WO2023279388A1 - 一种nr-v2x网络中高能效信道状态信息传输方法 - Google Patents

一种nr-v2x网络中高能效信道状态信息传输方法 Download PDF

Info

Publication number
WO2023279388A1
WO2023279388A1 PCT/CN2021/105560 CN2021105560W WO2023279388A1 WO 2023279388 A1 WO2023279388 A1 WO 2023279388A1 CN 2021105560 W CN2021105560 W CN 2021105560W WO 2023279388 A1 WO2023279388 A1 WO 2023279388A1
Authority
WO
WIPO (PCT)
Prior art keywords
allocation
csi
power
user
internet
Prior art date
Application number
PCT/CN2021/105560
Other languages
English (en)
French (fr)
Inventor
彭昱捷
宋晓勤
王书墨
茹赛颖
王合伟
张寒冰
龚蓓蕾
华雨晴
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to PCT/CN2021/105560 priority Critical patent/WO2023279388A1/zh
Publication of WO2023279388A1 publication Critical patent/WO2023279388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of the Internet of Vehicles, in particular to an information transmission method of the Internet of Vehicles, and more specifically, to an energy-efficient Channel State Information (CSI) transmission method in an NR-V2X network.
  • CSI Channel State Information
  • V2X Vehicle-to-everything
  • IoT Internet of Things
  • ITS Intelligent Transportation System
  • the Internet of Vehicles shares and exchanges data according to agreed communication protocols and data interaction standards. It enables intelligent traffic management and services, such as improved road safety, enhanced situational awareness, and reduced traffic congestion, through real-time perception and collaboration among pedestrians, roadside units, vehicles, networks, and the cloud.
  • V2X communication methods Today, there are two globally recognized V2X communication methods, namely Dedicated Short Range Communications (DSRC) based on WiFi technology and cellular vehicle networking (C-V2X) based on cellular technology.
  • DSRC Dedicated Short Range Communications
  • C-V2X cellular vehicle networking
  • the beginning of C-V2X can only be traced back to 2015, more than ten years later than DSRC.
  • QoS Quality of Service
  • NR-V2X based on 5G new air interface is better than DSRC in supporting higher data rate, longer transmission range, higher reliability and lower latency.
  • V2V resource allocation scheme based on C-V2X technology for Vehicular Ad hoc Networks (VANET), which minimizes the total waiting time by reducing the weighted sum of delays.
  • VANET Vehicular Ad hoc Networks
  • some literature proposes a dynamic vehicle resource matching algorithm to maximize the number of active C-V2X users, thereby reducing the number of C-V2X users and VANET users in the unlicensed frequency band The conflict; some literatures proposed a relay-based high-efficiency power allocation scheme. All the above works assume that the sender knows the perfect CSI, and do not consider the resource consumption of the CSI transmission process. Therefore, the present invention proposes an energy-efficient channel state information transmission method in an NR-V2X network, with maximization of system throughput as the optimization goal, while achieving a good balance between complexity and performance.
  • the purpose of maximizing the throughput of the sidelink communication system is achieved with reasonable and efficient resource allocation.
  • the IoV users transmit their CSI to the base station using hybrid spectrum access technology, and then consider the constraints such as the transmission power of the IoV user's sending end and the user's minimum rate to determine the maximum throughput. Amount of Sidelink resource allocation objective function, and optimize the solution.
  • the sidelink resource allocation problem adopts a step-by-step algorithm, and the subcarrier is allocated first, and then the power is allocated.
  • the method of average total power allocation is adopted to quickly obtain the subcarrier allocation result;
  • the power allocation part adopts the construction of Lagrangian function, and obtains the optimal solution expression according to the KKT condition, and then uses the sub-carrier
  • the gradient algorithm calculates the Lagrangian multipliers to realize power distribution.
  • Step 1) the Internet of Vehicles users report their respective CSIs to the base station as the basis for the base station to perform Sidelink unified resource allocation;
  • Step 2 V2X communication uses network slicing technology to access the 5G network.
  • the base station obtains CSI, consider the constraints such as transmission power of the transmission end of the user of the Internet of Vehicles and the minimum rate of the user, and determine the Sidelink resource allocation objective function that maximizes throughput;
  • Step 3 the transmission power is evenly distributed to each subcarrier, the subcarrier is allocated based on user fairness, and the Sidelink resource allocation objective function after subcarrier allocation is obtained;
  • Step 4 construct Lagrangian function, according to KKT condition, obtain optimal solution expression
  • Step 5 use the sub-gradient algorithm to obtain the optimal Lagrangian multiplier, substitute it into the optimal solution expression, optimize the power allocation value, and finally complete the Sidelink resource allocation;
  • step 1) includes the following specific steps:
  • Step 1a Internet of Vehicles users use hybrid spectrum access technology to share uplink spectrum resources with 5G cell users;
  • Step 1b considering the error probability of the local spectrum perception of the Internet of Vehicles user, the energy efficiency expression when using the hybrid spectrum access technology is obtained;
  • Step 1c) under the constraint conditions such as the transmission power of the transmission end of the Internet of Vehicles user, the threshold value of the interference power, and the user rate, determine the power allocation objective function of the CSI transmission that maximizes the energy efficiency;
  • Step 1d using fractional programming to convert the quasi-concave problem into a convex function to obtain a new objective function
  • Step 1e construct Lagrange function, according to KKT condition, obtain optimal solution expression
  • step 1f) the sub-gradient algorithm is used to obtain the optimal Lagrangian multiplier, which is substituted into the optimal solution expression to obtain the CSI power allocation value with the highest energy efficiency when the channel is idle and the channel is occupied.
  • step 3 includes the following specific steps:
  • Step 3b in the first round of allocation, allocate the M subcarriers with the highest rate to M Internet of Vehicles users;
  • Step 3c) users who obtain a lower rate in the first round of allocation will be allocated a subcarrier with a higher rate in the second round of subcarrier allocation;
  • Step 3d Step 3d), and so on, until all subcarriers are allocated
  • step 5 includes the following specific steps:
  • Step 5a initialize the Lagrangian multipliers
  • the iteration step size ⁇ >0, the error threshold ⁇ 1,2 >0, and the maximum number of iterations L max is given;
  • Step 5b the initial value is substituted into the optimal solution formula to obtain the initial optimal transmit power:
  • Step 5c) update the Lagrangian multiplier until the iteration error of the Lagrange multiplier is less than the preset error threshold, at this time the algorithm converges, and the Lagrangian multiplier is obtained;
  • Step 5d substituting the Lagrangian multiplier into the optimal solution formula to obtain the optimal transmission power of the vehicle user;
  • the present invention has the following beneficial effects:
  • the proposed CSI transmission power allocation scheme can significantly save energy consumption
  • the proposed suboptimal SL resource allocation algorithm achieves better performance than the average power allocation algorithm with lower complexity.
  • FIG. 1 is a flow chart of an implementation of an energy-efficient channel state information transmission method in an NR-V2X network proposed by the present invention.
  • Fig. 2 is a diagram showing the variation of energy efficiency with available transmit power in different spectrum sharing modes.
  • Figure 3 is a diagram showing the variation of system throughput with user rate requirements under different algorithms.
  • Fig. 4 is a graph showing the variation of system throughput with available transmit power under different algorithms.
  • Figure 5 is a graph showing the variation of system throughput with the number of Internet of Vehicles users under different algorithms.
  • Figure 6 is a graph showing the variation of system throughput with the distance between Internet of Vehicles users under different algorithms.
  • the core idea of the present invention is that in NR-V2X, CSI required for Sidelink resource allocation is considered, and in order to reduce CSI transmission overhead, an energy efficiency maximization power allocation scheme using hybrid spectrum access technology is proposed to transmit CSI.
  • Step 1) the Internet of Vehicles users report their respective CSIs to the base station as the basis for the base station to perform Sidelink unified resource allocation, including the following steps:
  • each VU performs energy detection spectrum detection on the shared uplink channel before requesting resource allocation.
  • the time spent in spectrum sensing is T s
  • the time spent in CSI data transmission is T d .
  • T s the time spent in spectrum sensing
  • T d the time spent in CSI data transmission
  • H 0 indicates that the channel is idle
  • H 1 indicates that the channel is busy.
  • the channel is detected as idle and recorded as A channel detected as busy is marked as then detect the probability that the primary user does not exist and the probability of existence can be calculated as:
  • case probability and case probability respectively can be calculated as:
  • Pd and Pf represent the detection probability and false alarm probability respectively
  • Step 1b) by using the hybrid spectrum access technology, the Internet of Vehicles user sends CSI with power P 0 when the channel is detected as idle, and sends CSI with power P 1 when the channel is detected as occupied. Therefore, the average rate can be expressed as:
  • the average energy consumed can be expressed as:
  • R f represents the transmission rate of Internet of Vehicles users in a superframe, and Represent the interference power and noise power, respectively
  • h vb represents the channel gain between the IoV user and the base station
  • P s and P c represent the power consumed by spectrum sensing and the power consumed by the circuit, respectively.
  • the energy efficiency can be expressed as:
  • Step 1c) combined with constraints such as the transmission power of the user transmission end of the Internet of Vehicles, the threshold value of interference power, and the user rate, the CSI transmission system model can be expressed as:
  • h vc represents the channel gain between the cell user and the base station
  • Step 1d) the quasi-concave function is converted into a convex function by fractional programming, and the original problem can be transformed into:
  • step 1f) the sub-gradient algorithm is used to obtain the optimal Lagrangian multiplier, which is substituted into the optimal solution expression to obtain the CSI power allocation value with the highest energy efficiency when the channel is idle and the channel is occupied.
  • Step 2 V2X communication uses network slicing technology to access the 5G network.
  • the channel gain between IoV users as h vv
  • the path loss as PL(d m )
  • d m represents the distance between IOV users.
  • the base station obtains CSI, considering the constraints such as the transmission power of the user's transmission end of the Internet of Vehicles and the user's minimum rate, and maximizing the throughput as the Sidelink resource allocation goal, the system model can be expressed as:
  • Step 3 perform subcarrier allocation based on user fairness and obtain the Sidelink resource allocation model after subcarrier allocation, including the following steps:
  • ⁇ m,n
  • Step 3b in the first round of allocation, allocate the M subcarriers with the highest rate to M Internet of Vehicles users;
  • Step 3c) users who obtain a lower rate in the first round of allocation will be allocated a subcarrier with a higher rate in the second round of subcarrier allocation;
  • Step 3d Step 3d), and so on, until all subcarriers are allocated, and the new Sidelink resource allocation model is obtained as:
  • Step 4 constructing the Lagrange function, according to the KKT condition, obtains an approximate optimal solution, including the following steps:
  • Step 5 use the sub-gradient algorithm to obtain the optimal Lagrangian multiplier, and substitute it into the optimal solution expression to obtain the optimal power allocation value, and finally complete the Sidelink resource allocation, including the following steps:
  • Step 5a initialize the Lagrangian multipliers
  • the iteration step size ⁇ >0, the error threshold ⁇ 1,2 >0, and the maximum number of iterations L max is given;
  • Step 5b substituting the initial value into the optimal solution formula to obtain the initial optimal transmit power
  • Step 5c) update the Lagrangian multiplier until the iteration error of the Lagrangian multiplier is less than the preset error threshold, at this time the algorithm converges, and the optimal Lagrangian multiplier is obtained;
  • step 5d the Lagrangian multiplier is substituted into the optimal solution formula to obtain the optimal transmission power of the vehicle user.
  • FIG. 1 an implementation process of a method for transmitting channel state information with high energy efficiency in an NR-V2X network proposed by the present invention is described.
  • Fig. 6 the relationship between system throughput and distance between IoV users under different algorithms is described. It can be seen that the system throughput decreases with the increase of the distance between IoV users, because the channel fading increases with the increase of the distance. When the distance between users is from 7 to 35m, the system throughput decreases by about 78%. Obviously, the distance between Internet of Vehicle users has a great influence on the proposed algorithm. Our proposed algorithm has a clear advantage over the average algorithm when the Internet of Vehicles users are close.
  • the key to the Sidelink resource allocation method based on energy-efficient channel state information (CSI) transmission is to propose an energy-efficient power allocation scheme using hybrid spectrum access technology to transmit CSI, which reduces system overhead while ensuring system performance .
  • CSI channel state information
  • CSI Channel State Information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种NR-V2X网络中高能效信道状态信息传输方法,主要用于车联网,考虑了模式1下NR-V2X的侧链资源分配,5G基站根据定期报告的信道状态信息调度V2X用户使用的侧链资源。为了减少开销,提出了一种使用混合频谱接入技术的能效最大化功率分配方案来传输CSI。借助已知的CSI,建模SL资源分配问题,旨在根据总可用功率和最小传输速率,最大化NR-V2X网络的总吞吐量。首先平均功率分配快速获得适当的子载波,进而提出了一种替代的优化机制来进行功率分配。仿真表明,所提出的CSI传输功率分配方案可以明显节省能耗,所提出的次优SL资源分配算法以较低的复杂度实现优于平均功率分配算法的性能。

Description

一种NR-V2X网络中高能效信道状态信息传输方法 技术领域
本发明涉及一种车联网技术领域,尤其涉及一种车联网的信息传输方法,更具体地说,涉及一种NR-V2X网络中高能效信道状态信息(Channel State Information,CSI)传输方法。
背景技术
车联网(Vehicle-to-everything,V2X)是物联网(Internet of Things,IoT)在智能交通系统(Intelligent Transportation System,ITS)领域中的典型应用,它指的是基于Intranet,Internet和移动车载网络而形成的无处不在的智能车网络。车联网根据约定的通信协议和数据交互标准共享和交换数据。它通过对行人,路边单位,车辆,网络和云之间的实时感知和协作,实现了智能交通管理和服务,例如改善了道路安全,增强了态势感知并减少了交通拥堵。
如今,有两种全球公认的V2X通信方法,即基于WiFi技术的专用短距离通信(Dedicated Short Range Communications,DSRC)和基于蜂窝技术的蜂窝车联网(C-V2X)。C-V2X的开始只能追溯到2015年,比DSRC晚十多年。但是,由于其覆盖范围广,容量大,服务质量高(Quality ofService,QoS)等优点,它具有广阔的应用前景,发展迅速。尤其是基于5G新空口的V2X(NR-V2X)在支持更高的数据速率、更长的传输范围、更高的可靠性和更低的延迟方面要比DSRC好。
通信量的与日俱增和通信速率需求的大大提升给NR-V2X中的sidelink资源分配带来了挑战。同时,人们对车联网的安全性和延时需求更是增加了sidelink资源分配的难度,尤其是在安全性要求高的场景(例如:自动驾驶)。这些挑战吸引了很多研究者对V2X的资源分配展开研究。有文献提出一种针对车载自组网(Vehicular Ad hoc Networks,VANET)的基于C-V2X技术的新型V2V资源分配方案,通过延迟减少的加权总和来最小化总等待时间,它可以通过适度提高车速来提高延迟性能,但会导致高速车辆的延迟增加;有文献提出一种动态车辆资源匹配算法以最大化活动C-V2X用户的数量,从而减 少了C-V2X用户与VANET用户在未许可频段中的冲突;有文献提出了一种基于中继的高效能功率分配方案。上述所有工作都假设发送端已知完美的CSI,且没有考虑CSI传输过程的资源消耗。因此,本发明提出一种NR-V2X网络中高能效信道状态信息传输方法,以系统吞吐量最大化为优化目标,同时在复杂度和性能之间取得了很好的平衡。
发明内容
针对现有技术存在的上述问题,提出一种NR-V2X网络中高能效信道状态信息传输方法,该方法能在最大化CSI传输能效的情况下,以较低的复杂度实现sidelink通信系统吞吐量最大化。
本发明为解决上述技术问题采用以下技术方案:
在考虑CSI传输能效的情况下,以合理高效的资源分配达到sidelink通信系统吞吐量最大化的目的。为获得基站集中调度Sidelink资源所需要的CSI,车联网用户采用混合频谱接入技术将各自的CSI传输给基站,继而考虑车联网用户发送端传输功率以及用户最低速率等约束条件,确定最大化吞吐量的Sidelink资源分配目标函数,并进行优化求解。其中,为降低CSI传输过程中的功率消耗,考虑车联网用户发送端传输功率、对小区用户的干扰门限以及用户速率等约束条件,确定最大化能量效率的CSI功率分配目标函数,并进行优化求解。Sidelink资源分配问题采用分步式算法,先进行子载波分配,再进行功率分配。子载波分配过程中,基于用户公平性采用总功率平均分配的方法,快速得到子载波分配结果;功率分配部分采用构造拉格朗日函数,根据KKT条件求得最优解表达式,再利用子梯度算法计算出拉格朗日乘子,实现功率分配。完成上述发明通过以下技术方案实现:一种NR-V2X网络中高能效信道状态信息传输方法,包括步骤如下:
步骤1),车联网用户将各自的CSI报告给基站,作为基站进行Sidelink统一资源分配的依据;
步骤2),V2X通信使用网络切片技术接入5G网络,在基站获得CSI情况下,考虑车联网用户发送端传输功率以及用户最低速率等约束条件,确定最大化吞吐量的Sidelink资源分配目标函数;
步骤3),将发射功率平均分配给各个子载波,基于用户公平性进行子 载波分配,并得到子载波分配后的Sidelink资源分配目标函数;
步骤4),构造拉格朗日函数,根据KKT条件,得到最优解表达式;
步骤5),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,优化功率分配值,最终完成Sidelink资源分配;
进一步的,所述步骤1)包括如下具体步骤:
步骤1a),车联网用户采用混合频谱接入技术与5G蜂窝小区用户共享上行链路频谱资源;
步骤1b),考虑车联网用户本地频谱感知错误概率,得出采用混合频谱接入技术时的能量效率表达式;
步骤1c),在车联网用户发送端传输功率、干扰功率的门限值以及用户速率等约束条件下,确定最大化能量效率的CSI传输的功率分配目标函数;
步骤1d),采用分式规划将拟凹问题转换为凸函数,得到新的目标函数;
步骤1e),构造拉格朗日函数,根据KKT条件,得到最优解表达式;
步骤1f),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,得到在信道空闲和信道被占用两种状态时,能效最大的CSI功率分配值。
进一步的,所述步骤3)包括如下具体步骤:
步骤3a),根据每个子载波的功率为P avg=P T·M/N,得出分配给车联网用户m的第n个子载波速率为r m,n=B 0log 2(1+P avgγ m,n);
步骤3b),在第一轮分配中,将速率最高的M个子载波分配给M个车联网用户;
步骤3c),在第一轮分配中获得较低速率的用户,将在第二轮子载波分配中分到速率较高的子载波;
步骤3d),依此类推,直至所有子载波分配完毕;
进一步的,所述步骤5)包括如下具体步骤:
步骤5a),初始化拉格朗日乘子
Figure PCTCN2021105560-appb-000001
迭代步长δ>0,误差阈值θ 1,2>0,并给定最大迭代次数L max
步骤5b),将初始值代入最优解公式,得到初始最优发射功率:
Figure PCTCN2021105560-appb-000002
步骤5c),更新拉格朗日乘子,直到拉格朗日乘子迭代误差小于预设的误差阈值,此时算法收敛,得到拉格朗日乘子;
步骤5d),将拉格朗日乘子代入最优解公式,得到车辆用户最佳发射功率;
本发明采用以上技术方案与现有技术相比,具有以下有益效果:
1.使用混合频谱接入技术的能效最大化功率分配方案来传输CSI;
2.根据总可用功率和最小传输速率,最大化NR-V2X网络的总吞吐量;
3.提出的CSI传输功率分配方案可以明显节省能耗;
4.提出的次优SL资源分配算法以较低的复杂度实现优于平均功率分配算法的性能。
附图说明
图1为本发明提出的一种NR-V2X网络中高能效信道状态信息传输方法的实现流程图。
图2为不同频谱共享模式下能效随可用发射功率的变化图。
图3为不同算法下系统吞吐量随用户速率需求的变化图。
图4为不同算法下系统吞吐量随可用发射功率的变化图。
图5为不同算法下系统吞吐量随车联网用户数量的变化图。
图6为不同算法下系统吞吐量随车联网用户之间距离的变化图。
具体实施方式
本发明的核心思想在于:在NR-V2X中,考虑Sidelink资源分配所需要的CSI,并且为了减少CSI传输开销,提出了一种使用混合频谱接入技术的能效最大化功率分配方案来传输CSI。
下面对本发明做进一步详细描述。
步骤1),车联网用户将各自的CSI报告给基站,作为基站进行Sidelink统一资源分配的依据,包括如下步骤:
步骤1a),每个VU在请求资源分配之前在共享的上行链路信道上执行 能量检测频谱检测。频谱感知花费的时间为T s,CSI数据传输的时间为T d。通常,我们将传感过程建模为二进制假设检验模型,可以表示为:
Figure PCTCN2021105560-appb-000003
其中,H 0表示信道空闲,H 1表示信道忙。考虑本地频谱感知错误,信道被检测为空闲记为
Figure PCTCN2021105560-appb-000004
信道被检测为忙记为
Figure PCTCN2021105560-appb-000005
则检测出主用户不存在的概率
Figure PCTCN2021105560-appb-000006
和存在的概率
Figure PCTCN2021105560-appb-000007
可以计算得:
Figure PCTCN2021105560-appb-000008
Figure PCTCN2021105560-appb-000009
同理,
Figure PCTCN2021105560-appb-000010
情况下的概率
Figure PCTCN2021105560-appb-000011
Figure PCTCN2021105560-appb-000012
情况下的概率
Figure PCTCN2021105560-appb-000013
分别可以计算得:
Figure PCTCN2021105560-appb-000014
Figure PCTCN2021105560-appb-000015
其中,P d和P f分别表示检测概率和误警概率;
步骤1b),通过使用混合频谱接入技术,车联网用户在信道检测为空闲时以功率P 0发送CSI,在信道检测为被占用时以功率P 1发送CSI。因此,平均速率可以表示为:
Figure PCTCN2021105560-appb-000016
消耗的平均能量可以表示为:
Figure PCTCN2021105560-appb-000017
其中,R f表示一个超帧内车联网用户的传输速率,
Figure PCTCN2021105560-appb-000018
Figure PCTCN2021105560-appb-000019
分别表示干扰功率和噪声功率,h vb表示车联网用户与基站之间的信道增益,P s和P c分别表示频谱感知消耗的功率和电路消耗的功率。继而,能量效率可表示为:
Figure PCTCN2021105560-appb-000020
步骤1c),联合车联网用户发送端传输功率、干扰功率的门限值以及用户速率等约束条件,CSI传输系统模型可表示为:
Figure PCTCN2021105560-appb-000021
其中,h vc表示小区用户和基站之间的信道增益;
步骤1d),采用分式规划将拟凹函数转换为凸函数,原问题可转化为:
Figure PCTCN2021105560-appb-000022
步骤1e),拉格朗日函数表示为:
Figure PCTCN2021105560-appb-000023
根据KKT条件,得到最优解为:
Figure PCTCN2021105560-appb-000024
Figure PCTCN2021105560-appb-000025
步骤1f),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,得到在信道空闲和信道被占用两种状态时,能效最大的CSI功率分配值。
步骤2),V2X通信使用网络切片技术接入5G网络,系统包括M个车联网用户,用集合M={1,2,...,M}表示,总的授权带宽B被等分成N个带宽为B 0的子载波,子载波用集合N={1,2,...,N}表示。定义车联网用户之间的信道增益为h vv,路径损耗为PL(d m),d m表示车联网用户之间的距离。在基站获得CSI情况 下,考虑车联网用户发送端传输功率以及用户最低速率等约束条件,以最大化吞吐量为Sidelink资源分配目标,系统模型可表示为:
Figure PCTCN2021105560-appb-000026
步骤3),基于用户公平性进行子载波分配并得到子载波分配后的Sidelink资源分配模型,包括步骤如下:
步骤3a),根据每个子载波的功率为P avg=P T·M/N,得出分配给车联网用户m的第n个子载波速率为
r m,n=B 0log 2(1+P avgγ m,n)                      (15)
其中,γ m,n=|h i| 2/(Γ·n 0·B 0);
步骤3b),在第一轮分配中,将速率最高的M个子载波分配给M个车联网用户;
步骤3c),在第一轮分配中获得较低速率的用户,将在第二轮子载波分配中分到速率较高的子载波;
步骤3d),依此类推,直至所有子载波分配完毕,得到新的Sidelink资源分配模型为:
Figure PCTCN2021105560-appb-000027
步骤4),构造拉格朗日函数,根据KKT条件,得到近似最优解,包括如下步骤:
步骤4a),拉格朗日函数表示为
Figure PCTCN2021105560-appb-000028
步骤4b),根据KKT条件,得到最优解为
Figure PCTCN2021105560-appb-000029
步骤5),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,得到最优功率分配值,最终完成Sidelink资源分配,包括如下步骤:
步骤5a),初始化拉格朗日乘子
Figure PCTCN2021105560-appb-000030
迭代步长δ>0,误差阈值θ 1,2>0,并给定最大迭代次数L max
步骤5b),将初始值代入最优解公式,得到初始最优发射功率;
步骤5c),更新拉格朗日乘子,直到拉格朗日乘子迭代误差小于预设的误差阈值,此时算法收敛,得到最优拉格朗日乘子;
步骤5d),将拉格朗日乘子代入最优解公式,得到车辆用户最佳发射功率。
最后进行仿真,分析并比较结果。我们将系统建模为以基站为中心的城镇蜂窝小区,半径为300m,并且车联网用户均匀分布在该小区中。车联网用户到基站上行链路的多径信道衰落幅度服从独立的瑞利分布,而Sidelink的信道衰落服从莱斯分布。设定路径损耗指数L=3.5,每个Sidelink子载波的带宽为30KHz,P s=0.02W,P c=0.1W。同时,设定车联网用户之间可见与不可见的概率为P(LOS)=min{1,1.05×e (-0.0114×d)},P(NLOS)=1-P(LOS)。
在图1中,描述了本发明提出的一种NR-V2X网络中高能效信道状态信息传输方法的实现流程。
在图2中,描述了不同频谱共享模式下能效和可用发射功率的关系。能效随着可用功率的增加而增加,当P ave的值大于-10dB之后,能效的值基本不变,这是因为系统传输功率阈值越大,原优化问题的关于变量的可行域就越大,能效就越高,但是当传输功率增加到一定值之后,此时约束能效的条件就主要取决于干扰,所以能效会趋于稳定。同时,可以看出当P ave取固定值时,采用混合频谱接入技术所获得的能效最高,即同等条件下,我们提出的 Hybrid模型能效优于传统机会接入模型。
在图3中,描述了不同算法下系统吞吐量和用户速率需求的关系。显然,系统吞吐量随最小速率要求的增加而增加,这是因为VU必须使用更多分配的子信道来满足速率要求。同时还可以观察到,在最小速率要求的约束下,我们的算法的性能优于平均算法。
在图4中,描述了不同算法下系统吞吐量和可用发射功率的关系。显然,因为系统能够给不同的子载波分配更多功率,所以随着功率预算的增加,系统吞吐量也在增大。还可以发现,我们提出的算法比平均算法有更好的性能。
在图5中,描述了不同算法下系统吞吐量和车联网用户数量的关系。可以看出随着车联网用户数量的增加,系统吞吐量呈上升趋势,这是因为车联网用户的增多可以使得系统中的资源得到更加充分的利用。同时,我们还可以观察到我们方案的性能比平均功率分配方案好得多。
在图6中,描述了不同算法下系统吞吐量和车联网用户之间距离的关系。可以看出,系统吞吐量随着车联网用户之间距离的增加而降低,这是因为信道衰落随着距离的增加而增加,当用户之间的距离从7到35m时,系统吞吐量下降约78%。显然,车联网用户之间的距离对所提出的算法有很大的影响。当车联网用户接近时,我们提出的算法比平均算法具有明显的优势。
基于高能效信道状态信息(CSI)传输的Sidelink资源分配方法,关键在于提出了一种使用混合频谱接入技术的能效最大化功率分配方案来传输CSI,在保证系统性能的同时降低了系统总开销。
根据对本发明的说明,本领域的技术人员应该不难看出,本发明的高能效信道状态信息(CSI)传输资源分配算法可以提高系统能效并且能保证系统性能。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种NR-V2X网络中高能效信道状态信息传输方法,其特征在于,包括步骤如下:
    步骤1),车联网用户将各自的CSI报告给基站,作为基站进行Sidelink统一资源分配的依据;
    步骤2),V2X通信使用网络切片技术接入5G网络,在基站获得CSI情况下,考虑车联网用户发送端传输功率以及用户最低速率等约束条件,确定最大化吞吐量的Sidelink资源分配目标函数;
    步骤3),将发射功率平均分配给各个子载波,基于用户公平性进行子载波分配,并得到子载波分配后的Sidelink资源分配目标函数;
    步骤4),构造拉格朗日函数,根据KKT条件,得到最优解表达式;
    步骤5),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,得到最优功率分配值,最终完成Sidelink资源分配;
    其中,所述步骤3)中,基于用户公平性的子载波分配,包括如下具体步骤:
    步骤3a),根据每个子载波的功率为P avg=P T·M/N,得出分配给车联网用户m的第n个子载波速率为r m,n=B 0log 2(1+P avgγ m,n);
    步骤3b),在第一轮分配中,将速率最高的M个子载波分配给M个车联网用户;
    步骤3c),在第一轮分配中获得较低速率的用户,将在第二轮子载波分配中分到速率较高的子载波;
    步骤3d),依此类推,直至所有子载波分配完毕,得到新的Sidelink资源分配模型;
    其中,所述步骤5)包括如下具体步骤:
    步骤5a),初始化拉格朗日乘子
    Figure PCTCN2021105560-appb-100001
    迭代步长δ>0,误差阈值θ 1,2>0,并给定最大迭代次数L max
    步骤5b),将初始值代入最优解公式,得到初始最优发射功率:
    Figure PCTCN2021105560-appb-100002
    步骤5c),更新拉格朗日乘子,直到拉格朗日乘子迭代误差小于预设的误差阈值,此时算法收敛,得到拉格朗日乘子;
    步骤5d),将拉格朗日乘子代入最优解公式,得到车辆用户最佳发射功率。
  2. 根据权利要求1所述的高能效CSI传输,其特征在于,所述步骤1)中,包括如下具体步骤:
    步骤1a),车联网用户采用混合频谱接入技术与5G蜂窝小区用户共享上行链路频谱资源;
    步骤1b),考虑车联网用户本地频谱感知错误概率,得出采用混合频谱接入技术时的能量效率表达式;
    步骤1c),在车联网用户发送端传输功率、干扰功率的门限值以及用户速率等约束条件下,确定最大化能量效率的CSI传输的功率分配目标函数;
    步骤1d),采用分式规划将拟凹函数转换为凸函数,得到新的目标函数;
    步骤1e),构造拉格朗日函数,根据KKT条件,得到最优解表达式;
    步骤1f),采用子梯度算法,获得最优拉格朗日乘子,代入最优解表达式中,得到在信道空闲和信道被占用两种状态时,能效最大的CSI功率分配值。
PCT/CN2021/105560 2021-07-09 2021-07-09 一种nr-v2x网络中高能效信道状态信息传输方法 WO2023279388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105560 WO2023279388A1 (zh) 2021-07-09 2021-07-09 一种nr-v2x网络中高能效信道状态信息传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105560 WO2023279388A1 (zh) 2021-07-09 2021-07-09 一种nr-v2x网络中高能效信道状态信息传输方法

Publications (1)

Publication Number Publication Date
WO2023279388A1 true WO2023279388A1 (zh) 2023-01-12

Family

ID=84800255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105560 WO2023279388A1 (zh) 2021-07-09 2021-07-09 一种nr-v2x网络中高能效信道状态信息传输方法

Country Status (1)

Country Link
WO (1) WO2023279388A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116390054A (zh) * 2023-03-20 2023-07-04 西安电子科技大学 一种v2v多播通信最小-最大译码错误率资源分配方法
CN116684852A (zh) * 2023-07-17 2023-09-01 北京理工大学长三角研究院(嘉兴) 一种山地茂林环境无人机通信资源与定位的联合优化方法
CN116743584A (zh) * 2023-08-09 2023-09-12 山东科技大学 一种基于信息感知及联合计算缓存的动态ran切片方法
CN117241404A (zh) * 2023-11-10 2023-12-15 广汽埃安新能源汽车股份有限公司 一种车联网信道资源分配方法及装置
CN117979430A (zh) * 2024-03-29 2024-05-03 厦门大学 一种基于v2v链路隐私安全的c-v2x系统资源分配方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592327A (zh) * 2016-07-07 2018-01-16 普天信息技术有限公司 一种V2X网络中sidelink的资源分配方法以及装置
CN109348532A (zh) * 2018-10-26 2019-02-15 南京航空航天大学 一种基于不对称中继传输的认知车联网高效联合的资源分配方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592327A (zh) * 2016-07-07 2018-01-16 普天信息技术有限公司 一种V2X网络中sidelink的资源分配方法以及装置
CN109348532A (zh) * 2018-10-26 2019-02-15 南京航空航天大学 一种基于不对称中继传输的认知车联网高效联合的资源分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONG XIAOQIN, MIAO JUANJUAN, LEI LEI, ZHANG TIANCHEN: "Maximum-Throughput Sidelink Resource Allocation for NR-V2X Networks With the Energy-Efficient CSI Transmission", IEEE ACCESS, vol. 8, 1 January 2020 (2020-01-01), pages 73164 - 73172, XP055713516, DOI: 10.1109/ACCESS.2020.2983715 *
XIAOQIN SONG, YAZHU TAN, LI DONG, JIANKANG WANG, JIN HU, TIECHENG SONG: "Resource allocation algorithm with energy efficiency priority based on quasi-Newton interior point method in cognitive internet of vehicles", JOURNAL OF SOUTHEAST UNIVERSITY (NATURAL SCIENCE EDITION ), DONGNAN DAXUE, NANJING, CN, vol. 49, no. 2, 1 March 2019 (2019-03-01), CN , pages 213 - 218, XP093020565, ISSN: 1001-0505 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116390054A (zh) * 2023-03-20 2023-07-04 西安电子科技大学 一种v2v多播通信最小-最大译码错误率资源分配方法
CN116684852A (zh) * 2023-07-17 2023-09-01 北京理工大学长三角研究院(嘉兴) 一种山地茂林环境无人机通信资源与定位的联合优化方法
CN116684852B (zh) * 2023-07-17 2024-03-22 北京理工大学长三角研究院(嘉兴) 一种山地茂林环境无人机通信资源与悬停位置规划方法
CN116743584A (zh) * 2023-08-09 2023-09-12 山东科技大学 一种基于信息感知及联合计算缓存的动态ran切片方法
CN116743584B (zh) * 2023-08-09 2023-10-27 山东科技大学 一种基于信息感知及联合计算缓存的动态ran切片方法
CN117241404A (zh) * 2023-11-10 2023-12-15 广汽埃安新能源汽车股份有限公司 一种车联网信道资源分配方法及装置
CN117241404B (zh) * 2023-11-10 2024-02-23 广汽埃安新能源汽车股份有限公司 一种车联网信道资源分配方法及装置
CN117979430A (zh) * 2024-03-29 2024-05-03 厦门大学 一种基于v2v链路隐私安全的c-v2x系统资源分配方法

Similar Documents

Publication Publication Date Title
WO2023279388A1 (zh) 一种nr-v2x网络中高能效信道状态信息传输方法
Afaqui et al. IEEE 802.11 ax: Challenges and requirements for future high efficiency WiFi
CN109788475B (zh) 无线通信方法、系统和计算机程序产品
Zhou et al. TV white space enabled connected vehicle networks: Challenges and solutions
Karoui et al. Performance comparison between LTE-V2X and ITS-G5 under realistic urban scenarios
Dibaei et al. Full-duplex medium access control protocols in wireless networks: A survey
CA2767413A1 (en) Power management method for station in wireless lan system and station that supports same
CN107071855A (zh) 基于半双工通信的安全告警信息中继方法
CN111629352B (zh) 一种5G蜂窝网中基于Underlay模式的V2X资源分配方法
CN106211302A (zh) 非正交多址接入异构融合网络资源分配方法
US20130089046A1 (en) Method and apparatus for distributed scheduling for enhancing link performance in wireless communication system
Ahmed et al. An IEEE 802.11 ah-based scalable network architecture for Internet of Things
Khan et al. Backscatter-aided NOMA V2X communication under channel estimation errors
CN104618934B (zh) 一种基于吞吐量预测的整体优化中继节点选择方法
Al-Wesabi et al. A joint algorithm for resource allocation in d2d 5g wireless networks
Chen et al. Spectrum resource management and access mode selection in D2D-enabled vehicular networks
CN108271266B (zh) 一种用于noma-d2d混合系统的下行用户资源分配方法
CN108282762B (zh) Lte-a网络大规模m2m通信上行数据传输方法
Liang et al. Evaluation and optimization of decentralized congestion control algorithms for vehicular networks
Yue et al. Integrating LTE-D2D and VLC techniques to support V2V communication
Zhang et al. A TDMA-based hybrid transmission MAC protocol for heterogeneous vehicular network
Shuang et al. Study on V2V clustering algorithm in heterogeneous network based on VANET and LTE-V2X
Kamruzzaman et al. Energy efficient cognitive radio MAC protocol for battlefield communications
Chen et al. A QoS enhancement scheme through joint control of clear channel assessment threshold and contending window for IEEE 802.11 e broadcasting
Kang et al. Adaptive yielding scheme for link scheduling in OFDM-based synchronous device-to-device (D2D) communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948882

Country of ref document: EP

Kind code of ref document: A1