WO2023281733A1 - Underwater optical communication system - Google Patents

Underwater optical communication system Download PDF

Info

Publication number
WO2023281733A1
WO2023281733A1 PCT/JP2021/025964 JP2021025964W WO2023281733A1 WO 2023281733 A1 WO2023281733 A1 WO 2023281733A1 JP 2021025964 W JP2021025964 W JP 2021025964W WO 2023281733 A1 WO2023281733 A1 WO 2023281733A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical communication
light
underwater
communication device
communication
Prior art date
Application number
PCT/JP2021/025964
Other languages
French (fr)
Japanese (ja)
Inventor
和真 大脇
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2021/025964 priority Critical patent/WO2023281733A1/en
Priority to TW111119038A priority patent/TW202306338A/en
Publication of WO2023281733A1 publication Critical patent/WO2023281733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to an underwater optical communication system that performs optical communication underwater.
  • An underwater wireless communication device includes a laser light source that emits visible laser light and a light receiving section that receives the laser light emitted from the laser light source.
  • a first underwater optical communication device provided in a moving body that navigates underwater and a second underwater optical communication device provided in a base station fixedly installed underwater.
  • wireless communication is performed by mutually transmitting communication light between them (for example, Patent Documents 1 and 2).
  • visible light Compared to sound waves, visible light has a relatively small attenuation in water. Since visible light has a higher propagation speed and frequency than sound waves, optical wireless communication using visible light can achieve a high communication speed of several tens of Mbps. Therefore, visible light wireless communication enables high-speed communication of large amounts of information such as moving images.
  • the moving body 101 when the moving body 101 is sailing underwater so as to turn its back to the base station 103 in which the underwater optical communication device 104 is arranged, the moving body 101 will move to the underwater optical communication device 102. can not be used to perform optical communication with the underwater optical communication device 104 of the base station 103 .
  • FIG. A configuration in which TL can be transmitted is conceivable.
  • increasing the number of underwater optical communication devices 102 mounted on the moving body 101 will inevitably increase the size and weight of the moving body 101 .
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an underwater optical communication system capable of communicating over a wider range while avoiding the addition of underwater optical communication devices.
  • one aspect of the present invention is a first optical communication device installed on a fixed structure that is fixed underwater, and a second optical communication device installed on a moving object that moves underwater.
  • each of the first optical communication device and the second optical communication device includes an optical transmitter that transmits laser light and a light transmitter that receives the laser light and an optical receiver, wherein the underwater optical communication system receives at least part of the laser light emitted from the optical transmitter included in one of the first optical communication device and the second optical communication device.
  • the optical communication device further includes an optical reflection unit that reflects and causes the optical reception unit provided in the other of the first optical communication device and the second optical communication device to receive the reflected laser light.
  • an underwater optical communication system a first optical communication device arranged on a fixed structure fixed underwater, and a second optical communication device arranged on a moving body moving underwater.
  • the light reflecting section reflects at least part of the laser light transmitted from the light transmitting section provided in one of the first optical communication device and the second optical communication device, and transmits the reflected laser light to the first optical communication device.
  • An optical receiving unit provided in the other of the optical communication device and the second optical communication device is caused to receive the signal.
  • the light reflector by using the light reflector, not only direct underwater optical communication in which the laser light transmitted from the light transmitter is directly received by the light receiver, but also It also enables indirect underwater optical communication in which a laser beam transmitted and reflected by a light reflecting portion is received by a light receiving portion.
  • indirect underwater optical communication by reflecting the laser beam emitted from the light transmitting part into the water with the light reflecting part, the traveling direction of the laser beam is changed to a direction different from the direction in which the laser beam was originally emitted. can.
  • the reflected laser light can be transmitted to the side or rear of the moving body.
  • indirect underwater optical communication can be used even in a range where direct underwater optical communication is impossible for a moving object that is limited in the number and size of the second optical communication device that can be mounted. If so, communication becomes possible. Therefore, by enabling indirect communication in which the light reflected by the light reflecting portion is received, the communicable range of the mobile body can be dramatically expanded without adding a second optical communication device to the mobile body.
  • FIG. 1 is a front view illustrating a schematic configuration of an underwater optical communication system according to a first embodiment
  • FIG. 1 is a functional block diagram illustrating the configuration of an underwater optical communication system according to a first embodiment
  • FIG. 4 is a front view for explaining a state in which underwater optical communication is performed by direct communication in the first embodiment
  • FIG. 4 is a front view for explaining a state in which underwater optical communication is performed by indirect communication in the first embodiment
  • FIG. 4 is a plan view for explaining a state in which underwater optical communication is performed by indirect communication in the first embodiment
  • FIG. 10 is a vertical cross-sectional view illustrating a schematic configuration of an underwater optical communication system according to a second embodiment
  • FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication is performed by direct communication in the second embodiment;
  • FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication by direct communication is blocked by a shield in the second embodiment;
  • FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication is performed by indirect communication in the second embodiment;
  • FIG. 10 is a plan view showing a state in which underwater optical communication is performed by indirect communication in a modified example;
  • FIG. 11 is a front view showing a state in which underwater optical communication is performed by indirect communication in a modified example;
  • FIG. 10 is a diagram showing a state in which underwater optical communication is performed and its problems in a conventional configuration; It is a figure which shows the problem in a conventional form.
  • FIG. 1 A schematic configuration of an underwater optical communication system 50 according to the first embodiment will be described with reference to FIG. 1 and the like.
  • a communication system that performs underwater optical communication in the deep sea or the bottom of a lake will be described as an example.
  • two horizontal directions orthogonal to each other are defined as the x direction and the y direction, respectively.
  • the x-direction corresponds to the left-right horizontal direction in the drawing.
  • the vertical direction be the z-direction.
  • an underwater optical communication system 50 includes a first optical communication device 1, a second optical communication device 2, and a reflector 11 in an underwater WA, for example, underwater.
  • the first optical communication device 1 is arranged on a fixed structure 51 installed on the bottom of the water WB.
  • An example of the fixed structure 51 is an observation base station.
  • the fixed structure 51 is connected to an external station (not shown) via a cable. Examples of external stations include ships located on water or ground bases located on the ground.
  • the second optical communication device 2 is installed on a moving body 52 that moves in the underwater WA.
  • the moving body 52 moves through the underwater WA to inspect an underwater structure such as a pipeline.
  • Examples of the moving body 52 include an ROV (Remotely Operated Vehicle) or an AUV (Autonomous Underwater Vehicle).
  • the first optical communication device 1 includes a laser light source 3, an optical receiver 5, and a controller 7.
  • the second optical communication device 2 includes a laser light source 4 , an optical receiver 6 , a controller 8 and an observation device 9 .
  • the laser light source 3 and the laser light source 4 each have a semiconductor laser and a collimator lens, and the laser light generated by the semiconductor laser is adjusted by the collimator lens and emitted to the underwater WA as communication light TL containing communication information. As shown in FIG. 1, the communication light TL passes through the windows WD provided in each of the first optical communication device 1 and the second optical communication device 2 and is emitted to the underwater WA.
  • the laser light source 3 and the laser light source 4 correspond to the light transmitting section in the present invention.
  • the optical receiver 5 receives laser light emitted from the laser light source 4 provided in the second optical communication device 2 .
  • the control unit 7 includes a central processing unit (CPU: Central Processing Unit) and the like, and performs various processes on information contained in the laser light received by the optical receiving unit 5, and also controls the operation of the first optical communication device. 1, and controls the components provided in 1. That is, the control unit 7 generates communication information such as image information or moving image information by performing various types of information processing on the signal of the communication light TL that has undergone photoelectric conversion and amplification processing.
  • CPU Central Processing Unit
  • the optical receiver 6 receives laser light emitted from the laser light source 3 provided in the first optical communication device 1 .
  • the control unit 8 performs various processes on the information contained in the laser beam received by the optical receiving unit 6 to generate communication information, and also performs overall control of each component provided in the second optical communication device 2 .
  • the observation device 9 is, for example, an underwater camera, observes an observation target in the underwater WA, and acquires information such as images or moving images.
  • the optical receiver 5 and the optical receiver 6 each have a light receiving element.
  • Each of the light-receiving elements is configured to receive light, for example, communication light TL, and perform photoelectric conversion. Examples of light receiving elements include photomultiplier tubes and avalanche photodiodes.
  • the light-receiving element is arranged inside a protective container, which is a sealed water-pressure-resistant container, and is isolated from the external environment such as an underwater WA.
  • the moving body 52 is a relatively small structure, and is equipped with one second optical communication device 2 as shown in FIG.
  • the second optical communication device 2 is provided with a window portion WD and the like so that the communication light TL can be emitted toward the traveling direction FW of the moving object 52 .
  • the fixed structure 51 is a relatively large structure, and is capable of mounting a plurality of first optical communication devices 1 thereon.
  • the plurality of first optical communication devices 1 mounted on the fixed structure 51 are arranged so that their windows WD face different directions. Since the respective windows WD face different directions, light incident on the fixed structure 51 from various directions is received by any one of the first optical communication devices 1 . Further, by using any one of the first optical communication devices 1, the communication light TL can be emitted from the fixed structure 51 in various directions.
  • the spread angle ⁇ of the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2 is, for example, approximately 40°.
  • the reflector 11 is installed on the bottom of the water WB and reflects the communication light TL.
  • the material forming the reflector 11 include a reflecting mirror or a prism.
  • the reflector 11 is a reflecting mirror, examples of the configuration include a specular reflecting mirror whose reflecting surface is a mirror surface, or a frosted glass-like scattering reflecting mirror whose reflecting surface is subjected to scattering treatment. More preferably, the reflector 11 is a scattering reflection mirror in that the reflected communication light TL is radially reflected at a wider spread angle.
  • the shape of the reflective surface that reflects light may be planar or may have a curved surface.
  • the reflector 11 is a plate-shaped member installed on the bottom of the water WB.
  • the reflector 11 corresponds to the light reflector in the invention.
  • the reflector 11 is fixedly arranged around the fixed structure 51 . Specifically, a predetermined number of reflectors 11 are arranged inside a circular area centered on the fixed structure 51 and having a radius equal to the reachable distance F of the communication light TL. The position and orientation at which the reflector 11 is arranged reflect the communication light TL emitted from one of the first optical communication device 1 and the second optical communication device 2, It is predetermined to be incident on the other of the second optical communication devices 2 .
  • the optical receiver 5 provided in the first optical communication device 1 not only directly receives the communication light TL emitted from the laser light source 4, but also receives the communication light TL after it is emitted from the laser light source 4 and reflected by the reflector 11. It is configured to be able to receive the communication light TL (reflected communication light TLR).
  • the optical receiver 6 provided in the second optical communication device 2 not only directly receives the communication light TL emitted from the laser light source 3, but also receives the communication light TL after it is emitted from the laser light source 3 with a reflector 11. It is configured to receive reflected communication light TL (reflected communication light TLR).
  • the first optical communication device 1 and the second optical communication device 2 not only directly transmit and receive the communication light TL to each other, but also indirectly transmit and receive the communication light TL via the reflector 11. It is configured to perform underwater optical wireless communication. By previously adjusting the direction in which the light reflecting surface of the reflector 11 faces, the direction in which the reflected communication light TLR travels can be arbitrarily determined.
  • ⁇ Usage example of the first embodiment> a usage example of the underwater optical communication system 50 according to the first embodiment will be described.
  • the second optical communication device 2 transmits laser light to the first optical communication device 1 will be described as an example. That is, the moving object 52 navigates in the underwater WA along the traveling direction FW, performs inspection by the observation device 9, and acquires inspection information such as moving images.
  • the second optical communication device 2 converts the obtained inspection information into communication light TL, and communicates the communication light TL to the first optical communication device 1 provided on the fixed structure 51 .
  • FIG. 3 is a diagram showing a state in which the underwater optical communication system 50 performs underwater optical wireless communication by direct communication.
  • the window WD of the first optical communication device 1 and the window WD of the second optical communication device 2 are opposed to each other.
  • the communication light TL emitted from the laser light source 4 provided in the second optical communication device 2 travels straight toward the first optical communication device 1 and enters the first optical communication device 1 directly. can be done. That is, the communication light TL emitted from the laser light source 4 is directly received by the light receiving element of the light receiving section 5 and converted into communication information by information processing such as photoelectric conversion.
  • underwater optical wireless communication can be performed by direct communication.
  • underwater optical wireless communication cannot be performed by direct communication. That is, when the fixed structure 51 exists behind the moving body 52 (in the direction opposite to the traveling direction FW), the second optical communication device 2 cannot emit the communication light TL behind the moving body 52 . Therefore, the communication light TL emitted from the second optical communication device 2 cannot be directly received by the first optical communication device 1 .
  • FIG. 4 is a diagram showing a state in which the underwater optical communication system 50 performs underwater optical wireless communication by indirect communication.
  • the traveling direction FW of the moving body 52 is the left direction, and the fixed structure 51 is positioned behind the moving body 52 .
  • the reflector 11 is present in the traveling direction FW of the moving body 52 . Therefore, the moving body 52 emits the communication light TL from the laser light source 4 of the second optical communication device 2 toward the reflector 11 .
  • the communication light TL emitted from the window WD of the second optical communication device 2 to the underwater WA is reflected by the reflecting surface of the reflector 11 .
  • the orientation of the reflecting surface of the reflector 11 is set in advance so that at least part of the communication light TL reflected by the reflector 11 (reflected communication light TLR) is received by the first optical communication device 1 . . Therefore, at least part of the reflected communication light TLR enters the window of the first optical communication device 1, is received by the light receiving element of the light receiving section 5, and is converted into communication information by information processing such as photoelectric conversion.
  • the spread angle ⁇ a of the reflected communication light TLR is, for example, about 120°.
  • the reflecting material 11 is used to reflect the communication light TL.
  • the first optical communication device 1 can more reliably receive light.
  • a plurality of reflectors 11 are arranged so as to surround fixed structure 51 .
  • the communication light TL emitted from the moving body 52 is reflected by the reflector 11a, and the reflected communication light TL can be transmitted to the fixed structure 51 existing behind the moving body 52.
  • the reflected communication light TLR can be transmitted to the fixed structure 51 existing on the side of the moving body 52 .
  • the reflecting material 11 that reflects the communication light TL By arranging the reflecting material 11 that reflects the communication light TL in this way, even in a configuration in which the communication light TL is emitted only in front of the moving body 52, communication targets existing on the side or behind the moving body 52 can be detected. Underwater optical communication becomes possible with respect to the object (fixed structure 51 in this case). That is, even if the first optical communication device 1 does not exist within the reachable range of the communication light TL of the second optical communication device 2, If the reflector 11 exists, underwater optical communication is possible between the first optical communication device 1 and the second optical communication device 2 . Therefore, while reducing the number of the second optical communication devices 2 mounted on the moving body 52, it is possible to dramatically expand the range in which the moving body 52 can perform underwater optical communication around the moving body 52. .
  • the reflector 11 can always reflect the communication light TL if it is made of a material that reflects light. That is, there is no need to supply power to the reflector 11 when the underwater optical communication system 50 performs indirect underwater optical communication using the reflected communication light TLR. Moreover, it is not necessary to connect a wired communication device such as a communication cable to the reflector 11 . Therefore, the communicable range of the moving body 52 can be expanded while simplifying the underwater optical communication system 50 . Furthermore, since it is possible to avoid a situation in which indirect underwater optical communication is interrupted due to troubles in the power supply or wired communication equipment, it is possible to carry out continuous underwater optical communication more reliably.
  • the number of reflectors 11 arranged in the underwater optical communication system 50 and the positions at which the reflectors 11 are arranged may be appropriately set according to the spread angle ⁇ of the communication light TL.
  • the communication light TL emitted from the moving body 52 is determined regardless of the position and traveling direction FW of the moving body 52 in the underwater WA.
  • At least one reflector 11 can be more reliably present within the reachable range of .
  • the communicable range of the mobile body 52 can be expanded.
  • the movable body 52 can be fixed regardless of the traveling direction FW of the movable body 52.
  • Underwater optical wireless communication can be performed with the structure 51 .
  • at least one reflector 11 is surely within the reach of the communication light TL emitted from the moving body 52. exists in Therefore, the communication light TL emitted from the second optical communication device 2 is reflected by the reflector 11 , and the reflected communication light TLR can be reliably transmitted to the fixed structure 51 .
  • the distance between the first optical communication device 1 arranged on the fixed structure 51 and the second optical communication device 2 arranged on the moving body 52 is can perform indirect underwater optical wireless communication. That is, the communication light TL emitted from one of the first optical communication device 1 and the second optical communication device 2 is reflected by the reflector 11 . The other of the first optical communication device 1 and the second optical communication device 2 receives the communication light TL reflected by the reflector 11 to obtain communication information related to the communication light TL.
  • the first optical communication device 1 and the second optical communication device 2 not only receive the communication light TL directly emitted toward themselves, but also receive the communication light TL reflected by the reflector 11, i.e., reflected communication. configured to receive an optical TLR;
  • the size of the mobile body 52 is restricted to a certain size or less due to the inspection environment or the like, the number and size of the second optical communication devices 2 that can be mounted on the mobile body 52 are limited. Furthermore, since the communication light TL has high directivity and a narrow spread angle, the range in which the communication light TL can be emitted from the moving object 52 is limited to a narrow range. As an example, the possible emission range of the communication light TL is limited to the front of the moving body 52 .
  • the traveling direction of the communication light TL is changed to a direction different from the direction in which the communication light TL was originally emitted. can be changed. That is, by reflecting the communication light TL emitted forward of the moving object 52 by the reflector 11, the reflected communication light TLR, which is the reflected communication light TL, can be transmitted to the side or rear of the moving object 52. can.
  • the direction in which the communication light TL travels through reflection can be arbitrarily changed according to the shape or orientation of the reflecting surface of the reflector 11 . Therefore, by enabling indirect communication by receiving the light reflected by the reflector 11, the communicable range of the mobile body 52 can be dramatically expanded without adding the second optical communication device 2 to the mobile body 52. can.
  • FIG. 6 shows a vertical sectional view
  • FIG. 7 shows a horizontal sectional view of the water storage tank 21 in which the underwater optical communication system 50A according to the second embodiment is used.
  • the water storage tank 21 has a cylindrical outer wall 23 and a column 25 . That is, the inside of the water storage tank 21 is a closed space surrounded by the outer wall 23 .
  • the inner surface of the outer wall 23 forming the closed space is configured to reflect the communication light TL emitted from the laser light source 3 or the laser light source 4 .
  • Examples of the configuration of the inner surface of the outer wall 23 include a specular reflection mirror whose reflection surface is a mirror surface, or a frosted glass-like scattering reflection mirror whose reflection surface is subjected to scattering treatment.
  • the outer wall 23 corresponds to the light reflector in the invention.
  • the strut 25 is erected on the bottom KB of the water storage tank 21 and is made of a material that blocks the communication light TL.
  • the strut 25 is shown as an example of a structure that blocks the communication light TL.
  • the first optical communication device 1 is arranged on a fixed structure 51 installed at the bottom KB of the water storage tank 21 .
  • the second optical communication device 2 is installed in a moving body 52, and the moving body 52 performs various inspections on the inside of the water storage tank 21 while navigating the underwater WA.
  • the second optical communication device 2 transmits communication light TL and the first optical communication device 1 receives the communication light TL.
  • the communication light TL emitted from the laser light source 4 provided in the second optical communication device 2 can enter the first optical communication device 1 directly. That is, the communication light TL emitted from the laser light source 4 is directly received by the light receiving element of the light receiving section 5 and converted into communication information by information processing such as photoelectric conversion.
  • the underwater optical communication system 50A when direct underwater optical communication is difficult, in the underwater optical communication system 50A according to the second embodiment, indirect underwater optical communication is performed using the outer wall 23 configured to reflect light. That is, the moving direction FW of the moving body 52 is changed from the direction shown in FIG. 8 to the direction shown in FIG. In other words, the traveling direction FW of the moving body 52 is changed so that the moving body 52 faces the outer wall 23 from the state where the moving body 52 faces the column 25 .
  • the moving object 52 After changing the traveling direction FW of the moving object 52 , the moving object 52 emits the communication light TL from the second optical communication device 2 toward the outer wall 23 .
  • the emitted communication light TL strikes the outer wall 23 and is reflected.
  • the communication light TL reflected by the outer wall 23 that is, the reflected communication light TLR travels toward the fixed structure 51 without being blocked by the post 25 and is received by the first optical communication device 1 . In this way, even if the moving body 52 is not moved, by reflecting the communication light TL along a trajectory that bypasses the support column 25, the underwater light transmission between the first optical communication device 1 and the second optical communication device 2 can be achieved. Wireless communication is possible.
  • the moving direction FW of the moving body 52 is slightly changed to enable indirect underwater optical wireless communication, so the moving body 52 itself does not need to move around the support 25 .
  • the time required to change the traveling direction FW of the moving body 52 is much shorter than the time required to move the moving body 52 itself around. Therefore, the continuity of underwater optical wireless communication can be greatly improved by reflecting the communication light TL along a trajectory that bypasses the strut 25, which is a light shield.
  • indirect underwater optical wireless communication is performed by reflecting light using the outer wall 23 forming the closed space inside the water storage tank 21, which is the closed space. That is, the communication light TL emitted from the second optical communication device 2 arranged on the moving body 52 is reflected by the light reflecting surface formed on the inner surface of the outer wall 23 and arranged on the fixed structure 51 . The communication light TL is transmitted by causing the first optical communication device 1 to receive the light.
  • the outer wall 23 forming the closed space is arranged in advance so as to surround the fixed structure 51 and the moving body 52 without gaps. Therefore, by using the inner surface of the outer wall 23 as a light reflector, the size of the light reflecting surface can be increased. As a result, even when light with high directivity is used as communication information, it is possible to greatly improve the frequency with which the light reflecting surface exists within the transmission range of the communication light TL emitted from the second optical communication device 2. . Therefore, the range that the reflected communication light TLR reflected by the outer wall 23 reaches can be widened, so that the effective range of indirect underwater optical wireless communication can be further widened.
  • An underwater optical communication system 50 includes a first optical communication device 1 arranged on a fixed structure 51 fixed to an underwater WA, and a moving body 52 arranged on a moving body 52 moving in the underwater WA. an underwater optical communication system that communicates with a second optical communication device 2, wherein each of the first optical communication device 1 and the second optical communication device 2 has a communication light TL which is laser light. and optical receivers (5, 6) for receiving communication light TL. At least part of the communication light TL emitted from the laser light sources (3, 4) provided in one of the communication devices 2 is reflected, and the reflected communication light TL is sent to the first optical communication device 1 and the second light. It further includes a reflector 11 that causes the optical receivers (5, 6) of the other communication device 2 to receive the signal.
  • the communication light TL emitted from the laser light source is directly received by the optical receiving unit.
  • the optical receiver receives the communication light TL that is emitted from the laser light source and then reflected by the reflector 11 .
  • the communication light TL emitted underwater from the laser light source is reflected by the reflecting material 11, so that the traveling direction of the communication light TL is changed in a direction different from the direction in which the communication light TL was originally emitted. can be changed.
  • the reflected communication light TL can be transmitted to the side or rear of the moving body 52 .
  • the communicable range of the mobile body 52 can be dramatically expanded without adding the second optical communication device 2 to the mobile body 52. can.
  • the reflector 11 is a scattering reflection mirror whose reflecting surface that reflects the communication light TL is subjected to scattering treatment, and the reflector 11 is subjected to the scattering treatment.
  • the communication light TL may be radially reflected by the reflecting surface.
  • the reflector 11 is a scattering reflection mirror whose reflection surface that reflects the communication light TL is subjected to scattering treatment. Therefore, the spread angle of the communication light TL scattered and reflected by the reflector 11 is increased. Therefore, the communication light TL reflected by the reflector 11 can reach a wider range, so that the communicable range of the mobile body 52 can be further expanded without adding the second optical communication device 2 to the mobile body 52 .
  • the reflecting surface of the reflecting material 11 that reflects the communication light TL is a convex spherical surface
  • the reflecting surface of the reflecting material 11 that is a convex spherical surface reflects the communication light TL. may be reflected radially.
  • the reflection surface of the reflector 11 that reflects the communication light TL is a convex spherical surface, the spread angle of the communication light TL reflected by the reflector 11 is can be bigger. Therefore, since the range that the reflected communication light TL reaches can be widened, the communicable range of the mobile body 52 can be further expanded without adding the second optical communication device 2 to the mobile body 52 .
  • the moving body 52 and the fixed structure 51 are arranged inside the water storage tank 21 partitioned by the outer wall 23, and transmit the communication light TL.
  • the outer wall 23 may be the light reflecting portion that reflects the light.
  • the pre-formed outer wall 23 which is an essential component of the water storage tank 21 can be used as a light reflector. Therefore, since it is not necessary to install a new structure for reflecting light, an increase in cost of the underwater optical communication system can be suppressed.
  • the outer wall 23 is arranged without gaps around the moving body 52 and the fixed structure 51, the light reflecting surface capable of reflecting the communication light TL is wide. Therefore, it is possible to more reliably avoid the situation where the communication light TL emitted from the laser light source into the water does not reach the light reflecting surface.
  • the plurality of reflectors 11 are arranged inside a circle centered on the fixed structure 51 and having a radius equal to the range of the communication light TL.
  • the positions where the reflectors 11 are arranged are determined so that at least one of the plurality of reflectors 11 receives the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2. It's okay.
  • At least one of the reflectors 11 receives the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2.
  • a position where the reflector 11 is arranged is determined. Therefore, it is possible to more reliably avoid a situation in which the communication light TL emitted from the laser light source into the water cannot be reflected because the reflecting material 11 is not present within the reach of the communication light TL.
  • the first optical communication device 1 provided may be the transmission side of the communication light TL. That is, as an example, the first optical communication device 1 emits, as a communication light TL, the information instructing the operation of the moving body 52 to the underwater WA, and the second optical communication device 2 directly or indirectly transmits the communication light. Receive TL.
  • the first optical communication device 1 and the second optical communication device 2 may be configured to perform two-way underwater optical wireless communication.
  • the reflecting material 11 or the outer wall 23 reflects the communication light TL once to perform indirect underwater optical wireless communication. By doing so, the communication light TL may be transmitted toward the communication target.
  • FIG. 10 shows a configuration in which the communication light TL is transmitted from the second optical communication device 2 to the first optical communication device 1 by reflecting the communication light TL twice with the reflector 11 .
  • the trajectory of the communication light TL can be diversified, so that the reachable range of the communication light TL becomes wider. Therefore, even if the number of second optical communication devices 2 mounted on the mobile object 52 is small, the communicable range of the mobile object 52 can be further expanded. Further, even if there is a light shielding object with a complicated shape such as a rocky place P, wiring, or a pipeline, the light shielding object is avoided by reflecting the communication light TL multiple times. It becomes easy to transmit the reflected communication light TLR.
  • the underwater optical communication system 50A is used inside a closed space, but the closed space is limited to a space sealed by walls such as the outer wall 23. However, it is sufficient if the space is separated from the outside by a wall. As an example, the water storage tank 21 may not have the outer wall 23 formed on the top. Also, although the water storage tank 21 is illustrated as an example of a closed space in which the underwater optical communication system 50A performs underwater optical wireless communication, that is, a space separated from the outside, the present invention is not limited to this. Other examples in which the underwater optical communication system 50A is used include water pipes, drain pipes, water purification tanks, and the like. By making the inner surface of the wall that separates the closed space from the outside a light reflecting surface, the wall can be used to reflect the communication light TL to enable indirect underwater optical wireless communication.
  • the underwater optical communication system 50 is configured to perform optical wireless communication between two optical communication devices. may be performed.
  • the light reflecting surface of the reflector 11 or the outer wall 23 is not limited to being planar, and may be convex or concave.
  • FIG. 11 shows a state in which indirect underwater optical wireless communication is performed using a reflector 11 having a convex spherical surface.
  • the expansion ratio of the spread angle ⁇ a of the reflected communication light TLR with respect to the spread angle ⁇ of the communication light TL before reflection is increased compared to when the light reflecting surface is planar. can improve. Therefore, it is possible to further widen the communicable range of underwater optical wireless communication using laser light.
  • the number of first optical communication devices 1 and second optical communication devices 2 can be changed as appropriate.
  • the number of second optical communication devices 2 installed in the moving body 52 is not limited to one, and a plurality of second optical communication devices 2 may be installed according to the size of the moving body 52. .
  • the number of second optical communication devices 2 can be maintained while maintaining the number of second optical communication devices 2 compared to the conventional underwater optical communication system which enables only direct communication.
  • the communicable range of the mobile body 52 can be expanded.

Abstract

Provided is an underwater optical communication system 50 in which communications are conducted between a first optical communication device 1 placed on a fixed structure 51 that is fixed under water WA and a second optical communication device 2 placed on a movable body 52 that moves under water WA, each of the first optical communication device 1 and the second optical communication device 2 comprising: a laser light source 3 or 4 for emitting communication lights TL that are laser lights; and a light receiving unit 5 or 6 for receiving the communication lights TL. The underwater optical communication system 50 further comprises a reflection member 11 that reflects at least part of the communication lights TL emitted from the laser light source 3 or 4 comprised by one of the first optical communication device 1 and the second optical communication device 2 and that causes the light receiving unit 5 or 6 comprised by the other of the first optical communication device 1 and the second optical communication device 2 to receive the reflected communication lights TL.

Description

水中光通信システムunderwater optical communication system
 本発明は、水中で光通信を行う水中光通信システムに関する。 The present invention relates to an underwater optical communication system that performs optical communication underwater.
 従来、水中探査を行う水中ビークルなどからデータを送信させるための水中無線通信手段として、水中における減衰が小さい音波を利用した通信が用いられていた。このような音波による無線通信は、音波の水中伝播速度の低さおよび音波の周波数の低さに起因して、数十kbps程度の低い通信速度しか実現できないという問題があった。 Conventionally, communication using sound waves with low attenuation underwater was used as an underwater wireless communication means for transmitting data from underwater vehicles that conduct underwater exploration. Such wireless communication using sound waves has a problem that only a low communication speed of about several tens of kbps can be realized due to the low propagation speed of sound waves in water and the low frequency of sound waves.
 そこで近年では水中無線通信手段として、可視光を通信光として利用した水中光通信装置を用いた光無線通信システムが提案されている。水中光通信装置は、可視光からなるレーザ光を出射するレーザ光源と、レーザ光源から出射されたレーザ光を受光する受光部とを備えている。光無線通信システムの一例として、水中を航行する移動体に設けられている第1の水中光通信装置と、水中に固定設置された基地局に設けられている第2の水中光通信装置との間で通信光を互いに伝送することによって無線通信を行う構成が挙げられる(例えば、特許文献1、2)。 Therefore, in recent years, as an underwater wireless communication means, an optical wireless communication system using an underwater optical communication device that uses visible light as communication light has been proposed. An underwater optical communication device includes a laser light source that emits visible laser light and a light receiving section that receives the laser light emitted from the laser light source. As an example of an optical wireless communication system, a first underwater optical communication device provided in a moving body that navigates underwater and a second underwater optical communication device provided in a base station fixedly installed underwater. There is a configuration in which wireless communication is performed by mutually transmitting communication light between them (for example, Patent Documents 1 and 2).
 可視光は音波に比べて、水中における減衰が比較的小さい。そして可視光は音波と比べて伝播速度および周波数が高いので、可視光を用いる光無線通信により数十Mbpsレベルの高い通信速度を実現できる。そのため、動画を例とする大容量の情報を高速で通信することが可視光無線通信により可能となる。 Compared to sound waves, visible light has a relatively small attenuation in water. Since visible light has a higher propagation speed and frequency than sound waves, optical wireless communication using visible light can achieve a high communication speed of several tens of Mbps. Therefore, visible light wireless communication enables high-speed communication of large amounts of information such as moving images.
特開2018-007069号公報JP 2018-007069 A 特開2019-114939号公報JP 2019-114939 A
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。 However, the conventional example having such a configuration has the following problems.
 通信光は音波を例とする一般的な電磁波と比べて指向性が高いので、単体の光無線通信装置が通信光を送信できる方向には制限がある。そのため、図12に示すように、水中WAを航行する移動体101の前方(図では左方向)に向けて通信光TLを送信するように水中光通信装置102が設置されている場合、移動体101に搭載されている水中光通信装置102は移動体101の側方または後方に対して通信光TLを送信できない。 Since communication light has higher directivity than general electromagnetic waves such as sound waves, there are restrictions on the directions in which a single optical wireless communication device can transmit communication light. Therefore, as shown in FIG. 12, when the underwater optical communication device 102 is installed so as to transmit the communication light TL toward the front (to the left in the drawing) of the moving body 101 navigating the underwater WA, the moving body The underwater optical communication device 102 mounted on the mobile body 101 cannot transmit the communication light TL to the side or rear of the moving body 101. FIG.
 よって図12に示すように、水中光通信装置104が配設されている基地局103に対して背を向けるように移動体101が水中航行している場合、移動体101は水中光通信装置102を用いて基地局103の水中光通信装置104と光通信を行うことができない。水中光通信装置104と光通信可能な状態にするためには、移動体101と基地局103とが対向するように、水中で移動体101を方向転換させる必要がある。水中でこのような方向転換を行うには時間を要するので、水中光通信が一定時間中断される事態が発生する。 Therefore, as shown in FIG. 12, when the moving body 101 is sailing underwater so as to turn its back to the base station 103 in which the underwater optical communication device 104 is arranged, the moving body 101 will move to the underwater optical communication device 102. can not be used to perform optical communication with the underwater optical communication device 104 of the base station 103 . In order to enable optical communication with the underwater optical communication device 104, it is necessary to change the direction of the moving body 101 underwater so that the moving body 101 and the base station 103 face each other. Since it takes time to change direction underwater, underwater optical communication may be interrupted for a certain period of time.
 このような通信方向の制限を緩和して継続的な通信を可能にする方法として、図13に示すように、移動体101に搭載させる水中光通信装置102の数を増やして多方向へ通信光TLを送信可能とする構成が考えられる。しかしながら、移動体101に水中光通信装置102の搭載数を増やすと移動体101の大型化および重量化が避けられないという問題が懸念される。また、一例として狭い空間を観測する場合など、観測対象および観測環境によっては移動体101のサイズを一定以下に制限する必要がある。この場合、移動体101に水中光通信装置102を増設することは困難である。 As a method of relaxing such restrictions on communication directions and enabling continuous communication, as shown in FIG. A configuration in which TL can be transmitted is conceivable. However, there is a concern that increasing the number of underwater optical communication devices 102 mounted on the moving body 101 will inevitably increase the size and weight of the moving body 101 . Further, for example, when observing a narrow space, it is necessary to limit the size of the moving object 101 to a certain size or less depending on the observation target and the observation environment. In this case, it is difficult to add the underwater optical communication device 102 to the moving object 101 .
 本発明は、このような事情に鑑みてなされたものであって、水中光通信装置の増設を回避しつつ、より広範囲にわたって通信可能な水中光通信システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an underwater optical communication system capable of communicating over a wider range while avoiding the addition of underwater optical communication devices.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち本発明の一の態様は、水中に固定されている固定構造体に配設されている第1の光通信装置と、水中を移動する移動体に配設されている第2の光通信装置との間で通信を行う水中光通信システムであって、前記第1の光通信装置および前記第2の光通信装置の各々は、レーザ光を発信する光発信部と、前記レーザ光を受信する光受信部とを備え、前記水中光通信システムは、前記第1の光通信装置および前記第2の光通信装置のうち一方が備える前記光発信部から発信されたレーザ光のうち少なくとも一部を反射させ、反射された前記レーザ光を前記第1の光通信装置および前記第2の光通信装置のうち他方が備える前記光受信部に受信させる光反射部をさらに備えるものである。
In order to achieve these objects, the present invention has the following configuration.
That is, one aspect of the present invention is a first optical communication device installed on a fixed structure that is fixed underwater, and a second optical communication device installed on a moving object that moves underwater. wherein each of the first optical communication device and the second optical communication device includes an optical transmitter that transmits laser light and a light transmitter that receives the laser light and an optical receiver, wherein the underwater optical communication system receives at least part of the laser light emitted from the optical transmitter included in one of the first optical communication device and the second optical communication device. The optical communication device further includes an optical reflection unit that reflects and causes the optical reception unit provided in the other of the first optical communication device and the second optical communication device to receive the reflected laser light.
 本発明に係る水中光通信システムでは、水中に固定されている固定構造体に配設されている第1の光通信装置と、水中を移動する移動体に配設されている第2の光通信装置との間で通信を行う水中光通信システムであって、光反射部を備える。光反射部は、第1の光通信装置および第2の光通信装置のうち一方が備える光発信部から発信されたレーザ光のうち少なくとも一部を反射させ、反射されたレーザ光を第1の光通信装置および第2の光通信装置のうち他方が備える光受信部に受信させる。 In an underwater optical communication system according to the present invention, a first optical communication device arranged on a fixed structure fixed underwater, and a second optical communication device arranged on a moving body moving underwater. An underwater optical communication system for communicating with a device, comprising a light reflector. The light reflecting section reflects at least part of the laser light transmitted from the light transmitting section provided in one of the first optical communication device and the second optical communication device, and transmits the reflected laser light to the first optical communication device. An optical receiving unit provided in the other of the optical communication device and the second optical communication device is caused to receive the signal.
 本実施形態に係る水中光通信システムでは、光反射部を用いることにより、光発信部から発信されたレーザ光を光受信部で直接受信する直接的な水中光通信のみならず、光発信部から発信されて光反射部で反射されたレーザ光を光受信部で受光する間接的な水中光通信をも可能とする。間接的な水中光通信では、光発信部から水中に出射されたレーザ光を光反射部で反射させることにより、レーザ光が当初に出射された方向とは異なる方向へレーザ光の進行方向を変更できる。一例として、移動体の前方に出射されたレーザ光を光反射部で反射させることにより、反射されたレーザ光を移動体の側方または後方へと送信することができる。 In the underwater optical communication system according to this embodiment, by using the light reflector, not only direct underwater optical communication in which the laser light transmitted from the light transmitter is directly received by the light receiver, but also It also enables indirect underwater optical communication in which a laser beam transmitted and reflected by a light reflecting portion is received by a light receiving portion. In indirect underwater optical communication, by reflecting the laser beam emitted from the light transmitting part into the water with the light reflecting part, the traveling direction of the laser beam is changed to a direction different from the direction in which the laser beam was originally emitted. can. As an example, by reflecting the laser light emitted forward of the moving body by the light reflecting portion, the reflected laser light can be transmitted to the side or rear of the moving body.
 そのため、搭載できる第2の光通信装置の数および大きさが限られるような移動体について、直接的な水中光通信では通信が不可能であった範囲であっても間接的な水中光通信であれば通信可能となる。従って、光反射部によって反射された光を受光させる間接通信を可能とすることにより、移動体に第2の光通信装置を増設することなく移動体の通信可能範囲を飛躍的に拡大できる。 For this reason, indirect underwater optical communication can be used even in a range where direct underwater optical communication is impossible for a moving object that is limited in the number and size of the second optical communication device that can be mounted. If so, communication becomes possible. Therefore, by enabling indirect communication in which the light reflected by the light reflecting portion is received, the communicable range of the mobile body can be dramatically expanded without adding a second optical communication device to the mobile body.
第1実施形態に係る水中光通信システムの概略構成を説明する正面図である。1 is a front view illustrating a schematic configuration of an underwater optical communication system according to a first embodiment; FIG. 第1実施形態に係る水中光通信システムの構成を説明する機能ブロック図である。1 is a functional block diagram illustrating the configuration of an underwater optical communication system according to a first embodiment; FIG. 第1実施形態において、直接通信によって水中光通信を行う状態を説明する正面図である。FIG. 4 is a front view for explaining a state in which underwater optical communication is performed by direct communication in the first embodiment; 第1実施形態において、間接通信によって水中光通信を行う状態を説明する正面図である。FIG. 4 is a front view for explaining a state in which underwater optical communication is performed by indirect communication in the first embodiment; 第1実施形態において、間接通信によって水中光通信を行う状態を説明する平面図である。FIG. 4 is a plan view for explaining a state in which underwater optical communication is performed by indirect communication in the first embodiment; 第2実施形態に係る水中光通信システムの概略構成を説明する縦断面図である。FIG. 10 is a vertical cross-sectional view illustrating a schematic configuration of an underwater optical communication system according to a second embodiment; 第2実施形態において、直接通信によって水中光通信を行う状態を説明する横断面図である。FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication is performed by direct communication in the second embodiment; 第2実施形態において、直接通信による水中光通信が遮蔽物によって阻害されている状態を説明する横断面図である。FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication by direct communication is blocked by a shield in the second embodiment; 第2実施形態において、間接通信によって水中光通信を行う状態を説明する横断面図である。FIG. 11 is a cross-sectional view for explaining a state in which underwater optical communication is performed by indirect communication in the second embodiment; 変形例において、間接通信によって水中光通信を行う状態を示す平面図である。FIG. 10 is a plan view showing a state in which underwater optical communication is performed by indirect communication in a modified example; 変形例において、間接通信によって水中光通信を行う状態を示す正面図である。FIG. 11 is a front view showing a state in which underwater optical communication is performed by indirect communication in a modified example; 従来の形態において、水中光通信を行う状態とその問題点とを示す図である。FIG. 10 is a diagram showing a state in which underwater optical communication is performed and its problems in a conventional configuration; 従来の形態における問題点を示す図である。It is a figure which shows the problem in a conventional form.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1実施形態1st embodiment
<全体構成の説明>
 図1などを用いて、第1実施形態に係る水中光通信システム50の概略構成について説明する。第1実施形態では深海または湖底などにおいて水中光通信を行う通信システムを例にとって説明する。なお、図1などに示すように、互いに直交する2つの水平方向をそれぞれx方向およびy方向とする。x方向は図面における左右の水平方向に相当するものとする。また、鉛直方向をz方向とする。
<Explanation of overall configuration>
