WO2023281196A1 - Method for managing the operation of a fuel cell generator - Google Patents

Method for managing the operation of a fuel cell generator Download PDF

Info

Publication number
WO2023281196A1
WO2023281196A1 PCT/FR2022/051327 FR2022051327W WO2023281196A1 WO 2023281196 A1 WO2023281196 A1 WO 2023281196A1 FR 2022051327 W FR2022051327 W FR 2022051327W WO 2023281196 A1 WO2023281196 A1 WO 2023281196A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
battery
central unit
voltage
stage
Prior art date
Application number
PCT/FR2022/051327
Other languages
French (fr)
Inventor
Rémi SUCCOJA
Ramzi Sellaouti
Original Assignee
Pragma Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pragma Industries filed Critical Pragma Industries
Publication of WO2023281196A1 publication Critical patent/WO2023281196A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure falls within the field of fuel cell power supply devices and in particular power supply devices for equipment such as portable personal computers (laptop PCs), portable telephones, lighting or other devices, or vehicles of the electric bicycle type using a fuel cell associated with an unregulated hydrogen production source, and without a battery.
  • Prior technique for equipment such as portable personal computers (laptop PCs), portable telephones, lighting or other devices, or vehicles of the electric bicycle type using a fuel cell associated with an unregulated hydrogen production source, and without a battery.
  • the document US2020/0044299 A1 relates to a fuel cell power supply device whose regulation implements a battery, a hydrogen cell and a supercapacitor for which the management of the fuel cell depends on the state of battery charge. Such a device, which uses three energy sources, is complex to manage and its proper functioning depends on the proper functioning of the battery, which is a heavy object and whose life is limited.
  • the document CN 105299495 A provides a fuel cell power supply device whose hydrogen is produced from methanol and provides for regulating the production of hydrogen and a stack of fuel cell sub-cells comprising a supercapacity. In this document, a regulation of the production of hydrogen is provided for.
  • the present disclosure thus aims to improve the management of the operation of a fuel cell electric generator without a buffer battery and without regulation of its hydrogen supply source. to make its start-up, operation and shutdown independent of the hydrogen flow in the fuel cell.
  • the present disclosure provides a method for managing the operation of a fuel cell electric generator comprising:
  • a first circuit for supplying energy to a low-consumption central unit for controlling said generator, said first circuit, connected to the fuel cell, being provided with a first stage of LPSC supercapacitors, supplying said central unit,
  • the power circuit for supplying energy to at least one supply power output of equipment connected to said generator, separate from the first circuit, said second circuit, connected to the fuel cell , being provided with a second stage of supercapacitors HPSC (also called HP SCAP), the first circuit being configured so that the first stage of hybridization with supercapacitors provides a reserve of energy adapted to allow the power supply of the unit power plant to be independent of the operation of the second circuit, the method comprising, when the hydrogen supply of the fuel cell begins with a gradual increase in voltage of said cell, a start-up mode comprising a supply of the unit central unit by a first limited battery output voltage sufficient to charge the first stage of supercapacitors of the first circuit, a cut-off of the second circuit by the central unit, a prec heating of the battery for which the central unit authorizes the charging of the second stage of supercapacitors of the second circuit and keeps the circuit of said at least one power output open until the battery reaches a nominal operating voltage and a mode operation for which the central
  • the start-up sequence may include a battery output voltage test and for which, in the event that the battery output voltage does not reach a minimum value Vo after a given number of trials in the sequence starting, the generator said stop sequence.
  • the preheating sequence may comprise a test sequence of output voltage of the first stage of supercapacitors VLPSC and output voltage of the second stage of supercapacitors VHPSC repeated as long as the output voltage of the first stage and the output voltage of the second stage have not reached given nominal values and ending either by passing to said on stage if said output voltages have reached said nominal values, or by triggering said stop sequence if the temperature Q of the battery exceeds a maximum temperature of 0 ma x.
  • This preheating sequence allows the supercapacitors of the second circuit to be charged while checking that the temperature of the battery remains within acceptable limits.
  • the running sequence may comprise a first loop comprising a first comparison between the battery output voltage V P ii e and a threshold voltage Vmin, said loop triggering a regeneration loop comprising at least one calibrated purge of the battery when the battery voltage is lower than said threshold voltage.
  • the threshold voltage V m in is lower than the no-load voltage of the cell Vo according to the traditional current/voltage curve of a fuel cell.
  • the regeneration loop may comprise a second loop provided with a second comparison between the battery output voltage and said threshold voltage and for which said shutdown sequence is triggered if the battery output voltage remains below said threshold voltage for a duration U max and for which the generator returns to the running sequence if the battery output voltage has again become greater than or equal to said threshold voltage after a said calibrated purge for a duration less than T 1 day x.
  • Said stop sequence may comprise the cut-off of the power output or outputs, the cut-off of a supply converter of the second stage of HPSC supercapacitors.
  • the shutdown sequence may include an opening of the purge solenoid valve which will empty the hydrogen circuit of the cell.
  • the shutdown sequence may also comprise the shutdown of the cell, the discharge of the first stage of supercapacitors and a shutdown of the central unit.
  • the battery comprising a temperature sensor and a fan connected to the central unit, the method may comprise stopping said fan during the start-up sequence and during the stop sequence, starting at low speed said fan during the preheating sequence and operation of the fan at a speed controlled by the central unit as a function of the temperature of the stack in the running and regeneration sequences.
  • FIG. 1 shows a block diagram of an electric generator
  • FIG. 2 shows a detail diagram of an example of a CPU power supply circuit
  • FIG. 3 shows a detailed diagram of a first embodiment of a supercapacitor hybridization stage
  • FIG. 4 shows a detailed diagram of a second embodiment of a supercapacitor hybridization stage
  • FIG. 5 shows a purge solenoid valve management flowchart
  • FIG. 6 shows an example of a flowchart and operating states of a generator that can be produced according to the present disclosure.
  • the architecture proposed for the fuel cell electric generator of the present disclosure is based on the production of a first circuit, LP circuit, for supplying energy to a device for managing the operation of the generator, the first circuit being provided with a first supercapacitor hybridization stage 43, and with at least one second circuit, HP circuit, for supplying energy to at least one power output 52a for supplying equipment connected to the electricity generating device, the second circuit being provided with a second supercapacitor hybridization stage 42 distinct from said first stage.
  • a fuel cell electrical generator comprising a separation of the generation of electricity intended to produce current to supply one or more external devices and the generation of electricity of the operating management circuit of the generator.
  • the present disclosure is addressed in particular to a generator comprising a battery sized to deliver 8.6A at 0.63V/cell for 8 cells.
  • the invention is however not limited to these values and the battery may in particular comprise more or fewer cells and deliver more or less current depending on its configuration.
  • the generator operation management device ensuring the management of the electric generator comprises a central unit 60, microprocessor or microcontroller which constitutes a control/command or piloting device for the generator receiving voltage/current information from various stages of the electric generator and which controls circuit control means as will be seen later.
  • the generator operating management device is powered from the fuel cell 10 by the first circuit which comprises a power supply buffer regulated by a first stage of independent supercapacitors 43 provided with a first charging circuit 31 a balancing circuit 41 and which is followed by a DC/DC converter (hereafter DC/DC converter) 53 to supply the central unit 60.
  • the central unit comprises a microprocessor or a microcontroller associated with a memory 61 which comprises a part of non-volatile memory in which is located the generator management program and a part of working random access memory.
  • the charging circuit 31 then comprises a DC/DC step-up converter 31a represented in FIG. 2, the output of which is connected to an SBC device 41 for controlling and balancing the cells to which the supercapacitors 431, 432, 433 are connected, the converter 31a and the control and balancing device 41 respectively comprising modules 23, 24 for monitoring and transmitting voltage and current data on a bus, for example a l 2 C or SMBUS bus connected to the central unit 60
  • the circuit provides power to the unit power station through a second step-down DC/DC voltage converter 53a provided with an SLP output compatible with the operating voltage of the low-power microprocessor or microcontroller-type CPU.
  • the central unit will manage the auxiliaries of a battery balancing unit (BOP for Balance of Plant in English) i.e. the purge solenoid valve 71, a cooling fan 73 of the battery and receive information temperature of the battery by means of a temperature sensor 72 as represented in FIG. 4.
  • the control command device also manages the starting and stopping of the DC/DC converters of the load circuits and the safety switches of the power outputs. It will control the output voltage of the battery, in particular during the transitional phases of start-up, purge and shutdown of the battery to check that the battery provides sufficient output voltage.
  • the central unit will manage the operating parameters of the fuel cell 10 such as in particular the management of the purge solenoid valve 71 of the cell during the transitional phase of start-up of the cell, of the transitional phase stoppage of the cell and the phases of purging the cell during its operation, that is to say the phases of opening of the purge solenoid valve to evacuate the water generated by the operation of the cell.
  • the central unit will also manage the temperature of the battery by means of the temperature measurement of the battery by the sensor 72 and the starting, the stopping and the speed of the fan 73 for cooling the battery which will be slaved to the battery temperature. This speed is controlled by a PWM circuit according to a control law dependent on the current generated by the battery.
  • the second circuit a simplified diagram of which is given in FIG. 4, comprises, as said above, a hybridization stage 40, 42 with supercapacitors which is intended to supply the necessary power at the output of generator during transient phases of limited duration where the fuel cell output power is lower than the system output demand.
  • This second circuit comprises a charging circuit provided with a third DC/DC converter 30a followed by a stage of supercapacitors 42 comprising several supercapacitors 420, 421, 422, 423 the load of which is balanced by a circuit 40 for balancing and protection.
  • the starting and stopping of the third converter are controlled by the central unit through a command 301.
  • the second circuit comprises one or more fourth DC/DC converters 50a, 50b, ..., 50n depending on the voltages to be supplied on power paths S1, S2, ... which will supply devices connected to the generator.
  • These channels are for example a 12V power channel, a 5V channel or other.
  • the supply of the central unit and of the balancing unit of the stack is based on an energy buffer independent of the supply circuit of the power outputs and comprising an energy reserve not impacted by the power consumed by these outputs, the management of the generator is possible even when the power supplied by the battery decreases and becomes insufficient to supply said outputs.
  • the central unit detects a drop in the output voltage of the battery such that the supply of the power output(s) is no longer possible, it orders the stopping of the DC/DC converters supplying said outputs before starting a system shutdown procedure and its own standby.
  • the central unit detects a drop in the output voltage of the battery such that the supply of the power output(s) is no longer possible, it orders the stopping of the DC/DC converters supplying said outputs before starting a system shutdown procedure and its own standby.
  • the central unit is able to cut off the power supply to said outputs in the event of excessive consumption or a short-circuit on one or the other of these outputs. Either we detect an overconsumption of current on one of the outputs and we cut this output then we temporarily reactivate it cyclically to check if the fault has disappeared to resupply it, or we detect that the sum of the output powers is greater to the theoretical power of the battery for a duration greater than a given duration and all the outputs are cut off until the power requested at the output is reduced.
  • the central unit will manage the activation of the third converter 30a of the second circuit when the battery has reached sufficient power after its start-up and will manage the deactivation of this third converter and/or the deactivation of the fourth converters 50a, 50b ... of said power output(s) when the output voltage of the battery is no longer sufficient to supply the power supply to said outputs.
  • the device may comprise at the level of the first circuit a bypass downstream of the supercapacitor stage with a fifth DC/DC converter to power battery accessories such as the cooling fan for example.
  • An important role of the first circuit is to supply energy to the central unit of the fuel cell as well as the balancing unit independently of the hydrogen flow rate, unknown and variable, and potentially multi-source, production by chemical reaction, pressurized bottle, etc., present at the entrance to the stack.
  • the first circuit must operate as soon as a minimum voltage appears at the cell output sufficient to supply the central unit, for example with components of the traditional DC/DC converter type, a voltage greater than 2.5 V.
  • the central unit will then control the rise in voltage of the battery, will authorize the charging of the supercapacitors of the second circuit in authorizing the charging of the supercapacitors of the second circuit through their charging circuit 30 and will only authorize the operation of the output converter(s) 50a, ..., 50n of the second circuit when the charge of the supercapacitors of this second circuit is sufficient so that these can supply the power outlets.
  • the central unit a. - monitors the voltage/current parameters of the battery to determine the need to carry out purges by opening the purge solenoid valve, checking that the opening of this solenoid valve allows a rise in the power supplied by the battery, b. - initiates any battery reconditioning phases.
  • the central unit will also control the controlled shutdown of the cell when the production of hydrogen is reduced to the point that the output power of the cell becomes insufficient compared to the power requested at the output of the generator during a duration greater than a first threshold or when the nominal power of the battery cannot be restored by purging.
  • the central unit will then stop the fan(s), open the purge solenoid valve and go into standby. The voltage provided by the battery will then drop completely and the first circuit will stop.
  • the central unit will be connected to a temperature sensor 75 measuring the temperature of the chemical reaction and will include a control output for a fan 74 for cooling said hydrogen source so as to manage the temperature of said source as a function of the reaction temperature in order to control the chemical kinetics at the origin of the production of hydrogen .
  • FIG. 5 A flow chart representing the start-up and operating phases of the cell in relation to the phases of purging the cell is represented in FIG. 5.
  • the central unit In the case of a hydrogen supply to the cell by a device unregulated, the central unit is not powered until the cell receives hydrogen. When hydrogen begins to arrive in the cell, the voltage of the latter rises sufficiently to start the DC/DC converter of the LP charging circuit 31 and wake up the central unit in step 490. The central unit initializes, opens the purge solenoid valve VS of the hydrogen circuit of the cell and resets a purge counter CP.
  • the device passes in a preheating mode 520, in which the battery fan operates, the charging of the supercapacitors of the second circuit is activated, comprising a time delay 530 then a closing of the purge solenoid valve VS then a test of the battery voltage at the step 550.
  • the purge counter CP is incremented at step 630 and, if the purge counter has not reached a limit value CPmax at test step 640, the system remains in the e preheat status. If the battery voltage remains above the predefined minimum threshold value V m in at step 550, the system switches to a standard generator operating mode 560.
  • a fuel cell that can be used for the device of the invention may comprise about twenty cells each having an open circuit voltage of the order of 0.90 V to 0.95 V and which operates in current generator in its so-called ohmic range. Voltage V0 will be close to the battery's no-load voltage while voltage Vmin will be a little higher than the low voltage of the ohmic range.
  • the HP circuit When the generator is in generator operating mode 560 after the preheating phase, the HP circuit is switched on by authorizing the operation of the HP load circuit 30 and the device performs in parallel a verification of the output voltage stack at step 610 and purge sequences.
  • the purge sequences are performed after reaching a predefined time in step 570 and include opening of the purge solenoid valve VS in step 580 for a given duration.
  • the purge solenoid valve is closed and the purge delay counter is reset to zero in step 600. The sequence repeats as long as the device is in its mode. operating as a generator 560.
  • the verification of the battery output voltage V Piie carried out in parallel at step 610 maintains the device in the operating mode as a generator as long as this voltage is greater than the threshold V min . However, if the battery voltage drops below the threshold V min , the device opens the purge solenoid valve VS in step 615 for a defined time delay tempo3 and, if the voltage does not recover in step 620, it is considered that the source of hydrogen is no longer capable of supplying the device, the central unit then stops the HP circuit, keeps the purge solenoid valve open and switches to stop mode at step 625.
  • 6 represents an example of a logic diagram relating to the operating states of elements of a generator produced according to the present disclosure.
  • the generator When the battery is not powered, the generator is in a stopped mode 700 for which the fan of the battery 73 is stopped, the fan of the hydrogen source 74, for example a tank in which one puts a material which releases hydrogen in the presence of water, is stopped, the purge solenoid valve 71 is in the open position in the absence of electrical power.
  • the LP 31 low-power load circuit, the HP high-power load circuit 30 and the output(s) 50a, 50n are inactive and the indicator lights 76, 77 are off.
  • the cell voltage rises and allows the start of the DC/DC converter of the LP charging circuit in step 710, the generator switches to a start mode because the cell starts powering the CPU through the low power LP load circuit. Indeed, the DC/DC converter supplying the circuit of the central unit only needs a reduced battery voltage to operate.
  • the central unit activates an inhibition circuit 78 which keeps the high power load circuit and the power output(s) stopped. In addition, the central unit maintains the purge solenoid valve in the open position.
  • step 730 a battery voltage rise test is carried out after a time delay 725 and, in the event that the battery voltage has not reached a sufficient value after 5 trials according to test 727, a procedure stop 860, 870, 880 is started.
  • the generator switches to a 750 preheating mode.
  • the battery fan is started at low speed, for example from 10% to 20% of its rated speed depending on the type of fan used, the purge solenoid valve is put into automatic operation, i.e. it is closed but may open temporarily to purge the water from the circuit, the load circuit of the supercapacitors HPSC 42 (also called HP SCAP) is put into operation but the power outputs remain cut off.
  • HPSC 42 also called HP SCAP
  • the generator switches to running mode in step 770.
  • the generator returns to the stop sequence 860, 870, 880.
  • the HP outputs are in operation, the correct operation indicator 76 is permanently lit and regeneration sequences 790 with purge 800 of a given duration and cut-off of the power outputs are carried out when the voltage of the battery drops below the voltage of the supercapacitors of the HP circuit in 780.
  • the generator In the regeneration sequences, in the event that the battery voltage returns to normal during test 830 before the end of a time delay T1 in test 820, the generator returns to normal operating mode, on the other hand if the voltage of the battery does not return to normal at the end of the time delay T1 in test 820, the shutdown sequence is initiated.
  • the shutdown sequence firstly comprises cutting off the HP outputs, cutting off the charging circuit of the supercapacitors of the HP circuit, opening the purge solenoid valve in step 860, stopping the battery when the generation of hydrogen stops, which leads to the discharge of the supercapacitors of the LP circuit, the stopping of the central unit and the stopping of the ventilations in step 880.
  • the generator is structured around supercapacitor power converters equipped with a charging circuit, a discharging circuit and comprises a microprocessor or microcontroller calculation unit powered by a circuit independent of a circuit of power to manage the operation start-up and shutdown phases of the converter.
  • the architecture of the generator makes it possible to overcome the state and availability of the hydrogen source for this management.
  • the subassembly formed by the LP circuit supplies energy to the auxiliaries and the central control/command unit of the fuel cell independently of the flow rate unknown and variable hydrogen from an unregulated source present at the inlet of the stack.
  • the central unit makes it possible to control the start-up 720, the gradual increase in power during the preheating 750, the reconditioning phases 790 and the controlled shutdown of the fuel cell 880 without power interruption for the auxiliary components 70 .
  • the central unit manages the generator and protects the battery by monitoring its output voltage and protects the outputs and the battery against overconsumption.
  • the generator may include operating indicators managed by the central unit to indicate the state in which it is, in particular the fact that the outputs are active or inactive.
  • the generator device described is applicable to nomadic or emergency devices for powering devices such as emergency lighting, devices such as mobile or satellite telephone, GPS or laptop computer but is also applicable to larger power generating devices such as electric bicycles for example.

Abstract

Method for managing the operation of an electrical fuel cell generator comprising, when hydrogen starts being supplied to the fuel cell with a gradual rise in the voltage of said cell, a start mode (720) comprising supplying the central unit with a limited first output voltage from the cell sufficient to charge the first supercapacitor stage of the first circuit, disconnecting the second circuit by way of the central unit, a mode of preheating the cell (730) in which the central unit authorizes charging of the second supercapacitor stage (42) of the second circuit and keeps the circuit of said at least one power output (52a,..., 52n) open until the cell reaches a nominal operating voltage (760), and an operating mode in which the central unit authorizes the supply of said at least one SHP power output, the method furthermore comprising a stop sequence (860, 870, 880) initiated by the central unit upon detection of an output power or voltage drop of the cell for a given time.

Description

PROCEDE DE GESTION DE FONCTIONNEMENT D’UN GENERATEUR A PILEMETHOD FOR MANAGING THE OPERATION OF A BATTERY GENERATOR
A COMBUSTIBLE FUEL
Domaine technique Technical area
[0001] La présente divulgation relève du domaine des dispositifs d’alimentation électrique à piles à combustible et notamment des dispositifs d’alimentation de matériels tels que des ordinateurs personnels portables (PC portables), des téléphones portables, des éclairages ou autres dispositifs, ou des véhicules de type bicyclette électrique utilisant une pile à combustible associée à une source de production d’hydrogène non régulée, et dépourvus de batterie. Technique antérieure This disclosure falls within the field of fuel cell power supply devices and in particular power supply devices for equipment such as portable personal computers (laptop PCs), portable telephones, lighting or other devices, or vehicles of the electric bicycle type using a fuel cell associated with an unregulated hydrogen production source, and without a battery. Prior technique
[0002] Il est connu de réaliser des dispositifs d’alimentation électrique utilisant des piles à combustibles, ou piles à hydrogène, comme source primaire d’énergie. [0003] Le document US2020/0044299 A1 concerne un dispositif d’alimentation à pile à combustible dont la régulation met en œuvre une batterie, une pile à hydrogène et une supercapacité pour lequel la gestion de la pile à combustible dépend de l’état de charge de la batterie. Un tel dispositif qui met en œuvre trois sources d’énergie est complexe à gérer et son bon fonctionnement dépend du bon fonctionnement de la batterie qui est un objet lourd et dont la durée de vie est limitée. [0004] Le document CN 105299495 A prévoit un dispositif d’alimentation électrique à pile à combustible dont l’hydrogène est produit à partir de méthanol et prévoit de réguler la production d’hydrogène et un empilement de sous cellules de pile à combustibles comportant une supercapacité. Dans ce document une régulation de la production d’hydrogène est prévue. [0002] It is known to produce power supply devices using fuel cells, or hydrogen cells, as the primary source of energy. [0003] The document US2020/0044299 A1 relates to a fuel cell power supply device whose regulation implements a battery, a hydrogen cell and a supercapacitor for which the management of the fuel cell depends on the state of battery charge. Such a device, which uses three energy sources, is complex to manage and its proper functioning depends on the proper functioning of the battery, which is a heavy object and whose life is limited. The document CN 105299495 A provides a fuel cell power supply device whose hydrogen is produced from methanol and provides for regulating the production of hydrogen and a stack of fuel cell sub-cells comprising a supercapacity. In this document, a regulation of the production of hydrogen is provided for.
[0005] Ces documents sont difficilement applicables à un dispositif ne comportant pas de batterie et dont la source de production d’hydrogène ne peut être régulée, comme dans le cas d’un matériau réactif en poudre produisant de l’hydrogène lorsqu’il est mis en contact avec de l’eau dont la réaction ne peut être régulée, ou dans le cas d’une bouteille d’hydrogène sous pression si l’on ne souhaite pas gérer l’arrivée d’hydrogène. Par ailleurs il est souhaitable de supprimer la batterie tampon de dispositifs antérieurs pour limiter le poids de dispositifs portatifs et leur durée de vie de stockage notamment. Résumé [0005] These documents are difficult to apply to a device that does not include a battery and whose hydrogen production source cannot be regulated, as in the case of a reactive material in powder form producing hydrogen when it is brought into contact with water, the reaction of which cannot be regulated, or in the case of a pressurized hydrogen bottle if you do not wish to manage the arrival of hydrogen. Furthermore, it is desirable to eliminate the buffer battery of prior devices in order to limit the weight of portable devices and their storage life in particular. Summary
[0006] Vis-à-vis de l’art antérieur, la présente divulgation vise ainsi à améliorer la gestion du fonctionnement d’un générateur électrique à pile à combustible dépourvu de batterie tampon et dépourvu de régulation de sa source d’alimentation en hydrogène pour rendre son démarrage, son fonctionnement et son arrêt indépendant du débit d’hydrogène dans la pile à combustible. [0006] With respect to the prior art, the present disclosure thus aims to improve the management of the operation of a fuel cell electric generator without a buffer battery and without regulation of its hydrogen supply source. to make its start-up, operation and shutdown independent of the hydrogen flow in the fuel cell.
[0007] Pour ce faire la présente divulgation prévoit un procédé de gestion de fonctionnement d’un générateur électrique à pile à combustible comportant : To do this, the present disclosure provides a method for managing the operation of a fuel cell electric generator comprising:
- un premier circuit de fourniture d’énergie à une unité centrale basse consommation de pilotage dudit générateur, ledit premier circuit, raccordé à la pile à combustible, étant pourvu d’un premier étage de supercondensateurs LPSC, d’alimentation de ladite unité centrale, - a first circuit for supplying energy to a low-consumption central unit for controlling said generator, said first circuit, connected to the fuel cell, being provided with a first stage of LPSC supercapacitors, supplying said central unit,
- au moins un second circuit, dit circuit de puissance, de fourniture d’énergie à au moins une sortie de puissance d’alimentation d’un équipement raccordé audit générateur, distinct du premier circuit, ledit deuxième circuit, raccordé à la pile à combustible, étant pourvu d’un second étage de supercondensateurs HPSC (aussi appelé HP SCAP), le premier circuit étant configuré pour que le premier étage d’hybridation à supercondensateurs fournisse une réserve d’énergie adaptée à permettre à l’alimentation de l’unité centrale d’être indépendante du fonctionnement du second circuit, le procédé comprenant, lors d’un début d’alimentation en hydrogène de la pile à combustible avec montée en tension progressive de ladite pile, un mode de démarrage comportant une alimentation de l’unité centrale par une première tension limitée de sortie de la pile suffisante pour charger le premier étage de supercondensateurs du premier circuit, une coupure du second circuit par l’unité centrale, un mode de préchauffage de la pile pour lequel l’unité centrale autorise la charge du second étage de supercondensateurs du second circuit et maintient ouvert le circuit de ladite au moins une sortie de puissance jusqu’à ce que la pile atteigne une tension de fonctionnement nominale et un mode de marche pour lequel l’unité centrale autorise l’alimentation de ladite au moins une sortie de puissance SHP, le procédé comprenant en outre une séquence d’arrêt initiée par l’unité centrale sur détection d’une baisse de tension de sortie de la pile pendant un temps donné. [0008] La séquence de démarrage peut comporter un test de tension de sortie de pile et pour lequel, dans le cas où la tension de sortie de la pile n’atteint pas une valeur minimale Vo après un nombre d’essais donnés dans la séquence de démarrage, le générateur ladite séquence d’arrêt. [0009] La séquence de préchauffage peut comporter une séquence de test de tension de sortie du premier étage de supercondensateurs VLPSC et de tension de sortie du second étage de supercondensateurs VHPSC répétée tant que la tension de sortie du premier étage et la tension de sortie du second étage n’ont pas atteint des valeurs nominales données et se terminant, soit par le passage dans ladite étape de marche si lesdites tensions de sortie ont atteint lesdites valeurs nominales, soit par le déclenchement de ladite séquence d’arrêt si la température Q de la pile dépasse une température maximale 0max. - at least one second circuit, called power circuit, for supplying energy to at least one supply power output of equipment connected to said generator, separate from the first circuit, said second circuit, connected to the fuel cell , being provided with a second stage of supercapacitors HPSC (also called HP SCAP), the first circuit being configured so that the first stage of hybridization with supercapacitors provides a reserve of energy adapted to allow the power supply of the unit power plant to be independent of the operation of the second circuit, the method comprising, when the hydrogen supply of the fuel cell begins with a gradual increase in voltage of said cell, a start-up mode comprising a supply of the unit central unit by a first limited battery output voltage sufficient to charge the first stage of supercapacitors of the first circuit, a cut-off of the second circuit by the central unit, a prec heating of the battery for which the central unit authorizes the charging of the second stage of supercapacitors of the second circuit and keeps the circuit of said at least one power output open until the battery reaches a nominal operating voltage and a mode operation for which the central unit authorizes the supply of said at least one power output SHP, the method further comprising a shutdown sequence initiated by the central unit upon detection of a drop in the output voltage of the battery for a given time. [0008] The start-up sequence may include a battery output voltage test and for which, in the event that the battery output voltage does not reach a minimum value Vo after a given number of trials in the sequence starting, the generator said stop sequence. [0009] The preheating sequence may comprise a test sequence of output voltage of the first stage of supercapacitors VLPSC and output voltage of the second stage of supercapacitors VHPSC repeated as long as the output voltage of the first stage and the output voltage of the second stage have not reached given nominal values and ending either by passing to said on stage if said output voltages have reached said nominal values, or by triggering said stop sequence if the temperature Q of the battery exceeds a maximum temperature of 0 ma x.
[0010] Cette séquence de préchauffage permet la charge des supercondensateurs du second circuit tout en contrôlant que la température de la pile reste dans des limites acceptables. [0010] This preheating sequence allows the supercapacitors of the second circuit to be charged while checking that the temperature of the battery remains within acceptable limits.
[0011] La séquence de marche peut comporter une première boucle comportant une première comparaison entre la tension de sortie pile VPiie et une tension de seuil Vmin, ladite boucle déclenchant une boucle de régénération comportant au moins une purge calibrée de la pile lorsque la tension de la pile est inférieure à ladite tension de seuil. The running sequence may comprise a first loop comprising a first comparison between the battery output voltage V P ii e and a threshold voltage Vmin, said loop triggering a regeneration loop comprising at least one calibrated purge of the battery when the battery voltage is lower than said threshold voltage.
[0012] Il y a lieu de noter que la tension de seuil Vmin est inférieure à la tension à vide de la pile Vo selon la courbe courant/tension traditionnelle d’une pile à combustible. [0012] It should be noted that the threshold voltage V m in is lower than the no-load voltage of the cell Vo according to the traditional current/voltage curve of a fuel cell.
[0013] La boucle de régénération peut comporter une seconde boucle pourvue d’une seconde comparaison entre la tension de sortie de la pile et ladite tension de seuil et pour lequel ladite séquence d’arrêt est déclenchée si la tension de sortie de la pile reste inférieure à ladite tension de seuil pendant une durée Umax et pour lequel le générateur retourne en séquence de marche si la tension de sortie de la pile est redevenue supérieure ou égale à ladite tension de seuil après une dite purge calibrée pendant une durée inférieure à T 1 max. [0013] The regeneration loop may comprise a second loop provided with a second comparison between the battery output voltage and said threshold voltage and for which said shutdown sequence is triggered if the battery output voltage remains below said threshold voltage for a duration U max and for which the generator returns to the running sequence if the battery output voltage has again become greater than or equal to said threshold voltage after a said calibrated purge for a duration less than T 1 day x.
[0014] Ladite séquence d’arrêt peut comporter la coupure de la ou des sorties de puissance, la coupure d’un convertisseur d’alimentation du second étage de supercondensateurs HPSC. [0015] La séquence d’arrêt peut comporter une ouverture de l’électrovanne de purge qui va vider le circuit hydrogène de la pile. [0014] Said stop sequence may comprise the cut-off of the power output or outputs, the cut-off of a supply converter of the second stage of HPSC supercapacitors. [0015] The shutdown sequence may include an opening of the purge solenoid valve which will empty the hydrogen circuit of the cell.
[0016] La séquence d’arrêt peut en outre comporter l’arrêt de la pile, la décharge du premier étage de supercondensateurs et un arrêt de l’unité centrale. [0016] The shutdown sequence may also comprise the shutdown of the cell, the discharge of the first stage of supercapacitors and a shutdown of the central unit.
[0017] La pile comportant un capteur de température et un ventilateur reliés à l’unité centrale, le procédé peut comporter un arrêt dudit ventilateur lors de la séquence de démarrage et lors de la séquence d’arrêt, une mise en route à petite vitesse dudit ventilateur lors de la séquence de préchauffage et un fonctionnement du ventilateur à vitesse contrôlée par l’unité centrale en fonction de la température de la pile dans les séquences de marche et de régénération. [0017] The battery comprising a temperature sensor and a fan connected to the central unit, the method may comprise stopping said fan during the start-up sequence and during the stop sequence, starting at low speed said fan during the preheating sequence and operation of the fan at a speed controlled by the central unit as a function of the temperature of the stack in the running and regeneration sequences.
Brève description des dessins Brief description of the drawings
[0018] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : [0019] [Fig. 1] montre un schéma de principe d’un générateur électrique ; [0018] Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings, in which: [0019] [Fig. 1] shows a block diagram of an electric generator;
[0020] [Fig. 2] montre un schéma de détail d’un exemple de circuit d’alimentation d’une unité centrale ; [0020] [Fig. 2] shows a detail diagram of an example of a CPU power supply circuit;
[0021] [Fig. 3] montre un schéma de détail d’un premier mode de réalisation d’étage d’hybridation à supercondensateurs ; [0021] [Fig. 3] shows a detailed diagram of a first embodiment of a supercapacitor hybridization stage;
[0022] [Fig. 4] montre un schéma de détail d’un second mode de réalisation d’étage d’hybridation à supercondensateurs ; [0022] [Fig. 4] shows a detailed diagram of a second embodiment of a supercapacitor hybridization stage;
[0023] [Fig. 5] montre un logigramme de gestion d’électrovanne de purge ; [0023] [Fig. 5] shows a purge solenoid valve management flowchart;
[0024] [Fig. 6] montre un exemple de logigramme et d’états de fonctionnement d’un générateur réalisable selon la présente divulgation. [0024] [Fig. 6] shows an example of a flowchart and operating states of a generator that can be produced according to the present disclosure.
Description des modes de réalisation Description of embodiments
[0025] Selon la figure 1 , l’architecture proposée pour le générateur électrique à pile à combustible de la présente divulgation repose sur la réalisation d’un premier circuit, circuit LP, de fourniture d’énergie à un dispositif de gestion de fonctionnement du générateur, le premier circuit étant pourvu d’un premier étage d’hybridation à supercondensateurs 43, et, d’au moins un second circuit, circuit HP, de fourniture d’énergie à au moins une sortie de puissance 52a d’alimentation d’un équipement raccordé au dispositif générateur d’électricité, le second circuit étant pourvu d’un second étage d’hybridation à supercondensateurs 42 distinct dudit premier étage. [0026] Ainsi la présente divulgation concerne un générateur électrique à pile à combustible comportant une séparation de la génération d’électricité destinée à produire du courant pour alimenter un ou plusieurs dispositifs externes et de la génération d’électricité du circuit de gestion de fonctionnement du générateur. [0027] Pour donner un exemple, la présente divulgation s’adresse en particulier à un générateur comportant une pile dimensionnée pour délivrer 8.6A à 0.63V/cellule pour 8 cellules. According to Figure 1, the architecture proposed for the fuel cell electric generator of the present disclosure is based on the production of a first circuit, LP circuit, for supplying energy to a device for managing the operation of the generator, the first circuit being provided with a first supercapacitor hybridization stage 43, and with at least one second circuit, HP circuit, for supplying energy to at least one power output 52a for supplying equipment connected to the electricity generating device, the second circuit being provided with a second supercapacitor hybridization stage 42 distinct from said first stage. Thus the present disclosure relates to a fuel cell electrical generator comprising a separation of the generation of electricity intended to produce current to supply one or more external devices and the generation of electricity of the operating management circuit of the generator. To give an example, the present disclosure is addressed in particular to a generator comprising a battery sized to deliver 8.6A at 0.63V/cell for 8 cells.
[0028] L’invention n’est toutefois pas limitée à ces valeurs et la pile peut notamment comporter plus ou moins de cellules et délivrer plus ou moins de courant selon sa configuration. The invention is however not limited to these values and the battery may in particular comprise more or fewer cells and deliver more or less current depending on its configuration.
[0029] Le dispositif de gestion de fonctionnement du générateur assurant la gestion du générateur électrique comporte une unité centrale 60, microprocesseur ou microcontrôleur qui constitue un dispositif de contrôle/commande ou de pilotage du générateur recevant des informations de tension/courant de divers étages du générateur électrique et qui pilote des moyens de contrôle des circuits comme il sera vu plus loin. The generator operation management device ensuring the management of the electric generator comprises a central unit 60, microprocessor or microcontroller which constitutes a control/command or piloting device for the generator receiving voltage/current information from various stages of the electric generator and which controls circuit control means as will be seen later.
[0030] Le dispositif de gestion de fonctionnement du générateur est alimenté à partir de la pile à combustible 10 par le premier circuit qui comporte un tampon d’alimentation régulé par un premier étage de supercondensateurs indépendant 43 pourvu d’un premier circuit de charge 31 d’un circuit d’équilibrage 41 et qui est suivi d’un convertisseur continu/continu (ci-après convertisseur DC/DC) 53 pour alimenter l’unité centrale 60. L’unité centrale comporte un microprocesseur ou un microcontrôleur associé à une mémoire 61 qui comporte une partie de mémoire non volatile dans laquelle se trouve le programme de gestion du générateur et une partie de mémoire vive de travail. The generator operating management device is powered from the fuel cell 10 by the first circuit which comprises a power supply buffer regulated by a first stage of independent supercapacitors 43 provided with a first charging circuit 31 a balancing circuit 41 and which is followed by a DC/DC converter (hereafter DC/DC converter) 53 to supply the central unit 60. The central unit comprises a microprocessor or a microcontroller associated with a memory 61 which comprises a part of non-volatile memory in which is located the generator management program and a part of working random access memory.
[0031] Ce premier circuit de basse puissance dit circuit LP peut être dimensionné en sorte de réaliser une réserve d’énergie longue durée pour l’alimentation de l’unité centrale. Le circuit de charge 31 comporte alors un convertisseur DC/DC élévateur de tension 31a représenté en figure 2 dont la sortie est reliée à un dispositif SBC 41 de pilotage et d’équilibrage de cellules auquel sont raccordées les supercondensateurs 431, 432, 433, le convertisseur 31a et le dispositif de pilotage et d’équilibrage 41 comportant respectivement des modules 23, 24 de surveillance et de transmission de données de tension et de courant sur bus, par exemple un bus l2C ou SMBUS relié à l’unité centrale 60. Le circuit fournit de l’énergie à l’unité centrale au travers d’un second convertisseur de tension DC/DC abaisseur de tension 53a pourvu d’une sortie SLP compatible avec la tension de fonctionnement de l’unité centrale de type microprocesseur ou microcontrôleur faible consommation. [0032] L’unité centrale va gérer les auxiliaires d’une unité d’équilibrage de la pile (BOP pour Balance of Plant en anglais) soit I ‘électrovanne de purge 71, un ventilateur de refroidissement 73 de la pile et recevoir une information de température de la pile au moyen d’un capteur de température 72 comme représenté en figure 4. Le dispositif de contrôle commande gère aussi la mise en route et l’arrêt des convertisseurs DC/DC des circuits de charge et les interrupteurs de sécurité des sorties de puissance. Il va contrôler la tension de sortie de la pile notamment durant les phases transitoires de démarrage, de purge et d’arrêt de la pile pour vérifier que la pile fournit une tension de sortie suffisante. This first low-power circuit called the LP circuit can be sized so as to provide a long-term energy reserve for supplying the central unit. The charging circuit 31 then comprises a DC/DC step-up converter 31a represented in FIG. 2, the output of which is connected to an SBC device 41 for controlling and balancing the cells to which the supercapacitors 431, 432, 433 are connected, the converter 31a and the control and balancing device 41 respectively comprising modules 23, 24 for monitoring and transmitting voltage and current data on a bus, for example a l 2 C or SMBUS bus connected to the central unit 60 The circuit provides power to the unit power station through a second step-down DC/DC voltage converter 53a provided with an SLP output compatible with the operating voltage of the low-power microprocessor or microcontroller-type CPU. [0032] The central unit will manage the auxiliaries of a battery balancing unit (BOP for Balance of Plant in English) i.e. the purge solenoid valve 71, a cooling fan 73 of the battery and receive information temperature of the battery by means of a temperature sensor 72 as represented in FIG. 4. The control command device also manages the starting and stopping of the DC/DC converters of the load circuits and the safety switches of the power outputs. It will control the output voltage of the battery, in particular during the transitional phases of start-up, purge and shutdown of the battery to check that the battery provides sufficient output voltage.
[0033] En particulier, l’unité centrale va gérer des paramètres de fonctionnement de la pile à combustible 10 comme notamment la gestion de l’électrovanne de purge 71 de la pile lors la phase transitoire de démarrage de la pile, de la phase transitoire d’arrêt de la pile et des phases de purge de la pile pendant son fonctionnement c’est à dire les phases d’ouverture de l’électrovanne de purge pour évacuer l’eau générée par le fonctionnement de la pile. L’unité centrale va aussi gérer la température de la pile au moyen de la mesure de température de la pile par le capteur 72 et le démarrage, l’arrêt et la vitesse du ventilateur 73 de refroidissement de la pile qui va être asservie à la température de la pile. Cette vitesse est contrôlée par un circuit PWM selon une loi de commande dépendante du courant généré par la pile. [0033] In particular, the central unit will manage the operating parameters of the fuel cell 10 such as in particular the management of the purge solenoid valve 71 of the cell during the transitional phase of start-up of the cell, of the transitional phase stoppage of the cell and the phases of purging the cell during its operation, that is to say the phases of opening of the purge solenoid valve to evacuate the water generated by the operation of the cell. The central unit will also manage the temperature of the battery by means of the temperature measurement of the battery by the sensor 72 and the starting, the stopping and the speed of the fan 73 for cooling the battery which will be slaved to the battery temperature. This speed is controlled by a PWM circuit according to a control law dependent on the current generated by the battery.
[0034] Pour ce qui concerne les sorties de puissance, le second circuit dont un schéma simplifié est donné en figure 4 comporte comme dit plus haut un étage d’hybridation 40, 42 à supercondensateurs qui est destiné à fournir la puissance nécessaire en sortie de générateur durant des phases transitoires de durée limitée où la puissance en sortie de la pile à combustible est inférieure à la demande en sortie de système. As regards the power outputs, the second circuit, a simplified diagram of which is given in FIG. 4, comprises, as said above, a hybridization stage 40, 42 with supercapacitors which is intended to supply the necessary power at the output of generator during transient phases of limited duration where the fuel cell output power is lower than the system output demand.
[0035] Ce second circuit, dit circuit de puissance, distinct du premier circuit, comporte un circuit de charge pourvu d’un troisième convertisseur DC/DC 30a suivi d’un étage de supercondensateurs 42 comportant plusieurs supercondensateurs 420, 421 , 422, 423 dont la charge est équilibrée par un circuit 40 d’équilibrage et de protection. La mise en route et l’arrêt du troisième convertisseur sont pilotés par l’unité centrale au travers d’une commande 301. En sortie de l’étage de supercondensateurs, le second circuit comporte un ou plusieurs quatrièmes convertisseurs DC/DC 50a, 50b, ..., 50n selon les tensions à fournir sur des voies de puissance S1 , S2, ... qui vont alimenter des appareils connectés au générateur. Ces voies sont par exemple une voie de puissance 12V, une voie 5V ou autre. [0036] Du fait que l’alimentation de l’unité centrale et de l’unité d’équilibrage de la pile repose sur un tampon d’énergie indépendant du circuit d’alimentation des sorties de puissance et comprenant une réserve d’énergie non impactée par la puissance consommée par ces sorties, la gestion du générateur est possible même lorsque la puissance fournie par la pile diminue et devient insuffisante pour alimenter lesdites sorties. Lorsque l’unité centrale détecte une chute de tension de sortie de la pile telle que l’alimentation de la ou des sorties de puissance n’est plus possible, il commande l’arrêt des convertisseurs DC/DC alimentant lesdites sorties avant de démarrer une procédure d’arrêt du système et sa propre mise en veille. [0037] Par ailleurs, au moyen de la mesure des tensions et courants 21 , 22 sur la ou les voies de sortie 50a, 50b, ... du circuit de puissance et des moyens interrupteurs 301, 51 au niveau du circuit de puissance et des convertisseurs DC/DC d’alimentation des sorties représentés sur la figure 4 détaillant le second circuit, l’unité centrale est à même de couper l’alimentation desdites sorties en cas de consommation trop élevée ou de court-circuit sur l’une ou l’autre de ces sorties. [0038] Soit on détecte une surconsommation en courant sur l’une des sorties et on coupe cette sortie puis on la réactive temporairement cycliquement pour vérifier si le défaut a disparu pour la réalimenter, soit on détecte que la somme des puissances en sortie est supérieure à la puissance théorique de la pile pendant une durée supérieure à une durée donnée et on coupe l’ensemble des sorties jusqu’à réduction de la puissance demandée en sortie. This second circuit, called power circuit, distinct from the first circuit, comprises a charging circuit provided with a third DC/DC converter 30a followed by a stage of supercapacitors 42 comprising several supercapacitors 420, 421, 422, 423 the load of which is balanced by a circuit 40 for balancing and protection. The starting and stopping of the third converter are controlled by the central unit through a command 301. At the output of the stage of supercapacitors, the second circuit comprises one or more fourth DC/DC converters 50a, 50b, ..., 50n depending on the voltages to be supplied on power paths S1, S2, ... which will supply devices connected to the generator. These channels are for example a 12V power channel, a 5V channel or other. [0036] Due to the fact that the supply of the central unit and of the balancing unit of the stack is based on an energy buffer independent of the supply circuit of the power outputs and comprising an energy reserve not impacted by the power consumed by these outputs, the management of the generator is possible even when the power supplied by the battery decreases and becomes insufficient to supply said outputs. When the central unit detects a drop in the output voltage of the battery such that the supply of the power output(s) is no longer possible, it orders the stopping of the DC/DC converters supplying said outputs before starting a system shutdown procedure and its own standby. [0037] Furthermore, by measuring the voltages and currents 21, 22 on the output channel(s) 50a, 50b, etc. of the power circuit and the switch means 301, 51 at the level of the power circuit and of the DC/DC power supply converters for the outputs shown in FIG. 4 detailing the second circuit, the central unit is able to cut off the power supply to said outputs in the event of excessive consumption or a short-circuit on one or the other of these outputs. Either we detect an overconsumption of current on one of the outputs and we cut this output then we temporarily reactivate it cyclically to check if the fault has disappeared to resupply it, or we detect that the sum of the output powers is greater to the theoretical power of the battery for a duration greater than a given duration and all the outputs are cut off until the power requested at the output is reduced.
[0039] Par ailleurs, l’unité centrale va gérer l’activation du troisième convertisseur 30a du second circuit lorsque la pile aura atteint une puissance suffisante après son démarrage et va gérer la désactivation de ce troisième convertisseur et/ou la désactivation du ou des quatrièmes convertisseurs 50a, 50b ... de ladite ou desdites sorties de puissance lorsque la tension de sortie de la pile n’est plus suffisante pour fournir l’alimentation desdites sorties. Furthermore, the central unit will manage the activation of the third converter 30a of the second circuit when the battery has reached sufficient power after its start-up and will manage the deactivation of this third converter and/or the deactivation of the fourth converters 50a, 50b ... of said power output(s) when the output voltage of the battery is no longer sufficient to supply the power supply to said outputs.
[0040] Comme représenté en figure 1 , le dispositif peut comporter au niveau du premier circuit une dérivation en aval de l’étage à supercondensateurs avec un cinquième convertisseur DC/DC pour alimenter des accessoires de la pile tels que le ventilateur de refroidissement par exemple. [0040] As shown in Figure 1, the device may comprise at the level of the first circuit a bypass downstream of the supercapacitor stage with a fifth DC/DC converter to power battery accessories such as the cooling fan for example.
[0041] Un rôle important du premier circuit est d’alimenter en énergie l’unité centrale de la pile à combustible ainsi que l’unité d’équilibrage indépendamment du débit d’hydrogène, inconnu et variable, et potentiellement multi-source, production par réaction chimique, bouteille sous pression..., présent à l’entrée de la pile. Une fois la source d’hydrogène raccordée à la pile, par exemple par l’ouverture d’une vanne ou le démarrage de la réaction chimique, le premier circuit doit fonctionner dès l’apparition d’une tension minimale en sortie de pile suffisante pour alimenter l’unité centrale, par exemple avec des composants de type convertisseur DC/DC traditionnels une tension supérieure à 2,5 V. L’unité centrale contrôlera alors la montée en tension de la pile, autorisera la charge des supercondensateurs du second circuit en autorisant la charge des supercondensateurs du second circuit au travers de leur circuit de charge 30 et n’autorisera le fonctionnement du ou des convertisseurs de sortie 50a, ..., 50n du second circuit que lorsque la charge des supercondensateurs de ce second circuit sera suffisante pour que ces derniers puissent alimenter les sorties de puissance. Ensuite, l’unité centrale : a. - surveille les paramètres tension/courant de la pile pour déterminer la nécessité de procéder à des purges en ouvrant l’électrovanne de purge, en contrôlant que l’ouverture de cette électrovanne permet une remontée de la puissance fournie par la pile, b. - initie les phases de reconditionnement éventuelles de la pile. [0041] An important role of the first circuit is to supply energy to the central unit of the fuel cell as well as the balancing unit independently of the hydrogen flow rate, unknown and variable, and potentially multi-source, production by chemical reaction, pressurized bottle, etc., present at the entrance to the stack. Once the hydrogen source is connected to the cell, for example by opening a valve or starting the chemical reaction, the first circuit must operate as soon as a minimum voltage appears at the cell output sufficient to supply the central unit, for example with components of the traditional DC/DC converter type, a voltage greater than 2.5 V. The central unit will then control the rise in voltage of the battery, will authorize the charging of the supercapacitors of the second circuit in authorizing the charging of the supercapacitors of the second circuit through their charging circuit 30 and will only authorize the operation of the output converter(s) 50a, ..., 50n of the second circuit when the charge of the supercapacitors of this second circuit is sufficient so that these can supply the power outlets. Then the central unit: a. - monitors the voltage/current parameters of the battery to determine the need to carry out purges by opening the purge solenoid valve, checking that the opening of this solenoid valve allows a rise in the power supplied by the battery, b. - initiates any battery reconditioning phases.
[0042] L’unité centrale va en outre piloter l’arrêt maîtrisé de la pile lorsque la production d’hydrogène se réduit au point que la puissance de sortie de la pile devient insuffisante par rapport à la puissance demandée en sortie du générateur pendant une durée supérieure à un premier seuil ou lorsque la puissance nominale de la pile ne peut être rétablie par une purge. [0042] The central unit will also control the controlled shutdown of the cell when the production of hydrogen is reduced to the point that the output power of the cell becomes insufficient compared to the power requested at the output of the generator during a duration greater than a first threshold or when the nominal power of the battery cannot be restored by purging.
[0043] Ceci est réalisé en stoppant la production d’énergie dans le circuit de puissance, par exemple en arrêtant le troisième convertisseur DC/DC 301 afin de conserver la puissance résiduelle de la pile pour alimenter l’unité centrale et les organes auxiliaires (BOP). L’unité centrale va alors arrêter le ou les ventilateurs, ouvrir l’électrovanne de purge et se mettre en veille. La tension fournie par la pile va alors chuter complètement et le premier circuit va s’arrêter. [0044] Enfin dans le cas où la source d’hydrogène alimentant la pile est une source d’hydrogène non régulée à réactif chimique, l’unité centrale va être raccordée à un capteur de température 75 mesurant la température de la réaction chimique et va comporter une sortie de pilotage d’un ventilateur 74 de refroidissement de ladite source d’hydrogène en sorte de gérer la température de ladite source en fonction de la température de réaction afin de maîtriser la cinétique chimique à l’origine de la production d’hydrogène. This is achieved by stopping the production of energy in the power circuit, for example by stopping the third DC/DC converter 301 in order to conserve the residual power of the battery to supply the central unit and the auxiliary components ( BOP). The central unit will then stop the fan(s), open the purge solenoid valve and go into standby. The voltage provided by the battery will then drop completely and the first circuit will stop. Finally, in the case where the hydrogen source supplying the cell is an unregulated hydrogen source with a chemical reagent, the central unit will be connected to a temperature sensor 75 measuring the temperature of the chemical reaction and will include a control output for a fan 74 for cooling said hydrogen source so as to manage the temperature of said source as a function of the reaction temperature in order to control the chemical kinetics at the origin of the production of hydrogen .
[0045] Un logigramme représentant les phases de démarrage et de fonctionnement de la pile en rapport avec les phases de purge de la pile est représenté en figure 5. [0046] Dans le cas d’une alimentation en hydrogène de la pile par un dispositif non régulé, l’unité centrale n’est pas alimentée tant que la pile ne reçoit pas d’hydrogène. Lorsque de l’hydrogène commence à arriver dans la pile, la tension de cette dernière s’élève suffisamment pour démarrer le convertisseur DC/DC du circuit de charge LP 31 et réveiller l’unité centrale en étape 490. L’unité centrale s’initialise, ouvre l’électrovanne VS de purge du circuit d’hydrogène de la pile et remet à zéro un compteur de purge CP. Une fois la tension de la pile VPiie supérieure à une valeur minimale définie Vo correspondant pratiquement à la tension en circuit ouvert de la pile compte tenu du fait que l’unité centrale nécessite très peu de puissance en étape 510, le dispositif passe dans un mode de préchauffage 520, dans lequel le ventilateur de la pile fonctionne, la charge des supercondensateurs du second circuit est activée, comportant une temporisation 530 puis une fermeture de l’électrovanne VS de purge puis un test de la tension de pile à l’étape 550. Si la tension de pile avec l’électrovanne en fonctionnement, la charge des supercondensateurs du second circuit en fonction et le ventilateur de pile en marche, tombe au-dessous d’une valeur de seuil Vmin et devient donc insuffisante pour charger les supercondensateurs du second circuit, le compteur de purge CP est incrémenté à l’étape 630 et, si le compteur de purge n’a pas atteint une valeur limite CPmax à l’étape de test 640, le système reste dans l’état de préchauffage. Si la tension de pile reste supérieure à la valeur de seuil minimale prédéfinie Vmin à l’étape 550, le système passe dans un mode de fonctionnement en générateur standard 560. De retour à l’étape de test 640, dans le cas où le compteur de purge CP a atteint la valeur limite CPmax, un défaut sur le circuit hydrogène est considéré à l’étape 650, un témoin d’erreur est allumé à l’étape 652 puis le système est arrêté à l’étape 654. [0047] Pour fixer les idées, une pile à combustible utilisable pour le dispositif de l’invention peut comporter une vingtaine de cellules ayant chacune une tension à vide de l’ordre de 0,90 V à 0,95 V et qui fonctionne en générateur de courant dans sa plage dite ohmique. La tension V0 sera proche de la tension à vide de la pile alors que la tension Vmin sera un peu supérieure à la tension basse de la plage ohmique. [0045] A flow chart representing the start-up and operating phases of the cell in relation to the phases of purging the cell is represented in FIG. 5. [0046] In the case of a hydrogen supply to the cell by a device unregulated, the central unit is not powered until the cell receives hydrogen. When hydrogen begins to arrive in the cell, the voltage of the latter rises sufficiently to start the DC/DC converter of the LP charging circuit 31 and wake up the central unit in step 490. The central unit initializes, opens the purge solenoid valve VS of the hydrogen circuit of the cell and resets a purge counter CP. Once the voltage of the battery V P ii e is greater than a defined minimum value Vo corresponding practically to the open circuit voltage of the battery taking into account the fact that the central unit requires very little power in step 510, the device passes in a preheating mode 520, in which the battery fan operates, the charging of the supercapacitors of the second circuit is activated, comprising a time delay 530 then a closing of the purge solenoid valve VS then a test of the battery voltage at the step 550. If the battery voltage with the solenoid valve in operation, the charge of the supercapacitors of the second circuit in operation and the battery fan in operation, falls below a threshold value V m in and therefore becomes insufficient to charge the supercapacitors of the second circuit, the purge counter CP is incremented at step 630 and, if the purge counter has not reached a limit value CPmax at test step 640, the system remains in the e preheat status. If the battery voltage remains above the predefined minimum threshold value V m in at step 550, the system switches to a standard generator operating mode 560. Returning to test step 640, in the event that the purge counter CP has reached the limit value CPmax, a fault on the hydrogen circuit is considered at step 650, an error indicator is lit at step 652 then the system is stopped at step 654. [0047] To fix ideas, a fuel cell that can be used for the device of the invention may comprise about twenty cells each having an open circuit voltage of the order of 0.90 V to 0.95 V and which operates in current generator in its so-called ohmic range. Voltage V0 will be close to the battery's no-load voltage while voltage Vmin will be a little higher than the low voltage of the ohmic range.
[0048] Lorsque le générateur est en mode de fonctionnement en générateur 560 après la phase de préchauffage, le circuit HP est mis en marche en autorisant le fonctionnement du circuit de charge HP 30 et le dispositif réalise en parallèle une vérification de la tension de sortie de la pile à l’étape 610 et des séquences de purge. [0049] Les séquences de purge sont réalisées après avoir atteint un délai prédéfini à l’étape 570 et comportent une ouverture de l’électrovanne de purge VS à l’étape 580 pendant une durée donnée. Lorsque la durée de purge fixée est atteinte à l’étape 590, l’électrovanne de purge est fermée et le compteur de délai de purge est remis à zéro à l’étape 600. La séquence se répète tant que le dispositif est dans son mode de fonctionnement en générateur 560. La vérification de la tension de sortie de pile VPiie réalisée en parallèle à l’étape 610 maintient le dispositif dans le mode de fonctionnent en générateur tant que cette tension est supérieure au seuil Vmin. Cependant si la tension pile passe sous le seuil Vmin, le dispositif ouvre l’électrovanne de purge VS à l’étape 615 pendant une temporisation tempo3 définie et, si la tension ne se rétablit pas à l’étape 620, on considère que la source d’hydrogène n’est plus capable d’alimenter le dispositif, l’unité centrale arrête alors le circuit HP, maintient l’électrovanne de purge ouverte et passe en mode d’arrêt à l’étape 625. [0050] La figure 6 représente un exemple de logigramme en rapport avec des états de fonctionnements d’éléments d’un générateur réalisé selon la présente divulgation. When the generator is in generator operating mode 560 after the preheating phase, the HP circuit is switched on by authorizing the operation of the HP load circuit 30 and the device performs in parallel a verification of the output voltage stack at step 610 and purge sequences. The purge sequences are performed after reaching a predefined time in step 570 and include opening of the purge solenoid valve VS in step 580 for a given duration. When the fixed purge duration is reached in step 590, the purge solenoid valve is closed and the purge delay counter is reset to zero in step 600. The sequence repeats as long as the device is in its mode. operating as a generator 560. The verification of the battery output voltage V Piie carried out in parallel at step 610 maintains the device in the operating mode as a generator as long as this voltage is greater than the threshold V min . However, if the battery voltage drops below the threshold V min , the device opens the purge solenoid valve VS in step 615 for a defined time delay tempo3 and, if the voltage does not recover in step 620, it is considered that the source of hydrogen is no longer capable of supplying the device, the central unit then stops the HP circuit, keeps the purge solenoid valve open and switches to stop mode at step 625. 6 represents an example of a logic diagram relating to the operating states of elements of a generator produced according to the present disclosure.
[0051] Lorsque la pile n’est pas alimentée, le générateur est dans un mode arrêté 700 pour lequel le ventilateur de la pile 73 est arrêté, le ventilateur de la source d’hydrogène 74, par exemple un réservoir dans lequel on met un matériau qui dégage de l’hydrogène en présence d’eau, est arrêté, l’électrovanne de purge 71 est en position ouverte en l’absence d’alimentation électrique. Dans ce mode, le circuit de charge basse puissance LP 31, le circuit de charge haute puissance HP 30 et la ou les sortie 50a, 50n sont inactifs et les voyants témoins 76, 77 sont éteints. When the battery is not powered, the generator is in a stopped mode 700 for which the fan of the battery 73 is stopped, the fan of the hydrogen source 74, for example a tank in which one puts a material which releases hydrogen in the presence of water, is stopped, the purge solenoid valve 71 is in the open position in the absence of electrical power. In this mode, the LP 31 low-power load circuit, the HP high-power load circuit 30 and the output(s) 50a, 50n are inactive and the indicator lights 76, 77 are off.
[0052] Lorsqu’une alimentation en hydrogène de la pile est démarrée, la tension pile monte et permet le démarrage du convertisseur DC/DC du circuit de charge LP en étape 710, le générateur passe dans un mode de démarrage du fait que la pile commence à alimenter l’unité centrale au travers du circuit de charge basse puissance LP. En effet, le convertisseur DC/DC alimentant le circuit de l’unité centrale n’a besoin que d’une tension pile réduite pour fonctionner. Dans cette étape l’unité centrale active un circuit d’inhibition 78 qui maintient le circuit de charge haute puissance et la ou les sorties de puissance arrêtés. En outre, l’unité centrale maintient l’électrovanne de purge en position ouverte. [0052] When a hydrogen supply to the cell is started, the cell voltage rises and allows the start of the DC/DC converter of the LP charging circuit in step 710, the generator switches to a start mode because the cell starts powering the CPU through the low power LP load circuit. Indeed, the DC/DC converter supplying the circuit of the central unit only needs a reduced battery voltage to operate. In this step, the central unit activates an inhibition circuit 78 which keeps the high power load circuit and the power output(s) stopped. In addition, the central unit maintains the purge solenoid valve in the open position.
[0053] En étape 730 un test de montée en tension de la pile est réalisé après une temporisation 725 et, dans le cas où la tension de la pile n’a pas atteint une valeur suffisante après 5 essais selon le test 727, une procédure d’arrêt 860, 870, 880 est mise en route. In step 730, a battery voltage rise test is carried out after a time delay 725 and, in the event that the battery voltage has not reached a sufficient value after 5 trials according to test 727, a procedure stop 860, 870, 880 is started.
[0054] Lorsque la tension de la pile a atteint une valeur suffisante, le générateur passe dans un mode de préchauffage 750. Dans ce mode, le ventilateur de la pile est démarré à petite vitesse, par exemple de 10% à 20% de sa vitesse nominale selon le type de ventilateur utilisé, l’électrovanne de purge est mise en fonctionnement automatique, c’est à dire qu’elle est fermée mais susceptible de s’ouvrir temporairement pour purger l’eau du circuit, le circuit de charge des supercondensateurs HPSC 42 (aussi appelés HP SCAP) est mis en fonction mais les sorties de puissance restent coupées. La tension de la pile, qui fonctionne alors en charge, diminue par rapport à Vo. [0055] Lorsque la tension VHPSC des supercondensateurs du circuit HP a dépassé une valeur seuil qui correspond à environ 75% à 80% de leur charge maximale et que la tension VLPSC des supercondensateurs du circuit LP est stabilisée à une tension suffisante pour l’alimentation de l’unité centrale et des auxiliaires de la pile à l’étape 760 le générateur passe en mode de marche à l’étape 770. Dans le cas où la tension des supercondensateurs du circuit HP ou la tension des supercondensateurs LPSC 43 aussi appelés LP SCAP du circuit LP n’a pas atteint sa valeur nominale mais que la température Q a dépassé un seuil maximum Omax 850, le générateur retourne à la séquence d’arrêt 860, 870, 880. [0056] Dans le mode de marche 770, les sorties HP sont en fonctionnement, le témoin de fonctionnement correct 76 est allumé fixe et des séquences régénération 790 avec purge 800 d’une durée donnée et coupure des sorties puissance sont réalisées lorsque la tension de la pile chute au-dessous de la tension des supercondensateurs du circuit HP en 780. When the battery voltage has reached a sufficient value, the generator switches to a 750 preheating mode. In this mode, the battery fan is started at low speed, for example from 10% to 20% of its rated speed depending on the type of fan used, the purge solenoid valve is put into automatic operation, i.e. it is closed but may open temporarily to purge the water from the circuit, the load circuit of the supercapacitors HPSC 42 (also called HP SCAP) is put into operation but the power outputs remain cut off. The voltage of the battery, which then operates under load, decreases with respect to Vo. When the voltage VHPSC of the supercapacitors of the HP circuit has exceeded a threshold value which corresponds to approximately 75% to 80% of their maximum load and the voltage VLPSC of the supercapacitors of the LP circuit is stabilized at a voltage sufficient for the power supply of the central unit and the battery auxiliaries in step 760 the generator switches to running mode in step 770. In the case where the voltage of the supercapacitors of the HP circuit or the voltage of the supercapacitors LPSC 43 also called LP SCAP of the LP circuit has not reached its nominal value but the temperature Q has exceeded a maximum threshold Omax 850, the generator returns to the stop sequence 860, 870, 880. In the running mode 770, the HP outputs are in operation, the correct operation indicator 76 is permanently lit and regeneration sequences 790 with purge 800 of a given duration and cut-off of the power outputs are carried out when the voltage of the battery drops below the voltage of the supercapacitors of the HP circuit in 780.
[0057] Dans les séquences de régénération, dans le cas où la tension pile redevient normale lors du test 830 avant la fin d’une temporisation T1 au test 820, le générateur retourne en mode de fonctionnement normal, en revanche si la tension de la pile ne revient pas à la normale à la fin de la temporisation T1 au test 820, la séquence d’arrêt est initiée. In the regeneration sequences, in the event that the battery voltage returns to normal during test 830 before the end of a time delay T1 in test 820, the generator returns to normal operating mode, on the other hand if the voltage of the battery does not return to normal at the end of the time delay T1 in test 820, the shutdown sequence is initiated.
[0058] La séquence d’arrêt comporte en premier lieu la coupure des sorties HP, la coupure du circuit de charge des supercondensateurs du circuit HP l’ouverture de l’électrovanne de purge à l’étape 860, l’arrêt de la pile lorsque la génération d’hydrogène s’arrête ce qui conduit à la décharge des supercondensateurs du circuit LP, l’arrêt de l’unité centrale et l’arrêt des ventilations à l’étape 880. [0058] The shutdown sequence firstly comprises cutting off the HP outputs, cutting off the charging circuit of the supercapacitors of the HP circuit, opening the purge solenoid valve in step 860, stopping the battery when the generation of hydrogen stops, which leads to the discharge of the supercapacitors of the LP circuit, the stopping of the central unit and the stopping of the ventilations in step 880.
[0059] En résumé, le générateur est architecturé autour de convertisseurs de puissance à supercondensateurs munis d’un circuit de charge, d’un circuit de décharge et comporte une unité de calcul à microprocesseur ou microcontrôleur alimentée par un circuit indépendant d’un circuit de puissance pour gérer des phases de démarrage de fonctionnement et d’arrêt du convertisseur. L’architecture du générateur permet de s’affranchir de l’état et de la disponibilité de la source d’hydrogène pour cette gestion. In summary, the generator is structured around supercapacitor power converters equipped with a charging circuit, a discharging circuit and comprises a microprocessor or microcontroller calculation unit powered by a circuit independent of a circuit of power to manage the operation start-up and shutdown phases of the converter. The architecture of the generator makes it possible to overcome the state and availability of the hydrogen source for this management.
[0060] Du fait de son fonctionnement à basse tension par rapport au circuit HP, par exemple une tension de 2,5 V à 3,5V en sortie de pile permet de faire fonctionner le convertisseur 31a alimentant les supercondensateurs du circuit LP pour obtenir une tension en sortie du second convertisseur 53a adaptée à l’alimentation d’un microcontrôleur basse consommation, le sous ensemble constitué par le circuit LP alimente en énergie les auxiliaires et l’unité centrale de contrôle/commande de la pile à combustible indépendamment du débit d’hydrogène inconnu et variable d’une source non régulée présente à l’entrée de la pile. De ce fait, l’unité centrale permet de piloter le démarrage 720, la montée en puissance progressive pendant le préchauffage 750, les phases de reconditionnement 790 et l’arrêt maîtrisé de la pile à combustible 880 sans interruption de puissance pour les organes auxiliaires 70. [0061] L’unité centrale gère le générateur et protège la pile en surveillant sa tension de sortie et protège les sorties et la pile contre des surconsommations. Due to its operation at low voltage relative to the HP circuit, for example a voltage of 2.5 V to 3.5 V at the battery output makes it possible to operate the converter 31a supplying the supercapacitors of the LP circuit to obtain a voltage at the output of the second converter 53a adapted to the supply of a low consumption microcontroller, the subassembly formed by the LP circuit supplies energy to the auxiliaries and the central control/command unit of the fuel cell independently of the flow rate unknown and variable hydrogen from an unregulated source present at the inlet of the stack. As a result, the central unit makes it possible to control the start-up 720, the gradual increase in power during the preheating 750, the reconditioning phases 790 and the controlled shutdown of the fuel cell 880 without power interruption for the auxiliary components 70 . The central unit manages the generator and protects the battery by monitoring its output voltage and protects the outputs and the battery against overconsumption.
[0062] La présente divulgation n’est pas limitée aux exemples représentés et notamment le générateur peut comporter des témoins de fonctionnement gérés par l’unité centrale pour indiquer l’état dans lequel il se trouve, notamment le fait que les sorties soient actives ou inactives. Le dispositif générateur décrit est applicable à des dispositifs nomades ou de secours pour alimenter des dispositifs tels qu’éclairage de secours, appareils tels que téléphone portable ou satellitaire, GPS ou ordinateur portable mais est aussi applicable à des dispositifs générateurs de puissance plus importante tels que des bicyclettes électriques par exemple. This disclosure is not limited to the examples shown and in particular the generator may include operating indicators managed by the central unit to indicate the state in which it is, in particular the fact that the outputs are active or inactive. The generator device described is applicable to nomadic or emergency devices for powering devices such as emergency lighting, devices such as mobile or satellite telephone, GPS or laptop computer but is also applicable to larger power generating devices such as electric bicycles for example.

Claims

REVENDICATIONS
[Revendication 1] Procédé de gestion de fonctionnement d’un générateur électrique à pile à combustible comportant : a. un premier circuit (31 , 41 , 43) de fourniture d’énergie à une unité centrale (60) basse consommation de pilotage dudit générateur, ledit premier circuit, raccordé à la pile à combustible, étant pourvu d’un premier étage de supercondensateurs LPSC (43), d’alimentation de ladite unité centrale, b. au moins un second circuit (30, 40, 42, 50a, 51 , 53), dit circuit de puissance, de fourniture d’énergie à au moins une sortie de puissance (52a) d’alimentation d’un équipement raccordé audit générateur, distinct du premier circuit, ledit deuxième circuit, raccordé à la pile à combustible, étant pourvu d’un second étage de supercondensateurs HPSC (42), le premier circuit étant configuré pour que le premier étage d’hybridation à supercondensateurs fournisse une réserve d’énergie adaptée à permettre à l’alimentation de l’unité centrale d’être indépendante du fonctionnement du second circuit, caractérisé en ce qu’il comprend, lors d’un début d’alimentation en hydrogène de la pile à combustible avec montée en tension progressive de ladite pile, un mode de démarrage (720) comportant une alimentation de l’unité centrale par une première tension limitée de sortie de la pile suffisante pour charger le premier étage de supercondensateurs du premier circuit, une coupure du second circuit par l’unité centrale, un mode de préchauffage de la pile (730) pour lequel l’unité centrale autorise la charge du second étage de supercondensateurs (42) du second circuit et maintient ouvert le circuit de ladite au moins une sortie de puissance SHP (52a, ..., 52n) jusqu’à ce que la pile atteigne une tension de fonctionnement nominale (760) et un mode de marche pour lequel l’unité centrale autorise l’alimentation de ladite au moins une sortie de puissance SHP, le procédé comprenant en outre une séquence d’arrêt (860, 870, 880) initiée par l’unité centrale sur détection d’une baisse de tension de sortie de la pile pendant un temps donné. [Claim 1] A method of managing the operation of a fuel cell electric generator comprising: a. a first circuit (31, 41, 43) for supplying energy to a low-consumption central unit (60) for controlling said generator, said first circuit, connected to the fuel cell, being provided with a first stage of LPSC supercapacitors (43), supply of said central unit, b. at least one second circuit (30, 40, 42, 50a, 51, 53), said power circuit, for supplying energy to at least one power output (52a) for supplying equipment connected to said generator, separate from the first circuit, said second circuit, connected to the fuel cell, being provided with a second stage of HPSC supercapacitors (42), the first circuit being configured so that the first stage of supercapacitor hybridization provides a reserve of energy adapted to allow the power supply to the central unit to be independent of the operation of the second circuit, characterized in that it comprises, when the hydrogen supply to the fuel cell begins with a rise in voltage of said battery, a start-up mode (720) comprising a supply of the central unit by a first limited output voltage of the battery sufficient to charge the first stage of supercapacitors of the first circuit, a cut-off of the second circuit by the a central unit, a battery preheating mode (730) for which the central unit authorizes the charging of the second stage of supercapacitors (42) of the second circuit and keeps the circuit of said at least one SHP power output (52a, ..., 52n) until the battery reaches a nominal operating voltage (760) and an operating mode for which the central unit authorizes the supply of said at least one power output SHP, the method comprising furthermore a shutdown sequence (860, 870, 880) initiated by the central unit upon detection of a drop in the output voltage of the battery for a given time.
[Revendication 2] Procédé selon la revendication 1, pour lequel la séquence de démarrage comporte un test de tension de sortie de pile et pour lequel, dans le cas où la tension de sortie de la pile n’atteint pas une valeur minimale Vo après un nombre d’essais donnés (727) dans la séquence de démarrage, le générateur ladite séquence d’arrêt (860, 870, 880). [Claim 2] Method according to claim 1, for which the starting sequence includes a battery output voltage test and for which, in the event that the battery output voltage does not reach a minimum value Vo after a given number of tries (727) in the start sequence, the generator said stop sequence (860, 870, 880).
[Revendication 3] Procédé selon la revendication 1 ou 2, pour lequel la séquence de préchauffage comporte une séquence de test (760) de tension de sortie du premier étage de supercondensateurs VLPSC et de tension de sortie du second étage de supercondensateurs VHPSC répétée tant que la tension de sortie du premier étage et la tension de sortie du second étage n’ont pas atteint des valeurs nominales données (850) et se terminant, soit par le passage dans ladite étape de marche si lesdites tensions de sortie ont atteint lesdites valeurs nominales, soit par le déclenchement de ladite séquence d’arrêt (860, 870, 880) si la température Q de la pile dépasse une température maximale 0max (850). [Claim 3] A method according to claim 1 or 2, wherein the preheating sequence comprises a test sequence (760) of first stage supercapacitor VLPSC output voltage and second stage supercapacitor VHPSC output voltage repeated as long as the output voltage of the first stage and the output voltage of the second stage have not reached given nominal values (850) and ending either by entering said on stage if said output voltages have reached said nominal values , or by triggering said shutdown sequence (860, 870, 880) if the temperature Q of the battery exceeds a maximum temperature 0 ma x (850).
[Revendication 4] Procédé selon la revendication 1, 2 ou 3, pour lequel la séquence de marche comporte une première boucle comportant une première comparaison (780) entre la tension de sortie pile VPiie et une tension de seuil Vmin, ladite boucle déclenchant une boucle de régénération (790) comportant au moins une purge calibrée (800) de la pile lorsque la tension de la pile est inférieure à ladite tension de seuil. [Claim 4] Method according to claim 1, 2 or 3, for which the on sequence comprises a first loop comprising a first comparison (780) between the battery output voltage V P ii e and a threshold voltage V m in, said loop triggering a regeneration loop (790) comprising at least one calibrated purge (800) of the battery when the battery voltage is below said threshold voltage.
[Revendication 5] Procédé selon la revendication 4, pour lequel la boucle de régénération comporte une seconde boucle pourvue d’une seconde comparaison (830) entre la tension de sortie de la pile et ladite tension de seuil, pour lequel ladite séquence d’arrêt (860, 870, 880) est déclenchée si la tension de sortie de la pile reste inférieure à ladite tension de seuil pendant une durée Umax et pour lequel le générateur retourne en séquence de marche si la tension de sortie de la pile est redevenue supérieure ou égale à ladite tension de seuil après une dite purge calibrée pendant une durée inférieure à T 1 max. [Claim 5] A method according to claim 4, wherein the regeneration loop comprises a second loop provided with a second comparison (830) between the battery output voltage and said threshold voltage, for which said shutdown sequence (860, 870, 880) is triggered if the output voltage of the battery remains lower than said threshold voltage for a duration U max and for which the generator returns to the running sequence if the output voltage of the battery has again become higher or equal to said threshold voltage after said calibrated purge for a duration less than T 1 ma x.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, pour lequel ladite séquence d’arrêt comporte la coupure de la ou des sorties de puissance, la coupure d’un convertisseur d’alimentation du second étage de supercondensateurs HPSC (42). [Claim 6] A method as claimed in any preceding claim, wherein said shutdown sequence includes shutting down the power output(s), shutting down a power converter of the second stage HPSC supercapacitors (42) .
[Revendication 7] Procédé selon la revendication 6 pour lequel la séquence d’arrêt comporte une ouverture de l’électrovanne de purge. [Claim 7] Process according to claim 6 for which the stop sequence includes an opening of the purge solenoid valve.
[Revendication 8] Procédé selon la revendication 7 pour lequel la séquence d’arrêt comporte l’arrêt de la pile, la décharge du premier étage de supercondensateurs et un arrêt de l’unité centrale. [Claim 8] A method according to claim 7 wherein the shutdown sequence includes shutdown of the cell, discharge of the first stage of supercapacitors and shutdown of the CPU.
[Revendication 9] Procédé selon l’une quelconque des revendications précédentes pour lequel, la pile comportant un capteur de température et un ventilateur reliés à l’unité centrale, le procédé comporte un arrêt dudit ventilateur lors de la séquence de démarrage, une mise en route à petite vitesse dudit ventilateur lors de la séquence de préchauffage et un fonctionnement du ventilateur à vitesse contrôlée par l’unité centrale en fonction de la température de la pile dans les séquences de marche et de régénération. [Claim 9] Method according to any one of the preceding claims for which, the battery comprising a temperature sensor and a fan connected to the central unit, the method comprises stopping said fan during the start-up sequence, switching on running at low speed of said fan during the preheating sequence and operation of the fan at a speed controlled by the central unit as a function of the temperature of the stack in the running and regeneration sequences.
PCT/FR2022/051327 2021-07-08 2022-07-04 Method for managing the operation of a fuel cell generator WO2023281196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2107403 2021-07-08
FR2107403A FR3125177B1 (en) 2021-07-08 2021-07-08 METHOD FOR MANAGING THE OPERATION OF A FUEL CELL GENERATOR

Publications (1)

Publication Number Publication Date
WO2023281196A1 true WO2023281196A1 (en) 2023-01-12

Family

ID=78049325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051327 WO2023281196A1 (en) 2021-07-08 2022-07-04 Method for managing the operation of a fuel cell generator

Country Status (2)

Country Link
FR (1) FR3125177B1 (en)
WO (1) WO2023281196A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175598A1 (en) * 2002-12-02 2004-09-09 Bliven David C. Fuel cell power supply for portable computing device and method for fuel cell power control
US20040180243A1 (en) * 2003-03-12 2004-09-16 Ballard Power Systems Inc. Black start method and apparatus for a fuel cell power plant, and fuel cell power plant with black start capability
US20060035115A1 (en) * 2004-08-16 2006-02-16 Yasuaki Norimatsu Power supply and control method therefor
CN105299495A (en) 2015-10-22 2016-02-03 上海合既得动氢机器有限公司 Water hydrogen searchlight
US20200044299A1 (en) 2016-11-22 2020-02-06 Powerup Energy Technologies Inc. Portable fuel cell backup generator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175598A1 (en) * 2002-12-02 2004-09-09 Bliven David C. Fuel cell power supply for portable computing device and method for fuel cell power control
US20040180243A1 (en) * 2003-03-12 2004-09-16 Ballard Power Systems Inc. Black start method and apparatus for a fuel cell power plant, and fuel cell power plant with black start capability
US20060035115A1 (en) * 2004-08-16 2006-02-16 Yasuaki Norimatsu Power supply and control method therefor
CN105299495A (en) 2015-10-22 2016-02-03 上海合既得动氢机器有限公司 Water hydrogen searchlight
US20200044299A1 (en) 2016-11-22 2020-02-06 Powerup Energy Technologies Inc. Portable fuel cell backup generator system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CACCIATO M ET AL: "A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications", INDUSTRY APPLICATIONS CONFERENCE, 2004. 39TH IAS ANNUAL MEETING. CONFE RENCE RECORD OF THE 2004 IEEE SEATTLE, WA, USA 3-7 OCT. 2004, PISCATAWAY, NJ, USA,IEEE, vol. 2, 3 October 2004 (2004-10-03), pages 1127 - 1133, XP010735146, ISBN: 978-0-7803-8486-6, DOI: 10.1109/IAS.2004.1348554 *
DALVI A ET AL: "Control and real-time optimization of an automotive hybrid fuel cell power system", CONTROL ENGINEERING PRACTICE, PERGAMON PRESS, OXFORD, GB, vol. 17, no. 8, 1 August 2009 (2009-08-01), pages 924 - 938, XP026148750, ISSN: 0967-0661, [retrieved on 20090429], DOI: 10.1016/J.CONENGPRAC.2009.02.009 *
HINOV NIKOLAY ET AL: "Mathematical Modelling and Control of Hybrid Sources for Application in Electric Vehicles", 2020 24TH INTERNATIONAL CONFERENCE ELECTRONICS, IEEE, 15 June 2020 (2020-06-15), pages 1 - 5, XP033794808, DOI: 10.1109/IEEECONF49502.2020.9141609 *
VACHEVA GERGANA ET AL: "Challenges of Usage of Fuel Cells for LED Lighting", 2020 FIFTH JUNIOR CONFERENCE ON LIGHTING (LIGHTING), IEEE, 24 September 2020 (2020-09-24), pages 1 - 4, XP033852054, DOI: 10.1109/LIGHTING47792.2020.9240582 *

Also Published As

Publication number Publication date
FR3125177B1 (en) 2023-06-02
FR3125177A1 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
EP1782495B1 (en) Stopping a fuel cell supplied with pure oxygen
FR2784517A1 (en) POWER SUPPLY CIRCUIT FOR A MOTOR VEHICLE EDGE NETWORK WITH TWO DIFFERENT VOLTAGE SUPPLY BRANCHES
EP2774210B1 (en) Method for managing the operation of a hybrid system
FR2693052A1 (en) Uninterrupted distributed storage power system.
EP2530780B1 (en) Method for managing the operation of a hybrid system
FR2715779A3 (en) Battery charging control system e.g. for recharging mobile telephone from car battery
EP1825557B1 (en) Method for controlling a rechargeable battery and rechargeable battery for carrying out said method
EP1383222B1 (en) Battery charger
EP1848090A2 (en) Device for temporarily supercharging power to electrical elements
EP0358213A1 (en) Method for the high-speed charging of waterproof nickel-cadmium batteries
EP3513476A1 (en) Power supply method and power supply system for an electrical load within an aircraft
WO2023281196A1 (en) Method for managing the operation of a fuel cell generator
EP2363939A2 (en) AC uninterruptible power supply for an installation and method therefor
EP3465861B1 (en) Method for electrical supply of an apparatus by an autonomous hybrid station
EP2395594B1 (en) Device and method for supplying a mobile communication system and a sensor arrangement including such a device.
WO2012028572A1 (en) Method for charging an electrical battery
FR3053851A1 (en) DEVICE FOR CONTROLLING A POWER SYSTEM FOR A FUEL CELL / BATTERY CELL VEHICLE
WO2023281195A1 (en) Electrical generator architecture based on a fuel-cell stack and supercapacitors
FR3006114A1 (en) METHOD OF MAINTAINING THE PERFORMANCE OF A FUEL CELL SYSTEM, AND GAS CIRCUIT OF A FUEL CELL
FR3006512A1 (en) POWER MANAGEMENT CIRCUIT OF AN AUTONOMOUS SENSOR
JP5864247B2 (en) Power generator
EP2772983B1 (en) Energy storage device and related management method
EP3319200B1 (en) Method and system for monitoring the charge of a battery of an electrical device
WO2012001281A1 (en) Station for replacing motor vehicle electric batteries
EP4007020B1 (en) Electrochemical system comprising a fuel cell, a bleed valve, and a pressure-regulating valve for controlling the input pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22750863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE