WO2023282396A1 - Sympathetic nerve stimulation device and control method therefor - Google Patents

Sympathetic nerve stimulation device and control method therefor Download PDF

Info

Publication number
WO2023282396A1
WO2023282396A1 PCT/KR2021/015979 KR2021015979W WO2023282396A1 WO 2023282396 A1 WO2023282396 A1 WO 2023282396A1 KR 2021015979 W KR2021015979 W KR 2021015979W WO 2023282396 A1 WO2023282396 A1 WO 2023282396A1
Authority
WO
WIPO (PCT)
Prior art keywords
sympathetic nerve
remote control
control unit
patient
module
Prior art date
Application number
PCT/KR2021/015979
Other languages
French (fr)
Korean (ko)
Inventor
이정후
Original Assignee
(재)예수병원유지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)예수병원유지재단 filed Critical (재)예수병원유지재단
Publication of WO2023282396A1 publication Critical patent/WO2023282396A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0507Electrodes for the digestive system
    • A61N1/0514Electrodes for the urinary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source

Definitions

  • the present invention relates to a sympathetic nerve stimulation device and a control method thereof, and more particularly, to a sympathetic nerve stimulation device and a control method thereof for improving problems caused by autonomic nervous system disharmony caused by inability of the sympathetic nerve to operate in patients with spinal cord injuries. will be.
  • Nerves are divided into a central nervous system composed of the brain and spine, a peripheral nervous system including a somatic nervous system that transmits signals voluntarily, and an autonomic nervous system that transmits involuntary signals.
  • the somatic nervous system is divided into cranial nerves and spinal nerves, and spinal nerves are further divided into sensory nerves and motor nerves.
  • the autonomic nervous system consists of the sympathetic nervous system and the parasympathetic nervous system, is distributed in the internal organs and blood vessels, functions unconsciously and involuntarily, and functions to maintain a balanced physiological state for all organs of the human body.
  • the autonomic nervous system is characterized by autonomic dominance that is changed by reflection regardless of will, double dominance in which the sympathetic and parasympathetic nerves dominate in one organ, antagonistic dominance in which they act antagonistically with each other, and continuous dominance of the environment inside our body. It maintains stability and makes internal adjustments within the body to the external environment.
  • the parasympathetic nervous system is mainly in charge of normal activities, and the sympathetic nervous system is responsible for the response that activates the systemic response in case of an emergency and quickly recovers the environment in the body.
  • the activity of the sympathetic nervous system is extensive and systemic.
  • the sympathetic nervous system increases cardiovascular activity, leading to an increase in heart rate, myocardial contractility, and blood pressure, and decreases gastrointestinal glands and movement.
  • the parasympathetic nervous system acts locally to reduce heart rate and promote gastrointestinal motility.
  • the parasympathetic nervous system has a weak action point on blood vessels, so the effect of lowering blood pressure is low.
  • the autonomic nervous system is divided into preganglionic neurons and postganglionic neurons, and functions to connect the central nervous system and target organs.
  • Sympathetic preganglionic cells are located in the entire thoracic cord (T1 -T12) and upper lumbar spine (L1 -L2), and come out along the ventral root to form paravertebral ganglia and preganglionic ganglia. ), and connects to postganglionic neurons.
  • the sympathetic preganglionic neurons are short and use acetylcholine as a transmitter, and the postganglionic neurons are long and use norepinephrine, except for the sweat glands.
  • Preganglionic neurons of the parasympathetic nerve are located in the 3rd, 7th, 9th, and 10th cranial neurons and the 2nd, 3rd, and 4th sacral vertebrae, and have long preganglionic neurons and short postganglionic neurons, all of which use acetylcholine as a transmitter use as
  • Autonomic nervous system problems occur in patients with spinal cord injury.
  • autonomic nervous system abnormality occurs as the activity of preganglionic nerve cells falls below the spinal cord injury site.
  • postganglionic neurons are located outside the spinal cord, so cell bodies remain intact in most spinal cord injury conditions, and do not function as they do not receive signals from preganglionic neurons.
  • the signal confirming the decrease in blood pressure through the baroreceptors of the aorta and carotid sinus passes through the spinal cord injury site and fails to stimulate nerve cells after the ganglion of the sympathetic nerve, resulting in inability to activate the sympathetic nerve. , inability to induce vasoconstriction, resulting in orthostatic hypotension.
  • neurogenic bladder disorders such as urinary urgency or frequency occur, which reduces the quality of life. That is, there are many cases in which there is difficulty in walking or using the upper limbs due to spinal cord damage, and in this case, it takes more time than normal to visit the bathroom for urination.
  • the sympathetic nerve relaxes the bladder in the bladder and acts to urinate.
  • urinary urgency occurs due to the weakening of the sympathetic nervous system, patients with spinal cord injuries often do not buy time to go to the bathroom.
  • Patent Documents 1 to 3 below disclose bioimplantation device technology in which a stimulator is implanted inside the body to apply electrical stimulation using an electrical signal.
  • Patent Document 1 to Patent Document 3 focuses only on stimulation of the parasympathetic nerve, and thus has limitations in improving the disharmony of the autonomic nervous system in patients with spinal cord injuries.
  • Patent Document 1 Korean Patent Registration No. 10-1027998 (published on April 13, 2011)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2004-0071166 (published on August 11, 2004)
  • Patent Document 3 Korean Patent Registration No. 10-1648463 (published on August 16, 2016)
  • An object of the present invention is to solve the above problems, and to provide a sympathetic nerve stimulator and a control method capable of solving the autonomic nervous system dissonance of a spinal cord injury patient by applying electrical stimulation to the sympathetic nerve.
  • Another object of the present invention is to provide a sympathetic nerve stimulator and a method for controlling the sympathetic nerve stimulator capable of controlling the dissonance of the autonomic nervous system by applying appropriate stimulation at a time when stimulation is required based on the patient's physiological state.
  • Another object of the present invention is to provide a sympathetic nerve stimulator and a control method capable of selectively stimulating a necessary part by finding an appropriate stimulation point at the level of the spinal cord through learning.
  • the sympathetic nerve stimulator is an electrode for applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient, implanted inside the patient's bladder and providing an electrical signal to the electrode
  • a living body implantation body a measurement unit for measuring the patient's biological state including changes in the patient's blood pressure and posture, and a remote control unit remotely controlling the driving of the living body transplant body through communication with the living body transplant body It is characterized by stimulating the sympathetic nerves of patients with spinal cord injuries to control the disharmony of the autonomic nervous system.
  • the control method of the sympathetic nerve stimulator is (a) implanting electrodes and a living body transplant body inside the sympathetic nerve and bladder of a spinal cord injury patient, and using an electrode connection line (b) applying an electrical signal to the electrodes from a control unit provided in the living body implantation body to apply stimulation to the sympathetic nerve, (c) using a measuring unit to measure the patient's blood pressure and posture, including changes in the patient's body Measuring the biological state and (d) applying an electrical signal to the electrode to stimulate the sympathetic nerve based on the patient's biological state information measured by the measuring unit in the remote control unit or the control unit It is characterized by stimulating the sympathetic nerves of patients with spinal cord injuries to control the disharmony of the autonomic nervous system.
  • an effect of discordance of the autonomic nervous system can be obtained by applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient.
  • the patient's biological state information is continuously measured, and based on the measured biological state information, appropriate stimulation is applied at a time when stimulation is necessary, thereby obtaining an effect of adjusting the autonomic nervous system incoherence.
  • an effect of selectively stimulating a necessary part by finding an appropriate stimulation point at the level of the spinal cord through machine learning for the measured biological state information is obtained.
  • FIG. 1 is a configuration diagram of a sympathetic nerve stimulation device according to a preferred embodiment of the present invention.
  • FIG. 2 is a detailed block configuration diagram of the sympathetic nerve stimulator shown in FIG. 1;
  • FIG. 3 is an enlarged view of a region where the electrode shown in FIG. 1 is installed;
  • FIG. 4 is a flowchart illustrating a step-by-step control method of the sympathetic nerve stimulator according to a preferred embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a sympathetic nerve stimulation device according to a preferred embodiment of the present invention
  • FIG. 2 is a detailed block configuration diagram of the sympathetic nerve stimulation device shown in FIG. 3 is an enlarged view of a region where the electrode shown in FIG. 1 is installed.
  • the sympathetic nerve stimulator 10 includes an electrode 20 for applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient and implanted in the patient's body. It includes a bio implantation body 30 that provides electrical signals to the electrodes 20 and a measurement unit 40 that measures the biological state of the patient.
  • the sympathetic nerve stimulator 10 is a remote control unit that remotely controls the driving of the body 30 through communication with the implanted living body (hereinafter referred to as 'body') 30. (50) may be further included.
  • the measuring unit 40 may include a blood flow meter 41 for measuring the amount of blood flow in the carotid sinus, a body temperature meter 42 for measuring the patient's body temperature, and a posture meter 43 for measuring a change in posture of the main body 30. .
  • the posture measuring device 43 is provided with a sensor such as a gyroscope, a displacement sensor, or an acceleration sensor, and can recognize a change in the patient's posture.
  • a sensor such as a gyroscope, a displacement sensor, or an acceleration sensor
  • the biological state is a state for determining whether the autonomic nervous system is out of sync, and may include a state of blood flow in the patient's carotid sinus, a state of body temperature, a state of the patient's posture, and the like.
  • the biometric state information may include blood flow information of the patient's carotid sinus, body temperature information, and posture information of the patient.
  • the implantation body or the remote control unit determines when sympathetic nerve stimulation is necessary through machine learning on the biological state information, selects a location where stimulation is required, and controls the stimulation to be applied.
  • the remote control unit 50 is provided outside the patient's body and can communicate with the main body 30 in a wireless communication method.
  • the remote control unit 50 receives the biometric state information measured by the measurement unit 40, selects a time and area requiring stimulation through machine learning on the received biometric state information, and selects the selected area.
  • a remote control signal may be generated to stimulate the selected area at the right time.
  • the remote control unit 50 includes a communication module 51 that communicates with the main body 30 in a wireless communication method, a learning module 52 that machine-learns biological state information received through the communication module 51, It may include a signal generation module 53 that generates the remote control signal to stimulate the time and area where stimulation is required based on the result learned in the learning module 52.
  • the remote control unit 50 includes various programs for controlling the driving of the main body 30, a storage module 54 for storing the biometric state information and learning information, and a power supply module 55 for supplying power to each module. ) may be further included.
  • the remote control unit 50 may further include a power transmission module 56 for charging power by transmitting power to the main body 30 in a wireless power transmission method.
  • the remote control unit 50 may be provided as a portable terminal that can be directly operated by a user, or a terminal equipped with a communication function, such as a desktop or laptop computer, tablet PC, or smart phone of a medical staff or an administrator who manages a sympathetic nerve stimulator. .
  • the learning module 52 is provided in the remote control unit 50, but the present invention is not necessarily limited thereto.
  • the present invention can be changed to machine-learn biometric state information in the main body 10 .
  • one or more electrodes 20 may be installed on one or more sympathetic nerve chains.
  • the electrodes 20 are attached to the L2 sympathetic ganglion of the thoracic T6 or upper lumbar spine, respectively, and each electrode 20 selectively stimulates each sympathetic ganglion according to the electrical signal applied from the main body 30. there is.
  • Electrodes 20 are formed in a ring shape or an arc shape so as to surround the sympathetic nerve chain, and are electrically connected to the main body 30 through the electrode connection line 21.
  • the electrode 20 can apply stimulation to the sympathetic nerve chain according to the electrical signal received through the electrode connection line 21 .
  • These electrodes 20 may be inserted and installed up to the sympathetic nerve chain through the guide catheter 21 .
  • a plurality of electrodes 20 may be provided so as to be respectively installed on a plurality of sites to which stimulation is to be applied.
  • the main body 30 is installed in the subcutaneous fat layer of the chest and functions to apply electrical signals to the electrodes 20 so as to stimulate the sympathetic nerve.
  • the main body 30 generates an electrical signal applied to the electrode 20 to control the driving of the electrode 20 and a control unit 31 and a power supply unit to supply power to the control unit 31 and the electrode 20 (32) may be included.
  • main body 30 may further include a communication unit 33 communicating with the remote control unit 50 and a power receiving unit 34 receiving power transmitted from the remote control unit 50 .
  • the power supply unit 32 may include a battery (not shown) for charging power and a charging circuit for charging the battery with commercial power supplied from the outside or power received from the power receiver 34 .
  • the electrode 20 implanted inside the patient's body and the case forming the outer appearance of the main body 30 may be manufactured using biocompatibility materials.
  • the electrode 20 may be manufactured using a biocompatible material among electrically conductive metal materials or synthetic resin materials so as to apply stimulation to the sympathetic nerve.
  • case forming the outer shape of the body 30 may be manufactured using a biocompatible material that meets human safety standards.
  • the biocompatibility defines a bidirectional response, ie the body's response to the substance and the response of the substance to the body's environment.
  • biocompatibility of a medical device refers to the ability of a medical device to perform its intended function with a desired degree of binding within a host without eliciting undesirable local or systemic effects in the host.
  • the biocompatible material is a medical grade or implant grade material.
  • the biocompatible material is polytetrafluoroethylene, expanded polytetrafluoroethylene (ePTFE), polyethyleneterephthalate, polybutyleneterephthalate, polyurethane ( polyurethane, polypropylene, polyethylene, polytrimethyleneterephthalate, polyimide, polyvinylpyrrolidone, polyethyleneglycol, carbon fiber Any one or more of them may be included.
  • the electrode connection line 21 is made of a metal material having electrical conductivity, and a coating layer using a biocompatible material may be formed on the outer surface of the electrode connection line 21 .
  • the electrodes, the main body, and the electrode connection line implanted inside the patient's body are manufactured using biocompatible materials, safety standards can be satisfied even when implanted inside the body.
  • abnormal symptoms such as neurogenic shock, supine hypertension or supine hypotension, abnormal beats such as bradycardia or tachycardia, and hypothermia may occur.
  • patients with spinal cord injuries in the chronic phase may experience abnormal symptoms such as orthostatic hypotension, bladder dysfunction, sexual dysfunction, thermoregulatory dysfunction, and sweating disorder.
  • orthostatic hypotension, neurogenic bladder, ejaculation disorder, etc. occur as the vasoconstriction control function for the splanchnic bed is lost when taking an upright posture.
  • loss of venous blood pump function due to active muscle contraction due to paralysis of lower extremity muscles may be the cause.
  • orthostatic hypotension can be controlled by attaching electrodes to each of the T6 to L2 sympathetic ganglia belonging to the corresponding segment, and generating and activating the corresponding sympathetic ganglion through each electrode.
  • the present invention stimulates T10 to L2, which are sympathetic nerves that act on the neurogenic bladder, to induce bladder relaxation and collect urine, thereby earning time to reach the toilet.
  • the user can directly manipulate the external control unit to stimulate the sympathetic nerve to respond to urgency.
  • the user when an ejaculation is required, the user can directly operate the external control unit to stimulate the sympathetic nerve to ejaculate.
  • the sympathetic nerve stimulator 10 machine-learns the biological state information measured by the measurement unit 40, and based on the learning information, when a low blood pressure situation, a need to collect urine, or an assessment is required, Like when sweating is required, it is determined whether or not it is a time when stimulation of the sympathetic nerve is required, and the sympathetic nerve is stimulated when stimulation is required.
  • control unit 31 may apply electrical signals to the electrodes 20 and control the sympathetic nerves in which the electrodes 20 are installed to be stimulated.
  • control unit 31 may select an electrode 20 that requires stimulation and apply an electrical signal to the selected electrode 20 to selectively stimulate a required part.
  • the remote control unit 50 learns the biological state information received from the main body 30, determines whether or not there is a situation in which stimulation of the sympathetic nerve is required based on the learning information, and stimulates the sympathetic nerve according to the determination result.
  • a remote control signal may be transmitted to the main body 30 to do so.
  • the remote control unit 50 may control the sympathetic nerve to be stimulated when it is determined that orthostatic hypotension occurs or sweating is required based on the patient's biological state information.
  • the remote control unit 50 may generate and transmit a remote control signal to the main body to stimulate the sympathetic nerve according to a user's manipulation command.
  • the user manipulates a button or switch provided on the remote control unit 50 or selects an icon. Then, the remote control unit 50 may generate and transmit a remote control signal to stimulate the sympathetic nerve according to the user's manipulation command.
  • the sympathetic nerve when a user needs sympathetic nerve stimulation during daily life, the sympathetic nerve may be stimulated through direct manipulation, thereby directly controlling disharmony in the autonomic nervous system.
  • the remote control unit 50 may store learning information and judgment information, and share the stored information with the controller 31 of the main body 30 and a management server (not shown).
  • control unit 31 of the main body 30 stores the learning information and judgment information received from the remote control unit 50 in an internal memory (not shown), and communication with the remote control unit 50 is stopped. Even in this state, the sympathetic nerve can be controlled to stimulate using the information stored in the memory.
  • control unit 31 may directly machine-learn biological state information using a learning module provided therein, and control the sympathetic nerve to be stimulated according to the learning result.
  • the management server is communicatively connected to the remote control unit 50 in a wireless or wired communication method, stores and manages information provided from the remote control unit 50 into a database, and transfers the stored information to other remote control units ( 50), it may be provided to a living body implanted in another patient.
  • the present invention measures the patient's biological state information, and based on the information learned through machine learning for the measured information, finds the time when sympathetic nerve stimulation is needed and the stimulation point at the spinal cord level, and selects the necessary area can stimulate
  • FIG. 4 is a flowchart illustrating a control method of the sympathetic nerve stimulator according to a preferred embodiment of the present invention step by step.
  • the electrode 20 and the living body transplant body 30 are implanted in the sympathetic nerve chain and the subcutaneous fat layer of the chest, respectively, and are electrically connected through the electrode connection line 21.
  • step S10 of FIG. 4 the control unit 31 of the main body 30 receives power from the power supply unit 32 and is driven.
  • control unit 31 executes the program stored in the internal memory, and controls the sympathetic nerve to be stimulated by applying an electrical signal to the electrode 20 according to the programmed method at the time of initial driving (S12).
  • step S14 the measuring unit 40 measures the biological state of the patient.
  • the blood flow measuring device 41, the body temperature measuring device 42, and the posture measuring device 43 provided in the measuring unit 40 each measure the blood flow in the patient's carotid sinus, the body temperature, and the change in the patient's posture, and each of the measured information is transmitted to the control unit. forwarded to (31).
  • the controller 31 controls the biological state information measured by the measurement unit 40 to be transmitted to the remote control unit 50 through the communication unit 33 .
  • step S16 the learning module 52 provided in the remote control unit 50 performs machine learning on the biometric state information received through the communication module 51.
  • the signal generation module 53 selects the time and part to stimulate the sympathetic nerve based on the learning information, and generates a remote control signal to stimulate the selected time and part.
  • the remote control signal thus generated is transmitted to the main body 30 through the communication module 51 (S18).
  • step S20 the controller 31 of the main body 30 applies an electrical signal to the electrode 20 to apply a stimulus according to the received remote control signal.
  • the electrode 20 can control the dissonance of the autonomic nervous system by applying stimulation to the sympathetic nerve.
  • the present invention may perform machine learning on biometric state information in a learning module provided in the controller and apply an electrical signal to the electrode based on the learning information.
  • the controller 31 repeatedly performs steps S10 to S20, and even if communication with the remote control unit 50 is stopped, when stimulation is required based on the learning information continuously received from the remote control unit 50. And it can be controlled to select and stimulate a site.
  • the remote control unit 50 generates a remote control signal to stimulate the sympathetic nerve according to a user's manipulation command input in a situation requiring ejaculation or relaxation of the bladder, and the controller 31 controls the remote control signal Accordingly, an electrical signal can be transmitted to the electrode to stimulate the sympathetic nerve.
  • the control unit 31 receives power transmitted from the remote control unit 50 in a wireless power transmission method and controls driving of the charging circuit to charge the battery provided in the power supply unit 32 .
  • the present invention can extend the surgical replacement work cycle when the battery is discharged by charging power to the implanted body in a wireless power transmission method.
  • the present invention can relieve the autonomic nervous system disharmony by applying electrical stimulation to the sympathetic nerves of patients with spinal cord injuries.
  • the present invention can control the autonomic nervous system disharmony by continuously measuring the biological state information of the patient and applying appropriate stimulation at a time when stimulation is necessary based on the measured biological state information.
  • the present invention can selectively stimulate a necessary part by finding an appropriate stimulation point at the level of the spinal cord through machine learning for the measured biological state information.
  • the present invention may apply stimulation to the sympathetic nerve through electrodes in response to a user's manipulation command input in a situation where stimulation of the sympathetic nerve is required.
  • the present invention can effectively control abnormalities such as orthostatic hypotension, ejaculation disorders, and neurogenic bladder disorders by resolving the autonomic nervous system dissonance of patients with spinal cord injuries.
  • the present invention is applied to a sympathetic nerve stimulator and control method technology that relieves the autonomic nervous system disharmony by applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient.

Abstract

The present invention relates to a sympathetic nerve stimulation device and a control method therefor, and is provided with the structure including: an electrode for applying electrical stimulation to a sympathetic nerve of a spinal cord injury patient; a bio-implantable body implanted inside the bladder of the patient and providing an electrical signal to the electrode; a measurement unit for measuring a biological state of the patient; and a remote control unit for remotely controlling the driving of the bio-implantable body through communication with the bio-implantable body, thereby solving the imbalance of an autonomic nervous system through the electrical stimulation applied to the sympathetic nerve of the spinal cord injury patient.

Description

교감신경 자극장치 및 그의 제어방법Sympathetic nerve stimulator and its control method
본 발명은 교감신경 자극장치 및 그의 제어방법에 관한 것으로, 더욱 상세하게는 척수손상 환자에서 교감신경이 작동하지 못하여 발생하는 자율신경계 부조화로 인한 문제를 개선하는 교감신경 자극장치 및 그의 제어방법에 관한 것이다. The present invention relates to a sympathetic nerve stimulation device and a control method thereof, and more particularly, to a sympathetic nerve stimulation device and a control method thereof for improving problems caused by autonomic nervous system disharmony caused by inability of the sympathetic nerve to operate in patients with spinal cord injuries. will be.
신경은 뇌와 척추로 이루어진 중추 신경계와, 수의적으로 신호를 전달하는 체성 신경계와 불수의적 신호를 전달하는 자율 신경계를 포함하는 말초 신경계로 구분된다. Nerves are divided into a central nervous system composed of the brain and spine, a peripheral nervous system including a somatic nervous system that transmits signals voluntarily, and an autonomic nervous system that transmits involuntary signals.
체성 신경계는 뇌 신경(cranial nerve)과 척수 신경으로 나뉘고, 척수 신경은 다시 감각 신경과 운동신경으로 나뉜다. The somatic nervous system is divided into cranial nerves and spinal nerves, and spinal nerves are further divided into sensory nerves and motor nerves.
자율 신경계는 교감 신경계와 부교감 신경계로 구성되며, 내장과 혈관에 분포하고, 무의식적이며 불수의적으로 기능하며, 인체의 전체 장기에 대해 균형적인 생리학적 상태를 유지하는 기능을 한다. The autonomic nervous system consists of the sympathetic nervous system and the parasympathetic nervous system, is distributed in the internal organs and blood vessels, functions unconsciously and involuntarily, and functions to maintain a balanced physiological state for all organs of the human body.
자율 신경계는 의지와 상관없이 반사에 의해 변화되는 자율성 지배, 한 개의 기관에 교감 신경과 부교감 신경이 같이 지배하는 이중 지배, 서로 길항적으로 작용하는 길항 지배, 지속 지배 방식으로 우리 몸 내부의 환경의 안정성을 유지하고 외부 환경에 대해 신체 내부의 내적 조정을 한다. 대체적으로, 평상시 활동은 주로 부교감 신경이 담당하고, 응급사태에 처했을 때 전신적인 반응을 활발히 일으켜 신체 내 환경을 빨리 회복하도록 하는 반응은 교감 신경계가 담당한다. The autonomic nervous system is characterized by autonomic dominance that is changed by reflection regardless of will, double dominance in which the sympathetic and parasympathetic nerves dominate in one organ, antagonistic dominance in which they act antagonistically with each other, and continuous dominance of the environment inside our body. It maintains stability and makes internal adjustments within the body to the external environment. In general, the parasympathetic nervous system is mainly in charge of normal activities, and the sympathetic nervous system is responsible for the response that activates the systemic response in case of an emergency and quickly recovers the environment in the body.
즉, 교감 신경계의 활동은 광범위하며 전신적이다. 특히, 교감 신경계는 심혈관계 활동을 증가시켜 심박수, 심근 수축력, 혈압 증가 등을 유도하고 위장관 분비선과 운동을 감소시킨다. That is, the activity of the sympathetic nervous system is extensive and systemic. In particular, the sympathetic nervous system increases cardiovascular activity, leading to an increase in heart rate, myocardial contractility, and blood pressure, and decreases gastrointestinal glands and movement.
반면, 부교감 신경계는 국소적으로 작용하여 심박수를 줄이고, 위장관 운동을 촉진한다. 그리고 부교감 신경계는 혈관에 작용점은 미약하여 혈압을 낮추는 효과는 낮다.On the other hand, the parasympathetic nervous system acts locally to reduce heart rate and promote gastrointestinal motility. In addition, the parasympathetic nervous system has a weak action point on blood vessels, so the effect of lowering blood pressure is low.
자율 신경계는 신경절 이전 신경세포(preganglionic neuron)와 신경절 이후 신경세포(postganglionic neuron)로 나누어서 중추 신경계와 대상 장기 사이를 연결하는 기능을 한다. The autonomic nervous system is divided into preganglionic neurons and postganglionic neurons, and functions to connect the central nervous system and target organs.
교감 신경의 신경절 이전 세포는 전체 흉수(T1 -T12)와 상부 요추(L1 -L2)에 위치하며, 전척수신경근(ventral root)을 따라 나와서 척주 주위 신경절(paravertebral ganglia)과 신경절 이전 신경절(preganglionic ganglia), 그리고 신경절 이후 신경세포와 연결된다. Sympathetic preganglionic cells are located in the entire thoracic cord (T1 -T12) and upper lumbar spine (L1 -L2), and come out along the ventral root to form paravertebral ganglia and preganglionic ganglia. ), and connects to postganglionic neurons.
교감 신경의 신경절 이전 신경세포는 짧으며, 아세틸콜린(acetylcholine)을 전달물질로 사용하고, 신경절 이후 신경세포는 길며, 땀분비선을 제외하고 노르에피네프린(norepinephrine)을 사용한다. The sympathetic preganglionic neurons are short and use acetylcholine as a transmitter, and the postganglionic neurons are long and use norepinephrine, except for the sweat glands.
부교감 신경의 신경절 이전 신경 세포는 제3, 7, 9, 10 뇌신경원과 천추 2, 3, 4번에 위치하며, 긴 신경절 이전 신경 세포와 짧은 신경절 이후 신경 세포를 갖고, 모두 아세틸콜린을 전달물질로 사용한다.Preganglionic neurons of the parasympathetic nerve are located in the 3rd, 7th, 9th, and 10th cranial neurons and the 2nd, 3rd, and 4th sacral vertebrae, and have long preganglionic neurons and short postganglionic neurons, all of which use acetylcholine as a transmitter use as
척수손상 환자에서는 자율 신경계의 문제가 발생하게 된다. 즉, 척수손상 부위 이하로 신경절 이전 신경세포의 작용이 떨어지면서 자율신경계 이상이 발생한다. 그러나 다행히도 신경절 이후 신경세포는 척수 바깥에 위치하여 대부분의 척수 손상 상태에서 세포체가 손상없이 유지되며, 신경절 이전 신경세포에서 신호를 받지 못함에 따라 기능을 하지 못하지만, 신호가 들어가면 기능이 가능한 상태이다.Autonomic nervous system problems occur in patients with spinal cord injury. In other words, autonomic nervous system abnormality occurs as the activity of preganglionic nerve cells falls below the spinal cord injury site. Fortunately, however, postganglionic neurons are located outside the spinal cord, so cell bodies remain intact in most spinal cord injury conditions, and do not function as they do not receive signals from preganglionic neurons.
그리고 척수손상 환자에서 자율 신경계 이상, 특히 심박동과 혈압 등의 심혈류계 이상은 거의 모든 환자에서 동반된다. 그 중에서 척수손상 환자가 가장 많이 호소하는 심혈류계 문제 중에 하나가 기립성 저혈압이다. In patients with spinal cord injury, autonomic nervous system abnormalities, especially cardiovascular system abnormalities such as heart rate and blood pressure, accompany almost all patients. Among them, orthostatic hypotension is one of the cardiovascular problems that spinal cord injury patients complain most often.
정상인에서 직립자세를 취하거나 자세를 변경할 때, 하지로 혈액이 쏠리면서 혈압이 낮아지고, 대동맥과 경동맥동의 압력수용기에서 이를 감지하여 교감 신경을 활성화시켜 혈관 수축을 유도하여 혈압을 올리는 작용을 한다. When a normal person assumes an upright posture or changes posture, blood is pumped to the lower extremities and blood pressure is lowered. Baroreceptors in the aorta and carotid sinus detect this and activate the sympathetic nerve to induce vasoconstriction and raise blood pressure.
그러나 흉추 6번 이상의 손상이 있는 척수손상 환자에서는 대동맥과 경동맥동의 압력수용기를 통해 혈압 낮아짐을 확인한 신호가 척수손상 부위를 지나 교감신경의 신경절 이후 신경세포를 자극하지 못하여 교감신경을 활성화하지 못함에 따라, 혈관수축을 유도하지 못하게 되어 기립성 저혈압이 발생한다. However, in patients with spinal cord injury with injuries of more than 6th thoracic vertebrae, the signal confirming the decrease in blood pressure through the baroreceptors of the aorta and carotid sinus passes through the spinal cord injury site and fails to stimulate nerve cells after the ganglion of the sympathetic nerve, resulting in inability to activate the sympathetic nerve. , inability to induce vasoconstriction, resulting in orthostatic hypotension.
또, 척수 손상 환자의 경우, 급박뇨나 빈뇨와 같은 신경인성 방광 장애가 발생하여 삶을 질을 떨어뜨린다. 즉, 척수 손상으로 인해 보행이나 상지 사용에서 어려움이 있는 경우가 많은데, 이 경우 배뇨를 위해 화장실을 찾아가는 시간이 정상에 비해 많은 시간이 소요된다. In addition, in the case of spinal cord injury patients, neurogenic bladder disorders such as urinary urgency or frequency occur, which reduces the quality of life. That is, there are many cases in which there is difficulty in walking or using the upper limbs due to spinal cord damage, and in this case, it takes more time than normal to visit the bathroom for urination.
한편, 교감신경은 방광에서 방광을 이완하여 축뇨하는 작용을 한다. 이러한 교감신경 기전의 약화로 급박뇨가 발생한 경우, 척수 손상 환자는 화장실을 찾아가는 시간을 벌지 못하는 경우가 빈번하게 발생한다. On the other hand, the sympathetic nerve relaxes the bladder in the bladder and acts to urinate. When urinary urgency occurs due to the weakening of the sympathetic nervous system, patients with spinal cord injuries often do not buy time to go to the bathroom.
또한, 많은 척수손상 환자에서 성기능 이상이 동반된다. 특히, 발기는 유지되나 사정이 이루어지지 않는 경우가 발생한다. 이는 발기가 천추 2번 내지 4번에 위치하는 부교감 신경에 의해 유지되나, 적절한 교감 신경 자극이 들어가지 않아 사정이 일어나지 않는 것이다. In addition, many spinal cord injury patients accompany sexual dysfunction. In particular, there is a case in which an erection is maintained but ejaculation does not occur. This means that erection is maintained by the parasympathetic nerve located in the 2nd to 4th sacral vertebrae, but ejaculation does not occur because proper sympathetic nerve stimulation is not entered.
한편, 하기의 특허문헌 1 내지 특허문헌 3에는 신체 내부에 자극장치를 이식해서 전기 신호를 이용한 전기 자극을 가하는 생체 이식 장치 기술이 개시되어 있다. On the other hand, Patent Documents 1 to 3 below disclose bioimplantation device technology in which a stimulator is implanted inside the body to apply electrical stimulation using an electrical signal.
그러나 특허문헌 1 내지 특허문헌 3을 포함하는 종래기술에 따른 생체 이식 장치 기술은 부교감 신경의 자극에만 중점을 둠에 따라, 척수 손상 환자의 자율신경계 부조화를 개선하는데 한계가 있었다. However, the living body implantation device technology according to the prior art including Patent Document 1 to Patent Document 3 focuses only on stimulation of the parasympathetic nerve, and thus has limitations in improving the disharmony of the autonomic nervous system in patients with spinal cord injuries.
따라서 척수 손상 환자에서 필요 부위 및 필요 시기에 따라 교감신경을 자극하여 자율신경계 부조화로 인한 문제를 해결할 수 있는 기술의 개발이 요구되고 있다. Therefore, there is a demand for the development of a technique capable of solving problems caused by disharmony in the autonomic nervous system by stimulating the sympathetic nerve according to the necessary area and time in spinal cord injury patients.
이와 같이, 척수손상 환자에서 자율신경계 이상, 특히 교감 신경계의 이상을 직접 교정하면, 상기 기립성 저혈압이나 사정 장애 등의 문제를 해결할 수 있다. In this way, direct correction of autonomic nervous system abnormalities, particularly sympathetic nervous system abnormalities in spinal cord injury patients can solve problems such as orthostatic hypotension and ejaculation disorder.
(특허문헌 1) 대한민국 특허 등록번호 10-1027998호(2011년 4월 13일 공고)(Patent Document 1) Korean Patent Registration No. 10-1027998 (published on April 13, 2011)
(특허문헌 2) 대한민국 특허 공개번호 10-2004-0071166호(2004년 8월 11일 공개)(Patent Document 2) Republic of Korea Patent Publication No. 10-2004-0071166 (published on August 11, 2004)
(특허문헌 3) 대한민국 특허 등록번호 10-1648463호(2016년 8월 16일 공고)(Patent Document 3) Korean Patent Registration No. 10-1648463 (published on August 16, 2016)
본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 교감신경에 전기적인 자극을 가하여 척수 손상 환자의 자율신경계 부조화를 해소할 수 있는 교감신경 자극장치 및 그의 제어방법을 제공하는 것이다. An object of the present invention is to solve the above problems, and to provide a sympathetic nerve stimulator and a control method capable of solving the autonomic nervous system dissonance of a spinal cord injury patient by applying electrical stimulation to the sympathetic nerve.
본 발명의 다른 목적은 환자의 생리적 상태에 기초해서 자극이 필요한 시기에 적절한 자극을 가하여 자율신경계 부조화를 조절할 수 있는 교감신경 자극장치 및 그의 제어방법을 제공하는 것이다. Another object of the present invention is to provide a sympathetic nerve stimulator and a method for controlling the sympathetic nerve stimulator capable of controlling the dissonance of the autonomic nervous system by applying appropriate stimulation at a time when stimulation is required based on the patient's physiological state.
본 발명의 또 다른 목적은 학습을 통해 적절한 척수 레벨의 자극지점을 찾아 필요한 부위를 선택적으로 자극할 수 있는 교감신경 자극장치 및 그의 제어방법을 제공하는 것이다.Another object of the present invention is to provide a sympathetic nerve stimulator and a control method capable of selectively stimulating a necessary part by finding an appropriate stimulation point at the level of the spinal cord through learning.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 교감신경 자극장치는 척수 손상 환자의 교감신경에 전기적인 자극을 인가하는 전극, 환자의 방광 내부에 이식되고 상기 전극에 전기적인 신호를 제공하는 생체 이식 본체, 환자의 혈압과 자세 변화를 포함하는 환자의 생체적 상태를 측정하는 측정부 및 상기 생체 이식 본체와의 통신을 통해 원격으로 상기 생체 이식 본체의 구동을 제어하는 원격 제어유닛을 포함하여 척수 손상 환자의 교감신경을 자극해서 자율신경계의 부조화를 조절하는 것을 특징으로 한다.In order to achieve the above object, the sympathetic nerve stimulator according to the present invention is an electrode for applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient, implanted inside the patient's bladder and providing an electrical signal to the electrode Including a living body implantation body, a measurement unit for measuring the patient's biological state including changes in the patient's blood pressure and posture, and a remote control unit remotely controlling the driving of the living body transplant body through communication with the living body transplant body It is characterized by stimulating the sympathetic nerves of patients with spinal cord injuries to control the disharmony of the autonomic nervous system.
또한, 상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 교감신경 자극장치의 제어방법은 (a) 척수 손상 환자의 교감신경과 방광 내부에 전극과 생체 이식 본체를 이식하고, 전극 연결선을 이용해서 연결하는 단계, (b) 상기 생체 이식 본체에 마련된 제어부에서 상기 전극에 전기적 신호를 인가하여 교감신경에 자극을 가하는 단계, (c) 측정부를 이용해서 환자의 혈압과 자세 변화를 포함하는 환자의 생체적 상태를 측정하는 단계 및 (d) 원격 제어유닛 또는 상기 제어부에서 상기 측정부로부터 측정된 환자의 생체적 상태정보에 기초해서 교감신경을 자극하도록 상기 전극에 전기적 신호를 인가하는 단계를 포함하여 척수 손상 환자의 교감신경을 자극해서 자율신경계의 부조화를 조절하는 것을 특징으로 한다.In addition, in order to achieve the above object, the control method of the sympathetic nerve stimulator according to the present invention is (a) implanting electrodes and a living body transplant body inside the sympathetic nerve and bladder of a spinal cord injury patient, and using an electrode connection line (b) applying an electrical signal to the electrodes from a control unit provided in the living body implantation body to apply stimulation to the sympathetic nerve, (c) using a measuring unit to measure the patient's blood pressure and posture, including changes in the patient's body Measuring the biological state and (d) applying an electrical signal to the electrode to stimulate the sympathetic nerve based on the patient's biological state information measured by the measuring unit in the remote control unit or the control unit It is characterized by stimulating the sympathetic nerves of patients with spinal cord injuries to control the disharmony of the autonomic nervous system.
상술한 바와 같이, 본 발명에 따른 교감신경 자극장치 및 그의 제어방법에 의하면, 척수 손상 환자의 교감신경에 전기적인 자극을 가해 자율신경계 부조화를 해소할 수 있다는 효과가 얻어진다.As described above, according to the sympathetic nerve stimulator and method for controlling the same according to the present invention, an effect of discordance of the autonomic nervous system can be obtained by applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient.
그리고 본 발명에 의하면, 환자의 생체적 상태 정보를 지속적으로 측정하고, 측정된 생체적 상태 정보에 기초해서 자극이 필요한 시기에 적절한 자극을 가하여 자율신경계 부조화를 조절할 수 있다는 효과가 얻어진다. According to the present invention, the patient's biological state information is continuously measured, and based on the measured biological state information, appropriate stimulation is applied at a time when stimulation is necessary, thereby obtaining an effect of adjusting the autonomic nervous system incoherence.
또, 본 발명에 의하면, 측정된 생체적 상태 정보에 대한 기계 학습을 통해 적절한 척수 레벨의 자극지점을 찾아 필요한 부위를 선택적으로 자극할 수 있다는 효과가 얻어진다.In addition, according to the present invention, an effect of selectively stimulating a necessary part by finding an appropriate stimulation point at the level of the spinal cord through machine learning for the measured biological state information is obtained.
또한, 본 발명에 의하면, 교감신경의 자극이 필요한 상황에서 입력되는 사용자의 조작명령에 전극을 통해 교감신경에 자극을 가할 수도 있다는 효과가 얻어진다. In addition, according to the present invention, it is possible to obtain an effect that stimulation of the sympathetic nerve can be applied through the electrode to the user's operation command input in a situation where stimulation of the sympathetic nerve is required.
이에 따라, 본 발명에 의하면, 척수 손상 환자의 자율신경계 부조화를 해소함으로써, 기립성 저혈압, 사정 장애, 신경인성 방광 장애 등의 이상을 효과적으로 조절할 수 있다는 효과가 얻어진다. Accordingly, according to the present invention, it is possible to effectively control abnormalities such as orthostatic hypotension, ejaculation disorders, and neurogenic bladder disorders by resolving the autonomic nervous system dissonance of spinal cord injured patients.
도 1은 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치의 구성도, 1 is a configuration diagram of a sympathetic nerve stimulation device according to a preferred embodiment of the present invention;
도 2는 도 1에 도시된 교감신경 자극장치의 상세 블록 구성도, 2 is a detailed block configuration diagram of the sympathetic nerve stimulator shown in FIG. 1;
도 3은 도 1에 도시된 전극이 설치된 부위를 확대한 도면, 3 is an enlarged view of a region where the electrode shown in FIG. 1 is installed;
도 4는 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치의 제어방법을 단계별로 설명하는 흐름도. 4 is a flowchart illustrating a step-by-step control method of the sympathetic nerve stimulator according to a preferred embodiment of the present invention.
이하 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, a sympathetic nerve stimulation device according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치의 구성도이고, 도 2는 도 1에 도시된 교감신경 자극장치의 상세 블록 구성도이다. 그리고 도 3은 도 1에 도시된 전극이 설치된 부위를 확대한 도면이다. 1 is a configuration diagram of a sympathetic nerve stimulation device according to a preferred embodiment of the present invention, and FIG. 2 is a detailed block configuration diagram of the sympathetic nerve stimulation device shown in FIG. 3 is an enlarged view of a region where the electrode shown in FIG. 1 is installed.
이하에서는 '좌측', '우측', '전방', '후방', '상방' 및 '하방'과 같은 방향을 지시하는 용어들은 각 도면에 도시된 상태를 기준으로 각각의 방향을 지시하는 것으로 정의한다. Hereinafter, terms indicating directions such as 'left', 'right', 'front', 'rear', 'upper' and 'downer' are defined as indicating each direction based on the state shown in each drawing. do.
본 발명의 바람직한 실시 예에 따른 교감신경 자극장치(10)는 도 1 및 도 2에 도시된 바와 같이, 척수 손상 환자의 교감신경에 전기적인 자극을 인가하는 전극(20) 및 환자의 신체 내에 이식되고 전극(20)에 전기적인 신호를 제공하는 생체 이식 본체(30) 및 환자의 생체적 상태를 측정하는 측정부(40)를 포함한다.As shown in FIGS. 1 and 2, the sympathetic nerve stimulator 10 according to a preferred embodiment of the present invention includes an electrode 20 for applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient and implanted in the patient's body. It includes a bio implantation body 30 that provides electrical signals to the electrodes 20 and a measurement unit 40 that measures the biological state of the patient.
그리고 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치(10)는 생체 이식 본체(이하 '본체'라 약칭함)(30)와의 통신을 통해 원격으로 본체(30)의 구동을 제어하는 원격 제어유닛(50)을 더 포함할 수 있다. In addition, the sympathetic nerve stimulator 10 according to a preferred embodiment of the present invention is a remote control unit that remotely controls the driving of the body 30 through communication with the implanted living body (hereinafter referred to as 'body') 30. (50) may be further included.
측정부(40)는 경동맥동의 혈류량을 측정하는 혈류측정기(41), 환자의 체온을 측정하는 체온측정기(42) 및 본체(30)의 자세 변화를 측정하는 자세 측정기(43)를 포함할 수 있다. The measuring unit 40 may include a blood flow meter 41 for measuring the amount of blood flow in the carotid sinus, a body temperature meter 42 for measuring the patient's body temperature, and a posture meter 43 for measuring a change in posture of the main body 30. .
자세 측정기(43)는 자이로스코프나 변위 센서, 가속도 센서와 같은 감지센서로 마련되고, 환자의 자세 변화를 인식할 수 있다. The posture measuring device 43 is provided with a sensor such as a gyroscope, a displacement sensor, or an acceleration sensor, and can recognize a change in the patient's posture.
즉, 상기 생체적 상태는 자율신경계의 부조화 여부를 판단하기 위한 상태로서, 환자의 경동맥동의 혈류량 상태, 체온 상태, 환자의 자세 상태 등을 포함할 수 있다. That is, the biological state is a state for determining whether the autonomic nervous system is out of sync, and may include a state of blood flow in the patient's carotid sinus, a state of body temperature, a state of the patient's posture, and the like.
그래서 생체적 상태 정보는 환자의 경동맥동의 혈류량 정보, 체온 정보 및 환자의 자세 정보를 포함할 수 있다. Accordingly, the biometric state information may include blood flow information of the patient's carotid sinus, body temperature information, and posture information of the patient.
따라서 본 발명은 생체 이식 본체나 원격 제어유닛에서 상기 생체적 상태 정보에 대한 기계 학습을 통해 교감신경의 항진이 필요한 시기를 판단하고, 자극이 필요한 위치를 선택해서 자극을 가하도록 제어한다. Accordingly, in the present invention, the implantation body or the remote control unit determines when sympathetic nerve stimulation is necessary through machine learning on the biological state information, selects a location where stimulation is required, and controls the stimulation to be applied.
원격 제어유닛(50)은 환자의 신체 외부에 마련되고, 무선 통신 방식으로 본체(30)와 통신할 수 있다. The remote control unit 50 is provided outside the patient's body and can communicate with the main body 30 in a wireless communication method.
원격 제어유닛(50)은 측정부(40)에서 측정된 생체적 상태 정보를 수신하고, 수신된 생체적 상태 정보에 대한 기계학습(machine learngin)을 통해 자극이 필요한 시기 및 부위를 선택하며, 선택된 시기에 선택된 부위를 자극하도록 원격 제어신호를 발생할 수 있다. The remote control unit 50 receives the biometric state information measured by the measurement unit 40, selects a time and area requiring stimulation through machine learning on the received biometric state information, and selects the selected area. A remote control signal may be generated to stimulate the selected area at the right time.
이를 위해, 원격 제어유닛(50)은 본체(30)와 무선 통신 방식으로 통신하는 통신모듈(51), 통신모듈(51)을 통해 수신되는 생체적 상태 정보를 기계 학습하는 학습모듈(52), 학습모듈(52)에서 학습된 결과에 기초해서 자극이 필요한 시기 및 필요한 부위를 자극하도록 상기 원격제어신호를 발생하는 신호발생모듈(53)을 포함할 수 있다. To this end, the remote control unit 50 includes a communication module 51 that communicates with the main body 30 in a wireless communication method, a learning module 52 that machine-learns biological state information received through the communication module 51, It may include a signal generation module 53 that generates the remote control signal to stimulate the time and area where stimulation is required based on the result learned in the learning module 52.
그리고 원격 제어유닛(50)은 본체(30)의 구동을 제어하기 위한 각종 프로그램, 상기 생체적 상태 정보와 학습 정보를 저장하는 저장모듈(54) 및 각 모듈에 전원을 공급하는 전원공급모듈(55)을 더 포함할 수 있다. In addition, the remote control unit 50 includes various programs for controlling the driving of the main body 30, a storage module 54 for storing the biometric state information and learning information, and a power supply module 55 for supplying power to each module. ) may be further included.
이와 함께, 원격 제어유닛(50)은 본체(30)에 무선 전력 전송 방식으로 전력을 전송해서 충전하는 전력전송모듈(56)을 더 포함할 수 있다. In addition, the remote control unit 50 may further include a power transmission module 56 for charging power by transmitting power to the main body 30 in a wireless power transmission method.
이러한 원격 제어유닛(50)은 사용자가 직접 조작 가능한 휴대 단말, 또는 의료진이나 교감신경 자극장치를 관리하는 관리자의 데스크탑이나 랩탑 컴퓨터, 태블릿 PC, 스마트 폰 등 통신 기능이 구비된 단말로 마련될 수 있다. The remote control unit 50 may be provided as a portable terminal that can be directly operated by a user, or a terminal equipped with a communication function, such as a desktop or laptop computer, tablet PC, or smart phone of a medical staff or an administrator who manages a sympathetic nerve stimulator. .
여기서, 본 실시 예에서는 학습모듈(52)을 원격 제어유닛(50)에 마련하는 것으로 설명하였으나, 본 발명은 반드시 이에 한정되는 것은 아니다.Here, in this embodiment, it has been described that the learning module 52 is provided in the remote control unit 50, but the present invention is not necessarily limited thereto.
즉, 본 발명은 본체(10)에서 생체적 상태 정보를 기계 학습하도록 변경될 수 있다. That is, the present invention can be changed to machine-learn biometric state information in the main body 10 .
전극(20)은 도 1 및 도 3에 도시된 바와 같이, 하나 이상의 교감신경 체인(sympathetic chaim)에 하나 이상 설치될 수 있다. As shown in FIGS. 1 and 3 , one or more electrodes 20 may be installed on one or more sympathetic nerve chains.
예를 들어, 전극(20)은 흉수 T6 내지 상부 요추의 L2 교감신경절에 각각 부착되고, 각 전극(20)은 본체(30)에서 인가되는 전기적 신호에 따라 선택적으로 각 교감신경절에 자극을 가할 수 있다. For example, the electrodes 20 are attached to the L2 sympathetic ganglion of the thoracic T6 or upper lumbar spine, respectively, and each electrode 20 selectively stimulates each sympathetic ganglion according to the electrical signal applied from the main body 30. there is.
이러한 전극(20)은 교감신경 체인을 감싸도록 대략 링 형상이나 호 형상으로 형성되고, 전극 연결선(21)을 통해 본체(30)와 전기적으로 연결된다. These electrodes 20 are formed in a ring shape or an arc shape so as to surround the sympathetic nerve chain, and are electrically connected to the main body 30 through the electrode connection line 21.
그래서 전극(20)은 전극 연결선(21)을 통해 수신되는 전기적인 신호에 따라 교감신경 체인에 자극을 가할 수 있다.So, the electrode 20 can apply stimulation to the sympathetic nerve chain according to the electrical signal received through the electrode connection line 21 .
이러한 전극(20)은 가이드 카테터(21)를 통해 교감신경 체인까지 삽입되어 설치될 수 있다. These electrodes 20 may be inserted and installed up to the sympathetic nerve chain through the guide catheter 21 .
전극(20)은 자극을 가하고자 하는 복수의 부위에 각각 설치되도록, 복수로 마련될 수 있다. A plurality of electrodes 20 may be provided so as to be respectively installed on a plurality of sites to which stimulation is to be applied.
본체(30)는 가슴 부위의 피하지방층 등에 설치되고, 교감신경을 자극할 수 있도록 전극(20)에 전기적 신호를 인가하는 기능을 한다. The main body 30 is installed in the subcutaneous fat layer of the chest and functions to apply electrical signals to the electrodes 20 so as to stimulate the sympathetic nerve.
이를 위해, 본체(30)는 전극(20)에 인가되는 전기적 신호를 발생하여 전극(20)의 구동을 제어하는 제어부(31) 및 제어부(31)와 전극(20)에 전원을 공급하는 전원공급부(32)를 포함할 수 있다. To this end, the main body 30 generates an electrical signal applied to the electrode 20 to control the driving of the electrode 20 and a control unit 31 and a power supply unit to supply power to the control unit 31 and the electrode 20 (32) may be included.
그리고 본체(30)는 원격 제어유닛(50)과 통신하는 통신부(33) 및 원격 제어유닛(50)으로부터 전송되는 전력을 수신하는 전력수신부(34)를 더 포함할 수 있다. And the main body 30 may further include a communication unit 33 communicating with the remote control unit 50 and a power receiving unit 34 receiving power transmitted from the remote control unit 50 .
전원공급부(32)는 전원을 충전하는 배터리(도면 미도시)와, 외부에서 공급되는 상용전원 또는 전력수신부(34)에서 수신되는 전력을 상기 배터리에 충전하는 충전회로를 포함할 수 있다. The power supply unit 32 may include a battery (not shown) for charging power and a charging circuit for charging the battery with commercial power supplied from the outside or power received from the power receiver 34 .
한편, 환자의 신체 내부에 이식되는 전극(20)과 본체(30)의 외형을 형성하는 케이스는 각각 생체 적합성(biocompatibility) 재질의 재료를 이용해서 제조될 수 있다. On the other hand, the electrode 20 implanted inside the patient's body and the case forming the outer appearance of the main body 30 may be manufactured using biocompatibility materials.
즉, 전극(20)은 교감신경에 자극을 인가하도록, 전기전도성을 갖는 금속재질이나 합성수지 재질 중에서 생체 적합성 재질의 재료를 이용해서 제조될 수 있다. That is, the electrode 20 may be manufactured using a biocompatible material among electrically conductive metal materials or synthetic resin materials so as to apply stimulation to the sympathetic nerve.
그리고 본체(30)의 외형을 형성하는 케이스는 인체 안전성 규격을 만족하는 생체 적합성 재질의 재료를 이용해서 제조될 수 있다.In addition, the case forming the outer shape of the body 30 may be manufactured using a biocompatible material that meets human safety standards.
상기 생체 적합성은 양방향 반응, 즉 물질에 대한 신체의 반응 및 물질들의 신체 환경에 대한 반응을 정의한다. The biocompatibility defines a bidirectional response, ie the body's response to the substance and the response of the substance to the body's environment.
특히, 의료기기의 생체 적합성은 의료기기가 호스트에서 원하지 않은 지역적 또는 시스템적 효과들을 끌어내지 않으면서 호스트 내에서 결합의 원하는 정도를 갖고 의도된 기능을 수행하는 능력을 나타낸다. In particular, biocompatibility of a medical device refers to the ability of a medical device to perform its intended function with a desired degree of binding within a host without eliciting undesirable local or systemic effects in the host.
본 실시 예에서 생체 적합성 재질은 의료용(medical grade) 또는 삽입용(implant grade) 물질이다.In this embodiment, the biocompatible material is a medical grade or implant grade material.
예를 들어, 상기 생체 적합성 재질은 폴리테트라플루오로에틸렌(Polytetrafluoroethylene), 확장형 폴리테트라플루오로에틸렌(ePTFE: expanded Polytetrafluoroethylene), 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(Polybutyleneterephthalate), 폴리우레탄(polyurethane), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리트리메틸렌테레프탈레이트(polytrimethyleneterephthalate), 폴리이미드(polyimide), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리에틸렌글리콜(polyethyleneglycol), 탄소 섬유(carbon fiber) 중에서 어느 하나 이상을 포함할 수 있다.For example, the biocompatible material is polytetrafluoroethylene, expanded polytetrafluoroethylene (ePTFE), polyethyleneterephthalate, polybutyleneterephthalate, polyurethane ( polyurethane, polypropylene, polyethylene, polytrimethyleneterephthalate, polyimide, polyvinylpyrrolidone, polyethyleneglycol, carbon fiber Any one or more of them may be included.
이와 함께, 전극 연결선(21)은 전기전도성을 갖는 금속 재질의 재료로 제조되고, 전극 연결선(21)의 외면에는 생체 적합성 재질의 재료를 이용한 코팅층이 형성될 수 있다. In addition, the electrode connection line 21 is made of a metal material having electrical conductivity, and a coating layer using a biocompatible material may be formed on the outer surface of the electrode connection line 21 .
이와 같이, 본 발명은 환자의 신체 내부에 이식되는 전극과 본체, 전극 연결선을 생체 적합성 재질의 재료를 이용해서 제조함에 따라, 신체 내부에 이식하더라도 안전성 규격을 만족할 수 있다. As described above, according to the present invention, as the electrodes, the main body, and the electrode connection line implanted inside the patient's body are manufactured using biocompatible materials, safety standards can be satisfied even when implanted inside the body.
한편, 척수 손상 환자는 교감신경과 부교감신경을 포함하는 자율신경계의 부조화로 인해 많은 어려움을 경험한다. On the other hand, spinal cord injury patients experience many difficulties due to disharmony of the autonomic nervous system including sympathetic and parasympathetic nerves.
급성기의 척수 손상 환자인 경우, 신경인성 쇼크, 앙와위 고혈압 또는 앙와위 저혈압, 서맥이나 빈맥 등의 이상 박동, 저체온 등의 이상 증상이 발생할 수 있다. In acute spinal cord injury patients, abnormal symptoms such as neurogenic shock, supine hypertension or supine hypotension, abnormal beats such as bradycardia or tachycardia, and hypothermia may occur.
그리고 만성기의 척수 손상 환자는 기립성 저혈압, 방광 기능 이상, 성기능 이상, 체온 조절 기능 이상, 발한 장애 등의 이상 증상이 발생할 수 있다. In addition, patients with spinal cord injuries in the chronic phase may experience abnormal symptoms such as orthostatic hypotension, bladder dysfunction, sexual dysfunction, thermoregulatory dysfunction, and sweating disorder.
즉, 척수 손상 환자는 자세 변경시 자율신경계 부조화로 인해 기립성 저혈압이 발생하거나, 사정이 안되는 성기능 장애, 신경인성 방광 등의 문제를 경험하고 있다.That is, patients with spinal cord injuries experience problems such as orthostatic hypotension due to autonomic nervous system disharmony when changing posture, sexual dysfunction due to inability to ejaculate, and neurogenic bladder.
예를 들어, 흉추 6번 이상 척수 손상 환자의 경우, 직립자세를 취할때 내장혈관상(splanchnic bed)에 대한 혈관수축 조절기능이 상실되면서 기립성 저혈압, 신경인성 방광, 사정 장애 등이 발생한다. For example, in the case of a patient with spinal cord injury in the sixth thoracic vertebrae or higher, orthostatic hypotension, neurogenic bladder, ejaculation disorder, etc. occur as the vasoconstriction control function for the splanchnic bed is lost when taking an upright posture.
또한, 하지 근육의 마비로 능동적 근수축에 의한 정맥혈 펌프 기능 상실이 원인이 되기도 한다. In addition, loss of venous blood pump function due to active muscle contraction due to paralysis of lower extremity muscles may be the cause.
이에 따라, 해당 분절에 속하는 T6 내지 L2 교감신경절에 각각 전극을 부착하고, 각 전극을 통해 해당 교감신경절에 자극을 발생하여 활성화함으로써, 기립성 저혈압을 조절할 수 있다.Accordingly, orthostatic hypotension can be controlled by attaching electrodes to each of the T6 to L2 sympathetic ganglia belonging to the corresponding segment, and generating and activating the corresponding sympathetic ganglion through each electrode.
예를 들어, 척수손상 환자의 경우 신경인성 방광으로 인해 급박뇨가 빈번하게 발생하고, 보행이나 상지 사용이 불편한 척수 손상 환자가 시간 내에 화장실에 도착하지 못하게 되면 적절하지 못한 배뇨가 발생한다.For example, in the case of spinal cord injury patients, urinary urgency frequently occurs due to neurogenic bladder, and inappropriate urination occurs when spinal cord injury patients who have difficulty walking or using upper limbs do not arrive at the bathroom in time.
그래서 본 발명은 급박뇨 발생시, 신경인성 방광에 작용하는 교감신경인 T10 내지 L2를 자극하여 방광 이완을 유도해서 축뇨시킴으로써, 화장실까지 도착하는 시간을 벌 수 있게 한다. Therefore, when urinary urgency occurs, the present invention stimulates T10 to L2, which are sympathetic nerves that act on the neurogenic bladder, to induce bladder relaxation and collect urine, thereby earning time to reach the toilet.
이 경우, 본 발명은 사용자가 직접 외부 제어유닛을 조작해서 해당 교감신경을 자극하여 급박뇨에 대응하도록 할 수 있다. In this case, according to the present invention, the user can directly manipulate the external control unit to stimulate the sympathetic nerve to respond to urgency.
한편, 성행위시 절정에 도달하는 시기에는 교감신경이 작용하여 사정이 이루어진다. 그러나, 척수손상 환자는 교감신경 작용이 발생하지 않으므로, 사정 장애가 발생한다. On the other hand, when reaching the climax during sexual activity, the sympathetic nerve acts to ejaculate. However, patients with spinal cord injuries do not have sympathetic nerve action, so ejaculation disorders occur.
그래서 본 발명은 사정이 필요한 시기가 되면, 사용자가 직접 외부 제어유닛을 조작해서 해당 교감신경을 자극하여 사정하도록 할 수 있다.Therefore, according to the present invention, when an ejaculation is required, the user can directly operate the external control unit to stimulate the sympathetic nerve to ejaculate.
그래서 본 실시 예에 따른 교감신경 자극장치(10)는 측정부(40)에서 측정된 생체적 상태 정보를 기계 학습하고, 학습 정보에 기초해서 저혈압 상황, 축뇨가 필요가 상황, 사정이 필요한 경우, 발한이 필요한 경우와 같이, 교감신경의 자극이 필요한 시기인지 여부를 판단하고, 자극이 필요한 시기에 교감신경을 자극한다.Therefore, the sympathetic nerve stimulator 10 according to the present embodiment machine-learns the biological state information measured by the measurement unit 40, and based on the learning information, when a low blood pressure situation, a need to collect urine, or an assessment is required, Like when sweating is required, it is determined whether or not it is a time when stimulation of the sympathetic nerve is required, and the sympathetic nerve is stimulated when stimulation is required.
즉, 제어부(31)는 전극(20)에 전기적 신호를 인가해서 전극(20)이 설치된 교감신경을 자극하도록 제어할 수 있다. That is, the control unit 31 may apply electrical signals to the electrodes 20 and control the sympathetic nerves in which the electrodes 20 are installed to be stimulated.
그리고 제어부(31)는 전극(20)이 복수로 설치된 경우, 자극이 필요한 전극(20)을 선택하고, 선택된 전극(20)에 전기적 신호를 인가하여 필요한 부위를 선택적으로 자극하도록 제어할 수 있다. In addition, when a plurality of electrodes 20 are installed, the control unit 31 may select an electrode 20 that requires stimulation and apply an electrical signal to the selected electrode 20 to selectively stimulate a required part.
한편, 원격 제어유닛(50)은 본체(30)에서 수신되는 생체적 상태 정보를 학습하고, 학습 정보에 기초해서 교감신경의 자극이 필요한 상황인지 여부를 판단하며, 판단 결과에 따라 교감신경을 자극하도록 본체(30)에 원격 제어신호를 전송할 수 있다. On the other hand, the remote control unit 50 learns the biological state information received from the main body 30, determines whether or not there is a situation in which stimulation of the sympathetic nerve is required based on the learning information, and stimulates the sympathetic nerve according to the determination result. A remote control signal may be transmitted to the main body 30 to do so.
예를 들어, 원격 제어유닛(50)은 환자의 생체적 상태 정보에 기초해서 기립성 저혈압이 발생하거나, 발한이 필요한 상황으로 판단되면, 교감신경을 자극하도록 제어할 수 있다. For example, the remote control unit 50 may control the sympathetic nerve to be stimulated when it is determined that orthostatic hypotension occurs or sweating is required based on the patient's biological state information.
그리고 원격 제어유닛(50)은 사용자의 조작 명령에 따라 교감신경을 자극하도록 원격 제어신호를 발생해서 본체로 전송할 수도 있다.Also, the remote control unit 50 may generate and transmit a remote control signal to the main body to stimulate the sympathetic nerve according to a user's manipulation command.
즉, 사정이 필요하거나, 급박뇨로 인해 방광 이완이 필요한 경우, 사용자는 원격 제어유닛(50)에 마련된 버튼이나 스위치를 조작하거나, 아이콘 등을 선택한다. 그러면, 원격 제어유닛(50)은 사용자의 조작 명령에 따라 교감신경을 자극하도록 원격 제어신호를 발생해서 전송할 수 있다. That is, when ejaculation is required or bladder relaxation is required due to urgency, the user manipulates a button or switch provided on the remote control unit 50 or selects an icon. Then, the remote control unit 50 may generate and transmit a remote control signal to stimulate the sympathetic nerve according to the user's manipulation command.
이에 따라, 본 발명은 사용자가 일상 생활 중에 교감신경 자극이 필요한 경우, 직접 조작을 통해 교감신경을 자극함으로써, 자율신경계의 부조화를 직접적으로 조절할 수도 있다.Accordingly, in the present invention, when a user needs sympathetic nerve stimulation during daily life, the sympathetic nerve may be stimulated through direct manipulation, thereby directly controlling disharmony in the autonomic nervous system.
또한, 원격 제어유닛(50)은 학습 정보 및 판단 정보를 저장하고, 저장된 정보를 본체(30)의 제어부(31) 및 관리서버(도면 미도시)와 공유할 수 있다. In addition, the remote control unit 50 may store learning information and judgment information, and share the stored information with the controller 31 of the main body 30 and a management server (not shown).
그래서 본체(30)의 제어부(31)는 원격 제어유닛(50)에서 수신된 학습 정보와 판단 정보를 내부의 메모리(도면 미도시)에 저장하고, 원격 제어유닛(50)과의 통신이 중단된 상태에서도 상기 메모리에 저장된 정보를 이용해서 교감신경을 자극하도록 제어할 수 있다. So, the control unit 31 of the main body 30 stores the learning information and judgment information received from the remote control unit 50 in an internal memory (not shown), and communication with the remote control unit 50 is stopped. Even in this state, the sympathetic nerve can be controlled to stimulate using the information stored in the memory.
물론, 제어부(31)는 내부에 마련된 학습모듈을 이용해서 직접 생체적 상태 정보를 기계 학습하고, 학습 결과에 따라 교감신경을 자극하도록 제어할 수도 있다. Of course, the control unit 31 may directly machine-learn biological state information using a learning module provided therein, and control the sympathetic nerve to be stimulated according to the learning result.
상기 관리서버는 원격 제어유닛(50)과 무선 또는 유선 통신 방식으로 통신 가능하게 연결되고, 원격 제어유닛(50)에서 제공되는 정보를 데이터베이스화하여 저장하고 관리하며, 저장된 정보를 타 원격 제어유닛(50)을 통해 타 환자에게 이식된 생체 이식 본체에게 제공할 수도 있다. The management server is communicatively connected to the remote control unit 50 in a wireless or wired communication method, stores and manages information provided from the remote control unit 50 into a database, and transfers the stored information to other remote control units ( 50), it may be provided to a living body implanted in another patient.
이와 같이, 본 발명은 환자의 생체적 상태 정보를 측정하고, 측정된 정보에 대한 기계 학습을 통해 학습된 정보를 기반으로 교감신경 자극이 필요한 시기 및 척수 레벨의 자극 지점을 찾아 필요한 부위를 선택해서 자극할 수 있다. In this way, the present invention measures the patient's biological state information, and based on the information learned through machine learning for the measured information, finds the time when sympathetic nerve stimulation is needed and the stimulation point at the spinal cord level, and selects the necessary area can stimulate
다음, 도 4를 참조하여 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치의 제어방법을 상세하게 설명한다. Next, referring to FIG. 4, a method for controlling a sympathetic nerve stimulation device according to a preferred embodiment of the present invention will be described in detail.
도 4는 본 발명의 바람직한 실시 예에 따른 교감신경 자극장치의 제어방법을 단계별로 설명하는 흐름도이다. 4 is a flowchart illustrating a control method of the sympathetic nerve stimulator according to a preferred embodiment of the present invention step by step.
먼저, 전극(20)과 생체 이식 본체(30)는 각각 교감신경 체인과 가슴 부위의 피하지방층에 각각 이식되고, 전극 연결선(21)을 통해 전기적으로 연결된다. First, the electrode 20 and the living body transplant body 30 are implanted in the sympathetic nerve chain and the subcutaneous fat layer of the chest, respectively, and are electrically connected through the electrode connection line 21.
도 4의 S10단계에서 본체(30)의 제어부(31)는 전원공급부(32)로터 전원을 공급받아 구동된다.In step S10 of FIG. 4 , the control unit 31 of the main body 30 receives power from the power supply unit 32 and is driven.
이어서, 제어부(31)는 내부의 메모리에 저장된 프로그램을 실행시키고, 초기 구동시 프로그래밍된 방식에 따라 전극(20)에 전기적 신호를 인가하여 교감신경을 자극하도록 제어한다(S12). Subsequently, the control unit 31 executes the program stored in the internal memory, and controls the sympathetic nerve to be stimulated by applying an electrical signal to the electrode 20 according to the programmed method at the time of initial driving (S12).
S14단계에서 측정부(40)는 환자의 생체적 상태를 측정한다.In step S14, the measuring unit 40 measures the biological state of the patient.
이때, 측정부(40)에 마련된 혈류측정기(41)와 체온측정기(42) 및 자세측정기(43)는 각각 환자의 경동맥동의 혈류량, 체온, 환자의 자세 변화를 측정하고, 측정된 각 정보는 제어부(31)로 전달된다. At this time, the blood flow measuring device 41, the body temperature measuring device 42, and the posture measuring device 43 provided in the measuring unit 40 each measure the blood flow in the patient's carotid sinus, the body temperature, and the change in the patient's posture, and each of the measured information is transmitted to the control unit. forwarded to (31).
그러면, 제어부(31)는 통신부(33)를 통해 측정부(40)에서 측정된 생체적 상태 정보를 원격 제어유닛(50)으로 전송하도록 제어한다. Then, the controller 31 controls the biological state information measured by the measurement unit 40 to be transmitted to the remote control unit 50 through the communication unit 33 .
S16단계에서 원격 제어유닛(50)에 마련된 학습모듈(52)은 통신모듈(51)을 통해 수신된 생체적 상태 정보에 대한 기계학습을 진행한다. In step S16, the learning module 52 provided in the remote control unit 50 performs machine learning on the biometric state information received through the communication module 51.
그래서 신호발생모듈(53)은 학습 정보에 기초해서 교감신경을 자극하는 시기 및 부위를 선택하고, 선택된 시기 및 부위를 자극하도록 원격 제어신호를 발생한다. 이와 같이 발생된 원격 제어신호는 통신모듈(51)을 통해 본체(30)로 전송된다(S18).Therefore, the signal generation module 53 selects the time and part to stimulate the sympathetic nerve based on the learning information, and generates a remote control signal to stimulate the selected time and part. The remote control signal thus generated is transmitted to the main body 30 through the communication module 51 (S18).
S20단계에서 본체(30)의 제어부(31)는 수신된 원격 제어신호에 따라 자극을 가하도록 전극(20)에 전기적 신호를 인가한다. In step S20, the controller 31 of the main body 30 applies an electrical signal to the electrode 20 to apply a stimulus according to the received remote control signal.
이에 따라, 전극(20)은 교감신경에 자극을 가해 자율신경계 부조화를 조절할 수 있다. Accordingly, the electrode 20 can control the dissonance of the autonomic nervous system by applying stimulation to the sympathetic nerve.
물론, 본 발명은 제어부에 마련된 학습모듈에서 생체적 상태 정보에 대한 기계학습을 수행하고, 학습 정보에 기초해서 전극에 전기적 신호를 인가할 수도 있다. Of course, the present invention may perform machine learning on biometric state information in a learning module provided in the controller and apply an electrical signal to the electrode based on the learning information.
이후, 제어부(31)는 S10단계 내지 S20단계를 반복 수행하며, 원격 제어유닛(50)과의 통신이 중지되더라도, 원격 제어유닛(50)으로부터 지속적으로 수신된 학습 정보에 기초해서 자극이 필요한 시기 및 부위를 선택해서 자극하도록 제어할 수 있다. Thereafter, the controller 31 repeatedly performs steps S10 to S20, and even if communication with the remote control unit 50 is stopped, when stimulation is required based on the learning information continuously received from the remote control unit 50. And it can be controlled to select and stimulate a site.
한편, 원격 제어유닛(50)은 사정이 필요한 상황이나 방광의 이완이 필요한 상황에서 입력되는 사용자의 조작 명령에 따라 교감신경을 자극하도록 원격 제어신호를 발생하고, 제어부(31)는 상기 원격 제어신호에 따라 교감신경을 자극하도록 전극에 전기적 신호를 전달할 수 있다. On the other hand, the remote control unit 50 generates a remote control signal to stimulate the sympathetic nerve according to a user's manipulation command input in a situation requiring ejaculation or relaxation of the bladder, and the controller 31 controls the remote control signal Accordingly, an electrical signal can be transmitted to the electrode to stimulate the sympathetic nerve.
그리고 제어부(31)는 원격 제어유닛(50)으로부터 무선 전력 전송 방식으로 전송되는 전력을 수신하여 전원공급부(32)에 마련된 배터리에 충전하도록 충전회로의 구동을 제어한다. The control unit 31 receives power transmitted from the remote control unit 50 in a wireless power transmission method and controls driving of the charging circuit to charge the battery provided in the power supply unit 32 .
이와 같이, 본 발명은 무선 전력 전송 방식으로 생체 이식 본체에 전원을 충전함으로써, 배터리의 방전시 수술적 교체 작업 주기를 연장할 수 있다. As such, the present invention can extend the surgical replacement work cycle when the battery is discharged by charging power to the implanted body in a wireless power transmission method.
상기한 바와 같은 과정을 통해, 본 발명은 척수 손상 환자의 교감신경에 전기적인 자극을 가해 자율신경계 부조화를 해소할 수 있다.Through the process as described above, the present invention can relieve the autonomic nervous system disharmony by applying electrical stimulation to the sympathetic nerves of patients with spinal cord injuries.
그리고 본 발명은 환자의 생체적 상태 정보를 지속적으로 측정하고, 측정된 생체적 상태 정보에 기초해서 자극이 필요한 시기에 적절한 자극을 가하여 자율신경계 부조화를 조절할 수 있다. In addition, the present invention can control the autonomic nervous system disharmony by continuously measuring the biological state information of the patient and applying appropriate stimulation at a time when stimulation is necessary based on the measured biological state information.
또, 본 발명은 측정된 생체적 상태 정보에 대한 기계 학습을 통해 적절한 척수 레벨의 자극지점을 찾아 필요한 부위를 선택적으로 자극할 수 있다.In addition, the present invention can selectively stimulate a necessary part by finding an appropriate stimulation point at the level of the spinal cord through machine learning for the measured biological state information.
또한, 본 발명은 교감신경의 자극이 필요한 상황에서 입력되는 사용자의 조작명령에 전극을 통해 교감신경에 자극을 가할 수도 있다. In addition, the present invention may apply stimulation to the sympathetic nerve through electrodes in response to a user's manipulation command input in a situation where stimulation of the sympathetic nerve is required.
이에 따라, 본 발명은 척수 손상 환자의 자율신경계 부조화를 해소함으로써, 기립성 저혈압, 사정 장애, 신경인성 방광 장애 등의 이상을 효과적으로 조절할 수 있다. Accordingly, the present invention can effectively control abnormalities such as orthostatic hypotension, ejaculation disorders, and neurogenic bladder disorders by resolving the autonomic nervous system dissonance of patients with spinal cord injuries.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.Although the invention made by the present inventors has been specifically described according to the above embodiments, the present invention is not limited to the above embodiments, and various changes can be made without departing from the gist of the present invention.
본 발명은 척수 손상 환자의 교감신경에 전기적인 자극을 가해 자율신경계 부조화를 해소하는 교감신경 자극장치 및 그의 제어방법 기술에 적용된다.The present invention is applied to a sympathetic nerve stimulator and control method technology that relieves the autonomic nervous system disharmony by applying electrical stimulation to the sympathetic nerve of a spinal cord injury patient.

Claims (13)

  1. 척수 손상 환자의 교감신경에 전기적인 자극을 인가하는 전극,An electrode that applies electrical stimulation to the sympathetic nerve of a spinal cord injury patient,
    환자의 방광 내부에 이식되고 상기 전극에 전기적인 신호를 제공하는 생체 이식 본체,A living body implanted inside the patient's bladder and providing electrical signals to the electrodes;
    환자의 혈압과 자세 변화를 포함하는 환자의 생체적 상태를 측정하는 측정부 및 A measurement unit for measuring the patient's biological state including changes in the patient's blood pressure and posture; and
    상기 생체 이식 본체와의 통신을 통해 원격으로 상기 생체 이식 본체의 구동을 제어하는 원격 제어유닛을 포함하여 Including a remote control unit for remotely controlling the driving of the living body transplant body through communication with the living body transplant body
    척수 손상 환자의 교감신경을 자극해서 자율신경계의 부조화를 조절하는 것을 특징으로 하는 교감신경 자극장치.A sympathetic nerve stimulator characterized in that it regulates the disharmony of the autonomic nervous system by stimulating the sympathetic nerve of a spinal cord injury patient.
  2. 제1항에 있어서, 상기 측정부는 The method of claim 1, wherein the measuring unit
    환자의 경동맥동의 혈류량을 측정하는 혈류측정기, A blood flow meter that measures blood flow in the patient's carotid sinus;
    환자의 체온을 측정하는 체온측정기 및 A thermometer that measures the patient's body temperature and
    환자의 자세 변화를 측정하는 자세측정기를 포함하는 것을 특징으로 하는 교감신경 자극장치.A sympathetic nerve stimulator comprising a posture measuring device for measuring a change in the patient's posture.
  3. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 원격 제어유닛은 상기 생체 이식 본체와 무선 통신 방식으로 통신하는 통신모듈, The remote control unit includes a communication module that communicates with the living body by a wireless communication method;
    상기 통신모듈을 통해 수신되는 생체적 상태 정보를 기계 학습하는 학습모듈 및 A learning module for machine learning the biometric state information received through the communication module, and
    상기 학습모듈에서 학습한 학습 정보에 기초해서 상기 원격제어신호를 발생하는 신호발생모듈을 포함하고,A signal generating module for generating the remote control signal based on the learning information learned in the learning module;
    상기 신호발생모듈은 상기 학습 정보를 기반으로 교감신경 자극이 필요한 시기 및 척수 레벨의 자극 지점을 찾아 필요한 부위를 선택해서 상기 원격 제어신호를 발생하는 것을 특징으로 하는 교감신경 자극장치.The signal generation module finds a time when sympathetic nerve stimulation is required and a stimulation point at the level of the spinal cord based on the learning information, and generates the remote control signal by selecting a necessary part.
  4. 제3항에 있어서, According to claim 3,
    상기 원격 제어유닛은 상기 생체 이식 본체의 구동을 제어하기 위한 각종 프로그램, 상기 생체적 상태 정보와 학습 정보를 저장하는 저장모듈,The remote control unit includes a storage module for storing various programs for controlling driving of the implanted body, a storage module for storing the biometric state information and learning information;
    각 모듈에 전원을 공급하는 전원공급모듈 및 A power supply module that supplies power to each module and
    상기 생체 이식 본체에 무선 전력 전송 방식으로 전력을 전송해서 충전하는 전력전송모듈을 더 포함하는 것을 특징으로 하는 교감신경 자극장치.The sympathetic nerve stimulator, characterized in that it further comprises a power transmission module for transmitting and charging power to the implanted body in a wireless power transmission method.
  5. 제3항에 있어서, According to claim 3,
    상기 전극은 하나의 이상의 교감신경절에 각각 하나 이상 설치되고, One or more electrodes are respectively installed in one or more sympathetic ganglia,
    상기 생체 이식 본체와 전극 연결선을 통해 전기적으로 연결되는 것을 특징으로 하는 교감신경 자극장치.Sympathetic nerve stimulator, characterized in that electrically connected to the living body implanted body through an electrode connection line.
  6. 제3항에 있어서, According to claim 3,
    상기 생체 이식 본체는 상기 원격 제어유닛의 원격 제어신호에 따라 상기 전극에 전기적 신호를 인가하는 제어부를 포함하고, The implantation body includes a control unit for applying an electrical signal to the electrode according to a remote control signal from the remote control unit;
    상기 제어부는 상기 원격 제어유닛과의 통신이 중지되더라도, 상기 원격 제어유닛에서 수신된 학습정보 또는 상기 생체 이식 본체에 마련된 학습모듈에서 수행된 학습정보에 기초해서 자극이 필요한 시기 및 부위를 선택적으로 자극하도록 제어하는 것을 특징으로 하는 교감신경 자극장치.Even if communication with the remote control unit is stopped, the control unit selectively stimulates the time and area requiring stimulation based on the learning information received from the remote control unit or the learning information performed in the learning module provided in the living body implantation body. Sympathetic nerve stimulator, characterized in that for controlling to.
  7. 제3항에 있어서, According to claim 3,
    상기 원격 제어유닛은 사용자의 조작명령에 기초해서 교감신경을 자극하도록, 상기 원격 제어신호를 발생하고, The remote control unit generates the remote control signal to stimulate the sympathetic nerve based on a user's operation command;
    상기 제어부는 상기 원격 제어신호에 따라 교감신경을 자극하도록 상기 전극에 전기적 신호를 인가하는 것을 특징으로 하는 교감신경 자극장치. The sympathetic nerve stimulator, characterized in that the control unit applies an electrical signal to the electrode to stimulate the sympathetic nerve according to the remote control signal.
  8. (a) 척수 손상 환자의 교감신경과 방광 내부에 전극과 생체 이식 본체를 이식하고, 전극 연결선을 이용해서 연결하는 단계,(a) implanting an electrode and a living body transplant body into the sympathetic nerve and bladder of a patient with spinal cord injury and connecting them using an electrode connection line;
    (b) 상기 생체 이식 본체에 마련된 제어부에서 상기 전극에 전기적 신호를 인가하여 교감신경에 자극을 가하는 단계, (b) stimulating the sympathetic nerve by applying an electrical signal to the electrode from a control unit provided in the implanted body;
    (c) 측정부를 이용해서 환자의 혈압과 자세 변화를 포함하는 환자의 생체적 상태를 측정하는 단계 및 (c) measuring the biological state of the patient, including changes in the patient's blood pressure and posture, using a measuring unit; and
    (d) 원격 제어유닛 또는 상기 제어부에서 상기 측정부로부터 측정된 환자의 생체적 상태정보에 기초해서 교감신경을 자극하도록 상기 전극에 전기적 신호를 인가하는 단계를 포함하여(d) applying an electrical signal to the electrode to stimulate the sympathetic nerve based on the biometric state information of the patient measured by the measurement unit in the remote control unit or the control unit;
    척수 손상 환자의 교감신경을 자극해서 자율신경계의 부조화를 조절하는 것을 특징으로 하는 교감신경 자극장치.A sympathetic nerve stimulator characterized in that it regulates the disharmony of the autonomic nervous system by stimulating the sympathetic nerve of a spinal cord injury patient.
  9. 제8항에 있어서, 상기 (c)단계는The method of claim 8, wherein step (c)
    (c1) 상기 측정부에 마련된 혈류측정기를 이용해서 경동맥동의 혈류량을 측정하는 단계, (c1) measuring the blood flow in the carotid sinus using a blood flow meter provided in the measuring unit;
    (c2) 체온측정기를 이용해서 환자의 체온을 측정하는 단계 및 (c2) measuring the patient's body temperature using a body temperature measuring device; and
    (c3) 자세측정기를 이용해서 상기 생체 이식 본체가 이식된 사용자의 자세 변화를 측정하는 단계를 포함하는 것을 특징으로 하는 교감신경 자극장치의 제어방법.(c3) a control method of a sympathetic nerve stimulator comprising the step of measuring a change in posture of the user to which the implanted living body is implanted using a posture measuring device.
  10. 제8항 또는 제9항에 있어서, 상기 (d)단계는The method of claim 8 or 9, wherein the step (d)
    (d1) 상기 원격 제어유닛에 마련된 통신모듈을 통해 상기 생체 이식 본체와 무선 통신 방식으로 통신하여 생체적 상태 정보를 수신하는 단계, (d1) receiving biometric state information by communicating with the living body transplant body in a wireless communication method through a communication module provided in the remote control unit;
    (d2) 학습모듈에서 상기 통신모듈을 통해 수신되는 생체적 상태 정보를 기계 학습하는 단계 및 (d2) machine learning the biometric state information received through the communication module in a learning module; and
    (d3) 신호발생모듈에서 상기 학습모듈에서 학습한 학습 정보에 기초해서 상기 원격제어신호를 발생하는 단계를 포함하고,(d3) generating the remote control signal based on the learning information learned in the learning module in a signal generating module;
    상기 신호발생모듈은 상기 학습 정보를 기반으로 교감신경 자극이 필요한 시기 및 척수 레벨의 자극 지점을 찾아 필요한 부위를 선택해서 상기 원격 제어신호를 발생하는 것을 특징으로 하는 교감신경 자극장치의 제어방법.Wherein the signal generation module finds a time when sympathetic nerve stimulation is required and a stimulation point at the level of the spinal cord based on the learning information, and selects a necessary area to generate the remote control signal.
  11. 제10항에 있어서, According to claim 10,
    (e) 상기 원격 제어유닛에서 사용자로부터 교감신경을 자극하도록 조작명령이 입력되면, 교감신경을 자극하기 위한 원격 제어신호를 발생하고, 상기 제어부에서 상기 원격 제어신호에 따라 교감신경을 자극하도록 상기 전극에 전기적 신호를 인가하는 단계를 더 포함하는 것을 특징으로 하는 교감신경 자극장치의 제어방법. (e) When an operation command to stimulate the sympathetic nerve is input from the user in the remote control unit, a remote control signal for stimulating the sympathetic nerve is generated, and the controller stimulates the sympathetic nerve according to the remote control signal. The control method of the sympathetic nerve stimulator, characterized in that it further comprises the step of applying an electrical signal to.
  12. 제11항에 있어서, According to claim 11,
    (f) 상기 생체 이식 본체에서 상기 원격 제어유닛으로부터 무선 전력 전송 방식으로 전송되는 전력을 수신하여 충전하는 단계를 더 포함하는 것을 특징으로 하는 교감신경 자극장치의 제어방법.(f) the control method of the sympathetic nerve stimulator, characterized in that it further comprises the step of receiving and charging the power transmitted from the remote control unit in a wireless power transmission method in the body implanted in the body.
  13. 제12항에 있어서, According to claim 12,
    상기 제어부는 상기 원격 제어유닛과의 통신이 중지되더라도, 상기 원격 제어유닛에서 수신된 학습정보 또는 상기 생체 이식 본체에 마련된 학습모듈에서 수행된 학습정보에 기초해서 자극이 필요한 시기 및 부위를 선택적으로 자극하도록 제어하는 것을 특징으로 하는 교감신경 자극장치의 제어방법.Even if communication with the remote control unit is stopped, the control unit selectively stimulates the time and area requiring stimulation based on the learning information received from the remote control unit or the learning information performed in the learning module provided in the living body implantation body. A control method of a sympathetic nerve stimulator, characterized in that for controlling to.
PCT/KR2021/015979 2021-07-05 2021-11-05 Sympathetic nerve stimulation device and control method therefor WO2023282396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210087720A KR102567821B1 (en) 2021-07-05 2021-07-05 Sympathetic nerve stimulation apparatus
KR10-2021-0087720 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282396A1 true WO2023282396A1 (en) 2023-01-12

Family

ID=84801835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015979 WO2023282396A1 (en) 2021-07-05 2021-11-05 Sympathetic nerve stimulation device and control method therefor

Country Status (2)

Country Link
KR (1) KR102567821B1 (en)
WO (1) WO2023282396A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037187A2 (en) * 2001-10-30 2003-05-08 Berufsgenossenschaftlicher Verein für Heilbehandlung Murnau e.V. Device for examining dysfunction of the bladder
KR20080052483A (en) * 2006-12-07 2008-06-11 한국전자통신연구원 Implantable electrical bladder stimulator
KR20140013043A (en) * 2011-03-24 2014-02-04 캘리포니아 인스티튜트 오브 테크놀로지 Neurostimulator
KR101604996B1 (en) * 2013-05-29 2016-03-22 주식회사 아이엠바이오 Apparatus for stimulus information for urination control
JP2019510529A (en) * 2016-01-21 2019-04-18 カラ ヘルス, インコーポレイテッドCala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases associated with overactive bladder
KR20190136834A (en) * 2018-05-31 2019-12-10 서울대학교산학협력단 Control system of implantable medical device and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681136B2 (en) 2000-12-04 2004-01-20 Science Medicus, Inc. Device and method to modulate blood pressure by electrical waveforms
US7856273B2 (en) 2005-07-28 2010-12-21 Cyberonics, Inc. Autonomic nerve stimulation to treat a gastrointestinal disorder
EP2271400A2 (en) * 2008-04-29 2011-01-12 Cardiac Pacemakers, Inc. Systems for delivering spinal cord stimulation
KR101648463B1 (en) 2013-05-29 2016-08-16 주식회사 아이엠바이오 Bionic Implant Device
KR20150138518A (en) 2014-05-29 2015-12-10 주식회사 아이엠바이오 Neuro requlating system having wireless charging function using smart device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037187A2 (en) * 2001-10-30 2003-05-08 Berufsgenossenschaftlicher Verein für Heilbehandlung Murnau e.V. Device for examining dysfunction of the bladder
KR20080052483A (en) * 2006-12-07 2008-06-11 한국전자통신연구원 Implantable electrical bladder stimulator
KR20140013043A (en) * 2011-03-24 2014-02-04 캘리포니아 인스티튜트 오브 테크놀로지 Neurostimulator
KR101604996B1 (en) * 2013-05-29 2016-03-22 주식회사 아이엠바이오 Apparatus for stimulus information for urination control
JP2019510529A (en) * 2016-01-21 2019-04-18 カラ ヘルス, インコーポレイテッドCala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases associated with overactive bladder
KR20190136834A (en) * 2018-05-31 2019-12-10 서울대학교산학협력단 Control system of implantable medical device and control method thereof

Also Published As

Publication number Publication date
KR20230007011A (en) 2023-01-12
KR102567821B1 (en) 2023-08-18

Similar Documents

Publication Publication Date Title
US11951310B2 (en) Systems and methods for restoring muscle function to the lumbar spine
US11103706B2 (en) Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11596792B2 (en) System, method, and apparatus for applying transcutaneous electrical stimulation
JP6268240B2 (en) Nerve stimulator
JP6518251B2 (en) Transspinal DC adjustment system
US8560077B2 (en) Universal musculoskeletal rehab device (brace, sleeve, or pad) for electrical treatment modalities and biofeedback response monitoring
US9981122B2 (en) Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator
CN105705195A (en) Systems and methods for restoring muscle function to the lumbar spine
US11331488B2 (en) Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
CN112870011B (en) Electric stimulation combined exoskeleton auxiliary walking system
CN105848710A (en) Devices and methods for stimulating nerves
WO2023282396A1 (en) Sympathetic nerve stimulation device and control method therefor
US20230321439A1 (en) Systems and methods for restoring muscle function to the lumbar spine
WO2020190478A1 (en) System, method, and apparatus for applying transcutaneous electrical stimulation
Keith Neuroprostheses for the upper extremity
CN109661252B (en) Kit for restoring muscle function of lumbar vertebrae
US20220143391A1 (en) System, method, and apparatus for applying transcutaneous electrical stimulation
WO2016108332A1 (en) Active bio-implanted pulsatile high-frequency stimulator for catheter for stimulating transsacral epidural spinal nerve
AU2020428552A1 (en) Method and system for automated neuromodulation through machine learning
US11679261B2 (en) Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
AU2020241055B2 (en) System, method, and apparatus for applying transcutaneous electrical stimulation
Kirsch et al. The future of motor neuroprostheses
Marsolais Neural Prostheses: Motor Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE