WO2023282180A1 - Battery charging device and current control device - Google Patents

Battery charging device and current control device Download PDF

Info

Publication number
WO2023282180A1
WO2023282180A1 PCT/JP2022/026291 JP2022026291W WO2023282180A1 WO 2023282180 A1 WO2023282180 A1 WO 2023282180A1 JP 2022026291 W JP2022026291 W JP 2022026291W WO 2023282180 A1 WO2023282180 A1 WO 2023282180A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative
positive
voltage
signal
unit
Prior art date
Application number
PCT/JP2022/026291
Other languages
French (fr)
Japanese (ja)
Inventor
豊隆 ▲高▼嶋
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to KR1020237031294A priority Critical patent/KR20230146588A/en
Priority to JP2022577258A priority patent/JP7450771B2/en
Publication of WO2023282180A1 publication Critical patent/WO2023282180A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1407Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle on vehicles not being driven by a motor, e.g. bicycles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/009Circuit arrangements for detecting rotor position

Definitions

  • the present invention relates to battery chargers and current control devices. This application claims priority based on Japanese Patent Application No. 2021-113440 filed in Japan on July 8, 2021, the content of which is incorporated herein.
  • the present invention has been made to solve the above problems, and its object is to reduce the current rating value of a switching element while coping with an increase in the connected load without excessively limiting the charging current.
  • the object of the present invention is to provide a battery charging device and a current control device capable of
  • a battery charging device includes: a generator that generates power according to the rotation of a rotor and outputs an AC signal according to the generated power; a switching element that rectifies the AC signal and supplies it to the battery as charging power; a positive/negative switching determination unit that determines whether to switch the positive/negative voltage of the AC signal; A trigger output unit for outputting a trigger signal indicating conduction timing of the element, and detecting the voltage of the AC signal to detect the number of rotations of the rotor, and the detected number of rotations exceeds a predetermined threshold.
  • a positive/negative determination control unit that causes the positive/negative switching determination unit to additionally maintain the determination of the negative voltage of the AC signal for a predetermined period; and a disable control section that disables the function of the positive/negative determination control section when a power-consuming load section is connected.
  • the invalidation control unit causes the load unit to be connected when the current flowing during the period of the negative voltage due to the AC signal is equal to or greater than a predetermined current. It is determined that
  • the invalidation control section invalidates the function of the positive/negative determination control section when it is determined that the load section is connected.
  • the above-described battery charging device further includes a current detection unit that detects a current that flows during the period of the negative voltage due to the AC signal, and the invalidation control unit detects the current detected by the current detection unit. Whether or not the load unit is connected is determined based on the current flowing during the period of the negative voltage.
  • the positive/negative determination control unit includes a negative voltage detection unit that detects a negative voltage in the AC signal as detection of the number of revolutions of the rotor; When the absolute value of the negative voltage detected by the negative voltage detection unit is equal to or greater than a predetermined voltage, the positive/negative switching determination unit additionally maintains determination of the negative voltage of the AC signal for a predetermined period. and a voltage maintaining unit.
  • the trigger output unit causes the switching element to conduct during a period in which the positive/negative switching determination unit determines that the AC signal has a positive voltage. , to output the trigger signal.
  • the positive/negative determination control unit determines that the current rated value of the switching element is not exceeded when the number of revolutions exceeds a predetermined threshold value.
  • the positive/negative switching determination unit additionally maintains determination of the negative voltage for the predetermined period.
  • a current control device includes a generator that generates power according to rotation of a rotor and outputs an AC signal according to the generated power, and rectifies the AC signal output by the generator.
  • a switching element for supplying power to a first load unit; a positive/negative switching determination unit that determines switching between positive and negative voltages of the AC signal; The number of rotations of the rotor is detected, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative switching determination unit determines the voltage of the first polarity of the AC signal for a predetermined period of time.
  • a positive/negative determination control unit that additionally maintains the switching element;
  • a trigger output unit that outputs a trigger signal indicating conduction timing and a second load unit that consumes the power generated by the generator during the period of the voltage of the first polarity of the AC signal are connected, the and an invalidation control unit that invalidates the function of the positive/negative determination control unit.
  • the positive/negative determination control unit detects the number of rotations of the rotor by detecting the voltage of the AC signal, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative The switching determination unit is caused to additionally maintain the determination of the negative voltage of the AC signal for a predetermined period.
  • the disable control unit disables the function of the positive/negative determination control unit when a load unit that consumes the power generated by the generator is connected during the negative voltage period of the AC signal. Therefore, the battery charger can limit the charging current so that it does not exceed the current rated value of the switching element at high speed without excessively limiting the charging current, and the switching element can be charged while coping with an increase in the connected load. current rating can be reduced.
  • FIG. 1 is a block diagram showing an example of a battery charging device according to this embodiment
  • FIG. 4 is a first time chart showing an example of the operation of the battery charger according to this embodiment
  • 4 is a second time chart showing an example of the operation of the battery charger according to this embodiment
  • It is a figure which shows an example of the relationship between the rotation speed of a generator and charging current in this embodiment.
  • FIG. 1 is a block diagram showing an example of a battery charging device 1 according to this embodiment.
  • the battery charging device 1 is connected to a generator 2 and a battery 3, and includes thyristors (11, 13), a lamp 12, a positive/negative switching determination unit 14, a trigger output unit 15, a positive/negative A determination control unit 16 , a current detection unit 17 , an invalidation control unit 18 and a switch 19 are provided.
  • the battery charging device 1 is, for example, a device that is mounted on a vehicle such as a motorcycle and charges the battery 3 by half-wave rectifying AC power generated by the generator 2 .
  • An FI load section 5 is connected to the battery charger 1 via a diode 4 , and supplies the power generated by the generator 2 or the output power of the battery 3 to the FI load section 5 .
  • the battery charger 1 supplies the lamp 12 with negative power of the AC power generated by the generator 2 via the thyristor 11 to light the lamp 12 .
  • the battery charging device 1 is an example of a current control device.
  • the generator 2 is, for example, a single-phase magneto-type AC generator, generates power according to the rotation of a rotor (not shown), and outputs an AC signal according to the generated power.
  • the rotor is, for example, a crankshaft connected to a rotating shaft of an internal combustion engine (engine) of a motorcycle.
  • the generator 2 is connected to the thyristor 13 via the power supply line L1 for an AC signal corresponding to the generated power.
  • the generator 2 is also connected to the thyristor 11 via the power supply line L1.
  • the negative voltage of the AC signal is the first polarity voltage
  • the positive voltage is the second polarity voltage opposite to the first polarity voltage.
  • the battery 3 is, for example, a lead-acid battery, the + (positive) electrode (positive electrode) is connected to the cathode terminal of the thyristor 13, and the - (negative) electrode (negative electrode) is connected to the ground terminal (ground line L2). It is connected.
  • the battery 3 charges the power generated by the generator 2 supplied via the power supply line L1 and the thyristor 13 and supplies the charged power to the FI load section 5 via the diode 4 .
  • the diode 4 has an anode terminal connected to the power supply line L1 and a cathode terminal connected to the FI load section 5 , thereby preventing reverse current flow from the FI load section 5 .
  • the FI load section 5 (an example of the first load section) is, for example, an electrical component of a motorcycle, such as an ECU (Engine Control Unit), fuel pump, injection, various sensors, and the like.
  • the FI load unit 5 is connected between the power supply line L1 and the ground line L2, and operates by being supplied with the power generated by the generator 2 or the output power of the battery 3 from the power supply line L1 via the diode 4. , consumes power.
  • the thyristor 11 has an anode terminal connected to one end of the lamp 12, a cathode terminal connected to the power supply line L1, and a gate terminal (control terminal) connected to the signal line of the control signal S1 output from the trigger output section 15. there is
  • the thyristor 11 is a silicon controlled commutator that rectifies the AC signal output by the generator 2 and supplies it to the lamp 12 .
  • the thyristor 11 is controlled by the control signal S1 output by the trigger output unit 15 to be turned on (conducted state), and supplies power for lighting (light emission) to the lamp 12 .
  • the lamp 12 is, for example, a vehicle LED (Light Emitting Diode) light.
  • the lamp 12 When the thyristor 11 is turned on, the lamp 12 emits light when the current flows through the switch 19 at the timing when the AC signal on the power supply line L1 is the negative voltage. That is, the lamp 12 emits light when the thyristor 11 and the switch 19 are on and the AC signal output by the generator 2 is a negative voltage.
  • the lamp 12 includes a plurality of light emitting diodes connected in series.
  • An anode terminal of the light-emitting diode is connected to a ground terminal (ground line L2) via the current detection section 17 .
  • a cathode terminal of the light emitting diode is connected to one end of the switch 19 .
  • the plurality of light emitting diodes are connected in series in the forward direction.
  • the lamp 12 is an example of a load section that consumes the power generated by the generator 2, and corresponds to a second load section.
  • the current detection unit 17 is, for example, current detection means such as a shunt resistor, and is connected between the ground terminal (ground line L2) and the lamp 12. The current detector 17 detects the current that flows during the negative voltage period from the AC signal output by the generator 2 .
  • the switch 19 is a lighting switch that lights (emits light) the lamp 12 and is connected between the lamp 12 and the thyristor 11 .
  • the thyristor 11 and the lamp 12 (load section) are connected when the switch 19 is on, and the thyristor 11 and the lamp 12 (load section) are disconnected when the switch 19 is off.
  • the thyristor 13 (an example of a switching element) is a silicon-controlled rectifier that rectifies the AC signal output by the generator 2 and supplies it to the battery 3 as charging power.
  • the thyristor 13 has an anode terminal connected to the power supply line L1, a cathode terminal connected to the + electrode of the battery 3, and a gate terminal (control terminal) connected to the signal line of the control signal S2 output from the trigger output section 15. there is The thyristor 13 is turned on by the control signal S2 of the trigger output unit 15, thereby supplying the positive voltage of the AC signal of the power supply line L1 to the positive electrode of the battery 3, charging the battery 3, and Operating power is supplied to the FI load unit 5 .
  • the positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal output by the generator 2 . As a positive/negative voltage determination signal, the positive/negative switching determination unit 14 outputs, for example, a high state (High state) while the AC signal is in a positive voltage period, and a low state (Low state) in a period when the AC signal is a negative voltage. to output
  • the positive/negative switching determination unit 14 includes resistors 141 to 143, a capacitor 144, a Zener diode 145, and a Zener diode 146, for example.
  • the resistors 141 to 143 are connected in series between the power supply line L1 and the ground line L2.
  • the resistor 141 has a first terminal connected to the power supply line L1 and a second terminal connected to the node N1.
  • the resistor 142 has a first terminal connected to the node N1 and a second terminal connected to the node N2.
  • the resistor 143 has a first terminal connected to the node N2 and a second terminal connected to the ground line L2.
  • the capacitor 144 is connected in parallel with the resistor 143 between the node N2 and the ground line L2. That is, the capacitor 144 has a first terminal connected to the node N2 and a second terminal connected to the ground line L2.
  • the resistors 141 to 143 and the capacitor 144 divide and output the voltage of the AC signal output from the generator 2 at the nodes N1 and N2, and function as a filter circuit for removing noise at the node N2.
  • the voltage of the node N1 is used for negative voltage detection of the AC signal by the positive/negative determination control section 16, which will be described later.
  • the voltage of the node N2 is used as an output signal of the positive/negative switching determination section 14.
  • the Zener diodes 145 and 146 are connected in series in opposite directions to each other between the node N2 and the ground line L2.
  • the Zener diode 145 has an anode terminal connected to the node N2 and a cathode terminal connected to the cathode terminal of the Zener diode 146, respectively.
  • the Zener diode 146 has an anode terminal connected to the ground line L2 and a cathode terminal connected to the cathode terminal of the Zener diode 145, respectively.
  • the Zener diode 145 and the Zener diode 146 are turned on (conducting state) when a predetermined voltage or more is applied in the reverse direction (a predetermined voltage or more to the cathode terminal with respect to the anode terminal), and the predetermined voltage is applied. When less is applied, it is in the off state (non-conducting state).
  • the Zener diode 145 when a positive voltage is applied to the node N2, the Zener diode 145 is forward biased and turned on. In this state, the Zener diode 146 is turned on when the absolute value of the positive voltage is equal to or higher than the predetermined voltage, and turned off when the absolute value of the positive voltage is less than the predetermined voltage. A positive voltage is clamped to a predetermined voltage.
  • the Zener diode 146 when a negative voltage is applied to the node N2, the Zener diode 146 is forward biased and turned on. In this state, the Zener diode 145 is turned on when the absolute value of the negative voltage is equal to or higher than the predetermined voltage, and turned off when the absolute value of the negative voltage is less than the predetermined voltage. The negative voltage is clamped to a predetermined voltage of negative voltage. In this manner, the positive/negative switching determination section 14 generates a positive/negative voltage determination signal and outputs it to the trigger output section 15 .
  • the trigger output unit 15 outputs a trigger signal (control signal) indicating conduction timing of the thyristor 11 and the thyristor 13 based on the determination result of the positive/negative switching determination unit 14 .
  • the trigger output unit 15 controls to turn on the thyristor 11 during a partial period (for example, a predetermined period in the latter half) of the period in which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage.
  • a signal S1 is output.
  • the trigger output unit 15 sets the control signal S1 to a high state when turning the thyristor 11 on, and sets the control signal S1 to a low state when turning the thyristor 11 off.
  • the thyristor 11 is turned off at the timing when the current flowing through the thyristor 11 becomes 0 A (amperes) after the control signal S1 becomes low.
  • the trigger output unit 15 outputs, for example, a trigger signal (control signal S2 ). Further, the trigger output unit 15 outputs a trigger signal (control signal S2), for example, so as to turn off the thyristor 13 during a period when the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage. That is, the trigger output unit 15 outputs a trigger signal (control signal S2) indicating the conduction timing of the thyristor 13 based on the positive voltage (voltage of the second polarity) among the determination results of the positive/negative switching determination unit 14. do.
  • the trigger output unit 15 sets the control signal S2 to a high state when turning the thyristor 13 on, and sets the control signal S2 to a low state when turning the thyristor 13 off.
  • the thyristor 13 is turned off at the timing when the current flowing through the thyristor 13 becomes 0 A after the control signal S2 becomes low.
  • the positive/negative determination control unit 16 detects the number of rotations of the rotor by detecting the voltage of the AC signal output by the generator 2, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative switching determination is performed.
  • the unit 14 additionally maintains the determination of the negative voltage of the AC signal for a predetermined period of time.
  • the positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the negative voltage in the AC signal output by the generator 2 .
  • the positive/negative determination control unit 16 detects the number of rotations of the rotor by detecting the negative voltage (the voltage of the first polarity) in the AC signal output by the generator 2, and the detected number of rotations reaches a predetermined value. is equal to or greater than the threshold, the positive/negative switching determination unit 14 is caused to additionally maintain determination of the negative voltage of the AC signal for a predetermined period.
  • the predetermined period is determined so as not to exceed the rated current value of the thyristor 13, for example, when the number of revolutions exceeds a predetermined threshold value.
  • the positive/negative determination control unit 16 disables the function of the positive/negative determination control unit 16 in response to an invalidation request from the disable control unit 18, which will be described later. That is, when the invalidation request is output from the invalidation control unit 18, the positive/negative determination control unit 16 stops the function of additionally maintaining the determination of the negative voltage of the AC signal for a predetermined period.
  • the positive/negative determination control section 16 also includes a negative voltage detection section 161 and a negative voltage maintenance section 162 .
  • the negative voltage detection unit 161 detects the negative voltage in the AC signal output by the generator 2 as detection of the rotation speed of the rotor. That is, the negative voltage detection unit 161 detects the number of rotations of the rotor by detecting the negative voltage at the node N1 obtained by dividing the AC signal by resistors 141 to 143 .
  • the negative voltage maintenance unit 162 causes the positive/negative switching determination unit 14 to determine the negative voltage of the AC signal for a predetermined period of time. maintain additionally. That is, when the absolute value of the negative voltage of the node N1 detected by the negative voltage detection unit 161 is equal to or higher than a predetermined voltage, the negative voltage maintenance unit 162 adjusts the voltage of the node N1 to , the determination of the negative voltage of the AC signal is additionally maintained for a predetermined period of time. For example, the negative voltage maintaining unit 162 performs a process of maintaining the negative voltage of the node N1 for a predetermined period so as to determine that the voltage of the node N2 is the negative voltage of the AC signal.
  • the negative voltage maintaining unit 162 stops the function of additionally maintaining the negative voltage determination of the AC signal described above for a predetermined period when the invalidation request is output from the invalidation control unit 18 . That is, when the invalidation request is output from the invalidation control unit 18, the negative voltage maintaining unit 162 does nothing in particular, and does not adjust the voltage of the node N1. Further, when the absolute value of the negative voltage of the node N1 is less than the predetermined voltage, the negative voltage maintaining unit 162 does nothing and does not adjust the voltage of the node N1.
  • the disable control unit 18 performs positive/negative determination control when the lamp 12 that consumes the power generated by the generator 2 is connected to the power supply line L1 during the negative voltage period of the AC signal output by the generator 2. Disable the function of the part 16. For example, when the current flowing during the negative voltage period due to the AC signal described above is equal to or greater than a predetermined current, the lamp 12 is connected to the power supply line L1 via the thyristor 11. I judge.
  • the disable control unit 18 determines whether or not the lamp 12 is connected based on the current flowing during the negative voltage period detected by the current detection unit 17 . Specifically, when the current flowing during the negative voltage period detected by the current detection unit 17 is equal to or greater than a predetermined current, the disable control unit 18 determines that the lamp 12 is connected, and determines whether the lamp is positive or negative. Disable the function of the control unit 16 . When determining that the lighting device 12 is connected, the invalidation control unit 18 outputs an invalidation request for invalidating the function of the positive/negative determination control unit 16 to the positive/negative determination control unit 16 .
  • the invalidation control unit 18 determines that the lamp 12 is not connected, and the positive/negative determination control unit 16 to the positive/negative determination control section 16 to enable the function of the positive/negative determination control section 16 .
  • FIG. 2 is a first time chart showing an example of the operation of the battery charger 1 according to this embodiment. 2, the operation when the switch 19 is in the OFF state and the lamp 12 is not connected to the battery charger 1 will be described.
  • each graph shows, from top to bottom, the output voltage of the generator 2, the charging current (output current) by the generator 2, the current flowing through the lamp 12 (load section), and the positive/negative voltage determination signal.
  • Waveform W1 shows the output voltage of the generator 2 when the thyristors 11 and 13 are not turned on
  • waveform W2 shows the actual output of the generator 2 when the thyristors 11 and 13 are turned on. It shows the voltage (the voltage of the power supply line L1).
  • a waveform W3 indicates a charging current (a current flowing through the thyristor 13) to the battery 3 by the generator 2, and waveforms W3A, W3B, and W3C indicate partial waveforms of this charging current. ing.
  • a waveform W4 indicates the waveform of the current flowing through the lamp 12.
  • a waveform W5 indicates the voltage waveform of the determination signal output by the positive/negative switching determination section 14.
  • the horizontal axis of each graph indicates time.
  • the positive/negative switching determination unit 14 determines that the voltage is positive at time T1, and outputs a predetermined positive voltage as a determination signal.
  • the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped (fixed) to the output voltage of the battery 3 as shown by the waveform W2. ) is done.
  • the trigger output unit 15 sets the control signal S2 to a low state after setting the control signal S2 to a high state for a predetermined period. The thyristor 13 is kept on until the output voltage of the generator 2 becomes negative after the control signal S2 becomes low.
  • the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as the determination signal. Moreover, the thyristor 13 is turned off when the output voltage of the generator 2 becomes a negative voltage. Further, as shown by waveform W2, the negative voltage of generator 2 is output to power supply line L1. Note that the charging current is supplied to the battery 3 via the thyristor 13 between the time T1 and the time T2, as indicated by the waveform W3A.
  • the trigger output unit 15 sets the control signal S1 to a high state during a partial period (for example, a predetermined period in the latter half) of the period in which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage, thereby turning on the thyristor 11. turn on. In this case, since the switch 19 is in the OFF state, no current flows through the lamp 12 (see waveform W4).
  • the negative voltage detection unit 161 of the positive/negative determination control unit 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher).
  • a predetermined voltage threshold voltage MVth or higher.
  • the negative voltage maintaining unit 162 does nothing (determination of the negative voltage of the AC signal is additionally performed for a predetermined period of time). no processing to maintain).
  • the positive/negative switching determination unit 14 determines that the voltage is positive, and outputs a predetermined positive voltage as a determination signal.
  • the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped (fixed) to the output voltage of the battery 3 as shown by the waveform W2. ) is done.
  • the trigger output unit 15 sets the control signal S1 to a high state, turning the thyristor 11 on, but the switch 19 is off.
  • the output voltage of the generator 2 becomes a negative voltage when the lamp 12 is not connected.
  • the current flowing through the lamp 12 becomes 0 A as shown by the waveform W4. That is, in this example, the lamp 12 does not turn on (light).
  • the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as a determination signal.
  • the thyristor 13 is turned off, and the negative voltage of the generator 2 is output as the output voltage of the generator 2 as shown by the waveform W2.
  • the charging current is supplied to the battery 3 via the thyristor 13 between the time T3 and the time T4, as indicated by the waveform W3B.
  • the negative voltage detection section 161 of the positive/negative determination control section 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher).
  • a predetermined voltage threshold voltage MVth or higher
  • the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal for a predetermined period (period TR1). Execute the process that causes the
  • the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal during the period TR1 from time T5 to time T6.
  • the positive/negative switching determination unit 14 switches the determination signal from the negative voltage to the positive voltage at time T6.
  • the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped to the output voltage of the battery 3 as shown by the waveform W2. fixed).
  • the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as the determination signal.
  • the thyristor 13 is turned off, and the negative voltage of the generator 2 is output as the output voltage of the generator 2 as shown by the waveform W2.
  • a charging current is supplied to the battery 3 via the thyristor 13 between time T6 and time T7, as indicated by a waveform W3C.
  • the determination of the negative voltage of the AC signal is additionally maintained during the period TR1 from time T5 to time T6, the charging current of waveform W3C is limited accordingly.
  • the waveform W3D indicates the charging current of the battery 3 in the case of the prior art without the positive/negative determination control section 16 for comparison. Comparing the waveform W3C and the waveform W3D, in the present embodiment, the determination of the negative voltage of the AC signal is additionally maintained for the period TR1, so that the charging current can be limited.
  • the negative voltage detection unit 161 of the positive/negative determination control unit 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher).
  • a predetermined voltage threshold voltage MVth or higher
  • the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal for a predetermined period (period TR1). Execute the process that causes the As a result, the positive/negative switching determination unit 14 switches the determination signal from the negative voltage to the positive voltage at time T8.
  • FIG. 3 is a second time chart showing an example of the operation of the battery charger 1 according to this embodiment. 3, the operation when the switch 19 is in the ON state and the lamp 12 is connected to the battery charger 1 will be described.
  • each graph is the same as in FIG. 2 described above, and waveforms W11 to W15 correspond to waveforms W1 to W5 in this embodiment shown in FIG. 2 described above.
  • Waveforms W13A, W13B, and W13C represent partial waveforms of this charging current. Note that the horizontal axis of each graph indicates time.
  • Time T11, time T13, time T15, and time T17 are timings at which the determination signal is switched from negative voltage to positive voltage
  • time T12, time T14, and time T16 are timings at which the determination signal is switched from positive voltage to negative voltage. It's time to switch.
  • the trigger output unit 15 When the switch 19 shown in FIG. 3 is in the ON state, the trigger output unit 15 is turned on during a part of the period (for example, a predetermined period in the latter half) during which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage. , the control signal S1 is output so as to turn on the thyristor 11, so that a current flows through the lamp 12 as shown by the waveform W14. In the current flowing through the lamp 12 shown in the waveform W14, the direction of the current flowing from the lamp 12 to the thyristor 11 is shown as positive current.
  • the current flowing through the lighting device 12 is equal to or higher than the predetermined current (the threshold current Ath or higher) during the negative voltage period of the AC signal.
  • the invalidation control unit 18 outputs an invalidation request to the positive/negative determination control unit 16, and invalidates the additionally maintained processing for a predetermined period (period TR1) at time T15 and time T17.
  • the charging current by the generator 2 decreases compared to when the lamp 12 is not connected (when the switch 19 is in the off state) (see waveform W13C).
  • the waveform W13D shows the charging current to the battery 3 in the case of the prior art in which the switch 19 is in the OFF state and the positive/negative determination control unit 16 is not provided
  • the waveform W13E shows the charging current of the positive/negative determination control unit 16 when the switch 19 is in the OFF state. It shows the charging current when the function is enabled.
  • FIG. 4 is a diagram showing an example of the relationship between the rotation speed of the generator 2 and the charging current in this embodiment.
  • the horizontal axis indicates the revolutions per minute (rpm) of the generator 2
  • the vertical axis indicates the charging current.
  • a waveform W6 shows the relationship between the rotation speed of the generator 2 and the charging current in this embodiment when the switch 19 is in the OFF state.
  • a waveform W7 indicates the relationship between the rotation speed of the generator 2 and the charging current in this embodiment when the switch 19 is in the ON state.
  • a waveform W16 shows the relationship between the rotation speed of the generator 2 and the charging current when the switch 19 is off in a conventional battery charger without the positive/negative determination control unit 16.
  • a waveform W17 shows the relationship between the rotation speed of the generator 2 and the charging current when the switch 19 is in the ON state in a conventional battery charger without the invalidation control unit 18.
  • the charging current rises according to the rotation speed and exceeds the rated current value Arat of the thyristor 13.
  • the current rating value Arat of the thyristor 13 is limited as shown by the waveform W6. be able to.
  • the positive/negative determination control unit 16 significantly reduces the charging current with respect to the rated current value Arat of the thyristor 13 . That is, in the conventional battery charger, the positive/negative determination control section 16 may excessively limit the charging current.
  • the disable control unit 18 disables the function of the positive/negative determination control unit 16. Therefore, the charging current can be increased to the extent that the rated current value Arat of the thyristor 13 is not exceeded, as shown by the waveform W7.
  • the battery charger 1 includes the generator 2, the thyristor 13 (switching element), the positive/negative switching determination unit 14, the trigger output unit 15, the positive/negative determination control unit 16, and the invalid and a control unit 18 .
  • the generator 2 generates power according to the rotation of the rotor and outputs an AC signal according to the generated power.
  • the thyristor 13 rectifies the AC signal output by the generator 2 and supplies it to the battery as charging power.
  • the positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal.
  • the trigger output unit 15 outputs a trigger signal indicating conduction timing of the thyristor 13 based on the determination result of the positive/negative switching determination unit 14 .
  • the positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the voltage of the AC signal. is additionally maintained for a predetermined period of time.
  • the disable control unit 18 disables the function of the positive/negative determination control unit 16 when the lamp 12 (load unit) that consumes the power generated by the generator 2 is connected during the negative voltage period of the AC signal. do.
  • the battery charging device 1 when the number of revolutions becomes equal to or greater than a predetermined threshold value, a predetermined period is added and it is determined as a negative voltage period. period TR1), the conducting period (ON period) of the thyristor 13 of the trigger signal (control signal S2) is shortened, and the charging power is suppressed. Therefore, the battery charging device 1 according to the present embodiment can limit the current rated value Arat of the thyristor 13 during high rotation, as shown by the waveform W6 in FIG. 4, for example. For example, the rated current value Arat of the thyristor 13 can be reduced while coping with an increase in the current of the FI load section 5 .
  • the battery charger 1 in the battery charger 1 according to the present embodiment, there is no need to increase the rated current value of the thyristor 13 in accordance with the increase in the power consumption of the FI load section 5, and the expensive thyristor 13 having a large rated current value is used. No need.
  • the invalidation control unit 18 operates when the lamp 12 (load unit) that consumes the power generated by the generator is connected during the negative voltage period of the AC signal. , invalidate the function of the positive/negative determination control unit 16 . Therefore, the battery charger 1 according to the present embodiment does not excessively limit the charging current, for example, as shown by the waveform W7 in FIG. It is possible to reduce the rated current value of the switching element while coping with an increase in the connected load (for example, the current of the FI load section 5).
  • the disable control unit 18 connects the lamp 12 when the current flowing in the negative voltage period due to the AC signal is equal to or higher than a predetermined current (for example, equal to or higher than the threshold current Ath). I judge.
  • the invalidation control unit 18 invalidates the function of the positive/negative determination control unit 16 when determining that the lamp 12 is connected.
  • the battery charging device 1 can appropriately determine that the lighting device 12 is connected, and the rated current value of the thyristor 13 at high speed can be determined without excessively limiting the charging current. can be appropriately constrained so as not to exceed
  • the battery charging device 1 includes a current detection section 17 that detects the current that flows during the negative voltage period due to the AC signal.
  • the disable control unit 18 determines whether or not the lamp 12 is connected based on the current flowing during the negative voltage period detected by the current detection unit 17 .
  • the battery charger 1 can easily and appropriately determine that the lamp 12 is connected based on the current value detected by the current detector 17 .
  • the positive/negative determination control section 16 includes a negative voltage detection section 161 and a negative voltage maintenance section 162 .
  • Negative voltage detector 161 detects a negative voltage in the AC signal to detect the number of revolutions of the rotor.
  • the negative voltage maintenance unit 162 causes the positive/negative switching determination unit 14 to determine the negative voltage of the AC signal for a predetermined period ( For example, period TR1) shown in FIG. 2 is additionally maintained.
  • the battery charging device 1 detects a negative voltage, thereby reducing the rated current value Arat of the thyristor 13 while responding to an increase in the FI load unit 5 more appropriately with a simple configuration. be able to.
  • the trigger output unit 15 outputs a trigger signal so that the thyristor 13 is turned on (conducted state) during the period when the positive/negative switching determination unit 14 determines that the AC signal has a positive voltage.
  • the positive/negative determination control unit 16 additionally maintains the determination of the negative voltage of the AC signal for a predetermined period of time, thereby turning the thyristor 13 on (conducting state).
  • the period can be easily shortened, and charging power can be easily suppressed.
  • the positive/negative determination control unit 16 when the number of revolutions is equal to or higher than a predetermined threshold value, for a predetermined period determined so as not to exceed the current rated value Arat of the thyristor 13, the positive/negative switching determination unit 14 additionally maintains the negative voltage determination.
  • the battery charging device 1 can reliably limit the current rated value Arat of the thyristor 13 so as not to exceed it during high speed rotation.
  • the current control device for example, the battery charging device 1
  • the current control device includes the generator 2, the switching element (for example, the thyristor 13 or the thyristor 11), the positive/negative switching determination unit 14, and the positive/negative determination control unit 16. , a trigger output unit 15 , and an invalidation control unit 18 .
  • the generator 2 generates power according to the rotation of the rotor and outputs an AC signal according to the generated power.
  • a switching element (for example, the thyristor 13 or the thyristor 11) rectifies the AC signal output by the generator 2 and supplies it to the first load section (for example, the FI load section 5 or the lamp 12).
  • the positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal.
  • the positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the voltage of the first polarity (for example, negative voltage or positive voltage) among the positive and negative voltages of the AC signal, and determines whether the detected number of revolutions is When the voltage exceeds a predetermined threshold value, the positive/negative switching determination unit 14 additionally maintains the determination of the voltage of the first polarity of the AC signal (e.g., negative voltage or positive voltage) for a predetermined period.
  • the trigger output unit 15 outputs a second polarity voltage (e.g., positive voltage, or negative voltage), a trigger signal indicating conduction timing of a switching element (for example, thyristor 13 or thyristor 11) is output.
  • the disable control unit 18 controls the second load unit (e.g., the lamp 12 or FI When the load section 5) is connected, the function of the positive/negative determination control section 16 is disabled.
  • the current control device for example, the battery charging device 1 according to the present embodiment responds to an increase in the connected load (for example, the current of the FI load unit 5 or the current of the lamp 12) while switching A current rating value of an element (for example, thyristor 13 or thyristor 11) can be reduced.
  • the current control device for example, the battery charging device 1 according to the present embodiment does not excessively limit the current flowing through the first load section (for example, the FI load section 5 or the lamp 12), The current rating of the switching element (for example, thyristor 13 or thyristor 11) can be limited so as not to exceed it.
  • the present invention is not limited to the above embodiments, and can be modified without departing from the gist of the present invention.
  • the positive/negative determination control unit 16 detects the number of rotations by detecting the negative voltage of the AC signal, but the present invention is not limited to this.
  • the positive/negative determination control unit 16 detects the positive voltage of the AC signal to detect the rotation speed. You may do so.
  • the switching element is the thyristor 13
  • the switching element is not limited to this.
  • other switching elements such as other silicon controlled commutators.
  • the configuration of the positive/negative switching determination unit 14 is not limited to the circuit shown in FIG. 1, and may be another configuration (circuit).
  • the generator 2 is a single-phase magneto-alternator. It may be a generator that outputs, or it may be another generator.
  • the present invention is not limited to this, and may be applied to other load sections.
  • the battery charging device 1 for controlling the charging current of the battery 3 was described as an example of the current control device. It may be another current control device that controls the current flowing through.
  • the positive/negative determination control unit 16 and the invalidation control unit 18 may be realized by circuit means, or may be realized by software processing that causes a CPU (Central Processing Unit) to execute a program. .
  • a CPU Central Processing Unit
  • part or all of the functions of the positive/negative determination control unit 16 and the invalidity control unit 18 described above may be realized as an integrated circuit such as LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each function mentioned above may be processor-ized individually, and may integrate
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • an integration circuit technology that replaces LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
  • the present invention can be applied to a battery charging device that charges a battery using rotation of an internal combustion engine such as a motorcycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

A battery charging device comprising: an electric generator that outputs an alternating-current signal corresponding to generated electric power; a switching element that rectifies the alternating-current signal output from the electric generator and supplies resultant charging power to a battery; a positive/negative switch determination unit that determines switching of positive and negative voltages of the alternating-current signal; a trigger output unit that, on the basis of a result of the determination by the positive/negative switch determination unit, outputs a trigger signal indicating a switching element conduction timing; a positive/negative determination control unit that detects the voltage of the alternating-current signal to detect the rotational speed of a rotor, and that, if the detected rotational speed is greater than or equal to a predetermined threshold value, causes the positive/negative switch determination unit to additionally maintain the determination of a negative voltage of the alternating-current signal for a predetermined period; and an invalidation control unit that invalidates the function of the positive/negative determination control unit if a load unit that consumes the power generated by the electric generator is connected in the negative voltage period of the alternating-current signal.

Description

バッテリ充電装置、及び電流制御装置Battery charger and current controller
 本発明は、バッテリ充電装置、及び電流制御装置に関する。
 本願は、2021年7月8日に、日本に出願された特願2021-113440号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to battery chargers and current control devices.
This application claims priority based on Japanese Patent Application No. 2021-113440 filed in Japan on July 8, 2021, the content of which is incorporated herein.
 近年、自動二輪車などの内燃機関の回転を利用して、バッテリを充電するバッテリ充電装置が知られている(例えば、特許文献1を参照)。このような従来のバッテリ充電装置では、発電機が出力する交流信号を、例えば、サイリスタなどのスイッチング素子により半波整流して、バッテリを充電していた。 In recent years, there has been known a battery charging device that uses the rotation of an internal combustion engine such as a motorcycle to charge a battery (see Patent Document 1, for example). In such a conventional battery charging device, the AC signal output from the generator is half-wave rectified by a switching element such as a thyristor, for example, to charge the battery.
特開2013-123299号公報JP 2013-123299 A
 ところで、例えば、自動二輪車において、近年、FI(Fuel Injection:電子制御燃料噴射装置)による電子制御やセンサの増加などにより、発電機及びバッテリに接続される負荷が増大している。しかしながら、上述した従来のバッテリ充電装置では、実用回転領域において発電機の出力電流を増加しようとすると、発電機が高回転時に過大な出力となり、スイッチング素子の電流定格値を高くする必要があった。また、高回転時にスイッチング素子を点弧させるタイミングを変更することで、バッテリの充電電流を制限して、スイッチング素子の電流定格値を低減する手法が考えられるが、例えば、交流信号の負電圧の期間に、発電機が発電した電力を消費する負荷が接続されている場合には、過剰に充電電流を制限してしまう可能性があった。 By the way, in recent years, for example, in motorcycles, the load connected to the generator and the battery has been increasing due to the increase in electronic control and sensors by FI (Fuel Injection). However, in the conventional battery charging device described above, if an attempt is made to increase the output current of the generator in the practical rotation range, the output of the generator becomes excessive at high rotation, and it is necessary to increase the current rating value of the switching element. . In addition, it is possible to reduce the rated current value of the switching element by changing the timing of firing the switching element at high rotation to limit the charging current of the battery. If a load that consumes the power generated by the generator is connected during the period, there is a possibility that the charging current will be excessively limited.
 本発明は、上記問題を解決すべくなされたもので、その目的は、過剰に充電電流を制限させずに、接続される負荷の増大に対応させつつ、スイッチング素子の電流定格値を低減することができるバッテリ充電装置、及び電流制御装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its object is to reduce the current rating value of a switching element while coping with an increase in the connected load without excessively limiting the charging current. The object of the present invention is to provide a battery charging device and a current control device capable of
 上記問題を解決するために、本発明の一態様に係るバッテリ充電装置は、回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する発電機と、前記発電機が出力する前記交流信号を整流して充電電力としてバッテリに供給するスイッチング素子と、前記交流信号の正負電圧の切り替えを判定する正負切替判定部と、前記正負切替判定部の判定結果に基づいて、前記スイッチング素子の導通タイミングを示すトリガ信号を出力するトリガ出力部と、前記交流信号の電圧を検出することで、前記回転子の回転数を検出し、検出した前記回転数が所定の閾値以上になった場合に、前記正負切替判定部に、前記交流信号の負電圧の判定を、所定の期間、追加で維持させる正負判定制御部と、前記交流信号の負電圧の期間に、前記発電機が発電した電力を消費する負荷部が接続されている場合に、前記正負判定制御部の機能を無効にする無効制御部とを備える。 In order to solve the above problem, a battery charging device according to an aspect of the present invention includes: a generator that generates power according to the rotation of a rotor and outputs an AC signal according to the generated power; a switching element that rectifies the AC signal and supplies it to the battery as charging power; a positive/negative switching determination unit that determines whether to switch the positive/negative voltage of the AC signal; A trigger output unit for outputting a trigger signal indicating conduction timing of the element, and detecting the voltage of the AC signal to detect the number of rotations of the rotor, and the detected number of rotations exceeds a predetermined threshold. a positive/negative determination control unit that causes the positive/negative switching determination unit to additionally maintain the determination of the negative voltage of the AC signal for a predetermined period; and a disable control section that disables the function of the positive/negative determination control section when a power-consuming load section is connected.
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記無効制御部は、前記交流信号によって前記負電圧の期間に流れる電流が、所定の電流以上である場合に、前記負荷部が接続されていると判定する。 Further, in the above-described battery charging device according to the aspect of the present invention, the invalidation control unit causes the load unit to be connected when the current flowing during the period of the negative voltage due to the AC signal is equal to or greater than a predetermined current. It is determined that
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記無効制御部は、前記負荷部が接続されていると判定した場合に、前記正負判定制御部の機能を無効にする。 Further, in the battery charging device according to the aspect of the present invention, the invalidation control section invalidates the function of the positive/negative determination control section when it is determined that the load section is connected.
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記交流信号によって前記負電圧の期間に流れる電流を検出する電流検出部を備え、前記無効制御部は、前記電流検出部が検出した前記負電圧の期間に流れる電流に基づいて、前記負荷部が接続されているか否かを判定する。 Further, the above-described battery charging device according to an aspect of the present invention further includes a current detection unit that detects a current that flows during the period of the negative voltage due to the AC signal, and the invalidation control unit detects the current detected by the current detection unit. Whether or not the load unit is connected is determined based on the current flowing during the period of the negative voltage.
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記正負判定制御部は、前記回転子の回転数の検出として、前記交流信号のうちの負電圧を検出する負電圧検出部と、前記負電圧検出部が検出した前記負電圧の絶対値が所定の電圧以上である場合に、前記正負切替判定部に、前記交流信号の負電圧の判定を、所定の期間、追加で維持させる負電圧維持部とを備える。 Further, in the above-described battery charging device according to the aspect of the present invention, the positive/negative determination control unit includes a negative voltage detection unit that detects a negative voltage in the AC signal as detection of the number of revolutions of the rotor; When the absolute value of the negative voltage detected by the negative voltage detection unit is equal to or greater than a predetermined voltage, the positive/negative switching determination unit additionally maintains determination of the negative voltage of the AC signal for a predetermined period. and a voltage maintaining unit.
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記トリガ出力部は、前記正負切替判定部が、前記交流信号の正電圧と判定した期間に前記スイッチング素子を導通状態にするように、前記トリガ信号を出力する。 Further, in the above-described battery charging device according to the aspect of the present invention, the trigger output unit causes the switching element to conduct during a period in which the positive/negative switching determination unit determines that the AC signal has a positive voltage. , to output the trigger signal.
 また、本発明の一態様に係る上記のバッテリ充電装置において、前記正負判定制御部は、前記回転数が所定の閾値以上になった場合に、前記スイッチング素子の電流定格値を超えないように定められた前記所定の期間、前記正負切替判定部に前記負電圧の判定を追加で維持させる。 Further, in the above-described battery charging device according to the aspect of the present invention, the positive/negative determination control unit determines that the current rated value of the switching element is not exceeded when the number of revolutions exceeds a predetermined threshold value. The positive/negative switching determination unit additionally maintains determination of the negative voltage for the predetermined period.
 また、本発明の一態様に係る電流制御装置は、回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する発電機と、前記発電機が出力する前記交流信号を整流して第1負荷部に供給するスイッチング素子と、前記交流信号の正負電圧の切り替えを判定する正負切替判定部と、前記交流信号の正負電圧のうちの第1極性の電圧を検出することで、前記回転子の回転数を検出し、検出した前記回転数が所定の閾値以上になった場合に、前記正負切替判定部に、前記交流信号の前記第1極性の電圧の判定を、所定の期間、追加で維持させる正負判定制御部と、前記正負切替判定部の判定結果のうち、前記第1極性の電圧と逆極性の電圧である第2極性の電圧の判定に基づいて、前記スイッチング素子の導通タイミングを示すトリガ信号を出力するトリガ出力部と、前記交流信号の前記第1極性の電圧の期間に前記発電機が発電した電力を消費する第2負荷部が接続されている場合に、前記正負判定制御部の機能を無効にする無効制御部とを備える。 Further, a current control device according to an aspect of the present invention includes a generator that generates power according to rotation of a rotor and outputs an AC signal according to the generated power, and rectifies the AC signal output by the generator. a switching element for supplying power to a first load unit; a positive/negative switching determination unit that determines switching between positive and negative voltages of the AC signal; The number of rotations of the rotor is detected, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative switching determination unit determines the voltage of the first polarity of the AC signal for a predetermined period of time. a positive/negative determination control unit that additionally maintains the switching element; When a trigger output unit that outputs a trigger signal indicating conduction timing and a second load unit that consumes the power generated by the generator during the period of the voltage of the first polarity of the AC signal are connected, the and an invalidation control unit that invalidates the function of the positive/negative determination control unit.
 本発明の一態様によれば、正負判定制御部が、交流信号の電圧を検出することで、回転子の回転数を検出し、検出した回転数が所定の閾値以上になった場合に、正負切替判定部に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。これにより、バッテリ充電装置では、回転数が所定の閾値以上になった場合に、所定の期間追加されて負電圧の期間と判定され、この所定の期間分、トリガ信号のスイッチング素子の導通期間が短くなり、充電電力が抑制される。また、無効制御部が、交流信号の負電圧の期間に、発電機が発電した電力を消費する負荷部が接続されている場合に、当該正負判定制御部の機能を無効にする。そのため、バッテリ充電装置は、過剰に充電電流を制限させずに、高回転時にスイッチング素子の電流定格値を超えないように制限することができ、接続される負荷の増大に対応させつつ、スイッチング素子の電流定格値を低減することができる。 According to one aspect of the present invention, the positive/negative determination control unit detects the number of rotations of the rotor by detecting the voltage of the AC signal, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative The switching determination unit is caused to additionally maintain the determination of the negative voltage of the AC signal for a predetermined period. As a result, in the battery charging device, when the number of rotations exceeds a predetermined threshold value, a predetermined period is added and it is determined as a negative voltage period. shorter and the charging power is suppressed. Further, the disable control unit disables the function of the positive/negative determination control unit when a load unit that consumes the power generated by the generator is connected during the negative voltage period of the AC signal. Therefore, the battery charger can limit the charging current so that it does not exceed the current rated value of the switching element at high speed without excessively limiting the charging current, and the switching element can be charged while coping with an increase in the connected load. current rating can be reduced.
本実施形態によるバッテリ充電装置の一例を示すブロック図である。1 is a block diagram showing an example of a battery charging device according to this embodiment; FIG. 本実施形態によるバッテリ充電装置の動作の一例を示す第1のタイムチャートである。4 is a first time chart showing an example of the operation of the battery charger according to this embodiment; 本実施形態によるバッテリ充電装置の動作の一例を示す第2のタイムチャートである。4 is a second time chart showing an example of the operation of the battery charger according to this embodiment; 本実施形態における発電機の回転数と充電電流との関係の一例を示す図である。It is a figure which shows an example of the relationship between the rotation speed of a generator and charging current in this embodiment.
 以下、本発明の一実施形態によるバッテリ充電装置について、図面を参照して説明する。
 図1は、本実施形態によるバッテリ充電装置1の一例を示すブロック図である。
A battery charger according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an example of a battery charging device 1 according to this embodiment.
 図1に示すように、バッテリ充電装置1は、発電機2及びバッテリ3に接続され、サイリスタ(11、13)と、灯火器12と、正負切替判定部14と、トリガ出力部15と、正負判定制御部16と、電流検出部17と、無効制御部18と、スイッチ19とを備えている。 As shown in FIG. 1, the battery charging device 1 is connected to a generator 2 and a battery 3, and includes thyristors (11, 13), a lamp 12, a positive/negative switching determination unit 14, a trigger output unit 15, a positive/negative A determination control unit 16 , a current detection unit 17 , an invalidation control unit 18 and a switch 19 are provided.
 バッテリ充電装置1は、例えば、自動二輪車などの車両に搭載され、発電機2で発電した交流電力を半波整流して、バッテリ3に充電する装置である。また、バッテリ充電装置1には、ダイオード4を介して、FI負荷部5が接続され、発電機2が発電した電力、又はバッテリ3の出力電力をFI負荷部5に供給する。また、バッテリ充電装置1は、サイリスタ11を介して、発電機2で発電した交流電力の負側の電力を灯火器12に供給して、灯火器12を点灯させる。なお、バッテリ充電装置1は、電流制御装置の一例である。 The battery charging device 1 is, for example, a device that is mounted on a vehicle such as a motorcycle and charges the battery 3 by half-wave rectifying AC power generated by the generator 2 . An FI load section 5 is connected to the battery charger 1 via a diode 4 , and supplies the power generated by the generator 2 or the output power of the battery 3 to the FI load section 5 . In addition, the battery charger 1 supplies the lamp 12 with negative power of the AC power generated by the generator 2 via the thyristor 11 to light the lamp 12 . Note that the battery charging device 1 is an example of a current control device.
 発電機2は、例えば、単相磁石式交流発電機であり、回転子(不図示)の回転に応じて発電し、発電した電力に応じた交流信号を出力する。ここで、回転子は、例えば、自動二輪車の内燃機関(エンジン)の回転軸に接続されたクランクシャフトなどである。発電機2は、発電した電力に応じた交流信号を、電力供給線L1を介して、サイリスタ13に接続されている。また、発電機2は、電力供給線L1を介して、サイリスタ11に接続されている。なお、本実施形態において、交流信号のうちの負電圧を第1極性の電圧とし、正電圧を第1極性の電圧と反対極性の電圧である第2極性の電圧とする。 The generator 2 is, for example, a single-phase magneto-type AC generator, generates power according to the rotation of a rotor (not shown), and outputs an AC signal according to the generated power. Here, the rotor is, for example, a crankshaft connected to a rotating shaft of an internal combustion engine (engine) of a motorcycle. The generator 2 is connected to the thyristor 13 via the power supply line L1 for an AC signal corresponding to the generated power. The generator 2 is also connected to the thyristor 11 via the power supply line L1. Note that, in the present embodiment, the negative voltage of the AC signal is the first polarity voltage, and the positive voltage is the second polarity voltage opposite to the first polarity voltage.
 バッテリ3は、例えば、鉛蓄電池であり、+(プラス)電極(正極)が、サイリスタ13のカソード端子に接続されており、-(マイナス)電極(負極)が、グランド端子(グランド線L2)に接続されている。バッテリ3は、電力供給線L1及びサイリスタ13を介して供給された発電機2の発電電力を充電するとともに、充電した電力を、ダイオード4を介して、FI負荷部5に供給する。 The battery 3 is, for example, a lead-acid battery, the + (positive) electrode (positive electrode) is connected to the cathode terminal of the thyristor 13, and the - (negative) electrode (negative electrode) is connected to the ground terminal (ground line L2). It is connected. The battery 3 charges the power generated by the generator 2 supplied via the power supply line L1 and the thyristor 13 and supplies the charged power to the FI load section 5 via the diode 4 .
 ダイオード4は、アノード端子が、電力供給線L1に、カソード端子が、FI負荷部5にそれぞれ接続されており、FI負荷部5からの電流の逆流を防止する。 The diode 4 has an anode terminal connected to the power supply line L1 and a cathode terminal connected to the FI load section 5 , thereby preventing reverse current flow from the FI load section 5 .
 FI負荷部5(第1負荷部の一例)は、例えば、自動二輪車の電装部品であり、ECU(Engine Control Unit)、フューエルポンプ、インジェクション、各種センサ類などである。FI負荷部5は、電力供給線L1とグランド線L2との間に接続され、ダイオード4を介して、電力供給線L1から発電機2の発電電力又はバッテリ3の出力電力を供給されて動作し、電力を消費する。 The FI load section 5 (an example of the first load section) is, for example, an electrical component of a motorcycle, such as an ECU (Engine Control Unit), fuel pump, injection, various sensors, and the like. The FI load unit 5 is connected between the power supply line L1 and the ground line L2, and operates by being supplied with the power generated by the generator 2 or the output power of the battery 3 from the power supply line L1 via the diode 4. , consumes power.
 サイリスタ11は、アノード端子が灯火器12の一端に、カソード端子が電力供給線L1に、ゲート端子(制御端子)がトリガ出力部15から出力される制御信号S1の信号線に、それぞれ接続されている。サイリスタ11は、発電機2が出力する交流信号を整流して灯火器12に供給するシリコン制御整流子である。サイリスタ11は、トリガ出力部15が出力する制御信号S1によりオン状態(導通状態)になるか否かが制御され、灯火器12に点灯(発光)のための電力を供給する。 The thyristor 11 has an anode terminal connected to one end of the lamp 12, a cathode terminal connected to the power supply line L1, and a gate terminal (control terminal) connected to the signal line of the control signal S1 output from the trigger output section 15. there is The thyristor 11 is a silicon controlled commutator that rectifies the AC signal output by the generator 2 and supplies it to the lamp 12 . The thyristor 11 is controlled by the control signal S1 output by the trigger output unit 15 to be turned on (conducted state), and supplies power for lighting (light emission) to the lamp 12 .
 灯火器12は、例えば、車両用のLED(Light Emitting Diode)ライトである。灯火器12は、サイリスタ11がオン状態されると、電力供給線L1の交流信号が負側電圧であるタイミングで、スイッチ19を介して電流が流れて発光する。すなわち、灯火器12は、サイリスタ11及びスイッチ19がオン状態、且つ、発電機2が出力する交流信号が負電圧である場合に、発光する。 The lamp 12 is, for example, a vehicle LED (Light Emitting Diode) light. When the thyristor 11 is turned on, the lamp 12 emits light when the current flows through the switch 19 at the timing when the AC signal on the power supply line L1 is the negative voltage. That is, the lamp 12 emits light when the thyristor 11 and the switch 19 are on and the AC signal output by the generator 2 is a negative voltage.
 また、灯火器12は、直列に接続された複数の発光ダイオードを備える。発光ダイオードのアノード端子は、電流検出部17を介して、グランド端子(グランド線L2)に接続されている。また、発光ダイオードのカソード端子は、スイッチ19の一端に接続されている。また、複数の発光ダイオードは、順方向に直列に接続されている。
 なお、本実施形態において、灯火器12は、発電機2が発電した電力を消費する負荷部の一例であり、第2負荷部に対応する。
Moreover, the lamp 12 includes a plurality of light emitting diodes connected in series. An anode terminal of the light-emitting diode is connected to a ground terminal (ground line L2) via the current detection section 17 . A cathode terminal of the light emitting diode is connected to one end of the switch 19 . Also, the plurality of light emitting diodes are connected in series in the forward direction.
In this embodiment, the lamp 12 is an example of a load section that consumes the power generated by the generator 2, and corresponds to a second load section.
 電流検出部17は、例えば、シャント抵抗などの電流検出手段であり、グランド端子(グランド線L2)と、灯火器12との間に接続されている。電流検出部17は発電機2が出力する交流信号によって負電圧の期間に流れる電流を検出する。 The current detection unit 17 is, for example, current detection means such as a shunt resistor, and is connected between the ground terminal (ground line L2) and the lamp 12. The current detector 17 detects the current that flows during the negative voltage period from the AC signal output by the generator 2 .
 スイッチ19は、灯火器12を点灯(発光)させる点灯スイッチであり、灯火器12とサイリスタ11との間に接続されている。スイッチ19がオン状態である場合にサイリスタ11と灯火器12(負荷部)とが接続され、スイッチ19がオフ状態である場合にサイリスタ11と灯火器12(負荷部)とが切り離される。 The switch 19 is a lighting switch that lights (emits light) the lamp 12 and is connected between the lamp 12 and the thyristor 11 . The thyristor 11 and the lamp 12 (load section) are connected when the switch 19 is on, and the thyristor 11 and the lamp 12 (load section) are disconnected when the switch 19 is off.
 サイリスタ13(スイッチング素子の一例)は、発電機2が出力する交流信号を整流して充電電力としてバッテリ3に供給するシリコン制御整流子である。サイリスタ13は、アノード端子が電力供給線L1に、カソード端子がバッテリ3の+電極に、ゲート端子(制御端子)がトリガ出力部15から出力される制御信号S2の信号線に、それぞれ接続されている。サイリスタ13は、トリガ出力部15の制御信号S2によって、オン状態にされることで、電力供給線L1の交流信号の正電圧をバッテリ3の+電極に供給して、バッテリ3を充電するとともに、FI負荷部5に動作電力を供給する。 The thyristor 13 (an example of a switching element) is a silicon-controlled rectifier that rectifies the AC signal output by the generator 2 and supplies it to the battery 3 as charging power. The thyristor 13 has an anode terminal connected to the power supply line L1, a cathode terminal connected to the + electrode of the battery 3, and a gate terminal (control terminal) connected to the signal line of the control signal S2 output from the trigger output section 15. there is The thyristor 13 is turned on by the control signal S2 of the trigger output unit 15, thereby supplying the positive voltage of the AC signal of the power supply line L1 to the positive electrode of the battery 3, charging the battery 3, and Operating power is supplied to the FI load unit 5 .
 正負切替判定部14は、発電機2が出力する交流信号の正負電圧の切り替えを判定する。正負切替判定部14は、正負電圧の判定信号として、例えば、交流信号が正電圧の期間に、ハイ状態(High状態)を出力し、交流信号が負電圧の期間に、ロウ状態(Low状態)を出力する。
 正負切替判定部14は、例えば、抵抗141~抵抗143と、コンデンサ144と、ツェナーダイオード145と、ツェナーダイオード146とを備えている。
The positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal output by the generator 2 . As a positive/negative voltage determination signal, the positive/negative switching determination unit 14 outputs, for example, a high state (High state) while the AC signal is in a positive voltage period, and a low state (Low state) in a period when the AC signal is a negative voltage. to output
The positive/negative switching determination unit 14 includes resistors 141 to 143, a capacitor 144, a Zener diode 145, and a Zener diode 146, for example.
 抵抗141~抵抗143は、電力供給線L1とグランド線L2との間に直列に接続される。抵抗141は、第1端子が電力供給線L1に、第2端子がノードN1に、それぞれ接続されている。また、抵抗142は、第1端子がノードN1に、第2端子がノードN2に、それぞれ接続されている。また、抵抗143は、第1端子がノードN2に、第2端子がグランド線L2に、それぞれ接続されている。 The resistors 141 to 143 are connected in series between the power supply line L1 and the ground line L2. The resistor 141 has a first terminal connected to the power supply line L1 and a second terminal connected to the node N1. The resistor 142 has a first terminal connected to the node N1 and a second terminal connected to the node N2. The resistor 143 has a first terminal connected to the node N2 and a second terminal connected to the ground line L2.
 コンデンサ144は、ノードN2とグランド線L2との間に、抵抗143と並列に接続されている。すなわち、コンデンサ144は、第1端子がノードN2に、第2端子がグランド線L2に、それぞれ接続されている。 The capacitor 144 is connected in parallel with the resistor 143 between the node N2 and the ground line L2. That is, the capacitor 144 has a first terminal connected to the node N2 and a second terminal connected to the ground line L2.
 なお、抵抗141~抵抗143、及びコンデンサ144は、ノードN1及びノードN2において、発電機2が出力する交流信号の電圧を分圧して出力するとともに、ノードN2のノイズを除去するフィルタ回路として機能する。
 ここで、ノードN1の電圧は、後述する正負判定制御部16による交流信号の負電圧検出に用いられる。また、ノードN2の電圧は、正負切替判定部14の出力信号として用いられる。
The resistors 141 to 143 and the capacitor 144 divide and output the voltage of the AC signal output from the generator 2 at the nodes N1 and N2, and function as a filter circuit for removing noise at the node N2. .
Here, the voltage of the node N1 is used for negative voltage detection of the AC signal by the positive/negative determination control section 16, which will be described later. Also, the voltage of the node N2 is used as an output signal of the positive/negative switching determination section 14. FIG.
 ツェナーダイオード145とツェナーダイオード146とは、ノードN2とグランド線L2との間に、互いに逆方向に直列に接続されている。ツェナーダイオード145は、アノード端子がノードN2に、カソード端子がツェナーダイオード146のカソード端子に、それぞれ接続されている。また、ツェナーダイオード146は、アノード端子がグランド線L2に、カソード端子がツェナーダイオード145のカソード端子に、それぞれ接続されている。 The Zener diodes 145 and 146 are connected in series in opposite directions to each other between the node N2 and the ground line L2. The Zener diode 145 has an anode terminal connected to the node N2 and a cathode terminal connected to the cathode terminal of the Zener diode 146, respectively. The Zener diode 146 has an anode terminal connected to the ground line L2 and a cathode terminal connected to the cathode terminal of the Zener diode 145, respectively.
 ツェナーダイオード145及びツェナーダイオード146は、逆方向に所定の電圧以上(アノード端子を基準に、カソード端子に所定の電圧以上)が印加された場合に、オン状態(導通状態)になり、所定の電圧未満が印加された場合に、オフ状態(非導通状態)になる。 The Zener diode 145 and the Zener diode 146 are turned on (conducting state) when a predetermined voltage or more is applied in the reverse direction (a predetermined voltage or more to the cathode terminal with respect to the anode terminal), and the predetermined voltage is applied. When less is applied, it is in the off state (non-conducting state).
 例えば、ノードN2に正電圧が印加されている状態では、ツェナーダイオード145は、順方向のバイアスでオン状態になる。また、この状態では、正電圧の絶対値が所定の電圧以上である場合に、ツェナーダイオード146は、オン状態になり、所定の電圧未満である場合に、オフ状態になることで、ノードN2の正電圧は、所定の電圧にクランプされる。 For example, when a positive voltage is applied to the node N2, the Zener diode 145 is forward biased and turned on. In this state, the Zener diode 146 is turned on when the absolute value of the positive voltage is equal to or higher than the predetermined voltage, and turned off when the absolute value of the positive voltage is less than the predetermined voltage. A positive voltage is clamped to a predetermined voltage.
 また、例えば、ノードN2に負電圧が印加されている状態では、ツェナーダイオード146は、順方向のバイアスでオン状態になる。また、この状態では、負電圧の絶対値が所定の電圧以上である場合に、ツェナーダイオード145は、オン状態になり、所定の電圧未満である場合に、オフ状態になることで、ノードN2の負電圧は、負電圧の所定の電圧にクランプされる。
 このように、正負切替判定部14は、正負電圧の判定信号を生成して、トリガ出力部15に出力する。
Further, for example, when a negative voltage is applied to the node N2, the Zener diode 146 is forward biased and turned on. In this state, the Zener diode 145 is turned on when the absolute value of the negative voltage is equal to or higher than the predetermined voltage, and turned off when the absolute value of the negative voltage is less than the predetermined voltage. The negative voltage is clamped to a predetermined voltage of negative voltage.
In this manner, the positive/negative switching determination section 14 generates a positive/negative voltage determination signal and outputs it to the trigger output section 15 .
 トリガ出力部15は、正負切替判定部14の判定結果に基づいて、サイリスタ11及びサイリスタ13の導通タイミングを示すトリガ信号(制御信号)を出力する。
 トリガ出力部15は、例えば、正負切替判定部14が、交流信号の負電圧と判定した期間の一部期間(例えば、後半の所定の期間)に、サイリスタ11をオン状態にするように、制御信号S1を出力する。
The trigger output unit 15 outputs a trigger signal (control signal) indicating conduction timing of the thyristor 11 and the thyristor 13 based on the determination result of the positive/negative switching determination unit 14 .
For example, the trigger output unit 15 controls to turn on the thyristor 11 during a partial period (for example, a predetermined period in the latter half) of the period in which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage. A signal S1 is output.
 具体的に、トリガ出力部15は、サイリスタ11をオン状態にする場合に、制御信号S1をハイ状態にし、サイリスタ11をオフ状態にする場合に、制御信号S1をロウ状態にする。なお、サイリスタ11は、制御信号S1がロウ状態になった後、サイリスタ11に流れる電流が0A(アンペア)になったタイミングで、オフ状態になる。 Specifically, the trigger output unit 15 sets the control signal S1 to a high state when turning the thyristor 11 on, and sets the control signal S1 to a low state when turning the thyristor 11 off. The thyristor 11 is turned off at the timing when the current flowing through the thyristor 11 becomes 0 A (amperes) after the control signal S1 becomes low.
 また、トリガ出力部15は、例えば、正負切替判定部14が、交流信号の正電圧(第2極性の電圧)と判定した期間にサイリスタ13をオン状態にするように、トリガ信号(制御信号S2)を出力する。また、トリガ出力部15は、例えば、正負切替判定部14が、交流信号の負電圧と判定した期間にサイリスタ13をオフ状態にするように、トリガ信号(制御信号S2)を出力する。すなわち、トリガ出力部15は、正負切替判定部14の判定結果のうち、正電圧(第2極性の電圧)の判定に基づいて、サイリスタ13の導通タイミングを示すトリガ信号(制御信号S2)を出力する。 Further, the trigger output unit 15 outputs, for example, a trigger signal (control signal S2 ). Further, the trigger output unit 15 outputs a trigger signal (control signal S2), for example, so as to turn off the thyristor 13 during a period when the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage. That is, the trigger output unit 15 outputs a trigger signal (control signal S2) indicating the conduction timing of the thyristor 13 based on the positive voltage (voltage of the second polarity) among the determination results of the positive/negative switching determination unit 14. do.
 具体的に、トリガ出力部15は、サイリスタ13をオン状態にする場合に、制御信号S2をハイ状態にし、サイリスタ13をオフ状態にする場合に、制御信号S2をロウ状態にする。なお、サイリスタ13は、制御信号S2がロウ状態になった後、サイリスタ13に流れる電流が0Aになったタイミングで、オフ状態になる。 Specifically, the trigger output unit 15 sets the control signal S2 to a high state when turning the thyristor 13 on, and sets the control signal S2 to a low state when turning the thyristor 13 off. The thyristor 13 is turned off at the timing when the current flowing through the thyristor 13 becomes 0 A after the control signal S2 becomes low.
 正負判定制御部16は、発電機2が出力した交流信号の電圧を検出することで、回転子の回転数を検出し、検出した回転数が所定の閾値以上になった場合に、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。 The positive/negative determination control unit 16 detects the number of rotations of the rotor by detecting the voltage of the AC signal output by the generator 2, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative switching determination is performed. The unit 14 additionally maintains the determination of the negative voltage of the AC signal for a predetermined period of time.
 なお、発電機2が出力した交流信号の電圧及び電流は、回転子の回転数に応じて大きくなる。また、発電機2が出力した交流信号の正電圧は、サイリスタ13がオン状態である場合に、バッテリ3の出力電圧にクランプ(固定)される。そのため、正負判定制御部16は、発電機2が出力した交流信号のうちの負電圧を検出することで、回転子の回転数を検出する。 Note that the voltage and current of the AC signal output by the generator 2 increase according to the rotation speed of the rotor. Also, the positive voltage of the AC signal output by the generator 2 is clamped (fixed) to the output voltage of the battery 3 when the thyristor 13 is in the ON state. Therefore, the positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the negative voltage in the AC signal output by the generator 2 .
 すなわち、正負判定制御部16は、発電機2が出力した交流信号のうちの負電圧(第1極性の電圧)を検出することで、回転子の回転数を検出し、検出した回転数が所定の閾値以上になった場合に、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。ここで、所定の期間は、例えば、回転数が所定の閾値以上になった場合に、サイリスタ13の電流定格値を超えないように定められている。 That is, the positive/negative determination control unit 16 detects the number of rotations of the rotor by detecting the negative voltage (the voltage of the first polarity) in the AC signal output by the generator 2, and the detected number of rotations reaches a predetermined value. is equal to or greater than the threshold, the positive/negative switching determination unit 14 is caused to additionally maintain determination of the negative voltage of the AC signal for a predetermined period. Here, the predetermined period is determined so as not to exceed the rated current value of the thyristor 13, for example, when the number of revolutions exceeds a predetermined threshold value.
 なお、正負判定制御部16は、後述する無効制御部18からの無効要求に応じて、正負判定制御部16の機能を無効にする。すなわち、正負判定制御部16は、無効制御部18から無効要求が出力されている場合に、交流信号の負電圧の判定を、所定の期間、追加で維持させる機能を停止する。
 また、正負判定制御部16は、負電圧検出部161と、負電圧維持部162とを備える。
Note that the positive/negative determination control unit 16 disables the function of the positive/negative determination control unit 16 in response to an invalidation request from the disable control unit 18, which will be described later. That is, when the invalidation request is output from the invalidation control unit 18, the positive/negative determination control unit 16 stops the function of additionally maintaining the determination of the negative voltage of the AC signal for a predetermined period.
The positive/negative determination control section 16 also includes a negative voltage detection section 161 and a negative voltage maintenance section 162 .
 負電圧検出部161は、回転子の回転数の検出として、発電機2が出力した交流信号のうちの負電圧を検出する。すなわち、負電圧検出部161は、交流信号を抵抗141~抵抗143により抵抗分圧したノードN1の負電圧を検出することで、回転子の回転数を検出する。 The negative voltage detection unit 161 detects the negative voltage in the AC signal output by the generator 2 as detection of the rotation speed of the rotor. That is, the negative voltage detection unit 161 detects the number of rotations of the rotor by detecting the negative voltage at the node N1 obtained by dividing the AC signal by resistors 141 to 143 .
 負電圧維持部162は、負電圧検出部161が検出した負電圧の絶対値が所定の電圧以上である場合に、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。すなわち、負電圧維持部162は、負電圧検出部161が検出したノードN1の負電圧の絶対値が所定の電圧以上である場合に、ノードN1の電圧を調整して、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。例えば、負電圧維持部162は、ノードN2の電圧が交流信号の負電圧であると判定をするように、所定の期間、ノードN1の負電圧を維持させる処理を実行する。 When the absolute value of the negative voltage detected by the negative voltage detection unit 161 is equal to or higher than a predetermined voltage, the negative voltage maintenance unit 162 causes the positive/negative switching determination unit 14 to determine the negative voltage of the AC signal for a predetermined period of time. maintain additionally. That is, when the absolute value of the negative voltage of the node N1 detected by the negative voltage detection unit 161 is equal to or higher than a predetermined voltage, the negative voltage maintenance unit 162 adjusts the voltage of the node N1 to , the determination of the negative voltage of the AC signal is additionally maintained for a predetermined period of time. For example, the negative voltage maintaining unit 162 performs a process of maintaining the negative voltage of the node N1 for a predetermined period so as to determine that the voltage of the node N2 is the negative voltage of the AC signal.
 なお、負電圧維持部162は、無効制御部18からの無効要求が出力された場合に、上述した交流信号の負電圧の判定を、所定の期間、追加で維持させる機能を停止する。すなわち、負電圧維持部162は、無効制御部18からの無効要求が出力された場合に、特に何も行わず、ノードN1の電圧の調整を行わない。
 また、負電圧維持部162は、ノードN1の負電圧の絶対値が所定の電圧未満である場合に、特に何も行わず、ノードN1の電圧の調整を行わない。
Note that the negative voltage maintaining unit 162 stops the function of additionally maintaining the negative voltage determination of the AC signal described above for a predetermined period when the invalidation request is output from the invalidation control unit 18 . That is, when the invalidation request is output from the invalidation control unit 18, the negative voltage maintaining unit 162 does nothing in particular, and does not adjust the voltage of the node N1.
Further, when the absolute value of the negative voltage of the node N1 is less than the predetermined voltage, the negative voltage maintaining unit 162 does nothing and does not adjust the voltage of the node N1.
 無効制御部18は、発電機2が出力する交流信号の負電圧の期間に、発電機2が発電した電力を消費する灯火器12が電力供給線L1に接続されている場合に、正負判定制御部16の機能を無効にする。無効制御部18は、例えば、上述した交流信号によって負電圧の期間に流れる電流が、所定の電流以上である場合に、灯火器12がサイリスタ11を介して、電力供給線L1に接続されていると判定する。 The disable control unit 18 performs positive/negative determination control when the lamp 12 that consumes the power generated by the generator 2 is connected to the power supply line L1 during the negative voltage period of the AC signal output by the generator 2. Disable the function of the part 16. For example, when the current flowing during the negative voltage period due to the AC signal described above is equal to or greater than a predetermined current, the lamp 12 is connected to the power supply line L1 via the thyristor 11. I judge.
 すなわち、無効制御部18は、電流検出部17が検出した負電圧の期間に流れる電流に基づいて、灯火器12が接続されているか否かを判定する。具体的には、電流検出部17が検出した負電圧の期間に流れる電流が、所定の電流以上である場合に、無効制御部18は、灯火器12が接続されていると判定し、正負判定制御部16の機能を無効にする。無効制御部18は、灯火器12が接続されていると判定した場合に、正負判定制御部16の機能を無効にする無効要求を正負判定制御部16に出力する。 That is, the disable control unit 18 determines whether or not the lamp 12 is connected based on the current flowing during the negative voltage period detected by the current detection unit 17 . Specifically, when the current flowing during the negative voltage period detected by the current detection unit 17 is equal to or greater than a predetermined current, the disable control unit 18 determines that the lamp 12 is connected, and determines whether the lamp is positive or negative. Disable the function of the control unit 16 . When determining that the lighting device 12 is connected, the invalidation control unit 18 outputs an invalidation request for invalidating the function of the positive/negative determination control unit 16 to the positive/negative determination control unit 16 .
 また、無効制御部18は、電流検出部17が検出した負電圧の期間に流れる電流が、所定の電流未満である場合に、灯火器12が接続されていないと判定し、正負判定制御部16の機能を有効にする有効要求を正負判定制御部16に出力し、正負判定制御部16の機能を有効にする。 If the current flowing during the negative voltage period detected by the current detection unit 17 is less than a predetermined current, the invalidation control unit 18 determines that the lamp 12 is not connected, and the positive/negative determination control unit 16 to the positive/negative determination control section 16 to enable the function of the positive/negative determination control section 16 .
 次に、図面を参照して、本実施形態によるバッテリ充電装置1の動作について説明する。
 図2は、本実施形態によるバッテリ充電装置1の動作の一例を示す第1のタイムチャートである。
 図2では、スイッチ19がオフ状態であり、バッテリ充電装置1に灯火器12が接続されていない場合の動作について説明する。
Next, the operation of the battery charger 1 according to this embodiment will be described with reference to the drawings.
FIG. 2 is a first time chart showing an example of the operation of the battery charger 1 according to this embodiment.
2, the operation when the switch 19 is in the OFF state and the lamp 12 is not connected to the battery charger 1 will be described.
 図2において、各グラフは、上から順に、発電機2の出力電圧、発電機2による充電電流(出力電流)、灯火器12(負荷部)に流れる電流、及び正負電圧の判定信号を示している。 In FIG. 2, each graph shows, from top to bottom, the output voltage of the generator 2, the charging current (output current) by the generator 2, the current flowing through the lamp 12 (load section), and the positive/negative voltage determination signal. there is
 また、波形W1は、サイリスタ11及びサイリスタ13をオン状態にしない場合の発電機2の出力電圧を示し、波形W2は、サイリスタ11及びサイリスタ13をオン状態にした場合の実際の発電機2の出力電圧(電力供給線L1の電圧)を示している。 Waveform W1 shows the output voltage of the generator 2 when the thyristors 11 and 13 are not turned on, and waveform W2 shows the actual output of the generator 2 when the thyristors 11 and 13 are turned on. It shows the voltage (the voltage of the power supply line L1).
 また、波形W3は、発電機2によるバッテリ3への充電電流(サイリスタ13に流れる電流)を示しており、波形W3A、波形W3B、及び波形W3Cの各波形は、この充電電流の部分波形を示している。 A waveform W3 indicates a charging current (a current flowing through the thyristor 13) to the battery 3 by the generator 2, and waveforms W3A, W3B, and W3C indicate partial waveforms of this charging current. ing.
 また、波形W4は、灯火器12に流れる電流波形を示している。また、波形W5は、正負切替判定部14が出力する判定信号の電圧波形を示している。
 なお、各グラフの横軸は、時間を示している。
A waveform W4 indicates the waveform of the current flowing through the lamp 12. As shown in FIG. A waveform W5 indicates the voltage waveform of the determination signal output by the positive/negative switching determination section 14. As shown in FIG.
Note that the horizontal axis of each graph indicates time.
 図2において、発電機2の出力電圧が正電圧になると(波形W1を参照)、時刻T1において、正負切替判定部14が正電圧と判定し、判定信号を所定の正電圧を出力する。これにより、トリガ出力部15は、制御信号S2をハイ状態にし、サイリスタ13がオン状態になるため、発電機2の出力電圧は、波形W2に示すように、バッテリ3の出力電圧にクランプ(固定)される。なお、トリガ出力部15は、所定の期間、制御信号S2をハイ状態にした後、制御信号S2をロウ状態にする。サイリスタ13は、制御信号S2がロウ状態になった後、発電機2の出力電圧が負電圧になるまでオン状態が維持される。 In FIG. 2, when the output voltage of the generator 2 becomes a positive voltage (see waveform W1), the positive/negative switching determination unit 14 determines that the voltage is positive at time T1, and outputs a predetermined positive voltage as a determination signal. As a result, the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped (fixed) to the output voltage of the battery 3 as shown by the waveform W2. ) is done. Note that the trigger output unit 15 sets the control signal S2 to a low state after setting the control signal S2 to a high state for a predetermined period. The thyristor 13 is kept on until the output voltage of the generator 2 becomes negative after the control signal S2 becomes low.
 また、発電機2の出力電圧が負電圧になると(波形W2を参照)、時刻T2において、正負切替判定部14が負電圧と判定し、判定信号に所定の負電圧を出力する。また、発電機2の出力電圧が負電圧になることにより、サイリスタ13がオフ状態になる。また、波形W2に示すように、電力供給線L1には、発電機2の負電圧が出力される。なお、時刻T1から時刻T2の間、波形W3Aに示すように、サイリスタ13を介して、バッテリ3に充電電流が供給される。 Also, when the output voltage of the generator 2 becomes a negative voltage (see waveform W2), at time T2, the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as the determination signal. Moreover, the thyristor 13 is turned off when the output voltage of the generator 2 becomes a negative voltage. Further, as shown by waveform W2, the negative voltage of generator 2 is output to power supply line L1. Note that the charging current is supplied to the battery 3 via the thyristor 13 between the time T1 and the time T2, as indicated by the waveform W3A.
 また、トリガ出力部15は、正負切替判定部14が交流信号の負電圧と判定した期間の一部期間(例えば、後半の所定の期間)に、制御信号S1をハイ状態にして、サイリスタ11をオン状態にする。この場合、スイッチ19がオフ状態であるため、灯火器12には、電流が流れない(波形W4参照)。 In addition, the trigger output unit 15 sets the control signal S1 to a high state during a partial period (for example, a predetermined period in the latter half) of the period in which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage, thereby turning on the thyristor 11. turn on. In this case, since the switch 19 is in the OFF state, no current flows through the lamp 12 (see waveform W4).
 また、時刻T2において、サイリスタ13がオフ状態になると、正負判定制御部16の負電圧検出部161は、ノードN1により、発電機2が出力する交流信号の負電圧を検出する。そして、正負判定制御部16の負電圧維持部162は、負電圧検出部161が検出した負電圧の絶対値が所定の電圧以上(閾値電圧MVth以上)であるか否かを判定する。ここでは、負電圧の絶対値が所定の電圧未満(閾値電圧MVth未満)であるため、負電圧維持部162は、何も行わない(交流信号の負電圧の判定を、所定の期間、追加で維持させる処理を行わない)。 Also, at time T2, when the thyristor 13 is turned off, the negative voltage detection unit 161 of the positive/negative determination control unit 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher). Here, since the absolute value of the negative voltage is less than the predetermined voltage (less than the threshold voltage MVth), the negative voltage maintaining unit 162 does nothing (determination of the negative voltage of the AC signal is additionally performed for a predetermined period of time). no processing to maintain).
 次に、再び、発電機2の出力電圧が正電圧になると(波形W1を参照)、時刻T3において、正負切替判定部14が正電圧と判定し、判定信号を所定の正電圧を出力する。これにより、トリガ出力部15は、制御信号S2をハイ状態にし、サイリスタ13がオン状態になるため、発電機2の出力電圧は、波形W2に示すように、バッテリ3の出力電圧にクランプ(固定)される。 Next, when the output voltage of the generator 2 becomes positive again (see waveform W1), at time T3, the positive/negative switching determination unit 14 determines that the voltage is positive, and outputs a predetermined positive voltage as a determination signal. As a result, the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped (fixed) to the output voltage of the battery 3 as shown by the waveform W2. ) is done.
 なお、時刻T2から時刻T3の負電圧の期間に、トリガ出力部15は、制御信号S1をハイ状態にし、サイリスタ11がオン状態になるが、スイッチ19がオフ状態であるため、波形W2に示すように、発電機2の出力電圧は、灯火器12が接続されていない場合の負電圧となる。また、灯火器12に流れる電流は、波形W4に示すように、0Aとなる。すなわち、この例では、灯火器12は、点灯(発光)しない。 During the negative voltage period from time T2 to time T3, the trigger output unit 15 sets the control signal S1 to a high state, turning the thyristor 11 on, but the switch 19 is off. Thus, the output voltage of the generator 2 becomes a negative voltage when the lamp 12 is not connected. Also, the current flowing through the lamp 12 becomes 0 A as shown by the waveform W4. That is, in this example, the lamp 12 does not turn on (light).
 また、再び、発電機2の出力電圧が負電圧になると(波形W2を参照)、時刻T4において、正負切替判定部14が負電圧と判定し、判定信号を所定の負電圧を出力する。これにより、サイリスタ13がオフ状態になり、発電機2の出力電圧には、波形W2に示すように、発電機2の負電圧が出力される。なお、時刻T3から時刻T4の間、波形W3Bに示すように、サイリスタ13を介して、バッテリ3に充電電流が供給される。 Also, when the output voltage of the generator 2 becomes a negative voltage again (see waveform W2), at time T4, the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as a determination signal. As a result, the thyristor 13 is turned off, and the negative voltage of the generator 2 is output as the output voltage of the generator 2 as shown by the waveform W2. Note that the charging current is supplied to the battery 3 via the thyristor 13 between the time T3 and the time T4, as indicated by the waveform W3B.
 また、時刻T4において、サイリスタ13がオフ状態になると、正負判定制御部16の負電圧検出部161は、ノードN1により、発電機2が出力する交流信号の負電圧を検出する。そして、正負判定制御部16の負電圧維持部162は、負電圧検出部161が検出した負電圧の絶対値が所定の電圧以上(閾値電圧MVth以上)であるか否かを判定する。ここでは、負電圧の絶対値が所定の電圧以上(閾値電圧MVth以上)であるため、負電圧維持部162は、交流信号の負電圧の判定を、所定の期間(期間TR1)、追加で維持させる処理を実行する。 Also, at time T4, when the thyristor 13 is turned off, the negative voltage detection section 161 of the positive/negative determination control section 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher). Here, since the absolute value of the negative voltage is equal to or higher than the predetermined voltage (threshold voltage MVth or higher), the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal for a predetermined period (period TR1). Execute the process that causes the
 すなわち、負電圧維持部162は、時刻T5から時刻T6までの期間TR1の間、追加で、交流信号の負電圧の判定を維持させる。これにより、正負切替判定部14は、時刻T6において、負電圧から正電圧に判定信号を切り替える。トリガ出力部15は、時刻T6において、制御信号S2をハイ状態にし、サイリスタ13がオン状態になるため、発電機2の出力電圧は、波形W2に示すように、バッテリ3の出力電圧にクランプ(固定)される。 That is, the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal during the period TR1 from time T5 to time T6. As a result, the positive/negative switching determination unit 14 switches the determination signal from the negative voltage to the positive voltage at time T6. At time T6, the trigger output unit 15 sets the control signal S2 to a high state and the thyristor 13 is turned on, so that the output voltage of the generator 2 is clamped to the output voltage of the battery 3 as shown by the waveform W2. fixed).
 また、再び、発電機2の出力電圧が負電圧になると(波形W2を参照)、時刻T7において、正負切替判定部14が負電圧と判定し、判定信号に所定の負電圧を出力する。これにより、サイリスタ13がオフ状態になるため、発電機2の出力電圧は、波形W2に示すように、発電機2の負電圧が出力される。なお、時刻T6から時刻T7の間、波形W3Cに示すように、サイリスタ13を介して、バッテリ3に充電電流が供給される。 Also, when the output voltage of the generator 2 becomes negative again (see waveform W2), at time T7, the positive/negative switching determination unit 14 determines that the voltage is negative, and outputs a predetermined negative voltage as the determination signal. As a result, the thyristor 13 is turned off, and the negative voltage of the generator 2 is output as the output voltage of the generator 2 as shown by the waveform W2. A charging current is supplied to the battery 3 via the thyristor 13 between time T6 and time T7, as indicated by a waveform W3C.
 ここでは、時刻T5から時刻T6の期間TR1、交流信号の負電圧の判定が追加で維持されていたため、その分、波形W3Cの充電電流が制限される。ここで、波形W3Dは、比較のために、正負判定制御部16を備えない従来技術の場合におけるバッテリ3の充電電流を示している。波形W3Cと波形W3Dとを比較すると、本実施形態では、交流信号の負電圧の判定が、期間TR1だけ追加で維持されているため、充電電流を制限することができる。 Here, since the determination of the negative voltage of the AC signal is additionally maintained during the period TR1 from time T5 to time T6, the charging current of waveform W3C is limited accordingly. Here, the waveform W3D indicates the charging current of the battery 3 in the case of the prior art without the positive/negative determination control section 16 for comparison. Comparing the waveform W3C and the waveform W3D, in the present embodiment, the determination of the negative voltage of the AC signal is additionally maintained for the period TR1, so that the charging current can be limited.
 また、時刻T7において、サイリスタ13がオフ状態になると、正負判定制御部16の負電圧検出部161は、ノードN1により、発電機2が出力する交流信号の負電圧を検出する。そして、正負判定制御部16の負電圧維持部162は、負電圧検出部161が検出した負電圧の絶対値が所定の電圧以上(閾値電圧MVth以上)であるか否かを判定する。ここでは、負電圧の絶対値が所定の電圧以上(閾値電圧MVth以上)であるため、負電圧維持部162は、交流信号の負電圧の判定を、所定の期間(期間TR1)、追加で維持させる処理を実行する。これにより、正負切替判定部14は、時刻T8において、負電圧から正電圧に判定信号を切り替える。 Also, at time T7, when the thyristor 13 is turned off, the negative voltage detection unit 161 of the positive/negative determination control unit 16 detects the negative voltage of the AC signal output by the generator 2 from the node N1. Then, the negative voltage maintaining unit 162 of the positive/negative determination control unit 16 determines whether or not the absolute value of the negative voltage detected by the negative voltage detecting unit 161 is equal to or higher than a predetermined voltage (threshold voltage MVth or higher). Here, since the absolute value of the negative voltage is equal to or higher than the predetermined voltage (threshold voltage MVth or higher), the negative voltage maintaining unit 162 additionally maintains determination of the negative voltage of the AC signal for a predetermined period (period TR1). Execute the process that causes the As a result, the positive/negative switching determination unit 14 switches the determination signal from the negative voltage to the positive voltage at time T8.
 また、図3は、本実施形態によるバッテリ充電装置1の動作の一例を示す第2のタイムチャートである。
 図3では、スイッチ19がオン状態であり、バッテリ充電装置1に灯火器12が接続されている場合の動作について説明する。
FIG. 3 is a second time chart showing an example of the operation of the battery charger 1 according to this embodiment.
3, the operation when the switch 19 is in the ON state and the lamp 12 is connected to the battery charger 1 will be described.
 図3において、各グラフは、上述した図2と同様であり、波形W11から波形W15の各波形は、上述した図2に示す本実施形態における波形W1から波形W5の各波形に対応する。また、波形W13A、波形W13B、及び波形W13Cの各波形は、この充電電流の部分波形を示している。なお、各グラフの横軸は、時間を示している。 In FIG. 3, each graph is the same as in FIG. 2 described above, and waveforms W11 to W15 correspond to waveforms W1 to W5 in this embodiment shown in FIG. 2 described above. Waveforms W13A, W13B, and W13C represent partial waveforms of this charging current. Note that the horizontal axis of each graph indicates time.
 また、時刻T11、時刻T13、時刻T15、及び時刻T17が、負電圧から正電圧に判定信号が切り替わるタイミングであり、時刻T12、時刻T14、及び時刻T16が、正電圧から負電圧に判定信号が切り替わるタイミングである。 Time T11, time T13, time T15, and time T17 are timings at which the determination signal is switched from negative voltage to positive voltage, and time T12, time T14, and time T16 are timings at which the determination signal is switched from positive voltage to negative voltage. It's time to switch.
 図3に示すスイッチ19がオン状態である場合には、正負切替判定部14が交流信号の負電圧と判定した期間の一部期間(例えば、後半の所定の期間)に、トリガ出力部15が、サイリスタ11をオン状態にするように、制御信号S1を出力するため、波形W14に示すように、灯火器12に電流が流れる。なお、波形W14に示す灯火器12に流れる電流では、灯火器12からサイリスタ11に流れる向きを正電流して示している。 When the switch 19 shown in FIG. 3 is in the ON state, the trigger output unit 15 is turned on during a part of the period (for example, a predetermined period in the latter half) during which the positive/negative switching determination unit 14 determines that the AC signal has a negative voltage. , the control signal S1 is output so as to turn on the thyristor 11, so that a current flows through the lamp 12 as shown by the waveform W14. In the current flowing through the lamp 12 shown in the waveform W14, the direction of the current flowing from the lamp 12 to the thyristor 11 is shown as positive current.
 図3に示す例では、交流信号の負電圧の期間において、灯火器12に流れる電流が、所定の電流以上(閾値電流Ath以上)であるため、無効制御部18は、正負判定制御部16の機能を無効にする。具体的には、無効制御部18は、無効要求を正負判定制御部16に出力し、時刻T15、及び時刻T17における所定の期間(期間TR1)、追加で維持させる処理を無効化する。 In the example shown in FIG. 3 , the current flowing through the lighting device 12 is equal to or higher than the predetermined current (the threshold current Ath or higher) during the negative voltage period of the AC signal. Disable functionality. Specifically, the invalidation control unit 18 outputs an invalidation request to the positive/negative determination control unit 16, and invalidates the additionally maintained processing for a predetermined period (period TR1) at time T15 and time T17.
 なお、図3に示す例では、交流信号の負電圧の期間に波形W14に示すように灯火器12に電流が流れるため、その分、交流信号の負電圧から正電圧に切り替わるタイミングが遅れる。これにより、発電機2による充電電流が、灯火器12が接続されていない場合(スイッチ19がオフ状態の場合)に比べて低下する(波形W13Cを参照)。ここで、波形W13Dは、スイッチ19がオフ状態で正負判定制御部16を備えない従来技術の場合におけるバッテリ3に充電電流を示し、波形W13Eは、スイッチ19がオフ状態で正負判定制御部16の機能を有効にした場合の充電電流を示している。 Note that in the example shown in FIG. 3, current flows through the lamp 12 as shown by the waveform W14 during the period of the negative voltage of the AC signal, so the timing of switching from the negative voltage of the AC signal to the positive voltage is delayed accordingly. As a result, the charging current by the generator 2 decreases compared to when the lamp 12 is not connected (when the switch 19 is in the off state) (see waveform W13C). Here, the waveform W13D shows the charging current to the battery 3 in the case of the prior art in which the switch 19 is in the OFF state and the positive/negative determination control unit 16 is not provided, and the waveform W13E shows the charging current of the positive/negative determination control unit 16 when the switch 19 is in the OFF state. It shows the charging current when the function is enabled.
 また、図4は、本実施形態における発電機2の回転数と充電電流との関係の一例を示す図である。
 図4において、横軸は、発電機2の回転数(rpm:revolutions per minute)を示し、縦軸は、充電電流を示している。
Moreover, FIG. 4 is a diagram showing an example of the relationship between the rotation speed of the generator 2 and the charging current in this embodiment.
In FIG. 4, the horizontal axis indicates the revolutions per minute (rpm) of the generator 2, and the vertical axis indicates the charging current.
 また、波形W6は、スイッチ19がオフ状態である場合の本実施形態における発電機2の回転数と充電電流との関係を示している。また、波形W7は、スイッチ19がオン状態である場合の本実施形態における発電機2の回転数と充電電流との関係を示している。 A waveform W6 shows the relationship between the rotation speed of the generator 2 and the charging current in this embodiment when the switch 19 is in the OFF state. A waveform W7 indicates the relationship between the rotation speed of the generator 2 and the charging current in this embodiment when the switch 19 is in the ON state.
 また、波形W16は、比較のために、正負判定制御部16を備えない従来のバッテリ充電装置における、スイッチ19がオフ状態である場合の発電機2の回転数と充電電流との関係を示している。また、波形W17は、比較のために、無効制御部18を備えない従来のバッテリ充電装置における、スイッチ19がオン状態である場合の発電機2の回転数と充電電流との関係を示している。 For comparison, a waveform W16 shows the relationship between the rotation speed of the generator 2 and the charging current when the switch 19 is off in a conventional battery charger without the positive/negative determination control unit 16. there is For comparison, a waveform W17 shows the relationship between the rotation speed of the generator 2 and the charging current when the switch 19 is in the ON state in a conventional battery charger without the invalidation control unit 18. .
 図4の波形W16に示すように、正負判定制御部16を備えない従来のバッテリ充電装置では、回転数に応じて、充電電流が上昇し、サイリスタ13の電流定格値Aratを超えてしまう。これに対して、本実施形態によるバッテリ充電装置1では、正負判定制御部16により充電電流が制限されるため、波形W6に示すように、サイリスタ13の電流定格値Aratを超えないように制限することができる。 As shown by the waveform W16 in FIG. 4, in the conventional battery charger without the positive/negative determination control unit 16, the charging current rises according to the rotation speed and exceeds the rated current value Arat of the thyristor 13. On the other hand, in the battery charger 1 according to the present embodiment, since the charging current is limited by the positive/negative determination control unit 16, the current rating value Arat of the thyristor 13 is limited as shown by the waveform W6. be able to.
 また、波形W17に示すように、正負判定制御部16を備え、且つ、無効制御部18を備えない従来のバッテリ充電装置では、スイッチ19がオン状態である場合(灯火器12が接続されている場合)、正負判定制御部16によって、サイリスタ13の電流定格値Aratに対して、充電電流が大幅に低下する。すなわち、従来のバッテリ充電装置では、正負判定制御部16によって、過剰に充電電流を制限される場合があった。
 これに対して、本実施形態によるバッテリ充電装置1では、スイッチ19がオン状態である場合(灯火器12が接続されている場合)に、無効制御部18により正負判定制御部16の機能を無効化できるため、波形W7に示すように、サイリスタ13の電流定格値Aratを超えない程度に、充電電流を増加することができる。
Further, as shown by the waveform W17, in the conventional battery charger including the positive/negative determination control unit 16 and not including the invalidation control unit 18, when the switch 19 is in the ON state (when the lamp 12 is connected) case), the positive/negative determination control unit 16 significantly reduces the charging current with respect to the rated current value Arat of the thyristor 13 . That is, in the conventional battery charger, the positive/negative determination control section 16 may excessively limit the charging current.
On the other hand, in the battery charger 1 according to the present embodiment, when the switch 19 is in the ON state (when the lamp 12 is connected), the disable control unit 18 disables the function of the positive/negative determination control unit 16. Therefore, the charging current can be increased to the extent that the rated current value Arat of the thyristor 13 is not exceeded, as shown by the waveform W7.
 以上説明したように、本実施形態によるバッテリ充電装置1は、発電機2と、サイリスタ13(スイッチング素子)と、正負切替判定部14と、トリガ出力部15と、正負判定制御部16と、無効制御部18とを備える。発電機2は、回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する。サイリスタ13は、発電機2が出力する交流信号を整流して充電電力としてバッテリに供給する。正負切替判定部14は、交流信号の正負電圧の切り替えを判定する。トリガ出力部15は、正負切替判定部14の判定結果に基づいて、サイリスタ13の導通タイミングを示すトリガ信号を出力する。正負判定制御部16は、交流信号の電圧を検出することで、回転子の回転数を検出し、検出した回転数が所定の閾値以上になった場合に、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間、追加で維持させる。無効制御部18は、交流信号の負電圧の期間に、発電機2が発電した電力を消費する灯火器12(負荷部)が接続されている場合に、正負判定制御部16の機能を無効にする。 As described above, the battery charger 1 according to the present embodiment includes the generator 2, the thyristor 13 (switching element), the positive/negative switching determination unit 14, the trigger output unit 15, the positive/negative determination control unit 16, and the invalid and a control unit 18 . The generator 2 generates power according to the rotation of the rotor and outputs an AC signal according to the generated power. The thyristor 13 rectifies the AC signal output by the generator 2 and supplies it to the battery as charging power. The positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal. The trigger output unit 15 outputs a trigger signal indicating conduction timing of the thyristor 13 based on the determination result of the positive/negative switching determination unit 14 . The positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the voltage of the AC signal. is additionally maintained for a predetermined period of time. The disable control unit 18 disables the function of the positive/negative determination control unit 16 when the lamp 12 (load unit) that consumes the power generated by the generator 2 is connected during the negative voltage period of the AC signal. do.
 これにより、本実施形態によるバッテリ充電装置1は、回転数が所定の閾値以上になった場合に、所定の期間追加されて負電圧の期間と判定され、この所定の期間分(例えば、図2の期間TR1分)、トリガ信号(制御信号S2)のサイリスタ13の導通期間(オン期間)が短くなり、充電電力が抑制される。そのため、本実施形態によるバッテリ充電装置1は、例えば、図4の波形W6に示すように、高回転時にサイリスタ13の電流定格値Aratを超えないように制限することができ、接続される負荷(例えば、FI負荷部5の電流)の増大に対応させつつ、サイリスタ13の電流定格値Aratを低減することができる。 Thus, in the battery charger 1 according to the present embodiment, when the number of revolutions becomes equal to or greater than a predetermined threshold value, a predetermined period is added and it is determined as a negative voltage period. period TR1), the conducting period (ON period) of the thyristor 13 of the trigger signal (control signal S2) is shortened, and the charging power is suppressed. Therefore, the battery charging device 1 according to the present embodiment can limit the current rated value Arat of the thyristor 13 during high rotation, as shown by the waveform W6 in FIG. 4, for example. For example, the rated current value Arat of the thyristor 13 can be reduced while coping with an increase in the current of the FI load section 5 .
 すなわち、本実施形態によるバッテリ充電装置1では、FI負荷部5の消費電力の増大に応じて、サイリスタ13の電流定格値を大きくする必要がなく、電流定格値の大きい高価なサイリスタ13を使用する必要がない。 That is, in the battery charger 1 according to the present embodiment, there is no need to increase the rated current value of the thyristor 13 in accordance with the increase in the power consumption of the FI load section 5, and the expensive thyristor 13 having a large rated current value is used. No need.
 また、本実施形態によるバッテリ充電装置1では、無効制御部18が、交流信号の負電圧の期間に、発電機が発電した電力を消費する灯火器12(負荷部)が接続されている場合に、正負判定制御部16の機能を無効にする。そのため、本実施形態によるバッテリ充電装置1は、例えば、図4の波形W7に示すように、過剰に充電電流を制限させずに、高回転時にサイリスタ13の電流定格値を超えないように制限することができ、接続される負荷(例えば、FI負荷部5の電流)の増大に対応させつつ、スイッチング素子の電流定格値を低減することができる。 In addition, in the battery charger 1 according to the present embodiment, the invalidation control unit 18 operates when the lamp 12 (load unit) that consumes the power generated by the generator is connected during the negative voltage period of the AC signal. , invalidate the function of the positive/negative determination control unit 16 . Therefore, the battery charger 1 according to the present embodiment does not excessively limit the charging current, for example, as shown by the waveform W7 in FIG. It is possible to reduce the rated current value of the switching element while coping with an increase in the connected load (for example, the current of the FI load section 5).
 また、本実施形態では、無効制御部18は、交流信号によって負電圧の期間に流れる電流が、所定の電流以上(例えば、閾値電流Ath以上)である場合に、灯火器12が接続されていると判定する。無効制御部18は、灯火器12が接続されていると判定した場合に、正負判定制御部16の機能を無効にする。 In addition, in the present embodiment, the disable control unit 18 connects the lamp 12 when the current flowing in the negative voltage period due to the AC signal is equal to or higher than a predetermined current (for example, equal to or higher than the threshold current Ath). I judge. The invalidation control unit 18 invalidates the function of the positive/negative determination control unit 16 when determining that the lamp 12 is connected.
 これにより、本実施形態によるバッテリ充電装置1は、灯火器12が接続されていることを適切に判定することができ、過剰に充電電流を制限させずに、高回転時にサイリスタ13の電流定格値を超えないように適切に制限することができる。 As a result, the battery charging device 1 according to the present embodiment can appropriately determine that the lighting device 12 is connected, and the rated current value of the thyristor 13 at high speed can be determined without excessively limiting the charging current. can be appropriately constrained so as not to exceed
 また、本実施形態によるバッテリ充電装置1は、交流信号によって負電圧の期間に流れる電流を検出する電流検出部17を備える。無効制御部18は、電流検出部17が検出した負電圧の期間に流れる電流に基づいて、灯火器12が接続されているか否かを判定する。 In addition, the battery charging device 1 according to the present embodiment includes a current detection section 17 that detects the current that flows during the negative voltage period due to the AC signal. The disable control unit 18 determines whether or not the lamp 12 is connected based on the current flowing during the negative voltage period detected by the current detection unit 17 .
 これにより、本実施形態によるバッテリ充電装置1は、灯火器12が接続されていることを、電流検出部17が検出した電流値により簡易、且つ、適切に判定することができる。 As a result, the battery charger 1 according to the present embodiment can easily and appropriately determine that the lamp 12 is connected based on the current value detected by the current detector 17 .
 また、本実施形態では、正負判定制御部16は、負電圧検出部161と、負電圧維持部162とを備える。負電圧検出部161は、回転子の回転数の検出として、交流信号のうちの負電圧を検出する。負電圧維持部162は、負電圧検出部161が検出した負電圧の絶対値が所定の電圧以上である場合に、正負切替判定部14に、交流信号の負電圧の判定を、所定の期間(例えば、図2に示す期間TR1)、追加で維持させる。 Further, in this embodiment, the positive/negative determination control section 16 includes a negative voltage detection section 161 and a negative voltage maintenance section 162 . Negative voltage detector 161 detects a negative voltage in the AC signal to detect the number of revolutions of the rotor. When the absolute value of the negative voltage detected by the negative voltage detection unit 161 is equal to or greater than a predetermined voltage, the negative voltage maintenance unit 162 causes the positive/negative switching determination unit 14 to determine the negative voltage of the AC signal for a predetermined period ( For example, period TR1) shown in FIG. 2 is additionally maintained.
 これにより、本実施形態によるバッテリ充電装置1は、負電圧を検出することで、簡易な構成のより適切に、FI負荷部5の増大に対応させつつ、サイリスタ13の電流定格値Aratを低減することができる。 As a result, the battery charging device 1 according to the present embodiment detects a negative voltage, thereby reducing the rated current value Arat of the thyristor 13 while responding to an increase in the FI load unit 5 more appropriately with a simple configuration. be able to.
 また、本実施形態では、トリガ出力部15は、正負切替判定部14が、交流信号の正電圧と判定した期間にサイリスタ13をオン状態(導通状態)にするように、トリガ信号を出力する。 In addition, in the present embodiment, the trigger output unit 15 outputs a trigger signal so that the thyristor 13 is turned on (conducted state) during the period when the positive/negative switching determination unit 14 determines that the AC signal has a positive voltage.
 これにより、本実施形態によるバッテリ充電装置1は、正負判定制御部16が、交流信号の負電圧の判定を、所定の期間、追加で維持させることで、サイリスタ13をオン状態(導通状態)の期間を容易に短くすることができ、容易に充電電力を抑制することができる。 As a result, in the battery charger 1 according to the present embodiment, the positive/negative determination control unit 16 additionally maintains the determination of the negative voltage of the AC signal for a predetermined period of time, thereby turning the thyristor 13 on (conducting state). The period can be easily shortened, and charging power can be easily suppressed.
 また、本実施形態では、正負判定制御部16は、回転数が所定の閾値以上になった場合に、サイリスタ13の電流定格値Aratを超えないように定められた所定の期間、正負切替判定部14に負電圧の判定を追加で維持させる。
 これにより、本実施形態によるバッテリ充電装置1は、高回転時にサイリスタ13の電流定格値Aratを確実に超えないように制限することができる。
Further, in the present embodiment, the positive/negative determination control unit 16, when the number of revolutions is equal to or higher than a predetermined threshold value, for a predetermined period determined so as not to exceed the current rated value Arat of the thyristor 13, the positive/negative switching determination unit 14 additionally maintains the negative voltage determination.
As a result, the battery charging device 1 according to the present embodiment can reliably limit the current rated value Arat of the thyristor 13 so as not to exceed it during high speed rotation.
 また、本実施形態による電流制御装置(例えば、バッテリ充電装置1)は、発電機2と、スイッチング素子(例えば、サイリスタ13、又はサイリスタ11)と、正負切替判定部14と、正負判定制御部16と、トリガ出力部15と、無効制御部18とを備える。発電機2は、回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する。スイッチング素子(例えば、サイリスタ13、又はサイリスタ11)は、発電機2が出力する交流信号を整流して第1負荷部(例えば、FI負荷部5、又は灯火器12)に供給する。正負切替判定部14は、交流信号の正負電圧の切り替えを判定する。正負判定制御部16は、交流信号の正負電圧のうちの第1極性の電圧(例えば、負電圧、又は正電圧)を検出することで、回転子の回転数を検出し、検出した回転数が所定の閾値以上になった場合に、正負切替判定部14に、交流信号の第1極性の電圧(例えば、負電圧、又は正電圧)の判定を、所定の期間、追加で維持させる。トリガ出力部15は、正負切替判定部14の判定結果のうち、第1極性の電圧(例えば、負電圧、又は正電圧)と逆極性の電圧である第2極性の電圧(例えば、正電圧、又は負電圧)の判定に基づいて、スイッチング素子(例えば、サイリスタ13、又はサイリスタ11)の導通タイミングを示すトリガ信号を出力する。無効制御部18は、交流信号の第1極性の電圧(例えば、負電圧、又は正電圧)の期間に発電機2が発電した電力を消費する第2負荷部(例えば、灯火器12、又はFI負荷部5)が接続されている場合に、正負判定制御部16の機能を無効にする。 Further, the current control device (for example, the battery charging device 1) according to the present embodiment includes the generator 2, the switching element (for example, the thyristor 13 or the thyristor 11), the positive/negative switching determination unit 14, and the positive/negative determination control unit 16. , a trigger output unit 15 , and an invalidation control unit 18 . The generator 2 generates power according to the rotation of the rotor and outputs an AC signal according to the generated power. A switching element (for example, the thyristor 13 or the thyristor 11) rectifies the AC signal output by the generator 2 and supplies it to the first load section (for example, the FI load section 5 or the lamp 12). The positive/negative switching determination unit 14 determines switching of the positive/negative voltage of the AC signal. The positive/negative determination control unit 16 detects the number of revolutions of the rotor by detecting the voltage of the first polarity (for example, negative voltage or positive voltage) among the positive and negative voltages of the AC signal, and determines whether the detected number of revolutions is When the voltage exceeds a predetermined threshold value, the positive/negative switching determination unit 14 additionally maintains the determination of the voltage of the first polarity of the AC signal (e.g., negative voltage or positive voltage) for a predetermined period. The trigger output unit 15 outputs a second polarity voltage (e.g., positive voltage, or negative voltage), a trigger signal indicating conduction timing of a switching element (for example, thyristor 13 or thyristor 11) is output. The disable control unit 18 controls the second load unit (e.g., the lamp 12 or FI When the load section 5) is connected, the function of the positive/negative determination control section 16 is disabled.
 これにより、本実施形態による電流制御装置(例えば、バッテリ充電装置1)は、接続される負荷(例えば、FI負荷部5の電流、あるいは、灯火器12の電流)の増大に対応させつつ、スイッチング素子(例えば、サイリスタ13、又はサイリスタ11)の電流定格値を低減することができる。また、本実施形態による電流制御装置(例えば、バッテリ充電装置1)は、第1負荷部(例えば、FI負荷部5、又は灯火器12)に流れる電流を過剰に制限させずに、高回転時にスイッチング素子(例えば、サイリスタ13、又はサイリスタ11)の電流定格値を超えないように制限することができる。 As a result, the current control device (for example, the battery charging device 1) according to the present embodiment responds to an increase in the connected load (for example, the current of the FI load unit 5 or the current of the lamp 12) while switching A current rating value of an element (for example, thyristor 13 or thyristor 11) can be reduced. In addition, the current control device (for example, the battery charging device 1) according to the present embodiment does not excessively limit the current flowing through the first load section (for example, the FI load section 5 or the lamp 12), The current rating of the switching element (for example, thyristor 13 or thyristor 11) can be limited so as not to exceed it.
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
 例えば、上記の実施形態において、正負判定制御部16は、交流信号の負電圧を検出することで回転数を検出する例を説明したが、これに限定されるものではない。例えば、正負判定制御部16は、発電機2の交流信号の正電圧が、バッテリ3の出力電圧によりクランプされない期間がある場合には、交流信号の正電圧を検出することで回転数を検出するようにしてもよい。
It should be noted that the present invention is not limited to the above embodiments, and can be modified without departing from the gist of the present invention.
For example, in the above embodiment, the positive/negative determination control unit 16 detects the number of rotations by detecting the negative voltage of the AC signal, but the present invention is not limited to this. For example, when the positive voltage of the AC signal of the generator 2 is not clamped by the output voltage of the battery 3, the positive/negative determination control unit 16 detects the positive voltage of the AC signal to detect the rotation speed. You may do so.
 また、上記の実施形態において、スイッチング素子が、サイリスタ13である例を説明したが、これに限定されるものではなく、例えば、MOS(Metal-Oxide-Semiconductor)トランジスタ、IGBT(Insulated Gate Bipolar Transistor)、他のシリコン制御整流子などの他のスイッチング素子であってもよい。 Further, in the above embodiment, an example in which the switching element is the thyristor 13 has been described, but the switching element is not limited to this. , other switching elements such as other silicon controlled commutators.
 また、正負切替判定部14の構成は、図1に示す回路に限定されるものではなく、他の構成(回路)であってもよい。
 また、上記の実施形態において、発電機2は、単相磁石式交流発電機である例を説明したが、これに限定されるものではなく、複数相(例えば、3相など)の交流信号を出力する発電機であってもよいし、他の発電機であってもよい。
Further, the configuration of the positive/negative switching determination unit 14 is not limited to the circuit shown in FIG. 1, and may be another configuration (circuit).
In the above embodiment, the generator 2 is a single-phase magneto-alternator. It may be a generator that outputs, or it may be another generator.
 また、上記の実施形態において、負荷部の一例として、灯火器12に適用する例を説明したが、これに限定されるものではなく、他の負荷部に対して適用してもよい。
 また、上記の実施形態において、電流制御装置の一例として、バッテリ3の充電電流を制御するバッテリ充電装置1である例を説明したが、これに限定されるものではなく、バッテリ3以外の負荷部に流れる電流を制御する他の電流制御装置であってもよい。
Further, in the above-described embodiment, an example of application to the lamp 12 has been described as an example of the load section, but the present invention is not limited to this, and may be applied to other load sections.
In the above embodiment, the battery charging device 1 for controlling the charging current of the battery 3 was described as an example of the current control device. It may be another current control device that controls the current flowing through.
 また、上記の実施形態において、正負判定制御部16、及び無効制御部18は、回路手段により実現されてもよいし、CPU(Central Processing Unit)にプログラムを実行させるソフトウェア処理により実現されてもよい。 In the above embodiment, the positive/negative determination control unit 16 and the invalidation control unit 18 may be realized by circuit means, or may be realized by software processing that causes a CPU (Central Processing Unit) to execute a program. .
 また、上述の正負判定制御部16、及び無効制御部18の機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Also, part or all of the functions of the positive/negative determination control unit 16 and the invalidity control unit 18 described above may be realized as an integrated circuit such as LSI (Large Scale Integration). Each function mentioned above may be processor-ized individually, and may integrate|stack and processor-ize a part or all. Also, the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integration circuit technology that replaces LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
 本発明は、自動二輪車などの内燃機関の回転を利用して、バッテリを充電するバッテリ充電装置などに適用できる。 The present invention can be applied to a battery charging device that charges a battery using rotation of an internal combustion engine such as a motorcycle.
 1  バッテリ充電装置
 2  発電機
 3  バッテリ
 4  ダイオード
 5  FI負荷部
 11、13  サイリスタ
 12  灯火器
 14  正負切替判定部
 15  トリガ出力部
 16  正負判定制御部
 17  電流検出部
 18  無効制御部
 19  スイッチ
 141、142、143  抵抗
 144  コンデンサ
 145、146  ツェナーダイオード
 161  負電圧検出部
 162  負電圧維持部
1 battery charger 2 generator 3 battery 4 diode 5 FI load unit 11, 13 thyristor 12 lamp 14 positive/negative switching determination unit 15 trigger output unit 16 positive/negative determination control unit 17 current detection unit 18 invalidation control unit 19 switch 141, 142, 143 resistor 144 capacitor 145, 146 Zener diode 161 negative voltage detector 162 negative voltage maintainer

