WO2023281574A1 - Method for manufacturing vacuum valve - Google Patents

Method for manufacturing vacuum valve Download PDF

Info

Publication number
WO2023281574A1
WO2023281574A1 PCT/JP2021/025310 JP2021025310W WO2023281574A1 WO 2023281574 A1 WO2023281574 A1 WO 2023281574A1 JP 2021025310 W JP2021025310 W JP 2021025310W WO 2023281574 A1 WO2023281574 A1 WO 2023281574A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum valve
manufacturing
end plate
insulating resin
side end
Prior art date
Application number
PCT/JP2021/025310
Other languages
French (fr)
Japanese (ja)
Inventor
知裕 仲田
洋 十鳥
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023532873A priority Critical patent/JP7433531B2/en
Priority to KR1020237040123A priority patent/KR20240000558A/en
Priority to DE112021007922.0T priority patent/DE112021007922T5/en
Priority to CN202180099783.1A priority patent/CN117546262A/en
Priority to PCT/JP2021/025310 priority patent/WO2023281574A1/en
Priority to TW111106291A priority patent/TWI818443B/en
Publication of WO2023281574A1 publication Critical patent/WO2023281574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/72Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C2045/14459Coating a portion of the article, e.g. the edge of the article injecting seal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0007Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7506Valves

Definitions

  • This application relates to a method for manufacturing a vacuum valve.
  • casting which is used to mold the vacuum valve with insulating resin, generates less load on the vacuum valve during manufacturing, but the high-temperature resin poured into the mold to form the outer periphery cools down. have to wait until For this reason, the occupation time of manufacturing equipment such as casting molds is long to manufacture one vacuum valve, the manufacturing period takes about several hours to one day, the manufacturing cycle is long, and the manufacturing cost is high. there were.
  • the present application discloses a technique for solving the above problems, and aims to provide a method of manufacturing a vacuum valve with low manufacturing costs.
  • the manufacturing method of the vacuum valve disclosed in the present application includes forming a vacuum vessel by brazing a fixed side end plate and a movable side end plate to both ends of a cylindrical insulating vessel, and installing a fixed side end plate in the vacuum vessel.
  • a method of manufacturing a vacuum valve comprising placing an intermediate assembly of a vacuum valve containing an electrode and a movable electrode in a mold, and molding an insulating resin material around the outer periphery of the intermediate assembly to form an insulating resin layer.
  • the load generated at the brazed portion between the insulating container and the fixed-side end plate is made smaller than the allowable load of the brazed portion. is formed in the area of the outer peripheral portion of the fixed-side end plate.
  • vacuum valve manufacturing method disclosed in the present application it is possible to reduce the load applied to the brazed portion of the vacuum valve due to the molding pressure when molding the insulating resin, and the manufacturing cycle is short and the vacuum valve is inexpensive. Valves can be manufactured.
  • FIG. 2 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by the vacuum valve manufacturing method according to Embodiment 1; It is sectional drawing which expands and shows the A section in FIG.
  • FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1;
  • FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1;
  • FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1;
  • 4A and 4B are schematic diagrams and characteristic diagrams for explaining the relationship between the load and the area of the outer peripheral portion during molding of the vacuum valve according to Embodiment 1.
  • FIG. 7 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by the method for manufacturing a vacuum valve according to Embodiment 2;
  • FIG. 6 is a cross-sectional view showing an enlarged portion B in FIG. 5 ;
  • FIG. 7 is a perspective view of a main part in FIG. 6;
  • FIG. 11 is a cross-sectional view showing a manufacturing process in a manufacturing method of a vacuum valve according to Embodiment 3;
  • 8B is a partially broken perspective view showing the manufacturing process of FIG. 8A;
  • FIG. FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3;
  • FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3;
  • FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3;
  • FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4;
  • FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4;
  • FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4;
  • FIG. 10 is a time chart showing changes in loads generated in the main parts in the vacuum valve manufacturing methods according to Embodiments 3 and 4.
  • FIG. 10 is a time chart showing changes in loads generated in the main parts in the vacuum valve manufacturing methods according to Embodiments 3 and 4.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by a vacuum valve manufacturing method according to Embodiment 1
  • FIG. 2 is a cross-sectional view showing an enlarged portion A in FIG.
  • a vacuum valve 100 includes a cylindrical insulating container 1 made of ceramics or the like, a fixed side end plate 2 and a movable side end plate 3 brazed to both ends of the insulating container 1, and a fixed side end plate 2.
  • a fixed electrode rod 4 fixed to the fixed electrode rod 4
  • a fixed electrode 5 fixed to the end of the fixed electrode rod 4 and disposed in the insulating container 1
  • a movable end plate 3 sliding through a bellows 6.
  • a movable electrode rod 7 supported so as to be movable, a movable electrode 8 joined to the end of the movable electrode rod 7 and arranged in the insulating container 1, and BMC (Bulk Molding Compound: unsaturated polyester) on the outer periphery.
  • the insulating container 1 is joined to the fixed-side end plate 2 and the movable-side end plate 3 by brazing to form a sealed vacuum container.
  • the fixed electrode 5 and the movable electrode 8 are arranged to face each other in the axial direction inside the insulating container 1, and are configured to be separated from and connected to the fixed electrode 5 as the movable electrode 8 moves.
  • FIGS. 3A, 3B, and 3C A process of manufacturing the insulating resin layer 9 of such a vacuum valve 100 by direct pressure molding will be described with reference to FIGS. 3A, 3B, and 3C.
  • a fixed-side end plate 2 and a movable-side end plate 3 are brazed to both ends of a cylindrical insulating container 1 to form a vacuum container. and the movable side electrode 8, a core 11 is assembled to the intermediate assembly, and the intermediate assembly is placed in a fixed side mold 12 for molding.
  • An insulating resin material 13 mainly composed of a BMC material is placed on the upper portion in a semi-cured state.
  • the movable mold 14 is moved to press and flow the insulating resin material 13 .
  • the vacuum valve 100 having the insulating resin layer 9 formed on the outer periphery can be manufactured.
  • the BMC material when filling the outer periphery of the assembly with the insulating resin material 13, the BMC material requires a high molding pressure (approximately 10 megapascals). Since there is a risk of damaging the brazed portion 10, the relationship between the load F1 generated in the brazed portion 10 and the allowable load F2 of the brazed portion 10 must be set to F1 ⁇ F2.
  • the load F1 due to the molding pressure P is proportional to the area S of the outer peripheral portions of the fixed side end plate 2 and the movable side end plate 3, the relationship between the load F generated by the molding pressure P and the area S is shown in FIG.
  • Embodiment 2 5 is a cross-sectional view showing the overall configuration of the vacuum valve manufactured by the vacuum valve manufacturing method according to Embodiment 2
  • FIG. 6 is a cross-sectional view showing an enlarged portion B in FIG.
  • FIG. 7 is a perspective view of a main part in FIG. 6;
  • a cover 15 made of a cup-shaped conductive member shown in FIG. A layer 9 is formed.
  • the rest of the configuration is the same as that of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and descriptions thereof are omitted.
  • the cover 15 made of a cup-shaped conductive member and molding the insulating resin material 13 in this way, it is possible to reduce the load on the brazed portion 10 that occurs during molding, and also to reduce the vacuum valve.
  • the freedom of configuration of 100 can be expanded.
  • the cover 15 made of a cup-shaped conductive member relaxes electric field concentration in the brazing portion 10, the dielectric strength of the vacuum valve 100 can be further improved.
  • Embodiment 3. 8A is a cross-sectional view showing a manufacturing process in a method for manufacturing a vacuum valve according to Embodiment 3, and FIG. 8B is a partially broken perspective view showing the manufacturing process of FIG. 8A.
  • the vacuum valve 100 since it is necessary to secure a movable space for the movable electrode rod 7 on the movable side, the entire outer periphery of the movable side end plate 3 cannot be molded. Therefore, the projected area of the intermediate assembly molded in the axial direction of the vacuum valve is smaller on the movable side than on the fixed side, and the load generated on the intermediate assembly during molding is: fixed side>movable side.
  • the fixed-side end plate 2 receives all the load, resulting in deformation. there will be a risk of doing so. For this reason, as shown in FIGS. 8A and 8B, the insulating container 1 is supported from the circumferential direction by the core 11 of the molds 12 and 14, and in this state, the insulating resin material 13 is filled to form the fixed side end plate. 2 can be reduced, and damage to the brazed portion 10 due to molding can be avoided.
  • FIG. 9, 10, and 11 are cross-sectional views showing another example of the manufacturing process in the vacuum valve manufacturing method according to the third embodiment, and FIG. shows an example of support by the tip of the 10 shows an example in which the movable side end plate 3 is supported in the circumferential direction, and FIG. 11 shows an example in which the movable side end plate 3 is supported in the axial direction. It is possible to reduce the axial load that is generated.
  • Embodiment 4. 12A, 12B, and 12C are schematic diagrams for explaining the manufacturing method of the vacuum valve according to the fourth embodiment, and show the manufacturing process using transfer molding. Moreover, FIG. 13 is a time chart showing changes in load generated in the main part in the method of manufacturing the vacuum valve according to the fourth embodiment.
  • a preheated fixed side mold 21 and a preheated movable side metal mold 21 are assembled with the core 20 attached so as to support the movable side end plate 3 in the intermediate assembly of the vacuum valve in the circumferential direction.
  • An insulating resin material 30 whose main material is preheated BMC material is set in the material filling pot 23 of the movable side mold 22 .
  • the pressure device 24 is moved to inject the insulating resin material 30 into the molds 21 and 22, and finally, as shown in FIG. 12C, the pressure device 24 is moved to the final position. to fill the outer periphery of the intermediate assembly and the core 20 with the insulating resin material 30 .
  • the vacuum valve 100 having the insulating resin layer 9 formed on the outer periphery of the vacuum valve intermediate assembly.
  • the load F3 generated at the brazed portion 10 in the first embodiment is set by the operator in the direct pressure molding, so that the work is likely to vary.
  • the position and timing of the pressure applied to the intermediate assembly may vary greatly, and the load F3 generated on the brazed portion 10 may also increase and the variation may also increase.
  • transfer molding has the advantage of facilitating control of molding conditions.
  • the insulating resin layer 9 is formed by the transfer molding method, but the insulating resin layer 9 may be formed by the injection molding method. Furthermore, in the above-described embodiments, the insulating resin layer is formed by using an insulating resin material mainly composed of unsaturated polyester resin as the insulating resin material. Any one of the resins may be used as the main material. In addition, the main material is 20 to 30%, the reinforcing fiber is glass fiber, carbon fiber, aramid fiber, polyethylene fiber, zylon fiber or boron fiber by 15 to 20%, and the filler is calcium carbonate, aluminum hydroxide or silicate at 50%. The insulating resin layer may be formed from an insulating resin material containing up to 60%.
  • Insulating resin layer 10 Brazing part 11: Core 12: Fixed side mold 13: Insulating resin material 14: Movable side mold 15: Cover 20: Core 21: Fixed side metal Mold 22: Movable side mold 23: Material filling pot 24: Pressure device 30: Insulating resin material 100: Vacuum valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Details Of Valves (AREA)
  • Compressor (AREA)

Abstract

In order to obtain a low-cost vacuum valve, provided is a method for manufacturing a vacuum valve in which an intermediate assembly of the vacuum valve obtained by brazing a fixed side end plate (2) and a movable side end plate (3) to join with both the ends of a cylindrical insulation container (1) is disposed in a mold (12, 14), and an insulation resin material is molded on the outer periphery of the intermediate assembly to form an insulation resin layer (9), the method being characterized in that when molding an insulation resin material (13) on the outer periphery of the intermediate assembly, the area of the outer periphery portion of the fixed side end plate (2) is formed such that the load occurring in a brazed portion (10) between the insulation container (1) and the fixed side end plate (2) is smaller than the allowable load for the brazed portion (10).

Description

真空バルブの製造方法Vacuum valve manufacturing method
 本願は、真空バルブの製造方法に関するものである。 This application relates to a method for manufacturing a vacuum valve.
 従来、真空バルブの絶縁性能を向上させるため、真空バルブの外周部を絶縁樹脂によりモールドして覆い、沿面長を増加させて真空バルブの外周部沿面の絶縁を補強する手法が用いられている。このように真空バルブ外周部を絶縁樹脂でモールドする際、真空バルブに負荷される発生荷重を考慮する必要があり、従来は、高温で液状となった絶縁樹脂材料を注型金型に流し込み、冷却することによって樹脂を硬化させる注型が用いられてきた(例えば、特許文献1参照)。 Conventionally, in order to improve the insulation performance of vacuum valves, a method has been used in which the outer circumference of the vacuum valve is covered by molding with insulating resin to increase the creepage length and reinforce the insulation of the outer circumference of the vacuum valve. In this way, when molding the outer periphery of the vacuum valve with insulating resin, it is necessary to consider the load generated on the vacuum valve. Casting has been used in which the resin is cured by cooling (see, for example, US Pat.
特開2013-93276号公報JP 2013-93276 A
 しかしながら、真空バルブを絶縁樹脂でモールドするために用いられている注型は、製造時において真空バルブへの発生荷重が少ないが、外周部を形成するために金型に流し込んだ高温の樹脂が冷却するまで待つ必要がある。このため、1つの真空バルブを製造するために注型金型をはじめとする製造設備の占有時間が長く、製造工期が約数時間~1日かかり、製造サイクルが長く製造コストが高いという課題があった。 However, casting, which is used to mold the vacuum valve with insulating resin, generates less load on the vacuum valve during manufacturing, but the high-temperature resin poured into the mold to form the outer periphery cools down. have to wait until For this reason, the occupation time of manufacturing equipment such as casting molds is long to manufacture one vacuum valve, the manufacturing period takes about several hours to one day, the manufacturing cycle is long, and the manufacturing cost is high. there were.
 本願は、上記のような課題を解決するための技術を開示するものであり、製造コストが安価な真空バルブの製造方法を提供することを目的としている。 The present application discloses a technique for solving the above problems, and aims to provide a method of manufacturing a vacuum valve with low manufacturing costs.
 本願に開示された真空バルブの製造方法は、円筒状の絶縁容器の両端に固定側端板および可動側端板をそれぞれろう付け接合して真空容器を形成するとともに、前記真空容器内に固定側電極および可動側電極を収納してなる真空バルブの中間組立体を金型内に配置し、前記中間組立体の外周に絶縁樹脂材料をモールド成形して絶縁樹脂層を形成する真空バルブの製造方法であって、前記絶縁樹脂材料を前記中間組立体の外周にモールドする際、前記絶縁容器と前記固定側端板とのろう付け部に発生する荷重が前記ろう付け部の許容荷重より小さくなるように前記固定側端板の外周部の面積を形成していることを特徴とするものである。 The manufacturing method of the vacuum valve disclosed in the present application includes forming a vacuum vessel by brazing a fixed side end plate and a movable side end plate to both ends of a cylindrical insulating vessel, and installing a fixed side end plate in the vacuum vessel. A method of manufacturing a vacuum valve, comprising placing an intermediate assembly of a vacuum valve containing an electrode and a movable electrode in a mold, and molding an insulating resin material around the outer periphery of the intermediate assembly to form an insulating resin layer. When the insulating resin material is molded around the outer periphery of the intermediate assembly, the load generated at the brazed portion between the insulating container and the fixed-side end plate is made smaller than the allowable load of the brazed portion. is formed in the area of the outer peripheral portion of the fixed-side end plate.
 本願に開示される真空バルブの製造方法によれば、絶縁樹脂をモールドする際の成形圧力により真空バルブのろう付け部に負荷される荷重を低減することが可能となり、製造サイクルが短く安価な真空バルブを製造することができる。 According to the vacuum valve manufacturing method disclosed in the present application, it is possible to reduce the load applied to the brazed portion of the vacuum valve due to the molding pressure when molding the insulating resin, and the manufacturing cycle is short and the vacuum valve is inexpensive. Valves can be manufactured.
実施の形態1に係る真空バルブの製造方法によって製造された真空バルブ全体の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by the vacuum valve manufacturing method according to Embodiment 1; 図1におけるA部を拡大して示す断面図である。It is sectional drawing which expands and shows the A section in FIG. 実施の形態1に係る真空バルブの製造方法を説明するための概要図である。FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1; 実施の形態1に係る真空バルブの製造方法を説明するための概要図である。FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1; 実施の形態1に係る真空バルブの製造方法を説明するための概要図である。FIG. 4 is a schematic diagram for explaining the method of manufacturing the vacuum valve according to Embodiment 1; 実施の形態1に係る真空バルブの成形時の荷重と外周部の面積の関係を説明するための概要図および特性図である4A and 4B are schematic diagrams and characteristic diagrams for explaining the relationship between the load and the area of the outer peripheral portion during molding of the vacuum valve according to Embodiment 1. FIG. 実施の形態2に係る真空バルブの製造方法によって製造された真空バルブ全体の構成を示す断面図である。FIG. 7 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by the method for manufacturing a vacuum valve according to Embodiment 2; 図5におけるB部を拡大して示す断面図である。FIG. 6 is a cross-sectional view showing an enlarged portion B in FIG. 5 ; 図6における要部斜視図である。FIG. 7 is a perspective view of a main part in FIG. 6; 実施の形態3に係る真空バルブの製造方法における製造過程を示す断面図である。FIG. 11 is a cross-sectional view showing a manufacturing process in a manufacturing method of a vacuum valve according to Embodiment 3; 図8Aの製造過程における一部を破断して示す斜視図である。8B is a partially broken perspective view showing the manufacturing process of FIG. 8A; FIG. 実施の形態3に係る真空バルブの製造方法における他の製造過程の例を示す断面図である。FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3; 実施の形態3に係る真空バルブの製造方法における他の製造過程の例を示す断面図である。FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3; 実施の形態3に係る真空バルブの製造方法における他の製造過程の例を示す断面図である。FIG. 14 is a cross-sectional view showing another example of the manufacturing process in the method of manufacturing the vacuum valve according to Embodiment 3; 実施の形態4に係る真空バルブの製造方法を説明するための概要図である。FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4; 実施の形態4に係る真空バルブの製造方法を説明するための概要図である。FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4; 実施の形態4に係る真空バルブの製造方法を説明するための概要図である。FIG. 11 is a schematic diagram for explaining a method of manufacturing a vacuum valve according to Embodiment 4; 実施の形態3および4に係る真空バルブの製造方法において要部に発生する荷重の変化を示すタイムチャートである。FIG. 10 is a time chart showing changes in loads generated in the main parts in the vacuum valve manufacturing methods according to Embodiments 3 and 4. FIG.
