WO2023281971A1 - Active-energy-ray-curable resin composition, active-energy-ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink - Google Patents

Active-energy-ray-curable resin composition, active-energy-ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink Download PDF

Info

Publication number
WO2023281971A1
WO2023281971A1 PCT/JP2022/023195 JP2022023195W WO2023281971A1 WO 2023281971 A1 WO2023281971 A1 WO 2023281971A1 JP 2022023195 W JP2022023195 W JP 2022023195W WO 2023281971 A1 WO2023281971 A1 WO 2023281971A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
resin
meth
curable
Prior art date
Application number
PCT/JP2022/023195
Other languages
French (fr)
Japanese (ja)
Inventor
達也 塩澤
和哉 岡本
良寿 福地
隼也 末永
Original Assignee
東洋インキScホールディングス株式会社
東洋インキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021111773A external-priority patent/JP2022094287A/en
Priority claimed from JP2021198619A external-priority patent/JP2023084439A/en
Application filed by 東洋インキScホールディングス株式会社, 東洋インキ株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2023281971A1 publication Critical patent/WO2023281971A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • One embodiment of the present invention provides an active energy ray-curable resin composition, an active energy ray-curable pigment dispersion, and an ink composition for offset ink, which are excellent in curability and can be widely used as various paints including printing inks. and an ink composition for flexo ink.
  • the active energy ray-curable ink contains an unsaturated compound having active energy ray-curable properties such as a (meth)acrylic ester compound as a constituent component, and instantly cures when irradiated with an active energy ray, and the unsaturated compound Forms a tough film by three-dimensional cross-linking. Because it cures instantly, post-processing can be performed immediately after printing, so active energy ray curing is used in package printing for packaging and form printing in the commercial field, which require a strong film to improve productivity and protect designs.
  • a neutral ink is preferably used.
  • Unsaturated compounds used in active energy ray-curable inks include (meth)acrylic ester compounds obtained by the reaction of polyols and (meth)acrylic acid, or polyesters obtained by the reaction of polyester polyols and (meth)acrylic acid. Oligomers such as (meth)acrylates and urethane (meth)acrylates obtained by reaction of polyisocyanate and hydroxy (meth)acrylate can be mentioned.
  • Patent Documents 1 to 3 disclose resins obtained by introducing (meth)acrylic groups into polyester polyols via isocyanate compounds. However, in these documents, the introduction amount of (meth)acrylic groups is small.
  • Patent Document 1 no alcohol having a valence of 3 or higher is used in the synthesis of the polyester polyol.
  • the ratio (OH/COOH) of OH contained in the alcohol used and COOH contained in the monobasic acid and polybasic acid is less than 1.10.
  • Patent Document 3 does not mention that the ratio of trihydric or higher alcohol to the total amount of alcohol used is 13.0 mol % or more.
  • the hydroxyl value of the resulting polyester resin is low, and the amount of (meth)acrylic groups introduced into the resin through the hydroxyl groups is limited, making it impossible to improve curability. Therefore, a compound having a large number of hydroxyl groups, specifically a polyester having a high hydroxyl value, is desired for introducing a large number of (meth)acrylic groups for improving curability.
  • active energy ray-curing ink has poorer fluidity than oil-based ink, so there is a problem that the ink is not scraped off from the ink fountain by the roller during printing (ink fountain escape), and the dot gain of printed matter is reduced. There is a problem that the print reproducibility is lowered due to the low density.
  • active energy ray-curable inks use pigments as colorants, and it is necessary to uniformly and finely disperse the pigments in order to obtain beautiful prints.
  • Dispersants such as surfactants, non-reactive polymeric pigment dispersants, and pigment derivatives are conventionally added to disperse pigments.
  • polymer dispersants are known to be excellent in dispersion stability because they adsorb to the surface of pigments and prevent pigment aggregation due to steric hindrance.
  • Patent Document 4 a proposal has been made to achieve both pigment dispersibility and curability when irradiated with active energy rays by using a polymer pigment dispersion having an ethylenically unsaturated bond in order to increase curability
  • a monomer mixture containing acrylic monomers having hydroxyl groups is copolymerized, and the hydroxyl groups of the obtained copolymer are reacted with acryloyloxyisocyanate to prepare a polymeric dispersant with pendant acrylic groups.
  • acrylic copolymers must be synthesized in a solution from the viewpoint of heat generation, and the subsequent modification and pigment dispersion are also carried out in a solution.
  • Some active energy ray-curable inks and paints are supplied as solvent systems, but offset inks, flexographic inks, inkjets, etc. are non-solvent-based, making it difficult to use active energy ray-curable polymer dispersants. is.
  • the use of organic solvents has recently been restricted due to environmental concerns, and it has become generally difficult to use materials that are supplied as solutions.
  • An embodiment of the present invention stably synthesizes a polyester with a high hydroxyl value in order to eliminate the ink fountain trouble during printing, improve the dot gain of the printed matter, and improve the curability.
  • an active energy ray-curable resin composition having a very large number of (meth)acrylic groups and having extremely high curability is provided.
  • An object of the present invention is to provide an active energy ray-curable resin composition which is friendly to the environment by reducing photoinitiator or irradiation energy.
  • an active energy ray-curable compound having an ethylenically unsaturated bond which can be synthesized without using a solvent and has a high affinity for pigments, was synthesized, and the compound was used as a dispersant to form an active energy ray-curable compound.
  • An object of the present invention is to prepare a pigment dispersion and to provide highly curable inks, paints, etc. using this dispersion.
  • the present inventors reacted a polyester resin containing many hydroxyl groups, an isocyanate compound, and a hydroxyl group-containing (meth)acrylic compound under appropriate conditions to achieve active energy ray-curable It was found that a resin containing many (meth)acrylic groups can be obtained, and an active energy ray-curable resin composition containing the resin can provide an ink or the like with excellent curability, leading to the present embodiment. rice field.
  • polyester was selected as a compound that can be synthesized without using a solvent and has a high affinity for pigments, and an active energy ray-curable compound with an ethylenically unsaturated bond with polyester as the main skeleton is used as a dispersant for pigments.
  • the present inventors have found that the ink and paint can be cured with less energy than usual because the pigment dispersion has active energy ray curability. In addition, if it is solvent-free, it does not require heat energy for drying, and can be cured with less energy than before when curing with active energy rays. The form has been completed.
  • One aspect of the present embodiment is a first resin (A) obtained by reacting a hydroxyl-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl-containing (meth)acrylic compound (a3);
  • the hydroxyl-containing polyester resin (a1) is a resin obtained by reacting under conditions in which the amount of trihydric or higher alcohol with respect to the entire polyhydric alcohol is 13 mol% or more. It relates to an active energy ray-curable resin composition.
  • Another aspect of the present embodiment relates to the active energy ray-curable resin composition, wherein the hydroxyl group-containing polyester resin (a1) has a weight average molecular weight of 2,500,000 to 100,000.
  • Another aspect of the present embodiment relates to the active energy ray-curable resin composition, wherein the trihydric or higher alcohol contains glycerin.
  • the first resin (A) is a compound containing a (meth)acrylic group and a secondary amino group in the first resin (A) that undergoes a Michael addition reaction.
  • the present invention relates to the active energy ray-curable resin composition containing a resin having a tertiary amine structure obtained by
  • Another aspect of the present embodiment relates to an ink composition for offset ink containing the active energy ray-curable resin composition.
  • Another aspect of the present embodiment relates to an ink composition for flexographic ink containing the active energy ray-curable resin composition.
  • Another aspect of the present embodiment relates to the ink composition for flexo ink, wherein the hydroxyl group-containing polyester resin (a1) has a weight average molecular weight of 250 to 3,000.
  • Another aspect of the present embodiment is a first resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), And an active energy ray-curable pigment dispersion containing a pigment (C), wherein the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, OH / COOH It is a resin obtained by reacting under conditions where the molar ratio is 1.10 or more, the hydroxyl value of the hydroxyl group-containing polyester resin (a1) is 50 mgKOH/g or more, and the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is , 250 to 3000, it relates to an active energy ray-curable pigment dispersion.
  • the first resin (A) is a compound containing a (meth)acrylic group and a secondary amino group in the first resin (A) that undergoes a Michael addition reaction.
  • the active energy ray-curable pigment dispersion containing a resin having a tertiary amine structure obtained by
  • the active energy ray-curable resin composition of the present embodiment can be used in a wide range of applications as inks, coating agents, etc. with excellent curability, and is extremely useful industrially.
  • the active energy ray-curable pigment dispersion of the present embodiment can be used for a wide range of applications such as active energy ray-curable offset or flexographic inks, coating agents, etc., which have excellent curability, and is extremely useful industrially. be.
  • the activation energy in this embodiment means the energy required to excite the starting material of the curing reaction from the ground state to the transition state, and the activation energy ray in this embodiment means ultraviolet rays or electron beams.
  • (Meth)acryl in this specification means "acryl or methacryl”.
  • the active energy ray-curable resin composition contains a resin (A) and a polyfunctional (meth)acrylic compound (B).
  • the resin (A) is obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3).
  • the reactions with the hydroxyl group-containing polyester resin (a1), the isocyanate compound (a2), and the hydroxyl group-containing (meth)acrylic compound (a3) may be carried out simultaneously, and the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound ( After reacting a3) in advance, the hydroxyl group-containing polyester resin (a1) may be reacted.
  • the molar ratio of the total hydroxyl groups of the hydroxyl-containing polyester resin (a1) and the hydroxyl-containing (meth)acrylic compound (a3) to the isocyanate groups of the isocyanate compound (a2) is preferably 1 or less in terms of NCO/OH.
  • a catalyst can also be used.
  • Usable catalysts include, for example, tertiary amine-based catalysts such as triethylamine and dimethylaniline, and metal-based catalysts such as tin and zinc.
  • the reaction can be carried out in a solvent, but the reaction can also be carried out in a polyfunctional (meth)acrylic compound (B) described later, and the resin (A) is dissolved in the polyfunctional (meth)acrylic compound. It is preferable because the step of removing the solvent and the step of removing the solvent can be omitted.
  • the resin (A) has two or more functional groups having an ethylenically unsaturated bond, and is a condensation reaction of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid as a polybasic acid and a polyhydric alcohol as a hydroxyl group-containing compound.
  • the hydroxyl group-containing polyester resin (a1) is a compound obtained by reacting a polyhydric alcohol containing a trihydric or higher alcohol with a polybasic acid in an OH/COOH molar ratio of 1.10 or more.
  • a polyhydric alcohol containing a trihydric or higher alcohol as the hydroxyl group-containing compound, the hydroxyl group-containing polyester resin (a1) can have a hydroxyl group, so that it is easy to introduce an ethylenically unsaturated double bond in the next step. Become.
  • OH is the number of moles of hydroxyl groups in the polyhydric alcohol
  • COOH is the number of moles of carboxyl groups that can theoretically react with the alcohol.
  • the COOH is 2 mol.
  • a trihydric or higher alcohol and reacting a polyhydric alcohol with a polybasic acid in an OH/COOH molar ratio of 1.10 or more, introducing many hydroxyl group terminals into the hydroxyl group-containing polyester resin (a1). It becomes possible to introduce a large number of active energy ray-curable acrylic groups by the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step.
  • the hydroxyl group-containing polyester resin (a1) can be easily obtained by subjecting the above polyhydric alcohol and polybasic acid to a conventional heating and dehydration condensation reaction.
  • the condensation reaction proceeds without a catalyst, but catalysts such as sulfuric acid, paratoluenesulfonic acid, and methanesulfonic acid may be used.
  • a suitable solvent such as xylene can also be used if desired.
  • the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is 2,500 to 100,000. If the weight-average molecular weight is less than 250, polyester cannot be obtained.
  • the weight average molecular weight can be measured, for example, by gel permeation chromatography (HLC-8320) manufactured by Tosoh Corporation.
  • a calibration curve can be generated with standard polystyrene samples.
  • the measurement can be performed, for example, using tetrahydrofuran as an eluent, three columns of TSKgel Super HM-M (manufactured by Tosoh Corporation), a flow rate of 0.6 ml/min, an injection volume of 10 ⁇ l, and a column temperature of 40°C.
  • the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 50 mgKOH/g or more, and if it is less than 50 mgKOH/g, the reaction of the hydroxyl-containing (meth)acrylic compound (a3) via the isocyanate compound (a2) is insufficient. The effect of improving the curability becomes small, which is not preferable.
  • the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 100 mgKOH/g or more, more preferably 150 mgKOH/g or more, and even more preferably 200 mgKOH/g or more.
  • the hydroxyl value is the number of milligrams of potassium hydroxide required to neutralize the acetic acid bound to the hydroxyl group when 1 g of the target resin sample is acetylated. can ask.
  • the target resin is dissolved in a solvent in which diethyl ether and ethanol are mixed at a weight ratio of 1:1, and then a 0.1 mol/L potassium hydroxide-ethanol solution is added. Titration is performed by potentiometric titration. Then, the hydroxyl value can be calculated using the titration amount read from the obtained titration curve.
  • the trihydric or higher polyhydric alcohol is not particularly limited, and examples thereof include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, diglycerin, ditrimethylolpropane, sorbitan, sorbitol, dipentaerythritol, inositol, and tripentaerythritol.
  • glycerin and diglycerin which have two primary hydroxyl groups and other hydroxyl groups of which are secondary or higher, are particularly desirable.
  • a dihydric alcohol can also be used as the polyhydric alcohol.
  • the dihydric alcohol is not particularly limited, and examples thereof include linear alkylene dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, ,4-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-hexanediol, 1,5-hexanediol, 2,5-hexanediol, 1, 7-heptanediol, 1,8-octanediol, 1,2-octanediol, 1,9-nonanediol, 1,2-decanediol, 1,10-decanediol, 1,12-dodecanediol, 1,2 -dodecanedio
  • the polybasic acid is not particularly limited, and examples thereof include aliphatic polybasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecenylsuccinic acid, penta Alkenyl succinic acids such as decenyl succinic acid, offsoftaric acid, isophthalic acid, terephthalic acid, hymic acid, 3-methylhimic acid, 4-methylhimic acid, trimellitic acid, and pyromellitic acid as aromatic polybasic acids , 1,8-naphthalic acid and their anhydrides, 1,2,3,6-tetrahydrophthalic acid as alicyclic polybasic acids, 3-methyl-1,2,3,6-tetrahydrophthalic acid, 4- methyl-1,2,3,6-tetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid,
  • a monohydric alcohol and a monobasic acid can also be used in combination during the reaction between the polyfunctional alcohol and the polybasic acid.
  • Examples of monohydric alcohols include n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 2-butyl alcohol, tert-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, amyl alcohol and tert-pentyl alcohol. , cyclohexyl alcohol, benzyl alcohol, ⁇ -phenylethyl alcohol and the like.
  • monobasic acids examples include benzoic acid, methylbenzoic acid, t-butylbenzoic acid, naphthoic acid, orthobenzoylbenzoic acid, propionic acid, butyric acid, ⁇ -methylbutyric acid, valeric acid, and cyclohexanecarboxylic acid.
  • lactic acid oxyacids such as 12-hydroxystearic acid
  • cyclic esters such as caprolacurone
  • the isocyanate compound (a2) is not particularly limited. 4′-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1 , 3-bis(is
  • the hydroxyl group-containing (meth)acrylic compound (a3) is not particularly limited, and examples thereof include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylates, glycerin (meth) acrylate, glycerin di ( meth)acrylate, diglycerol di(meth)acrylate, diglycerol tri(meth)acrylate, trimethylolpropane (meth)acrylate, trimethylolpropane di(meth)acrylate, ditrimethylolpropane di(meth)acrylate, ditrimethylolpropane tri(meth)
  • (Secondary amine) A secondary amine is used to introduce a tertiary amine into the resin (A) by undergoing a Michael addition reaction with the (meth)acrylic group of the resin (A) in the active energy ray-curable resin composition.
  • This tertiary amine has the effect of promoting the radical cross-linking reaction of the surface, which is the interface with the air, by suppressing the cross-linking inhibition caused by oxygen during the radical cross-linking reaction of the (meth)acrylic group during the active energy ray curing process. be.
  • secondary amines examples include dipropylamine, dibutylamine, diisobutylamine, di-sec-butylamine, butylmethylamine, methylhexylamine, di-N-octylamine, di(2-ethylhexyl)amine, and ethylisoamylamine.
  • methylethylamine methylisopropylamine, butylethylamine, 2-(hydroxymethylamino)ethanol, diethanolamine, 4-methylaminobutanol, dibenzylamine, methylbenzylamine, piperidine, 2-pipecoline, 3-pipe Choline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, N-methyl-3-piperidinemethanol, 4-piperidinemethanol, 2-piperidineethanol , 4-piperidine ethanol, methyl isonicopetate, ethyl isonipecotate, 4-piperidinol, N-methyl-4-piperidinol, N-benzyl-4-piperidinol, N,N-dimethyl-4-piperidinamine, 2, 2,6,6-tetramethylpiperidine, 4-piperidinopiperidine, pyrrolidine, 3-pyrrolidinol, 1-acetylpiperazine, 1-cyclopentylpiperazine, 1-
  • Michael addition of a secondary amine to an acrylic group is performed by adding a secondary amine to the synthesized active energy ray-curable resin composition.
  • a secondary amine is added dropwise to the active energy ray-curable resin composition charged in a flask while stirring, and after the dropwise addition is completed, the mixture is gradually heated and held at around 80°C (for example, 80 to 100°C) for several hours.
  • the Michael addition reaction is completed.
  • the content of the polyfunctional (meth)acrylic compound (B) is 10 to 90% by weight, preferably 40 to 80% by weight, based on the total composition.
  • the content of the radical polymerization inhibitor is 0.01 to 5% by weight, preferably 0.1 to 1% by weight.
  • the resin (A) in the active energy ray-curable resin composition of the first configuration comprises a hydroxyl group-containing polyester resin (a1) obtained by condensation reaction of a polybasic acid and a polyhydric alcohol, an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3) obtained by addition reaction,
  • the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid
  • the OH / COOH molar ratio is a compound reacted in the range of 1.50 or more.
  • a trihydric or higher alcohol and reacting a polyhydric alcohol with a polybasic acid in the range of an OH/COOH molar ratio of 1.50 or more to introduce a large number of hydroxyl group terminals into the hydroxyl group-containing polyester resin (a1). It becomes possible to do so, and many active energy ray-curable (meth)acrylic groups can be introduced by the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step.
  • Polyhydric alcohol and polybasic acid are reacted at an OH/COOH molar ratio of 1.50 or more, preferably 1.50 to 4.0, more preferably 1.50 to 3.0. , 1.60 to 3.0 is more preferable, and may be 1.50 to 2.25, 1.50 to 2.0, or 1.60 to 2.0. If it is less than 1.50, the number of terminal hydroxyl groups will decrease, which is not preferable.
  • hydroxyl groups In order to introduce sufficient hydroxyl groups, it is preferable to contain 50 mol% or more of trihydric or higher alcohol, more preferably 60 mol% to 100 mol%, based on the total polyhydric alcohol. If it is less than 50 mol %, the amount of introduced hydroxyl groups is small, and as a result, the density of (meth)acrylic groups in the hydroxyl group-containing polyester resin becomes low, so that curability cannot be improved.
  • the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the first configuration is 250-3000, preferably 250-2000, and may be 280-3000 or 400-2000. If the weight average molecular weight is less than 250, it does not become a polyester, and when it is made into a highly curable active energy ray-curable resin composition exceeding 3000, the viscosity is too high, and the amount that can be added as an ink composition for flexographic ink and a coating agent is small. , and the effect of high curability is reduced, which is not preferable.
  • the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 200 mgKOH/g or more, more preferably 290 mgKOH/g or more. The reaction of the meth)acrylic compound (a3) is not sufficiently carried out, and the effect of improving the curability becomes small, which is not preferable.
  • the resin (A) in the active energy ray-curable resin composition of the second configuration comprises a hydroxyl group-containing polyester resin (a1) obtained by condensation reaction of a polybasic acid and a polyhydric alcohol, an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3) obtained by addition reaction,
  • the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid
  • the OH / COOH molar ratio is a compound reacted in the range of 1.10 to 2.20.
  • a hydroxyl group terminal is formed in the hydroxyl group-containing polyester resin (a1).
  • a large number of active energy ray-curable acrylic groups can be introduced in the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step.
  • Polyhydric alcohol and polybasic acid are reacted at an OH/COOH molar ratio of 1.10 to 2.20, preferably 1.10 to 2.02, more preferably 1.10 to 1.94.
  • the range of 1.10 to 1.50 is more preferable, and the range of 1.14 to 1.41 is particularly preferable. If it is less than 1.10, the number of terminal hydroxyl groups will decrease, and if it exceeds 2.20, it will be difficult to increase the molecular weight, which is not preferable.
  • trihydric or higher alcohol In order to introduce sufficient hydroxyl groups, it is preferable to contain 13 mol% or more of trihydric or higher alcohol, more preferably 20 mol% or more and 50 mol% or less, based on the total polyhydric alcohol. If it exceeds 50 mol %, gelation tends to occur during the synthesis of the hydroxyl group-containing polyester resin (a1). However, if a monobasic acid such as benzoic acid is used in combination, 50 mol % or more of trihydric or higher alcohol can be used with respect to the total polyhydric alcohol.
  • the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the second configuration is 2,500 to 100,000, preferably 3,000 to 100,000, more preferably 5,000 to 20,000. When the weight average molecular weight is 3000 or more, the effect of improving the curability is sufficiently exhibited, which is more preferable. A weight-average molecular weight of 100,000 or less is preferable because a viscosity suitable for the finally obtained active energy ray-curable resin composition (ink composition for offset ink) can be secured.
  • the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 50 mgKOH/g or more, more preferably 79 mgKOH/g or more, and still more preferably 96 mgKOH/g or more. The reaction of the hydroxyl group-containing (meth)acrylic compound (a3) through the isocyanate compound (a2) is not sufficiently carried out, and the effect of improving the curability becomes small, which is not preferable.
  • additives such as radical polymerization inhibitors can be appropriately added to the active energy ray-curable resin composition depending on the required physical properties of the cured film.
  • additives such as radical polymerization inhibitors can be appropriately added to the active energy ray-curable resin composition depending on the required physical properties of the cured film.
  • monofunctional (meth)acrylic compounds, vinyl compounds, or active energy ray-curable oligomers can be used.
  • Examples of monofunctional (meth)acrylic compounds include 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, phenoxyethyl (meth)acrylate, 2-(2-vinyloxy ethoxy)ethyl (meth)acrylate, acryloylmorpholine and the like.
  • Examples of vinyl compounds include N-vinylpyrrolidone and divinylbenzene.
  • Examples of active energy ray-curable oligomers include polyester acrylate, polyurethane (meth)acrylate, and epoxy (meth)acrylate.
  • radical polymerization inhibitors examples include (alkyl)phenol, hydroquinone, catechol, resorcinol, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p- Benzoquinone, nitrosobenzene, 2,5-di-tert-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cupferron, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N-(3-oxyanilino -1,3-dimethylbutylidene)aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraldoxime, methylethylketoxime, cyclohexan
  • the ink composition is also referred to as active energy ray-curable ink or active energy ray-curable ink.
  • the active energy ray-curable ink contains 0 to 30% by weight of pigment, 5 to 40% by weight of binder resin, 30 to 95% by weight of monomer, and 30 to 95% by weight of radical polymerization inhibitor.
  • the composition is adjusted to 0.01 to 1% by weight, 0 to 20% by weight of a photopolymerization initiator and/or sensitizer, and 0 to 10% by weight of other additives.
  • the resin (A) in the active energy ray-curable resin composition disclosed in this embodiment corresponds to a binder resin.
  • the content of the resin (A) in the active energy ray-curable resin composition is preferably 5-40% by weight, more preferably 10-30% by weight, relative to the total ink. If it is 5% by weight or more, the effect of the present embodiment can be sufficiently exhibited, and if it is 40% by weight or less, the viscosity of the ink will be in a range suitable for printing, which is preferable.
  • a binder resin other than the resin (A) can be used for the active energy ray-curable ink, if necessary.
  • binder resins other than resin (A) include diallyl orthophthalate resin, diallyl isophthalate resin, diallyl terephthalate resin, polyester resin, polyvinyl chloride, poly(meth)(meth)acrylate, epoxy resin, and polyurethane resin. , petroleum (based) resins, cellulose derivatives (e.g., ethyl cellulose, cellulose acetate, nitrocellulose), vinyl chloride vinyl acetate copolymers, polyamide resins, polyvinyl acetal resins, polyamide resins, polyvinyl acetal resins, butadiene-(meth)acrylonitrile Synthetic rubbers such as copolymers can be used. One or more of these resins can be used.
  • the active energy ray-curable ink does not contain a pigment as a coloring agent and has a transparent structure, it becomes an OP varnish, and if it contains the pigments shown below, it becomes a color printing ink.
  • Pigments (C) include inorganic pigments and organic pigments.
  • inorganic pigments include yellow lead, zinc yellow, Prussian blue, barium sulfate, cadmium red, titanium oxide, zinc oxide, red iron oxide, alumina white, calcium carbonate, ultramarine blue, carbon black, graphite, aluminum powder, and red iron oxide.
  • organic pigments include soluble azo pigments such as ⁇ -naphthol, ⁇ -oxynaphthoic acid, ⁇ -oxynaphthoic anilide, acetoacetic anilide, pyrazolone, ⁇ -naphthol, Insoluble azo pigments such as ⁇ -oxynaphthoic anilides, acetoacetate anilide monoazo, acetoacetate anilide disazo, pyrazolone, copper phthalocyanine blue, halogenated (chlorinated or brominated) copper phthalocyanine blue, sulfonated copper phthalocyanine blue , phthalocyanine pigments such as metal-free phthalocyanines, quinacridones, dioxazines, threnes (pyranthrone, anthanthrone, indanthrone, anthrapyrimidine, flavanthrone, thioindigo, anthraquinone, per
  • An active energy ray-curable resin composition for example, is cured by light, which is an active energy ray.
  • the photo-curing method generally uses a light source that emits ultraviolet rays, such as a metal halide lamp, a high-pressure mercury lamp, or an LED. Also, an electron beam can be used as a light source, and in that case curing is generally possible without using a photopolymerization initiator.
  • a photoradical polymerization initiator When using ultraviolet rays as active energy rays, a photoradical polymerization initiator is blended into the photocurable composition as a photopolymerization initiator.
  • a photopolymerization initiator As the radical photopolymerization initiator, a molecular cleavage type or a hydrogen abstraction type is suitable.
  • benzoin isobutyl ether 2,4-diethylthioxanthone, 2-isopropylthioxanthone, benzyl, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butan-1-one, bis(2,4,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 1,2-octanedione, 1-(4-( Phenylthio)-2,2-(O-benzoyloxime)), oligo(2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone, and the like are preferably used.
  • Examples of molecularly cleaved types include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)- 2-Hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination, and hydrogen abstraction type photopolymerization Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide, etc., which are initiators, can also be used in combination.
  • photocleavable initiators include, for example, ⁇ -(dimethyl)aminoalkylphenone compounds and ⁇ -morpholinoalkylphenone compounds.
  • ⁇ -(dimethyl)aminoalkylphenone compounds such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 or 2-dimethylamino-2-( 4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one and the like
  • ⁇ -morpholinoalkylphenone compounds include 2-methyl-1-[4- (methylthio)phenyl]-2-morpholinopropan-1-one and the like. These may be used alone or in combination of two or more.
  • examples of hydrogen abstraction type initiators include dialkylbenzophenone compounds and thioxanthone compounds.
  • dialkylaminobenzophenone compounds such as 4,4'-dialkylaminobenzophenones such as 4,4'-bis-(dimethylamino)benzophenone and 4,4'-bis-(diethylamino)benzophenone
  • Dialkylaminobenzophenone compounds such as 4-benzoyl-4'-methyldiphenyl sulfide may be used alone or in combination of two or more.
  • Thioxanthone compounds include, for example, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2-isopropylthioxanthone, 4-diisopropylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2, 4-dichlorothioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-hydroxy-3-(3,4-dimethyl-9-oxo-9H thioxanthone-2-yloxy-N,N,N-trimethyl -1-propanamine hydrochloride, etc. These may be used alone or in combination of two or more.
  • sensitizers for the above photopolymerization initiators include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 2,3,4-trimethylbenzophenone, 4-phenylbenzophenone, 3 ,3′-dimethyl-4-methoxybenzophenone, 4-(1,3-acryloyl-1,4,7,10,13-pentoxotridecyl)benzophenone, methyl-o-benzoylbenzoate, [4-(methylphenyl Thio)phenyl]phenylmethanone, (4-benzoylbenzyl)trimethylammonium chloride, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)2-hydroxy-2-methyl -1-phenylpropan-1-one, 1-hydroxy-cyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-styrylpropan-1-one polymer, diethoxyacetophenone,
  • the photopolymerization initiator it is particularly preferable to use, for example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide or bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • the radical photopolymerization initiator and the sensitizer are preferably used in an amount of 1 to 15% by weight based on the total solid content of the photopolymerizable composition.
  • the above radical polymerization inhibitor can be exemplified as an additive that imparts storage stability to the ink.
  • Additives that impart abrasion resistance, antiblocking properties, smoothness, and scratch resistance include, for example, natural waxes such as carnauba wax, Japan wax, lanolin, montan wax, paraffin wax, microcrystalline wax, fishart Rops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and synthetic waxes such as silicone compounds can be exemplified.
  • additives such as ultraviolet absorbers, infrared absorbers, and antibacterial agents can be added according to the required performance.
  • the method for producing the active energy ray-curable ink may be performed by a method similar to that for conventional active energy ray-curable inks. Kneading, mixing and adjusting machines such as kneaders, triple rolls, attritors, sand mills, gate mixers, etc. Manufactured using
  • Examples of the printing method include lithographic printing (ordinary lithographic printing using dampening water and waterless lithographic printing not using dampening water), letterpress printing, intaglio printing, stencil printing, flexographic printing, etc., preferably flexographic printing. Print.
  • the base material of the printed material is not particularly limited, and includes printing on all materials such as paper, plastic, stickers, labels, and metals, preferably printing on paper.
  • the active energy ray-curable pigment dispersion contains the resin (A) and the pigment (C).
  • the active energy ray-curable pigment dispersion is obtained by treating the resin (A) and the pigment (C) with a disperser.
  • the mixing ratio of the resin (A) and the pigment (C), which are active energy ray-curable pigment dispersants in the active energy ray-curable pigment dispersion is preferably 5 to 100% by weight of the resin (A) with respect to the pigment (C). is 10 to 50% by weight.
  • the resin (A) and the pigment (C), optionally a diluent monomer or other resin, etc. are added, and depending on the equipment, an appropriate amount of dispersing media is added, followed by a kneader, three rolls, a ball mill, a sand mill, or a scandex.
  • An active energy ray-curable pigment dispersion is prepared using a dispersing device such as When the pigment dispersion is prepared, a suitable amount of the above-mentioned radical polymerization inhibitor may be added since radicals may be generated due to heat or the like during dispersion and gelation may occur. In addition, when the pigment dispersibility is insufficient only with the resin as the active energy ray-curable pigment dispersant, a commercially available pigment dispersant or the like may be used together.
  • pigment dispersants examples include DISPERBYK-194N, DISPERBYK-2008, DISPERBYK-2013, DISPERBYK-2014, DISPERBYK-2158, SOLSPERS32000, SOLSPERS75000, SOLSPERS88000, SOLSPERS39000, and SOLSPERS36000.
  • the resin (A) in the active energy ray-curable pigment dispersion is a reaction product having a polyester structure obtained by the condensation reaction of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid as a polybasic acid and a hydroxyl group-containing compound. Obtained by subjecting a hydroxyl group-containing polyester resin (a1) to an addition reaction with an isocyanate compound (a2) and a hydroxyl group-containing (meth)acrylic compound (a3), and the hydroxyl group-containing polyester resin (a1) is a trihydric or higher alcohol. It is a compound obtained by reacting a contained polyhydric alcohol and a polybasic acid in an OH/COOH molar ratio of 1.10 or more.
  • the OH/COOH molar ratio is 1.10 or more, preferably 1.50 or more by reacting a polyhydric alcohol with a polybasic acid to obtain a hydroxyl group-containing polyester resin (a1) It is possible to introduce a large number of hydroxyl group terminals inside, and in the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step, many active energy ray-curable (meth)acrylic groups are generated. can be introduced.
  • the polyhydric alcohol and the polybasic acid are reacted at an OH/COOH molar ratio of 1.50 or more, preferably from 1.60 to 2.0. If it is less than 1.50, the number of terminal hydroxyl groups will decrease, which is not preferable.
  • hydroxyl groups In order to introduce sufficient hydroxyl groups, it is preferable to contain 50 mol% or more of trihydric or higher alcohol, more preferably 60 mol% to 100 mol%, based on the total polyhydric alcohol. If it is less than 50 mol %, the amount of hydroxyl groups introduced is small, and as a result, the density of (meth)acrylic groups in the hydroxyl group-containing polyester resin becomes low, so that the curability of the pigment dispersion cannot be improved.
  • the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the active energy ray-curable pigment dispersion is preferably 200-3000, more preferably 220-2000. If the weight average molecular weight is less than 200, a polyester polyol having two or more hydroxyl groups cannot be synthesized, resulting in a decrease in the curability of the pigment dispersion. When used as the viscosity is too high, the wettability with the pigment is poor, making it difficult to prepare a dispersion, which is not preferable.
  • Resin (A), which is an active energy ray-curable dispersant preferably has a tertiary amino group or a quaternary ammonium salt.
  • a tertiary amino group or a quaternary ammonium salt By having a tertiary amino group or a quaternary ammonium salt, the surface of the pigment is usually acidic, so the amino group interacts with the acidic site, resulting in a resin that is an active energy ray-curable pigment dispersant.
  • (A) is expected to adsorb to the pigment to form a stable pigment dispersion.
  • a tertiary amino group can be obtained by Michael addition of a compound having a secondary amino group (secondary amine) to a (meth)acrylic group in the resin (A), which is an active energy ray-curable dispersant. .
  • the tertiary amino group may be neutralized with an acid and used as a quaternary ammonium salt.
  • Active energy ray-curable ink which is an ink composition, comprises 20 to 80% by weight of active energy ray-curable pigment dispersion, 30 to 70% by weight of active energy ray-curable monomer, and 0 of the above radical polymerization inhibitor, based on the total ink. 01 to 1% by weight, 0 to 20% by weight of a photopolymerization initiator and/or sensitizer, and 0 to 10% by weight of other additives.
  • the content of the active energy ray-curable pigment dispersion is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, based on the total ink composition. If the amount is less than 20% by weight, the ink may not be sufficiently colored and hardened, and the hiding effect may not be exhibited sufficiently.
  • the active energy ray-curable monomers used in the ink composition are active energy ray-curable and generally include polyfunctional (meth)acrylic compounds, monofunctional (meth)acrylic compounds, vinyl compounds, allyl compounds, active energy Line-curable oligomers may be mentioned.
  • the content of the polyfunctional (meth)acrylic compound is 30 to 70% by weight, preferably 40 to 60% by weight, based on the total composition.
  • Examples of the polyfunctional (meth)acrylic compound include the polyfunctional (meth)acrylic compound (B).
  • Examples of monofunctional (meth)acrylic compounds include 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, phenoxyethyl (meth)acrylate, 2-(2-vinyloxy ethoxy)ethyl (meth)acrylate, acryloylmorpholine and the like.
  • Examples of vinyl compounds include N-vinylpyrrolidone and divinylbenzene.
  • Examples of active energy ray-curable oligomers include polyester acrylate, polyurethane (meth)acrylate, and epoxy (meth)acrylate.
  • Examples of allyl compounds include pentaerythritol tetraallyl ether, trimethylolpropane triallyl ether, sorbitol triallyl ether, isosorbide diallyl ether, glycerin diallyl ether, bisphenol A diallyl ether, hydrogenated bisphenol A diallyl ether, and diallyl maleate.
  • diallyl fumarate diallyl succinate
  • diallyl itaconate diallyl malate
  • diallyl adipate diallyl dodecanedioate
  • diallyl citrate triallyl trimellitate
  • diallyl cyclohexenedicarboxylate diallyl fumarate, diallyl succinate, diallyl itaconate, diallyl malate, diallyl adipate, diallyl dodecanedioate, diallyl citrate, triallyl trimellitate, and diallyl cyclohexenedicarboxylate.
  • Acid esters As other additives, various resins may be added depending on the required physical properties. Acid esters, epoxy resins, polyurethane resins, petroleum (based) resins, cellulose derivatives (e.g., ethyl cellulose, cellulose acetate, nitrocellulose), vinyl chloride vinyl acetate copolymers, polyamide resins, polyvinyl acetal resins, polyamide resins, polyvinyl acetal resins , synthetic rubbers such as butadiene-(meth)acrylonitrile copolymers, and the like. One or more of these resins can be used.
  • cellulose derivatives e.g., ethyl cellulose, cellulose acetate, nitrocellulose
  • vinyl chloride vinyl acetate copolymers e.g., polyamide resins, polyvinyl acetal resins, polyamide resins, polyvinyl acetal resins , synthetic rubbers such as butadiene-(meth)acrylonitrile copolymers,
  • An active energy ray-curable ink composition (active energy ray-curable ink) is, for example, cured by light, which is an active energy ray.
  • the photo-curing method generally uses a light source that emits ultraviolet rays, such as a metal halide lamp, a high-pressure mercury lamp, or an LED. Also, an electron beam can be used as a light source, and in that case curing is generally possible without using a photopolymerization initiator.
  • photopolymerization initiator examples include the photocleavage initiator and the hydrogen abstraction polymerization initiator.
  • the sensitizer includes the sensitizers described above.
  • the above radical polymerization inhibitor can be exemplified as an additive that imparts storage stability to the ink.
  • Additives that impart abrasion resistance, anti-blocking properties, slip properties, and anti-scratch properties include the above-mentioned additives.
  • additives such as ultraviolet absorbers, infrared absorbers, and antibacterial agents can be added according to the required performance.
  • the method for producing the active energy ray-curable ink may be performed by a method similar to that for conventional active energy ray-curable inks. Kneading, mixing, and adjusting machines such as kneaders, triple rolls, attritors, sand mills, gate mixers, etc. Manufactured using
  • Examples of the printing method include offset printing (ordinary lithographic printing using dampening water and waterless lithographic printing not using dampening water), letterpress printing, intaglio printing, stencil printing, flexographic printing, etc., preferably flexographic printing. Print.
  • the base material of the printed material is not particularly limited, and includes printing on all materials such as paper, plastic, stickers, labels, and metals, preferably printing on paper.
  • this embodiment includes various embodiments not described here.
  • This embodiment includes the following configurations.
  • One aspect of the present embodiment is a resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), and a polyfunctional (meth) )
  • Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the isocyanate compound (a2) contains a diisocyanate compound.
  • Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the trihydric or higher alcohol contains glycerin.
  • the resin (A) is a tertiary amine obtained by Michael addition reaction between a (meth)acrylic group in the resin (A) and a secondary amine compound.
  • the active energy ray-curable resin composition includes a resin having a structure.
  • Another aspect of the present embodiment is the active energy ray-curable resin composition, which is an ink composition.
  • Another aspect of the present embodiment is a printed material obtained by printing the active energy ray-curable resin composition on a substrate.
  • another aspect of the present embodiment is a resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), and a polyfunctional An active energy ray-curable resin composition containing a (meth)acrylic compound (B), wherein the hydroxyl group-containing polyester resin (a1) comprises a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, OH /COOH molar ratio is in the range of 1.10 to 2.20, and a hydroxyl group-containing polyester resin is a resin obtained by reacting a trihydric or higher alcohol at a rate of 13 mol% or more with respect to the entire polyhydric alcohol.
  • the hydroxyl value of (a1) is 50 mgKOH/g or more, and the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is 3000 or more.
  • Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the isocyanate compound (a2) is a diisocyanate compound having two isocyanate groups.
  • Another aspect of the present embodiment is the active energy ray-curable resin composition, which is an ink composition.
  • the hydroxyl group-containing polyester resin (a1), the isocyanate compound (a2), and the hydroxyl group-containing (meth)acrylic compound (a3) are mixed in the polyfunctional (meth)acrylic compound (B).
  • Another aspect of the present embodiment is a printed material obtained by printing the active energy ray-curable resin composition on a substrate.
  • an active energy ray-curable pigment dispersion containing a pigment (C) and an active energy ray-curable dispersant, wherein the active energy ray-curable dispersant is
  • the pigment dispersion has two or more functional groups having ethylenically unsaturated bonds and has a polyester structure which is a reaction product of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid and a hydroxyl group-containing compound.
  • the functional group having an ethylenically unsaturated bond includes at least one functional group selected from the group consisting of a vinyl group, an allyl group, and a (meth)acryloyl group. It is the active energy ray-curable pigment dispersion.
  • Another aspect of the present embodiment is the active energy ray-curable pigment dispersion, wherein the active energy ray-curable dispersant has a tertiary amino group or a quaternary ammonium salt.
  • the active energy ray-curable dispersant having a tertiary amino group comprises a functional group having an ethylenically unsaturated bond in the active energy ray-curable dispersant and a secondary
  • the active energy ray-curable pigment dispersion is a Michael addition reaction product with a compound containing an amino group.
  • another aspect of the present embodiment includes the active energy ray-curable pigment dispersion, a photopolymerizable monomer and/or a photopolymerization initiator, and contains substantially no solvent, an active energy It is a linear curable ink composition.
  • Another aspect of the present embodiment is the active energy ray-curable ink composition for flexographic ink or offset ink.
  • a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range in one step can be arbitrarily combined with the upper limit value or lower limit of the numerical range in another step.
  • the present invention is the subject of Japanese Patent Application No. 2021-111773 filed on July 5, 2021, the subject of Japanese Patent Application No. 2021-148233 filed on September 13, 2021, and the Japanese patent filed on December 7, 2021 It relates to the subject matter of Application No. 2021-198619, the entire disclosure of which is incorporated herein by reference.
  • the weight average molecular weight was measured by gel permeation chromatography (HLC-8320) manufactured by Tosoh Corporation.
  • a calibration curve was prepared with standard polystyrene samples. Tetrahydrofuran was used as the eluent, and three columns of TSKgel Super HM-M (manufactured by Tosoh Corporation) were used as columns. The measurement was performed at a flow rate of 0.6 ml/min, an injection volume of 10 ⁇ l, and a column temperature of 40°C.
  • the term "molecular weight” indicates weight average molecular weight.
  • the hydroxyl value was obtained by a normal potassium hydroxide titration method, specifically, a method according to JIS K 0070.
  • Table 1 also shows the physical properties of the synthesized hydroxyl group-containing polyester compound.
  • trihydric or higher alcohol / total alcohol [mol%] in Table 1 is converted to the number of moles by dividing the weight part of each raw material by the respective molecular weight, and the number of moles of the trihydric or higher alcohol is the total alcohol is divided by the number of moles of
  • Example 1 Preparation of ink composition 1 (active energy ray-curable composition 1)
  • Examples 2-9, Comparative Examples 1-2 Preparation of Ink Compositions 2 to 9 and Comparative Ink Compositions 1 to 2
  • Ink compositions 2 to 9 and comparative ink compositions 1 to 2 were prepared in the same manner as the ink composition 1, except that the curable resin 1 was changed according to Table 3.
  • the obtained ink composition was evaluated by the following method. Table 3 shows the results.
  • viscosity The viscosity of the resulting ink composition was measured at 25° C. and 100 rpm using an E-type viscometer (TVE-25 viscometer, type E, manufactured by Toki Sangyo Co., Ltd.). A value of 2 or more is a level that poses no practical problem.
  • TI value The viscosity of the resulting ink composition was measured at 25° C. and 50 rpm and 100 rpm using an E-type viscometer (TVE-25 viscometer, type E, manufactured by Toki Sangyo Co., Ltd.). Then, the TI value was calculated by dividing the viscosity at 50 rpm by the viscosity at 100 rpm. A score of 3 or more is evaluated as a practically acceptable level. (Evaluation criteria) 5: 1.00 or more and less than 1.05 4: 1.05 or more and less than 1.10 3: 1.10 or more and less than 1.15 2: 1.15 or more and less than 1.20 1: 1.20 or more
  • the active energy ray-curable resin compositions presented in the examples exhibit excellent curability even when used alone or when incorporated into flexographic inks, while maintaining the same viscosity and TI value as compared to the comparative examples. I found out.
  • Table 4 shows the physical properties of the synthesized resin.
  • "trihydric or higher alcohol / total alcohol [mol%]" in Table 4 is obtained by dividing the weight part of each raw material by the respective molecular weight and converting the number of moles of the trihydric or higher alcohol to the total alcohol is divided by the number of moles of
  • Example 1A to 24A Samples of Examples 1A-24A and Comparative Examples 1A-8A were obtained by mixing resin compositions 1A-32A and an initiator according to the compositions in Table 6. A UV cured film of the obtained sample was prepared and evaluated by MEK (methyl ethyl ketone) rubbing test.
  • MEK methyl ethyl ketone
  • MEK rubbing is performed by applying a sample for MEK rubbing to a corona-treated PET substrate (A-PET sheet Novaclear A2012, thickness 0.25 mm manufactured by Mitsubishi Chemical Corporation) using an RI tester (simple color display machine), Curing was performed using a metal halide lamp (output: 96 W/cm, lamp distance: 10 cm, conveyor speed: 100 m/min, number of passages: 1 time).
  • a cotton swab impregnated with MEK was reciprocally rubbed against the UV cured film, and the number of reciprocations of the cotton swab when the UV cured film was damaged was judged. 3 or more is a practical level.
  • Examples 25A to 48A, Comparative Examples 11A to 18A According to the compositions in Table 7, active energy ray-curable inks of Examples 25A to 48A and Comparative Examples 11A to 18A were kneaded using a three-roll mill. The "viscosity” and “fluidity” of the obtained active energy ray-curable ink composition were measured, and the "dot gain" of the printed matter and the ink being scraped by the supply roller at the ink fountain during printing on the printing machine were measured. The phenomenon of "ink backing away” was investigated. The results are also shown in Table 7.
  • ⁇ Method for measuring viscosity> The viscosity was measured using a viscoelasticity measuring device (HAAKE RheoStress6000) manufactured by ThermoFisher Scientific Co., Ltd. under the conditions of a measurement temperature of 25° C. and a cone plate (diameter: 20 mm, inclination angle: 0.5°).
  • ⁇ Curability evaluation method> The curability was evaluated by spreading the ink on PE-coated paper using an RI tester (simple color development machine) at a coating amount of 1 g/m 2 , and testing it with a metal halide lamp (manufactured by Eye Graphics Co., Ltd., output: 96 W/cm, lamp Distance: 10 cm) and varying conveyor speeds (80, 100, 120 m/min) to cure and evaluate the surface condition of the ink coating by rubbing with a cotton cloth. 2 or more is a practical level. (Evaluation criteria) 4: No scratches at all 3: Slightly scratched 2: Scratched 1: No coating film
  • Examples 25A to 48A are superior to the inks of Comparative Examples 11A to 20A in curability and fluidity, and it was found that active energy ray-curable inks capable of solving problems during printing can be obtained.
  • Tolylene diisocyanate was added to 2330 parts of Aronix M400 (mixture of 55% DPHA (dipentaerythritol hexaacrylate) and 45% DPPA (dipentaerythritol pentaacrylate)) in a flask equipped with a separate stirrer, thermometer and gas inlet tube. 348 parts and 1.3 parts of methoquinone as a polymerization inhibitor were added, and the mixture was maintained at 110° C. for 2 hours under a stream of dry air to obtain a TDI-Aronix M400 reactant. 132 parts of the polyester compound synthesized above was added thereto, and the mixture was kept at 110° C. for 4 hours under a stream of dry air to obtain an active energy ray-curable dispersant 1B (dispersant 1B).
  • Aronix M400 mixture of 55% DPHA (dipentaerythritol hexaacrylate) and 45% DPPA (dipentaerythr
  • Dispersants 5B to 7B and Comparative Dispersant 1B were obtained according to the method described in Production Example 1B, except that the raw materials used and the blending amounts were changed according to Table 8.
  • "trihydric or higher alcohol / total alcohol [mol%]" in Table 8 is converted to the number of moles by dividing the weight part of each raw material by the respective molecular weight, and the number of moles of trihydric or higher alcohol is the total alcohol is divided by the number of moles of
  • Example 1B (Preparation of Pigment Dispersion and Preparation of Ink Composition Using the Pigment Dispersion) 68 parts of the active energy ray-curable dispersant 1B obtained in Production Example 1B, 100 parts of a yellow pigment "TCH-1407", and 232 parts of a UV monomer “Miramer M3130" are mixed, and a grind gauge is used on a 3-roll mill. It was dispersed until it became 5 ⁇ m or less to obtain an active energy ray-curable pigment dispersion 1B (pigment dispersion 1B).
  • Example 2B, 3B, 5B-7B Pigment Dispersions 2B, 3B, 5B and 2B were prepared in the same manner as in Example 1B, except that the dispersant, photopolymerization initiator, active energy ray-curable monomer type, and blending amount used were changed according to Table 9. 7B and ink compositions 2B, 3B, 5B-7B were made.
  • Example 4B 34 parts of the pigment dispersant 4B obtained in Production Example 4B, 100 parts of the yellow pigment "TCH-1407", and 266 parts of the UV monomer “Miramer M3130” were added and mixed, and the grind gauge was 5 ⁇ m with a 3-roll mill. Dispersed until the following was obtained to obtain Pigment Dispersion 4B. Further, to 72 parts of the resulting pigment dispersion 4B, 15 parts of Omnirad TPO as a photopolymerization initiator and 13 parts of "Miramer M3130" as an active energy ray-curable monomer are added, and the mixture is stirred well while being heated with a disper. Ink composition 4B was prepared by dissolving the agent.
  • Comparative pigment dispersions 1B to 3B and a comparative ink composition were prepared in the same manner as in Example 4B, except that the pigment dispersants, photopolymerization initiators, active energy ray-curable monomer types and blending amounts used were changed according to Table 9. 1B-3B were produced.
  • Dispersants used in Table 9 are described below.
  • ⁇ Shikou UV-1700B Mitsubishi Chemical Co., Ltd.
  • Isophorone diisocyanate (IPDI) and dipentaerythritol pentaacrylate (DPPA) are reacted to form a urethane acrylate that does not have a polyester skeleton
  • ⁇ SOLSPERS32000 Lubrizol Co., Ltd.
  • Polyethyleneimine is reacted with lactone dispersant
  • TI value The viscosity of the obtained pigment dispersion was measured at 25° C. and rotation speeds of 5 rpm and 20 rpm using an E-type viscometer (TVE-22 type viscometer manufactured by Toki Sangyo Co., Ltd.). Then, the TI value was calculated by dividing the viscosity at 5 rpm by the viscosity at 20 rpm. A level of 4 or more is evaluated as a practically acceptable level. (Evaluation criteria) 5: Less than 1.1 4: 1.1 or more and less than 1.2 3: 1.2 or more and less than 1.3 2: 1.3 or more and less than 1.4 1: 1.4 or more
  • Bar coater no. 2 was used to print on coated paper as a recording medium. After that, the conveyor speed is changed from 40 m/min to 160 m/min by 10 m/min increments, and the ink composition is cured with an LED lamp (“XP-9” manufactured by Air Motion System Co., Ltd., irradiation distance 10 mm, output 30%). rice field. After curing, the surface of the ink coating film was rubbed with a cotton swab, and the speed at which the ink did not rub off on the cotton swab was evaluated. It was judged according to the following criteria. A level of 4 or more is evaluated as a practically acceptable level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Provided is an active-energy-ray-curable resin composition containing: a first resin, which is obtained by reacting a hydroxyl-group-containing polyester resin, an isocyanate compound, and a hydroxyl-group-containing (meth)acrylic compound; and a polyfunctional (meth)acrylic compound, wherein the hydroxyl-group-containing polyester resin is obtained by reacting a polyhydric alcohol including a trihydric or higher alcohol and a polybasic acid under conditions such that the OH/COOH molar ratio is 1.10 or greater, and the hydroxyl value of the hydroxyl-group-containing polyester resin is 50 mg KOH/g or greater.

Description

活性エネルギー線硬化性樹脂組成物、活性エネルギー線硬化型顔料分散体、オフセットインキ用インキ組成物、及びフレキソインキ用インキ組成物Active energy ray-curable resin composition, active energy ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink
 本発明一実施形態は、硬化性に優れ、印刷インキをはじめとした各種塗料等として広範に利用可能な活性エネルギー線硬化性樹脂組成物、活性エネルギー線硬化型顔料分散体、オフセットインキ用インキ組成物、及びフレキソインキ用インキ組成物に関する。 One embodiment of the present invention provides an active energy ray-curable resin composition, an active energy ray-curable pigment dispersion, and an ink composition for offset ink, which are excellent in curability and can be widely used as various paints including printing inks. and an ink composition for flexo ink.
 近年、印刷の短納期化・環境対応の要求の高まりから従来使用されていた油性インキに替わり、速乾性で溶剤を使用しない活性エネルギー線硬化型インキの使用が拡大している。活性エネルギー線硬化性インキは(メタ)アクリルエステル化合物のような活性エネルギー線硬化性を有する不飽和化合物を構成成分として含有しており、活性エネルギー線照射とともに瞬時に硬化し、上記不飽和化合物の3次元架橋による強靭な皮膜を形成する。瞬時に硬化することから、印刷直後に後加工を行うことが出来るため、生産性向上及び意匠の保護のため強い皮膜が要求される包装用パッケージ印刷及び商業分野におけるフォーム印刷等において活性エネルギー線硬化性インキが好適に使用されている。 In recent years, the use of fast-drying, solvent-free active energy ray-curable inks has been expanding in place of conventionally used oil-based inks due to the growing demand for shorter print delivery times and environmental friendliness. The active energy ray-curable ink contains an unsaturated compound having active energy ray-curable properties such as a (meth)acrylic ester compound as a constituent component, and instantly cures when irradiated with an active energy ray, and the unsaturated compound Forms a tough film by three-dimensional cross-linking. Because it cures instantly, post-processing can be performed immediately after printing, so active energy ray curing is used in package printing for packaging and form printing in the commercial field, which require a strong film to improve productivity and protect designs. A neutral ink is preferably used.
 活性エネルギー線硬化性インキに使用される不飽和化合物としては、ポリオールと(メタ)アクリル酸の反応により得られる(メタ)アクリルエステル化合物、又はポリエステルポリオールと(メタ)アクリル酸の反応により得られるポリエステル(メタ)アクリレート、ポリイソシアネートとヒドロキシ(メタ)アクリレートの反応により得られるウレタン(メタ)アクリレート等のオリゴマーが挙げられる。例えば、特許文献1~3には、ポリエステルポリオールにイソシアネート化合物を介して(メタ)アクリル基を導入した樹脂が開示されている。ただし、これらの文献には、(メタ)アクリル基の導入量が少ない。特許文献1では、ポリエステルポリオールの合成には3価以上のアルコールは使用されていない。特許文献2では用いるアルコールに含まれるOHと一塩基酸及び多塩基酸に含まれるCOOHの比(OH/COOH)は1.10未満となっている。また、特許文献3では用いているアルコール全量に対して3価以上のアルコールの割合は13.0モル%以上の記載は無い。これでは得られるポリエステル樹脂の水酸基価が低く、水酸基を通じて樹脂中に導入される(メタ)アクリル基の量は限られてしまい硬化性を上げられない。そこで、硬化性向上のための(メタ)アクリル基を多数導入するための水酸基が多い化合物、具体的に水酸基価の高いポリエステルが求められている。 Unsaturated compounds used in active energy ray-curable inks include (meth)acrylic ester compounds obtained by the reaction of polyols and (meth)acrylic acid, or polyesters obtained by the reaction of polyester polyols and (meth)acrylic acid. Oligomers such as (meth)acrylates and urethane (meth)acrylates obtained by reaction of polyisocyanate and hydroxy (meth)acrylate can be mentioned. For example, Patent Documents 1 to 3 disclose resins obtained by introducing (meth)acrylic groups into polyester polyols via isocyanate compounds. However, in these documents, the introduction amount of (meth)acrylic groups is small. In Patent Document 1, no alcohol having a valence of 3 or higher is used in the synthesis of the polyester polyol. In Patent Document 2, the ratio (OH/COOH) of OH contained in the alcohol used and COOH contained in the monobasic acid and polybasic acid is less than 1.10. Moreover, Patent Document 3 does not mention that the ratio of trihydric or higher alcohol to the total amount of alcohol used is 13.0 mol % or more. As a result, the hydroxyl value of the resulting polyester resin is low, and the amount of (meth)acrylic groups introduced into the resin through the hydroxyl groups is limited, making it impossible to improve curability. Therefore, a compound having a large number of hydroxyl groups, specifically a polyester having a high hydroxyl value, is desired for introducing a large number of (meth)acrylic groups for improving curability.
 また、油性インキと比較して活性エネルギー線硬化型インキは、インキの流動性が乏しいために印刷時にインキ壺からインキがローラーに掻き取られなくなるトラブル(インキ壺逃げ)、及び印刷物のドットゲインが低く印刷再現性が低下する問題がある。 In addition, active energy ray-curing ink has poorer fluidity than oil-based ink, so there is a problem that the ink is not scraped off from the ink fountain by the roller during printing (ink fountain escape), and the dot gain of printed matter is reduced. There is a problem that the print reproducibility is lowered due to the low density.
 さらに、活性エネルギー線硬化型インキでは着色剤として顔料が使用され、美しい印刷物を得るためには顔料を均一に細かく分散させることが必要である。従来顔料を分散させるためには、界面活性剤、非反応性の高分子顔料分散剤、顔料誘導体等の分散剤が添加されている。この中でも高分子分散剤は顔料表面に吸着し立体障害で顔料凝集を防ぐため分散安定性に優れていることが知られている。さらに、硬化性を上げるためにエチレン性不飽和結合を有する高分子顔料分散体を用いて、顔料分散性と活性エネルギー線照射時の硬化性を両立した提案もなされている(特許文献4)。この提案では、水酸基を有するアクリルモノマーを含むモノマー混合物を共重合し、得られた共重合体の水酸基にアクリロイルオキシイソシアネートを反応させてアクリル基をペンダントした高分子分散剤を作製している。
 しかし、アクリル共重合体は発熱等の観点から溶液中で合成せねばならず、その後の変性、顔料分散も溶液中で行われる。活性エネルギー線硬化のインキ、塗料は溶剤系で供給されるものもあるが、オフセットインキ、フレキソインキ、インクジェットなどでは無溶剤系であるため、この活性エネルギー線硬化性高分子分散剤は使用が困難である。さらに、インキ以外の用途でも、近年環境問題から有機溶剤の使用が制限されており、溶液として供給される材料は全般的に使用が困難となってきている。
Furthermore, active energy ray-curable inks use pigments as colorants, and it is necessary to uniformly and finely disperse the pigments in order to obtain beautiful prints. Dispersants such as surfactants, non-reactive polymeric pigment dispersants, and pigment derivatives are conventionally added to disperse pigments. Among these, polymer dispersants are known to be excellent in dispersion stability because they adsorb to the surface of pigments and prevent pigment aggregation due to steric hindrance. Furthermore, a proposal has been made to achieve both pigment dispersibility and curability when irradiated with active energy rays by using a polymer pigment dispersion having an ethylenically unsaturated bond in order to increase curability (Patent Document 4). In this proposal, a monomer mixture containing acrylic monomers having hydroxyl groups is copolymerized, and the hydroxyl groups of the obtained copolymer are reacted with acryloyloxyisocyanate to prepare a polymeric dispersant with pendant acrylic groups.
However, acrylic copolymers must be synthesized in a solution from the viewpoint of heat generation, and the subsequent modification and pigment dispersion are also carried out in a solution. Some active energy ray-curable inks and paints are supplied as solvent systems, but offset inks, flexographic inks, inkjets, etc. are non-solvent-based, making it difficult to use active energy ray-curable polymer dispersants. is. Furthermore, in applications other than ink, the use of organic solvents has recently been restricted due to environmental concerns, and it has become generally difficult to use materials that are supplied as solutions.
特開平7-286019号公報JP-A-7-286019 特開2001-348516号公報JP-A-2001-348516 特開2020-90603号公報Japanese Patent Application Laid-Open No. 2020-90603 特開2008-31234号公報JP-A-2008-31234
 しかし、水酸基の導入量を多くするために原料となる3価以上のアルコールの割合を高めると、ポリエステル合成中に3次元架橋してゲル化してしまうため、一分子中に多数の水酸基を持つ水酸基価の高いポリエステル合成は非常に難しかった。 However, if the ratio of trihydric or higher alcohol, which is a raw material, is increased in order to increase the amount of hydroxyl groups to be introduced, three-dimensional cross-linking occurs during polyester synthesis and gelation occurs. Synthesis of high-value polyesters has been very difficult.
 本発明の実施形態は、印刷時のインキ壺逃げトラブルの解消、印刷物のドットゲインの向上、及び硬化性向上のため、水酸基価の高いポリエステルを安定して合成し、さらにイソシアネート化合物を介し水酸基及び(メタ)アクリル基を有する化合物を付加させることで、非常に多くの(メタ)アクリル基を有し極めて硬化性の高い活性エネルギー線硬化樹脂組成物の提供、それを用いた硬化性が高く、光開始剤の低減、あるいは照射エネルギーを低減することによる環境にも優しい活性エネルギー線硬化樹脂組成物の提供を目的とする。また、溶媒を使わずとも合成可能性であり、かつ顔料に対する親和性の高いエチレン性不飽和結合を有する活性エネルギー線硬化性化合物を合成し、その化合物を分散剤として用いて活性エネルギー線硬化型顔料分散体を作製し、この分散体を使って硬化性の高いインキ、塗料などを提供することを目的とする。 An embodiment of the present invention stably synthesizes a polyester with a high hydroxyl value in order to eliminate the ink fountain trouble during printing, improve the dot gain of the printed matter, and improve the curability. By adding a compound having a (meth)acrylic group, an active energy ray-curable resin composition having a very large number of (meth)acrylic groups and having extremely high curability is provided. An object of the present invention is to provide an active energy ray-curable resin composition which is friendly to the environment by reducing photoinitiator or irradiation energy. In addition, an active energy ray-curable compound having an ethylenically unsaturated bond, which can be synthesized without using a solvent and has a high affinity for pigments, was synthesized, and the compound was used as a dispersant to form an active energy ray-curable compound. An object of the present invention is to prepare a pigment dispersion and to provide highly curable inks, paints, etc. using this dispersion.
 本発明者らは、上記目的の少なくとも1つを達成すべく、水酸基を多く含むポリエステル樹脂、イソシアネート化合物、及び水酸基含有(メタ)アクリル化合物を適切な条件で反応させることにより活性エネルギー線硬化性の(メタ)アクリル基を多く含む樹脂を得ることができ、当該樹脂を含有する活性エネルギー線硬化性樹脂組成物は、硬化性の優れたインキ等を提供し得ることを見出し、本実施形態に至った。また、溶媒を使わずとも合成でき、かつ顔料に対する親和性が高い化合物としてポリエステルを選定し、ポリエステルを主骨格とするエチレン性不飽和結合を有する活性エネルギー線硬化性化合物が顔料に対する分散剤として使用できることを見出し、さらにこの顔料分散体が活性エネルギー線硬化性をもつことで、通常よりも少ないエネルギーでインキ及び塗料を硬化させられることを見出した。また、無溶剤であれば、乾燥に熱エネルギーを必要とせず、活性エネルギー線硬化時にはこれまでよりも少ないエネルギーで硬化でき、環境に非常にやさしい顔料分散体を提供しうることを見出し、本実施形態を完成するに至った。 In order to achieve at least one of the above objects, the present inventors reacted a polyester resin containing many hydroxyl groups, an isocyanate compound, and a hydroxyl group-containing (meth)acrylic compound under appropriate conditions to achieve active energy ray-curable It was found that a resin containing many (meth)acrylic groups can be obtained, and an active energy ray-curable resin composition containing the resin can provide an ink or the like with excellent curability, leading to the present embodiment. rice field. In addition, polyester was selected as a compound that can be synthesized without using a solvent and has a high affinity for pigments, and an active energy ray-curable compound with an ethylenically unsaturated bond with polyester as the main skeleton is used as a dispersant for pigments. Furthermore, the present inventors have found that the ink and paint can be cured with less energy than usual because the pigment dispersion has active energy ray curability. In addition, if it is solvent-free, it does not require heat energy for drying, and can be cured with less energy than before when curing with active energy rays. The form has been completed.
 本実施形態の一態様は、水酸基含有ポリエステル樹脂(a1)と、イソシアネート化合物(a2)と、水酸基含有(メタ)アクリル化合物(a3)とを反応させてなる第1の樹脂(A)、及び多官能(メタ)アクリル化合物(B)を含有する活性エネルギー線硬化性樹脂組成物であって、前記水酸基含有ポリエステル樹脂(a1)が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の条件で反応させてなる樹脂であり、前記水酸基含有ポリエステル樹脂(a1)の水酸基価が50mgKOH/g以上である、活性エネルギー線硬化性樹脂組成物に関する。 One aspect of the present embodiment is a first resin (A) obtained by reacting a hydroxyl-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl-containing (meth)acrylic compound (a3); An active energy ray-curable resin composition containing a functional (meth)acrylic compound (B), wherein the hydroxyl group-containing polyester resin (a1) contains a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid , which is a resin obtained by reacting under conditions where the OH/COOH molar ratio is 1.10 or more, and wherein the hydroxyl group-containing polyester resin (a1) has a hydroxyl value of 50 mgKOH/g or more. .
 本実施形態の他の一態様は、前記水酸基含有ポリエステル樹脂(a1)が、前記多価アルコール全体に対する3価以上のアルコールの量が13モル%以上の条件で反応させてなる樹脂である、前記活性エネルギー線硬化性樹脂組成物に関する。 Another aspect of the present embodiment is that the hydroxyl-containing polyester resin (a1) is a resin obtained by reacting under conditions in which the amount of trihydric or higher alcohol with respect to the entire polyhydric alcohol is 13 mol% or more. It relates to an active energy ray-curable resin composition.
 本実施形態の他の一態様は、前記水酸基含有ポリエステル樹脂(a1)の重量平均分子量が、250~10万である、前記活性エネルギー線硬化性樹脂組成物に関する。 Another aspect of the present embodiment relates to the active energy ray-curable resin composition, wherein the hydroxyl group-containing polyester resin (a1) has a weight average molecular weight of 2,500,000 to 100,000.
 本実施形態の他の一態様は、前記3価以上のアルコールがグリセリンを含む、前記活性エネルギー線硬化性樹脂組成物に関する。 Another aspect of the present embodiment relates to the active energy ray-curable resin composition, wherein the trihydric or higher alcohol contains glycerin.
 本実施形態の他の一態様は、前記第1の樹脂(A)は、前記第1の樹脂(A)中の(メタ)アクリル基と2級アミノ基を含有する化合物とをマイケル付加反応させて得られる3級アミン構造を有する樹脂を含む、前記活性エネルギー線硬化性樹脂組成物に関する。 In another aspect of the present embodiment, the first resin (A) is a compound containing a (meth)acrylic group and a secondary amino group in the first resin (A) that undergoes a Michael addition reaction. The present invention relates to the active energy ray-curable resin composition containing a resin having a tertiary amine structure obtained by
 本実施形態の他の一態様は、前記活性エネルギー線硬化性樹脂組成物を含む、オフセットインキ用インキ組成物に関する。 Another aspect of the present embodiment relates to an ink composition for offset ink containing the active energy ray-curable resin composition.
 本実施形態の他の一態様は、前記活性エネルギー線硬化性樹脂組成物を含む、フレキソインキ用インキ組成物に関する。 Another aspect of the present embodiment relates to an ink composition for flexographic ink containing the active energy ray-curable resin composition.
 本実施形態の他の一態様は、前記水酸基含有ポリエステル樹脂(a1)の重量平均分子量が、250~3000である、前記フレキソインキ用インキ組成物に関する。 Another aspect of the present embodiment relates to the ink composition for flexo ink, wherein the hydroxyl group-containing polyester resin (a1) has a weight average molecular weight of 250 to 3,000.
 本実施形態の他の一態様は、水酸基含有ポリエステル樹脂(a1)と、イソシアネート化合物(a2)と、水酸基含有(メタ)アクリル化合物(a3)とを反応させてなる第1の樹脂(A)、及び顔料(C)を含有する活性エネルギー線硬化型顔料分散体であって、前記水酸基含有ポリエステル樹脂(a1)が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の条件で反応させてなる樹脂であり、前記水酸基含有ポリエステル樹脂(a1)の水酸基価が50mgKOH/g以上であり、前記水酸基含有ポリエステル樹脂(a1)の重量平均分子量が、250~3000である、活性エネルギー線硬化型顔料分散体に関する。 Another aspect of the present embodiment is a first resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), And an active energy ray-curable pigment dispersion containing a pigment (C), wherein the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, OH / COOH It is a resin obtained by reacting under conditions where the molar ratio is 1.10 or more, the hydroxyl value of the hydroxyl group-containing polyester resin (a1) is 50 mgKOH/g or more, and the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is , 250 to 3000, it relates to an active energy ray-curable pigment dispersion.
 本実施形態の他の一態様は、前記第1の樹脂(A)は、前記第1の樹脂(A)中の(メタ)アクリル基と2級アミノ基を含有する化合物とをマイケル付加反応させて得られる3級アミン構造を有する樹脂を含む、前記活性エネルギー線硬化型顔料分散体に関する。 In another aspect of the present embodiment, the first resin (A) is a compound containing a (meth)acrylic group and a secondary amino group in the first resin (A) that undergoes a Michael addition reaction. The active energy ray-curable pigment dispersion containing a resin having a tertiary amine structure obtained by
 本実施形態の活性エネルギー線硬化性樹脂組成物は、硬化性の優れたインキ、コーティング剤等として、広範な用途に利用することができ、工業上極めて有用である。また、本実施形態の活性エネルギー線硬化性顔料分散体は、硬化性の優れた活性エネルギー線硬化オフセットあるいはフレキソインキ、コーティング剤等として、広範な用途に利用することができ、工業上極めて有用である。 The active energy ray-curable resin composition of the present embodiment can be used in a wide range of applications as inks, coating agents, etc. with excellent curability, and is extremely useful industrially. In addition, the active energy ray-curable pigment dispersion of the present embodiment can be used for a wide range of applications such as active energy ray-curable offset or flexographic inks, coating agents, etc., which have excellent curability, and is extremely useful industrially. be.
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下に記載の実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described below, and various modifications are possible without departing from the gist of the present invention.
 本実施形態における活性エネルギーとは、硬化反応の出発物質が基底状態から遷移状態に励起するのに必要なエネルギーのことを表し、本実施形態における活性エネルギー線とは、紫外線又は電子線をさす。 The activation energy in this embodiment means the energy required to excite the starting material of the curing reaction from the ground state to the transition state, and the activation energy ray in this embodiment means ultraviolet rays or electron beams.
 なお、本明細書における「(メタ)アクリル」とは、「アクリルまたはメタクリル」を意味するものとする。 "(Meth)acryl" in this specification means "acryl or methacryl".
[活性エネルギー線硬化性樹脂組成物]
 活性エネルギー線硬化性樹脂組成物は、樹脂(A)と、多官能(メタ)アクリル化合物(B)と、を含有する。
[Active energy ray-curable resin composition]
The active energy ray-curable resin composition contains a resin (A) and a polyfunctional (meth)acrylic compound (B).
<樹脂(A)>
 樹脂(A)は、水酸基含有ポリエステル樹脂(a1)と、イソシアネート化合物(a2)と、水酸基含有(メタ)アクリル化合物(a3)とを反応させてなる。
 水酸基含有ポリエステル樹脂(a1)、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)との反応は、同時に行ってもよく、イソシアネート化合物(a2)及び水酸基含有(メタ)アクリル化合物(a3)を予め反応させた後に、水酸基含有ポリエステル樹脂(a1)を反応させてもよい。水酸基含有ポリエステル樹脂(a1)及び水酸基含有(メタ)アクリル化合物(a3)の合計の水酸基と、イソシアネート化合物(a2)のイソシアネート基のモル比率は、NCO/OHは1以下であることが好ましい。反応は無触媒でも進行するが、触媒を用いることもできる。使用できる触媒としては、例えば、トリエチルアミン、ジメチルアニリンなどの3級アミン系の触媒、スズ、亜鉛などの金属系の触媒などが挙げられる。また、必要に応じて溶剤中で反応させることもできるが、後述の多官能(メタ)アクリル化合物(B)中で反応させることもでき、樹脂(A)を多官能(メタ)アクリル化合物に溶解する工程及び溶剤を除去する工程を省けるため好ましい。
<Resin (A)>
The resin (A) is obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3).
The reactions with the hydroxyl group-containing polyester resin (a1), the isocyanate compound (a2), and the hydroxyl group-containing (meth)acrylic compound (a3) may be carried out simultaneously, and the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound ( After reacting a3) in advance, the hydroxyl group-containing polyester resin (a1) may be reacted. The molar ratio of the total hydroxyl groups of the hydroxyl-containing polyester resin (a1) and the hydroxyl-containing (meth)acrylic compound (a3) to the isocyanate groups of the isocyanate compound (a2) is preferably 1 or less in terms of NCO/OH. Although the reaction proceeds without a catalyst, a catalyst can also be used. Usable catalysts include, for example, tertiary amine-based catalysts such as triethylamine and dimethylaniline, and metal-based catalysts such as tin and zinc. Further, if necessary, the reaction can be carried out in a solvent, but the reaction can also be carried out in a polyfunctional (meth)acrylic compound (B) described later, and the resin (A) is dissolved in the polyfunctional (meth)acrylic compound. It is preferable because the step of removing the solvent and the step of removing the solvent can be omitted.
 樹脂(A)は、エチレン性不飽和結合を有する官能基を2つ以上有し、かつ多塩基酸としてのジカルボン酸及び/又はジカルボン酸の無水物と水酸基含有化合物としての多価アルコールを縮合反応させて得られる水酸基含有ポリエステル樹脂(a1)に、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)とを付加反応させて得られる、つまり、水酸基と多塩基酸との反応、残存水酸基とイソシアネート基との反応、といった複数の反応を経由して複雑な構造を有する樹脂であり、一般式(構造)で表すことは不可能であるか、およそ現実的ではないため、製造方法により記載する。 The resin (A) has two or more functional groups having an ethylenically unsaturated bond, and is a condensation reaction of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid as a polybasic acid and a polyhydric alcohol as a hydroxyl group-containing compound. The hydroxyl group-containing polyester resin (a1) obtained by the addition reaction of the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3), that is, the reaction between the hydroxyl group and the polybasic acid, It is a resin that has a complex structure through multiple reactions such as the reaction of residual hydroxyl groups and isocyanate groups, and it is impossible or almost unrealistic to express it with a general formula (structure). Described by
(水酸基含有ポリエステル樹脂(a1))
 水酸基含有ポリエステル樹脂(a1)は3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の範囲で反応させた化合物である。水酸基含有化合物として、3価以上のアルコールを含む多価アルコールを用いることで、水酸基含有ポリエステル樹脂(a1)に水酸基をもたせることができるため、次工程でエチレン性不飽和二重結合を導入しやすくなる。ここでOHとは、多価アルコールの水酸基モル数であり、COOHとは理論上アルコールと反応可能なカルボキシル基のモル数である。例えば、カルボン二酸無水物1モルの場合は、当該COOHは2モルである。
(Hydroxyl group-containing polyester resin (a1))
The hydroxyl group-containing polyester resin (a1) is a compound obtained by reacting a polyhydric alcohol containing a trihydric or higher alcohol with a polybasic acid in an OH/COOH molar ratio of 1.10 or more. By using a polyhydric alcohol containing a trihydric or higher alcohol as the hydroxyl group-containing compound, the hydroxyl group-containing polyester resin (a1) can have a hydroxyl group, so that it is easy to introduce an ethylenically unsaturated double bond in the next step. Become. Here, OH is the number of moles of hydroxyl groups in the polyhydric alcohol, and COOH is the number of moles of carboxyl groups that can theoretically react with the alcohol. For example, in the case of 1 mol of carboxylic dianhydride, the COOH is 2 mol.
 3価以上のアルコールを使用し、OH/COOHモル比が1.10以上の範囲で多価アルコールと多塩基酸とを反応させることにより、水酸基含有ポリエステル樹脂(a1)中に水酸基末端を多く導入することが可能となり、次工程のイソシアネート化合物(a2)及び水酸基含有(メタ)アクリル化合物(a3)との反応で活性エネルギー線硬化性アクリル基を多く導入することが可能となる。十分な水酸基を導入するためには多価アルコール全体に対し3価以上のアルコールを13モル%以上含むことが好ましく、20モル%以上含むことがさらに好ましい。 Using a trihydric or higher alcohol and reacting a polyhydric alcohol with a polybasic acid in an OH/COOH molar ratio of 1.10 or more, introducing many hydroxyl group terminals into the hydroxyl group-containing polyester resin (a1). It becomes possible to introduce a large number of active energy ray-curable acrylic groups by the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step. In order to introduce sufficient hydroxyl groups, it is preferable to contain 13 mol% or more of trihydric or higher alcohol, more preferably 20 mol% or more, based on the total polyhydric alcohol.
 水酸基含有ポリエステル樹脂(a1)は、上記多価アルコールと多塩基酸とを常法により加熱、脱水縮合反応することにより容易に得ることができる。 The hydroxyl group-containing polyester resin (a1) can be easily obtained by subjecting the above polyhydric alcohol and polybasic acid to a conventional heating and dehydration condensation reaction.
 縮合反応は無触媒でも進行するが、硫酸、パラトルエンスルホン酸、メタンスルホン酸等の触媒を用いても良い。必要に応じてキシレン等の適当な溶媒を使用することもできる。水酸基含有ポリエステル樹脂(a1)の重量平均分子量としては、250~10万である。重量平均分子量が250未満ではポリエステルにならず、10万を越えると最終的に得られる活性エネルギー線硬化性樹脂組成物の粘度が高くなり易く好ましくない。 The condensation reaction proceeds without a catalyst, but catalysts such as sulfuric acid, paratoluenesulfonic acid, and methanesulfonic acid may be used. A suitable solvent such as xylene can also be used if desired. The weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is 2,500 to 100,000. If the weight-average molecular weight is less than 250, polyester cannot be obtained.
 重量平均分子量は、例えば、東ソー株式会社製ゲルパーミネイションクロマトグラフィ(HLC-8320)で測定することができる。検量線は標準ポリスチレンサンプルにより作成できる。測定は、例えば、溶離液にはテトラヒドロフラン、カラムにはTSKgel SuperHM-M(東ソー株式会社製)3本を用い、流速0.6ml/分、注入量10μl、カラム温度40℃で行うことができる。 The weight average molecular weight can be measured, for example, by gel permeation chromatography (HLC-8320) manufactured by Tosoh Corporation. A calibration curve can be generated with standard polystyrene samples. The measurement can be performed, for example, using tetrahydrofuran as an eluent, three columns of TSKgel Super HM-M (manufactured by Tosoh Corporation), a flow rate of 0.6 ml/min, an injection volume of 10 μl, and a column temperature of 40°C.
 水酸基含有ポリエステル樹脂(a1)の水酸基価は50mgKOH/g以上であることが好ましく、50mgKOH/g未満ではイソシアネート化合物(a2)を介した水酸基含有(メタ)アクリル化合物(a3)の反応が十分行われず硬化性向上の効果が小さくなり、好ましくない。水酸基含有ポリエステル樹脂(a1)の水酸基価は100mgKOH/g以上が好ましく、150mgKOH/g以上がより好ましく、200mgKOH/g以上がさらに好ましい。水酸基価は、対象となる樹脂試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数であり、JIS K 0070に準じ、電位差滴定法によって求めることができる。具体的な測定方法の例として、対象となる樹脂を、ジエチルエーテルとエタノールとを1:1の重量比で混合した溶媒に溶解させた後、0.1mol/Lの水酸化カリウム-エタノール溶液を用い、電位差滴定法によって滴定を行う。そして得られた滴定曲線から読み取った滴定量を用いて、水酸基価を算出することができる。 The hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 50 mgKOH/g or more, and if it is less than 50 mgKOH/g, the reaction of the hydroxyl-containing (meth)acrylic compound (a3) via the isocyanate compound (a2) is insufficient. The effect of improving the curability becomes small, which is not preferable. The hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 100 mgKOH/g or more, more preferably 150 mgKOH/g or more, and even more preferably 200 mgKOH/g or more. The hydroxyl value is the number of milligrams of potassium hydroxide required to neutralize the acetic acid bound to the hydroxyl group when 1 g of the target resin sample is acetylated. can ask. As an example of a specific measurement method, the target resin is dissolved in a solvent in which diethyl ether and ethanol are mixed at a weight ratio of 1:1, and then a 0.1 mol/L potassium hydroxide-ethanol solution is added. Titration is performed by potentiometric titration. Then, the hydroxyl value can be calculated using the titration amount read from the obtained titration curve.