A schematic configuration of an underwater optical communication system 50 according to the first embodiment will be described with reference to FIG. 1 and the like. In the first embodiment, a communication system that performs underwater optical communication in the deep sea or the bottom of a lake will be described as an example. Note that, as shown in FIG. 1 and the like, two horizontal directions orthogonal to each other are defined as the x direction and the y direction, respectively. The x-direction corresponds to the left-right horizontal direction in the drawing. Also, let the vertical direction be the z-direction.
 図1に示すように、海中を例とする水中WAにおいて、水中光通信システム50は第1の光通信装置1と、第2の光通信装置2と、反射材11とを備えている。 As shown in FIG. 1, an underwater optical communication system 50 includes a first optical communication device 1, a second optical communication device 2, and a reflector 11 in an underwater WA, for example, underwater.
 第1の光通信装置1は、水底WBに設置されている固定構造体51に配設されている。固定構造体51の例としては、観測用の基地局などが挙げられる。固定構造体51は、図示しない外部局とケーブルを介して接続されている。外部局の一例として、水上に位置する艦船または地上に設置されている地上基地などが挙げられる。 The first optical communication device 1 is arranged on a fixed structure 51 installed on the bottom of the water WB. An example of the fixed structure 51 is an observation base station. The fixed structure 51 is connected to an external station (not shown) via a cable. Examples of external stations include ships located on water or ground bases located on the ground.
 第2の光通信装置2は、水中WAを移動する移動体52に配設されている。移動体52は、水中WAを移動することにより、パイプラインまたはを例とする水中構造物の検査を行う。移動体52の例としては、ROV(Remotely Operated Vehicle)またはAUV(Autonomous Underwater Vehicle)などが挙げられる。 The second optical communication device 2 is installed on a moving body 52 that moves in the underwater WA. The moving body 52 moves through the underwater WA to inspect an underwater structure such as a pipeline. Examples of the moving body 52 include an ROV (Remotely Operated Vehicle) or an AUV (Autonomous Underwater Vehicle).
 図2に示すように、第1の光通信装置1はレーザ光源3、光受信部5、および制御部7を備えている。第2の光通信装置2はレーザ光源4、光受信部6、制御部8、および観測装置9を備えている。 As shown in FIG. 2, the first optical communication device 1 includes a laser light source 3, an optical receiver 5, and a controller 7. The second optical communication device 2 includes a laser light source 4 , an optical receiver 6 , a controller 8 and an observation device 9 .
 レーザ光源3およびレーザ光源4は、それぞれ半導体レーザおよびコリメートレンズを備えており、半導体レーザによって発生されたレーザ光をコリメートレンズで調整し、通信情報を含む通信光TLとして水中WAへと出射する。通信光TLは図1に示すように、第1の光通信装置1および第2の光通信装置2の各々に設けられている窓部WDを透過して水中WAへと出射される。レーザ光源3およびレーザ光源4は、本発明における光発信部に相当する。 The laser light source 3 and the laser light source 4 each have a semiconductor laser and a collimator lens, and the laser light generated by the semiconductor laser is adjusted by the collimator lens and emitted to the underwater WA as communication light TL containing communication information. As shown in FIG. 1, the communication light TL passes through the windows WD provided in each of the first optical communication device 1 and the second optical communication device 2 and is emitted to the underwater WA. The laser light source 3 and the laser light source 4 correspond to the light transmitting section in the present invention.
 光受信部5は、第2の光通信装置2に設けられているレーザ光源4から発信されたレーザ光を受信する。制御部7は中央演算処理装置(CPU:Central Processing Unit)などを備えており、光受信部5によって受信されたレーザ光に含まれる情報に対して各種処理を行うとともに、第1の光通信装置1に設けられる各構成を統括制御する。すなわち制御部7は、光電変換および増幅処理が行われた通信光TLの信号に対して各種情報処理を行うことにより、画像情報または動画情報を例とする通信情報を生成する。 The optical receiver 5 receives laser light emitted from the laser light source 4 provided in the second optical communication device 2 . The control unit 7 includes a central processing unit (CPU: Central Processing Unit) and the like, and performs various processes on information contained in the laser light received by the optical receiving unit 5, and also controls the operation of the first optical communication device. 1, and controls the components provided in 1. That is, the control unit 7 generates communication information such as image information or moving image information by performing various types of information processing on the signal of the communication light TL that has undergone photoelectric conversion and amplification processing.
 光受信部6は、第1の光通信装置1に設けられているレーザ光源3から発信されたレーザ光を受信する。制御部8は、光受信部6によって受信されたレーザ光に含まれる情報に対して各種処理を行って通信情報を生成するとともに、第2の光通信装置2に設けられる各構成を統括制御する。観測装置9は一例として水中カメラであり、水中WAにおける観測対象を観測し、映像または動画などの情報を取得する。 The optical receiver 6 receives laser light emitted from the laser light source 3 provided in the first optical communication device 1 . The control unit 8 performs various processes on the information contained in the laser beam received by the optical receiving unit 6 to generate communication information, and also performs overall control of each component provided in the second optical communication device 2 . . The observation device 9 is, for example, an underwater camera, observes an observation target in the underwater WA, and acquires information such as images or moving images.
 光受信部5および光受信部6は、それぞれ受光素子を備えている。受光素子の各々は、通信光TLを例とする光を受光して光電変換を行うように構成されている。受光素子の例として、光電子増倍管またはアバランシェフォトダイオードなどが挙げられる。受光素子は密閉型の耐水圧容器である保護容器の内部に配設されており、水中WAなどの外部環境から隔離される。 The optical receiver 5 and the optical receiver 6 each have a light receiving element. Each of the light-receiving elements is configured to receive light, for example, communication light TL, and perform photoelectric conversion. Examples of light receiving elements include photomultiplier tubes and avalanche photodiodes. The light-receiving element is arranged inside a protective container, which is a sealed water-pressure-resistant container, and is isolated from the external environment such as an underwater WA.
 本実施例において移動体52は比較的小型の構造体であり、図1などに示すように第2の光通信装置2を1つ搭載しているものとする。第2の光通信装置2は、移動体52の進行方向FWに向けて通信光TLを出射できるように窓部WDなどが配置されている。一方、固定構造体51は比較的大型の構造体であり、第1の光通信装置1を複数搭載可能となっている。 In this embodiment, the moving body 52 is a relatively small structure, and is equipped with one second optical communication device 2 as shown in FIG. The second optical communication device 2 is provided with a window portion WD and the like so that the communication light TL can be emitted toward the traveling direction FW of the moving object 52 . On the other hand, the fixed structure 51 is a relatively large structure, and is capable of mounting a plurality of first optical communication devices 1 thereon.
 固定構造体51に搭載されている複数の第1の光通信装置1は、各々の窓部WDがそれぞれ異なる方向を向くように配設されている。各々の窓部WDが異なる方向を向くことにより、固定構造体51に対して様々な方向から入射される光は、いずれかの第1の光通信装置1によって受光される。また、第1の光通信装置1のいずれかを用いることにより、固定構造体51から様々な方向へ通信光TLを出射することができる。第1の光通信装置1または第2の光通信装置2から出射される通信光TLの広がり角度θは、一例として40°程度である。 The plurality of first optical communication devices 1 mounted on the fixed structure 51 are arranged so that their windows WD face different directions. Since the respective windows WD face different directions, light incident on the fixed structure 51 from various directions is received by any one of the first optical communication devices 1 . Further, by using any one of the first optical communication devices 1, the communication light TL can be emitted from the fixed structure 51 in various directions. The spread angle θ of the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2 is, for example, approximately 40°.
 反射材11は一例として水底WBに設置されており、通信光TLを反射させる。反射材11を構成する材料として、例えば反射ミラーまたはプリズムが挙げられる。反射材11が反射ミラーである場合、反射面が鏡面である鏡面反射ミラー、または反射面に散乱処理が施された磨りガラス状の散乱反射ミラーが構成例として挙げられる。反射された通信光TLがより広い広がり角度で放射状に反射されるという点で、反射材11が散乱反射ミラーであることがより好ましい。 As an example, the reflector 11 is installed on the bottom of the water WB and reflects the communication light TL. Examples of the material forming the reflector 11 include a reflecting mirror or a prism. When the reflector 11 is a reflecting mirror, examples of the configuration include a specular reflecting mirror whose reflecting surface is a mirror surface, or a frosted glass-like scattering reflecting mirror whose reflecting surface is subjected to scattering treatment. More preferably, the reflector 11 is a scattering reflection mirror in that the reflected communication light TL is radially reflected at a wider spread angle.
 反射材11において、光を反射させる反射面の形状は平面状であってもよいし、曲面を有していてもよい。本実施例において、反射材11は水底WBに設置されている板状の部材を用いるものとする。第1実施形態において、反射材11は本発明における光反射器に相当する。 In the reflector 11, the shape of the reflective surface that reflects light may be planar or may have a curved surface. In this embodiment, it is assumed that the reflector 11 is a plate-shaped member installed on the bottom of the water WB. In the first embodiment, the reflector 11 corresponds to the light reflector in the invention.
 反射材11は、固定構造体51の周囲に固定配置されている。具体的には、固定構造体51を中心として、通信光TLの到達可能距離Fを半径とする円領域の内部に所定数の反射材11が配置されている。反射材11が配設される位置および向きは、第1の光通信装置1および第2の光通信装置2のうち一方から出射された通信光TLを反射し、第1の光通信装置1および第2の光通信装置2のうち他方へと入射させるように予め定められている。 The reflector 11 is fixedly arranged around the fixed structure 51 . Specifically, a predetermined number of reflectors 11 are arranged inside a circular area centered on the fixed structure 51 and having a radius equal to the reachable distance F of the communication light TL. The position and orientation at which the reflector 11 is arranged reflect the communication light TL emitted from one of the first optical communication device 1 and the second optical communication device 2, It is predetermined to be incident on the other of the second optical communication devices 2 .
 すなわち第1の光通信装置1に配設されている光受信器5は、レーザ光源4から出射された通信光TLを直接受信するのみならず、レーザ光源4から出射後に反射材11で反射された通信光TL(反射通信光TLR)を受信できるように構成されている。同様に、第2の光通信装置2に配設されている光受信器6は、レーザ光源3から出射された通信光TLを直接受信するのみならず、レーザ光源3から出射後に反射材11で反射された通信光TL(反射通信光TLR)を受信できるように構成されている。 That is, the optical receiver 5 provided in the first optical communication device 1 not only directly receives the communication light TL emitted from the laser light source 4, but also receives the communication light TL after it is emitted from the laser light source 4 and reflected by the reflector 11. It is configured to be able to receive the communication light TL (reflected communication light TLR). Similarly, the optical receiver 6 provided in the second optical communication device 2 not only directly receives the communication light TL emitted from the laser light source 3, but also receives the communication light TL after it is emitted from the laser light source 3 with a reflector 11. It is configured to receive reflected communication light TL (reflected communication light TLR).
 このように、第1の光通信装置1および第2の光通信装置2は、互いに通信光TLを直接送受信するのみならず、反射材11を介して通信光TLを間接的に送受信することによって水中光無線通信を行うように構成されている。なお、反射材11の光反射面が向く方向を予め調整することにより、反射通信光TLRが進行する方向を任意に定めることができる。 Thus, the first optical communication device 1 and the second optical communication device 2 not only directly transmit and receive the communication light TL to each other, but also indirectly transmit and receive the communication light TL via the reflector 11. It is configured to perform underwater optical wireless communication. By previously adjusting the direction in which the light reflecting surface of the reflector 11 faces, the direction in which the reflected communication light TLR travels can be arbitrarily determined.
<第1実施形態の使用例>
 ここで、第1実施形態に係る水中光通信システム50の使用例について説明する。第1実施形態では、第2の光通信装置2が第1の光通信装置1に対してレーザ光を発信する場合を例にとって説明を行う。すなわち、移動体52は進行方向FWに沿って水中WAを航行しつつ、観測装置9によって検査を行って動画などの検査情報を取得する。第2の光通信装置2は取得された検査情報を通信光TLに変換し、当該通信光TLを固定構造体51に設けられている第1の光通信装置1へと通信する。
<Usage example of the first embodiment>
Here, a usage example of the underwater optical communication system 50 according to the first embodiment will be described. In the first embodiment, a case where the second optical communication device 2 transmits laser light to the first optical communication device 1 will be described as an example. That is, the moving object 52 navigates in the underwater WA along the traveling direction FW, performs inspection by the observation device 9, and acquires inspection information such as moving images. The second optical communication device 2 converts the obtained inspection information into communication light TL, and communicates the communication light TL to the first optical communication device 1 provided on the fixed structure 51 .
 図3は、水中光通信システム50が直接通信によって水中光無線通信を行う状態を示す図である。移動体52の進行方向FWに固定構造体51がある場合、第1の光通信装置1が有する窓部WDと第2の光通信装置2が有する窓部WDとが対向状態となっている。この場合、第2の光通信装置2が備えるレーザ光源4から出射された通信光TLは第1の光通信装置1に向かって直進し、第1の光通信装置1へと直接入光することができる。すなわち、レーザ光源4から出射された通信光TLは光受信部5の受光素子によって直接受光され、光電変換などの情報処理により通信情報に変換される。このように、第2の光通信装置2が出射する通信光TLの範囲内に第1の光通信装置1が存在する場合、直接通信による水中光無線通信を行うことができる。 FIG. 3 is a diagram showing a state in which the underwater optical communication system 50 performs underwater optical wireless communication by direct communication. When the fixed structure 51 is in the traveling direction FW of the moving body 52, the window WD of the first optical communication device 1 and the window WD of the second optical communication device 2 are opposed to each other. In this case, the communication light TL emitted from the laser light source 4 provided in the second optical communication device 2 travels straight toward the first optical communication device 1 and enters the first optical communication device 1 directly. can be done. That is, the communication light TL emitted from the laser light source 4 is directly received by the light receiving element of the light receiving section 5 and converted into communication information by information processing such as photoelectric conversion. Thus, when the first optical communication device 1 exists within the range of the communication light TL emitted by the second optical communication device 2, underwater optical wireless communication can be performed by direct communication.
 一方、移動体52の進行方向FWによっては、直接通信による水中光無線通信を行うことができない。すなわち移動体52の後方(進行方向FWとは逆方向)に固定構造体51が存在する場合、第2の光通信装置2は移動体52の後方へ通信光TLを出射できない。よって、第2の光通信装置2から出射された通信光TLを直接第1の光通信装置1に受光させることができない。 On the other hand, depending on the traveling direction FW of the moving body 52, underwater optical wireless communication cannot be performed by direct communication. That is, when the fixed structure 51 exists behind the moving body 52 (in the direction opposite to the traveling direction FW), the second optical communication device 2 cannot emit the communication light TL behind the moving body 52 . Therefore, the communication light TL emitted from the second optical communication device 2 cannot be directly received by the first optical communication device 1 .
 直接通信ができない場合、本実施例に係る水中光通信システム50は反射材11を用いて間接的に水中光無線通信を行う。図4は、水中光通信システム50が間接通信によって水中光無線通信を行う状態を示す図である。 When direct communication is not possible, the underwater optical communication system 50 according to this embodiment uses the reflector 11 to indirectly perform underwater optical wireless communication. FIG. 4 is a diagram showing a state in which the underwater optical communication system 50 performs underwater optical wireless communication by indirect communication.
 図4において、移動体52の進行方向FWは左方向となっており、固定構造体51は移動体52の後方に位置する状態となっている。その一方で、反射材11が移動体52の進行方向FWに存在している。そこで、移動体52は第2の光通信装置2のレーザ光源4から反射材11へ向けて通信光TLを出射させる。第2の光通信装置2の窓部WDから水中WAへ出射された通信光TLは、反射材11の反射面によって反射される。 In FIG. 4, the traveling direction FW of the moving body 52 is the left direction, and the fixed structure 51 is positioned behind the moving body 52 . On the other hand, the reflector 11 is present in the traveling direction FW of the moving body 52 . Therefore, the moving body 52 emits the communication light TL from the laser light source 4 of the second optical communication device 2 toward the reflector 11 . The communication light TL emitted from the window WD of the second optical communication device 2 to the underwater WA is reflected by the reflecting surface of the reflector 11 .
 反射材11の反射面の向きは、反射材11によって反射された通信光TL(反射通信光TLR)の少なくとも一部が第1の光通信装置1によって受光されるように、予め設定されている。そのため、反射通信光TLRの少なくとも一部は第1の光通信装置1の窓部に入射され、光受信部5の受光素子に受光され、光電変換などの情報処理により通信情報に変換される。 The orientation of the reflecting surface of the reflector 11 is set in advance so that at least part of the communication light TL reflected by the reflector 11 (reflected communication light TLR) is received by the first optical communication device 1 . . Therefore, at least part of the reflected communication light TLR enters the window of the first optical communication device 1, is received by the light receiving element of the light receiving section 5, and is converted into communication information by information processing such as photoelectric conversion.
 なお、反射通信光TLRの広がり角度θaは一例として120°程度である。反射通信光TLRの広がり角度θaを通信光TLの広がり角度θより広くすることにより、通信光TLを直接第1の光通信装置1に受光させる直接通信と比べて、反射材11を用いて反射通信光TLRを第1の光通信装置1に受光させる間接通信では、より確実に第1の光通信装置1に光を受光させることができる。 Note that the spread angle θa of the reflected communication light TLR is, for example, about 120°. By making the divergence angle θa of the reflected communication light TLR wider than the divergence angle θ of the communication light TL, compared with the direct communication in which the communication light TL is directly received by the first optical communication device 1, the reflecting material 11 is used to reflect the communication light TL. In indirect communication in which the first optical communication device 1 receives the communication light TLR, the first optical communication device 1 can more reliably receive light.
 反射材11は図5に示すように、固定構造体51を囲繞するように複数配設されている。一例として、移動体52が図5において実線で示される位置を進行方向FW1に向けて航行している場合、複数の反射材11のうち反射材11aが、通信光TLの範囲内に存在する。そのため、移動体52から出射される通信光TLは反射材11aによって反射され、移動体52の後方に存在している固定構造体51へ反射通信光TLを伝達させることができる。また、移動体が図5において点線で示される位置を進行方向FW2に向けて航行している場合、複数の反射材11のうち反射材11bが移動体52から出射される通信光TLを反射させ、移動体52の側方に存在している固定構造体51へ反射通信光TLRを伝達させることができる。 As shown in FIG. 5, a plurality of reflectors 11 are arranged so as to surround fixed structure 51 . As an example, when the moving body 52 is traveling in the traveling direction FW1 at the position indicated by the solid line in FIG. Therefore, the communication light TL emitted from the moving body 52 is reflected by the reflector 11a, and the reflected communication light TL can be transmitted to the fixed structure 51 existing behind the moving body 52. FIG. Further, when the moving object is navigating the position indicated by the dotted line in FIG. , the reflected communication light TLR can be transmitted to the fixed structure 51 existing on the side of the moving body 52 .
 このように、通信光TLを反射させる反射材11を配置することにより、移動体52の前方のみに通信光TLを出射させる構成であっても移動体52の側方または後方に存在する通信対象物(ここでは固定構造体51)に対して、水中光通信が可能となる。すなわち、第2の光通信装置2の通信光TLの到達範囲内に第1の光通信装置1が存在しない場合であっても、第2の光通信装置2の通信光TLの到達範囲内に反射材11が存在していれば、第1の光通信装置1と第2の光通信装置2との間で水中光通信が可能となる。よって、移動体52に搭載される第2の光通信装置2の数を低減させつつ、移動体52の周囲において移動体52が水中光通信を可能とする範囲を飛躍的に拡大させることができる。 By arranging the reflecting material 11 that reflects the communication light TL in this way, even in a configuration in which the communication light TL is emitted only in front of the moving body 52, communication targets existing on the side or behind the moving body 52 can be detected. Underwater optical communication becomes possible with respect to the object (fixed structure 51 in this case). That is, even if the first optical communication device 1 does not exist within the reachable range of the communication light TL of the second optical communication device 2, If the reflector 11 exists, underwater optical communication is possible between the first optical communication device 1 and the second optical communication device 2 . Therefore, while reducing the number of the second optical communication devices 2 mounted on the moving body 52, it is possible to dramatically expand the range in which the moving body 52 can perform underwater optical communication around the moving body 52. .
 また、反射材11は光を反射させる材料で構成されていれば常に通信光TLを反射できる。すなわち水中光通信システム50が反射通信光TLRによる間接的な水中光通信を行う際に、反射材11に対して電力供給を行う必要がない。また、反射材11に対して通信用ケーブルを例とする有線通信機器を接続させる必要もない。そのため、水中光通信システム50を単純化させつつ、移動体52の通信可能範囲を広げることができる。さらに、電力供給または有線通信機器のトラブルに起因して間接的な水中光通信が中断するという事態を回避できるので、より確実に継続的な水中光通信を行うことができる。 Also, the reflector 11 can always reflect the communication light TL if it is made of a material that reflects light. That is, there is no need to supply power to the reflector 11 when the underwater optical communication system 50 performs indirect underwater optical communication using the reflected communication light TLR. Moreover, it is not necessary to connect a wired communication device such as a communication cable to the reflector 11 . Therefore, the communicable range of the moving body 52 can be expanded while simplifying the underwater optical communication system 50 . Furthermore, since it is possible to avoid a situation in which indirect underwater optical communication is interrupted due to troubles in the power supply or wired communication equipment, it is possible to carry out continuous underwater optical communication more reliably.
 水中光通信システム50において配設される反射材11の数、および反射材11が配設される位置は、通信光TLの広がり角度θなどに応じて適宜設定してよい。広がり角度θに応じて複数の反射材11を配設することにより、水中WAにおける移動体52の位置および進行方向FWがどのようなものであっても、移動体52から出射される通信光TLの到達範囲内に少なくとも1つの反射材11をより確実に存在させることができる。 The number of reflectors 11 arranged in the underwater optical communication system 50 and the positions at which the reflectors 11 are arranged may be appropriately set according to the spread angle θ of the communication light TL. By arranging a plurality of reflectors 11 according to the spread angle θ, the communication light TL emitted from the moving body 52 is determined regardless of the position and traveling direction FW of the moving body 52 in the underwater WA. At least one reflector 11 can be more reliably present within the reachable range of .
 特に、(360/θ)個の反射材11を固定構造体51の周囲に配設することにより、移動体52の通信可能範囲を広げることができる。一例として広がり角度θが40°である場合、9つの反射材11を固定構造体51の周囲に配置することによって、移動体52の進行方向FWがどの方向であっても、移動体52と固定構造体51との間で水中光無線通信を行うことができる。すなわち、固定構造体51に背を向けている移動体52がどのような進行方向FWであっても、移動体52から出射される通信光TLの到達範囲内に少なくとも1つの反射材11が確実に存在する。そのため、第2の光通信装置2から出射される通信光TLが反射材11によって反射され、反射通信光TLRを確実に固定構造体51へと伝達させることができる。 In particular, by arranging (360/θ) pieces of reflectors 11 around the fixed structure 51, the communicable range of the mobile body 52 can be expanded. As an example, when the spread angle θ is 40°, by arranging the nine reflectors 11 around the fixed structure 51, the movable body 52 can be fixed regardless of the traveling direction FW of the movable body 52. Underwater optical wireless communication can be performed with the structure 51 . In other words, regardless of the traveling direction FW of the moving body 52 with its back to the fixed structure 51, at least one reflector 11 is surely within the reach of the communication light TL emitted from the moving body 52. exists in Therefore, the communication light TL emitted from the second optical communication device 2 is reflected by the reflector 11 , and the reflected communication light TLR can be reliably transmitted to the fixed structure 51 .
 <第1実施形態の構成による効果>
 本実施形態に係る水中光通信システム50では、固定構造体51に配設されている第1の光通信装置1と、移動体52に配設されている第2の光通信装置2との間で間接的な水中光無線通信を行うことができる。すなわち、第1の光通信装置1および第2の光通信装置2のうち一方から出射された通信光TLを反射材11で反射させる。そして第1の光通信装置1および第2の光通信装置2のうち他方は、反射材11によって反射された通信光TLを受光することによって通信光TLに係る通信情報を取得する。
<Effects of Configuration of First Embodiment>
In the underwater optical communication system 50 according to the present embodiment, the distance between the first optical communication device 1 arranged on the fixed structure 51 and the second optical communication device 2 arranged on the moving body 52 is can perform indirect underwater optical wireless communication. That is, the communication light TL emitted from one of the first optical communication device 1 and the second optical communication device 2 is reflected by the reflector 11 . The other of the first optical communication device 1 and the second optical communication device 2 receives the communication light TL reflected by the reflector 11 to obtain communication information related to the communication light TL.
 従来の水中光通信システムでは、直接的な水中光通信のみを行う。すなわち、一方の光通信装置から出射された通信光が他方の光通信装置へと向かって直進し、直進した通信光を当該他方の光通信装置が直接受信することで水中光無線通信を行う。しかし通信光は指向性が高いので、直接通信のみを行う従来のシステムでは水中光無線通信で情報を送信できる範囲は非常に狭い範囲に限定される。 In conventional underwater optical communication systems, only direct underwater optical communication is performed. That is, the communication light emitted from one optical communication device travels straight toward the other optical communication device, and the other optical communication device directly receives the communication light that has traveled straight, thereby performing underwater optical wireless communication. However, since communication light has high directivity, the range in which information can be transmitted by underwater optical wireless communication is limited to a very narrow range in a conventional system that only performs direct communication.
 本実施形態に係る水中光通信システム50では、反射材11を用いることにより、直接光を受光する直接的な水中光通信のみならず、反射光を受光する間接的な水中光通信をも可能とする。すなわち、第1の光通信装置1および第2の光通信装置2は、自身に向けて直接出射された通信光TLを受光するのみならず、反射材11によって反射された通信光TLすなわち反射通信光TLRを受光するように構成される。 In the underwater optical communication system 50 according to this embodiment, by using the reflector 11, not only direct underwater optical communication that directly receives light but also indirect underwater optical communication that receives reflected light is possible. do. In other words, the first optical communication device 1 and the second optical communication device 2 not only receive the communication light TL directly emitted toward themselves, but also receive the communication light TL reflected by the reflector 11, i.e., reflected communication. configured to receive an optical TLR;
 検査の環境などに起因して移動体52のサイズが一定以下に制限される場合、移動体52に搭載できる第2の光通信装置2の数および大きさが限られる。さらに通信光TLは指向性が高く広がり角度が狭いことによって、移動体52から通信光TLを出射できる範囲は狭い範囲に限定される。一例として、通信光TLの出射可能範囲が移動体52の前方に限定される。 If the size of the mobile body 52 is restricted to a certain size or less due to the inspection environment or the like, the number and size of the second optical communication devices 2 that can be mounted on the mobile body 52 are limited. Furthermore, since the communication light TL has high directivity and a narrow spread angle, the range in which the communication light TL can be emitted from the moving object 52 is limited to a narrow range. As an example, the possible emission range of the communication light TL is limited to the front of the moving body 52 .
 しかし、第2の光通信装置2から水中WAに出射された通信光TLを反射材11で反射させることにより、通信光TLが当初に出射された方向とは異なる方向へ通信光TLの進行方向を変更できる。すなわち移動体52の前方に出射された通信光TLを反射材11で反射させることにより、反射された通信光TLである反射通信光TLRを移動体52の側方または後方へと送信することができる。 However, by reflecting the communication light TL emitted from the second optical communication device 2 to the underwater WA by the reflecting material 11, the traveling direction of the communication light TL is changed to a direction different from the direction in which the communication light TL was originally emitted. can be changed. That is, by reflecting the communication light TL emitted forward of the moving object 52 by the reflector 11, the reflected communication light TLR, which is the reflected communication light TL, can be transmitted to the side or rear of the moving object 52. can.
 反射材11の反射面の形状または向きに応じて、反射によって通信光TLが進行する方向を任意に変更できる。従って、反射材11によって反射された光を受光する間接通信を可能とすることにより、移動体52に第2の光通信装置2を増設することなく移動体52の通信可能範囲を飛躍的に拡大できる。 The direction in which the communication light TL travels through reflection can be arbitrarily changed according to the shape or orientation of the reflecting surface of the reflector 11 . Therefore, by enabling indirect communication by receiving the light reflected by the reflector 11, the communicable range of the mobile body 52 can be dramatically expanded without adding the second optical communication device 2 to the mobile body 52. can.
第2実施形態Second embodiment
 次に、本発明の第2実施形態について説明する。第1実施形態では海中を例とする開放空間において水中光無線通信を行う構成を示したが、第2実施形態では貯水タンク21の内部すなわち閉鎖空間内において水中光無線通信を行う構成を例として説明する。なお、第1実施形態と共通する構成については同一の符号を付して図示し、その説明を省略する。 Next, a second embodiment of the present invention will be described. In the first embodiment, the configuration for performing underwater optical wireless communication in an open space, such as underwater, is shown, but in the second embodiment, the configuration for performing underwater optical wireless communication inside a water storage tank 21, that is, in a closed space is taken as an example. explain. In addition, the same code|symbol is attached|subjected and illustrated about the structure which is common in 1st Embodiment, and the description is abbreviate|omitted.
 第2実施形態に係る水中光通信システム50Aが用いられている貯水タンク21について、図6は縦断面図を示しており、図7は横断面図を示している。貯水タンク21は、円筒状の外壁23と、支柱25とを備えている。すなわち貯水タンク21の内部は、外壁23によって囲まれた閉鎖空間となっている。閉鎖空間を形成する外壁23の内面は、レーザ光源3またはレーザ光源4から出射される通信光TLを反射するように構成されている。外壁23の内面の構成例として、反射面が鏡面である鏡面反射ミラー、または反射面に散乱処理が施された磨りガラス状の散乱反射ミラーなどが挙げられる。第2実施形態において、外壁23は本発明における光反射器に相当する。 FIG. 6 shows a vertical sectional view and FIG. 7 shows a horizontal sectional view of the water storage tank 21 in which the underwater optical communication system 50A according to the second embodiment is used. The water storage tank 21 has a cylindrical outer wall 23 and a column 25 . That is, the inside of the water storage tank 21 is a closed space surrounded by the outer wall 23 . The inner surface of the outer wall 23 forming the closed space is configured to reflect the communication light TL emitted from the laser light source 3 or the laser light source 4 . Examples of the configuration of the inner surface of the outer wall 23 include a specular reflection mirror whose reflection surface is a mirror surface, or a frosted glass-like scattering reflection mirror whose reflection surface is subjected to scattering treatment. In the second embodiment, the outer wall 23 corresponds to the light reflector in the invention.
 支柱25は、貯水タンク21の底部KBに立設されており、通信光TLを遮る材料で構成されている。第2実施形態において、支柱25は通信光TLを遮る構造物の例として示されている。第1の光通信装置1は、貯水タンク21の底部KBに設置されている固定構造体51に配設されている。第2の光通信装置2は移動体52に設置されており、移動体52は水中WAを航行しつつ貯水タンク21の内部に対して各種検査を行う。 The strut 25 is erected on the bottom KB of the water storage tank 21 and is made of a material that blocks the communication light TL. In the second embodiment, the strut 25 is shown as an example of a structure that blocks the communication light TL. The first optical communication device 1 is arranged on a fixed structure 51 installed at the bottom KB of the water storage tank 21 . The second optical communication device 2 is installed in a moving body 52, and the moving body 52 performs various inspections on the inside of the water storage tank 21 while navigating the underwater WA.
<第2実施形態の使用例>
 ここで、第2実施形態に係る水中光通信システム50Aの使用例について説明する。第2実施形態では第1実施形態と同様に第2の光通信装置2が通信光TLを発信し、第1の光通信装置1が当該通信光TLを受信する場合を例にとって説明を行う。
<Usage example of the second embodiment>
Here, a usage example of the underwater optical communication system 50A according to the second embodiment will be described. In the second embodiment, as in the first embodiment, the second optical communication device 2 transmits communication light TL and the first optical communication device 1 receives the communication light TL.
 図7に示すように、移動体52の進行方向FWに固定構造体51が存在し、かつ支柱25を例とする遮蔽物が進行方向FWに存在しない場合、直接通信による水中光通信が可能である。この場合、第2の光通信装置2が備えるレーザ光源4から出射された通信光TLは、第1の光通信装置1へと直接入光することができる。すなわち、レーザ光源4から出射された通信光TLは、光受信部5の受光素子によって直接受光され、光電変換などの情報処理により通信情報に変換される。 As shown in FIG. 7, when the fixed structure 51 exists in the traveling direction FW of the moving body 52 and there is no shielding object such as the support pillar 25 in the traveling direction FW, underwater optical communication by direct communication is possible. be. In this case, the communication light TL emitted from the laser light source 4 provided in the second optical communication device 2 can enter the first optical communication device 1 directly. That is, the communication light TL emitted from the laser light source 4 is directly received by the light receiving element of the light receiving section 5 and converted into communication information by information processing such as photoelectric conversion.
 一方、移動体52の進行方向FWに固定構造体51が存在しない場合に加えて、移動体52と固定構造体51との間に支柱25が存在している場合、直接通信による水中光通信を行うことができない。すなわち固定構造体51と移動体52と支柱25とが図8に示すような位置関係である場合、移動体52の進行方向FWに固定構造体51が存在している。しかし、固定構造体51と移動体52との間には光を遮蔽する支柱25が存在しているので、移動体52の進行方向FWに向けて出射された送信光TLは支柱25によって遮られる。そのため、移動体52の進行方向FWに固定構造体51が存在していたとしても、第2の光通信装置2から出射された通信光TLを第1の光通信装置1へ直接送信させることができない。 On the other hand, when the fixed structure 51 does not exist in the traveling direction FW of the moving object 52 and when the support 25 exists between the moving object 52 and the fixed structure 51, underwater optical communication by direct communication is performed. can't do That is, when the fixed structure 51, the moving body 52, and the pillar 25 are in the positional relationship shown in FIG. However, since the support 25 that shields the light exists between the fixed structure 51 and the moving body 52, the transmission light TL emitted toward the traveling direction FW of the moving body 52 is blocked by the support 25. . Therefore, even if the fixed structure 51 exists in the traveling direction FW of the moving body 52, the communication light TL emitted from the second optical communication device 2 can be directly transmitted to the first optical communication device 1. Can not.
 図8に示すような状態において第1の光通信装置1と第2の光通信装置2との間で直接的な水中光通信を行うためには、移動体52が支柱25を大きく迂回して支柱25による遮蔽を受けない位置へと移動する必要がある。一例として、移動体52は図8に示される位置から図7に示される位置へと迂回移動する必要がある。このような迂回移動を行うためには非常に長い時間を要する。迂回移動を行う間は直接的な水中光通信が中断される。 In order to perform direct underwater optical communication between the first optical communication device 1 and the second optical communication device 2 in the state shown in FIG. It is necessary to move to a position where it is not shielded by the struts 25 . As an example, the vehicle 52 needs to make a detour from the position shown in FIG. 8 to the position shown in FIG. It takes a very long time to perform such roundabout movement. Direct underwater optical communication is interrupted during the roundabout movement.
 そこで直接的な水中光通信が困難である場合、第2実施形態に係る水中光通信システム50Aでは、光を反射させるように構成された外壁23を利用して間接的な水中光通信を行う。すなわち、移動体52の進行方向FWを図8に示す方向から図9に示す方向に変更させる。言い換えると、移動体52が支柱25に対向する状態から移動体52が外壁23に対向する状態となるように、移動体52の進行方向FWを変更させる。 Therefore, when direct underwater optical communication is difficult, in the underwater optical communication system 50A according to the second embodiment, indirect underwater optical communication is performed using the outer wall 23 configured to reflect light. That is, the moving direction FW of the moving body 52 is changed from the direction shown in FIG. 8 to the direction shown in FIG. In other words, the traveling direction FW of the moving body 52 is changed so that the moving body 52 faces the outer wall 23 from the state where the moving body 52 faces the column 25 .
 移動体52の進行方向FWを変更させた後、移動体52は第2の光通信装置2から外壁23へ向けて通信光TLを出射させる。出射された通信光TLは、外壁23に当たって反射する。外壁23によって反射された通信光TLすなわち反射通信光TLRは、支柱25によって遮られることなく固定構造体51へ向かって進み、第1の光通信装置1によって受信される。このように、移動体52を移動させなくとも、支柱25を迂回するような軌跡で通信光TLを反射させることによって、第1の光通信装置1と第2の光通信装置2との水中光無線通信を行うことができる。 After changing the traveling direction FW of the moving object 52 , the moving object 52 emits the communication light TL from the second optical communication device 2 toward the outer wall 23 . The emitted communication light TL strikes the outer wall 23 and is reflected. The communication light TL reflected by the outer wall 23 , that is, the reflected communication light TLR travels toward the fixed structure 51 without being blocked by the post 25 and is received by the first optical communication device 1 . In this way, even if the moving body 52 is not moved, by reflecting the communication light TL along a trajectory that bypasses the support column 25, the underwater light transmission between the first optical communication device 1 and the second optical communication device 2 can be achieved. Wireless communication is possible.
 この場合、移動体52の進行方向FWをわずかに変更させることで間接的な水中光無線通信を可能とさせるので、移動体52自体が支柱25を迂回するように移動する必要がない。移動体52の進行方向FWの変更に要する時間は移動体52自体を迂回移動させるために要する時間と比べて非常に短い。そのため、光遮蔽物である支柱25を迂回するような軌跡で通信光TLを反射させることによって、水中光無線通信の継続性を大きく向上できる。 In this case, the moving direction FW of the moving body 52 is slightly changed to enable indirect underwater optical wireless communication, so the moving body 52 itself does not need to move around the support 25 . The time required to change the traveling direction FW of the moving body 52 is much shorter than the time required to move the moving body 52 itself around. Therefore, the continuity of underwater optical wireless communication can be greatly improved by reflecting the communication light TL along a trajectory that bypasses the strut 25, which is a light shield.
 <第2実施形態による効果>
 本実施形態に係る水中光通信システム50Aでは、閉鎖空間である貯水タンク21の内部において、当該閉鎖空間を形成させる外壁23を用いて光を反射させることによって間接的な水中光無線通信を行う。すなわち移動体52に配設されている第2の光通信装置2から出射された通信光TLを外壁23の内面に形成された光反射面で反射させ、固定構造体51に配設されている第1の光通信装置1に受光させることによって通信光TLを送信する。
<Effects of Second Embodiment>
In the underwater optical communication system 50A according to the present embodiment, indirect underwater optical wireless communication is performed by reflecting light using the outer wall 23 forming the closed space inside the water storage tank 21, which is the closed space. That is, the communication light TL emitted from the second optical communication device 2 arranged on the moving body 52 is reflected by the light reflecting surface formed on the inner surface of the outer wall 23 and arranged on the fixed structure 51 . The communication light TL is transmitted by causing the first optical communication device 1 to receive the light.
 第1実施形態のように、反射通信光TLRを用いた間接的な水中光無線通信を開放空間において行う場合、反射材11を例とする光を反射させる構造物を固定構造体51の周囲に配設する必要がある。一方で第2実施形態のように、貯水タンク21を例とする閉鎖空間において間接的な水中光無線通信を行う場合、当該閉鎖空間を形成する外壁23の内面が光を反射するように構成させることによって、外壁23そのものを光反射器として利用できる。外壁23を光反射器として利用することにより、反射材11を例とする新たな構造物を貯水タンク21の内部に配設する必要がない。そのため、水中光通信システム50Aのコストを低減できる。 As in the first embodiment, when indirect underwater optical wireless communication using reflected communication light TLR is performed in an open space, a structure that reflects light, such as the reflector 11, is placed around the fixed structure 51. must be placed. On the other hand, when indirect underwater optical wireless communication is performed in a closed space such as a water storage tank 21 as in the second embodiment, the inner surface of the outer wall 23 forming the closed space is configured to reflect light. As a result, the outer wall 23 itself can be used as a light reflector. By using the outer wall 23 as a light reflector, there is no need to arrange a new structure such as the reflector 11 inside the water storage tank 21 . Therefore, the cost of the underwater optical communication system 50A can be reduced.
 また、第1実施形態において用いられる反射材11は配設できる数およびサイズに限界があるので、光を反射する反射面の広さが制限される。その一方で第2実施形態において、閉鎖空間を形成させる外壁23は予め固定構造体51および移動体52の周囲を囲むように隙間無く配設されている。そのため、当該外壁23の内面を光反射器としてい用いることにより光反射面のサイズを広くできる。その結果、通信情報として指向性が高い光を用いた場合であっても、第2の光通信装置2から出射される通信光TLの送信範囲内に光反射面が存在する頻度を大きく向上できる。よって、外壁23によって反射される反射通信光TLRが届く範囲をより広くできるので、間接的な水中光無線通信の有効範囲をより広くすることができる。 In addition, since the number and size of the reflectors 11 used in the first embodiment are limited, the size of the reflecting surface that reflects light is limited. On the other hand, in the second embodiment, the outer wall 23 forming the closed space is arranged in advance so as to surround the fixed structure 51 and the moving body 52 without gaps. Therefore, by using the inner surface of the outer wall 23 as a light reflector, the size of the light reflecting surface can be increased. As a result, even when light with high directivity is used as communication information, it is possible to greatly improve the frequency with which the light reflecting surface exists within the transmission range of the communication light TL emitted from the second optical communication device 2. . Therefore, the range that the reflected communication light TLR reflected by the outer wall 23 reaches can be widened, so that the effective range of indirect underwater optical wireless communication can be further widened.
<態様>
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
<Aspect>
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
(第1項)
 一の態様に係る水中光通信システム50は、水中WAに固定されている固定構造体51に配設されている第1の光通信装置1と、水中WAを移動する移動体52に配設されている第2の光通信装置2との間で通信を行う水中光通信システムであって、第1の光通信装置1および第2の光通信装置2の各々は、レーザ光である通信光TLを発信するレーザ光源(3、4)と、通信光TLを受信する光受信部(5、6)と、を備え、水中光通信システム50は、第1の光通信装置1および第2の光通信装置2のうち一方が備えるレーザ光源(3、4)から発信された通信光TLのうち少なくとも一部を反射させ、反射された通信光TLを第1の光通信装置1および第2の光通信装置2のうち他方が備える光受信部(5、6)に受信させる反射材11をさらに備えるものである。
(Section 1)
An underwater optical communication system 50 according to one aspect includes a first optical communication device 1 arranged on a fixed structure 51 fixed to an underwater WA, and a moving body 52 arranged on a moving body 52 moving in the underwater WA. an underwater optical communication system that communicates with a second optical communication device 2, wherein each of the first optical communication device 1 and the second optical communication device 2 has a communication light TL which is laser light. and optical receivers (5, 6) for receiving communication light TL. At least part of the communication light TL emitted from the laser light sources (3, 4) provided in one of the communication devices 2 is reflected, and the reflected communication light TL is sent to the first optical communication device 1 and the second light. It further includes a reflector 11 that causes the optical receivers (5, 6) of the other communication device 2 to receive the signal.
 第1項に記載の水中光通信システムによれば、通信光TLを反射させる反射材11を用いることにより、レーザ光源から発信された通信光TLを光受信部で直接受信する直接的な水中光通信のみならず、レーザ光源から発信された後に反射材11で反射された通信光TLを光受信部で受光する間接的な水中光通信をも可能とする。間接的な水中光通信では、レーザ光源から水中に出射された通信光TLを反射材11で反射させることにより、通信光TLが当初に出射された方向とは異なる方向へ通信光TLの進行方向を変更できる。一例として、移動体52の前方に出射された通信光TLを光反射部で反射させることにより、反射された通信光TLを移動体52の側方または後方へと送信することができる。 According to the underwater optical communication system described in item 1, by using the reflecting material 11 that reflects the communication light TL, the communication light TL emitted from the laser light source is directly received by the optical receiving unit. Not only communication but also indirect underwater optical communication is possible in which the optical receiver receives the communication light TL that is emitted from the laser light source and then reflected by the reflector 11 . In indirect underwater optical communication, the communication light TL emitted underwater from the laser light source is reflected by the reflecting material 11, so that the traveling direction of the communication light TL is changed in a direction different from the direction in which the communication light TL was originally emitted. can be changed. As an example, by reflecting the communication light TL emitted in front of the moving body 52 by the light reflecting portion, the reflected communication light TL can be transmitted to the side or rear of the moving body 52 .
 そのため、搭載できる第2の光通信装置2の数および大きさが限られるような移動体52について、直接的な水中光通信では通信が不可能であった範囲であっても、間接的な水中光通信であれば当該範囲に対して通信可能となる。従って、反射材11によって反射された光を受光させる間接通信を可能とすることにより、移動体52に第2の光通信装置2を増設することなく移動体52の通信可能範囲を飛躍的に拡大できる。 Therefore, even in a range where communication is impossible by direct underwater optical communication, indirect underwater In the case of optical communication, communication is possible within the range. Therefore, by enabling indirect communication by receiving the light reflected by the reflector 11, the communicable range of the mobile body 52 can be dramatically expanded without adding the second optical communication device 2 to the mobile body 52. can.
(第2項)
 第1項に記載の水中光通信システムにおいて、反射材11は通信光TLを反射する反射面に散乱処理が施されている散乱反射ミラーであり、反射材11は当該散乱処理が施されている反射面によって通信光TLを放射状に反射させてよい。
(Section 2)
In the underwater optical communication system according to item 1, the reflector 11 is a scattering reflection mirror whose reflecting surface that reflects the communication light TL is subjected to scattering treatment, and the reflector 11 is subjected to the scattering treatment. The communication light TL may be radially reflected by the reflecting surface.
 第2項に記載の水中光通信システムによれば、反射材11は通信光TLを反射する反射面に散乱処理が施されている散乱反射ミラーである。そのため、反射材11によって散乱反射された通信光TLの広がり角度がより大きくなる。よって、反射材11によって反射された通信光TLが届く範囲を広くできるので、移動体52に第2の光通信装置2を増設することなく移動体52の通信可能範囲をさらに拡大できる。 According to the underwater optical communication system described in the second item, the reflector 11 is a scattering reflection mirror whose reflection surface that reflects the communication light TL is subjected to scattering treatment. Therefore, the spread angle of the communication light TL scattered and reflected by the reflector 11 is increased. Therefore, the communication light TL reflected by the reflector 11 can reach a wider range, so that the communicable range of the mobile body 52 can be further expanded without adding the second optical communication device 2 to the mobile body 52 .
(第3項)
 第1項に記載の水中光通信システムにおいて、反射材11は通信光TLを反射する反射面が凸状球面となっており、反射材11は凸状球面となっている反射面によって通信光TLを放射状に反射させてよい。
(Section 3)
In the underwater optical communication system described in item 1, the reflecting surface of the reflecting material 11 that reflects the communication light TL is a convex spherical surface, and the reflecting surface of the reflecting material 11 that is a convex spherical surface reflects the communication light TL. may be reflected radially.
 第3項に記載の水中光通信システムによれば、反射材11は通信光TLを反射する反射面が凸状球面となっているので、反射材11によって反射された通信光TLの広がり角度をより大きくできる。よって、反射された通信光TLが届く範囲を広くできるので、移動体52に第2の光通信装置2を増設することなく移動体52の通信可能範囲をさらに拡大できる。 According to the underwater optical communication system described in item 3, since the reflection surface of the reflector 11 that reflects the communication light TL is a convex spherical surface, the spread angle of the communication light TL reflected by the reflector 11 is can be bigger. Therefore, since the range that the reflected communication light TL reaches can be widened, the communicable range of the mobile body 52 can be further expanded without adding the second optical communication device 2 to the mobile body 52 .
(第4項)
 第1項ないし第3項のいずれかに記載の水中光通信システムにおいて、移動体52および固定構造体51は、外壁23で区画された貯水タンク21の内部に配置されており、通信光TLを反射させる光反射部は外壁23であってもよい。
(Section 4)
In the underwater optical communication system according to any one of items 1 to 3, the moving body 52 and the fixed structure 51 are arranged inside the water storage tank 21 partitioned by the outer wall 23, and transmit the communication light TL. The outer wall 23 may be the light reflecting portion that reflects the light.
 第4項に記載の水中光通信システムによれば、貯水タンク21の必須な構成要素であり予め形成されている外壁23を光反射部として利用できる。そのため、新たに光を反射させる構造物を設置する必要がないので水中光通信システムのコスト上昇を抑制できる。また、外壁23は移動体52および固定構造体51の周囲に隙間無く配設されるので、通信光TLを反射できる光反射面が広い。そのため、レーザ光源から水中に出射された通信光TLの届く範囲に光反射面が存在しないという事態をより確実に回避できる。 According to the underwater optical communication system described in item 4, the pre-formed outer wall 23 which is an essential component of the water storage tank 21 can be used as a light reflector. Therefore, since it is not necessary to install a new structure for reflecting light, an increase in cost of the underwater optical communication system can be suppressed. In addition, since the outer wall 23 is arranged without gaps around the moving body 52 and the fixed structure 51, the light reflecting surface capable of reflecting the communication light TL is wide. Therefore, it is possible to more reliably avoid the situation where the communication light TL emitted from the laser light source into the water does not reach the light reflecting surface.
(第5項)
 第1項ないし第5項のいずれかに記載の水中光通信システムにおいて、反射材11は、固定構造体51を中心として通信光TLの射程距離を半径とする円の内部に複数配置されており、複数の反射材11のうち少なくとも1つは第1の光通信装置1または第2の光通信装置2から発信される通信光TLを受光するように反射材11が配置される位置が定められていてよい。
(Section 5)
In the underwater optical communication system according to any one of items 1 to 5, the plurality of reflectors 11 are arranged inside a circle centered on the fixed structure 51 and having a radius equal to the range of the communication light TL. The positions where the reflectors 11 are arranged are determined so that at least one of the plurality of reflectors 11 receives the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2. It's okay.
 第5項に記載の水中光通信システムによれば、反射材11のうち少なくとも1つは第1の光通信装置1または第2の光通信装置2から発信される通信光TLを受光するように反射材11が配置される位置が定められている。そのため、レーザ光源から水中に出射された通信光TLの届く範囲に反射材11が存在しないために通信光TLを反射できないという事態をより確実に回避できる。 According to the underwater optical communication system described in item 5, at least one of the reflectors 11 receives the communication light TL emitted from the first optical communication device 1 or the second optical communication device 2. A position where the reflector 11 is arranged is determined. Therefore, it is possible to more reliably avoid a situation in which the communication light TL emitted from the laser light source into the water cannot be reflected because the reflecting material 11 is not present within the reach of the communication light TL.
<他の実施形態>
 なお、今回開示された実施例は、すべての点で例示であって制限的なものではない。本発明の範囲は、特許請求の範囲、並びに、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例として、本発明は下記のように変形実施することができる。
<Other embodiments>
Note that the embodiments disclosed this time are illustrative in all respects and are not restrictive. The scope of the present invention includes the claims and all changes within the meaning and range of equivalents to the claims. As an example, the present invention can be modified and implemented as follows.
 (1)上述の各実施形態において、移動体52に配設されている第2の光通信装置2が通信光TLの送信側である構成を例示して説明したが、固定構造体51に配設されている第1の光通信装置1が通信光TLの送信側であってもよい。すなわち第1の光通信装置1が、一例として移動体52の操作を指示する内容の情報を通信光TLとして水中WAに出射し、直接または間接的に第2の光通信装置2が当該通信光TLを受信する。このように、第1の光通信装置1および第2の光通信装置2は双方向の水中光無線通信を行う構成であってよい。 (1) In each of the above-described embodiments, the configuration in which the second optical communication device 2 arranged on the moving body 52 is the transmitting side of the communication light TL was explained as an example. The first optical communication device 1 provided may be the transmission side of the communication light TL. That is, as an example, the first optical communication device 1 emits, as a communication light TL, the information instructing the operation of the moving body 52 to the underwater WA, and the second optical communication device 2 directly or indirectly transmits the communication light. Receive TL. Thus, the first optical communication device 1 and the second optical communication device 2 may be configured to perform two-way underwater optical wireless communication.
 (2)上述の各実施形態において、反射材11または外壁23は通信光TLを1回反射させることによって間接的な水中光無線通信を行う構成を例示したが、通信光TLを複数回反射させることによって通信対象へ向けて通信光TLを送信させてもよい。図10は、反射材11によって通信光TLを2回反射させることによって、第2の光通信装置2から第1の光通信装置1へと通信光TLを送信させる構成を示している。 (2) In each of the above-described embodiments, the reflecting material 11 or the outer wall 23 reflects the communication light TL once to perform indirect underwater optical wireless communication. By doing so, the communication light TL may be transmitted toward the communication target. FIG. 10 shows a configuration in which the communication light TL is transmitted from the second optical communication device 2 to the first optical communication device 1 by reflecting the communication light TL twice with the reflector 11 .
 このように、通信光TLを複数回反射させることによって、通信光TLの軌跡を多様化できるので通信光TLの到達可能範囲はより広くなる。従って、移動体52に搭載される第2の光通信装置2の数が少ない場合であっても、移動体52の通信可能範囲をさらに大きく広げることができる。また岩場P、配線、またはパイプラインを例とする複雑な形状の光遮蔽物が存在している場合であっても、通信光TLを複数回反射させることによって、当該光遮蔽物を避けるように反射通信光TLRを送信させることが容易となる。 In this way, by reflecting the communication light TL multiple times, the trajectory of the communication light TL can be diversified, so that the reachable range of the communication light TL becomes wider. Therefore, even if the number of second optical communication devices 2 mounted on the mobile object 52 is small, the communicable range of the mobile object 52 can be further expanded. Further, even if there is a light shielding object with a complicated shape such as a rocky place P, wiring, or a pipeline, the light shielding object is avoided by reflecting the communication light TL multiple times. It becomes easy to transmit the reflected communication light TLR.
 (3)上述の第2実施形態において、水中光通信システム50Aは閉鎖空間の内部で用いられる構成を例示したが、閉鎖空間は外壁23を例とする壁部によって密閉されている空間に限ることはなく、壁部によって外部と区画されている空間であればよい。一例として、貯水タンク21は上部に外壁23が形成されていなくともよい。また、水中光通信システム50Aが水中光無線通信を行う閉鎖空間すなわち外部と区画された空間の例として貯水タンク21を例示したがこれに限られない。水中光通信システム50Aが用いられる他の例としては、水道管、排水管、または浄水槽などが挙げられる。そして当該閉鎖空間を外部と区画する壁部の内面を光反射面とすることにより、当該壁部を用いて通信光TLを反射させて間接的な水中光無線通信を行うことができる。 (3) In the above-described second embodiment, the underwater optical communication system 50A is used inside a closed space, but the closed space is limited to a space sealed by walls such as the outer wall 23. However, it is sufficient if the space is separated from the outside by a wall. As an example, the water storage tank 21 may not have the outer wall 23 formed on the top. Also, although the water storage tank 21 is illustrated as an example of a closed space in which the underwater optical communication system 50A performs underwater optical wireless communication, that is, a space separated from the outside, the present invention is not limited to this. Other examples in which the underwater optical communication system 50A is used include water pipes, drain pipes, water purification tanks, and the like. By making the inner surface of the wall that separates the closed space from the outside a light reflecting surface, the wall can be used to reflect the communication light TL to enable indirect underwater optical wireless communication.
 (4)上述の各実施形態において、水中光通信システム50は2つの光通信装置の間で光無線通信を行う構成であったが、3以上の光通信装置の間で相互に水中光無線通信を行ってもよい。 (4) In each of the above-described embodiments, the underwater optical communication system 50 is configured to perform optical wireless communication between two optical communication devices. may be performed.
 (5)上述の各実施形態において、反射材11または外壁23の光反射面は平面状に限ることはなく、凸面状、凹面状であってもよい。図11は、凸状の球面となっている反射材11を用いて間接的な水中光無線通信を行う状態を示している。特に光反射面が凸状の球面である場合、光反射面が平面状である場合と比べて、反射前の通信光TLの広がり角度θに対する反射通信光TLRの広がり角度θaの拡大率を大きく向上できる。そのため、レーザ光を用いた水中光無線通信の通信可能範囲をより広くすることができる。 (5) In each of the above-described embodiments, the light reflecting surface of the reflector 11 or the outer wall 23 is not limited to being planar, and may be convex or concave. FIG. 11 shows a state in which indirect underwater optical wireless communication is performed using a reflector 11 having a convex spherical surface. In particular, when the light reflecting surface is a convex spherical surface, the expansion ratio of the spread angle θa of the reflected communication light TLR with respect to the spread angle θ of the communication light TL before reflection is increased compared to when the light reflecting surface is planar. can improve. Therefore, it is possible to further widen the communicable range of underwater optical wireless communication using laser light.
 (6)上述の各実施形態において、第1の光通信装置1および第2の光通信装置2の数は適宜変更できる。一例として移動体52に配設される第2の光通信装置2の数は1つに限ることはなく、移動体52のサイズに応じて第2の光通信装置2を複数設置してもよい。反射通信光TLRを通信対象へと送信させる間接通信を可能とすることにより、直接通信のみを可能とする従来の水中光通信システムと比べて、第2の光通信装置2の数を維持しつつ移動体52の通信可能範囲を拡大できる。 (6) In each of the above-described embodiments, the number of first optical communication devices 1 and second optical communication devices 2 can be changed as appropriate. As an example, the number of second optical communication devices 2 installed in the moving body 52 is not limited to one, and a plurality of second optical communication devices 2 may be installed according to the size of the moving body 52. . By enabling indirect communication in which the reflected communication optical TLR is transmitted to the communication target, the number of second optical communication devices 2 can be maintained while maintaining the number of second optical communication devices 2 compared to the conventional underwater optical communication system which enables only direct communication. The communicable range of the mobile body 52 can be expanded.
  1  … 第1の光通信装置
  2  … 第2の光通信装置
  3  … レーザ光源
  4  … レーザ光源
  5  … 光受信部
  6  … 光受信部
  7  … 制御部
  8  … 制御部
  9  … 観測装置
 11  … 反射板
 21  … 貯水タンク
 23  … 外壁
 25  … 支柱
 51  … 固定構造体
 52  … 移動体
 WD  … 窓部
 TL  … 通信光
 TLR … 反射通信光
REFERENCE SIGNS LIST 1 first optical communication device 2 second optical communication device 3 laser light source 4 laser light source 5 optical receiver 6 optical receiver 7 controller 8 controller 9 observation device 11 reflector 21... Water storage tank 23... Outer wall 25... Post 51... Fixed structure 52... Moving object WD... Window part TL... Communication light TLR... Reflected communication light

Claims (5)

  1.  水中に固定されている固定構造体に配設されている第1の光通信装置と、水中を移動する移動体に配設されている第2の光通信装置との間で通信を行う水中光通信システムであって、
     前記第1の光通信装置および前記第2の光通信装置の各々は、
     レーザ光を発信する光発信部と、
     前記レーザ光を受信する光受信部と、
     を備え、
     前記水中光通信システムは、
     前記第1の光通信装置および前記第2の光通信装置のうち一方が備える前記光発信部から発信されたレーザ光のうち少なくとも一部を反射させ、反射された前記レーザ光を前記第1の光通信装置および前記第2の光通信装置のうち他方が備える前記光受信部に受信させる光反射部をさらに備える水中光通信システム。
    Underwater light for communicating between a first optical communication device installed on a fixed structure fixed in water and a second optical communication device installed on a moving body that moves underwater A communication system,
    each of the first optical communication device and the second optical communication device,
    an optical transmitter that transmits laser light;
    an optical receiver that receives the laser light;
    with
    The underwater optical communication system comprises:
    at least a part of the laser light transmitted from the light transmission unit provided in one of the first optical communication device and the second optical communication device is reflected, and the reflected laser light is transmitted to the first optical communication device; An underwater optical communication system further comprising a light reflecting section that causes the optical receiving section provided in the other of the optical communication device and the second optical communication device to receive the light.
  2.  請求項1に記載の水中光通信システムにおいて、
     前記光反射部は前記レーザ光を反射する反射面に散乱処理が施されている散乱反射ミラーであり、
     前記光反射部は前記散乱処理が施されている前記反射面によって前記レーザ光を放射状に反射させる水中光通信システム。
    In the underwater optical communication system according to claim 1,
    the light reflecting portion is a scattering reflection mirror having a reflecting surface that reflects the laser beam and having undergone a scattering treatment;
    In the underwater optical communication system, the light reflecting section radially reflects the laser light by the reflecting surface subjected to the scattering treatment.
  3.  請求項1に記載の水中光通信システムにおいて、
     前記光反射部は前記レーザ光を反射する反射面が凸状球面となっており、
     前記光反射部は前記凸状球面となっている前記反射面によって前記レーザ光を放射状に反射させる水中光通信システム。
    In the underwater optical communication system according to claim 1,
    the light reflecting portion has a convex spherical reflecting surface for reflecting the laser light,
    In the underwater optical communication system, the light reflecting section radially reflects the laser light by the reflecting surface which is the convex spherical surface.
  4.  請求項1ないし請求項3のいずれかに記載の水中光通信システムにおいて、
     前記移動体および前記固定構造体は、壁部で区画された貯水タンクの内部に配置されており、
     前記光反射部は、前記壁部である水中光通信システム。
    In the underwater optical communication system according to any one of claims 1 to 3,
    The moving body and the fixed structure are arranged inside a water storage tank partitioned by a wall,
    The underwater optical communication system, wherein the light reflector is the wall.
  5.  請求項1ないし請求項4のいずれかに記載の水中光通信システムにおいて、
     前記光反射部は、前記固定構造体を中心として前記レーザ光の射程距離を半径とする円の内部に複数配置されており、
     複数の前記光反射部のうち少なくとも1つは前記第1の光通信装置から発信される前記レーザ光を受光するように前記光反射部が配置される位置が定められている水中光通信システム。
    In the underwater optical communication system according to any one of claims 1 to 4,
    a plurality of the light reflecting portions are arranged inside a circle centered on the fixed structure and having a radius corresponding to the range of the laser light;
    The underwater optical communication system, wherein at least one of the plurality of light reflectors is positioned so as to receive the laser beam emitted from the first optical communication device.
PCT/JP2021/025964 2021-07-09 2021-07-09 Underwater optical communication system WO2023281733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025964 WO2023281733A1 (en) 2021-07-09 2021-07-09 Underwater optical communication system
TW111119038A TW202306338A (en) 2021-07-09 2022-05-23 Underwater optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025964 WO2023281733A1 (en) 2021-07-09 2021-07-09 Underwater optical communication system

Publications (1)

Publication Number Publication Date
WO2023281733A1 true WO2023281733A1 (en) 2023-01-12

Family

ID=84800597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025964 WO2023281733A1 (en) 2021-07-09 2021-07-09 Underwater optical communication system

Country Status (2)

Country Link
TW (1) TW202306338A (en)
WO (1) WO2023281733A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098555A (en) * 2016-12-09 2018-06-21 ソフトバンク株式会社 Parasitic relay device and radio relay system
JP2019009531A (en) * 2017-06-21 2019-01-17 ソフトバンク株式会社 Passive relay device and wireless relay system
JP2019114939A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Optical communication device
JP2021088336A (en) * 2019-11-25 2021-06-10 幹夫 福永 Torpedo defense system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098555A (en) * 2016-12-09 2018-06-21 ソフトバンク株式会社 Parasitic relay device and radio relay system
JP2019009531A (en) * 2017-06-21 2019-01-17 ソフトバンク株式会社 Passive relay device and wireless relay system
JP2019114939A (en) * 2017-12-25 2019-07-11 株式会社島津製作所 Optical communication device
JP2021088336A (en) * 2019-11-25 2021-06-10 幹夫 福永 Torpedo defense system

Also Published As

Publication number Publication date
TW202306338A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
WO2021175141A1 (en) Prism and multi-layer laser radar
US8295708B2 (en) High speed underwater data transmission method
US20070008514A1 (en) LADAR system with SAL follower
JPH06234397A (en) Method and optical system for avoiding collision of cooperative traveling objects
US8412048B2 (en) Surface and sub-surface wave front management
RU2501038C1 (en) Hydroacoustic system
WO2007078324A2 (en) Laser-based system with ladar and sal capabilities
CN109239693B (en) Transmit-receive common-path scanning laser radar
CN211718520U (en) Multi-line laser radar
CN112455267A (en) Underwater wireless charging method for autonomous robot and underwater autonomous robot
CN111308480A (en) Laser radar receiving system
WO2023281733A1 (en) Underwater optical communication system
CN105549026A (en) Multiline optical scanning range finding device and method
US20240012117A1 (en) Detection Method and Apparatus
CN113820721B (en) Laser radar system with separated receiving and transmitting
RU2462731C1 (en) Scanning laser beacon for spacecraft
CN212111791U (en) Laser radar receiving system
WO2021196929A1 (en) Laser radar receiving system
RU2696626C1 (en) Transceiving optical device
CN112034487A (en) Laser radar
WO2021134689A1 (en) Distance measuring apparatus and distance measuring system
CN112711007A (en) Laser radar and unmanned aerial vehicle
WO2023040788A1 (en) Laser radar, detection device, and vehicle
EP1695468B1 (en) Laser-based communications with a remote information source
KR102636500B1 (en) Lidar system with biased 360-degree field of view

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE