드로겔 패치의 기계적 물성이 향상되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the mechanical properties of the hydrogel patch for skin diseases may be improved by the crosslinking accelerator, but is not limited thereto.
본원에 따른 피부질환용 하이드로겔 패치는 가교촉진제를 포함하고 있어 종래의 하이드로겔에 비해 향상된 기계적 물성을 가질 수 있으며, 이로 인해, 패치로 사용되기 적합한 소재일 수 있다.The hydrogel patch for skin diseases according to the present application contains a crosslinking accelerator and may have improved mechanical properties compared to conventional hydrogels, and thus may be a material suitable for use as a patch.
일반적으로 균일한 특성을 가지는 알지네이트 하이드로겔의 제조에는 물에 대한 용해도가 낮아서 Ca2+ 이온을 서서히 방출할 수 있는 CaSO4나 CaCO3 와 같은 칼슘염을 사용하고, 상기 Ca2+ 이온이 알지네이트 고분자 간의 이온성 가교제의 역할을 수행한다. 그러나, CaCO3 같은 경우에는 용해성이 매우 낮아서 용액 내에서 Ca2+ 이온으로 이온화 되는 속도가 너무 느리다. 따라서, 본원에서는 가교촉진제를 추가로 사용함으로써 이온화 속도를 증가시켜 하이드로겔의 가교를 촉진시키고, 이로 인해 하이드로겔의 기계적 물성을 향상시킬 수 있다. In general, for the preparation of alginate hydrogels having uniform properties, calcium salts such as CaSO 4 or CaCO 3 that can slowly release Ca 2+ ions due to their low solubility in water are used, and the Ca 2+ ions are alginate polymers. It serves as an ionic cross-linking agent for the liver. However, in the case of CaCO 3 , the solubility is very low and the rate of ionization into Ca 2+ ions in the solution is too slow. Therefore, in the present application, by additionally using a crosslinking accelerator, the ionization rate is increased to promote crosslinking of the hydrogel, thereby improving the mechanical properties of the hydrogel.
본원의 일 구현예에 따르면, 상기 가교촉진제는 글루코노델타락톤(GDL), 다이페닐아이오도늄 나이트레이트(diphenyliodonium nitrate), 다이페닐아이오도늄-2-카복실레이트(diphenyliodonium-2-carboxylate) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the crosslinking accelerator is gluconodeltalactone (GDL), diphenyliodonium nitrate, diphenyliodonium-2-carboxylate and It may include one selected from the group consisting of combinations thereof, but is not limited thereto.
가교촉진제로서 다이페닐아이오도늄 나이트레이트(diphenyliodonium nitrate), 다이페닐아이오도늄-2-카복실레이트(diphenyliodonium-2-carboxylate) 이외에 빛에 의해 분해되어 산을 발생시키는 대부분의 광산 발산제(photoacid generator)를 이용할 수 있으나, 이에 제한되는 것은 아니다.As a cross-linking accelerator, most photoacid generators that generate acids by being decomposed by light in addition to diphenyliodonium nitrate and diphenyliodonium-2-carboxylate ) can be used, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 나노입자에 의해 피부 질환을 유발하는 활성 산소종이 제거되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, active oxygen species that cause skin diseases may be removed by the nanoparticles, but is not limited thereto.
염증성 피부질환이 발생한 피부에서는 일반적으로 활성 산소종이 급격히 증가하게 되고, 이로 인해 비정상적으로 증가된 산화 스트레스가 피부질환을 더욱 악화시키는 요인으로 작용하게 된다.Reactive oxygen species are generally rapidly increased in the skin with inflammatory skin disease, and thus abnormally increased oxidative stress acts as a factor that further exacerbates the skin disease.
본원에 따른 피부질환용 하이드로겔 패치는 체내의 산화 스트레스의 주요 원인인 활성 산소종을 제거할 수 있는 금속산화물 나노 입자를 포함하고 있고, 상기 금속산화물 나노 입자가 활성 산소종을 제거하여 피부질환을 개선시킬 수 있다.The hydrogel patch for skin diseases according to the present application includes metal oxide nanoparticles capable of removing active oxygen species, which are the main cause of oxidative stress in the body, and the metal oxide nanoparticles remove active oxygen species to treat skin diseases. can be improved
도 1 은 본원의 일 구현예에 따른 피부질환용 하이드로겔 패치를 피부에 부착하여 활성 산소종을 제거하는 것을 나타낸 모식도이다.1 is a schematic diagram showing the removal of active oxygen species by attaching a hydrogel patch for skin diseases according to an embodiment of the present application to the skin.
도 1 을 참조하면, 본원의 피부질환용 하이드로겔 패치가 표피에 부착되어 상기 패치 내에 존재하는 나노입자가 활성 산소종을 제거함으로써 만성 염증을 억제하고 훼손된 피부 장벽과 두꺼워진 표피층의 회복을 돕는 것을 확인할 수 있다. Referring to Figure 1, the hydrogel patch for skin diseases of the present application is attached to the epidermis, and the nanoparticles present in the patch remove active oxygen species, thereby suppressing chronic inflammation and helping to recover the damaged skin barrier and the thickened epidermal layer. You can check.
본원의 일 구현예에 따르면, 상기 나노입자는 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the nanoparticles are iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
상기 나노입자는 음전하를 띤 하이드로겔 내에 균일하게 분산될 수 있도록 표면에 강한 양전하를 띨 수 있으나, 이에 제한되는 것은 아니다.The nanoparticles may have a strong positive charge on the surface so that they can be uniformly dispersed in the negatively charged hydrogel, but are not limited thereto.
상기 하이드로겔 및 상기 나노입자는 상이한 전하를 가지고 있으므로, 상기 하이드로겔 및 상기 금속산화물의 결합력이 증가할 수 있다.Since the hydrogel and the nanoparticles have different charges, bonding strength between the hydrogel and the metal oxide may increase.
본원의 일 구현예에 따르면, 상기 고분자는 알지네이트(Alg), 폴리에틸렌글리콜(PEG), 키토산(Chitosan), 젤라틴(Gelatin), 폴리아크릴산(PAAc), 폴리아크릴아마이드(PAM), 폴리나이팜(PNIPAM), 아가(Agar), 폴리(2-아크릴아미도-2-메틸프로판술폰산)(PAMPS) 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the polymer is alginate (Alg), polyethylene glycol (PEG), chitosan (Chitosan), gelatin (Gelatin), polyacrylic acid (PAAc), polyacrylamide (PAM), polynipam (PNIPAM) , Agar, poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS), and combinations thereof, but is not limited thereto.
바람직하게는 생체친화도가 높은 하이드로겔 패치를 제작하기 위해 상기 고분자는 천연소재 유래 고분자를 사용할 수 있으나, 이에 제한되는 것은 아니다.Preferably, in order to produce a hydrogel patch having high biocompatibility, the polymer may use a polymer derived from natural materials, but is not limited thereto.
또한, 본원의 제 2 측면은 나노입자를 포함하는 제 1 용액을 제조하는 단계; 가교제 및 고분자를 포함하는 제 2 용액을 제조하는 단계; 및 상기 제 2 용액에 상기 제 1 용액 및 가교촉진제를 첨가하여 혼합 용액을 제조하는 단계; 를 포함하는, 피부질환용 하이드로겔 패치의 제조 방법을 제공한다.In addition, the second aspect of the present application is to prepare a first solution containing nanoparticles; preparing a second solution containing a crosslinking agent and a polymer; and preparing a mixed solution by adding the first solution and a crosslinking accelerator to the second solution. It provides a method for producing a hydrogel patch for skin diseases comprising a.
본원의 제 2 측면에 따른 하이드로겔 패치의 제조방법에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.With respect to the method for manufacturing a hydrogel patch according to the second aspect of the present application, detailed descriptions of parts overlapping with the first aspect of the present application have been omitted, but even if the description is omitted, the contents described in the first aspect of the present application The same can be applied to the second aspect.
이하, 도 2 를 참조하여 본원의 피부질환용 하이드로겔 패치의 제조 방법에 대해서 설명한다.Hereinafter, a method for manufacturing a hydrogel patch for skin diseases of the present application will be described with reference to FIG. 2 .
도 2 는 본원의 일 구현예에 따른 피부질환용 하이드로겔 패치의 제조 방법의 순서도이다.Figure 2 is a flow chart of a method for manufacturing a hydrogel patch for skin diseases according to one embodiment of the present application.
먼저, 나노입자를 포함하는 제 1 용액을 제조한다 (S100).First, a first solution containing nanoparticles is prepared (S100).
본원의 일 구현예에 따르면, 상기 나노입자는 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the nanoparticles are iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot And it may include one selected from the group consisting of combinations thereof, but is not limited thereto.
상기 나노입자는 표면에 +20 mV의 강한 양전하를 띄고 있으며, 이로 인해, 음전하를 띈 하이드로겔 내에 균일하게 분산될 수 있으며, 상기 하이드로겔 및 상기 나노입자가 상이한 전하를 가지고 있어 결합력이 증가할 수 있다.The nanoparticles have a strong positive charge of +20 mV on the surface, and thus can be uniformly dispersed in the negatively charged hydrogel, and the hydrogel and the nanoparticles have different charges, so the bonding strength can be increased there is.
이어서, 가교제 및 고분자를 포함하는 제 2 용액을 제조한다 (S200).Subsequently, a second solution containing a crosslinking agent and a polymer is prepared (S200).
본원의 일 구현예에 따르면, 상기 가교제는 탄산칼슘(CaCO3), 염화칼슘(CaCl2), 황산칼슘(CaSO4) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the crosslinking agent may include one selected from the group consisting of calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and combinations thereof, but is limited thereto. it is not going to be
본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔의 물성을 향상시키기 위해 가교체를 첨가하여 제조될 수 있다.The hydrogel patch for skin diseases according to the present application may be prepared by adding a crosslinking material to improve the physical properties of the hydrogel.
이어서, 제 2 용액에 제 1 용액 및 가교촉진제를 첨가하여 혼합 용액을 제조한다 (S300).Subsequently, a mixed solution is prepared by adding the first solution and the crosslinking accelerator to the second solution (S300).
본원에 따른 피부질환용 하이드로겔 패치는 하이드로겔의 물성을 향상시키기 위해 가교촉진제를 첨가하여 제조될 수 있다.The hydrogel patch for skin diseases according to the present application may be prepared by adding a crosslinking accelerator to improve the physical properties of the hydrogel.
상기 제 2 용액에 상기 제 1 용액을 첨가한 후 가교촉진제를 첨가하는 순서로 진행할 수 있다.After adding the first solution to the second solution, the crosslinking accelerator may be added in the order of adding.
상기 가교제 및 상기 가교촉진제를 첨가하는 것으로 인해, 패치로 사용되기에 적합한 기계적 물성을 가질 수 있다.Due to the addition of the crosslinking agent and the crosslinking accelerator, it may have mechanical properties suitable for use as a patch.
일반적으로 하이드로겔의 제조에는 Ca2+ 이온을 방출할 수 있는 CaCO3 와 같은 칼슘염을 사용하고, 상기 Ca2+ 이온이 용액 내에서 가교제의 역할을 수행한다. 그러나, CaCO3 같은 경우에는 용해성이 매우 낮아서 용액 내에서 Ca2+ 이온으로 이온화 되는 속도가 느리다. 따라서, 본원에서는 가교촉진제를 추가로 사용함으로써 이온화 속도를 증가시켜 하이드로겔의 가교를 촉진시키고, 이로 인해 하이드로겔의 기계적 물성을 향상시킬 수 있다. In general, a calcium salt such as CaCO 3 capable of releasing Ca 2+ ions is used to prepare a hydrogel, and the Ca 2+ ions serve as a cross-linking agent in a solution. However, in the case of CaCO 3 , the solubility is very low and the rate of ionization into Ca 2+ ions in the solution is slow. Therefore, in the present application, by additionally using a crosslinking accelerator, the ionization rate is increased to promote crosslinking of the hydrogel, thereby improving the mechanical properties of the hydrogel.
본원의 일 구현예에 따르면, 상기 혼합 용액을 몰드에 부어 고형화 시키는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, a step of solidifying the mixed solution by pouring it into a mold may be further included, but is not limited thereto.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.The present invention will be described in more detail through the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.
[실시예] 세리아 나노입자가 담지된 하이드로겔 패치 제조[Example] Manufacturing hydrogel patch supported with ceria nanoparticles
먼저, Cerium(III) acetate hydrate와 imidazole을 각각 증류수에 녹이고, 상기 각각의 용액을 섞은 후 교반하여 3시간동안 상온에서 반응시킨다. 반응이 진행됨에 따라 약 3분 내에 반응 용액이 뿌옇게 변하며, 반응 경과 1시간 45분 정도에 다시 투명해지면서 갈색 용액으로 바뀐다. 이후, 아세톤으로 3회 세척한 후 입자를 얻고, 증류수에 분산하여 나노입자를 포함하는 제 1 용액을 제조한다.First, Cerium (III) acetate hydrate and imidazole were dissolved in distilled water, respectively, and the respective solutions were mixed and stirred to react at room temperature for 3 hours. As the reaction proceeds, the reaction solution turns cloudy within about 3 minutes, and turns into a brown solution while becoming transparent again after about 1 hour and 45 minutes. Thereafter, after washing with acetone three times, particles are obtained and dispersed in distilled water to prepare a first solution containing nanoparticles.
이어서, Alginic acid sodium salt from brown algae과 Calcium carbonate을 각각 증류수에 녹이고, 상기 각각의 용액을 일정 비율로 섞은 후 vortexing을 사용하여 균일하게 혼합해준다. 이후, 상기 혼합해준 용액을 디개싱하여 가교제 및 고분자를 포함하는 제 2 용액을 제조한다.Subsequently, alginic acid sodium salt from brown algae and calcium carbonate are dissolved in distilled water, respectively, and each solution is mixed in a certain ratio and then mixed uniformly by vortexing. Thereafter, the mixed solution is degassed to prepare a second solution containing a crosslinking agent and a polymer.
이어서, 상기 제 2 용액에 상기 제 1 용액 및 GDL(D-(+)-Gluconic acid δ-lactone)를 순서대로 넣어준 후 vortexin으로 교반하여 혼합 용액을 제조한다.Subsequently, the first solution and GDL (D-(+)-Gluconic acid δ-lactone) are sequentially added to the second solution, and then stirred with vortexin to prepare a mixed solution.
마지막으로, 상기 혼합 용액을 몰드에 붓고 하루 정도 굳히는 과정을 거쳐 세리아 나노 입자를 담지한 하이드로젤을 얻는다.Finally, the mixed solution is poured into a mold and hardened for one day to obtain a hydrogel carrying ceria nanoparticles.
도 3 은 본원의 일 실시예에 따른 하이드로겔 패치의 이미지이다.3 is an image of a hydrogel patch according to an embodiment of the present application.
도 3 을 참조하면, 무색의 투명한 하이드로겔을 제조한 것을 확인할 수 있다.Referring to Figure 3, it can be confirmed that a colorless transparent hydrogel was prepared.
[비교예] 세리아 나노입자를 담지하지 않은 하이드로겔 제조[Comparative Example] Preparation of hydrogel not carrying ceria nanoparticles
Alginic acid sodium salt from brown algae과 Calcium carbonate을 각각 증류수에 녹이고, 상기 각각의 용액을 일정 비율로 섞은 후 vortexing을 사용하여 균일하게 혼합해준다. 이후, 상기 혼합해준 용액을 디개싱하여 가교제 및 고분자를 포함하는 제 2 용액을 제조한다. Alginic acid sodium salt from brown algae and calcium carbonate are dissolved in distilled water, respectively, and each solution is mixed in a certain ratio, and then mixed uniformly by vortexing. Thereafter, the mixed solution is degassed to prepare a second solution containing a crosslinking agent and a polymer.
이어서, 상기 제 2 용액에 일정 양의 증류수및 D-(+)-Gluconic acid δ-lactone를 순서대로 넣어준 후 vortexin으로 교반하여 혼합 용액을 제조한다.Subsequently, a predetermined amount of distilled water and D-(+)-Gluconic acid δ-lactone are sequentially added to the second solution, followed by stirring with vortexin to prepare a mixed solution.
마지막으로, 상기 혼합 용액을 몰드에 붓고 하루 정도 굳히는 과정을 거쳐 하이드로젤을 얻는다.Finally, the mixed solution is poured into a mold and hardened for one day to obtain a hydrogel.
[실험예 1] 세리아 나노입자의 특성 분석[Experimental Example 1] Analysis of characteristics of ceria nanoparticles
도 4 의 (A)는 본원의 일 실시예의 세리아 나노입자를 물에 분산시킨 용액의 이미지이며, (B)는 본원의 일 실시예의 세리아 나노입자의 TEM 이미지이다.4 (A) is an image of a solution in which ceria nanoparticles according to one embodiment of the present application are dispersed in water, and (B) is a TEM image of ceria nanoparticles according to one embodiment of the present application.
도 4 의 (A)를 참조하면 세리아 나노입자가 물에서 안정적으로 분산이 가능한 것을 확인할 수 있다.Referring to (A) of FIG. 4 , it can be confirmed that the ceria nanoparticles can be stably dispersed in water.
도 4 의 (B)를 참조하면, 균일한 크기분포를 가지는 직경 약 5 nm 크기의 세리아 나노입자를 확인할 수 있다.Referring to (B) of FIG. 4 , ceria nanoparticles having a uniform size distribution and having a diameter of about 5 nm can be confirmed.
도 5 는 본원의 일 실험예에 따른 DLS에서 측정된 탈이온수에 분산된 세리아 나노입자의 표면 전위 측정 결과이다.5 is a surface potential measurement result of ceria nanoparticles dispersed in deionized water measured by DLS according to an experimental example of the present application.
도 5 를 참조하면, 나노입자 표면의 제타 전위가 25.37±1.63 mV이므로 수용액 상에서 분산도가 높은 상태로 장기 보관이 가능할 뿐만 아니라, 음전하를 띤 알지네이트 하이드로젤 매트릭스 상에서도 강하게 결합되어 방출되지 않고 균일한 분산이 가능하다.Referring to FIG. 5, since the zeta potential of the surface of the nanoparticles is 25.37 ± 1.63 mV, long-term storage in a highly dispersed state in an aqueous solution is possible, and uniform dispersion without being strongly bound and released even on a negatively charged alginate hydrogel matrix this is possible
도 6 은 본원의 일 실험예에 따른 세리아 나노입자의 XRD 결과이다.6 is an XRD result of ceria nanoparticles according to an experimental example of the present application.
도 6 을 참조하면, 측정된 피크가 CeO2의 구조를 가지는 것을 확인할 수 있다.Referring to FIG. 6 , it can be confirmed that the measured peak has a structure of CeO 2 .
도 7 은 본원의 일 실험예에 따른 세리아 나노입자의 XPS 결과이다.7 is an XPS result of ceria nanoparticles according to an experimental example of the present application.
도 7 을 참조하면, Ce3+와 Ce4+의 혼합상태를 확인할 수 있었다.Referring to FIG. 7 , a mixed state of Ce 3+ and Ce 4+ could be confirmed.
[실험예 2] 세리아 나노입자의 활성산소종 제거 능력 실험[Experimental Example 2] Test of reactive oxygen species removal ability of ceria nanoparticles
도 8 은 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.8 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 8 을 참조하면, Amplex™ Red Hydrogen Peroxide/Peroxidase Assay 를 이용하여 물질의 카탈라아제-모방 활성도를 측정하였고, 세륨의 양이 증가할수록 남아있는 과산화수소의 양이 줄어드는 것을 확인할 수 있었다.Referring to FIG. 8, the catalase-mimetic activity of the material was measured using the Amplex™ Red Hydrogen Peroxide/Peroxidase Assay, and it was confirmed that the amount of remaining hydrogen peroxide decreased as the amount of cerium increased.
도 9 는 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.9 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 9 를 참조하면, SOD Assay 를 이용하여 물질의 슈퍼옥사이드 디스뮤타아제-모방 활성도를 측정하였고, 세륨의 양이 증가할수록 SOD 활성이 증가한 것을 확인할 수 있었다.Referring to FIG. 9 , the superoxide dismutase-mimetic activity of the material was measured using the SOD Assay, and it was confirmed that the SOD activity increased as the amount of cerium increased.
도 10 은 본원의 일 실험예에 따른 세리아 나노입자의 활성산소종 제거능력을 측정한 그래프이다.10 is a graph measuring active oxygen species removal ability of ceria nanoparticles according to an experimental example of the present application.
도 10 을 참조하면, Hydroxyl Radical Antioxidant Capacity Assay를 이용하여 물질의 하이드록실 라디칼 제거도를 측정하였고, 세륨의 양이 증가할수록 생성되는 하이드록실 라디칼이 줄어드는 것을 확인할 수 있었다.Referring to FIG. 10, the degree of hydroxyl radical removal of the material was measured using the Hydroxyl Radical Antioxidant Capacity Assay, and it was confirmed that the amount of hydroxyl radicals generated decreased as the amount of cerium increased.
실험예 2 를 통해, 본원의 피부질환용 하이드로겔 패치에 사용되는 나노입자인 세리아 나노입자가 H2O2, 산소 라디칼, 하이드록실 라디칼과 같은 대표적인 활성산소종을 효과적으로 제거함을 확인할 수 있었다.Through Experimental Example 2, it was confirmed that ceria nanoparticles, which are nanoparticles used in the hydrogel patch for skin diseases of the present application, effectively remove representative active oxygen species such as H 2 O 2 , oxygen radicals, and hydroxyl radicals.
[실험예 3] 하이드로겔의 특성 측정[Experimental Example 3] Measurement of properties of hydrogel
도 11 은 본원의 일 실시예 및 비교예에 따른 하이드로겔의 주사전자 현미경 이미지 및 X선 분광분석의 결과이다.11 is a result of scanning electron microscope images and X-ray spectroscopy of hydrogels according to an example and a comparative example of the present application.
도 11 을 참조하면, 실시예 및 비교예의 하이드로겔 모두 포어 구조를 가지고 있으며 실시예의 경우 하이드로겔 내부에 세리아 나노 입자가 균일하게 분포 되어있음을 확인할 수 있다.Referring to FIG. 11 , it can be seen that both the hydrogels of Example and Comparative Example have a pore structure, and in the case of Example, ceria nanoparticles are uniformly distributed inside the hydrogel.
도 12 의 (A)는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 첨가량에 따른 가시광선 영역에서의 투과도를 측정한 그래프이며, (B)는 본원의 일 실시예 및 비교예에 따른 하이드로겔의 수분 함유량의 측정 결과이다. Figure 12 (A) is a graph measuring the transmittance in the visible light region according to the addition amount of nanoparticles of the hydrogel according to an experimental example of the present application, (B) is a hydrogel according to an embodiment and a comparative example of the present application It is the measurement result of the water content of the gel.
도 12 의 (A)를 참조하면, 세리아 나노입자의 첨가량이 증가할수록 투과도는 낮아지지만, 8 mM의 세리아 나노입자가 담지된 하이드로겔의 경우에도 패치를 붙인 상태에서 상처 부위를 관찰할 수 있는 정도의 투과도를 가지고 있음을 확인할 수 있었다.Referring to (A) of FIG. 12, as the amount of ceria nanoparticles added increases, the permeability decreases, but even in the case of a hydrogel loaded with 8 mM ceria nanoparticles, the extent to which a wound can be observed with a patch applied It was confirmed that the permeability of
도 12 의 (B)를 참조하면, 세리아 나노입자의 담지 여부와 관계없이 하이드로젤의 수분 함유량은 100% 가까이 되는 것을 확인할 수 있었다.Referring to (B) of FIG. 12, it was confirmed that the water content of the hydrogel was close to 100% regardless of whether or not the ceria nanoparticles were supported.
[실험예 4] 기계적 물성 실험[Experimental Example 4] Mechanical property test
하이드로겔 내의 나노입자 담지 여부에 따른 기계적 물성을 비교하기 위한 실험을 진행했다.Experiments were conducted to compare mechanical properties depending on whether or not nanoparticles were supported in the hydrogel.
도 13 은 본원의 일 실시예 및 비교예에 따른 하이드로겔의 기계적 물성을 측정한 결과이다. 13 is a result of measuring mechanical properties of hydrogels according to one embodiment and comparative example of the present application.
도 13 을 참조하면, 누르는 힘을 측정하는 압축 실험(Compression test)와 당기는 힘을 측정하는 인장 실험(Tensile test)를 통해 탄성계수를 측정했을 때, 세리아 나노 입자의 담지 여부는 기계적 물성에 큰 영향을 주지 않는 것으로 나타났다. Referring to FIG. 13, when the modulus of elasticity is measured through a compression test to measure the pressing force and a tensile test to measure the pulling force, whether the ceria nanoparticles are supported has a significant effect on the mechanical properties. has been shown not to give
실험예 4 를 통해 실시예에 따른 하이드로겔은 D-(+)-Gluconic acid δ-lactone의 첨가를 통해 패치로서 사용되기 적합한 정도의 기계적 물성을 지님을 확인하였다.Through Experimental Example 4, it was confirmed that the hydrogel according to the example had mechanical properties suitable for use as a patch through the addition of D-(+)-Gluconic acid δ-lactone.
[실험예 5] 하이드로겔의 활성산소종 제거 능력 실험[Experimental Example 5] Hydrogel's ability to remove reactive oxygen species
도 14 는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 함량에 따른 활성산소종 제거능력을 측정한 결과이다.14 is a result of measuring the ability to remove reactive oxygen species according to the content of nanoparticles of a hydrogel according to an experimental example of the present application.
도 14 를 참조하면, Amplex™ Red Hydrogen Peroxide/Peroxidase Assay를 이용하여 물질의 카탈라아제-모방 활성도를 측정하였다. 세리아 나노입자의 양이 증가할수록 남아있는 과산화수소의 양이 줄어드는 것을 확인할 수 있었다.Referring to FIG. 14, the catalase-mimetic activity of the material was measured using Amplex™ Red Hydrogen Peroxide/Peroxidase Assay. It was confirmed that the amount of remaining hydrogen peroxide decreased as the amount of ceria nanoparticles increased.
도 15 는 본원의 일 실험예에 따른 하이드로겔의 나노입자의 함량에 따른 활성산소종 제거능력을 측정한 결과이다.15 is a result of measuring the ability to remove reactive oxygen species according to the content of nanoparticles of a hydrogel according to an experimental example of the present application.
도 15 를 참조하면, Hydroxyl Radical Antioxidant Capacity Assay를 이용하여 물질의 하이드록실 라디칼 제거도를 측정하였다. 세리아 나노입자의 양이 증가할수록 생성되는 하이드록실 라디칼이 줄어드는 것을 확인할 수 있었다.Referring to FIG. 15, the degree of hydroxyl radical removal of the material was measured using a Hydroxyl Radical Antioxidant Capacity Assay. It was confirmed that as the amount of ceria nanoparticles increased, the number of hydroxyl radicals generated decreased.
실험예 5 를 통해, 본원의 일 실시예에 따른 하이드로겔 패치가 효과적인 활성산소종 제거 능력을 지니고 있음을 확인할 수 있었다.Through Experimental Example 5, it was confirmed that the hydrogel patch according to an embodiment of the present application has an effective reactive oxygen species removal ability.
[실험예 6][Experimental Example 6]
도 16 의 (A)는 본원의 일 실험예에 따른 하이드로겔의 세포독성을 측정한 결과이며, (B)는 과산화수소가 포함된 세포배양액에서의 세포구제효과를 측정한 결과이며, (C)는 DNCB가 포함된 세포 배양액에서의 세포구제효과를 측정한 결과이다. Figure 16 (A) is the result of measuring the cytotoxicity of the hydrogel according to one experimental example of the present application, (B) is the result of measuring the cell rescue effect in the cell culture medium containing hydrogen peroxide, (C) is This is the result of measuring the cell rescue effect in the cell culture medium containing DNCB.
도 16 의 (A)를 참조하면, 세리아 나노 입자의 담지 여부와 무관하게 하이드로젤은 세포 독성이 거의 없는 것으로 나타났고, 도 17 의 (B)를 참조하면, 세리아 나노입자의 함량이 증가할수록 세포의 생존률이 높은 것을 확인할수 있으며, 세리아 나노입자의 함량이 8 mM인 하이드로겔의 과산화수소 존재 하에서 세포의 생존율은 세리아 나노입자가 없는 하이드로겔에 비해 약 20% 정도 높은 것을 확인할 수 있었다. 도 17 의 (C)를 참고하면, 세리아 나노 입자가 들어간 하이드로젤에서 세포 내 활성산소의 양이 50% 정도 감소함을 알 수 있다. Referring to (A) of FIG. 16, it was found that the hydrogel had almost no cytotoxicity regardless of whether or not ceria nanoparticles were supported, and referring to (B) of FIG. 17, as the content of ceria nanoparticles increased, the cell It can be confirmed that the survival rate is high, and the survival rate of cells in the presence of hydrogen peroxide in the hydrogel having ceria nanoparticles of 8 mM is about 20% higher than that of the hydrogel without ceria nanoparticles. Referring to (C) of FIG. 17 , it can be seen that the amount of intracellular active oxygen is reduced by about 50% in the hydrogel containing ceria nanoparticles.
[실험예 7][Experimental Example 7]
본원의 피부질환용 하이드로겔 패치의 치료 효과를 확인하기 위한 실험을 진행했다. 과산화수소 3% 용액을 묻힌 거즈를 쥐의 등 피부에 붙이고 그 위에 본원의 일 실시예의 하이드로겔을 부착하여 피부에 나타난 과산화수소의 독성의 영향을 관찰했다. An experiment was conducted to confirm the therapeutic effect of the hydrogel patch for skin diseases of the present application. Gauze soaked in a 3% hydrogen peroxide solution was attached to the back skin of the rat, and the hydrogel of one embodiment of the present application was attached thereon to observe the toxic effect of hydrogen peroxide on the skin.
도 17 은 본원의 일 실험예에 따른 하이드로겔 패치의 피부에서의 치료 효과를 관찰한 결과이다. 17 is a result of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application.
도 17 에서, 정상군은 과산화수소 거즈를 적용하지 않은 건강한 피부이며, 비교군은 과산화수소 거즈를 피부에 적용하여 강한 산화적 자극을 주고 치료를 진행하지 않은 피부이며, 비교예 치료군은 과산화수소 거즈를 피부에 적용한 후 그 위에 비교예에 따른 세리아 나노입자가 담지되어 있지 않은 하이드로겔을 부착한 피부이며, 실시예 치료군은 과산화수소 거즈를 피부에 적용한 후 그 위에 실시예에 따른 세리아 나노입자가 담지된 하이드로겔을 부착한 피부를 의미한다.17, the normal group is healthy skin to which hydrogen peroxide gauze is not applied, the control group is skin to which hydrogen peroxide gauze is applied to the skin to give strong oxidative stimulation and is not treated, and the comparative example treatment group is the skin to which hydrogen peroxide gauze is applied to the skin After application, the hydrogel on which the ceria nanoparticles are not supported according to the comparative example is attached to the skin, and the treatment group in the example is a hydrogen peroxide gauze applied to the skin, and then the hydrogel on which the ceria nanoparticles are supported according to the example is applied. It means attached skin.
도 17 을 참조하면, 육안으로 상처부위를 확인했을 때, 실시예에 따른 하이드로겔을 부착한 실시예 치료군의 경우 상처의 크기가 가장 작은 것을 확인할 수 있었다. Referring to FIG. 17, when visually checking the wound, it was confirmed that the size of the wound was the smallest in the case of the example treatment group to which the hydrogel according to the example was attached.
도 18 의 (A)는 도 17 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 표피 두께를 측정한 결과를 나타낸 그래프이다.(A) of FIG. 18 is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 17, and (B) is a graph showing the result of epidermal thickness measurement.
도 18 의 (A)를 참조하면, 정상군, 비교군, 비교예 치료군 및 실시예 치료군의 피부 조직을 회수하여 헤마톡실린&에오신(H&E) 염색을 하여 표피(Epidermis) 두께(화살표)의 변화를 비교했을 때, 비교군과 비교예 치료군에 비해 실시예 치료예의 표피의 두께가 가장 적게 증가한 것을 확인할 수 있었다. 이를 통해, 본원의 일 실시예에 따른 하이드로겔 패치 내의 세리아 나노 입자가 거즈에 존재하는 과산화수소를 즉각적으로 제거함으로써 활성산소종에 직접적으로 노출되었을 때 피부에 주는 영향을 최소화할 수 있음을 알 수 있었다.Referring to (A) of FIG. 18, the skin tissues of the normal group, the comparative group, the comparative example treatment group, and the example treatment group were recovered and stained with hematoxylin & eosin (H&E) to show changes in epidermis thickness (arrow) When comparing, it was confirmed that the thickness of the epidermis of the Example treatment example increased the least compared to the Comparative group and the Comparative Example treatment group. Through this, it was found that the ceria nanoparticles in the hydrogel patch according to an embodiment of the present application can minimize the effect on the skin when directly exposed to reactive oxygen species by immediately removing hydrogen peroxide present in the gauze. .
[실험예 8][Experimental Example 8]
본원의 피부질환용 하이드로겔 패치의 치료 효과를 확인하기 위한 실험을 진행했다. 과산화수소 8% 용액을 묻힌 거즈를 쥐의 등 피부에 하루 동안 붙여 상처를 유발한 후, 본원의 일 실시예에 따라 제조된 하이드로겔 패치를 상처부위에 부착하여 6 일 간 치료한 결과이다.An experiment was conducted to confirm the therapeutic effect of the hydrogel patch for skin diseases of the present application. This is the result of applying a gauze soaked with an 8% hydrogen peroxide solution to the back skin of a rat for one day to induce wounds, and then attaching a hydrogel patch prepared according to an embodiment of the present application to the wound and treating it for 6 days.
도 19 의 (A)는 본원의 일 실험예에 따른 하이드로겔 패치의 피부에서의 치료 효과를 관찰한 이미지이며, (B)는 시간 경과에 따른 피부에서의 상처의 크기를 측정한 그래프이다.Figure 19 (A) is an image of observing the treatment effect on the skin of the hydrogel patch according to an experimental example of the present application, (B) is a graph measuring the size of the wound on the skin over time.
도 19 에서, 정상군은 과산화수소 거즈로 자극을 주지 않은 피부이며, 비교군은 과산화수소 거즈를 부착하여 강한 산화적 자극을 주고 이를 떼어 낸 후 치료를 진행하지 않은 피부이며, 비교예 치료군은 과산화수소 거즈 부착하여 강한 산화적 자극을 주고 이를 떼어 낸 후 비교예에 따른 세리아 나노입자가 담지되지 않은 하이드로겔을 부착하여 치료한 피부이며, 실시예 치료군은 과산화수소 거즈 부착하여 강한 산화적 자극을 주고 이를 떼어 낸 후 실시예에 따른 세리아 나노입자가 담지된 하이드로겔을 부착하여 치료한 피부를 의미한다.In FIG. 19, the normal group is skin that is not stimulated with hydrogen peroxide gauze, and the control group is skin that is not treated after giving strong oxidative stimulation by attaching hydrogen peroxide gauze and removing it, and the comparative example treatment group is skin that is not treated with hydrogen peroxide gauze After giving a strong oxidative stimulus and removing it, the treated skin was treated by attaching a hydrogel not loaded with ceria nanoparticles according to the comparative example. It means the skin treated by attaching the hydrogel carrying the ceria nanoparticles according to the embodiment.
도 19 의 (A)를 참조하면, 육안으로 확인하였을 때 실시예 치료군의 경우 상처의 크기가 가장 많이 감소한 것을 확인할 수 있으며, (B)를 참조하면, 실시예 치료군의 경우 비교군 및 비교예 치료군에 비해 3 일차에 상처의 크기 증가량이 가장 낮았으며, 7일차에 상처의 크기가 가장 많이 감소한 것을 확인할 수 있었다.Referring to (A) of FIG. 19, it can be seen that the size of the wound decreased the most in the case of the Example treatment group when visually confirmed, and referring to (B), in the case of the Example treatment group, the comparative group and the comparative example treatment group Compared to , the increase in the size of the wound was the lowest on the 3rd day, and it was confirmed that the size of the wound decreased the most on the 7th day.
도 20 의 (A)는 도 19 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 표피 두께를 측정한 결과를 나타낸 그래프이다.(A) of FIG. 20 is an image obtained by measuring epidermal thickness after recovering the skin tissue of FIG. 19, and (B) is a graph showing the result of epidermal thickness measurement.
도 20 을 참조하면, 정상군, 비교군, 비교예 치료군 및 실시예 치료군의 피부 조직을 회수하여 헤마톡실린&에오신 염색을 하여 표피 두께(화살표)의 변화를 비교했을 때, 비교군과 비교예 치료군에 비해 실시예 치료군의 표피의 두께가 얇게 나타난 것을 확인할 수 있다. 이를 통해, 본원의 일 실시예에 따른 피부질환용 하이드로겔 패치가 과산화수소에 노출되어 손상된 피부 조직을 치유하는 데에 긍정적인 영향을 준다는 것을 알 수 있다.Referring to Figure 20, when comparing the change in epidermal thickness (arrow) by recovering the skin tissues of the normal group, the comparative group, the comparative example treatment group, and the example treatment group and staining with hematoxylin & eosin, the comparison group and the comparative example It can be seen that the thickness of the epidermis of the Example treatment group was thinner than that of the treatment group. Through this, it can be seen that the hydrogel patch for skin diseases according to an embodiment of the present application has a positive effect on healing skin tissue damaged by exposure to hydrogen peroxide.
[실험예 9][Experimental Example 9]
본원의 피부질환용 하이드로겔 패치의 아토피 피부염 치료 효과를 확인하기 위한 실험을 진행했다. 화학 물질을 이용하여 쥐의 등에 아토피 질환을 유발한 동물 모델을 제작하고, 본원의 일 실시예에 따라 합성된 하이드로젤 패치를 부착하여 아토피 치료 효과를 관찰했다.An experiment was conducted to confirm the atopic dermatitis treatment effect of the hydrogel patch for skin diseases of the present application. An animal model that induced atopic disease on the back of a rat was produced using a chemical substance, and the hydrogel patch synthesized according to an embodiment of the present application was attached to observe the atopic treatment effect.
도 21 는 본원의 일 실험예에 따른 하이드로겔 패치의 아토피 치료 효과를 관찰한 이미지이다. 21 is an image observing the atopic treatment effect of the hydrogel patch according to an experimental example of the present application.
도 21 에서, 정상군은 아무처리를 하지 않은 건강한 쥐의 피부이며, 비교군은 DNCB로 아토피 피부염을 유발한 후 치료를 진행하지 않은 피부이며, 비교예 치료군은 DNCB로 아토피 피부염을 유발한 후 비교예에 따른 세리아 나노입자가 담지되지 않은 하이드로겔을 부착하여 치료한 피부이며, 실시예 치료군은 DNCB로 아토피 피부염을 유발한 후 실시예에 따른 세리아 나노입자가 담지된 하이드로겔을 부착하여 치료한 피부를 의미한다.21, the normal group is the skin of healthy mice without any treatment, the control group is the skin that has not been treated after inducing atopic dermatitis with DNCB, and the comparative example treatment group is the comparison after inducing atopic dermatitis with DNCB Skin treated by attaching the hydrogel without carrying ceria nanoparticles according to the example, and in the treatment group of the example, after inducing atopic dermatitis with DNCB, the skin treated by attaching the hydrogel carrying ceria nanoparticles according to the example means
도 21 을 참조하면, 실시예 치료군의 경우, 다른 군과 달리 피부에 존재하는 상처가 거의 사라졌음을 육안 상으로 확인할 수 있다. Referring to FIG. 21 , in the case of the Example treatment group, unlike the other groups, it can be visually confirmed that the scars present on the skin have almost disappeared.
도 22 의 (A)는 도 21 의 피부 조직을 회수하여 표피 두께를 측정한 이미지이며, (B)는 도 21 의 피부 조직을 회수하여 비만세포(Mast cell)를 관찰한 이미지이다.22 (A) is an image obtained by measuring epidermal thickness by recovering the skin tissue of FIG. 21, and (B) is an image obtained by observing mast cells by recovering the skin tissue of FIG. 21.
도 22 의 (A)를 참조하면, 피부 조직의 헤마톡실린&에오신 염색을 진행했을 때 실시예 치료군에서 표피 두께(화살표)의 가장 큰 감소가 나타난 것을 확인할 수 있다. Referring to (A) of FIG. 22 , it can be seen that the greatest decrease in epidermal thickness (arrow) appeared in the Example treatment group when hematoxylin & eosin staining of skin tissue was performed.
도 22 의 (B)를 참조하면, 피부 조직에서 아토피 염증 증가와 관련된 비만세포(Mast cell)를 톨루이딘 블루로 염색하여 관찰한 결과, 실시예 치료군에서 그 수가 가장 적은것을 확인할 수 있다.Referring to (B) of FIG. 22, as a result of observing mast cells associated with an increase in atopic inflammation in skin tissue by staining with toluidine blue, it can be seen that the number is the lowest in the Example treatment group.
도 23 은 본원의 일 실험예에 따른 효소결합면역흡착검사(ELISA) 분석 결과이다.23 is an enzyme-linked immunosorbent assay (ELISA) analysis result according to an experimental example of the present application.
도 23 을 참조하면, 아토피 질환의 바이오 마커인 IgE 항체, 염증성 사이토카인인 IL-1β 및 Th2 사이토카인인 IL-4의 농도 모두 실시예 치료군에서 큰 감소를 보여주는 것을 확인할 수 있다.Referring to FIG. 23 , it can be seen that the concentrations of IgE antibody, which is a biomarker of atopic disease, IL-1β, which is an inflammatory cytokine, and IL-4, which is a Th2 cytokine, all show a great decrease in the Example treatment group.
도 24는 도 21 의 피부 조직을 회수하여 조직에 남아있는 세리아 나노 입자의 양을 분석한 결과이다.FIG. 24 is a result of analyzing the amount of ceria nanoparticles remaining in the tissue after recovering the skin tissue of FIG. 21 .
도 24를 참조하면, 피부 조직에 세리아 나노 입자의 침투는 없는 것으로 나타났으며, 나노 입자가 체내에 들어감으로써 발생될 수 있는 독성의 문제는 없을 것임을 알 수 있다.Referring to FIG. 24, it was found that there was no penetration of ceria nanoparticles into the skin tissue, and it could be seen that there would be no toxicity problem that may occur when the nanoparticles enter the body.
이를 통해 본원의 피부질환용 하이드로겔 패치가 아토피로 유발된 피부조직의 훼손을 크게 회복시킬 수 있을 뿐만 아니라, 면역 억제 작용을 나타내 아토피 질환의 개선 및 치료에 긍정적인 영향을 줄 수 있음을 확인할 수 있었다. Through this, it can be confirmed that the hydrogel patch for skin diseases of the present application can not only greatly recover the damage of skin tissue caused by atopy, but also have a positive effect on the improvement and treatment of atopic disease by exhibiting an immunosuppressive action. there was.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is for illustrative purposes, and those skilled in the art will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof should be construed as being included in the scope of the present application.
Claims (12)
- 고분자를 포함하는 하이드로겔; 및Hydrogel containing a polymer; and상기 하이드로겔 내에 분산된 나노입자;nanoparticles dispersed in the hydrogel;를 포함하고,including,상기 하이드로겔 및 상기 나노입자는 상이한 전하를 가지는 것인,The hydrogel and the nanoparticles having different charges,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 1 항에 있어서,According to claim 1,상기 하이드로겔 및 상기 나노입자가 상이한 전하를 가지는 것으로 인해 상기 하이드로겔 및 상기 나노입자의 결합력이 증가하는 것인,Due to the hydrogel and the nanoparticles having different charges, the bonding strength of the hydrogel and the nanoparticles increases,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 1 항에 있어서,According to claim 1,상기 하이드로겔은 가교촉진제를 추가 포함하는 것인,The hydrogel further comprises a crosslinking accelerator,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 3 항에 있어서,According to claim 3,상기 가교촉진제에 의해 상기 피부질환용 하이드로겔 패치의 기계적 물성이 향상되는 것인,The cross-linking accelerator improves the mechanical properties of the hydrogel patch for skin diseases,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 3 항에 있어서,According to claim 3,상기 가교촉진제는 글루코노델타락톤(GDL), 다이페닐아이오도늄 나이트레이트(diphenyliodonium nitrate), 다이페닐아이오도늄-2-카복실레이트(diphenyliodonium-2-carboxylate) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인,The crosslinking accelerator is from the group consisting of gluconodeltalactone (GDL), diphenyliodonium nitrate, diphenyliodonium-2-carboxylate and combinations thereof which includes selected ones,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 1 항에 있어서,According to claim 1,상기 나노입자에 의해 피부 질환을 유발하는 활성 산소종이 제거되는 것인,Reactive oxygen species that cause skin diseases are removed by the nanoparticles,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 6 항에 있어서,According to claim 6,상기 나노입자는 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인,The nanoparticles are selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot, and combinations thereof. Which includes being selected from,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 제 1 항에 있어서,According to claim 1,상기 고분자는 알지네이트(Alg), 폴리에틸렌글리콜(PEG), 키토산(Chitosan), 젤라틴(Gelatin), 폴리아크릴산(PAAc), 폴리아크릴아마이드(PAM), 폴리나이팜(PNIPAM), 아가(Agar), 폴리(2-아크릴아미도-2-메틸프로판술폰산)(PAMPS) 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인,The polymer is alginate (Alg), polyethylene glycol (PEG), chitosan, gelatin, polyacrylic acid (PAAc), polyacrylamide (PAM), polynipam (PNIPAM), agar (Agar), poly( 2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and combinations thereof,피부질환용 하이드로겔 패치.Hydrogel patch for skin diseases.
- 나노입자를 포함하는 제 1 용액을 제조하는 단계;preparing a first solution comprising nanoparticles;가교제 및 고분자를 포함하는 제 2 용액을 제조하는 단계; 및preparing a second solution containing a crosslinking agent and a polymer; and상기 제 2 용액에 상기 제 1 용액 및 가교촉진제를 첨가하여 혼합 용액을 제조하는 단계;preparing a mixed solution by adding the first solution and a crosslinking accelerator to the second solution;를 포함하는,including,피부질환용 하이드로겔 패치의 제조 방법.Method for manufacturing a hydrogel patch for skin diseases.
- 제 9 항에 있어서,According to claim 9,상기 혼합 용액을 몰드에 부어 고형화 시키는 단계를 추가 포함하는 것인,Further comprising the step of solidifying the mixed solution by pouring it into a mold,피부질환용 하이드로겔 패치의 제조 방법.Method for manufacturing a hydrogel patch for skin diseases.
- 제 9 항에 있어서,According to claim 9,상기 나노입자는 산화철, 망간 옥사이드, 바나듐 옥사이드, 바나듐 옥사이드 설페이트, 징크 옥사이드, 금, 백금, 구리, 멜라민, 리그닌, 폴리페놀, 카본 나노 튜브, 그래핀, 카본 퀀텀 닷 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인,The nanoparticles are selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, vanadium oxide sulfate, zinc oxide, gold, platinum, copper, melamine, lignin, polyphenol, carbon nanotube, graphene, carbon quantum dot, and combinations thereof. Which includes being selected from,피부질환용 하이드로겔 패치의 제조 방법.Method for manufacturing a hydrogel patch for skin diseases.
- 제 9 항에 있어서,According to claim 9,상기 가교제는 탄산칼슘(CaCO3), 염화칼슘(CaCl2), 황산칼슘(CaSO4) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인,The crosslinking agent is selected from the group consisting of calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ) and combinations thereof,피부질환용 하이드로겔 패치의 제조 방법.Method for manufacturing a hydrogel patch for skin diseases.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0088918 | 2021-07-07 | ||
KR1020210088918A KR102584760B1 (en) | 2021-07-07 | 2021-07-07 | Hydrogel patch for skin diseases and the preparing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023282525A1 true WO2023282525A1 (en) | 2023-01-12 |
Family
ID=84800675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/009282 WO2023282525A1 (en) | 2021-07-07 | 2022-06-29 | Hydrogel patch for skin disease, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102584760B1 (en) |
WO (1) | WO2023282525A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116144131A (en) * | 2023-02-24 | 2023-05-23 | 长春吉原生物科技有限公司 | Hydrogel loaded with cerium oxide nano particles and preparation method thereof |
CN116159597A (en) * | 2023-02-24 | 2023-05-26 | 长春吉原生物科技有限公司 | Cerium oxide hydrogel microsphere, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180104386A (en) * | 2017-03-13 | 2018-09-21 | 동국대학교 산학협력단 | Mutifunctional bionanocomposite hydrogel, method of manufacturing thereof and use thereof |
KR101963513B1 (en) * | 2017-10-23 | 2019-03-28 | 성균관대학교산학협력단 | Contact lens comprising ceria particles and method of fabricating the same |
-
2021
- 2021-07-07 KR KR1020210088918A patent/KR102584760B1/en active IP Right Grant
-
2022
- 2022-06-29 WO PCT/KR2022/009282 patent/WO2023282525A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180104386A (en) * | 2017-03-13 | 2018-09-21 | 동국대학교 산학협력단 | Mutifunctional bionanocomposite hydrogel, method of manufacturing thereof and use thereof |
KR101963513B1 (en) * | 2017-10-23 | 2019-03-28 | 성균관대학교산학협력단 | Contact lens comprising ceria particles and method of fabricating the same |
Non-Patent Citations (5)
Title |
---|
BARBOSA ANA ISABEL, TIAGO TORRES, SOFIA A. COSTA LIMA, SALETTE REIS: "Hydrogels: A Promising Vehicle for the Topical Management of Atopic Dermatitis", ADVANCED THERAPEUTICS, vol. 4, no. 7, 5 May 2021 (2021-05-05), pages 2100028, XP093022666, DOI: 10.1002/adtp.202100028 * |
KIM YE EUN, CHOI SEUNG WOO, KIM MIN KYUNG, NGUYEN THANH LOC, KIM JAEYUN: "Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 22, no. 5, 9 March 2022 (2022-03-09), US , pages 2038 - 2047, XP093022664, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.1c04899 * |
KIM, YE-EUN ET AL.: "Catalytic hydrogel for treatment to atopic dermatitis", 2020 KOREAN INSTITUTE OF CHEMICAL ENGINEERS KICHE FALL MEETING & INTERNATIONAL SYMPOSIUM; E-CONFERENCE, vol. 26, no. 1, 16 October 2020 (2020-10-16), pages 303, XP009542602 * |
LI CHUN, ZHOU XIAOHU, ZHOU DAN, CHEN FAN, SHEN JIAYAN, LI HUIFANG, ZHANG JIE, ZHOU XUECHANG: "Ionic–Covalent Hybrid Tough Hydrogels Enabled by the in Situ Release of Metal Ions from Insoluble Salts or Alkalis", ACS APPLIED POLYMER MATERIALS, vol. 1, no. 12, 13 December 2019 (2019-12-13), pages 3222 - 3226, XP093022667, ISSN: 2637-6105, DOI: 10.1021/acsapm.9b00960 * |
THI PHUONG LE; LEE YUNKI; TRAN DIEU LINH; THI THAI THANH HOANG; KANG JEON IL; PARK KYUNG MIN; PARK KI DONG: "In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy", ACTA BIOMATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 103, 14 December 2019 (2019-12-14), AMSTERDAM, NL, pages 142 - 152, XP086021069, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2019.12.009 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116144131A (en) * | 2023-02-24 | 2023-05-23 | 长春吉原生物科技有限公司 | Hydrogel loaded with cerium oxide nano particles and preparation method thereof |
CN116159597A (en) * | 2023-02-24 | 2023-05-26 | 长春吉原生物科技有限公司 | Cerium oxide hydrogel microsphere, preparation method and application thereof |
CN116144131B (en) * | 2023-02-24 | 2024-08-02 | 长春吉原生物科技有限公司 | Hydrogel loaded with cerium oxide nano particles and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102584760B1 (en) | 2023-10-05 |
KR20230008359A (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023282525A1 (en) | Hydrogel patch for skin disease, and method for manufacturing same | |
WO2010079978A2 (en) | Composition for improving inflammatory disease using abh antigens | |
WO2022260366A1 (en) | Prussian blue/polyvinylpyrrolidone nanoparticle composite and use thereof | |
WO2016043547A1 (en) | Tissue repair composition and preparation method therefor | |
WO2021029541A1 (en) | Elastic liposome composition comprising sucrose-based surfactant and cosmetic composition containing same | |
WO2020096404A1 (en) | Ultraviolet protection patch and application method thereof | |
WO2019004738A2 (en) | Use of composition comprising adipose stem cell-derived exosome as effective ingredient in alleviating dermatitis | |
WO2020060009A1 (en) | Hydrogel pack including dried plant | |
WO2020218670A1 (en) | Mask pack composition having improved wrinkle-reducing strength | |
WO2020091463A1 (en) | Pharmaceutical composition comprising isolated mitochondria for preventing or treating tendinopathy | |
WO2021045520A1 (en) | Cosmetic composition comprising fibroblast growth factor 17 | |
WO2023027330A1 (en) | Hyaluronic acid (ha) filler composition using polyethylene glycol (peg) and glycolic acid (ga) as crosslinking agents and method for preparing same | |
WO2021162408A1 (en) | Water-dispersible, oil-free, and uv-blocking cosmetic composition and preparation method therefor | |
WO2019045214A1 (en) | Composition for preventing or treating atopic dermatitis | |
WO2021040275A1 (en) | Dispersion of cerium oxide for enhancing skin barrier, skin moisturizing, and/or blocking fine dust, and cosmetic composition comprising same | |
WO2019151602A1 (en) | Composition for forming artificial skin layer by using hydrophobic nanoparticles, and method for preparing artificial skin layer by using same | |
WO2017018847A1 (en) | Composition for inhibiting formation of snare complex, containing myricetin derivatives | |
EP2488166B1 (en) | Transdermal therapeutic systems containing 4-n-butylresorcinol | |
WO2020241925A1 (en) | Lipid nanoparticle complex capturing aptide fused with cell-penetrating material and use thereof | |
WO2021040141A1 (en) | Animal adipose tissue-derived extracellular matrix, and preservation solution of animal adipose tissue-derived extracellular matrix | |
WO2019132351A1 (en) | Peptide for inhibiting skin inflammation and composition containing same for prevention or treatment of skin inflammation | |
WO2019190010A1 (en) | Ethanol extraction composition of citri unshius pericarpium, magnolia officinalis, corydalis remota, and acacia catechu, having effects of skin wrinkle amelioration, moisturization, antioxidation, or inflammation reduction | |
WO2023287260A1 (en) | Molecular assembly of bile acid or bile salt and pharmaceutical composition comprising same for removing local fat | |
WO2021071344A2 (en) | Method for inhibiting formation or expression of collagen by using ultra-high frequency microwave plasma | |
WO2021002739A1 (en) | Pharmaceutical composition for preventing or treating inflammatory skin diseases, containing interleukin-32 protein as active ingredient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22837877 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22837877 Country of ref document: EP Kind code of ref document: A1 |