Claims (8)

  1.  回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する発電機と、
     前記発電機が出力する前記交流信号を整流して充電電力としてバッテリに供給するスイッチング素子と、
     前記交流信号の正負電圧の切り替えを判定する正負切替判定部と、
     前記正負切替判定部の判定結果に基づいて、前記スイッチング素子の導通タイミングを示すトリガ信号を出力するトリガ出力部と、
     前記交流信号の電圧を検出することで、前記回転子の回転数を検出し、検出した前記回転数が所定の閾値以上になった場合に、前記正負切替判定部に、前記交流信号の負電圧の判定を、所定の期間、追加で維持させる正負判定制御部と、
     前記交流信号の負電圧の期間に、前記発電機が発電した電力を消費する負荷部が接続されている場合に、前記正負判定制御部の機能を無効にする無効制御部と
     を備えるバッテリ充電装置。
    a generator that generates power according to the rotation of the rotor and outputs an AC signal according to the generated power;
    a switching element that rectifies the AC signal output by the generator and supplies it to a battery as charging power;
    a positive/negative switching determination unit that determines switching of the positive/negative voltage of the AC signal;
    a trigger output unit that outputs a trigger signal indicating conduction timing of the switching element based on the determination result of the positive/negative switching determination unit;
    The number of revolutions of the rotor is detected by detecting the voltage of the AC signal, and when the detected number of revolutions exceeds a predetermined threshold value, the positive/negative switching determination unit outputs the negative voltage of the AC signal. A positive/negative determination control unit that additionally maintains the determination of for a predetermined period of time;
    a disable control unit that disables the function of the positive/negative determination control unit when a load unit that consumes power generated by the generator is connected during a period of negative voltage of the AC signal. .
  2.  前記無効制御部は、
     前記交流信号によって前記負電圧の期間に流れる電流が、所定の電流以上である場合に、前記負荷部が接続されていると判定する
     請求項1に記載のバッテリ充電装置。
    The invalidation control unit
    2. The battery charger according to claim 1, wherein it is determined that the load section is connected when a current flowing during the period of the negative voltage due to the AC signal is equal to or greater than a predetermined current.
  3.  前記無効制御部は、
     前記負荷部が接続されていると判定した場合に、前記正負判定制御部の機能を無効にする
     請求項2に記載のバッテリ充電装置。
    The invalidation control unit
    The battery charger according to claim 2, wherein the function of the positive/negative determination control section is disabled when it is determined that the load section is connected.
  4.  前記交流信号によって前記負電圧の期間に流れる電流を検出する電流検出部を更に備え、
     前記無効制御部は、前記電流検出部が検出した前記負電圧の期間に流れる電流に基づいて、前記負荷部が接続されているか否かを判定する
     請求項2又は請求項3に記載のバッテリ充電装置。
    Further comprising a current detection unit that detects a current that flows during the period of the negative voltage due to the AC signal,
    The battery charging device according to claim 2 or 3, wherein the invalidation control unit determines whether or not the load unit is connected based on the current flowing during the period of the negative voltage detected by the current detection unit. Device.
  5.  前記正負判定制御部は、
     前記回転子の回転数の検出として、前記交流信号のうちの負電圧を検出する負電圧検出部と、
     前記負電圧検出部が検出した前記負電圧の絶対値が所定の電圧以上である場合に、前記正負切替判定部に、前記交流信号の負電圧の判定を、所定の期間、追加で維持させる負電圧維持部と
     を備える請求項1から請求項4のいずれか一項に記載のバッテリ充電装置。
    The positive/negative determination control unit is
    a negative voltage detection unit that detects a negative voltage in the AC signal to detect the number of revolutions of the rotor;
    When the absolute value of the negative voltage detected by the negative voltage detection unit is equal to or greater than a predetermined voltage, the positive/negative switching determination unit additionally maintains determination of the negative voltage of the AC signal for a predetermined period. The battery charging device according to any one of claims 1 to 4, further comprising a voltage maintaining unit.
  6.  前記トリガ出力部は、
     前記正負切替判定部が、前記交流信号の正電圧と判定した期間に前記スイッチング素子を導通状態にするように、前記トリガ信号を出力する
     請求項1から請求項5のいずれか一項に記載のバッテリ充電装置。
    The trigger output unit
    6. The trigger signal according to any one of claims 1 to 5, wherein the positive/negative switching determination unit outputs the trigger signal so as to bring the switching element into a conductive state during a period determined to be a positive voltage of the AC signal. battery charger.
  7.  前記正負判定制御部は、
     前記回転数が所定の閾値以上になった場合に、前記スイッチング素子の電流定格値を超えないように定められた前記所定の期間、前記正負切替判定部に前記負電圧の判定を追加で維持させる
     請求項1から請求項6のいずれか一項に記載のバッテリ充電装置。
    The positive/negative determination control unit is
    When the rotational speed exceeds a predetermined threshold value, the positive/negative switching determination unit additionally maintains the determination of the negative voltage for the predetermined period determined so as not to exceed the current rated value of the switching element. The battery charging device according to any one of claims 1 to 6.
  8.  回転子の回転に応じて発電し、発電した電力に応じた交流信号を出力する発電機と、
     前記発電機が出力する前記交流信号を整流して第1負荷部に供給するスイッチング素子と、
     前記交流信号の正負電圧の切り替えを判定する正負切替判定部と、
     前記交流信号の正負電圧のうちの第1極性の電圧を検出することで、前記回転子の回転数を検出し、検出した前記回転数が所定の閾値以上になった場合に、前記正負切替判定部に、前記交流信号の前記第1極性の電圧の判定を、所定の期間、追加で維持させる正負判定制御部と、
     前記正負切替判定部の判定結果のうち、前記第1極性の電圧と逆極性の電圧である第2極性の電圧の判定に基づいて、前記スイッチング素子の導通タイミングを示すトリガ信号を出力するトリガ出力部と、
     前記交流信号の前記第1極性の電圧の期間に前記発電機が発電した電力を消費する第2負荷部が接続されている場合に、前記正負判定制御部の機能を無効にする無効制御部と
     を備える電流制御装置。
    a generator that generates power according to the rotation of the rotor and outputs an AC signal according to the generated power;
    a switching element that rectifies the AC signal output by the generator and supplies it to a first load unit;
    a positive/negative switching determination unit that determines switching of the positive/negative voltage of the AC signal;
    By detecting the voltage of the first polarity among the positive and negative voltages of the AC signal, the number of rotations of the rotor is detected, and when the detected number of rotations exceeds a predetermined threshold value, the positive/negative switching determination is performed. a positive/negative determination control unit for additionally maintaining the determination of the voltage of the first polarity of the AC signal for a predetermined period;
    A trigger output for outputting a trigger signal indicating conduction timing of the switching element based on determination of a second polarity voltage that is opposite in polarity to the first polarity voltage among determination results of the positive/negative switching determination unit. Department and
    a disable control unit that disables the function of the positive/negative determination control unit when a second load unit that consumes the power generated by the generator is connected during the period of the voltage of the first polarity of the AC signal; A current control device comprising:
PCT/JP2022/026291 2021-07-08 2022-06-30 Battery charging device and current control device WO2023282180A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237031294A KR20230146588A (en) 2021-07-08 2022-06-30 Battery charging device and current control device
JP2022577258A JP7450771B2 (en) 2021-07-08 2022-06-30 Battery charging device and current control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113440 2021-07-08
JP2021-113440 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282180A1 true WO2023282180A1 (en) 2023-01-12

Family

ID=84801667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026291 WO2023282180A1 (en) 2021-07-08 2022-06-30 Battery charging device and current control device

Country Status (3)

Country Link
JP (1) JP7450771B2 (en)
KR (1) KR20230146588A (en)
WO (1) WO2023282180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252818A (en) * 1998-03-05 1999-09-17 Mitsuba Corp Lighting and battery charge control circuit
JP2001093680A (en) * 1999-09-22 2001-04-06 Mitsuba Corp Lamp-lighting control circuit
WO2001095455A1 (en) * 2000-06-06 2001-12-13 Mitsuba Corporation Lamp lighting and battery charging controller
WO2006120884A1 (en) * 2005-05-02 2006-11-16 Shindengen Electric Manufacturing Co., Ltd. Battery charging and lamp lighting control circuit
JP2014087247A (en) * 2012-10-26 2014-05-12 Shindengen Electric Mfg Co Ltd Battery charging device, and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778019B2 (en) 2011-12-09 2015-09-16 新電元工業株式会社 Battery charging device and battery charging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252818A (en) * 1998-03-05 1999-09-17 Mitsuba Corp Lighting and battery charge control circuit
JP2001093680A (en) * 1999-09-22 2001-04-06 Mitsuba Corp Lamp-lighting control circuit
WO2001095455A1 (en) * 2000-06-06 2001-12-13 Mitsuba Corporation Lamp lighting and battery charging controller
WO2006120884A1 (en) * 2005-05-02 2006-11-16 Shindengen Electric Manufacturing Co., Ltd. Battery charging and lamp lighting control circuit
JP2014087247A (en) * 2012-10-26 2014-05-12 Shindengen Electric Mfg Co Ltd Battery charging device, and control method

Also Published As

Publication number Publication date
JP7450771B2 (en) 2024-03-15
JPWO2023282180A1 (en) 2023-01-12
KR20230146588A (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP2001231180A (en) Battery charger
JP2001082299A (en) Ignition controller
JP4193348B2 (en) Vehicle power generation control device
WO2023282180A1 (en) Battery charging device and current control device
US5563497A (en) Control device for AC generator
WO2023275934A1 (en) Battery charging device and current control device
KR100216015B1 (en) Output voltage control device of ac generator
JP7446133B2 (en) Battery charging device and current control device
EP0936720B1 (en) Lamp lighting and battery charging control system for a vehicle
WO2017212837A1 (en) Vehicle lamp drive device and vehicle lamp lighting system
WO2024024934A1 (en) Battery charging device
JP3637887B2 (en) Battery charge control device
EP1087643A2 (en) Lamp lighting control circuit
JP2022135571A (en) Power supply device and power control method
WO2024034602A1 (en) Battery charging device
JP2010154656A (en) Dc power supply circuit, and led lighting device
JP2001025299A (en) Alarm device of ac generator for vehicle
WO2019163078A1 (en) Vehicular led lighting control device and method for controlling vehicular led lighting control device
JP5418287B2 (en) Engine power generation system
WO2024128215A1 (en) Battery charging device, control device, and protection method
US20210143666A1 (en) Battery charging in integrated-starter generators
JP4392351B2 (en) Inverter for generator
JP2004350441A (en) Power supply circuit of automobile
JPWO2014061127A1 (en) LED lamp lighting control circuit and LED lamp lighting control method
US11374423B2 (en) Battery charger performing zero-crossing control

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022577258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031294

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031294

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2301006414

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE