WO2023281564A1 - 光給電装置及び光給電方法 - Google Patents

光給電装置及び光給電方法 Download PDF

Info

Publication number
WO2023281564A1
WO2023281564A1 PCT/JP2021/025270 JP2021025270W WO2023281564A1 WO 2023281564 A1 WO2023281564 A1 WO 2023281564A1 JP 2021025270 W JP2021025270 W JP 2021025270W WO 2023281564 A1 WO2023281564 A1 WO 2023281564A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodiodes
power supply
optical power
cores
photodiode array
Prior art date
Application number
PCT/JP2021/025270
Other languages
English (en)
French (fr)
Inventor
宏明 桂井
智暁 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/025270 priority Critical patent/WO2023281564A1/ja
Priority to JP2023532866A priority patent/JPWO2023281564A1/ja
Priority to US18/569,573 priority patent/US20240275496A1/en
Publication of WO2023281564A1 publication Critical patent/WO2023281564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to an optical power supply device and an optical power supply method.
  • optical power supply that converts light passing through an optical fiber into electricity with a photodiode and supplies power.
  • optical power feeding there is a method of using, for example, a double-clad fiber in order to maximize the optical power feeding capacity per fiber (see Non-Patent Document 1).
  • Non-Patent Document 1 uses a plurality of transmitters, receivers, and optical feeding circuits, which makes the system complicated and expensive.
  • the present invention provides an optical power supply device that can be realized at a lower cost.
  • One aspect of the present invention includes a photodiode array having the same number of photodiodes as the number of cores that a multicore fiber has, the light receiving surface of each of the photodiodes facing a corresponding core of the multicore fiber, and the at least The two photodiodes are optical feeders connected in series with the feed target.
  • the present invention provides an optical power supply device that can be realized at a lower cost.
  • FIG. 1 is a diagram showing a configuration of an optical power supply system 1;
  • FIG. It is an example of a multi-core fiber 12 according to the first embodiment.
  • 4 is a flowchart showing the operation of the optical power supply system 1;
  • FIG. 1 is a diagram showing the configuration of an optical power supply system 1.
  • the optical power supply system 1 includes a power supply optical transmitter 11 , a multicore fiber 12 and an optical power supply device 13 .
  • the feeding light transmitting unit 11 transmits feeding light to the optical feeding device 13 through the multi-core fiber 12 .
  • the multicore fiber 12 is a fiber having multiple cores 120 .
  • the optical power supply device 13 converts the power supply light transmitted from the power supply light transmitter 11 through the multi-core fiber 12 into electrical energy.
  • the electrical energy converted by the optical power supply device 13 is supplied to a power supply target via, for example, a DC/DC converter.
  • the power supply device is, for example, a charging/discharging circuit.
  • the optical power supply device 13 has a photodiode array 14 , and the photodiode array 14 has a plurality of photodiodes 140 .
  • the number of photodiodes 140 included in the photodiode array 14 is the same as the number of cores 120 included in the multicore fiber 12 .
  • Each light receiving surface of the photodiode 140 is arranged to face the corresponding core 120 of the multicore fiber 12 .
  • the number of cores 120 and the number of photodiodes 140 are N ⁇ M (N is an integer of 2 or more and M is an integer of 1 or more), and N photodiodes 140 are arranged in series. M series circuits are connected, and the M series circuits are connected in parallel to the power supply object.
  • the multicore fiber 12 shown in FIG. 2 has four cores 120-1-4.
  • the photodiode array 14 shown in FIGS. 3A and 3B has four photodiodes 140-1-4.
  • the four photodiodes 140-1-4 correspond to the four cores 120-1-4 of the multi-core fiber 12, respectively. For example, light transmitted through core 120-1 is converted into electrical energy by photodiode 140-1.
  • photodiode array 14 shown in FIG. 3A four photodiodes 140-1 to 4 are connected in series.
  • two photodiodes 140-1 and 140-2 are connected in series and two photodiodes 140-3 and 140-4 are connected in series to form two series circuits.
  • the two series circuits are connected in parallel with each other with respect to the power supply object.
  • the multicore fiber 12 shown in FIG. 4 has six cores 120-1-6.
  • the photodiode array 14 shown in FIG. 5 has six photodiodes 140-1 to 140-6.
  • the six photodiodes 140-1-6 correspond to the six cores 120-1-6 of the multicore fiber 12, respectively.
  • three photodiodes 140-1 to 3 are connected in series and three photodiodes 140-4 to 6 are connected in series to form two series circuits.
  • the two series circuits are connected in parallel with each other with respect to the power supply object.
  • the centers of the plurality of cores 120 and the plurality of photodiodes 140 may be arranged at the vertices of regular polygons.
  • the centers of the four cores 120-1 to 4 and the photodiodes 140-1 to 4 are vertices of regular squares, respectively.
  • the centers of the six cores 120-1 to 6 and the photodiodes 140-1 to 6 are arranged at the vertices of a regular hexagon.
  • the photodiode array 14 since the photodiode array 14 includes a plurality of photodiodes 140 and the photodiodes 140 are connected in series, one transmitter and one receiver can be used for optical feeding. As a result, an optical power supply device can be realized at low cost. Further, the centers of the multiple cores 120 and the multiple photodiodes 140 are arranged at the vertices of the regular polygon. As a result, the core 120 and the photodiode 140 are arranged point-symmetrically, thereby facilitating alignment while reducing the distance between the photodiodes 140 and reducing the loss due to the resistance between the photodiodes.
  • the core 120 and the photodiode 140 in the second embodiment constitute M series circuits connected in series with each N in the same manner as in the first embodiment. connected in parallel with each other. At this time, each of the N ⁇ M photodiodes 140 is arranged at the vertices of a regular polygon.
  • the number of cores 120 and photodiodes 140 in the second embodiment is N ⁇ M (N is an integer of 3 or more, and M is an integer of 3 or more) and arranged as follows. First, the centers of 120N cores and 140N photodiodes are arranged to be different vertices of a regular N-polygon. Secondly, it is arranged so that the center of the regular N-gon becomes the vertex of the regular M-gon.
  • FIG. 6 is an example of the multicore fiber 12 according to the second embodiment.
  • the centers of the three cores 120-1 to 120-3 are arranged so as to form vertices of an equilateral triangle, and the cores 120-4 to 120-6 and cores 120-7 to 120-9 are arranged similarly.
  • an equilateral triangle whose apex is the center of the cores 120-1 to 3 is an equilateral triangle T1
  • an equilateral triangle whose apex is the center of the cores 120-4 to 6 is an equilateral triangle T2
  • the centers of the cores 120-7 to 9 are an equilateral triangle T1.
  • An equilateral triangle having a vertex is assumed to be an equilateral triangle T3. Further, the core 120 is arranged such that the center of the equilateral triangle T1, the center of the equilateral triangle T2, and the center of the equilateral triangle T3 are the vertices of the equilateral triangle.
  • FIG. 7 is an example of the photodiode array 14 according to the second embodiment.
  • the photodiodes 140 in the photodiode array 14 shown in FIG. 7 are arranged similarly to the core 120 shown in FIG.
  • Photodiodes 140-1 to 140-3 are connected in series, and photodiodes 140-4 to 140-6 and photodiodes 140-7 to 9 are also connected in series. Also, three series circuits connected in series are connected in parallel.
  • a lens or lens array is provided between the multi-core fiber 12 and the photodiode array 14 to determine the core diameter of the core 120, the aperture size of the photodiode 140, or the position irradiated by the light transmitted through the core 120. may be adjusted. Further, at this time, the position where the core 120 is arranged in the multi-core fiber 12 and the position where the photodiode 140 is arranged in the photodiode array 14 are in a similar relationship. It is conceivable that the light is conditioned by a lens or array of lenses.
  • FIG. 8 is a flowchart showing the operation of the optical power supply system 1.
  • the feeding light transmitter 11 transmits feeding light (step S1).
  • the optical power supply device 13 converts the power supply light transmitted from the power supply light transmitter 11 through the multi-core fiber 12 into electrical energy (step S2).
  • 1 optical feeding system 11 feeding optical transmitter, 12 multi-core fiber, 120 cores, 13 optical feeding device, 14 photodiode array, 140 photodiode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光給電装置は、マルチコアファイバが有するコアの数と同じ数のフォトダイオードを有するフォトダイオードアレイを備え、前記フォトダイオードのそれぞれの受光面は、前記マルチコアファイバの対応するコアに向き、前記少なくとも2つのフォトダイオードは、給電対象に対して直列に接続される。

Description

光給電装置及び光給電方法
 本発明は、光給電装置及び光給電方法に関する。
 光ファイバを通る光をフォトダイオードにより電気に変換し給電を行う光給電という技術がある。光給電において、ファイバ1本あたりの光給電能力を最大化するために例えばダブルクラッドファイバを用いる手法がある(非特許文献1参照)。
150-W Power-Over-Fiber Using Double-Clad Fibers, M. Matsuura, Journal of Lightwave Technology (Volume: 38, Issue: 2, Jan.15, 15 2020)
 しかしながら、非特許文献1に記載の発明において送信器、受信器及び光給電回路が複数使用されており、システムが複雑、高コスト化する。
 本発明はより低コストに実現できる光給電装置を提供する。
 本発明の一態様は、マルチコアファイバが有するコアの数と同じ数のフォトダイオードを有するフォトダイオードアレイを備え、前記フォトダイオードのそれぞれの受光面は、前記マルチコアファイバの対応するコアに向き、前記少なくとも2つのフォトダイオードは、給電対象に対して直列に接続される、光給電装置である。
 本発明はより低コストに実現できる光給電装置を提供する。
光給電システム1の構成を示す図である。 第1の実施形態に係るマルチコアファイバ12の一例である。 第1の実施形態に係るフォトダイオードアレイ14の一例である。 第1の実施形態に係るフォトダイオードアレイ14の一例である。 第1の実施形態に係るマルチコアファイバ12の別の一例である。 第1の実施形態に係るフォトダイオードアレイ14の別の一例である。 第2の実施形態に係るマルチコアファイバ12の一例である。 第2の実施形態に係るフォトダイオードアレイ14の一例である。 光給電システム1の動作を示すフローチャートである。
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。
 図1は、光給電システム1の構成を示す図である。光給電システム1は、給電光送信部11、マルチコアファイバ12及び光給電装置13を備える。
 給電光送信部11は、マルチコアファイバ12を通して給電光を光給電装置13に送信する。マルチコアファイバ12は、コア120を複数有するファイバである。
 光給電装置13は、給電光送信部11からマルチコアファイバ12を通り送信される給電光を電気エネルギーに変換する。光給電装置13により変換された電気エネルギーは、例えばDC/DCコンバータを介して給電対象に供給される。給電装置は例えば充放電回路である。光給電装置13は、フォトダイオードアレイ14を有し、当該フォトダイオードアレイ14は、複数のフォトダイオード140を有する。当該フォトダイオードアレイ14が有するフォトダイオード140の数は、マルチコアファイバ12が有するコア120の数と同じである。フォトダイオード140のそれぞれの受光面は、マルチコアファイバ12の対応するコア120に向くように配置される。
 第1の実施形態において、コア120の数及びフォトダイオード140の数は、N×M(Nは2以上の整数、Mは1以上の整数)であり、フォトダイオード140は、N個ずつ直列に接続されたM個の直列回路を構成し、M個の直列回路が給電対象に対して互いに並列に接続される。
 図2は第1の実施形態においてN×M=4である場合のマルチコアファイバ12の一例である。図2に示すマルチコアファイバ12は、4つのコア120-1~4を有する。
 図3Aは第1の実施形態においてN=4、M=1である場合のフォトダイオードアレイ14の一例である。図3Bは第1の実施形態においてN=M=2である場合のフォトダイオードアレイ14の一例である。図3A及び図3Bに示すフォトダイオードアレイ14は、4つのフォトダイオード140-1~4を有する。4つのフォトダイオード140-1~4は、それぞれマルチコアファイバ12の4つのコア120-1~4に対応する。例えばコア120-1を介して送信される光はフォトダイオード140-1により電気エネルギーに変換される。
 図3Aに示すフォトダイオードアレイ14において、4つのフォトダイオード140-1~4が直列に接続される。図3Bに示すフォトダイオードアレイ14においては、2つのフォトダイオード140-1~2が直列に接続され、2つのフォトダイオード140-3~4が直列に接続され、2つの直列回路が構成される。2つの直列回路は給電対象に対して互いに並列に接続される。
 図4は第1の実施形態においてN×M=6である場合のマルチコアファイバ12の一例である。図4に示すマルチコアファイバ12は、6つのコア120-1~6を有する。図5は第1の実施形態においてN=3、M=2である場合のフォトダイオードアレイ14の一例である。
 図5に示すフォトダイオードアレイ14は、6つのフォトダイオード140-1~6を有する。6つのフォトダイオード140-1~6は、それぞれマルチコアファイバ12の6つのコア120-1~6に対応する。図5に示すフォトダイオードアレイ14において、3つのフォトダイオード140-1~3が直列に接続され、3つのフォトダイオード140-4~6が直列に接続され、2つの直列回路が構成される。2つの直列回路は給電対象に対して互いに並列に接続される。
 複数のコア120及び複数のフォトダイオード140の中心は、それぞれ正多角形の頂点になるように配置されてもよい。例えば図2に示すマルチコアファイバ12及び図3A及び図3Bに示すフォトダイオードアレイ14においては、4つのコア120-1~4及びフォトダイオード140-1~4の中心は、それぞれ正四角形の頂点になるように配置されてもよい。例えば図5に示すマルチコアファイバ12及び図6に示すフォトダイオードアレイ14においては、6つのコア120-1~6及びフォトダイオード140-1~6の中心は、それぞれ正六角形の頂点になるように配置されてもよい。
 第1の実施形態において、フォトダイオードアレイ14が複数のフォトダイオード140を備え、フォトダイオード140が直列に接続されるため、光給電用の送信器及び受信器を1つにすることができる。これにより、低コストで光給電装置を実現することができる。さらに、複数のコア120及び複数のフォトダイオード140の中心がそれぞれ正多角形の頂点になるように配置される。これにより、フォトダイオード140間の距離を小さくしフォトダイオード間の抵抗による損失を少なくしつつ、コア120及びフォトダイオード140が点対称で配置されることから位置合わせを容易にすることができる。
<第2の実施形態>
 第2の実施形態におけるコア120及びフォトダイオード140は、第1の実施形態と同様にN個ずつ直列に接続されたM個の直列回路を構成し、M個の直列回路が給電対象に対して互いに並列に接続される。このとき、各N×M個のフォトダイオード140は、正多角形の頂点になるように配置される。これに対し、第2の実施形態におけるコア120及びフォトダイオード140の数はN×M(Nは3以上の整数、Mは3以上の整数)であり、次のように配置される。第1にコア120N個及びフォトダイオード140N個の中心がそれぞれ正N角形の異なる頂点になるように配置される。第2に当該正N角形の中心が正M角形の頂点になるように配置される。
 図6は、第2の実施形態に係るマルチコアファイバ12の一例である。図6に示すマルチコアファイバ12は、N=3、M=3の場合のマルチコアファイバ12である。3個のコア120-1~3の中心は、正三角形の頂点になるように配置され、コア120-4~6及びコア120-7~9も同様に配置される。ここで、コア120-1~3の中心を頂点とする正三角形を正三角形T1、コア120-4~6の中心を頂点とする正三角形を正三角形T2、コア120-7~9の中心を頂点とする正三角形を正三角形T3とする。また、コア120は、正三角形T1の中心、正三角形T2の中心及び正三角形T3の中心が正三角形の頂点になるように配置される。
 図7は、第2の実施形態に係るフォトダイオードアレイ14の一例である。図7に示すフォトダイオードアレイ14におけるフォトダイオード140は、図6に示すコア120と同様に配置される。フォトダイオード140-1~3が直列に接続され、フォトダイオード140-4~6及びフォトダイオード140-7~9も同様に直列に接続される。また、直列に接続された3つの直列回路が並列に接続される。
〈変形例〉
 マルチコアファイバ12とフォトダイオードアレイ14との間にレンズ又はレンズアレイが設けられ、コア120のコア径、フォトダイオード140の開口の大きさ、又はコア120を介して送信される光が照射する位置を調整してもよい。また、このときマルチコアファイバ12においてコア120が配置される位置と、フォトダイオードアレイ14においてフォトダイオード140が配置される位置とが相似関係であり、マルチコアファイバ12とフォトダイオードアレイ14との間に設けられたレンズ又はレンズアレイにより光が調整されることが考えられる。
〈まとめ〉
 図8は、光給電システム1の動作を示すフローチャートである。給電光送信部11は給電光を送信する(ステップS1)。光給電装置13は、給電光送信部11からマルチコアファイバ12を通り送信される給電光を電気エネルギーに変換する(ステップS2)。
 以上、この発明の一実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1 光給電システム、11 給電光送信部、12 マルチコアファイバ、120 コア、13 光給電装置、14 フォトダイオードアレイ、140 フォトダイオード

Claims (5)

  1.  マルチコアファイバが有するコアの数と同じ数のフォトダイオードを有するフォトダイオードアレイを備え、
     前記フォトダイオードのそれぞれの受光面は、前記マルチコアファイバの対応するコアに向き、
     前記少なくとも2つのフォトダイオードは、給電対象に対して直列に接続される、
     光給電装置。
  2.  前記コアの数及び前記フォトダイオードの数は、N×M(Nは2以上の整数、Mは1以上の整数)であり、
     前記フォトダイオードは、N個ずつ直列に接続されたM個の直列回路を構成し、前記M個の直列回路が給電対象に対して互いに並列に接続される、
     請求項1に記載の光給電装置。
  3.  前記コア及び前記フォトダイオードの中心が、それぞれ正多角形の異なる頂点になるように配置される、
     請求項1又は2に記載の光給電装置。
  4.  前記コアN(Nは3以上の整数)個及び前記フォトダイオードN個の中心がそれぞれ正N角形の異なる頂点になるように配置され、M(Mは3以上の整数)個の前記正N角形の中心が正M角形の頂点になるように配置される、
     請求項2に記載の光給電装置。
  5.  マルチコアファイバとフォトダイオードアレイとを使用し、前記マルチコアファイバを通る光を前記フォトダイオードアレイにより電気エネルギーに変換する光給電方法であって、
     前記マルチコアファイバが有する複数のコアの数と前記フォトダイオードアレイが有する複数のフォトダイオードの数は同じであり、前記少なくとも2つのフォトダイオードは直列に接続される、
     光給電方法。
PCT/JP2021/025270 2021-07-05 2021-07-05 光給電装置及び光給電方法 WO2023281564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/025270 WO2023281564A1 (ja) 2021-07-05 2021-07-05 光給電装置及び光給電方法
JP2023532866A JPWO2023281564A1 (ja) 2021-07-05 2021-07-05
US18/569,573 US20240275496A1 (en) 2021-07-05 2021-07-05 Light feeding apparatus and light feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025270 WO2023281564A1 (ja) 2021-07-05 2021-07-05 光給電装置及び光給電方法

Publications (1)

Publication Number Publication Date
WO2023281564A1 true WO2023281564A1 (ja) 2023-01-12

Family

ID=84800421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025270 WO2023281564A1 (ja) 2021-07-05 2021-07-05 光給電装置及び光給電方法

Country Status (3)

Country Link
US (1) US20240275496A1 (ja)
JP (1) JPWO2023281564A1 (ja)
WO (1) WO2023281564A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252909A (ja) * 2004-03-08 2005-09-15 Yokogawa Electric Corp 高耐圧半導体リレー
JP2014017451A (ja) * 2012-07-11 2014-01-30 Fuji Xerox Co Ltd 光伝送システム及び面発光型半導体レーザ
JP2014503854A (ja) * 2010-12-20 2014-02-13 アルカテル−ルーセント フォトニック回路カプラへのマルチコア光ケーブル
US10234632B1 (en) * 2015-08-18 2019-03-19 National Technology & Engineering Solutions Of Sandia, Llc Connectors for multicore optical fibers and methods thereof
JP2019521761A (ja) * 2016-06-23 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光送信機、光受信機及び光リンク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252909A (ja) * 2004-03-08 2005-09-15 Yokogawa Electric Corp 高耐圧半導体リレー
JP2014503854A (ja) * 2010-12-20 2014-02-13 アルカテル−ルーセント フォトニック回路カプラへのマルチコア光ケーブル
JP2014017451A (ja) * 2012-07-11 2014-01-30 Fuji Xerox Co Ltd 光伝送システム及び面発光型半導体レーザ
US10234632B1 (en) * 2015-08-18 2019-03-19 National Technology & Engineering Solutions Of Sandia, Llc Connectors for multicore optical fibers and methods thereof
JP2019521761A (ja) * 2016-06-23 2019-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光送信機、光受信機及び光リンク

Also Published As

Publication number Publication date
JPWO2023281564A1 (ja) 2023-01-12
US20240275496A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
CN102597832B (zh) 扩束接口设备及其制造方法
CN110989088B (zh) 一种基于透镜和超表面透镜的复用/解复用装置及方法
CN102890313A (zh) Cwdm多工/解多工器系统及其制造方法
CN111982166B (zh) 针对多芯光纤分光耦合的光电探测器阵列及系统
CN209731254U (zh) 一种多通道qsfp dd光模块
WO2023281564A1 (ja) 光給電装置及び光給電方法
CN202794614U (zh) 多路光学组件及带光发射功率监控功能的并行光模块
CN205139428U (zh) 传输线结构
CN114002777A (zh) 一种多芯多模光纤复用器
CA1162431A (en) Optical coupler for transmission and reception over optical fibre
CN103713366B (zh) 光耦合装置
CN211123390U (zh) 一种硅光波分复用光引擎
CN102882128A (zh) 基于光纤光锥耦合的大功率高亮度激光光源
JP7333206B2 (ja) 光学素子及び光伝送システム
CN202693849U (zh) 透镜阵列装置及包含其的并行光模块
JP2009122146A (ja) ビーム変換器及び受光デバイス
CN103792626B (zh) 光耦合装置
CN202771056U (zh) 光收发次模块用楔形滤波片
CN102841413A (zh) 用于宽带高速传输的并行光收发组件
CN112290371B (zh) 一种基于方形光纤合束器的激光合束系统
CN106772828A (zh) 一种非接触式光纤连接器
CN100578140C (zh) 一种光探测器光敏面偏心检测装置及其方法
CN202372668U (zh) 一种用于塑料光纤传输的光收发组件
TWI459061B (zh) 光電傳輸系統
CN201966920U (zh) 光纤通信用的激光发射模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18569573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949201

Country of ref document: EP

Kind code of ref document: A1