実施の形態1.
 以下、本願に係る真空バルブの製造方法について図面を用いて説明する。なお、各図において、同一又は相当部分については同一符号を付している。
 図1は、実施の形態1に係る真空バルブの製造方法によって製造された真空バルブ全体の構成を示す断面図、図2は、図1におけるA部を拡大して示す断面図である。
Embodiment 1.
Hereinafter, a method for manufacturing a vacuum valve according to the present application will be described with reference to the drawings. In addition, in each figure, the same code|symbol is attached|subjected about the same or corresponding part.
FIG. 1 is a cross-sectional view showing the overall configuration of a vacuum valve manufactured by a vacuum valve manufacturing method according to Embodiment 1, and FIG. 2 is a cross-sectional view showing an enlarged portion A in FIG.
 図1において、真空バルブ100は、セラミックス等からなる円筒状の絶縁容器1と、絶縁容器1の両端にろう付け接合された固定側端板2および可動側端板3と、固定側端板2に固定された固定側電極棒4と、固定側電極棒4の端部に固定され、絶縁容器1内に配置された固定側電極5と、可動側端板3にベローズ6を介して摺動可能に支持された可動側電極棒7と、可動側電極棒7の端部に接合され、絶縁容器1内に配置された可動側電極8と、外周にBMC(Bulk Molding Compound:不飽和ポリエステル)材料を主材とする絶縁樹脂材料をモールド成形して形成された絶縁樹脂層9とを備えて構成されている。
 なお、絶縁容器1は、固定側端板2および可動側端板3にろう付けにより接合されて密閉された真空容器を形成しており、この接合部には、図2に示すように、通常μmオーダの薄い金属膜であるろう付け部10が形成されることになる。また、固定側電極5と可動側電極8とは、絶縁容器1内部で軸方向に互いに対向して配置され、可動側電極8の移動に伴って固定側電極5と離接可能に構成されている。
In FIG. 1, a vacuum valve 100 includes a cylindrical insulating container 1 made of ceramics or the like, a fixed side end plate 2 and a movable side end plate 3 brazed to both ends of the insulating container 1, and a fixed side end plate 2. a fixed electrode rod 4 fixed to the fixed electrode rod 4, a fixed electrode 5 fixed to the end of the fixed electrode rod 4 and disposed in the insulating container 1, and a movable end plate 3 sliding through a bellows 6. A movable electrode rod 7 supported so as to be movable, a movable electrode 8 joined to the end of the movable electrode rod 7 and arranged in the insulating container 1, and BMC (Bulk Molding Compound: unsaturated polyester) on the outer periphery. and an insulating resin layer 9 formed by molding an insulating resin material whose main material is an insulating resin layer 9 .
The insulating container 1 is joined to the fixed-side end plate 2 and the movable-side end plate 3 by brazing to form a sealed vacuum container. A brazing portion 10, which is a thin metal film on the order of μm, is formed. In addition, the fixed electrode 5 and the movable electrode 8 are arranged to face each other in the axial direction inside the insulating container 1, and are configured to be separated from and connected to the fixed electrode 5 as the movable electrode 8 moves. there is
 このような真空バルブ100の絶縁樹脂層9を直圧成形により製造する工程を図3A、図3B、図3Cを用いて説明する。
 まず、図3Aに示すように円筒状の絶縁容器1の両端に固定側端板2および可動側端板3をそれぞれろう付け接合して真空容器を形成するとともに、真空容器内に固定側電極5および可動側電極8を収納してなる真空バルブの中間組立体を組み立て、この中間組立体に中子11を組み付けて成形用の固定側金型12に配置し、中間組立体における絶縁容器1の上部にBMC材料を主材とする絶縁樹脂材料13を半硬化状態で配置する。
 次に、図3Bに示すように、可動側金型14を移動させ、絶縁樹脂材料13を押圧して流動させる。
 最後に、図3Cに示すように、可動側金型14を最終位置まで移動させると、絶縁樹脂材料13が中間組立体の外周に充填されることになり、その後、絶縁樹脂材料13を硬化させることによって絶縁樹脂層9を外周に形成した真空バルブ100を製造することができる。
A process of manufacturing the insulating resin layer 9 of such a vacuum valve 100 by direct pressure molding will be described with reference to FIGS. 3A, 3B, and 3C.
First, as shown in FIG. 3A, a fixed-side end plate 2 and a movable-side end plate 3 are brazed to both ends of a cylindrical insulating container 1 to form a vacuum container. and the movable side electrode 8, a core 11 is assembled to the intermediate assembly, and the intermediate assembly is placed in a fixed side mold 12 for molding. An insulating resin material 13 mainly composed of a BMC material is placed on the upper portion in a semi-cured state.
Next, as shown in FIG. 3B, the movable mold 14 is moved to press and flow the insulating resin material 13 .
Finally, as shown in FIG. 3C, when the movable side mold 14 is moved to the final position, the insulating resin material 13 is filled in the outer circumference of the intermediate assembly, and then the insulating resin material 13 is cured. Thus, the vacuum valve 100 having the insulating resin layer 9 formed on the outer periphery can be manufactured.
 ところで、絶縁樹脂材料13を組立体の外周に充填する際、BMC材では、高い成形圧力(約10メガパスカル)が必要となるが、成形圧力Pを大きくし過ぎると、真空バルブ100のろう付け部10を損傷する恐れがあるため、ろう付け部10に発生する荷重F1およびろう付け部10の許容荷重F2との関係を、F1<F2に設定する必要がある。
 ここで、成形圧力Pによる荷重F1は、固定側端板2及び可動側端板3の外周部の面積Sに比例するため、成形圧力Pによって発生する荷重Fと面積Sの関係を図4に示すように、面積SをF1<F2となるように固定側端板2及び可動側端板3を構成することによって、ろう付け部10の損傷を防止することができ、直圧成形により外周部をモールドした真空バルブ100を製造することが可能となる。
By the way, when filling the outer periphery of the assembly with the insulating resin material 13, the BMC material requires a high molding pressure (approximately 10 megapascals). Since there is a risk of damaging the brazed portion 10, the relationship between the load F1 generated in the brazed portion 10 and the allowable load F2 of the brazed portion 10 must be set to F1<F2.
Here, since the load F1 due to the molding pressure P is proportional to the area S of the outer peripheral portions of the fixed side end plate 2 and the movable side end plate 3, the relationship between the load F generated by the molding pressure P and the area S is shown in FIG. As shown, by configuring the fixed side end plate 2 and the movable side end plate 3 so that the area S satisfies F1<F2, damage to the brazed portion 10 can be prevented, and the outer peripheral portion can be formed by direct pressure molding. It becomes possible to manufacture the vacuum valve 100 in which the is molded.
実施の形態2
 図5は、実施の形態2に係る真空バルブの製造方法によって製造された真空バルブ全体の構成を示す断面図、図6は、図5におけるB部を拡大して示す断面図、図7は、図6における要部斜視図である。
 実施の形態2においては、固定側端板2を覆うように図7に示すカップ状の導電性部材からなるカバー15を配置し、中間組立体の全体を絶縁樹脂材料13でモールドして絶縁樹脂層9を形成したものである。その他の構成は、実施の形態1と同一であり、同一または相当する部分には同一符号を付して説明を省略する。
Embodiment 2
5 is a cross-sectional view showing the overall configuration of the vacuum valve manufactured by the vacuum valve manufacturing method according to Embodiment 2, FIG. 6 is a cross-sectional view showing an enlarged portion B in FIG. FIG. 7 is a perspective view of a main part in FIG. 6;
In Embodiment 2, a cover 15 made of a cup-shaped conductive member shown in FIG. A layer 9 is formed. The rest of the configuration is the same as that of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and descriptions thereof are omitted.
 このようにカップ状の導電性部材からなるカバー15を配置して絶縁樹脂材料13をモールドすることによって、成形時に発生するろう付け部10への負荷を低減することが可能となるとともに、真空バルブ100の構成の自由度を拡大させることができる。
 また、カップ状の導電性部材からなるカバー15は、ろう付け部10における電界集中を緩和するため、真空バルブ100の絶縁耐力をより向上させることが可能である。
By arranging the cover 15 made of a cup-shaped conductive member and molding the insulating resin material 13 in this way, it is possible to reduce the load on the brazed portion 10 that occurs during molding, and also to reduce the vacuum valve. The freedom of configuration of 100 can be expanded.
Moreover, since the cover 15 made of a cup-shaped conductive member relaxes electric field concentration in the brazing portion 10, the dielectric strength of the vacuum valve 100 can be further improved.
実施の形態3.
 図8Aは、実施の形態3に係る真空バルブの製造方法における製造過程を示す断面図、図8Bは、図8Aの製造過程における一部を破断して示す斜視図である。
 真空バルブ100においては、可動側に可動側電極棒7の可動スペースを確保する必要があるため、可動側端板3の全外周をモールドすることができない。このため、真空バルブの軸方向において中間組立体がモールドされる投影面積は、可動側が固定側より小さくなり、成形時において中間組立体に発生する荷重は、固定側>可動側となる。
Embodiment 3.
8A is a cross-sectional view showing a manufacturing process in a method for manufacturing a vacuum valve according to Embodiment 3, and FIG. 8B is a partially broken perspective view showing the manufacturing process of FIG. 8A.
In the vacuum valve 100, since it is necessary to secure a movable space for the movable electrode rod 7 on the movable side, the entire outer periphery of the movable side end plate 3 cannot be molded. Therefore, the projected area of the intermediate assembly molded in the axial direction of the vacuum valve is smaller on the movable side than on the fixed side, and the load generated on the intermediate assembly during molding is: fixed side>movable side.
 したがって、成形時の軸方向の圧力を固定側端板2および固定側電極棒4に連結された外部引出し端子4aで受けた場合、固定側端板2ですべての荷重を受けることになり、変形する恐れが生じることになる。このため、図8A、図8Bに示すように絶縁容器1を円周方向から金型12,14の中子11で支持し、この状態で絶縁樹脂材料13を充填することによって、固定側端板2に発生する軸方向の荷重を低減することが可能となり、成形によるろう付け部10の損傷を回避することができる。 Therefore, when the axial pressure during molding is received by the external lead-out terminal 4a connected to the fixed-side end plate 2 and the fixed-side electrode rod 4, the fixed-side end plate 2 receives all the load, resulting in deformation. there will be a risk of doing so. For this reason, as shown in FIGS. 8A and 8B, the insulating container 1 is supported from the circumferential direction by the core 11 of the molds 12 and 14, and in this state, the insulating resin material 13 is filled to form the fixed side end plate. 2 can be reduced, and damage to the brazed portion 10 due to molding can be avoided.
 なお、図9,図10,図11は、実施の形態3に係る真空バルブの製造方法における他の製造過程の例を示す断面図で、図9は、絶縁容器1を軸方向から中子11の先端によって支持する例を示している。また、図10は、可動側端板3を円周方向から、さらに、図11は、可動側端板3を軸方向から支持する例を示しており、いずれの場合も固定側端板2に発生する軸方向の荷重を低減することが可能となる。 9, 10, and 11 are cross-sectional views showing another example of the manufacturing process in the vacuum valve manufacturing method according to the third embodiment, and FIG. shows an example of support by the tip of the 10 shows an example in which the movable side end plate 3 is supported in the circumferential direction, and FIG. 11 shows an example in which the movable side end plate 3 is supported in the axial direction. It is possible to reduce the axial load that is generated.
 実施の形態4.
 図12A、図12Bおよび図12Cは、実施の形態4に係る真空バルブの製造方法を説明するための概要図で、トランスファー成形を用いる場合の製造過程を示している。また、図13は、実施の形態4に係る真空バルブの製造方法において要部に発生する荷重の変化を示すタイムチャートである。
Embodiment 4.
12A, 12B, and 12C are schematic diagrams for explaining the manufacturing method of the vacuum valve according to the fourth embodiment, and show the manufacturing process using transfer molding. Moreover, FIG. 13 is a time chart showing changes in load generated in the main part in the method of manufacturing the vacuum valve according to the fourth embodiment.
 まず、図12Aに示すように、真空バルブの中間組立体における可動側端板3の円周方向を支持するように中子20を取り付けた状態で、予熱した固定側金型21および可動側金型22との間に配置し、可動側金型22の材料充填ポット23に予熱したBMC材料を主材とする絶縁樹脂材料30をセットする。
 次に、図12Bに示すように、加圧装置24を移動させて金型21,22内に絶縁樹脂材料30を注入し、最後に、図12Cに示すように、加圧装置24を最終位置まで移動させて絶縁樹脂材料30を中間組立体および中子20の外周に充填する。
 その後、絶縁樹脂材料30を硬化させることにより、真空バルブの中間組立体外周に絶縁樹脂層9を形成した真空バルブ100を製造することが可能となる。
First, as shown in FIG. 12A, a preheated fixed side mold 21 and a preheated movable side metal mold 21 are assembled with the core 20 attached so as to support the movable side end plate 3 in the intermediate assembly of the vacuum valve in the circumferential direction. An insulating resin material 30 whose main material is preheated BMC material is set in the material filling pot 23 of the movable side mold 22 .
Next, as shown in FIG. 12B, the pressure device 24 is moved to inject the insulating resin material 30 into the molds 21 and 22, and finally, as shown in FIG. 12C, the pressure device 24 is moved to the final position. to fill the outer periphery of the intermediate assembly and the core 20 with the insulating resin material 30 .
After that, by curing the insulating resin material 30, it becomes possible to manufacture the vacuum valve 100 having the insulating resin layer 9 formed on the outer periphery of the vacuum valve intermediate assembly.
 このようなトランスファー成形においては、金型21、22を予熱しておくことによって予熱された絶縁樹脂材料30が金型21、22内を流動する際、さらに加熱されてゲル状になり、絶縁樹脂材料30の粘性が低下することになる。このため、図13に示すように、真空バルブの中間組立体に印加される圧力が充填中に低減することになり、ろう付け部10に発生する荷重F4を低減させることが可能となる。
 また、成形用金型へ充填する絶縁樹脂材料30の位置または注入速度などの成形条件は、金型の構造及び成形設備の制御で決まるため、成形条件の制御が容易であり、ろう付け部に発生する荷重F4のばらつきを抑制することが可能である。
 したがって、より安定した品質の真空バルブ100の製造が可能となる。
In such transfer molding, when the molds 21 and 22 are preheated and the preheated insulating resin material 30 flows through the molds 21 and 22, it is further heated and turned into a gel so that the insulating resin The viscosity of material 30 will decrease. Therefore, as shown in FIG. 13, the pressure applied to the intermediate assembly of the vacuum valve is reduced during filling, and the load F4 generated on the brazed portion 10 can be reduced.
In addition, since the molding conditions such as the position or injection speed of the insulating resin material 30 filled into the molding die are determined by the structure of the mold and the control of the molding equipment, it is easy to control the molding conditions, It is possible to suppress variations in the generated load F4.
Therefore, it is possible to manufacture the vacuum valve 100 with more stable quality.
 なお、図13に実施の形態1におけるろう付け部10に発生する荷重F3を示すように、直圧成形では、絶縁樹脂材料のセットを作業者が行なうため、作業にばらつきが発生し易く、特に半硬化状態の絶縁樹脂材料30の配置によっては、中間組立体に印加される圧力箇所およびタイミングのばらつきが大きくなり、ろう付け部10に発生する荷重F3も大きくなるとともにばらつきも大きくなる恐れがあるが、トランスファー成形によれば、成形条件の制御が容易となる利点がある。 As shown in FIG. 13, the load F3 generated at the brazed portion 10 in the first embodiment is set by the operator in the direct pressure molding, so that the work is likely to vary. Depending on the arrangement of the semi-cured insulating resin material 30, the position and timing of the pressure applied to the intermediate assembly may vary greatly, and the load F3 generated on the brazed portion 10 may also increase and the variation may also increase. However, transfer molding has the advantage of facilitating control of molding conditions.
 また、上述の実施の形態4においては、トランスファー成形方法により絶縁樹脂層9を形成するように構成したが、射出成形方法により絶縁樹脂層9を形成するように構成してもよい。
 さらに、上述の実施の形態においては、絶縁樹脂材料として、不飽和ポリエステル樹脂を主材とした絶縁樹脂材料を用いて絶縁樹脂層を形成するように構成したが、フェノール樹脂、ビニルエステル樹脂、アクリル樹脂のいずれかを主材として用いてもよい。
 また、主材を20~30%、強化繊維としてガラス繊維、炭素繊維、アラミド繊維、ポリエチレン繊維、ザイロン繊維またはボロン繊維を15~20%、充填剤として炭酸カルシウム、水酸化アルミニウムまたは珪酸塩を50~60%含む絶縁樹脂材料によって絶縁樹脂層を形成してもよい。
Further, in the fourth embodiment described above, the insulating resin layer 9 is formed by the transfer molding method, but the insulating resin layer 9 may be formed by the injection molding method.
Furthermore, in the above-described embodiments, the insulating resin layer is formed by using an insulating resin material mainly composed of unsaturated polyester resin as the insulating resin material. Any one of the resins may be used as the main material.
In addition, the main material is 20 to 30%, the reinforcing fiber is glass fiber, carbon fiber, aramid fiber, polyethylene fiber, zylon fiber or boron fiber by 15 to 20%, and the filler is calcium carbonate, aluminum hydroxide or silicate at 50%. The insulating resin layer may be formed from an insulating resin material containing up to 60%.
 なお、本願は、例示的な実施の形態を記載しているが、様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
It should be noted that although the present application describes exemplary embodiments, the various features, aspects, and functions are not limited to applicability to particular embodiments, but may be implemented singly or in various combinations. is applicable to the form of
Therefore, countless modifications not illustrated are envisioned within the scope of the technology disclosed in the present application. For example, modification, addition or omission of at least one component, extraction of at least one component, and combination with components of other embodiments shall be included.
1:絶縁容器、 2:固定側端板、 3:可動側端板、 4:固定側電極棒、 5:固定側電極、 6:ベローズ、 7:可動側電極棒、 8:可動側電極、 9:絶縁樹脂層、 10:ろう付け部、 11:中子、 12:固定側金型、 13:絶縁樹脂材料、 14:可動側金型、 15:カバー、 20:中子、 21:固定側金型、 22:可動側金型、 23:材料充填ポット、 24:加圧装置、 30:絶縁樹脂材料、 100:真空バルブ 1: insulating container, 2: fixed side end plate, 3: movable side end plate, 4: fixed side electrode rod, 5: fixed side electrode, 6: bellows, 7: movable side electrode rod, 8: movable side electrode, 9 : Insulating resin layer 10: Brazing part 11: Core 12: Fixed side mold 13: Insulating resin material 14: Movable side mold 15: Cover 20: Core 21: Fixed side metal Mold 22: Movable side mold 23: Material filling pot 24: Pressure device 30: Insulating resin material 100: Vacuum valve

Claims (6)

  1.  円筒状の絶縁容器の両端に固定側端板および可動側端板をそれぞれろう付け接合して真空容器を形成するとともに、前記真空容器内に固定側電極および可動側電極を収納してなる真空バルブの中間組立体を金型内に配置し、前記中間組立体の外周に絶縁樹脂材料をモールド成形して絶縁樹脂層を形成する真空バルブの製造方法であって、
     前記絶縁樹脂材料を前記中間組立体の外周にモールドする際、前記絶縁容器と前記固定側端板とのろう付け部に発生する荷重が前記ろう付け部の許容荷重より小さくなるように前記固定側端板の外周部の面積を形成していることを特徴とした真空バルブの製造方法。
    A vacuum valve in which a fixed-side end plate and a movable-side end plate are brazed to both ends of a cylindrical insulating container to form a vacuum container, and a fixed-side electrode and a movable-side electrode are accommodated in the vacuum container. A vacuum valve manufacturing method comprising placing the intermediate assembly in a mold and molding an insulating resin material around the outer periphery of the intermediate assembly to form an insulating resin layer,
    When the insulating resin material is molded around the outer periphery of the intermediate assembly, the fixed side is designed so that the load generated at the brazed portion between the insulating container and the fixed side end plate is smaller than the allowable load of the brazed portion. A method of manufacturing a vacuum valve, wherein the area of the outer periphery of the end plate is formed.
  2.  前記絶縁樹脂層を形成するモールド成形方法として直圧成形またはトランスファー成形または射出成形を用いることを特徴とした請求項1に記載の真空バルブの製造方法。 The method for manufacturing a vacuum valve according to claim 1, wherein direct pressure molding, transfer molding, or injection molding is used as a molding method for forming the insulating resin layer.
  3. 前記絶縁容器における可動側端板側の一部または前記可動側端板を中子により支持した状態で、前記中間組立体の外周に絶縁樹脂材料を充填して絶縁樹脂層を形成することを特徴とした請求項1または2に記載の真空バルブの製造方法。 An insulating resin layer is formed by filling the outer circumference of the intermediate assembly with an insulating resin material while supporting a part of the insulating container on the movable side end plate or the movable side end plate by a core. 3. The method for manufacturing a vacuum valve according to claim 1 or 2.
  4.  前記絶縁樹脂材料として不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂のいずれかを主材とした絶縁樹脂を用いたことを特徴とする請求項1から3のいずれか一項に記載の真空バルブの製造方法。 4. The insulating resin material according to any one of claims 1 to 3, wherein the insulating resin material is an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or an acrylic resin. A method for manufacturing a vacuum valve.
  5.  前記固定側端板の外周部を覆うカバーをさらに設けて前記中間組立体を形成したことを特徴とする請求項1から4のいずれか1項に記載の真空バルブの製造方法。 The method of manufacturing a vacuum valve according to any one of claims 1 to 4, wherein the intermediate assembly is formed by further providing a cover that covers the outer peripheral portion of the fixed-side end plate.
  6.  前記カバーを導電性部材で形成したことを特徴とする請求項5に記載の真空バルブの製造方法。 The method for manufacturing a vacuum valve according to claim 5, wherein the cover is made of a conductive member.
PCT/JP2021/025310 2021-07-05 2021-07-05 Method for manufacturing vacuum valve WO2023281574A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023532873A JP7433531B2 (en) 2021-07-05 2021-07-05 Vacuum valve manufacturing method
KR1020237040123A KR20240000558A (en) 2021-07-05 2021-07-05 Manufacturing method of vacuum valve
DE112021007922.0T DE112021007922T5 (en) 2021-07-05 2021-07-05 METHOD FOR MANUFACTURING A VACUUM VALVE
CN202180099783.1A CN117546262A (en) 2021-07-05 2021-07-05 Method for manufacturing vacuum valve
PCT/JP2021/025310 WO2023281574A1 (en) 2021-07-05 2021-07-05 Method for manufacturing vacuum valve
TW111106291A TWI818443B (en) 2021-07-05 2022-02-22 Manufacturing method of vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025310 WO2023281574A1 (en) 2021-07-05 2021-07-05 Method for manufacturing vacuum valve

Publications (1)

Publication Number Publication Date
WO2023281574A1 true WO2023281574A1 (en) 2023-01-12

Family

ID=84801446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025310 WO2023281574A1 (en) 2021-07-05 2021-07-05 Method for manufacturing vacuum valve

Country Status (6)

Country Link
JP (1) JP7433531B2 (en)
KR (1) KR20240000558A (en)
CN (1) CN117546262A (en)
DE (1) DE112021007922T5 (en)
TW (1) TWI818443B (en)
WO (1) WO2023281574A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160342A (en) * 1999-12-01 2001-06-12 Toshiba Corp Switchgear and manufacturing method therefor
JP2001167673A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Power switching apparatus
JP2003187078A (en) * 2001-12-17 2003-07-04 Nippon Telegraph & Telephone West Corp Stock information display system and method and program
JP2012169145A (en) * 2011-02-14 2012-09-06 Toshiba Corp Mold vacuum valve and method for manufacturing the same
JP2020198278A (en) * 2019-06-05 2020-12-10 株式会社東芝 Vacuum valve, switch gear, and method for manufacturing vacuum valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187678A (en) 2001-12-21 2003-07-04 Mitsubishi Electric Corp Vacuum valve and manufacturing method of the same
JP5971676B2 (en) 2011-10-27 2016-08-17 株式会社東芝 Vacuum circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160342A (en) * 1999-12-01 2001-06-12 Toshiba Corp Switchgear and manufacturing method therefor
JP2001167673A (en) * 1999-12-13 2001-06-22 Mitsubishi Electric Corp Power switching apparatus
JP2003187078A (en) * 2001-12-17 2003-07-04 Nippon Telegraph & Telephone West Corp Stock information display system and method and program
JP2012169145A (en) * 2011-02-14 2012-09-06 Toshiba Corp Mold vacuum valve and method for manufacturing the same
JP2020198278A (en) * 2019-06-05 2020-12-10 株式会社東芝 Vacuum valve, switch gear, and method for manufacturing vacuum valve

Also Published As

Publication number Publication date
TWI818443B (en) 2023-10-11
JP7433531B2 (en) 2024-02-19
TW202303022A (en) 2023-01-16
CN117546262A (en) 2024-02-09
JPWO2023281574A1 (en) 2023-01-12
KR20240000558A (en) 2024-01-02
DE112021007922T5 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US8075825B2 (en) Split stator segment manufacturing method
US8881362B2 (en) Stator manufacturing method and stator
JP4730847B2 (en) Molded coil manufacturing method
JP4976554B2 (en) Method for manufacturing pole member of intermediate pressure switching device and pole member
WO2023281574A1 (en) Method for manufacturing vacuum valve
KR101430543B1 (en) A reinforced magnet
JP5746515B2 (en) Mold vacuum valve and manufacturing method thereof
JP2009153287A (en) Molded coil for split stator, and method of manufacturing molded coil for stator, and molding device for molding molded coil for stator
CN102074348A (en) Method for manufacturing transformer coil
KR101362861B1 (en) Molded vacuum valve and method of manufacture thereof and resin casting mold
JPH04133304A (en) Resin molded coil and manufacture thereof
JP4319571B2 (en) Resin mold vacuum valve and manufacturing method thereof
JP7072788B2 (en) Reactor
JP6508622B2 (en) Reactor, and method of manufacturing reactor
US3601735A (en) Embedment-type coil assembly
EP4170687A1 (en) Electronic apparatus and manufacturing method for an electronic device
JPH03116710A (en) Manufacture of solid electrolytic capacitor
JPH05315126A (en) Mold coil and manufacture thereof
JP2645105B2 (en) Manufacturing method of molded coil
JPH0710486Y2 (en) Mold coil
CN117639416A (en) Motor stator and method for embedding fibrous membrane into pouring sealant
JPS5924092Y2 (en) Pushing
CN117375345A (en) Step-by-step encapsulation method for motor stator
JPS6130452Y2 (en)
JP2023091624A (en) Manufacturing method for tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023532873

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237040123

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040123

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180099783.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007922

Country of ref document: DE