WO2023279377A1 - Power supply circuit, driver and controlling method - Google Patents

Power supply circuit, driver and controlling method Download PDF

Info

Publication number
WO2023279377A1
WO2023279377A1 PCT/CN2021/105502 CN2021105502W WO2023279377A1 WO 2023279377 A1 WO2023279377 A1 WO 2023279377A1 CN 2021105502 W CN2021105502 W CN 2021105502W WO 2023279377 A1 WO2023279377 A1 WO 2023279377A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power supply
supply circuit
network
output
Prior art date
Application number
PCT/CN2021/105502
Other languages
French (fr)
Inventor
Xinhai Li
Jialiang YAN
Zongjie WU
Original Assignee
Tridonic Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Gmbh & Co Kg filed Critical Tridonic Gmbh & Co Kg
Priority to GB2318956.6A priority Critical patent/GB2622508A/en
Priority to PCT/CN2021/105502 priority patent/WO2023279377A1/en
Publication of WO2023279377A1 publication Critical patent/WO2023279377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output

Definitions

  • Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a power supply circuit, a driver and a controlling method.
  • DALI digital addressable lighting interface
  • DALI system is an intelligent lighting control system, not only can be used for lighting control in a room, but also can be connected with the building management system (BMS) .
  • BMS building management system
  • the most important feature of the DALI system is that each lighting device has an independent address, and the lighting device can be accurately dimmed through the DALI system.
  • the lighting device is LED (Light Emitting Diode) for example.
  • DALI circuit provides DALI communication bus, which may include data bus and power bus. Lighting devices and peripheral devices can be connected to the communication bus.
  • a power circuit with LLC platform includes a switch network, a resonant tank with an inductor and a capacitor, and a transformer. LLC platform may achieve high efficiency when working near a resonant point, however, output range may be narrow.
  • embodiments of the present disclosure provide a power supply circuit, a driver and a controlling method.
  • the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
  • a power supply circuit includes: 1.
  • a power supply circuit including:
  • a first switch network configured to be connected between a first input port and a second input port, the first switch network including a first switch (Q1) and a second switch (Q2) in series connection;
  • a second switch network configured to be connected between the first input port and the second input port, the second switch network including a third switch (Q3) and a fourth switch (Q4) in series connection;
  • a resonant circuit configured to include a first capacitor (C1) and a first inductor (L1) in series connection, the first capacitor (C1) being connected to a connecting node between the first switch (Q1) and the second switch (Q2) ;
  • a transformer configured to include a primary coil and a secondary coil, the primary coil being connected between the first inductor (L1) and a connecting node between the third switch (Q3) and the fourth switch (Q4) ;
  • an output circuit configured to be connected to the secondary coil, and output an output voltage from an output port
  • a first controller configured to control the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
  • the first controller controls the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
  • the first controller controls the third switch and the fourth switch to be periodically on and off.
  • a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
  • a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
  • the second switch (Q2) when the first switch (Q1) is on, the second switch (Q2) is off.
  • the power supply circuit further includes:
  • a voltage sensing circuit configured to be connected between the output port and the first controller, the voltage sensing circuit senses the output voltage and send the sensing result to the first controller.
  • a driver used for driving a lighting device, the driver includes the power supply circuit according to the first aspect of the embodiments and a control circuit, the power supply circuit providing power to the lighting device,
  • control circuit communicates with the power supply circuit
  • control circuit communicates with a peripheral device.
  • a controlling method of a power supply circuit including:
  • the first controller controlling the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
  • the controlling includes:
  • the first controller controls the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
  • the controlling includes:
  • the first controller controls the third switch and the fourth switch to be periodically on and off.
  • a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
  • a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
  • the second switch (Q2) when the first switch (Q1) is on, the second switch (Q2) is off.
  • controlling method further includes:
  • a controller of the power supply circuit controls the first switch network and the second witch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage, therefore, the output range of the power supply circuit is wider.
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 2 is a diagram of CS1 to CS4 when the output voltage is lower than Vswitch
  • Fig. 3 is a diagram of CS1 to CS4 when the output voltage is equal or higher than Vswitch
  • Fig. 4 shows a flowchart of a controlling method of the power supply circuit 10
  • Fig. 5 is a diagram of the diver.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a power supply circuit is provided in a first embodiment.
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure.
  • a power supply circuit 10 includes a first switch network 11, a second switch network 12, a resonant circuit 13, a transformer T1, an output circuit 15 and a first controller 16.
  • the first switch network 11 is connected between a first input port A1 and a second input port A2.
  • the first switch network 11 includes a first switch Q1 and a second switch Q2 in series connection.
  • the first switch Q1 and the second switch Q2 are NMOS FET, a source of the first switch Q1 is connected to the first input port A1, a drain of the second switch Q2 is connected to the second input port A2, a drain of the first switch Q1 is connected to a source of the second switch Q2.
  • a connecting node A3 connects the first switch Q1 and the second switch Q2.
  • the first input port A1 may be applied with a DC voltage V1
  • the second input port A2 may be applied with a ground voltage.
  • the second switch network 12 is connected between the first input port A1 and the second input port A2.
  • the second switch network 12 includes a third switch Q3 and a fourth switch Q4 in series connection.
  • the third switch Q3 and the fourth switch Q4 are NMOS FET, a source of the third switch Q3 is connected to the first input port A1, a drain of the fourth switch Q4 is connected to the second input port A2, a drain of the third switch Q3 is connected to a source of the fourth switch Q4.
  • a connecting node A4 connects the third switch Q3 and the fourth switch Q4.
  • the resonant circuit 13 includes a first capacitor C1 and a first inductor L1 in series connection.
  • the first capacitor C1 is connected to the connecting node A3 between the first switch Q1 and the second switch Q2.
  • the transformer T1 includes a primary coil P1 and a secondary coil S.
  • the primary coil P1 is connected between the first inductor L1 and the connecting node A4 between the third switch Q3 and the fourth switch Q4.
  • the secondary coil S includes coil S1 and coil S2 in serial connection. A connecting node A5 between coil S1 and coil S2 is applied with ground voltage.
  • the output circuit 15 is connected to the secondary coil S, and output an output voltage from an output port B1.
  • the output circuit 15 includes a first diode D1, a second diode D2 and a second capacitor C2.
  • An anode of the first diode D1 is connected to the coil S1, a cathode of the first D1 is connected to the output port B1.
  • An anode of the second diode D2 is connected to the coil S2, a cathode of the second D2 is connected to the output port B1.
  • the second capacitor C2 is connected between the output port B1 and a ground port.
  • the first controller 16 controls the first switch network 11 and the second switch network 12 to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
  • the power supply circuit can switch between the half-bridge mode and the full-bridge mode, thus to achieve a wider output range with low cost.
  • a first controlling signal CS1 may be outputted to a gate of the first switch Q1
  • a second controlling signal CS2 may be outputted to a gate of the second switch Q2
  • a third controlling signal CS3 may be outputted to a gate of the third switch Q3
  • a fourth controlling signal CS4 may be outputted to a gate of the fourth switch Q4.
  • signals outputted from ports PWM1, PWM2, PWM3 and PWM4 are sent to a convertor 17, which generates and output CS1, CS2, CS3 and CS4 accordingly.
  • the first controller 16 controls the third switch Q3 to keep off, and the fourth switch Q4 to keep on, so as to control the first switch network 11 and the second witch network 12 to work under the half-bridge mode.
  • Q1, Q2, C1, L1 and T1 shown in Fig. 1 constitutes the half-bridge configuration.
  • Fig. 2 is a diagram of CS1 to CS4 when the output voltage is lower than Vswitch.
  • the horizontal axis represents voltage of the controlling signal
  • the vertical axis represents time.
  • the CS3 when the output voltage is lower than Vswitch, the CS3 is in a low level, for example, CS3 is 0V, so that the third switch Q3 keeps off.
  • the CS4 is in a high level, for example, CS4 is 10V, so that the fourth switch Q4 keeps on.
  • the CS1 and CS2 are reverse signals, for example, when CS1 is in a high level (e.g. 10V) , the CS2 is in a low level (e.g. 0V) , so that when the first switch Q1 is on, the second switch Q2 is off.
  • a high level e.g. 10V
  • a low level e.g. 0V
  • the first switch network 11 and the second witch network 12 work under the half-bridge mode.
  • the first controller 16 controls the third switch Q3 and the fourth switch Q4 to be periodically on and off, so that the first switch network 11 and the second witch network 12 work under the full-bridge mode.
  • Q1, Q2, Q3, Q4, C1, L1 and T1 shown in Fig. 1 constitutes the full-bridge configuration.
  • Fig. 3 is a diagram of CS1 to CS4 when the output voltage is equal or higher than Vswitch.
  • the horizontal axis represents voltage of the controlling signal
  • the vertical axis represents time.
  • the third switch Q3 and the fourth switch Q4 are controlled to be periodically on and off.
  • the CS3 is the same as the CS1
  • the CS4 is the same as the CS2.
  • the power supply circuit 10 further includes a voltage sensing circuit 18.
  • the voltage sensing circuit 18 is connected between the output port B1 and the first controller 16.
  • the voltage sensing circuit 18 includes: resistors R1, R2, R3, R4 and R5, a third capacitor C3, a second controller 181, optical coupler 182.
  • the first controller 16 and the second controller may be MCU.
  • An ADC port of the second controller 181 is connected to a connecting node between R1 and R2.
  • R3 and R4 are serially connected between an output port of the second controller 181 and the ground port.
  • R5 is connected between a VDD port and a Vdetection port of the first controller 16.
  • the voltage sensing circuit 18 can sense the output voltage of the output port B1, and send the sensing result to the first controller 16.
  • the first controller 16 can compare the sensing result with Vswitch, and output signals from PWM1 ⁇ PWM4 according to the comparing result.
  • the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
  • a controlling method of a power supply circuit is provided in the first aspect of embodiments.
  • the same contents as those in the first aspect of embodiments are omitted.
  • Fig. 4 shows a flowchart of a controlling method of the power supply circuit 10.
  • the method 40 includes:
  • Block 41 the voltage sensing circuit 18 detects output voltage of the power supply circuit 10.
  • Block 42 the first controller 16 judges whether the output voltage is lower than Vswitch.
  • Block 43 when the first controller 16 determines the output voltage is lower than Vswitch, controls Q3 to keep off, and Q4 to keep on, so as to form the half-bridge configuration.
  • Block 44 when the first controller 16 determines the output voltage is equal or higher than Vswitch, controls Q3 and Q4 to be periodically on and off, so as to form the full-bridge configuration.
  • the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
  • a driver is provided in the third aspect of embodiments.
  • Fig. 5 is a diagram of the diver. As shown in Fig, 5, the driver 50 includes:
  • an EMI filter 51 which filter the Electromagnetic Interference
  • a boost PFC circuit 52 which convert the input AC power into DC power
  • a DC-DC convertor 53 which uses a LLC platform to convert the DC voltage of the boost PFC circuit 52 into an output voltage, the output voltage is used to drive a lighting device, for example, the lighting device is LED;
  • a controller 54 controls the DC-DC convertor 53;
  • a control circuit 55 communicates with the controller 54.
  • the control circuit 54 communicate with a peripheral device via an interface.
  • the peripheral devices may be dimmers, sensors, controllers, security device, etc.
  • the interface maybe DALI (Digital Addressable Lighting Interface) .
  • the controller 54 corresponds to the first controller 16 and the second controller 181 in Fig. 1.
  • the DC-DC convertor 53 corresponds to the first switch network 11, the second switch network 12, the resonant circuit 13, the transformer T1 and the output circuit 15.
  • the driver 50 may supply direct current (DC) power to the lighting device.
  • the driver 50 may be an LED driver, the lighting device may be an LED device.
  • An output power, output voltage or output current of the lighting device may be changed from a minimum to maximum value according to dimming signal, e.g. 1-10V, which is received via DALI (Digital Addressable Lighting Interface) , NFC (Near Field Communication) , Bluetooth etc..
  • dimming signal e.g. 1-10V
  • DALI Digital Addressable Lighting Interface
  • NFC Near Field Communication
  • Bluetooth Bluetooth
  • the DC-DC-converter supplying the lighting device will change its output parameters (current and/or voltage) depending on the dimming signal.

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power supply circuit, a driver and a controlling method. The power supply circuit includes: a first switch network, configured to be connected between a first input port and a second input port, the first switch network comprising a first switch (Q1) and a second switch (Q2) in series connection; a second switch network, configured to be connected between the first input port and the second input port, the second switch network comprising a third switch (Q3) and a fourth switch (Q4) in series connection; a resonant circuit, configured to comprise a first capacitor (C1) and a first inductor (L1) in series connection, the first capacitor (C1) being connected to a connecting node between the first switch (Q1) and the second switch (Q2); a transformer, configured to comprise a primary coil and a secondary coil, the primary coil being connected between the first inductor (L1) and a connecting node between the third switch (Q3) and the fourth switch (Q4); an output circuit, configured to be connected to the secondary coil, and output an output voltage from an output port; and a controller, configured to control the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.

Description

POWER SUPPLY CIRCUIT, DRIVER AND CONTROLLING METHOD TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a power supply circuit, a driver and a controlling method.
BACKGROUND
This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
DALI (digital addressable lighting interface) is a data transmission protocol that defines a digital communication method between lighting devices and controllers. DALI system is an intelligent lighting control system, not only can be used for lighting control in a room, but also can be connected with the building management system (BMS) . The most important feature of the DALI system is that each lighting device has an independent address, and the lighting device can be accurately dimmed through the DALI system. The lighting device is LED (Light Emitting Diode) for example.
DALI circuit provides DALI communication bus, which may include data bus and power bus. Lighting devices and peripheral devices can be connected to the communication bus.
A power circuit with LLC platform includes a switch network, a resonant tank with an inductor and a capacitor, and a transformer. LLC platform may achieve high efficiency when working near a resonant point, however, output range may be narrow.
SUMMARY
The inventor found that: to achieve wide output range, existing solution introduce transformers and output diodes to LLC platform, therefore, cost of the existing solution is high.
In general, embodiments of the present disclosure provide a power supply circuit, a driver and a controlling method. In the embodiments, the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
In a first aspect, there is provided a power supply circuit, includes: 1. A power supply circuit, including:
a first switch network, configured to be connected between a first input port and a second input port, the first switch network including a first switch (Q1) and a second switch (Q2) in series connection;
a second switch network, configured to be connected between the first input port and the second input port, the second switch network including a third switch (Q3) and a fourth switch (Q4) in series connection;
a resonant circuit, configured to include a first capacitor (C1) and a first inductor (L1) in series connection, the first capacitor (C1) being connected to a connecting node between the first switch (Q1) and the second switch (Q2) ;
a transformer, configured to include a primary coil and a secondary coil, the primary coil being connected between the first inductor (L1) and a connecting node between the third switch (Q3) and the fourth switch (Q4) ;
an output circuit, configured to be connected to the secondary coil, and output an output voltage from an output port; and
a first controller, configured to control the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
According to one embodiment, when the output voltage is lower than a threshold, the first controller controls the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
According to one embodiment, when the output voltage is equal or higher than a threshold, the first controller controls the third switch and the fourth switch to be periodically on and off.
According to one embodiment, a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
According to one embodiment, when the first switch (Q1) is on, the second switch (Q2) is off.
According to one embodiment, the power supply circuit further includes:
a voltage sensing circuit, configured to be connected between the output port and the first controller, the voltage sensing circuit senses the output voltage and send the sensing result to the first controller.
In a second aspect, there is provided a driver, used for driving a lighting device, the driver includes the power supply circuit according to the first aspect of the embodiments and a control circuit, the power supply circuit providing power to the lighting device,
the control circuit communicates with the power supply circuit,
the control circuit communicates with a peripheral device.
In a third aspect, there is provided a controlling method of a power supply circuit according to the first aspect of the embodiments, the controlling method including:
the first controller controlling the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
According to one embodiment, the controlling includes:
when the output voltage is lower than a threshold, the first controller controls  the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
According to one embodiment, the controlling includes:
when the output voltage is equal or higher than a threshold, the first controller controls the third switch and the fourth switch to be periodically on and off.
According to one embodiment, a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
According to one embodiment, when the first switch (Q1) is on, the second switch (Q2) is off.
According to one embodiment, the controlling method further includes:
sensing the output voltage and sending the sensing result to the first controller.
According to various embodiments of the present disclosure, a controller of the power supply circuit controls the first switch network and the second witch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage, therefore, the output range of the power supply circuit is wider.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment  of the present disclosure;
Fig. 2 is a diagram of CS1 to CS4 when the output voltage is lower than Vswitch
Fig. 3 is a diagram of CS1 to CS4 when the output voltage is equal or higher than Vswitch
Fig. 4 shows a flowchart of a controlling method of the power supply circuit 10
Fig. 5 is a diagram of the diver.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
First aspect of embodiments
A power supply circuit is provided in a first embodiment.
Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure.
As shown in Fig. 1, a power supply circuit 10 includes a first switch network 11, a second switch network 12, a resonant circuit 13, a transformer T1, an output circuit 15 and a first controller 16.
The first switch network 11 is connected between a first input port A1 and a second input port A2. The first switch network 11 includes a first switch Q1 and a second switch Q2 in series connection. For example, the first switch Q1 and the second switch Q2 are NMOS FET, a source of the first switch Q1 is connected to the first input port A1, a drain of the second switch Q2 is connected to the second input port A2, a drain of the first switch Q1 is connected to a source of the second switch Q2. A connecting node A3 connects the first switch Q1 and the second switch Q2. The first input port A1 may be applied with a DC voltage V1, and the second input port A2 may be applied with a ground voltage.
The second switch network 12 is connected between the first input port A1 and the second input port A2. The second switch network 12 includes a third switch Q3 and a fourth switch Q4 in series connection. For example, the third switch Q3 and the fourth switch Q4 are NMOS FET, a source of the third switch Q3 is connected to the first input port A1, a drain of the fourth switch Q4 is connected to the second input port A2, a drain of the third switch Q3 is connected to a source of the fourth switch Q4. A connecting node A4 connects the third switch Q3 and the fourth switch Q4.
The resonant circuit 13 includes a first capacitor C1 and a first inductor L1 in series connection. The first capacitor C1 is connected to the connecting node A3 between the first switch Q1 and the second switch Q2.
The transformer T1 includes a primary coil P1 and a secondary coil S. The primary coil P1 is connected between the first inductor L1 and the connecting node A4 between the third switch Q3 and the fourth switch Q4. The secondary coil S includes coil S1 and coil S2 in serial connection. A connecting node A5 between coil S1 and coil S2 is applied with ground voltage.
The output circuit 15 is connected to the secondary coil S, and output an output voltage from an output port B1. As shown in Fig. 1, the output circuit 15 includes a first diode D1, a second diode D2 and a second capacitor C2. An anode of the first diode D1 is connected to the coil S1, a cathode of the first D1 is connected to the output port B1. An anode of the second diode D2 is connected to the coil S2, a cathode of the second D2 is connected to the output port B1. The second capacitor C2 is connected between the output port B1 and a ground port.
The first controller 16 controls the first switch network 11 and the second switch network 12 to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
According to the first aspect of the embodiments, the power supply circuit can switch between the half-bridge mode and the full-bridge mode, thus to achieve a wider output range with low cost.
In at least one embodiment, a first controlling signal CS1 may be outputted to a gate of the first switch Q1, a second controlling signal CS2 may be outputted to a gate of the second switch Q2, a third controlling signal CS3 may be outputted to a gate of the third switch Q3 and a fourth controlling signal CS4 may be outputted to a gate of the fourth switch Q4. As shown in Fig. 1, signals outputted from ports PWM1, PWM2, PWM3 and PWM4 are sent to a convertor 17, which generates and output CS1, CS2, CS3 and CS4 accordingly.
When the output voltage is lower than a threshold Vswitch, the first controller 16 controls the third switch Q3 to keep off, and the fourth switch Q4 to keep on, so as to control the first switch network 11 and the second witch network 12 to work under the half-bridge mode. For example, Q1, Q2, C1, L1 and T1 shown in Fig. 1 constitutes the half-bridge configuration.
Fig. 2 is a diagram of CS1 to CS4 when the output voltage is lower than Vswitch. In Fig. 2, the horizontal axis represents voltage of the controlling signal, the vertical axis represents time. As shown in Fig. 2, when the output voltage is lower than Vswitch, the CS3 is in a low level, for example, CS3 is 0V, so that the third switch Q3  keeps off. The CS4 is in a high level, for example, CS4 is 10V, so that the fourth switch Q4 keeps on.
The CS1 and CS2 are reverse signals, for example, when CS1 is in a high level (e.g. 10V) , the CS2 is in a low level (e.g. 0V) , so that when the first switch Q1 is on, the second switch Q2 is off.
As shown in Fig. 2, the first switch network 11 and the second witch network 12 work under the half-bridge mode.
In at least one embodiment, when the output voltage is equal or higher than the threshold V switch, the first controller 16 controls the third switch Q3 and the fourth switch Q4 to be periodically on and off, so that the first switch network 11 and the second witch network 12 work under the full-bridge mode. For example, Q1, Q2, Q3, Q4, C1, L1 and T1 shown in Fig. 1 constitutes the full-bridge configuration.
Fig. 3 is a diagram of CS1 to CS4 when the output voltage is equal or higher than Vswitch. In Fig. 3, the horizontal axis represents voltage of the controlling signal, the vertical axis represents time.
As shown in Fig. 3, when the output voltage is equal or higher than Vswitch, the third switch Q3 and the fourth switch Q4 are controlled to be periodically on and off. For example, the CS3 is the same as the CS1, the CS4 is the same as the CS2.
As shown in Fig. 1, the power supply circuit 10 further includes a voltage sensing circuit 18. The voltage sensing circuit 18 is connected between the output port B1 and the first controller 16.
The voltage sensing circuit 18 includes: resistors R1, R2, R3, R4 and R5, a third capacitor C3, a second controller 181, optical coupler 182. The first controller 16 and the second controller may be MCU. An ADC port of the second controller 181 is connected to a connecting node between R1 and R2. R3 and R4 are serially connected between an output port of the second controller 181 and the ground port. R5 is connected between a VDD port and a Vdetection port of the first controller 16.
The voltage sensing circuit 18 can sense the output voltage of the output port B1,  and send the sensing result to the first controller 16. The first controller 16 can compare the sensing result with Vswitch, and output signals from PWM1~PWM4 according to the comparing result.
According to the first aspect of embodiments, the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
Second aspect of embodiments
A controlling method of a power supply circuit. The power supply circuit is provided in the first aspect of embodiments. The same contents as those in the first aspect of embodiments are omitted.
Fig. 4 shows a flowchart of a controlling method of the power supply circuit 10.
As shown in Fig. 4, the method 40 includes:
Block 41: the voltage sensing circuit 18 detects output voltage of the power supply circuit 10.
Block 42: the first controller 16 judges whether the output voltage is lower than Vswitch.
Block 43: when the first controller 16 determines the output voltage is lower than Vswitch, controls Q3 to keep off, and Q4 to keep on, so as to form the half-bridge configuration.
Block 44: when the first controller 16 determines the output voltage is equal or higher than Vswitch, controls Q3 and Q4 to be periodically on and off, so as to form the full-bridge configuration.
According to the second aspect of embodiments, the power supply circuit can switch between a half-bridge mode and a full-bridge mode, thus to achieve a wider output range with low cost.
Third aspect of embodiments
A driver is provided in the third aspect of embodiments.
Fig. 5 is a diagram of the diver. As shown in Fig, 5, the driver 50 includes:
an EMI filter 51, which filter the Electromagnetic Interference;
boost PFC circuit 52, which convert the input AC power into DC power;
a DC-DC convertor 53, which uses a LLC platform to convert the DC voltage of the boost PFC circuit 52 into an output voltage, the output voltage is used to drive a lighting device, for example, the lighting device is LED;
controller 54 controls the DC-DC convertor 53; and
control circuit 55 communicates with the controller 54. The control circuit 54 communicate with a peripheral device via an interface. For example, the peripheral devices may be dimmers, sensors, controllers, security device, etc. The interface maybe DALI (Digital Addressable Lighting Interface) .
In the driver 50, the controller 54 corresponds to the first controller 16 and the second controller 181 in Fig. 1. The DC-DC convertor 53 corresponds to the first switch network 11, the second switch network 12, the resonant circuit 13, the transformer T1 and the output circuit 15.
The driver 50 may supply direct current (DC) power to the lighting device. The driver 50 may be an LED driver, the lighting device may be an LED device.
An output power, output voltage or output current of the lighting device may be changed from a minimum to maximum value according to dimming signal, e.g. 1-10V, which is received via DALI (Digital Addressable Lighting Interface) , NFC (Near Field Communication) , Bluetooth etc.. Preferably the DC-DC-converter supplying the lighting device will change its output parameters (current and/or voltage) depending on the dimming signal.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (13)

  1. A power supply circuit, comprising:
    a first switch network, configured to be connected between a first input port and a second input port, the first switch network comprising a first switch (Q1) and a second switch (Q2) in series connection;
    a second switch network, configured to be connected between the first input port and the second input port, the second switch network comprising a third switch (Q3) and a fourth switch (Q4) in series connection;
    a resonant circuit, configured to comprise a first capacitor (C1) and a first inductor (L1) in series connection, the first capacitor (C1) being connected to a connecting node between the first switch (Q1) and the second switch (Q2) ;
    a transformer, configured to comprise a primary coil and a secondary coil, the primary coil being connected between the first inductor (L1) and a connecting node between the third switch (Q3) and the fourth switch (Q4) ;
    an output circuit, configured to be connected to the secondary coil, and output an output voltage from an output port; and
    a first controller, configured to control the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
  2. The power supply circuit according to claim 1, wherein,
    when the output voltage is lower than a threshold, the first controller controls the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
  3. The power supply circuit according to claim 1, wherein,
    when the output voltage is equal or higher than a threshold, the first controller controls the third switch and the fourth switch to be periodically on and off.
  4. The power supply circuit according to claim 3, wherein,
    a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
    a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
  5. The power supply circuit according to claim 4, wherein,
    when the first switch (Q1) is on, the second switch (Q2) is off.
  6. The power supply circuit according to claim 1, wherein,
    the power supply circuit further comprises:
    a voltage sensing circuit, configured to be connected between the output port and the first controller, the voltage sensing circuit senses the output voltage and send the sensing result to the first controller.
  7. A driver, used for driving a lighting device, the driver comprises the power supply circuit according to any one of claims 1-6 and a control circuit, wherein,
    the power supply circuit providing power to the lighting device,
    the control circuit communicates with the power supply circuit,
    the control circuit communicates with a peripheral device.
  8. A controlling method of a power supply circuit, the power supply circuit comprising:
    a first switch network, configured to be connected between a first input port and a second input port, the first switch network comprising a first switch (Q1) and a second switch (Q2) in series connection;
    a second switch network, configured to be connected between the first input port and the second input port, the second switch network comprising a third switch (Q3) and a fourth switch (Q4) in series connection;
    a resonant circuit, configured to comprise a first capacitor (C1) and a first inductor (L1) in series connection, the first capacitor (C1) being connected to a connecting node between the first switch (Q1) and the second switch (Q2) ;
    a transformer, configured to comprise a primary coil and a secondary coil, the primary coil being connected between the first inductor (L1) and a connecting node between the third switch (Q3) and the fourth switch (Q4) ;
    an output circuit, configured to be connected to the secondary coil, and output an output voltage from an output port; and
    a first controller,
    the controlling method comprising:
    the first controller controlling the first switch network and the second switch network to work under a full-bridge mode or a half-bridge mode, according to the output voltage.
  9. The controlling method of the power supply circuit according to claim 8, wherein,
    the controlling comprises:
    when the output voltage is lower than a threshold, the first controller controls the third switch to keep off, and the fourth switch to keep on, so as to control the first switch network and the second witch network to work under the half-bridge mode.
  10. The controlling method of the power supply circuit according to claim 8, wherein,
    the controlling comprises:
    when the output voltage is equal or higher than a threshold, the first controller controls the third switch and the fourth switch to be periodically on and off.
  11. The controlling method of the power supply circuit according to claim 10, wherein,
    a first controlling signal sent to the first switch (Q1) is the same as a fourth controlling signal sent to the fourth switch (Q4) ,
    a second controlling signal sent to the second switch (Q2) is the same as a third controlling signal sent to the third switch (Q3) .
  12. The controlling method of the power supply circuit according to claim 11, wherein,
    when the first switch (Q1) is on, the second switch (Q2) is off.
  13. The controlling method of the power supply circuit according to claim 8, wherein,
    the controlling method further comprises:
    sensing the output voltage and sending the sensing result to the first controller.
PCT/CN2021/105502 2021-07-09 2021-07-09 Power supply circuit, driver and controlling method WO2023279377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2318956.6A GB2622508A (en) 2021-07-09 2021-07-09 Power supply circuit, driver and controlling method
PCT/CN2021/105502 WO2023279377A1 (en) 2021-07-09 2021-07-09 Power supply circuit, driver and controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105502 WO2023279377A1 (en) 2021-07-09 2021-07-09 Power supply circuit, driver and controlling method

Publications (1)

Publication Number Publication Date
WO2023279377A1 true WO2023279377A1 (en) 2023-01-12

Family

ID=84800269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105502 WO2023279377A1 (en) 2021-07-09 2021-07-09 Power supply circuit, driver and controlling method

Country Status (2)

Country Link
GB (1) GB2622508A (en)
WO (1) WO2023279377A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084802A1 (en) * 2012-09-24 2014-03-27 Exscitron Gmbh Current source having an improved dimming device
WO2016177189A1 (en) * 2015-08-31 2016-11-10 中兴通讯股份有限公司 Synchronous rectification drive circuit used in llc resonant converter
US20170317524A1 (en) * 2015-01-19 2017-11-02 Jageson Electronic Technology (ShenZhen) Co.Ltd. Digitalized double-excitation uninterrupted switching power supply
US10833594B2 (en) * 2017-05-19 2020-11-10 Infineon Technologies Austria Ag System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding
US20210194377A1 (en) * 2019-12-20 2021-06-24 Silergy Semiconductor Technology (Hangzhou) Ltd Switching power circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505345C2 (en) * 2008-07-04 2014-01-27 Дзе Саут Эфрикен Нюклеа Энерджи Корпорейшн Лимитед Method of extraction of gas component from mix of gaseous compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084802A1 (en) * 2012-09-24 2014-03-27 Exscitron Gmbh Current source having an improved dimming device
US20170317524A1 (en) * 2015-01-19 2017-11-02 Jageson Electronic Technology (ShenZhen) Co.Ltd. Digitalized double-excitation uninterrupted switching power supply
WO2016177189A1 (en) * 2015-08-31 2016-11-10 中兴通讯股份有限公司 Synchronous rectification drive circuit used in llc resonant converter
US10833594B2 (en) * 2017-05-19 2020-11-10 Infineon Technologies Austria Ag System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding
US20210194377A1 (en) * 2019-12-20 2021-06-24 Silergy Semiconductor Technology (Hangzhou) Ltd Switching power circuit

Also Published As

Publication number Publication date
GB202318956D0 (en) 2024-01-24
GB2622508A (en) 2024-03-20

Similar Documents

Publication Publication Date Title
CN105101533B (en) For controlling one or more light emitting diodes (LED) method, equipment and circuit
US10143064B2 (en) Modular LED lighting system having emergency light function
CN102458014B (en) Light source control method, device and system
US9648677B2 (en) LED driving circuit and method using single inductor
CN102098853A (en) Light emitting element driving system, driving control circuit and driving method
US10051704B2 (en) LED dimmer circuit and method
US9615415B2 (en) LED driving circuit and method using single inductor
CN106793243A (en) 0~10V LED dim signals change-over circuits and LED power light adjusting circuit
US11602020B2 (en) Dimming signal generation circuit, dimming signal generation method and LED driver
CN102939795A (en) Dimmable offline led driver
US20230380028A1 (en) Light dimming system
CA3139244A1 (en) Driving circuit for led lamp, led lamp containing same and method for operating driving circuit
US10327296B2 (en) Dimming circuit, dimming method and LED driving circuit
WO2023279377A1 (en) Power supply circuit, driver and controlling method
CN211457423U (en) Light modulation circuit
CN109379806B (en) Dimming drive circuit, dimming controller and LED lamp
US9648678B1 (en) LED driver circuit with dimming control and programming interfaces
US9942959B1 (en) Phase-cut dimmable power supply with wide input voltage
CN110913530B (en) Dimming LED driver
CN109526105B (en) LED driving power supply for isolating and switching off output voltage
CN110972356A (en) Drive control circuit and lighting drive circuit of light emitting diode
WO2023015453A1 (en) Power supply circuit, driver and controlling method
CN110621101A (en) Hybrid dimming driving circuit
WO2022261818A1 (en) Power supply circuit, dali module, lighting equipment and controlling method
CN116582968B (en) Dimming circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318956

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210709

NENP Non-entry into the national phase

Ref country code: DE