 3価以上の多価アルコールとしては、特に限定されるものではなく、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、ソルビトール、ジペンタエリスリトール、イノシトール、トリペンタエリスリトール等が挙げられる。その中でも、1級水酸基を2つ有し、その他の水酸基は2級以上となるグリセリン、ジグリセリンが特に望ましい。 The trihydric or higher polyhydric alcohol is not particularly limited, and examples thereof include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, diglycerin, ditrimethylolpropane, sorbitan, sorbitol, dipentaerythritol, inositol, and tripentaerythritol. Among these, glycerin and diglycerin, which have two primary hydroxyl groups and other hydroxyl groups of which are secondary or higher, are particularly desirable.
 多価アルコールとしては、2価アルコールも使用することができる。2価アルコールとしては、特に限定されるものではなく、例えば、直鎖状アルキレン2価アルコールであるエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-ヘキサンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,2-オクタンジオール、1,9-ノナンジオール、1,2-デカンジオール、1,10-デカンジオール、1,12-ドデカンジオール、1,2-ドデカンジオール、1,14-テトラデカンジオール、1,2-テトラデカンジオール、1,16-ヘキサデカンジオール、1,2-ヘキサデカンジオール等が挙げられ、分岐状アルキレン2価アルコールである2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,4-ジメチル-2,4-ジメチルペンタンジオール、2,2-ジメチル-1,3-プロパンジオ-ル(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオ-ル、2,2,4-トリメチル-1,3-ペンタンジオール、ジメチロールオクタン、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール等が挙げられ、環状アルキレン2価アルコールである1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,2-シクロヘプタンジオール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールS 、水添カテコール、水添レゾルシン、水添ハイドロキノン等、さらにポリエチレングリコール(n=2~20)、ポリプロピレングリコール(n=2~20)、ポリテトラメチレングリコール(n=2~20)等のポリエーテルポリオール、ポリエステルポリオール等が挙げられる。 A dihydric alcohol can also be used as the polyhydric alcohol. The dihydric alcohol is not particularly limited, and examples thereof include linear alkylene dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, ,4-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-hexanediol, 1,5-hexanediol, 2,5-hexanediol, 1, 7-heptanediol, 1,8-octanediol, 1,2-octanediol, 1,9-nonanediol, 1,2-decanediol, 1,10-decanediol, 1,12-dodecanediol, 1,2 -dodecanediol, 1,14-tetradecanediol, 1,2-tetradecanediol, 1,16-hexadecanediol, 1,2-hexadecanediol, and 2-methyl-2, which is a branched alkylene dihydric alcohol, 4-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-dimethyl-2,4-dimethylpentanediol, 2,2-dimethyl -1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, dimethyloloctane, 2 -ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2 ,4-diethyl-1,5-pentanediol and the like, and cyclic alkylene dihydric alcohols 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-cyclo Heptanediol, tricyclodecanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated bisphenol S, hydrogenated catechol, hydrogenated resorcinol, hydrogenated hydroquinone, polyethylene glycol (n=2-20), polypropylene glycol (n=2 to 20), polyether polyols such as polytetramethylene glycol (n=2 to 20), and polyester polyols.
 多塩基酸としては、特に限定されるものではなく、例えば、脂肪族多塩基酸としてシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、アゼライ酸、ドデセニルコハク酸、ペンタデセニルコハク酸等のアルケニルコハク酸、芳香族多塩基酸としてオフソフタル酸、イソフタル酸、テレフタル酸、ハイミック酸、3-メチルハイミック酸、4-メチルハイミック酸、トリメリット酸、ピロメリット酸、1,8-ナフタル酸及びこれらの無水物、脂環族多塩基酸として1,2,3,6-テトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、ヘキサヒドロフタル酸、3-メチルヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸、1,4-シクロヘキサンジカルボン酸及びこれらの無水物が挙げられる。 The polybasic acid is not particularly limited, and examples thereof include aliphatic polybasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecenylsuccinic acid, penta Alkenyl succinic acids such as decenyl succinic acid, offsoftaric acid, isophthalic acid, terephthalic acid, hymic acid, 3-methylhimic acid, 4-methylhimic acid, trimellitic acid, and pyromellitic acid as aromatic polybasic acids , 1,8-naphthalic acid and their anhydrides, 1,2,3,6-tetrahydrophthalic acid as alicyclic polybasic acids, 3-methyl-1,2,3,6-tetrahydrophthalic acid, 4- methyl-1,2,3,6-tetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 1,4-cyclohexanedicarboxylic acid and their anhydrides. .
 上記多官能アルコールと多塩基酸との反応の際に1価アルコール及び一塩基酸を併用することもできる。 A monohydric alcohol and a monobasic acid can also be used in combination during the reaction between the polyfunctional alcohol and the polybasic acid.
 1価アルコールとしては、例えば、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、2-ブチルアルコール、tert-ブチルアルコール、n-ペンチルアルコール、イソペンチルアルコール、アミルアルコール、tert-ペンチルアルコール、シクロヘキシルアルコール、ベンジルアルコール、α-フェニルエチルアルコール等が挙げられる。 Examples of monohydric alcohols include n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 2-butyl alcohol, tert-butyl alcohol, n-pentyl alcohol, isopentyl alcohol, amyl alcohol and tert-pentyl alcohol. , cyclohexyl alcohol, benzyl alcohol, α-phenylethyl alcohol and the like.
 一塩基酸としては、例えば、安息香酸、メチル安息香酸、t-ブチル安息香酸、ナフトエ酸、オルトベンゾイル安息香酸、プロピオン酸、酪酸、α-メチル酪酸、吉草酸、シクロヘキサンカルボン酸が挙げられる。 Examples of monobasic acids include benzoic acid, methylbenzoic acid, t-butylbenzoic acid, naphthoic acid, orthobenzoylbenzoic acid, propionic acid, butyric acid, α-methylbutyric acid, valeric acid, and cyclohexanecarboxylic acid.
 さらに、乳酸、12-ヒドロキシステアリン酸等のオキシ酸、カプロラクロン等の環状エステルを併用することもできる。 Furthermore, lactic acid, oxyacids such as 12-hydroxystearic acid, and cyclic esters such as caprolacurone can be used in combination.
(イソシアネート化合物(a2))
 イソシアネート化合物(a2)としては、特に限定されるものではなく、例えば、トリレンジイソシアネート、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4、4’-ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、及びダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等が挙げられる。反応制御の点で2官能であることが好ましい。
(Isocyanate compound (a2))
The isocyanate compound (a2) is not particularly limited. 4′-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1 , 3-bis(isocyanatomethyl)cyclohexane, methylcyclohexane diisocyanate, m-tetramethylxylylene diisocyanate, and dimer diisocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group. It is preferably bifunctional in terms of reaction control.
(水酸基含有(メタ)アクリル化合物(a3))
 水酸基含有(メタ)アクリル化合物(a3)としては、特に限定されるものではなく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート類、グリセリン(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、ジグリセリントリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。高硬化性とするためには(メタ)アクリル基の量が多い方が望ましく、ペンタエリスリトールトリ(メタ)アクリレート、あるいはジペンタエリスリトールペンタ(メタ)アクリレートが望ましい。
(Hydroxyl group-containing (meth)acrylic compound (a3))
The hydroxyl group-containing (meth)acrylic compound (a3) is not particularly limited, and examples thereof include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylates, glycerin (meth) acrylate, glycerin di ( meth)acrylate, diglycerol di(meth)acrylate, diglycerol tri(meth)acrylate, trimethylolpropane (meth)acrylate, trimethylolpropane di(meth)acrylate, ditrimethylolpropane di(meth)acrylate, ditrimethylolpropane tri(meth)acrylate ) acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate and the like. For high curability, the amount of (meth)acrylic groups is preferably large, and pentaerythritol tri(meth)acrylate or dipentaerythritol penta(meth)acrylate is desirable.
(2級アミン)
 2級アミンは、活性エネルギー線硬化性樹脂組成物中の樹脂(A)の(メタ)アクリル基とマイケル付加反応されることにより、樹脂(A)に3級アミンを導入するために用いられる。この3級アミンは活性エネルギー線硬化過程で、(メタ)アクリル基のラジカル架橋反応時の酸素による架橋阻害を抑制することにより、特に空気との界面となる表面のラジカル架橋反応を促進する効果がある。
(Secondary amine)
A secondary amine is used to introduce a tertiary amine into the resin (A) by undergoing a Michael addition reaction with the (meth)acrylic group of the resin (A) in the active energy ray-curable resin composition. This tertiary amine has the effect of promoting the radical cross-linking reaction of the surface, which is the interface with the air, by suppressing the cross-linking inhibition caused by oxygen during the radical cross-linking reaction of the (meth)acrylic group during the active energy ray curing process. be.
 2級アミンとしては、例えば、ジプロピルアミン、ジブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ブチルメチルアミン、メチルヘキシルアミン、ジ-N-オクチルアミン、ジ(2-エチルヘキシル)アミン、エチルイソアミルアミン、メチルエチルアミン、メチルイソプロピルアミン、ブチルエチルアミン、2-(ヒドロキシメチルアミノ)エタノール、ジエタノールアミン、4-メチルアミノブタノール、ジベンジルアミン、メチルベンジルアミン、ピぺリジン、2-ピぺコリン、3-ピぺコリン、4-ピぺコリン、2、4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、N-メチル-3-ピぺリジンメタノール、4-ピぺリジンメタノール、2-ピぺリジンエタノール、4-ピぺリジンエタノール、イソニコペチン酸メチル、イソニペコチン酸エチル、4-ピペリジノール、N-メチル-4-ピペリジノール、N-ベンジル-4-ピペリジノール、N,N-ジメチル-4-ピぺリジンアミン、2,2,6,6,-テトラメチルピぺリジン、4-ピペリジノピぺリジン、ピロリジン、3-ピロリジノール、1-アセチルピペラジン、1-シクロペンチルピペラジン等が挙げられる。これらの2級アミンはアクリル基に対して5~50mol%、好ましくは15~50mol%マイケル付加する。5mol%より少ないと酸素による重合阻害を防ぐ効果が発揮されづらくなり、50mol%より多いと重合阻害を防ぐ効果よりもアクリル基が少なくなることによる硬化性低下のデメリットが起こってしまう。 Examples of secondary amines include dipropylamine, dibutylamine, diisobutylamine, di-sec-butylamine, butylmethylamine, methylhexylamine, di-N-octylamine, di(2-ethylhexyl)amine, and ethylisoamylamine. , methylethylamine, methylisopropylamine, butylethylamine, 2-(hydroxymethylamino)ethanol, diethanolamine, 4-methylaminobutanol, dibenzylamine, methylbenzylamine, piperidine, 2-pipecoline, 3-pipe Choline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, N-methyl-3-piperidinemethanol, 4-piperidinemethanol, 2-piperidineethanol , 4-piperidine ethanol, methyl isonicopetate, ethyl isonipecotate, 4-piperidinol, N-methyl-4-piperidinol, N-benzyl-4-piperidinol, N,N-dimethyl-4-piperidinamine, 2, 2,6,6-tetramethylpiperidine, 4-piperidinopiperidine, pyrrolidine, 3-pyrrolidinol, 1-acetylpiperazine, 1-cyclopentylpiperazine and the like. These secondary amines undergo Michael addition of 5 to 50 mol %, preferably 15 to 50 mol %, with respect to acrylic groups. If it is less than 5 mol %, the effect of preventing polymerization inhibition by oxygen is difficult to be exhibited, and if it is more than 50 mol %, the effect of preventing polymerization inhibition is less than the demerit of deterioration of curability due to a decrease in the number of acrylic groups.
 2級アミンのアクリル基へのマイケル付加は、合成した活性エネルギー線硬化性樹脂組成物に対して2級アミンを添加することで行われる。フラスコに仕込んだ活性エネルギー線硬化性樹脂組成物に対し撹拌しながら2級アミンを滴下し、滴下終了後徐々に加熱して80℃前後(例えば、80~100℃)で数時間保持することによりマイケル付加反応を完結させる。IRにより反応度の確認することで、原料のピークが消失していれば、すべての2級アミンがマイケル付加したと考えられる。 Michael addition of a secondary amine to an acrylic group is performed by adding a secondary amine to the synthesized active energy ray-curable resin composition. A secondary amine is added dropwise to the active energy ray-curable resin composition charged in a flask while stirring, and after the dropwise addition is completed, the mixture is gradually heated and held at around 80°C (for example, 80 to 100°C) for several hours. The Michael addition reaction is completed. By confirming the reactivity by IR, if the peak of the raw material disappears, it is considered that all the secondary amines have undergone Michael addition.
<多官能(メタ)アクリル化合物(B)>
 多官能(メタ)アクリル化合物(B)の含有量としては、組成物全体に対して、10~90重量%であり、好ましくは40~80重量%である。ラジカル重合禁止剤の含有量としては、0.01~5重量%であり、好ましくは0.1~1重量%である。
<Polyfunctional (meth)acrylic compound (B)>
The content of the polyfunctional (meth)acrylic compound (B) is 10 to 90% by weight, preferably 40 to 80% by weight, based on the total composition. The content of the radical polymerization inhibitor is 0.01 to 5% by weight, preferably 0.1 to 1% by weight.
 多官能(メタ)アクリル化合物(B)としては、特に限定されるものではなく、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート(n=2~20)、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(n=2~20)、アルカン(炭素数4~12)グリコールジ(メタ)アクリレート、アルカン(炭素数4~12)グリコールエチレンオキサイド(EO)付加物(2~20モル)ジ(メタ)アクリレート、アルカン(炭素数4~12)グリコールプロピレンオキサイド(PO)付加物(2~20モル)ジ(メタ)アクリレート、ヒドロキシピバリルヒドロキシピバレートジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド(EO)付加物(2~20モル)ジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールAエチレンオキサイド(EO)付加物(2~20モル)ジ(メタ)アクリレート等の2官能(メタ)アクリル化合物、グリセリントリ(メタ)アクリレート、グリセリンエチレンオキサイド(EO)付加物(3~30モル)トリ(メタ)アクリレート、グリセリンプロピレンオキサイド(PO)付加物(3~30モル)トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド(EO)付加物(3~30モル)トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド(PO)付加物(3~30モル)トリ(メタ)アクリレート等の3官能(メタ)アクリル化合物、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエチレンオキサイド(EO)付加物(4~40モル)テトラ(メタ)アクリレート、ペンタエリスリトールプロピレンオキサイド(PO)付加物(4~40モル)テトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールエチレンオキサイド(EO)付加物(4~40モル)テトラ(メタ)アクリレート、ペンタエリスリトールプロピレンオキサイド(PO)付加物(4~40モル)テトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンエチレンオキサイド(EO)付加物(4~40モル)テトラ(メタ)アクリレート、ジトリメチロールプロパンプロピレンオキサイド(PO)付加物(3~30モル)テトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールエチレンオキサイド(EO)付加物(6~60モル)ヘキサ(メタ)アクリレート、ジペンタエリスリトールプロピレンオキサイド(PO)付加物(6~60モル)ヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリル化合物及びそれらの混合物が挙げられる。 The polyfunctional (meth)acrylic compound (B) is not particularly limited, and examples thereof include ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate (n=2 to 20), propylene glycol di( meth)acrylate, polypropylene glycol di(meth)acrylate (n=2-20), alkane (4-12 carbon atoms) glycol di(meth)acrylate, alkane (4-12 carbon atoms) glycol ethylene oxide (EO) adduct (2-20 mol) di(meth)acrylate, alkane (C4-C12) glycol propylene oxide (PO) adduct (2-20 mol) di(meth)acrylate, hydroxypivalyl hydroxypivalate di(meth) Acrylate, tricyclodecanedimethylol di(meth)acrylate, bisphenol A ethylene oxide (EO) adduct (2-20 mol) di(meth)acrylate, hydrogenated bisphenol A di(meth)acrylate, hydrogenated bisphenol A ethylene oxide (EO) adduct (2-20 mol) bifunctional (meth) acrylic compounds such as di (meth) acrylate, glycerin tri (meth) acrylate, glycerin ethylene oxide (EO) adduct (3-30 mol) tri (meth) ) acrylate, glycerin propylene oxide (PO) adduct (3-30 mol) tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide (EO) adduct (3-30 mol) tri( Trifunctional (meth)acrylic compounds such as meth)acrylate, trimethylolpropane propylene oxide (PO) adduct (3 to 30 mol) tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol ethylene oxide (EO) Adduct (4-40 mol) tetra (meth) acrylate, pentaerythritol propylene oxide (PO) adduct (4-40 mol) tetra (meth) acrylate, diglycerin tetra (meth) acrylate, pentaerythritol ethylene oxide (EO) Adduct (4-40 mol) tetra (meth) acrylate, pentaerythritol propylene oxide (PO) adduct (4-40 mol) tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ditrimethylolpropane ethylene oxide ( EO) Adduct (4-40 mol) tetra(meth)acrylate, ditrimethylolpropane propylene oxide (PO) adduct (3-30 mol) tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol ethylene oxide (EO) adduct (6 to 60 mol) hexa(meth)acrylate, dipentaerythritol propylene oxide (PO) adduct (6 to 60 mol) tetrafunctional or higher (meth)acrylic compounds such as hexa(meth)acrylate and Mixtures thereof are included.
 以下に、本実施形態の活性エネルギー線硬化性樹脂組成物の具体的な構成について説明する。 The specific configuration of the active energy ray-curable resin composition of this embodiment will be described below.
(第1の構成)
 第1の構成の活性エネルギー線硬化性樹脂組成物中の樹脂(A)は、多塩基酸と多価アルコールを縮合反応させて得られる水酸基含有ポリエステル樹脂(a1)に、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)とを付加反応させて得られ、水酸基含有ポリエステル樹脂(a1)は3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.50以上の範囲で反応させた化合物である。
(First configuration)
The resin (A) in the active energy ray-curable resin composition of the first configuration comprises a hydroxyl group-containing polyester resin (a1) obtained by condensation reaction of a polybasic acid and a polyhydric alcohol, an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3) obtained by addition reaction, the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, the OH / COOH molar ratio is a compound reacted in the range of 1.50 or more.
 3価以上のアルコールを使用し、OH/COOHモル比が1.50以上の範囲で多価アルコールと多塩基酸とを反応させることにより、水酸基含有ポリエステル樹脂(a1)中に水酸基末端を多く導入することが可能となり、次工程のイソシアネート化合物(a2)及び水酸基含有(メタ)アクリル化合物(a3)との反応で多くの活性エネルギー線硬化性(メタ)アクリル基を多く導入することが可能となる。多価アルコールと多塩基酸とはOH/COOHモル比が1.50以上の範囲で反応させるが、1.50~4.0の範囲が好ましく、1.50~3.0の範囲がより好ましく、1.60~3.0の範囲がさらに好ましく、また、1.50~2.25、1.50~2.0、または1.60~2.0であってもよい。1.50未満では水酸基末端が少なくなり好ましくない。 Using a trihydric or higher alcohol and reacting a polyhydric alcohol with a polybasic acid in the range of an OH/COOH molar ratio of 1.50 or more to introduce a large number of hydroxyl group terminals into the hydroxyl group-containing polyester resin (a1). It becomes possible to do so, and many active energy ray-curable (meth)acrylic groups can be introduced by the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step. . Polyhydric alcohol and polybasic acid are reacted at an OH/COOH molar ratio of 1.50 or more, preferably 1.50 to 4.0, more preferably 1.50 to 3.0. , 1.60 to 3.0 is more preferable, and may be 1.50 to 2.25, 1.50 to 2.0, or 1.60 to 2.0. If it is less than 1.50, the number of terminal hydroxyl groups will decrease, which is not preferable.
 十分な水酸基を導入するためには多価アルコール全体に対し3価以上のアルコールを50モル%以上含むことが好ましく、60モル%~100モル%含むことがさらに好ましい。50モル%より少ないと水酸基の導入量が少なく、結果として水酸基含有ポリエステル樹脂の(メタ)アクリル基の密度が低くなるため硬化性が上がらなくなってしまう。 In order to introduce sufficient hydroxyl groups, it is preferable to contain 50 mol% or more of trihydric or higher alcohol, more preferably 60 mol% to 100 mol%, based on the total polyhydric alcohol. If it is less than 50 mol %, the amount of introduced hydroxyl groups is small, and as a result, the density of (meth)acrylic groups in the hydroxyl group-containing polyester resin becomes low, so that curability cannot be improved.
 第1の構成における水酸基含有ポリエステル樹脂(a1)の重量平均分子量としては、250~3000、好ましくは250~2000であり、また、280~3000、または400~2000であってもよい。重量平均分子量が250未満ではポリエステルにならず、3000を越える高硬化性活性エネルギー線硬化樹脂組成物としたときの粘度が高すぎて、フレキソインキ用インキ組成物及びコーティング剤として添加できる量が少なくなり、高硬化性の効果が薄れてしまい好ましくない。また、水酸基含有ポリエステル樹脂(a1)の水酸基価は200mgKOH/g以上であることが好ましく、290mgKOH/g以上であることがより好ましく、200mgKOH/g未満ではイソシアネート化合物(a2)を介した水酸基含有(メタ)アクリル化合物(a3)の反応が十分行われず硬化性向上の効果が小さくなり、好ましくない。 The weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the first configuration is 250-3000, preferably 250-2000, and may be 280-3000 or 400-2000. If the weight average molecular weight is less than 250, it does not become a polyester, and when it is made into a highly curable active energy ray-curable resin composition exceeding 3000, the viscosity is too high, and the amount that can be added as an ink composition for flexographic ink and a coating agent is small. , and the effect of high curability is reduced, which is not preferable. Further, the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 200 mgKOH/g or more, more preferably 290 mgKOH/g or more. The reaction of the meth)acrylic compound (a3) is not sufficiently carried out, and the effect of improving the curability becomes small, which is not preferable.
(第2の構成)
 第2の構成の活性エネルギー線硬化性樹脂組成物中の樹脂(A)は、多塩基酸と多価アルコールを縮合反応させて得られる水酸基含有ポリエステル樹脂(a1)に、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)とを付加反応させて得られ、水酸基含有ポリエステル樹脂(a1)は3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10~2.20の範囲で反応させた化合物である。
(Second configuration)
The resin (A) in the active energy ray-curable resin composition of the second configuration comprises a hydroxyl group-containing polyester resin (a1) obtained by condensation reaction of a polybasic acid and a polyhydric alcohol, an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3) obtained by addition reaction, the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, the OH / COOH molar ratio is a compound reacted in the range of 1.10 to 2.20.
 3価以上のアルコールを使用し、OH/COOHモル比が1.10~2.20の範囲で多価アルコールと多塩基酸とを反応させることにより、水酸基含有ポリエステル樹脂(a1)中に水酸基末端を多く導入することが可能となり、次工程のイソシアネート化合物(a2)及び水酸基含有(メタ)アクリル化合物(a3)との反応で多くの活性エネルギー線硬化性アクリル基を多く導入することが可能となる。多価アルコールと多塩基酸とはOH/COOHモル比が1.10~2.20の範囲で反応させるが、1.10~2.02の範囲が好ましく、1.10~1.94の範囲がより好ましく、1.10~1.50の範囲がさらに好ましく、1.14~1.41の範囲が特に好ましい。1.10未満では水酸基末端が少なくなり、2.20を超えると分子量が伸び難く好ましくない。 Using a trihydric or higher alcohol, by reacting a polyhydric alcohol and a polybasic acid at an OH/COOH molar ratio in the range of 1.10 to 2.20, a hydroxyl group terminal is formed in the hydroxyl group-containing polyester resin (a1). can be introduced in a large amount, and a large number of active energy ray-curable acrylic groups can be introduced in the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step. . Polyhydric alcohol and polybasic acid are reacted at an OH/COOH molar ratio of 1.10 to 2.20, preferably 1.10 to 2.02, more preferably 1.10 to 1.94. is more preferable, the range of 1.10 to 1.50 is more preferable, and the range of 1.14 to 1.41 is particularly preferable. If it is less than 1.10, the number of terminal hydroxyl groups will decrease, and if it exceeds 2.20, it will be difficult to increase the molecular weight, which is not preferable.
 十分な水酸基を導入するためには多価アルコール全体に対し3価以上のアルコールを13モル%以上含むことが好ましく、20モル%以上50モル%以下含むことがさらに好ましい。50モル%を超えると水酸基含有ポリエステル樹脂(a1)合成時にゲル化し易くなる。ただし、安息香酸などの一塩基酸を併用すれば多価アルコール全体に対し3価以上のアルコールを50モル%以上用いることができる。 In order to introduce sufficient hydroxyl groups, it is preferable to contain 13 mol% or more of trihydric or higher alcohol, more preferably 20 mol% or more and 50 mol% or less, based on the total polyhydric alcohol. If it exceeds 50 mol %, gelation tends to occur during the synthesis of the hydroxyl group-containing polyester resin (a1). However, if a monobasic acid such as benzoic acid is used in combination, 50 mol % or more of trihydric or higher alcohol can be used with respect to the total polyhydric alcohol.
 第2の構成における水酸基含有ポリエステル樹脂(a1)の重量平均分子量としては、250~10万、好ましくは3000~10万、より好ましくは5000~2万である。重量平均分子量が3000以上であると、硬化性向上の効果が十分に発揮されより好ましい。また、重量平均分子量が10万以下であると最終的に得られる活性エネルギー線硬化性樹脂組成物(オフセットインキ用インキ組成物)に適した粘度を確保できるため好ましい。また、水酸基含有ポリエステル樹脂(a1)の水酸基価は50mgKOH/g以上であることが好ましく、79mgKOH/g以上であることがより好ましく、96mgKOH/g以上であることが更に好ましく、50mgKOH/g未満ではイソシアネート化合物(a2)を介した水酸基含有(メタ)アクリル化合物(a3)の反応が十分行われず硬化性向上の効果が小さくなり、好ましくない。 The weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the second configuration is 2,500 to 100,000, preferably 3,000 to 100,000, more preferably 5,000 to 20,000. When the weight average molecular weight is 3000 or more, the effect of improving the curability is sufficiently exhibited, which is more preferable. A weight-average molecular weight of 100,000 or less is preferable because a viscosity suitable for the finally obtained active energy ray-curable resin composition (ink composition for offset ink) can be secured. In addition, the hydroxyl value of the hydroxyl-containing polyester resin (a1) is preferably 50 mgKOH/g or more, more preferably 79 mgKOH/g or more, and still more preferably 96 mgKOH/g or more. The reaction of the hydroxyl group-containing (meth)acrylic compound (a3) through the isocyanate compound (a2) is not sufficiently carried out, and the effect of improving the curability becomes small, which is not preferable.
 活性エネルギー線硬化性樹脂組成物は、要求される硬化被膜物性に応じて、多官能(メタ)アクリル化合物(B)以外に、ラジカル重合禁止剤などの添加剤を適宜添加することが可能であり、例えば、単官能(メタ)アクリル化合物、ビニル化合物、又は活性エネルギー線硬化性オリゴマーを使用することができる。
 単官能(メタ)アクリル化合物としては、例えば、2-エチルヘキシル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート、アクリロイルモルホリン等が挙げられる。
 ビニル化合物としては、例えば、N-ビニルピロリドン、ジビニルベンゼン等が挙げられる。
 活性エネルギー線硬化性オリゴマーとしては、例えば、ポリエステルアクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
In addition to the polyfunctional (meth)acrylic compound (B), additives such as radical polymerization inhibitors can be appropriately added to the active energy ray-curable resin composition depending on the required physical properties of the cured film. For example, monofunctional (meth)acrylic compounds, vinyl compounds, or active energy ray-curable oligomers can be used.
Examples of monofunctional (meth)acrylic compounds include 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, phenoxyethyl (meth)acrylate, 2-(2-vinyloxy ethoxy)ethyl (meth)acrylate, acryloylmorpholine and the like.
Examples of vinyl compounds include N-vinylpyrrolidone and divinylbenzene.
Examples of active energy ray-curable oligomers include polyester acrylate, polyurethane (meth)acrylate, and epoxy (meth)acrylate.
 ラジカル重合禁止剤としては、例えば、(アルキル)フェノール、ハイドロキノン、カテコール、レゾルシン、p-メトキシフェノール、t-ブチルカテコール、t-ブチルハイドロキノン、ピロガロール、1,1-ピクリルヒドラジル、フェノチアジン、p-ベンゾキノン、ニトロソベンゼン、2,5-ジ-tert-ブチル-p-ベンゾキノン、ジチオベンゾイルジスルフィド、ピクリン酸、クペロン、アルミニウムN-ニトロソフェニルヒドロキシルアミン、トリ-p-ニトロフェニルメチル、N-(3-オキシアニリノ-1,3-ジメチルブチリデン)アニリンオキシド、ジブチルクレゾール、シクロヘキサノンオキシムクレゾール、グアヤコール、o-イソプロピルフェノール、ブチラルドキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等の重合禁止剤が挙げられる。 Examples of radical polymerization inhibitors include (alkyl)phenol, hydroquinone, catechol, resorcinol, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p- Benzoquinone, nitrosobenzene, 2,5-di-tert-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cupferron, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N-(3-oxyanilino -1,3-dimethylbutylidene)aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraldoxime, methylethylketoxime, cyclohexanone oxime, and other polymerization inhibitors.
[インキ組成物]
 次に、活性エネルギー線硬化性樹脂組成物の一形態であるインキ組成物の使用形態について説明する。以下、インキ組成物は、活性エネルギー線硬化性インキ又は活性エネルギー線硬化型インキともいう。
 活性エネルギー線硬化性インキは、インキ全体に対して、顔料0~30重量%、バインダー樹脂5~40重量%、ラジカル重合性二重結合を有する化合物、モノマー30~95重量%、ラジカル重合禁止剤0.01~1重量%、光重合開始剤及び/又は増感剤0~20重量%、その他添加剤0~10重量%からなる組成にて調整される。
 ここで、本実施形態で開示された活性エネルギー線硬化性樹脂組成物中の樹脂(A)は、バインダー樹脂に相当する。
[Ink composition]
Next, the mode of use of the ink composition, which is one form of the active energy ray-curable resin composition, will be described. Hereinafter, the ink composition is also referred to as active energy ray-curable ink or active energy ray-curable ink.
The active energy ray-curable ink contains 0 to 30% by weight of pigment, 5 to 40% by weight of binder resin, 30 to 95% by weight of monomer, and 30 to 95% by weight of radical polymerization inhibitor. The composition is adjusted to 0.01 to 1% by weight, 0 to 20% by weight of a photopolymerization initiator and/or sensitizer, and 0 to 10% by weight of other additives.
Here, the resin (A) in the active energy ray-curable resin composition disclosed in this embodiment corresponds to a binder resin.
 活性エネルギー線硬化樹脂組成物中の樹脂(A)の含有量は、インキ全体に対して、5~40重量%が好ましく、10~30重量%が更に好ましい。5重量%以上であれば、本実施形態の効果を十分に発揮でき、40重量%以下であるとインキの粘度が印刷に適した範囲となり、好ましい。 The content of the resin (A) in the active energy ray-curable resin composition is preferably 5-40% by weight, more preferably 10-30% by weight, relative to the total ink. If it is 5% by weight or more, the effect of the present embodiment can be sufficiently exhibited, and if it is 40% by weight or less, the viscosity of the ink will be in a range suitable for printing, which is preferable.
 活性エネルギー線硬化性インキには、さらに必要に応じて樹脂(A)以外のバインダー樹脂を用いることができる。 A binder resin other than the resin (A) can be used for the active energy ray-curable ink, if necessary.
<バインダー樹脂>
 樹脂(A)以外のバインダー樹脂としては、例えば、ジアリルオルソフタレート樹脂、ジアリルイソフタレート樹脂、ジアリルテレフタレート樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリ(メタ)(メタ)アクリル酸エステル、エポキシ樹脂、ポリウレタン樹脂、石油(系)樹脂、セルロース誘導体(例えば、エチルセルロース、酢酸セルロース、ニトロセルロース)、塩化ビニル酢酸ビニル共重合体、ポリアマイド樹脂、ポリビニルアセタール樹脂、ポリアマイド樹脂、ポリビニルアセタール樹脂、ブタジエン-(メタ)アクリルニトリル共重合体のような合成ゴム等が挙げられる。これらの樹脂は、その中の1種又は2種以上を用いることができる。
<Binder resin>
Examples of binder resins other than resin (A) include diallyl orthophthalate resin, diallyl isophthalate resin, diallyl terephthalate resin, polyester resin, polyvinyl chloride, poly(meth)(meth)acrylate, epoxy resin, and polyurethane resin. , petroleum (based) resins, cellulose derivatives (e.g., ethyl cellulose, cellulose acetate, nitrocellulose), vinyl chloride vinyl acetate copolymers, polyamide resins, polyvinyl acetal resins, polyamide resins, polyvinyl acetal resins, butadiene-(meth)acrylonitrile Synthetic rubbers such as copolymers can be used. One or more of these resins can be used.
 活性エネルギー線硬化性インキにおいて、着色剤である顔料を含有させず、透明な構成にすれば、OPニスになり、下記に示す顔料を含有させた場合にはカラー印刷用インキとなる。 If the active energy ray-curable ink does not contain a pigment as a coloring agent and has a transparent structure, it becomes an OP varnish, and if it contains the pigments shown below, it becomes a color printing ink.
<顔料(C)>
 顔料(C)としては、無機顔料及び有機顔料を示すことができる。無機顔料としては、例えば、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、弁柄、アルミナホワイト、炭酸カルシウム、群青、カーボンブラック、グラファイト、アルミニウム粉、ベンガラなどが使用可能であり、有機顔料としては、例えば、β-ナフトール系、β-オキシナフトエ酸系、β-オキシナフトエ酸系アニリド系、アセト酢酸アニリド系、ピラゾロン系などの溶性アゾ顔料、β-ナフトール系、β-オキシナフトエ酸系アニリド系、アセト酢酸アニリド系モノアゾ、アセト酢酸アニリド系ジスアゾ、ピラゾロン系などの不溶性アゾ顔料、銅フタロシアニンブルー、ハロゲン化(塩素又は臭素化)銅フタロシアニンブルー、スルホン化銅フタロシアニンブルー、金属フリーフタロシアニンなどのフタロシアニン系顔料、キナクリドン系、ジオキサジン系、スレン系(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ系、アントラキノン系、ペリノン系、ペリレン系など)、イソインドリノン系、金属錯体系、キノフタロン系などの多環式顔料及び複素環式顔料などの公知公用の各種顔料が使用可能である。
<Pigment (C)>
Pigments (C) include inorganic pigments and organic pigments. Examples of inorganic pigments include yellow lead, zinc yellow, Prussian blue, barium sulfate, cadmium red, titanium oxide, zinc oxide, red iron oxide, alumina white, calcium carbonate, ultramarine blue, carbon black, graphite, aluminum powder, and red iron oxide. Examples of organic pigments include soluble azo pigments such as β-naphthol, β-oxynaphthoic acid, β-oxynaphthoic anilide, acetoacetic anilide, pyrazolone, β-naphthol, Insoluble azo pigments such as β-oxynaphthoic anilides, acetoacetate anilide monoazo, acetoacetate anilide disazo, pyrazolone, copper phthalocyanine blue, halogenated (chlorinated or brominated) copper phthalocyanine blue, sulfonated copper phthalocyanine blue , phthalocyanine pigments such as metal-free phthalocyanines, quinacridones, dioxazines, threnes (pyranthrone, anthanthrone, indanthrone, anthrapyrimidine, flavanthrone, thioindigo, anthraquinone, perinone, perylene, etc.), isoindolinone Various known and widely used pigments such as polycyclic pigments and heterocyclic pigments such as polycyclic pigments and heterocyclic pigments can be used.
 活性エネルギー線硬化性樹脂組成物は、例えば、活性エネルギー線である光で硬化する。光硬化方法には、一般的にメタルハライドランプあるいは高圧水銀ランプ、LEDのような紫外線を発光する光源が用いられている。また、電子線を光源として使用でき、その際は一般的に光重合開始剤を使用せずに硬化可能である。 An active energy ray-curable resin composition, for example, is cured by light, which is an active energy ray. The photo-curing method generally uses a light source that emits ultraviolet rays, such as a metal halide lamp, a high-pressure mercury lamp, or an LED. Also, an electron beam can be used as a light source, and in that case curing is generally possible without using a photopolymerization initiator.
(光重合開始剤)
 活性エネルギー線として紫外線を使用する際は、光重合開始剤として、光ラジカル重合開始剤を光硬化性組成物に配合する。光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型のものが好適である。具体例としては、例えば、ベンゾインイソブチルエーテル、2、4-ジエチルチオキサントン、2-イソプロピルチオキサントン、ベンジル、2,4、6-トリメチルベンゾイルジフェニルフォスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2、4、6-ジメトキシベンゾイル)-2、4、4-トリメチルペンチルフォスフィンオキシド、1,2-オクタンジオン、1-(4-(フェニルチオ)-2,2-(O-ベンゾイルオキシム))、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン等が好適に用いられ、さらにこれら以外の分子開裂型のものとして、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等を併用してもよいし、さらに水素引き抜き型光重合開始剤である、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等も併用できる。
(Photoinitiator)
When using ultraviolet rays as active energy rays, a photoradical polymerization initiator is blended into the photocurable composition as a photopolymerization initiator. As the radical photopolymerization initiator, a molecular cleavage type or a hydrogen abstraction type is suitable. Specific examples include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, benzyl, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butan-1-one, bis(2,4,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 1,2-octanedione, 1-(4-( Phenylthio)-2,2-(O-benzoyloxime)), oligo(2-hydroxy-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone, and the like are preferably used. Examples of molecularly cleaved types include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)- 2-Hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination, and hydrogen abstraction type photopolymerization Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenylsulfide, etc., which are initiators, can also be used in combination.
 また、光開裂型の開始剤としては、例えば、α-(ジメチル)アミノアルキルフェノン化合物及びα-モルフォリノアルキルフェノン化合物が挙げられる。 In addition, photocleavable initiators include, for example, α-(dimethyl)aminoalkylphenone compounds and α-morpholinoalkylphenone compounds.
 より具体的には、α-(ジメチル)アミノアルキルフェノン化合物として、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1又は2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等が挙げられ、α-モルフォリノアルキルフェノン化合物として、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。これらは単独で使用しても、2種類以上を併用してもよい。 More specifically, α-(dimethyl)aminoalkylphenone compounds such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 or 2-dimethylamino-2-( 4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one and the like, and α-morpholinoalkylphenone compounds include 2-methyl-1-[4- (methylthio)phenyl]-2-morpholinopropan-1-one and the like. These may be used alone or in combination of two or more.
 さらに、水素引き抜き型の開始剤としては、例えば、ジアルキルベンゾフェノン化合物及びチオキサントン化合物が挙げられる。 Furthermore, examples of hydrogen abstraction type initiators include dialkylbenzophenone compounds and thioxanthone compounds.
 より具体的には、ジアルキルアミノベンゾフェノン化合物として、例えば、4,4’-ビス-(ジメチルアミノ)ベンゾフェノン、4,4’-ビス-(ジエチルアミノ)ベンゾフェノン等の4,4’-ジアルキルアミノベンゾフェノン類、4-ベンゾイル-4’-メチルジフェニルスルフィド等が挙げられジアルキルアミノベンゾフェノン化合物は、単独で用いられてもよいし、2種類以上が併用されてもよい。チオキサントン化合物としては、例えば、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-イソプロピルチオキサントン、4-ジイソプロピルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2-クロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9Hチオキサントン-2-イロキシ-N,N,N-トリメチル-1-プロパンアミン塩酸塩などが挙げられる。これらは単独で使用しても、2種類以上を併用してもよい。 More specifically, dialkylaminobenzophenone compounds such as 4,4'-dialkylaminobenzophenones such as 4,4'-bis-(dimethylamino)benzophenone and 4,4'-bis-(diethylamino)benzophenone, Dialkylaminobenzophenone compounds such as 4-benzoyl-4'-methyldiphenyl sulfide may be used alone or in combination of two or more. Thioxanthone compounds include, for example, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2-isopropylthioxanthone, 4-diisopropylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2, 4-dichlorothioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-hydroxy-3-(3,4-dimethyl-9-oxo-9H thioxanthone-2-yloxy-N,N,N-trimethyl -1-propanamine hydrochloride, etc. These may be used alone or in combination of two or more.
 また、上記光重合開始剤に対し、増感剤としては、例えば、ベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、2,3,4-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3‘-ジメチル-4-メトキシベンゾフェノン、4-(1,3-アクリロイル-1,4,7,10,13-ペンタオキソトリデシル)ベンゾフェノン、メチル-o-ベンゾイルベンゾエート、〔4-(メチルフェニルチオ)フェニル〕フェニルメタノン、(4-ベンゾイルベンジル)塩化トリメチルアンモニウム、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシーシクロヘキシルーフェニルケトン、2-ヒドロキシ-2-メチル-1-スチリルプロパン-1-オン重合物、ジエトキシアセトフェノン、ジブトキシアセトフェノン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインノルマルブチルエーテルなどが挙げられる。これらは単独で使用しても、2種類以上を併用してもよい。 Examples of sensitizers for the above photopolymerization initiators include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 2,3,4-trimethylbenzophenone, 4-phenylbenzophenone, 3 ,3′-dimethyl-4-methoxybenzophenone, 4-(1,3-acryloyl-1,4,7,10,13-pentoxotridecyl)benzophenone, methyl-o-benzoylbenzoate, [4-(methylphenyl Thio)phenyl]phenylmethanone, (4-benzoylbenzyl)trimethylammonium chloride, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)2-hydroxy-2-methyl -1-phenylpropan-1-one, 1-hydroxy-cyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-styrylpropan-1-one polymer, diethoxyacetophenone, dibutoxyacetophenone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin normal butyl ether and the like. These may be used alone or in combination of two or more.
 光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、又はビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドを用いることが特に好ましい。
 光ラジカル重合開始剤と増感剤は光重合性組成物の全固形分に対して1~15重量%の範囲で用いることが好ましい。
As the photopolymerization initiator, it is particularly preferable to use, for example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide or bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
The radical photopolymerization initiator and the sensitizer are preferably used in an amount of 1 to 15% by weight based on the total solid content of the photopolymerizable composition.
 さらに、活性エネルギー線硬化性インキには、必要に応じてその他の添加剤を使用することが可能である。 Furthermore, it is possible to use other additives in the active energy ray-curable ink as necessary.
 例えば、インキの保存安定性を付与する添加剤として、上記ラジカル重合禁止剤を例示することができる。また、耐摩擦性、ブロッキング防止性、スベリ性、スリキズ防止性を付与する添加剤としては、例えば、カルナバワックス、木ろう、ラノリン、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックスなどの天然ワックス、フィッシャートロプスワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリテトラフルオロエチレンワックス、ポリアミドワックス、及びシリコーン化合物などの合成ワックス等を例示することができる。 For example, the above radical polymerization inhibitor can be exemplified as an additive that imparts storage stability to the ink. Additives that impart abrasion resistance, antiblocking properties, smoothness, and scratch resistance include, for example, natural waxes such as carnauba wax, Japan wax, lanolin, montan wax, paraffin wax, microcrystalline wax, fishart Rops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and synthetic waxes such as silicone compounds can be exemplified.
 その他、要求性能に応じて、紫外線吸収剤、赤外線吸収剤、抗菌剤等の添加剤を添加することができる。 In addition, additives such as ultraviolet absorbers, infrared absorbers, and antibacterial agents can be added according to the required performance.
 活性エネルギー線硬化性インキの製造方法は、従来の活性エネルギー線硬化性インキと同様の方法によって行えばよく、例えば、常温から100℃の間で、上記顔料、上記組成物、ラジカル重合性二重結合を有するモノマー、重合禁止剤、光重合開始剤及び増感剤、その他添加剤などインキ組成物成分を、ニーダー、三本ロール、アトライター、サンドミル、ゲートミキサーなどの練肉、混合、調整機を用いて製造される。 The method for producing the active energy ray-curable ink may be performed by a method similar to that for conventional active energy ray-curable inks. Kneading, mixing and adjusting machines such as kneaders, triple rolls, attritors, sand mills, gate mixers, etc. Manufactured using
 印刷方法としては、平版印刷(湿し水を使用する通常の平版印刷及び湿し水を使用しない水無し平版印刷)、凸版印刷、凹版印刷、孔版印刷、フレキソ印刷などが挙げられ、好ましくはフレキソ印刷である。 Examples of the printing method include lithographic printing (ordinary lithographic printing using dampening water and waterless lithographic printing not using dampening water), letterpress printing, intaglio printing, stencil printing, flexographic printing, etc., preferably flexographic printing. Print.
 印刷物の基材としては、特に制限はなく、紙、プラスチック、シール、ラベル、金属などあらゆる材料への印刷が挙げられ、好ましくは紙への印刷である。 The base material of the printed material is not particularly limited, and includes printing on all materials such as paper, plastic, stickers, labels, and metals, preferably printing on paper.
[活性エネルギー線硬化型顔料分散体]
 活性エネルギー線硬化型顔料分散体は、上記樹脂(A)と、上記顔料(C)と、を含有する。活性エネルギー線硬化型顔料分散体は、樹脂(A)と顔料(C)を用いて分散機にて処理することにより得られる。活性エネルギー線硬化顔料分散体における活性エネルギー線硬化顔料分散剤である樹脂(A)と顔料(C)の混合割合は、顔料(C)に対して樹脂(A)を5~100重量%、好ましくは10~50重量%である。5重量%以下では分散不良となる可能性があり、100重量%以上では分散剤過多でインキ処方の調整幅が失われる恐れがある。
 分散方法としては、樹脂(A)と顔料(C)、場合によっては希釈モノマーや他の樹脂等を加えて、機器によっては分散メディアを適量加えたのちニーダー、3ロール、ボールミル、サンドミル、スキャンデックス等の分散機器を使用して活性エネルギー線硬化顔料分散体を作製する。
 顔料分散体を作製する際には、分散中に熱などによりラジカルが発生してゲル化する恐れがあるため上記ラジカル重合禁止剤を適量加えることもできる。また、活性エネルギー線硬化顔料分散剤である樹脂だけでは顔料分散性が不足する場合は、市販の顔料分散剤などを併用してもよい。
[Active energy ray-curable pigment dispersion]
The active energy ray-curable pigment dispersion contains the resin (A) and the pigment (C). The active energy ray-curable pigment dispersion is obtained by treating the resin (A) and the pigment (C) with a disperser. The mixing ratio of the resin (A) and the pigment (C), which are active energy ray-curable pigment dispersants in the active energy ray-curable pigment dispersion, is preferably 5 to 100% by weight of the resin (A) with respect to the pigment (C). is 10 to 50% by weight. If it is less than 5% by weight, poor dispersion may occur, and if it is more than 100% by weight, the amount of dispersant may be excessive and the adjustment range of the ink formulation may be lost.
As a dispersion method, the resin (A) and the pigment (C), optionally a diluent monomer or other resin, etc. are added, and depending on the equipment, an appropriate amount of dispersing media is added, followed by a kneader, three rolls, a ball mill, a sand mill, or a scandex. An active energy ray-curable pigment dispersion is prepared using a dispersing device such as
When the pigment dispersion is prepared, a suitable amount of the above-mentioned radical polymerization inhibitor may be added since radicals may be generated due to heat or the like during dispersion and gelation may occur. In addition, when the pigment dispersibility is insufficient only with the resin as the active energy ray-curable pigment dispersant, a commercially available pigment dispersant or the like may be used together.
 市販の顔料分散剤として、例えば、DISPERBYK-194N、DISPERBYK-2008、DISPERBYK-2013,DISPERBYK-2014、DISPERBYK-2158、SOLSPERS32000、SOLSPERS75000、SOLSPERS88000、SOLSPERS39000、SOLSPERS36000等が挙げられる。 Examples of commercially available pigment dispersants include DISPERBYK-194N, DISPERBYK-2008, DISPERBYK-2013, DISPERBYK-2014, DISPERBYK-2158, SOLSPERS32000, SOLSPERS75000, SOLSPERS88000, SOLSPERS39000, and SOLSPERS36000.
 活性エネルギー線硬化型顔料分散体における樹脂(A)は、多塩基酸としてのジカルボン酸及び/又はジカルボン酸の無水物と、水酸基含有化合物を縮合反応させて得られるポリエステル構造を有する反応生成物である水酸基含有ポリエステル樹脂(a1)に、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)とを付加反応させて得られ、水酸基含有ポリエステル樹脂(a1)は3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の範囲で反応させた化合物である。 The resin (A) in the active energy ray-curable pigment dispersion is a reaction product having a polyester structure obtained by the condensation reaction of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid as a polybasic acid and a hydroxyl group-containing compound. Obtained by subjecting a hydroxyl group-containing polyester resin (a1) to an addition reaction with an isocyanate compound (a2) and a hydroxyl group-containing (meth)acrylic compound (a3), and the hydroxyl group-containing polyester resin (a1) is a trihydric or higher alcohol. It is a compound obtained by reacting a contained polyhydric alcohol and a polybasic acid in an OH/COOH molar ratio of 1.10 or more.
 3価以上のアルコールを使用し、OH/COOHモル比が1.10以上、好ましくは1.50以上の範囲で多価アルコールと多塩基酸とを反応させることにより、水酸基含有ポリエステル樹脂(a1)中に水酸基末端を多く導入することが可能となり、次工程のイソシアネート化合物(a2)及び水酸基含有(メタ)アクリル化合物(a3)との反応で多くの活性エネルギー線硬化性(メタ)アクリル基を多く導入することが可能となる。多価アルコールと多塩基酸とはOH/COOHモル比が1.50以上の範囲で反応させるが、1.60~2.0の範囲がさらに好ましい。1.50未満では水酸基末端が少なくなり好ましくない。 Using a trihydric or higher alcohol, the OH/COOH molar ratio is 1.10 or more, preferably 1.50 or more by reacting a polyhydric alcohol with a polybasic acid to obtain a hydroxyl group-containing polyester resin (a1) It is possible to introduce a large number of hydroxyl group terminals inside, and in the reaction with the isocyanate compound (a2) and the hydroxyl group-containing (meth)acrylic compound (a3) in the next step, many active energy ray-curable (meth)acrylic groups are generated. can be introduced. The polyhydric alcohol and the polybasic acid are reacted at an OH/COOH molar ratio of 1.50 or more, preferably from 1.60 to 2.0. If it is less than 1.50, the number of terminal hydroxyl groups will decrease, which is not preferable.
 十分な水酸基を導入するためには多価アルコール全体に対し3価以上のアルコールを50モル%以上含むことが好ましく、60モル%~100モル%含むことがさらに好ましい。50モル%より少ないと水酸基の導入量が少なく、結果として水酸基含有ポリエステル樹脂の(メタ)アクリル基の密度が低くなるため顔料分散体の硬化性が上がらなくなってしまう。 In order to introduce sufficient hydroxyl groups, it is preferable to contain 50 mol% or more of trihydric or higher alcohol, more preferably 60 mol% to 100 mol%, based on the total polyhydric alcohol. If it is less than 50 mol %, the amount of hydroxyl groups introduced is small, and as a result, the density of (meth)acrylic groups in the hydroxyl group-containing polyester resin becomes low, so that the curability of the pigment dispersion cannot be improved.
 活性エネルギー線硬化型顔料分散体における水酸基含有ポリエステル樹脂(a1)の重量平均分子量としては、好ましくは200~3000、より好ましくは220~2000である。重量平均分子量が200未満では水酸基を2つ以上持つポリエステルポリオールが合成できず結果として顔料分散体の硬化性が低下してしまい、3000を越える樹脂(A)を高硬化性活性エネルギー線硬化分散剤として使用したときの粘度が高すぎて、顔料との濡れが悪くなり分散体の作製が難しくなり好ましくない。 The weight average molecular weight of the hydroxyl group-containing polyester resin (a1) in the active energy ray-curable pigment dispersion is preferably 200-3000, more preferably 220-2000. If the weight average molecular weight is less than 200, a polyester polyol having two or more hydroxyl groups cannot be synthesized, resulting in a decrease in the curability of the pigment dispersion. When used as the viscosity is too high, the wettability with the pigment is poor, making it difficult to prepare a dispersion, which is not preferable.
 活性エネルギー線硬化性分散剤である樹脂(A)は、3級アミノ基あるいは4級アンモニウム塩を有していることが好ましい。3級アミノ基あるいは4級アンモニウム塩を有していることで、通常顔料表面は酸性となっているためアミノ基が酸性の部位と相互作用し、結果として活性エネルギー線硬化顔料分散剤である樹脂(A)が顔料に吸着して安定な顔料分散体を形成すると期待される。
 3級アミノ基は、活性エネルギー線硬化性分散剤である樹脂(A)中の(メタ)アクリル基に2級アミノ基を有する化合物(上記2級アミン)をマイケル付加することによって得ることができる。また、3級アミノ基を酸により中和して4級アンモニウム塩として用いてもよい。
Resin (A), which is an active energy ray-curable dispersant, preferably has a tertiary amino group or a quaternary ammonium salt. By having a tertiary amino group or a quaternary ammonium salt, the surface of the pigment is usually acidic, so the amino group interacts with the acidic site, resulting in a resin that is an active energy ray-curable pigment dispersant. (A) is expected to adsorb to the pigment to form a stable pigment dispersion.
A tertiary amino group can be obtained by Michael addition of a compound having a secondary amino group (secondary amine) to a (meth)acrylic group in the resin (A), which is an active energy ray-curable dispersant. . Alternatively, the tertiary amino group may be neutralized with an acid and used as a quaternary ammonium salt.
[インキ組成物]
 次に、活性エネルギー線硬化型顔料分散体を用いたインキ組成物の使用形態について説明する。
 インキ組成物である活性エネルギー線硬化型インキは、インキ全体に対して、活性エネルギー線硬化型顔料分散体20~80重量%、活性エネルギー線硬化モノマー30~70重量%、上記ラジカル重合禁止剤0.01~1重量%、光重合開始剤および/または増感剤0~20重量%、その他添加剤0~10重量%からなる組成にて調整される。
 活性エネルギー線硬化型顔料分散体の含有量は、インキ組成物全体に対して、20~60重量%が好ましく、25~50重量%が更に好ましい。20重量%より少ないとインキの着色硬化、隠蔽効果が十分に発揮できない恐れがあり、またが80重量%より多いと顔料濃度が高すぎて活性エネルギー線硬化に悪影響を及ぼす恐れがある。
[Ink composition]
Next, the mode of use of the ink composition using the active energy ray-curable pigment dispersion will be described.
Active energy ray-curable ink, which is an ink composition, comprises 20 to 80% by weight of active energy ray-curable pigment dispersion, 30 to 70% by weight of active energy ray-curable monomer, and 0 of the above radical polymerization inhibitor, based on the total ink. 01 to 1% by weight, 0 to 20% by weight of a photopolymerization initiator and/or sensitizer, and 0 to 10% by weight of other additives.
The content of the active energy ray-curable pigment dispersion is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, based on the total ink composition. If the amount is less than 20% by weight, the ink may not be sufficiently colored and hardened, and the hiding effect may not be exhibited sufficiently.
 上記インキ組成物で用いられる活性エネルギー線硬化モノマーは、活性エネルギー線硬化性があり、一般的には多官能(メタ)アクリル化合物、単官能(メタ)アクリル化合物、ビニル化合物、アリル化合物、活性エネルギー線硬化性オリゴマーが挙げられる。
 多官能(メタ)アクリル化合物の含有量としては、組成物全体に対して、30~70重量%であり、好ましくは40~60重量%である。
The active energy ray-curable monomers used in the ink composition are active energy ray-curable and generally include polyfunctional (meth)acrylic compounds, monofunctional (meth)acrylic compounds, vinyl compounds, allyl compounds, active energy Line-curable oligomers may be mentioned.
The content of the polyfunctional (meth)acrylic compound is 30 to 70% by weight, preferably 40 to 60% by weight, based on the total composition.
 多官能(メタ)アクリル化合物としては、上記多官能(メタ)アクリル化合物(B)が挙げられる。
 単官能(メタ)アクリル化合物としては、例えば、2-エチルヘキシル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート、アクリロイルモルホリン等が挙げられる。
 ビニル化合物としては、例えば、N-ビニルピロリドン、ジビニルベンゼン等が挙げられる。
 活性エネルギー線硬化性オリゴマーとしては、例えば、ポリエステルアクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
 アリル化合物としては、例えば、ペンタエリスリトールテトラアリルエ-テル、トリメチロールプロパントリアリルエーテル、ソルビトールトリアリルエーテル、イソソルビドジアリルエーテル、グリセリンジアリルエーテル、ビスフェノールAジアリルエーテル、水素化ビスフェノールAジアリルエーテル、マレイン酸ジアリル、フマル酸ジアリル、コハク酸ジアリル、イタコン酸ジアリル、リンゴ酸ジアリル、アジピン酸ジアリル、ドデカン二酸ジアリル、クエン酸ジアリル、トリメリット酸トリアリル、シクロヘキセンジカルボン酸ジアリル等が挙げられる。
Examples of the polyfunctional (meth)acrylic compound include the polyfunctional (meth)acrylic compound (B).
Examples of monofunctional (meth)acrylic compounds include 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxydipropylene glycol (meth)acrylate, phenoxyethyl (meth)acrylate, 2-(2-vinyloxy ethoxy)ethyl (meth)acrylate, acryloylmorpholine and the like.
Examples of vinyl compounds include N-vinylpyrrolidone and divinylbenzene.
Examples of active energy ray-curable oligomers include polyester acrylate, polyurethane (meth)acrylate, and epoxy (meth)acrylate.
Examples of allyl compounds include pentaerythritol tetraallyl ether, trimethylolpropane triallyl ether, sorbitol triallyl ether, isosorbide diallyl ether, glycerin diallyl ether, bisphenol A diallyl ether, hydrogenated bisphenol A diallyl ether, and diallyl maleate. , diallyl fumarate, diallyl succinate, diallyl itaconate, diallyl malate, diallyl adipate, diallyl dodecanedioate, diallyl citrate, triallyl trimellitate, and diallyl cyclohexenedicarboxylate.
 その他添加物として、要求物性に応じて各種樹脂を添加してもよく、例えば、ジアリルオルソフタレート樹脂、ジアリルイソフタレート樹脂、ジアリルテレフタレート樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリ(メタ)(メタ)アクリル酸エステル、エポキシ樹脂、ポリウレタン樹脂、石油(系)樹脂、セルロース誘導体(例えば、エチルセルロース、酢酸セルロース、ニトロセルロース)、塩化ビニル酢酸ビニル共重合体、ポリアマイド樹脂、ポリビニルアセタール樹脂、ポリアマイド樹脂、ポリビニルアセタール樹脂、ブタジエン-(メタ)アクリルニトリル共重合体のような合成ゴム等が挙げられる。これらの樹脂は、その中の1種または2種以上を用いることができる。 As other additives, various resins may be added depending on the required physical properties. Acid esters, epoxy resins, polyurethane resins, petroleum (based) resins, cellulose derivatives (e.g., ethyl cellulose, cellulose acetate, nitrocellulose), vinyl chloride vinyl acetate copolymers, polyamide resins, polyvinyl acetal resins, polyamide resins, polyvinyl acetal resins , synthetic rubbers such as butadiene-(meth)acrylonitrile copolymers, and the like. One or more of these resins can be used.
 活性エネルギー線硬化型インキ組成物(活性エネルギー線硬化型インキ)は、例えば、活性エネルギー線である光で硬化する。光硬化方法には、一般的にメタルハライドランプあるいは高圧水銀ランプ、LEDのような紫外線を発光する光源が用いられている。また、電子線を光源として使用でき、その際は一般的に光重合開始剤を使用せずに硬化可能である。 An active energy ray-curable ink composition (active energy ray-curable ink) is, for example, cured by light, which is an active energy ray. The photo-curing method generally uses a light source that emits ultraviolet rays, such as a metal halide lamp, a high-pressure mercury lamp, or an LED. Also, an electron beam can be used as a light source, and in that case curing is generally possible without using a photopolymerization initiator.
 光重合開始剤としては、上記光開裂型開始剤及び上記水素引き抜き型重合開始剤が挙げられる。 Examples of the photopolymerization initiator include the photocleavage initiator and the hydrogen abstraction polymerization initiator.
 増感剤としては、上述の増感剤が挙げられる。 The sensitizer includes the sensitizers described above.
 さらに、活性エネルギー線硬化型インキには、必要に応じてその他の添加剤を使用することが可能である。 Furthermore, it is possible to use other additives in the active energy ray-curable ink as necessary.
 例えば、インキの保存安定性を付与する添加剤として、上記ラジカル重合禁止剤を例示することができる。また、耐摩擦性、ブロッキング防止性、スベリ性、スリキズ防止性を付与する添加剤としては、上述の添加剤が挙げられる。 For example, the above radical polymerization inhibitor can be exemplified as an additive that imparts storage stability to the ink. Additives that impart abrasion resistance, anti-blocking properties, slip properties, and anti-scratch properties include the above-mentioned additives.
 その他、要求性能に応じて、紫外線吸収剤、赤外線吸収剤、抗菌剤等の添加剤を添加することができる。 In addition, additives such as ultraviolet absorbers, infrared absorbers, and antibacterial agents can be added according to the required performance.
 活性エネルギー線硬化型インキの製造方法は、従来の活性エネルギー線硬化型インキと同様の方法によって行えばよく、例えば、常温から100℃の間で、上記顔料、上記組成物、ラジカル重合性二重結合を有するモノマー、重合禁止剤、光重合開始剤および増感剤、その他添加剤などインキ組成物成分を、ニーダー、三本ロール、アトライター、サンドミル、ゲートミキサーなどの練肉、混合、調整機を用いて製造される。 The method for producing the active energy ray-curable ink may be performed by a method similar to that for conventional active energy ray-curable inks. Kneading, mixing, and adjusting machines such as kneaders, triple rolls, attritors, sand mills, gate mixers, etc. Manufactured using
 印刷方法としては、オフセット印刷(湿し水を使用する通常の平版印刷および湿し水を使用しない水無し平版印刷)、凸版印刷、凹版印刷、孔版印刷、フレキソ印刷などが挙げられ、好ましくはフレキソ印刷である。 Examples of the printing method include offset printing (ordinary lithographic printing using dampening water and waterless lithographic printing not using dampening water), letterpress printing, intaglio printing, stencil printing, flexographic printing, etc., preferably flexographic printing. Print.
 印刷物の基材としては、特に制限はなく、紙、プラスチック、シール、ラベル、金属などあらゆる材料への印刷が挙げられ、好ましくは紙への印刷である。 The base material of the printed material is not particularly limited, and includes printing on all materials such as paper, plastic, stickers, labels, and metals, preferably printing on paper.
 また、本実施形態はここでは記載していない様々な実施形態などを含む。 In addition, this embodiment includes various embodiments not described here.
 本実施形態は、以下に関する構成を含む。 This embodiment includes the following configurations.
 本実施形態の一態様は、水酸基含有ポリエステル樹脂(a1)と、イソシアネート化合物(a2)と、水酸基含有(メタ)アクリル化合物(a3)とを反応させてなる樹脂(A)、及び多官能(メタ)アクリル化合物(B)を含有する活性エネルギー線硬化性樹脂組成物であって、前記水酸基含有ポリエステル樹脂(a1)が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.5以上の条件で反応させてなる樹脂であり、水酸基含有ポリエステル樹脂(a1)の水酸基価が、200mgKOH/g以上であり、水酸基含有ポリエステル樹脂(a1)の重量平均分子量が、250以上3000未満である、活性エネルギー線硬化性樹脂組成物である。 One aspect of the present embodiment is a resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), and a polyfunctional (meth) ) An active energy ray-curable resin composition containing an acrylic compound (B), wherein the hydroxyl group-containing polyester resin (a1) is a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, OH / It is a resin obtained by reacting under conditions where the COOH molar ratio is 1.5 or more, the hydroxyl value of the hydroxyl group-containing polyester resin (a1) is 200 mgKOH/g or more, and the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is , 250 or more and less than 3,000.
 また、本実施形態の他の一態様は、イソシアネート化合物(a2)が、ジイソシアネート化合物を含む、前記活性エネルギー線硬化性樹脂組成物である。 Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the isocyanate compound (a2) contains a diisocyanate compound.
 また、本実施形態の他の一態様は、3価以上のアルコールがグリセリンを含む、前記活性エネルギー線硬化性樹脂組成物である。 Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the trihydric or higher alcohol contains glycerin.
 また、本実施形態の他の一態様は、さらに、前記樹脂(A)が、樹脂(A)中の(メタ)アクリル基と、2級アミン化合物とをマイケル付加反応させて得られる3級アミン構造を有する樹脂を含む、前記活性エネルギー線硬化樹脂組成物である。 In another aspect of the present embodiment, the resin (A) is a tertiary amine obtained by Michael addition reaction between a (meth)acrylic group in the resin (A) and a secondary amine compound. The active energy ray-curable resin composition includes a resin having a structure.
 また、本実施形態の他の一態様は、インキ組成物である、前記活性エネルギー線硬化性樹脂組成物である。 Another aspect of the present embodiment is the active energy ray-curable resin composition, which is an ink composition.
 また、本実施形態の他の一態様は、前記活性エネルギー線硬化性樹脂組成物を、基材上に印刷してなる印刷物である。 Another aspect of the present embodiment is a printed material obtained by printing the active energy ray-curable resin composition on a substrate.
 また、本実施形態の他の一態様は、水酸基含有ポリエステル樹脂(a1)、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)を反応させてなる樹脂(A)、及び多官能(メタ)アクリル化合物(B)を含有する活性エネルギー線硬化性樹脂組成物であって、水酸基含有ポリエステル樹脂(a1)が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10~2.20の範囲で反応させ、かつ、多価アルコール全体に対し3価以上のアルコールを13モル%以上の割合で反応させた樹脂であり、水酸基含有ポリエステル樹脂(a1)の水酸基価が、50mgKOH/g以上であり、水酸基含有ポリエステル樹脂(a1)の重量平均分子量が3000以上である、活性エネルギー線硬化性樹脂組成物である。 Further, another aspect of the present embodiment is a resin (A) obtained by reacting a hydroxyl group-containing polyester resin (a1), an isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3), and a polyfunctional An active energy ray-curable resin composition containing a (meth)acrylic compound (B), wherein the hydroxyl group-containing polyester resin (a1) comprises a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid, OH /COOH molar ratio is in the range of 1.10 to 2.20, and a hydroxyl group-containing polyester resin is a resin obtained by reacting a trihydric or higher alcohol at a rate of 13 mol% or more with respect to the entire polyhydric alcohol. The hydroxyl value of (a1) is 50 mgKOH/g or more, and the weight average molecular weight of the hydroxyl group-containing polyester resin (a1) is 3000 or more.
 また、本実施形態の他の一態様は、イソシアネート化合物(a2)が、イソシアネート基を2つ有するジイソシアネート化合物である、前記活性エネルギー線硬化性樹脂組成物である。 Another aspect of the present embodiment is the active energy ray-curable resin composition, wherein the isocyanate compound (a2) is a diisocyanate compound having two isocyanate groups.
 また、本実施形態の他の一態様は、インキ組成物である、前記活性エネルギー線硬化性樹脂組成物である。 Another aspect of the present embodiment is the active energy ray-curable resin composition, which is an ink composition.
 また、本実施形態の他の一態様は、水酸基含有ポリエステル樹脂(a1)、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリル化合物(a3)を、多官能(メタ)アクリル化合物(B)中で反応させて樹脂(A)を得る、前記活性エネルギー線硬化性樹脂組成物の製造方法である。 In another aspect of the present embodiment, the hydroxyl group-containing polyester resin (a1), the isocyanate compound (a2), and the hydroxyl group-containing (meth)acrylic compound (a3) are mixed in the polyfunctional (meth)acrylic compound (B). The method for producing the active energy ray-curable resin composition, wherein the resin (A) is obtained by reacting with.
 また、本実施形態の他の一態様は、前記活性エネルギー線硬化性樹脂組成物を、基材上に印刷してなる印刷物である。 Another aspect of the present embodiment is a printed material obtained by printing the active energy ray-curable resin composition on a substrate.
 また、本実施形態の他の一態様は、顔料(C)、及び活性エネルギー線硬化性分散剤を含有する活性エネルギー線硬化型顔料分散体であって、前記活性エネルギー線硬化性分散剤が、エチレン性不飽和結合を有する官能基を2つ以上有し、かつジカルボン酸及び/又はジカルボン酸の無水物と、水酸基含有化合物との反応生成物であるポリエステル構造を有する顔料分散体である。 Further, another aspect of the present embodiment is an active energy ray-curable pigment dispersion containing a pigment (C) and an active energy ray-curable dispersant, wherein the active energy ray-curable dispersant is The pigment dispersion has two or more functional groups having ethylenically unsaturated bonds and has a polyester structure which is a reaction product of a dicarboxylic acid and/or an anhydride of a dicarboxylic acid and a hydroxyl group-containing compound.
 また、本実施形態の他の一態様は、エチレン性不飽和結合を有する官能基が、ビニル基、アリル基、及び(メタ)アクリロイル基からなる群から選ばれる少なくとも1種の官能基を含む、前記活性エネルギー線硬化型顔料分散体である。 In another aspect of the present embodiment, the functional group having an ethylenically unsaturated bond includes at least one functional group selected from the group consisting of a vinyl group, an allyl group, and a (meth)acryloyl group. It is the active energy ray-curable pigment dispersion.
 また、本実施形態の他の一態様は、前記活性エネルギー線硬化性分散剤が、3級アミノ基又は4級アンモニウム塩を有する、前記活性エネルギー線硬化型顔料分散体である。 Another aspect of the present embodiment is the active energy ray-curable pigment dispersion, wherein the active energy ray-curable dispersant has a tertiary amino group or a quaternary ammonium salt.
 また、本実施形態の他の一態様は、3級アミノ基を有する活性エネルギー線硬化性分散剤が、前記活性エネルギー線硬化性分散剤中のエチレン性不飽和結合を有する官能基と、2級アミノ基を含有する化合物とのマイケル付加反応生成物である、前記活性エネルギー線硬化型顔料分散体である。 Further, another aspect of the present embodiment is that the active energy ray-curable dispersant having a tertiary amino group comprises a functional group having an ethylenically unsaturated bond in the active energy ray-curable dispersant and a secondary The active energy ray-curable pigment dispersion is a Michael addition reaction product with a compound containing an amino group.
 また、本実施形態の他の一態様は、前記活性エネルギー線硬化型顔料分散体と、光重合性単量体及び/又は光重合開始剤とを含み、実質的に溶剤を含有しない、活性エネルギー線硬化型インキ組成物である。 In addition, another aspect of the present embodiment includes the active energy ray-curable pigment dispersion, a photopolymerizable monomer and/or a photopolymerization initiator, and contains substantially no solvent, an active energy It is a linear curable ink composition.
 また、本実施形態の他の一態様は、フレキソインキ用又はオフセットインキ用である、前記活性エネルギー線硬化型インキ組成物である。 Another aspect of the present embodiment is the active energy ray-curable ink composition for flexographic ink or offset ink.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。 In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range in one step can be arbitrarily combined with the upper limit value or lower limit of the numerical range in another step.
 本発明は2021年7月5日出願の日本特許出願番号2021-111773の主題、2021年9月13日出願の日本特許出願番号2021-148233の主題、及び2021年12月7日出願の日本特許出願番号2021-198619の主題に関連し、その全開示内容を参照により本明細書に取り込む。 The present invention is the subject of Japanese Patent Application No. 2021-111773 filed on July 5, 2021, the subject of Japanese Patent Application No. 2021-148233 filed on September 13, 2021, and the Japanese patent filed on December 7, 2021 It relates to the subject matter of Application No. 2021-198619, the entire disclosure of which is incorporated herein by reference.
 以下に、実施例により本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、本実施例において、「部」は、「重量部」を表し、「%」は「重量%」を表す。 Although the present invention will be described in more detail below with reference to examples, the following examples do not limit the scope of rights of the present invention. In addition, in the present Examples, "part" represents "weight part" and "%" represents "% by weight".
 また、本実施例において、重量平均分子量は、東ソー株式会社製ゲルパーミネイションクロマトグラフィ(HLC-8320)で測定した。検量線は標準ポリスチレンサンプルにより作成した。溶離液はテトラヒドロフランを、カラムにはTSKgel SuperHM-M(東ソー株式会社製)3本を用いた。測定は流速0.6ml/分、注入量10μl、カラム温度40℃で行った。さらに、本実施例において、特に断らない限り、「分子量」とは、重量平均分子量を示す。また、水酸基価は、通常の水酸化カリウム滴定法、具体的には、JIS K 0070を準用した方法により求めた。 In addition, in this example, the weight average molecular weight was measured by gel permeation chromatography (HLC-8320) manufactured by Tosoh Corporation. A calibration curve was prepared with standard polystyrene samples. Tetrahydrofuran was used as the eluent, and three columns of TSKgel Super HM-M (manufactured by Tosoh Corporation) were used as columns. The measurement was performed at a flow rate of 0.6 ml/min, an injection volume of 10 µl, and a column temperature of 40°C. Furthermore, in the present examples, unless otherwise specified, the term "molecular weight" indicates weight average molecular weight. In addition, the hydroxyl value was obtained by a normal potassium hydroxide titration method, specifically, a method according to JIS K 0070.
<実験例1>
(合成例1)
 撹拌機、ディーンスターク管、温度計、ガス導入管を備えた4つ口フラスコ内に原料としてグリセリン276.3部、無水コハク酸200.1部を入れ、撹拌しながら加熱し180~200℃に保持した。反応の進行に伴い生成する縮合水を系外へ除きながら反応を行い、理論脱水量に達したところで反応を終了し水酸基含有ポリエステル化合物1(化合物1)を得た(分子量:510、水酸基価:550mgKOH/g)。
<Experimental example 1>
(Synthesis example 1)
276.3 parts of glycerin and 200.1 parts of succinic anhydride were placed as raw materials in a four-necked flask equipped with a stirrer, Dean-Stark tube, thermometer, and gas inlet tube, and heated to 180 to 200°C while stirring. held. The reaction was carried out while condensed water generated with the progress of the reaction was removed from the system, and the reaction was terminated when the theoretical amount of dehydration was reached to obtain a hydroxyl group-containing polyester compound 1 (compound 1) (molecular weight: 510, hydroxyl value: 550 mg KOH/g).
(合成例2~8、比較合成例1~2)
 表1の組成に従って、各原料を変更した以外は合成例1と同様にして化合物2~8、及び比較化合物1~2を得た。
(Synthesis Examples 2-8, Comparative Synthesis Examples 1-2)
According to the composition of Table 1, compounds 2 to 8 and comparative compounds 1 to 2 were obtained in the same manner as in Synthesis Example 1 except that each raw material was changed.
 合成した水酸基含有ポリエステル化合物の物性をあわせて表1に示す。なお、表1中の「3価以上のアルコール/全アルコール[mol%]」は、各原料の重量部をそれぞれの分子量で割りモル数に変換し、3価以上のアルコールのモル数を全アルコールのモル数で除したものである。 Table 1 also shows the physical properties of the synthesized hydroxyl group-containing polyester compound. In addition, "trihydric or higher alcohol / total alcohol [mol%]" in Table 1 is converted to the number of moles by dividing the weight part of each raw material by the respective molecular weight, and the number of moles of the trihydric or higher alcohol is the total alcohol is divided by the number of moles of
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(製造例1)
 撹拌機、冷却器、温度計、ガス導入管を備えた4つ口フラスコ内にイソシアネート化合物(a2)であるトルエン-2,4-ジイソシアネート(TDI)18部、水酸基含有(メタ)アクリル化合物(a3)であるジペンタエリスリトールペンタアクリレート(DPPA)を33%含むジペンタエリスリトールヘキサアクリレート(DPHA)及びジペンタエリスリトールペンタアクリレートの混合物182部、重合禁止剤としてターシャリーブチルヒドロキノン0.1部を入れ、撹拌しながら100℃で5時間反応させた。次いで、水酸基含有ポリエステル樹脂(a1)である化合物1を8.6部入れ、さらに110℃で5時間反応させ硬化性樹脂1を得た。
(Production example 1)
18 parts of toluene-2,4-diisocyanate (TDI), which is the isocyanate compound (a2), and a hydroxyl group-containing (meth)acrylic compound (a3 ), 182 parts of a mixture of dipentaerythritol hexaacrylate (DPHA) containing 33% dipentaerythritol pentaacrylate (DPPA) and dipentaerythritol pentaacrylate, and 0.1 part of tertiary butyl hydroquinone as a polymerization inhibitor were added and stirred. The mixture was reacted at 100° C. for 5 hours. Next, 8.6 parts of compound 1, which is a hydroxyl group-containing polyester resin (a1), was added and reacted at 110° C. for 5 hours to obtain curable resin 1.
(製造例2~8、比較製造例1~2)
 水酸基含有ポリエステル樹脂である化合物の種類及び配合量を表2に従って変更した以外は、製造例1と同様にして、硬化性樹脂2~8、及び比較硬化性樹脂1~2を得た。
(Production Examples 2-8, Comparative Production Examples 1-2)
Curable resins 2 to 8 and comparative curable resins 1 to 2 were obtained in the same manner as in Production Example 1, except that the type and amount of the hydroxyl group-containing polyester resin compound were changed according to Table 2.
(製造例9)
 撹拌機、冷却器、温度計、ガス導入管を備えた4つ口フラスコ内に製造例1と同じ方法で硬化性樹脂1を208.7部合成し、さらに、乾燥空気をガス導入管から流しながら60℃まで加熱した。そこにジブチルアミン20.7部とジエタノールアミン16.8部を1時間かけて滴下した。その後80℃まで昇温して4時間保持することで、硬化性樹脂9を得た。
(Production Example 9)
208.7 parts of curable resin 1 was synthesized in the same manner as in Production Example 1 in a four-necked flask equipped with a stirrer, cooler, thermometer, and gas inlet tube, and dry air was passed through the gas inlet tube. while heating to 60°C. 20.7 parts of dibutylamine and 16.8 parts of diethanolamine were added dropwise thereto over 1 hour. After that, the temperature was raised to 80° C. and held for 4 hours to obtain a curable resin 9 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1)
(インキ組成物1(活性エネルギー線硬化性組成物1)の調製)
 硬化性樹脂1を8.4部、着色剤としてLIONOL BLUE FG-7400Gを18部、分散剤としてアジスパーPB821を3部、その他重合性化合物としてEBECRYL225を5部、4-アクリロイルモフォリンを15部、EO変性トリメチロールプロパントリアクリレートを20部、ジペンタエリスリトールヘキサアクリレートを16.6部、光重合開始剤としてイルガキュア369を3部、Chemrak DEABPを3部、SB-P1718を4部、ワックスとしてTワックスコンパウンドを4部加え、バタフライミキサーを用いて撹拌混合し、三本ロールにて最大粒径が15μm以下になるように分散して、インキ組成物1を調製した。
(Example 1)
(Preparation of ink composition 1 (active energy ray-curable composition 1))
8.4 parts of curable resin 1, 18 parts of LIONOL BLUE FG-7400G as a coloring agent, 3 parts of Ajisper PB821 as a dispersant, 5 parts of EBECRYL225 as other polymerizable compounds, 15 parts of 4-acryloylmofoline, 20 parts of EO-modified trimethylolpropane triacrylate, 16.6 parts of dipentaerythritol hexaacrylate, 3 parts of Irgacure 369 as a photopolymerization initiator, 3 parts of Chemrak DEABP, 4 parts of SB-P1718, T wax as a wax Ink composition 1 was prepared by adding 4 parts of the compound, stirring and mixing using a butterfly mixer, and dispersing with a triple roll so that the maximum particle size was 15 μm or less.
(実施例2~9、比較例1~2)
(インキ組成物2~9、比較インキ組成物1~2の調製)
 硬化性樹脂1を表3に従って変更した以外は、インキ組成物1の調製と同様にして、インキ組成物2~9、比較インキ組成物1~2を調製した。
(Examples 2-9, Comparative Examples 1-2)
(Preparation of Ink Compositions 2 to 9 and Comparative Ink Compositions 1 to 2)
Ink compositions 2 to 9 and comparative ink compositions 1 to 2 were prepared in the same manner as the ink composition 1, except that the curable resin 1 was changed according to Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記インキ組成物に使用されている原料の詳細は以下の通りである。
・LIONOL BLUE FG-7400-G:トーヨーカラー株式会社製、C.I.Pigment Blue15:3
・アジスパーPB821:味の素ファインテクノ株式会社製、塩基性官能基含有の櫛形分散剤
・EBECRYL225:ダイセル・オルネクス株式会社製、10官能の脂肪族ウレタンアクリレートオリゴマー、Mw1,200、有効成分60重量%
・イルガキュア369:BASF社製、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1
・Chemark DEABP:ソート社製、4,4’-ビス(ジエチルアミノ)ベンゾフェノン
・SB-PI718: ソート社製、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド
・Tワックスコンパウンド:東新油脂株式会社製、ポリエチレンワックス
The details of the raw materials used in the ink composition are as follows.
· LIONOL BLUE FG-7400-G: manufactured by Toyocolor Co., Ltd., C.I. I. Pigment Blue 15:3
・Ajisper PB821: Ajinomoto Fine-Techno Co., Inc., comb-shaped dispersant containing a basic functional group ・EBECRYL225: Daicel Allnex Co., Ltd., 10-functional aliphatic urethane acrylate oligomer, Mw 1,200, active ingredient 60% by weight
・ Irgacure 369: manufactured by BASF, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1
・Chemark DEABP: 4,4'-bis(diethylamino)benzophenone manufactured by Soto Co., Ltd. ・SB-PI718: 2,4,6-trimethylbenzoyl-diphenylphosphine oxide manufactured by Soto Co., Ltd. T wax compound: Toshin Yushi Co., Ltd. Made of polyethylene wax
 得られたインキ組成物を、以下の方法により評価を行った。結果を表3に示す。 The obtained ink composition was evaluated by the following method. Table 3 shows the results.
[粘度]
 得られたインキ組成物を、E型粘度計(東機産業株式会社製 TVE-25型粘度計、type E)を用いて、25℃、回転数100rpmでの粘度を測定した。2以上が、実用上問題ないレベルである。
(評価基準)
5:600mPa・s以上~1400mPa・s未満
4:500mPa・s以上~600mPa・s未満、あるいは1400mPa・s以上~1600mPa・s未満
3:400mPa・s以上~500mPa・s未満、あるいは1600mPa・s以上~1800mPa未満
2:300mPa・s以上~400mPa・s未満、あるいは1800mPa以上・s~2000mPa・s未満
1:300mPa・s未満又は2000mPa・s以上
[viscosity]
The viscosity of the resulting ink composition was measured at 25° C. and 100 rpm using an E-type viscometer (TVE-25 viscometer, type E, manufactured by Toki Sangyo Co., Ltd.). A value of 2 or more is a level that poses no practical problem.
(Evaluation criteria)
5: 600 mPa s to less than 1400 mPa s 4: 500 mPa s to less than 600 mPa s, or 1400 mPa s to less than 1600 mPa s 3: 400 mPa s to less than 500 mPa s, or 1600 mPa s or more ~ less than 1800 mPa 2: 300 mPa s to less than 400 mPa s, or 1800 mPa s to less than 2000 mPa s 1: less than 300 mPa s or 2000 mPa s or more
[TI値]
 得られたインキ組成物を、E型粘度計(東機産業株式会社製 TVE-25型粘度計、type E)を用いて、25℃、回転数50rpm及び100rpmでの粘度を測定した。そして、50rpmでの粘度を100rpmでの粘度で除算することによりTI値を算出した。3以上を実用上問題ないレベルであると評価する。
(評価基準)
5:1.00以上1.05未満
4:1.05以上1.10未満
3:1.10以上1.15未満
2:1.15以上1.20未満
1:1.20以上
[TI value]
The viscosity of the resulting ink composition was measured at 25° C. and 50 rpm and 100 rpm using an E-type viscometer (TVE-25 viscometer, type E, manufactured by Toki Sangyo Co., Ltd.). Then, the TI value was calculated by dividing the viscosity at 50 rpm by the viscosity at 100 rpm. A score of 3 or more is evaluated as a practically acceptable level.
(Evaluation criteria)
5: 1.00 or more and less than 1.05 4: 1.05 or more and less than 1.10 3: 1.10 or more and less than 1.15 2: 1.15 or more and less than 1.20 1: 1.20 or more
[硬化性]
 硬化性については、RIテスター(テスター産業株式会社製)を用いて、被記録媒体であるコート紙上に0.75cc/1000cmの盛量でベタ画像を印刷(フレキソ印刷)した。その後、コンベア速度を40m/分から160m/分まで、10m/分ごとに変え、LEDランプ(エアーモーションシステム株式会社製「XP-9」、照射距離10mm、出力30%)でインキ組成物を硬化させた。硬化後、インキ塗膜表面を綿棒で擦り、綿棒にインキが擦れ落ちない最も速い速度を評価した。以下の基準により判定した。3以上を実用上問題ないレベルであると評価する。
(評価基準)
5:コンベア速度160m/分でも擦れ落ちない
4:コンベア速度130m/分以上160m/分未満
3:コンベア速度100m/分以上130m/分未満
2:コンベア速度70m/分以上100m/分未満
1:コンベア速度40m/分以上70m/分未満
[Curability]
For the curability, a solid image was printed (flexographic printing) on coated paper as a recording medium with an heap of 0.75 cc/1000 cm 2 using an RI tester (manufactured by Tester Sangyo Co., Ltd.). After that, the conveyor speed is changed from 40 m/min to 160 m/min by 10 m/min increments, and the ink composition is cured with an LED lamp (“XP-9” manufactured by Air Motion System Co., Ltd., irradiation distance 10 mm, output 30%). rice field. After curing, the surface of the ink coating was rubbed with a cotton swab and the fastest speed at which the ink did not rub off on the swab was evaluated. It was judged according to the following criteria. A score of 3 or more is evaluated as a practically acceptable level.
(Evaluation criteria)
5: Not rubbed off even at a conveyor speed of 160 m / min 4: Conveyor speed of 130 m / min or more and less than 160 m / min 3: Conveyor speed of 100 m / min or more and less than 130 m / min 2: Conveyor speed of 70 m / min or more and less than 100 m / min 1: Conveyor Speed 40m/min or more and less than 70m/min
 表3の結果から、実施例に提示した活性エネルギー線硬化樹脂組成物は、単独、及びフレキソインキに組み込んでも、比較例に比べて粘度及びTI値は同等ながら、優れた硬化性を発現することがわかった。 From the results in Table 3, the active energy ray-curable resin compositions presented in the examples exhibit excellent curability even when used alone or when incorporated into flexographic inks, while maintaining the same viscosity and TI value as compared to the comparative examples. I found out.
<実験例2>
(合成例1A)
 撹拌機、ディーンスターク管、温度計、ガス導入管を備えた4つ口フラスコ内に原料としてグリセリン10部、エチレングリコール20部、無水フタル酸53部を入れ、撹拌しながら220℃まで加熱した。反応の進行に伴い生成する縮合水を系外へ除きながら反応を行い、理論脱水量に達したところで反応を終了し水酸基含有ポリエステル樹脂1A(樹脂1A)を得た(分子量:4200、水酸基価:187mgKOH/g)。
<Experimental example 2>
(Synthesis Example 1A)
10 parts of glycerin, 20 parts of ethylene glycol, and 53 parts of phthalic anhydride were charged as raw materials into a four-necked flask equipped with a stirrer, Dean-Stark tube, thermometer, and gas inlet tube, and heated to 220° C. while stirring. The reaction was conducted while condensed water generated as the reaction progressed was removed from the system, and the reaction was terminated when the theoretical amount of dehydration was reached to obtain a hydroxyl group-containing polyester resin 1A (resin 1A) (molecular weight: 4200, hydroxyl value: 187 mg KOH/g).
(合成例2A~23A)
 表4の組成に従って、各原料を変更した以外は合成例1Aと同様にして樹脂2A~23Aを得た。
(Synthesis Examples 2A to 23A)
According to the composition of Table 4, resins 2A to 23A were obtained in the same manner as in Synthesis Example 1A except that each raw material was changed.
 合成した樹脂の物性をあわせて表4に示す。なお、表4中の「3価以上のアルコール/全アルコール[mol%]」は、各原料の重量部をそれぞれの分子量で割りモル数に変換し、3価以上のアルコールのモル数を全アルコールのモル数で除したものである。 Table 4 shows the physical properties of the synthesized resin. In addition, "trihydric or higher alcohol / total alcohol [mol%]" in Table 4 is obtained by dividing the weight part of each raw material by the respective molecular weight and converting the number of moles of the trihydric or higher alcohol to the total alcohol is divided by the number of moles of
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
(製造例1A)
 撹拌機、冷却器、温度計、ガス導入管を備えた4つ口フラスコ内にイソシアネート化合物(a2)であるトルエン-2,4-ジイソシアネート7部、水酸基含有(メタ)アクリル化合物(a3)であるジペンタエリスリトールペンタアクリレート35部、多官能(メタ)アクリル化合物(B)であるジペンタエリスリトールヘキサアクリレート17.8部とジトリメチロールプロパンテトラアクリレート20部、重合禁止剤としてターシャリーブチルヒドロキノン0.2部を入れ、撹拌しながら100℃で5時間反応させた。次いで、水酸基含有ポリエステル樹脂(a1)である樹脂1Aを20部入れ、さらに110℃で5時間反応させ樹脂組成物1Aを得た。
(Production Example 1A)
7 parts of toluene-2,4-diisocyanate, which is the isocyanate compound (a2), and the hydroxyl group-containing (meth)acrylic compound (a3) are placed in a four-necked flask equipped with a stirrer, a condenser, a thermometer, and a gas inlet tube. 35 parts of dipentaerythritol pentaacrylate, 17.8 parts of dipentaerythritol hexaacrylate and 20 parts of ditrimethylolpropane tetraacrylate as a polyfunctional (meth)acrylic compound (B), 0.2 parts of tertiary butyl hydroquinone as a polymerization inhibitor was added and reacted at 100° C. for 5 hours while stirring. Then, 20 parts of Resin 1A, which is a hydroxyl group-containing polyester resin (a1), was added and reacted at 110° C. for 5 hours to obtain Resin Composition 1A.
(製造例2A~28A)
 表5の組成に従って、各原料を変更した以外は製造例1Aと同様にして樹脂組成物2A~28Aを得た。
(Production Examples 2A to 28A)
According to the composition of Table 5, resin compositions 2A to 28A were obtained in the same manner as in Production Example 1A except that each raw material was changed.
(製造例29A)
 撹拌機、冷却器、温度計、ガス導入管を備えた4つ口フラスコ内に、水酸基含有ポリエステル樹脂(a1)である樹脂2Aを25部、多官能(メタ)アクリル化合物(B)であるジペンタエリスリトールヘキサアクリレート53.4部とジトリメチロールプロパンテトラアクリレート20部、重合禁止剤としてターシャリーブチルヒドロキノン0.2部を入れ、撹拌しながら100℃で1時間溶解させた。次いで、イソシアネート化合物(a2)であるトルエン-2,4-ジイソシアネート1.4部を入れ、110℃で5時間反応させ樹脂組成物29Aを得た。
(Production Example 29A)
In a four-necked flask equipped with a stirrer, a cooler, a thermometer, and a gas inlet tube, 25 parts of resin 2A, which is a hydroxyl group-containing polyester resin (a1), and difunctional (meth)acrylic compound (B) are added. 53.4 parts of pentaerythritol hexaacrylate, 20 parts of ditrimethylolpropane tetraacrylate, and 0.2 parts of tert-butyl hydroquinone as a polymerization inhibitor were added and dissolved at 100° C. for 1 hour while stirring. Then, 1.4 parts of toluene-2,4-diisocyanate, which is the isocyanate compound (a2), was added and reacted at 110° C. for 5 hours to obtain resin composition 29A.
(製造例30A、31A)
 表5の組成に従って、各原料を変更した以外は製造例29Aと同様にして樹脂組成物30A、31Aを得た。
(Production Examples 30A and 31A)
According to the composition of Table 5, resin compositions 30A and 31A were obtained in the same manner as in Production Example 29A, except that each raw material was changed.
(製造例32A)
 撹拌機、冷却器、温度計、ガス導入管を備えた4つ口フラスコ内に、水酸基含有ポリエステル樹脂(a1)である樹脂2Aを30部、多官能(メタ)アクリル化合物(B)であるジペンタエリスリトールヘキサアクリレート49.8部とジトリメチロールプロパンテトラアクリレート20部、重合禁止剤としてターシャリーブチルヒドロキノン0.2部を入れ、撹拌しながら100℃で1時間溶解させ樹脂組成物32Aを得た。
(Production Example 32A)
In a four-necked flask equipped with a stirrer, a cooler, a thermometer, and a gas inlet tube, 30 parts of resin 2A, which is a hydroxyl group-containing polyester resin (a1), and difunctional (meth)acrylic compound (B) are added. 49.8 parts of pentaerythritol hexaacrylate, 20 parts of ditrimethylolpropane tetraacrylate, and 0.2 parts of tert-butyl hydroquinone as a polymerization inhibitor were added and dissolved at 100° C. for 1 hour with stirring to obtain resin composition 32A.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
(実施例1A~24A、比較例1A~8A)
 表6の組成に従って、樹脂組成物1A~32Aと開始剤を混合することで実施例1A~24A及び比較例1A~8Aのサンプルを得た。得られたサンプルのUV硬化膜を作製しMEK(メチルエチルケトン)ラビング試験による評価を行い、その結果をあわせて表6に示す。
(Examples 1A to 24A, Comparative Examples 1A to 8A)
Samples of Examples 1A-24A and Comparative Examples 1A-8A were obtained by mixing resin compositions 1A-32A and an initiator according to the compositions in Table 6. A UV cured film of the obtained sample was prepared and evaluated by MEK (methyl ethyl ketone) rubbing test.
<MEKラビング試験>
 MEKラビングは、コロナ処理を施したPET基材(三菱化学株式会社製 A-PETシート ノバクリアー A2012 厚み0.25mm)へRIテスター(簡易展色機)を用いてMEKラビング用サンプルを塗工し、メタルハライドランプ(出力:96W/cm、ランプ距離:10cm、コンベア速度:100m/min、通過回数:1回)を用いて硬化させた。MEKを染み込ませた綿棒でUV硬化膜を往復して擦り、UV硬化膜が傷付いたときの綿棒の往復回数から判断した。3以上が実用レベルである。
(評価基準)
4:100回以上
3:100回未満50以上
2:50回未満25回以上
1:25回未満
<MEK rubbing test>
MEK rubbing is performed by applying a sample for MEK rubbing to a corona-treated PET substrate (A-PET sheet Novaclear A2012, thickness 0.25 mm manufactured by Mitsubishi Chemical Corporation) using an RI tester (simple color display machine), Curing was performed using a metal halide lamp (output: 96 W/cm, lamp distance: 10 cm, conveyor speed: 100 m/min, number of passages: 1 time). A cotton swab impregnated with MEK was reciprocally rubbed against the UV cured film, and the number of reciprocations of the cotton swab when the UV cured film was damaged was judged. 3 or more is a practical level.
(Evaluation criteria)
4: 100 times or more and 3: less than 100 times 50 times or more and less than 2: 50 times or more 25 times or more and less than 1: 25 times
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1A~24Aより、本願発明の樹脂組成物はMEKラビングに対して優れることがわかった。 From Examples 1A to 24A, it was found that the resin composition of the present invention is superior to MEK rubbing.
(実施例25A~48A、比較例11A~18A)
 表7の組成に従って、実施例25A~48A及び比較例11A~18Aの活性エネルギー線硬化型インキを三本ロールミルにて練肉することによって得た。得られた活性エネルギー線硬化型インキ組成物の「粘度」及び「流動性」を測定し、印刷物の「ドットゲイン」及び印刷機上での、印刷中のインキ壺にてインキが供給ローラーに掻き取られない現象「インキ壺逃げ(ink backing away)」を調べた。その結果をあわせて表7に示す。
(Examples 25A to 48A, Comparative Examples 11A to 18A)
According to the compositions in Table 7, active energy ray-curable inks of Examples 25A to 48A and Comparative Examples 11A to 18A were kneaded using a three-roll mill. The "viscosity" and "fluidity" of the obtained active energy ray-curable ink composition were measured, and the "dot gain" of the printed matter and the ink being scraped by the supply roller at the ink fountain during printing on the printing machine were measured. The phenomenon of "ink backing away" was investigated. The results are also shown in Table 7.
<粘度の測定方法>
 粘度は、ThermoFisherScientific株式会社製粘弾性測定装置(HAAKE RheoStress6000)を使用し、測定温度25℃、コーンプレート(直径:20mm、傾斜角:0.5°)の条件で測定した。
<Method for measuring viscosity>
The viscosity was measured using a viscoelasticity measuring device (HAAKE RheoStress6000) manufactured by ThermoFisher Scientific Co., Ltd. under the conditions of a measurement temperature of 25° C. and a cone plate (diameter: 20 mm, inclination angle: 0.5°).
<流動性の測定方法>
 インキ2.1mlを半球状の窪みのついた金属板に入れ、2分間静置させた後、60度に傾け10分間で流れた長さを測定し、以下の評価基準に基づいて評価を行った。値が高いほどインキのしまりが少なく、流動性が良好であることを示す。3以上が実用レベルである。
(評価基準)
4:100mm以上
3:100mm未満~75mm以上
2:75mm未満~50mm以上
1:50mm未満
<Method for measuring fluidity>
2.1 ml of ink was placed in a metal plate with a hemispherical depression, allowed to stand for 2 minutes, tilted at 60 degrees, measured the length of flow in 10 minutes, and evaluated based on the following evaluation criteria. rice field. A higher value indicates less ink tightness and better fluidity. 3 or more is a practical level.
(Evaluation criteria)
4: 100 mm or more and 3: 75 mm or more and less than 100 mm 2: 50 mm or more and less than 1: 50 mm
<印刷物のドットゲイン評価方法>
 実機のオフセット枚葉印刷機LITHRONE L426(株式会社小森コーポレーション)にて印刷を10000枚/時間の速度で行い、版面上の50%網点が5000枚印刷終了時の印刷物でどれだけ膨張したか(ドットゲイン)をGretagMacbeth社製SpectroEyeを用いて測定した。3以上が実用レベルである。
(評価基準)
3:ドットゲイン10%以上
2:ドットゲイン10%未満8%以上
1:ドットゲイン8%未満
<Method for evaluating dot gain on printed matter>
Printing was performed at a speed of 10,000 sheets/hour using an actual sheet-fed offset printing machine LITHRONE L426 (Komori Corporation), and how much the 50% halftone dot on the plate expanded in the printed matter after printing 5,000 sheets ( dot gain) was measured using SpectroEye manufactured by GretagMacbeth. 3 or more is a practical level.
(Evaluation criteria)
3: Dot gain 10% or more 2: Dot gain less than 10% 8% or more 1: Dot gain less than 8%
<インキ壺逃げの評価方法>
 上記印刷条件にて印刷を行い、「インキ壺逃げ」トラブル発生の有無を観察した。3以上が実用レベルである。
(評価基準)
4:20分以上発生しない
3:20分未満10分以上発生しない
2:10分未満5分以上発生しない
1:5分未満で発生する
<Evaluation method for ink fountain escape>
Printing was performed under the above printing conditions, and the presence or absence of occurrence of the "ink fountain escape" trouble was observed. 3 or more is a practical level.
(Evaluation criteria)
4: Does not occur for 20 minutes or more 3: Does not occur for less than 20 minutes or more than 10 minutes 2: Does not occur for less than 10 minutes or more than 5 minutes 1: Occurs for less than 5 minutes
<硬化性の評価方法>
 硬化性は、PEコート紙へRIテスター(簡易展色機)を用いてインキを1g/mの塗布量で展色し、メタルハライドランプ(アイグラフィックス株式会社製、出力:96W/cm、ランプ距離:10cm)を用いてコンベア速度を変えて(80、100、120m/分)硬化させ、綿布で擦りインキ塗膜の表面状態を評価した。2以上が実用レベルである。
(評価基準)
4:全く傷無し
3:やや傷有り
2:傷有り
1:塗膜無し
<Curability evaluation method>
The curability was evaluated by spreading the ink on PE-coated paper using an RI tester (simple color development machine) at a coating amount of 1 g/m 2 , and testing it with a metal halide lamp (manufactured by Eye Graphics Co., Ltd., output: 96 W/cm, lamp Distance: 10 cm) and varying conveyor speeds (80, 100, 120 m/min) to cure and evaluate the surface condition of the ink coating by rubbing with a cotton cloth. 2 or more is a practical level.
(Evaluation criteria)
4: No scratches at all 3: Slightly scratched 2: Scratched 1: No coating film
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
 実施例25A~48Aは、比較例11A~20Aのインキよりも硬化性と流動性に優れており、印刷時のトラブルを解消できる活性エネルギー線硬化型インキを得ることができることが分かった。 Examples 25A to 48A are superior to the inks of Comparative Examples 11A to 20A in curability and fluidity, and it was found that active energy ray-curable inks capable of solving problems during printing can be obtained.
<実験例3>
(製造例1B)
 撹拌機、ディーンスターク管、温度計、ガス導入管を備えた4つ口セパラブルフラスコ内に原料としてグリセリン92.1部、無水マレイン酸49部を入れ、撹拌しながら加熱し180~200℃に保持した。反応の進行に伴い生成する縮合水を系外へ除きながら反応を行い、理論脱水量に達したところで反応を終了し水酸基含有ポリエステル樹脂であるポリエステル化合物132部を得た。
 別の撹拌機、温度計、ガス導入管を備えたフラスコにてアロニックスM400(DPHA(ジペンタエリスリトールヘキサアクリレート)55%とDPPA(ジペンタエリスリトールペンタアクリレート)45%の混合物)2330部にトリレンジイソシアネート348部、重合禁止剤としてメトキノン1.3部を加えて、乾燥空気気流下110℃で2時間保持することで、TDI-アロニックスM400反応物を得た。そこに上で合成したポリエステル化合物132部を加え乾燥空気気流下110℃で4時間保持することで、活性エネルギー線硬化性分散剤1B(分散剤1B)を得た。
<Experimental example 3>
(Production Example 1B)
92.1 parts of glycerin and 49 parts of maleic anhydride were placed as raw materials in a four-necked separable flask equipped with a stirrer, Dean-Stark tube, thermometer, and gas inlet tube, and heated with stirring to 180-200°C. held. The reaction was carried out while condensed water generated with the progress of the reaction was removed out of the system, and the reaction was terminated when the theoretical amount of dehydration was reached to obtain 132 parts of a polyester compound as a hydroxyl group-containing polyester resin.
Tolylene diisocyanate was added to 2330 parts of Aronix M400 (mixture of 55% DPHA (dipentaerythritol hexaacrylate) and 45% DPPA (dipentaerythritol pentaacrylate)) in a flask equipped with a separate stirrer, thermometer and gas inlet tube. 348 parts and 1.3 parts of methoquinone as a polymerization inhibitor were added, and the mixture was maintained at 110° C. for 2 hours under a stream of dry air to obtain a TDI-Aronix M400 reactant. 132 parts of the polyester compound synthesized above was added thereto, and the mixture was kept at 110° C. for 4 hours under a stream of dry air to obtain an active energy ray-curable dispersant 1B (dispersant 1B).
(製造例2B)
 撹拌機、温度計、ガス導入管を備えたセパラブルフラスコに製造例1Bで得られた活性エネルギー線硬化顔料分散剤1Bの組成物2810部及びジブチルアミン273.1部を加え、80℃に4時間保持することで、活性エネルギー線硬化顔料分散剤1Bの組成物中に含まれるアクリロイル基の10%当量分にジブチルアミンをマイケル付加した、活性エネルギー線硬化性分散剤2B(分散剤2B)を得た。
(Production Example 2B)
2810 parts of the active energy ray-curable pigment dispersant 1B composition obtained in Production Example 1B and 273.1 parts of dibutylamine were added to a separable flask equipped with a stirrer, a thermometer, and a gas inlet tube, and heated to 80°C for 4 hours. By holding for a period of time, active energy ray-curable dispersant 2B (dispersant 2B) obtained by Michael-addition of dibutylamine to 10% equivalent of acryloyl groups contained in the composition of active energy ray-curable pigment dispersant 1B. Obtained.
(製造例3B)
 撹拌機、温度計、ガス導入管を備えたセパラブルフラスコに製造例1Bで得られた活性エネルギー線硬化顔料分散剤1Bの組成物2810部及びジプロピルアミン212.5部を加え、80℃に4時間保持することで、活性エネルギー線硬化顔料分散剤1Bの組成物中に含まれるアクリロイル基の10%当量分にジプロピルアミンをマイケル付加した、活性エネルギー線硬化性分散剤3B(分散剤3B)を得た。
(Production Example 3B)
2810 parts of the active energy ray-curable pigment dispersant 1B composition obtained in Production Example 1B and 212.5 parts of dipropylamine were added to a separable flask equipped with a stirrer, a thermometer, and a gas inlet tube, and the mixture was heated to 80°C. By holding for 4 hours, active energy ray-curable dispersant 3B (dispersant 3B ).
(製造例4B)
 撹拌機、ディーンスターク管、温度計、ガス導入管を備えた4つ口セパラブルフラスコ内に原料としてグリセリン92.1部、無水マレイン酸49部を入れ、撹拌しながら加熱し180~200℃に保持した。反応の進行に伴い生成する縮合水を系外へ除きながら反応を行い、理論脱水量に達したところで反応を終了し水酸基含有ポリエステル樹脂であるポリエステル化合物132部を得た。
 別の撹拌機、温度計、ガス導入管を備えたフラスコにて4-ヒドロキシブチルアクリレート288.4部にトリレンジイソシアネート348部、重合禁止剤としてメトキノン0.3部を加えて、乾燥空気気流下110℃で2時間保持することで、TDI-4ヒドロキシブチルアクリレート反応物を得た。そこに上で合成したポリエステル化合物132部を加え乾燥空気気流下110℃で4時間保持することで、活性エネルギー線硬化性分散剤4B(分散剤4B)を得た。
(Production Example 4B)
92.1 parts of glycerin and 49 parts of maleic anhydride were placed as raw materials in a four-necked separable flask equipped with a stirrer, Dean-Stark tube, thermometer, and gas inlet tube, and heated with stirring to 180-200°C. held. The reaction was carried out while condensed water generated with the progress of the reaction was removed out of the system, and the reaction was terminated when the theoretical amount of dehydration was reached to obtain 132 parts of a polyester compound as a hydroxyl group-containing polyester resin.
348 parts of tolylene diisocyanate and 0.3 parts of methoquinone as a polymerization inhibitor were added to 288.4 parts of 4-hydroxybutyl acrylate in a flask equipped with another stirrer, thermometer, and gas inlet tube, and the mixture was stirred under dry air flow. A TDI-4 hydroxybutyl acrylate reactant was obtained by holding at 110° C. for 2 hours. 132 parts of the polyester compound synthesized above was added thereto, and the mixture was held at 110° C. for 4 hours under a stream of dry air to obtain an active energy ray-curable dispersant 4B (dispersant 4B).
(製造例5B~7B、比較製造例1B)
 使用する原料及び配合量を表8に従って変更した以外は、製造例1Bで記載した方法に準じて、分散剤5B~7B、及び比較分散剤1Bを得た。なお、表8中の「3価以上のアルコール/全アルコール[mol%]」は、各原料の重量部をそれぞれの分子量で割りモル数に変換し、3価以上のアルコールのモル数を全アルコールのモル数で除したものである。
(Production Examples 5B to 7B, Comparative Production Example 1B)
Dispersants 5B to 7B and Comparative Dispersant 1B were obtained according to the method described in Production Example 1B, except that the raw materials used and the blending amounts were changed according to Table 8. In addition, "trihydric or higher alcohol / total alcohol [mol%]" in Table 8 is converted to the number of moles by dividing the weight part of each raw material by the respective molecular weight, and the number of moles of trihydric or higher alcohol is the total alcohol is divided by the number of moles of
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例1B)
(顔料分散体の作製、及びその顔料分散体を使ったインキ組成物の作製)
 製造例1Bで得られた活性エネルギー線硬化性分散剤1Bを68部に、黄顔料「TCH-1407」100部、UVモノマーの「Miramer M3130」232部を混合し、3ロールミルにてグラインドゲージで5μm以下となるまで分散し、活性エネルギー線硬化型顔料分散体1B(顔料分散体1B)を得た。
 さらに得られた活性エネルギー硬化型顔料分散体1Bを72部に、光重合開始剤として、OmniradTPOを15部、活性エネルギー線硬化モノマーとしてMiramer M3130を13部加えてディスパーで加熱しながらよく撹拌して開始剤を溶解させてインキ組成物1Bを作製した。
(Example 1B)
(Preparation of Pigment Dispersion and Preparation of Ink Composition Using the Pigment Dispersion)
68 parts of the active energy ray-curable dispersant 1B obtained in Production Example 1B, 100 parts of a yellow pigment "TCH-1407", and 232 parts of a UV monomer "Miramer M3130" are mixed, and a grind gauge is used on a 3-roll mill. It was dispersed until it became 5 μm or less to obtain an active energy ray-curable pigment dispersion 1B (pigment dispersion 1B).
Further, to 72 parts of the obtained active energy curable pigment dispersion 1B, 15 parts of Omnirad TPO as a photopolymerization initiator and 13 parts of Miramer M3130 as an active energy ray curable monomer were added and well stirred while heating with a disper. An ink composition 1B was prepared by dissolving the initiator.
(実施例2B、3B、5B~7B)
 使用する分散剤、光重合開始剤、活性エネルギー線硬化モノマーの種類、配合量を表9に従って変更した以外は、実施例1Bで記載した方法と同様にして、顔料分散体2B、3B、5B~7B及びインキ組成物2B、3B、5B~7Bを作製した。
(Examples 2B, 3B, 5B-7B)
Pigment Dispersions 2B, 3B, 5B and 2B were prepared in the same manner as in Example 1B, except that the dispersant, photopolymerization initiator, active energy ray-curable monomer type, and blending amount used were changed according to Table 9. 7B and ink compositions 2B, 3B, 5B-7B were made.
(実施例4B)
 製造例4Bで得られた顔料分散剤4Bを34部に、黄顔料「TCH-1407」100部、UVモノマーの「Miramer M3130」266部を加えて、混合し、3ロールミルにてグラインドゲージで5μm以下となるまで分散し、顔料分散体4Bを得た。
 さらに得られた顔料分散体4Bを72部に、光重合開始剤として、OmniradTPOを15部、活性エネルギー線硬化モノマーとして「Miramer M3130」を13部加えて、ディスパーで加熱しながらよく撹拌して開始剤を溶解させてインキ組成物4Bを作製した。
(Example 4B)
34 parts of the pigment dispersant 4B obtained in Production Example 4B, 100 parts of the yellow pigment "TCH-1407", and 266 parts of the UV monomer "Miramer M3130" were added and mixed, and the grind gauge was 5 μm with a 3-roll mill. Dispersed until the following was obtained to obtain Pigment Dispersion 4B.
Further, to 72 parts of the resulting pigment dispersion 4B, 15 parts of Omnirad TPO as a photopolymerization initiator and 13 parts of "Miramer M3130" as an active energy ray-curable monomer are added, and the mixture is stirred well while being heated with a disper. Ink composition 4B was prepared by dissolving the agent.
(比較例1B~3B)
 使用する顔料分散剤、光重合開始剤、活性エネルギー線硬化モノマーの種類、配合量を表9に従って変更した以外は実施例4Bと同様にして、比較顔料分散体1B~3B、及び比較インキ組成物1B~3Bを作製した。
(Comparative Examples 1B to 3B)
Comparative pigment dispersions 1B to 3B and a comparative ink composition were prepared in the same manner as in Example 4B, except that the pigment dispersants, photopolymerization initiators, active energy ray-curable monomer types and blending amounts used were changed according to Table 9. 1B-3B were produced.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以下に、表9で使用した分散剤について以下に説明する。
・紫光UV-1700B:三菱ケミカル株式会社製 イソホロンジイソシアネート(IPDI)とジペンタエリスリトールペンタアクリレート(DPPA)を反応させた、ポリエステル骨格を持たないウレタンアクリレート
・SOLSPERS32000:Lubrizol社製 ポリエチレンイミンにラクトンを反応させた分散剤
Dispersants used in Table 9 are described below.
・Shikou UV-1700B: Mitsubishi Chemical Co., Ltd. Isophorone diisocyanate (IPDI) and dipentaerythritol pentaacrylate (DPPA) are reacted to form a urethane acrylate that does not have a polyester skeleton ・SOLSPERS32000: Lubrizol Co., Ltd. Polyethyleneimine is reacted with lactone dispersant
 得られた顔料分散体、及びインキ組成物を、以下の方法により評価を行った。結果を表9に示す。 The obtained pigment dispersion and ink composition were evaluated by the following methods. Table 9 shows the results.
[TI値]
 得られた顔料分散体を、E型粘度計(東機産業株式会社製 TVE-22型粘度計)を用いて、25℃、回転数5rpm及び20rpmでの粘度を測定した。そして、5rpmでの粘度を20rpmでの粘度で除算することによりTI値を算出した。4以上を実用上問題ないレベルであると評価する。
(評価基準)
5:1.1未満
4:1.1以上1.2未満
3:1.2以上1.3未満
2:1.3以上1.4未満
1:1.4以上
[TI value]
The viscosity of the obtained pigment dispersion was measured at 25° C. and rotation speeds of 5 rpm and 20 rpm using an E-type viscometer (TVE-22 type viscometer manufactured by Toki Sangyo Co., Ltd.). Then, the TI value was calculated by dividing the viscosity at 5 rpm by the viscosity at 20 rpm. A level of 4 or more is evaluated as a practically acceptable level.
(Evaluation criteria)
5: Less than 1.1 4: 1.1 or more and less than 1.2 3: 1.2 or more and less than 1.3 2: 1.3 or more and less than 1.4 1: 1.4 or more
[硬化性]
 硬化性については、バーコーターNo.2を用いて、被記録媒体であるコート紙上に印刷した。その後、コンベア速度を40m/分から160m/分まで、10m/分ごとに変え、LEDランプ(エアーモーションシステム株式会社製「XP-9」、照射距離10mm、出力30%)でインキ組成物を硬化させた。硬化後、インキ塗膜表面を綿棒で擦り、綿棒にインキが擦れ落ちない速度を評価した。以下の基準により判定した。4以上を実用上問題ないレベルであると評価する。
(評価基準)
5:コンベア速度85m/分以上
4:コンベア速度75m/分以上85m/分未満
3:コンベア速度65m/分以上75m/分未満
2:コンベア速度50m/分以上65m/分未満
1:コンベア速度50m/分未満
[Curability]
Bar coater no. 2 was used to print on coated paper as a recording medium. After that, the conveyor speed is changed from 40 m/min to 160 m/min by 10 m/min increments, and the ink composition is cured with an LED lamp (“XP-9” manufactured by Air Motion System Co., Ltd., irradiation distance 10 mm, output 30%). rice field. After curing, the surface of the ink coating film was rubbed with a cotton swab, and the speed at which the ink did not rub off on the cotton swab was evaluated. It was judged according to the following criteria. A level of 4 or more is evaluated as a practically acceptable level.
(Evaluation criteria)
5: Conveyor speed 85 m/min or more 4: Conveyor speed 75 m/min or more and less than 85 m/min 3: Conveyor speed 65 m/min or more and less than 75 m/min 2: Conveyor speed 50 m/min or more and less than 65 m/min 1: Conveyor speed 50 m/min less than a minute
 表9の評価結果を見ると、ポリエステル骨格を持たないウレタン系の硬化性分散剤は分散能が劣り、硬化性が無い分散剤は、分散性は良好だが硬化性が劣っており、これらの結果から、ポリエステル骨格を有する硬化性分散剤を用いて作製した顔料分散体は硬化性が従来品より優れていることがわかった。 Looking at the evaluation results in Table 9, the urethane-based curable dispersant having no polyester skeleton has poor dispersibility, and the non-curable dispersant has good dispersibility but poor curability. From these results, it was found that the pigment dispersion prepared using the curable dispersant having a polyester skeleton has better curability than the conventional product.

Claims (10)

  1.  水酸基含有ポリエステル樹脂と、イソシアネート化合物と、水酸基含有(メタ)アクリル化合物とを反応させてなる第1の樹脂、及び
     多官能(メタ)アクリル化合物
    を含有する活性エネルギー線硬化性樹脂組成物であって、
     前記水酸基含有ポリエステル樹脂が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の条件で反応させてなる樹脂であり、
     前記水酸基含有ポリエステル樹脂の水酸基価が50mgKOH/g以上である、活性エネルギー線硬化性樹脂組成物。
    A first resin obtained by reacting a hydroxyl group-containing polyester resin, an isocyanate compound, and a hydroxyl group-containing (meth)acrylic compound, and an active energy ray-curable resin composition containing a polyfunctional (meth)acrylic compound, ,
    The hydroxyl group-containing polyester resin is a resin obtained by reacting a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid under conditions where the OH/COOH molar ratio is 1.10 or more,
    An active energy ray-curable resin composition, wherein the hydroxyl group-containing polyester resin has a hydroxyl value of 50 mgKOH/g or more.
  2.  前記水酸基含有ポリエステル樹脂が、前記多価アルコール全体に対する3価以上のアルコールの量が13モル%以上の条件で反応させてなる樹脂である、請求項1に記載の活性エネルギー線硬化性樹脂組成物。 2. The active energy ray-curable resin composition according to claim 1, wherein the hydroxyl group-containing polyester resin is a resin obtained by reacting under the condition that the amount of trihydric or higher alcohol is 13 mol % or more with respect to the total polyhydric alcohol. .
  3.  前記水酸基含有ポリエステル樹脂の重量平均分子量が、250~10万である、請求項1又は2に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 1 or 2, wherein the hydroxyl group-containing polyester resin has a weight average molecular weight of 2,500,000 to 100,000.
  4.  前記3価以上のアルコールがグリセリンを含む、請求項1~3のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 3, wherein the trihydric or higher alcohol contains glycerin.
  5.  前記第1の樹脂は、前記第1の樹脂中の(メタ)アクリル基と2級アミノ基を含有する化合物とをマイケル付加反応させて得られる3級アミン構造を有する樹脂を含む、請求項1~4のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物。 2. The first resin includes a resin having a tertiary amine structure obtained by a Michael addition reaction between a compound containing a (meth)acrylic group and a secondary amino group in the first resin. 5. The active energy ray-curable resin composition according to any one of 4.
  6.  請求項1~5のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物を含む、オフセットインキ用インキ組成物。 An ink composition for offset ink, comprising the active energy ray-curable resin composition according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の活性エネルギー線硬化性樹脂組成物を含む、フレキソインキ用インキ組成物。 An ink composition for flexo ink, comprising the active energy ray-curable resin composition according to any one of claims 1 to 5.
  8.  前記水酸基含有ポリエステル樹脂の重量平均分子量が、250~3000である、請求項7に記載のフレキソインキ用インキ組成物。 The ink composition for flexographic ink according to claim 7, wherein the hydroxyl group-containing polyester resin has a weight average molecular weight of 250 to 3,000.
  9.  水酸基含有ポリエステル樹脂と、イソシアネート化合物と、水酸基含有(メタ)アクリル化合物とを反応させてなる第1の樹脂、及び
     顔料
    を含有する活性エネルギー線硬化型顔料分散体であって、
     前記水酸基含有ポリエステル樹脂が、3価以上のアルコールを含む多価アルコールと多塩基酸とを、OH/COOHモル比が1.10以上の条件で反応させてなる樹脂であり、
     前記水酸基含有ポリエステル樹脂の水酸基価が50mgKOH/g以上であり、
     前記水酸基含有ポリエステル樹脂の重量平均分子量が、250~3000である、活性エネルギー線硬化型顔料分散体。
    A first resin obtained by reacting a hydroxyl group-containing polyester resin, an isocyanate compound, and a hydroxyl group-containing (meth)acrylic compound, and an active energy ray-curable pigment dispersion containing a pigment,
    The hydroxyl group-containing polyester resin is a resin obtained by reacting a polyhydric alcohol containing a trihydric or higher alcohol and a polybasic acid under conditions where the OH/COOH molar ratio is 1.10 or more,
    The hydroxyl value of the hydroxyl-containing polyester resin is 50 mgKOH/g or more,
    An active energy ray-curable pigment dispersion, wherein the hydroxyl group-containing polyester resin has a weight average molecular weight of 250 to 3,000.
  10.  前記第1の樹脂は、前記第1の樹脂中の(メタ)アクリル基と2級アミノ基を含有する化合物とをマイケル付加反応させて得られる3級アミン構造を有する樹脂を含む、請求項9に記載の活性エネルギー線硬化型顔料分散体。
     
    10. The first resin includes a resin having a tertiary amine structure obtained by a Michael addition reaction of a compound containing a (meth)acrylic group and a secondary amino group in the first resin. The active energy ray-curable pigment dispersion according to .
PCT/JP2022/023195 2021-07-05 2022-06-08 Active-energy-ray-curable resin composition, active-energy-ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink WO2023281971A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021111773A JP2022094287A (en) 2020-12-14 2021-07-05 Active energy ray-curable resin composition, method for producing the same, and printed matter
JP2021-111773 2021-07-05
JP2021-148233 2021-09-13
JP2021148233 2021-09-13
JP2021198619A JP2023084439A (en) 2021-12-07 2021-12-07 Pigment dispersion and active energy ray-curable composition
JP2021-198619 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023281971A1 true WO2023281971A1 (en) 2023-01-12

Family

ID=84800526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023195 WO2023281971A1 (en) 2021-07-05 2022-06-08 Active-energy-ray-curable resin composition, active-energy-ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink

Country Status (1)

Country Link
WO (1) WO2023281971A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493096A (en) * 1977-09-29 1979-07-23 Union Carbide Corp Polyurethane having radiationncurable acrylate group
JPS614719A (en) * 1984-06-11 1986-01-10 ハイテク・ポリマーズ・インコーポレーテド Radiation curable acrylated polyurethane oligomer composition
JPH02202507A (en) * 1989-01-31 1990-08-10 Dainippon Ink & Chem Inc Resin composition curable with actinic energy radiation
JPH0431414A (en) * 1990-05-28 1992-02-03 Dainippon Ink & Chem Inc Actinic radiation curable resin composition for optical use
JPH04311714A (en) * 1991-04-09 1992-11-04 Nippon Paint Co Ltd Photocurable resin composition
JP2015038162A (en) * 2010-04-20 2015-02-26 日本ビー・ケミカル株式会社 Polyester resin and application of the same
JP2020090603A (en) * 2018-12-05 2020-06-11 Dic株式会社 Active energy ray-curable resin composition, printing ink and printed matter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493096A (en) * 1977-09-29 1979-07-23 Union Carbide Corp Polyurethane having radiationncurable acrylate group
JPS614719A (en) * 1984-06-11 1986-01-10 ハイテク・ポリマーズ・インコーポレーテド Radiation curable acrylated polyurethane oligomer composition
JPH02202507A (en) * 1989-01-31 1990-08-10 Dainippon Ink & Chem Inc Resin composition curable with actinic energy radiation
JPH0431414A (en) * 1990-05-28 1992-02-03 Dainippon Ink & Chem Inc Actinic radiation curable resin composition for optical use
JPH04311714A (en) * 1991-04-09 1992-11-04 Nippon Paint Co Ltd Photocurable resin composition
JP2015038162A (en) * 2010-04-20 2015-02-26 日本ビー・ケミカル株式会社 Polyester resin and application of the same
JP2020090603A (en) * 2018-12-05 2020-06-11 Dic株式会社 Active energy ray-curable resin composition, printing ink and printed matter

Similar Documents

Publication Publication Date Title
US8105679B2 (en) Actinic radiation curable jet-printing ink
JP6706413B2 (en) Rosin-modified resin, method for producing the same, varnish for active energy ray-curable lithographic printing ink, active energy ray-curable lithographic printing ink, and printed matter
JP4899430B2 (en) Active energy ray curable inkjet ink
JP4923523B2 (en) Active energy ray curable ink for ink jet
EP1792956B1 (en) Single phase aqueous energy curable compositions
JP2007056232A (en) Active energy ray-curable ink for inkjet
JP7207996B2 (en) Active energy ray-curable composition
CN108884345B (en) Curable composition for inkjet, cured product, and printed wiring board
JP6931989B2 (en) Active energy ray-curable offset ink composition
WO2016063625A1 (en) Active energy ray-curable composition, active energy ray-curable printing ink using same, and print
JP2002167537A (en) Ultraviolet-curing ink-jet ink composition
JP6893439B2 (en) Active energy ray-curable offset ink composition and printed matter using it
CN110945044B (en) Composition and printing ink
JP2016199727A (en) Polyester resin, lithographic printing ink and printed matter
CN115135730B (en) Active energy ray-curable lithographic printing ink and printed matter
JP7173781B2 (en) Actinic energy ray-curable offset ink and printed matter
JP2009241063A (en) Dispersant having active energy ray-curable unsaturated group, pigment dispersion composition, active energy ray-curable ink and active energy ray-curable coating material
WO2023281971A1 (en) Active-energy-ray-curable resin composition, active-energy-ray-curable pigment dispersion, ink composition for offset ink, and ink composition for flexographic ink
JP2023041621A (en) Active energy ray-curable resin composition, ink and printed matter
JP7342683B2 (en) Active energy ray-curable ink composition and its printed matter
JP4934047B2 (en) White ink composition for photocurable ink jet
JP2023084439A (en) Pigment dispersion and active energy ray-curable composition
JP5000522B2 (en) White ink composition for photocurable ink jet
JP7428842B1 (en) Active energy ray curable ink, its manufacturing method, and printed matter
WO2015186598A1 (en) Active energy ray curable composition, active energy ray curable printing ink using same, and print

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE