WO2023279338A1 - Neural spectral field reconstruction for spectrometer - Google Patents

Neural spectral field reconstruction for spectrometer Download PDF

Info

Publication number
WO2023279338A1
WO2023279338A1 PCT/CN2021/105312 CN2021105312W WO2023279338A1 WO 2023279338 A1 WO2023279338 A1 WO 2023279338A1 CN 2021105312 W CN2021105312 W CN 2021105312W WO 2023279338 A1 WO2023279338 A1 WO 2023279338A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrometer
spectrum
neural network
denoted
neural
Prior art date
Application number
PCT/CN2021/105312
Other languages
French (fr)
Inventor
Zi WANG
Wei Lu
Jingyi Yu
Original Assignee
Shanghaitech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghaitech University filed Critical Shanghaitech University
Priority to PCT/CN2021/105312 priority Critical patent/WO2023279338A1/en
Publication of WO2023279338A1 publication Critical patent/WO2023279338A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • G01J2003/2836Programming unit, i.e. source and date processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer

Definitions

  • the present invention relates to the field of spectral reconstruction, and in particular, to a neural spectral field reconstruction for spectrometer.
  • a spectrometer can be used to obtain the intensity of light reflected by a target at different wavelengths. It is a basic tool for spectral analysis and has important applications in spectral imaging, chemical industry, biopharmaceutical and other fields. There are many implementation principles of spectrometers, including narrowband filters, broadband filters, and Fourier spectrometers. The spectrometers implemented by these different methods can all be described by the same type of imaging model. However, how to reconstruct the target’s spectral curve from the known imaging model and measurement data remains a challenging problem. The amount of measurement data for reconstructing the spectrum is far less than the target data that needs to be acquired, and the existence of various noises makes the problem difficult to solve.
  • the traditional spectral reconstruction algorithms usually express the spectrum to be reconstructed as a vector variable and use the sparse characteristic of the spectrum in a specific transformation domain to recover the spectrum curve from the measurement result.
  • simple sparse transforms such as discrete cosine transform and wavelet transform are generally performed on noisy underdetermined problems, while complex sparse transforms such as low-rank characteristics has high computational complexity and the reconstruction algorithm takes a long time.
  • NeSF neural spectral field
  • the present invention provides a computer-implemented method for imaging a non-line-of-sight scene to address the aforementioned limitations. Additional features and advantages of this invention will become apparent from the following detailed descriptions.
  • One aspect of the present invention is directed to a computer-implemented method for reconstructing a spectrum of a spectrometer.
  • the method may include: encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
  • the method may further include: mapping the wavelength ⁇ to
  • ( ⁇ , sin (2 0 ⁇ ) , cos (2 0 ⁇ ) , sin (2 1 ⁇ ) , cos (2 1 ⁇ ) , ..., sin (2 N ⁇ ) , cos (2 N ⁇ ) ) T ;
  • the spectrometer may be characterized as:
  • I i , S, and D i may be the measured intensity, spectrum, and forward model of the spectrometer, respectively.
  • the spectrometer may comprise a filter, and may be characterized as:
  • I i , S, and D i may be the measured intensity, spectrum, and response of the filter, respectively.
  • the measured intensity of the spectrometer may be expressed as:
  • the parameter of the neural network may be denoted as w
  • the spectral curve may be denoted as S ( ⁇ , w)
  • the response of the filter may be denoted as D.
  • the spectrometer may be a Fourier spectrometer.
  • the spectrometer may be a dispersive spectrometer.
  • the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer may further comprise calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
  • the method may further include: adding a sparse prior to the reconstructed neural spectral field.
  • the L2-norm may be optimized in accordance with:
  • a sparse vector may be denoted as ⁇ ( ⁇ , w)
  • the non-transitory storage medium may store instructions that, when executed by one or more processors of the computing system, cause the computing system to perform a method comprising: encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
  • the method may further include: mapping the wavelength ⁇ to
  • ( ⁇ , sin (2 0 ⁇ ) , cos (2 0 ⁇ ) , sin (2 1 ⁇ ) , cos (2 1 ⁇ ) , ..., sin (2 N ⁇ ) , cos (2 N ⁇ ) ) T ;
  • the spectrometer may be characterized as:
  • I i , S, and D i may be the measured intensity, spectrum, and forward model of the spectrometer, respectively.
  • the spectrometer may comprise a filter, and may be characterized as:
  • I i , S, and D i may be the measured intensity, spectrum, and response of the filter, respectively.
  • the measured intensity of the spectrometer may be expressed as:
  • I DS ( ⁇ , w) wherein the parameter of the neural network may be denoted as w, the spectral curve may be denoted as S ( ⁇ , w) , and the response of the filter may be denoted as D.
  • the spectrometer may be a Fourier spectrometer.
  • the spectrometer may be a dispersive spectrometer.
  • the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer may further comprise calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
  • the method may further include: adding a sparse prior to the reconstructed neural spectral field.
  • the L2-norm may be optimized in accordance with:
  • a sparse vector may be denoted as ⁇ ( ⁇ , w)
  • FIG. 1 is a schematic diagram of working principle of a filter-based spectrometer in related art.
  • FIG. 2 is a schematic diagram of the structure of the multi-layer perception (MLP) used in neural spactral filed (NeSF) according to an embodiment of the present invention.
  • MLP multi-layer perception
  • NeSF neural spactral filed
  • FIG. 3 is a schematic diagram of the NeSF reconstruction pipeline according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the reconstruction process of the NeSF according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of working principle of a filter-based spectrometer in related art.
  • a filter-based spectrometer may have multiple filters with different responses, and the corresponding detector may output the sum of the product of the spectrum to be measured and the response function in the full spectrum, which may be expressed as:
  • I i , S, and D i are the measured intensity, spectrum, and response of the filter, respectively.
  • the continuous equation may be discretized as:
  • I ⁇ R M , S ⁇ R N , and D ⁇ R M ⁇ N are the measured intensity, spectrum, and filter response, respectively.
  • the spectrum S may be recovered from the known measured intensity I and filter response D.
  • FIG. 2 is a schematic diagram of the structure of the multi-layer perception (MLP) used in neural spactral filed (NeSF) according to an embodiment of the present invention.
  • MLP multi-layer perception
  • NeSF neural spactral filed
  • the neural network may be implemented as a multi-layer perceptron (MLP) , which consists of an input layer, many hidden layers and an output layer.
  • the input layer may transform the input to neural nodes.
  • Each hidden layer may consist of many neural nodes, which receive the weighted linear sum of previous layers and apply nonlinear activation such as relu () to feed into the next layer.
  • the output layer may generate the spectral intensity according to the input of the neural network.
  • the width, or the maximum number of nodes in each layer, of the neural network is 32, and the depth, or the number of the layers, of the neural network is 4.
  • FIG. 3 is a schematic diagram of the NeSF reconstruction pipeline according to an embodiment of the present invention.
  • the input of the neural network may be the wavelength ⁇
  • the output may be the spectral intensity S ( ⁇ ) at that wavelength.
  • the spectral curve may be obtained.
  • the wavelength ⁇ may be mapped to
  • ( ⁇ , sin (2 0 ⁇ ) , cos (2 0 ⁇ ) , sin (2 1 ⁇ ) , cos (2 1 ⁇ ) , ..., sin (2 N ⁇ ) , cos (2 N ⁇ ) ) T ,
  • the spectral curve represented by the neural network without training is meaningless. Therefore, it is necessary to supervise and train the neural network using the spectral model and measurement data so that the neural network may accurately represent the spectral curve to be reconstructed.
  • the parameter of the neural network may be denoted as w, and the spectral curve expressed by the neural network may be denoted as S ( ⁇ , w) .
  • the spectrum vector may be denoted as S ( ⁇ , w) ⁇ R N
  • the measured intensity of the spectrometer may be expressed as:
  • the reconstruction process may be expressed as an optimization problem of L2-norm as:
  • the parameter w of the neural network may be calculated iteratively through the gradient descent.
  • sparse prior in the existing methods may be added to neural spectral field reconstruction.
  • the optimization problem with sparse transformation prior may be expressed as:
  • the wavelength may be inputted into the network, and the spectral intensity at that wavelength may be outputted.
  • NeSF neural spectral field
  • FIG. 4 is a schematic diagram of the reconstruction process of the NeSF according to an embodiment of the present invention.
  • the spectrum of an object acquired previously by the spectrometer and a set of spectral response of calibrated filters may be used to generate the measured intensity.
  • the NeSF method is then used to obtain the reconstructed spectrum, which is compared with the ground truth to show the effectiveness of the NeSF method.
  • the NeSF methods discussed above are suitable for other spectrometers such as Fourier spectrometer and dispersive spectrometer.
  • the main difference between different types of spectrometers is the forward model D.
  • the NeSF methods provided in accordance with embodiments of the present invention do not have any requirements on the forward model D, and it may be applied to different spectrometers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A neural spectral field (NeSF) reconstruction method for spectrometer is provided, comprising: encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.

Description

NEURAL SPECTRAL FIELD RECONSTRUCTION FOR SPECTROMETER TECHNICAL FIELD
The present invention relates to the field of spectral reconstruction, and in particular, to a neural spectral field reconstruction for spectrometer.
BACKGROUND
A spectrometer can be used to obtain the intensity of light reflected by a target at different wavelengths. It is a basic tool for spectral analysis and has important applications in spectral imaging, chemical industry, biopharmaceutical and other fields. There are many implementation principles of spectrometers, including narrowband filters, broadband filters, and Fourier spectrometers. The spectrometers implemented by these different methods can all be described by the same type of imaging model. However, how to reconstruct the target’s spectral curve from the known imaging model and measurement data remains a challenging problem. The amount of measurement data for reconstructing the spectrum is far less than the target data that needs to be acquired, and the existence of various noises makes the problem difficult to solve.
The traditional spectral reconstruction algorithms usually express the spectrum to be reconstructed as a vector variable and use the sparse characteristic of the spectrum in a specific transformation domain to recover the spectrum curve from the measurement result. However, simple sparse transforms such as discrete cosine transform and wavelet transform are generally performed on noisy underdetermined problems, while complex sparse transforms such as low-rank characteristics has high computational complexity and the reconstruction algorithm takes a long time.
The neural spectral field (NeSF) provided in accordance with the embodiments of the present invention starts from a completely different point of view, which uses neural networks to fit the function of the spectrum with wavelength and encodes its own structure as a priori into the representation of the spectrum. This way of expression does not require sparse transformation designed by hand, so it can be highly intelligent  and automated. At the same time, because the neural spectral field only change the way of expressing the spectrum, it is possible to combine the neural spectral field with the traditional sparse transformation to improve the accuracy of spectral reconstruction.
The above information disclosed in this Background section is only for facilitating the understanding of the background of this invention, and may contain information that is not known to a person of ordinary skill in the art.
SUMMARY
In view of the limitations of existing technologies described above, the present invention provides a computer-implemented method for imaging a non-line-of-sight scene to address the aforementioned limitations. Additional features and advantages of this invention will become apparent from the following detailed descriptions.
One aspect of the present invention is directed to a computer-implemented method for reconstructing a spectrum of a spectrometer. The method may include: encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
In some embodiments, the method may further include: mapping the wavelength λ to
γ= (λ, sin (2 0λ) , cos (2 0λ) , sin (2 1λ) , cos (2 1λ) , …, sin (2 Nλ) , cos (2 Nλ) )  T;
and using the γ as the input of the neural network.
In some embodiments, the spectrometer may be characterized as:
Figure PCTCN2021105312-appb-000001
wherein I i, S, and D i may be the measured intensity, spectrum, and forward model of the spectrometer, respectively.
In some embodiments, the spectrometer may comprise a filter, and may be characterized as:
Figure PCTCN2021105312-appb-000002
wherein I i, S, and D i may be the measured intensity, spectrum, and response of the filter, respectively.
In some embodiments, the measured intensity of the spectrometer may be expressed as:
I=DS (λ, w)
wherein the parameter of the neural network may be denoted as w, the spectral curve may be denoted as S (λ, w) , and the response of the filter may be denoted as D.
In some embodiments, the spectrometer may be a Fourier spectrometer.
In some embodiments, the spectrometer may be a dispersive spectrometer.
In some embodiments, the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer may further comprise calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
Figure PCTCN2021105312-appb-000003
In some embodiments, the method may further include: adding a sparse prior to the reconstructed neural spectral field.
In some embodiments, the L2-norm may be optimized in accordance with:
Figure PCTCN2021105312-appb-000004
wherein a sparse vector may be denoted as θ (λ, w) , a sparse transform may be denoted as Ψ: θ (λ, w) =ΨS (λ, w) , and a corresponding inverse transform may be denoted as Φ: S(λ, w) =Φθ (λ, w) .
Another aspect of the present invention is directed to a non-transitory storage medium of a computing system. The non-transitory storage medium may store instructions that, when executed by one or more processors of the computing system, cause the computing system to perform a method comprising: encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
In some embodiments, the method may further include: mapping the wavelength λ to
γ= (λ, sin (2 0λ) , cos (2 0λ) , sin (2 1λ) , cos (2 1λ) , …, sin (2 Nλ) , cos (2 Nλ) )  T;
and using the γ as the input of the neural network.
In some embodiments, the spectrometer may be characterized as:
Figure PCTCN2021105312-appb-000005
wherein I i, S, and D i may be the measured intensity, spectrum, and forward model of the spectrometer, respectively.
In some embodiments, the spectrometer may comprise a filter, and may be characterized as:
Figure PCTCN2021105312-appb-000006
wherein I i, S, and D i may be the measured intensity, spectrum, and response of the filter, respectively.
In some embodiments, the measured intensity of the spectrometer may be expressed as:
I=DS (λ, w) wherein the parameter of the neural network may be denoted as w, the spectral curve may be denoted as S (λ, w) , and the response of the filter may be denoted as D.
In some embodiments, the spectrometer may be a Fourier spectrometer.
In some embodiments, the spectrometer may be a dispersive spectrometer.
In some embodiments, the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer may further comprise calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
Figure PCTCN2021105312-appb-000007
In some embodiments, the method may further include: adding a sparse prior to the reconstructed neural spectral field.
In some embodiments, the L2-norm may be optimized in accordance with:
Figure PCTCN2021105312-appb-000008
wherein a sparse vector may be denoted as θ (λ, w) , a sparse transform may be denoted as Ψ: θ (λ, w) =ΨS (λ, w) , and a corresponding inverse transform may be denoted as Φ:S(λ, w) =Φθ (λ, w) .
The foregoing general description and the following detailed description are merely examples and explanations and do not limit the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate embodiments consistent with this invention and, together with the description, serve to explain the disclosed principles. It is apparent that these drawings present only some embodiments of this invention and those of ordinary skill in the art may obtain drawings of other embodiments from them without exerting any creative effort.
FIG. 1 is a schematic diagram of working principle of a filter-based spectrometer in related art.
FIG. 2 is a schematic diagram of the structure of the multi-layer perception (MLP) used in neural spactral filed (NeSF) according to an embodiment of the present invention.
FIG. 3 is a schematic diagram of the NeSF reconstruction pipeline according to an embodiment of the present invention.
FIG. 4 is a schematic diagram of the reconstruction process of the NeSF according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Exemplary embodiments will now be described more fully with reference to the accompanying drawings. However, these exemplary embodiments can be implemented in many forms and should not be construed as being limited to those set forth herein. Rather, these embodiments are presented to provide a full and thorough understanding of this invention and to fully convey the concepts of the exemplary embodiments to others skilled in the art.
In addition, the described features, structures, and characteristics may be combined in any suitable manner in one or more embodiments. In the following detailed description, many specific details are set forth to provide a more thorough understanding of this invention. However, those skilled in the art will recognize that the various embodiments can be practiced without one or more of the specific details or with other methods, components, materials, or the like. In some instances, well-known structures, materials, or operations are not shown or not described in detail to avoid obscuring aspects of the embodiments.
1. Data from Spectrometer
FIG. 1 is a schematic diagram of working principle of a filter-based spectrometer in related art. As shown in FIG. 1, a filter-based spectrometer may have  multiple filters with different responses, and the corresponding detector may output the sum of the product of the spectrum to be measured and the response function in the full spectrum, which may be expressed as:
Figure PCTCN2021105312-appb-000009
wherein I i, S, and D i are the measured intensity, spectrum, and response of the filter, respectively.
The continuous equation may be discretized as:
I=DS
wherein I∈R M, S∈R N, and D∈R M×N are the measured intensity, spectrum, and filter response, respectively. The spectrum S may be recovered from the known measured intensity I and filter response D.
2. Neural Spectral Representation
FIG. 2 is a schematic diagram of the structure of the multi-layer perception (MLP) used in neural spactral filed (NeSF) according to an embodiment of the present invention. As shown in FIG. 2, different from the existing methods where the vector S is directly used as a variable, the spectrum may be deemed as a function of the wavelength λ and can be fit using a neural network.
The neural network may be implemented as a multi-layer perceptron (MLP) , which consists of an input layer, many hidden layers and an output layer. The input layer may transform the input to neural nodes. Each hidden layer may consist of many neural nodes, which receive the weighted linear sum of previous layers and apply nonlinear activation such as relu () to feed into the next layer. The output layer may generate the spectral intensity according to the input of the neural network. In an embodiment of the present invention, the width, or the maximum number of nodes in each layer, of the neural network is 32, and the depth, or the number of the layers, of the neural network is 4.
FIG. 3 is a schematic diagram of the NeSF reconstruction pipeline according to an embodiment of the present invention. As shown in FIG. 3, the input of the neural network may be the wavelength λ, and the output may be the spectral intensity S (λ) at that wavelength. In this way, inputting different wavelengths into the neural network respectively, the spectral curve may be obtained. In the actual design of the network, in order to strengthen the neural network’s ability to express high-frequency signals, the wavelength λ may be mapped to
γ= (λ, sin (2 0λ) , cos (2 0λ) , sin (2 1λ) , cos (2 1λ) , …, sin (2 Nλ) , cos (2 Nλ) )  T,
and γ may be used as the input of the network.
3. Optimization
The spectral curve represented by the neural network without training is meaningless. Therefore, it is necessary to supervise and train the neural network using the spectral model and measurement data so that the neural network may accurately represent the spectral curve to be reconstructed.
The parameter of the neural network may be denoted as w, and the spectral curve expressed by the neural network may be denoted as S (λ, w) . For spectra with different wavelengths, the spectrum vector may be denoted as S (λ, w) ∈R N, and the measured intensity of the spectrometer may be expressed as:
I=DS (λ, w)
While the neural representation of spectrum vector is newly proposed in accordance with embodiments of the present invention, imaging models without neural representation have been widely analyzed by data scientists. Although noises exist in such imaging models, it is possible to overcome the noise effects by expressing the reconstruction process as an L2-norm optimization problem.
The reconstruction process may be expressed as an optimization problem of L2-norm as:
Figure PCTCN2021105312-appb-000010
Then the parameter w of the neural network may be calculated iteratively through the gradient descent.
In addition, the sparse prior in the existing methods may be added to neural spectral field reconstruction. In particular, sparse transform may be denoted as Ψ: θ(λ, w) =ΨS (λ, w) and the corresponding inverse transform may be denoted as Φ: S(λ, w) =Φθ (λ, w) , where θ (λ, w) is the sparse vector. Then the optimization problem with sparse transformation prior may be expressed as:
Figure PCTCN2021105312-appb-000011
Gradient descent and other methods may also be used to solve the optimization problems when training the network. After the network training is completed, the wavelength may be inputted into the network, and the spectral intensity at that wavelength may be outputted.
4. Results and Discussion
Some experimental measurements as well as reconstruction results from the proposed neural spectral field (NeSF) method are discussed below.
FIG. 4 is a schematic diagram of the reconstruction process of the NeSF according to an embodiment of the present invention. As shown in FIG. 4, the spectrum of an object acquired previously by the spectrometer and a set of spectral response of calibrated filters may be used to generate the measured intensity. The NeSF method is then used to obtain the reconstructed spectrum, which is compared with the ground truth to show the effectiveness of the NeSF method.
Although the reconstruction process in filtered-based spectrometers is mainly discussed herein, the NeSF methods discussed above are suitable for other spectrometers such as Fourier spectrometer and dispersive spectrometer. The main difference between different types of spectrometers is the forward model D. The NeSF methods provided in accordance with embodiments of the present invention do not have any requirements on the forward model D, and it may be applied to different spectrometers.

Claims (20)

  1. A computer-implemented method for reconstructing a spectrum of a spectrometer, comprising:
    encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and
    reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
  2. The method of claim 1, further comprising:
    mapping the wavelength λ to
    γ= (λ, sin (2 0λ) , cos (2 0λ) , sin (2 1λ) , cos (2 1λ) , …, sin (2 Nλ) , cos (2 Nλ) )  T;
    and
    using the γ as an input of the neural network.
  3. The method of claim 1, wherein the spectrometer is characterized as:
    Figure PCTCN2021105312-appb-100001
    wherein I i, S, and D i are measured intensity, spectrum, and a forward model of the spectrometer, respectively.
  4. The method of claim 3, wherein the spectrometer comprises a filter, and is characterized as:
    Figure PCTCN2021105312-appb-100002
    wherein I i, S, and D i are the measured intensity, spectrum, and response of the filter, respectively.
  5. The method of claim 4, wherein the measured intensity of the spectrometer is expressed as:
    I=DS (λ, w)
    wherein a parameter of the neural network is denoted as w, spectral curve is denoted as S (λ, w) , and the response of the filter is denoted as D.
  6. The method of claim 3, wherein the spectrometer is a Fourier spectrometer.
  7. The method of claim 3, wherein the spectrometer is a dispersive spectrometer.
  8. The method of claim 4, wherein the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer further comprises calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
    Figure PCTCN2021105312-appb-100003
  9. The method of claim 3, further comprises:
    adding a sparse prior to the reconstructed neural spectral field.
  10. The method of claim 9, wherein the L2-norm is optimized in accordance with:
    Figure PCTCN2021105312-appb-100004
    wherein a sparse vector is denoted as θ (λ, w) , a sparse transform is denoted as Ψ: θ (λ, w) =ΨS (λ, w) , and a corresponding inverse transform is denoted as Φ: S (λ, w) =Φθ (λ, w) .
  11. A non-transitory storage medium of a computing system storing instructions that, when executed by one or more processors of the computing system, cause the computing system to perform a method comprising:
    encoding, by a computing system, a neural spectral field, wherein the neural spectral field comprises a neural network representing the spectrum as a function of a wavelength; and
    reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer.
  12. The non-transitory storage medium of claim 11, wherein the method further comprises:
    mapping the wavelength λ to
    γ= (λ, sin (2 0λ) , cos (2 0λ) , sin (2 1λ) , cos (2 1λ) , …, sin (2 Nλ) , cos (2 Nλ) )  T;
    and
    using the γ as an input of the neural network.
  13. The non-transitory storage medium of claim 11, wherein the spectrometer is characterized as:
    Figure PCTCN2021105312-appb-100005
    wherein I i, S, and D i are measured intensity, spectrum, and a forward model of the spectrometer, respectively.
  14. The non-transitory storage medium of claim 13, wherein the spectrometer comprises a filter, and is characterized as:
    Figure PCTCN2021105312-appb-100006
    wherein I i, S, and D i are the measured intensity, spectrum, and response of the filter, respectively.
  15. The non-transitory storage medium of claim 14, wherein the measured intensity of the spectrometer is expressed as:
    I=DS (λ, w)
    wherein a parameter of the neural network is denoted as w, spectral curve is denoted as S (λ, w) , and the response of the filter is denoted as D.
  16. The non-transitory storage medium of claim 13, wherein the spectrometer is a Fourier spectrometer.
  17. The non-transitory storage medium of claim 13, wherein the spectrometer is a dispersive spectrometer.
  18. The non-transitory storage medium of claim 14, wherein the reconstructing the spectrum of the spectrometer by training the neural network using measured intensities of the spectrometer further comprises calculating the parameter w of the neural network iteratively through gradient descent to optimize the L2-norm in accordance with:
    Figure PCTCN2021105312-appb-100007
  19. The non-transitory storage medium of claim 11, wherein the method further comprises:
    adding a sparse prior to the reconstructed neural spectral field.
  20. The non-transitory storage medium of claim 19, wherein the L2-norm is optimized in accordance with:
    Figure PCTCN2021105312-appb-100008
    wherein a sparse vector is denoted as θ (λ, w) , a sparse transform is denoted as Ψ: θ (λ, w) =ΨS (λ, w) , and a corresponding inverse transform is denoted as Φ: S (λ, w) =Φθ (λ, w) .
PCT/CN2021/105312 2021-07-08 2021-07-08 Neural spectral field reconstruction for spectrometer WO2023279338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105312 WO2023279338A1 (en) 2021-07-08 2021-07-08 Neural spectral field reconstruction for spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105312 WO2023279338A1 (en) 2021-07-08 2021-07-08 Neural spectral field reconstruction for spectrometer

Publications (1)

Publication Number Publication Date
WO2023279338A1 true WO2023279338A1 (en) 2023-01-12

Family

ID=84800171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105312 WO2023279338A1 (en) 2021-07-08 2021-07-08 Neural spectral field reconstruction for spectrometer

Country Status (1)

Country Link
WO (1) WO2023279338A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776797A (en) * 2014-02-25 2014-05-07 河北大学 Method for identifying Pingli fiveleaf gynostemma herb through near infrared spectroscopy
CN105740951A (en) * 2016-02-29 2016-07-06 嘉兴学院 Computer color-matching method for leather finishing
CN106067065A (en) * 2016-06-07 2016-11-02 宁波检验检疫科学技术研究院 Spectrum analysis Model transfer technology based on radial base neural net
CN106295667A (en) * 2015-05-19 2017-01-04 中国科学院沈阳自动化研究所 A kind of method and application thereof selecting optimum spectrum based on genetic algorithm
CN108710114A (en) * 2018-04-18 2018-10-26 上海交通大学 Turbulent flow object detection method based on BP neural network multicategory classification
WO2020176914A1 (en) * 2019-03-01 2020-09-10 Avl List Gmbh Method and system for the open-loop and/or closed-loop control of at least one exhaust gas aftertreatment component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776797A (en) * 2014-02-25 2014-05-07 河北大学 Method for identifying Pingli fiveleaf gynostemma herb through near infrared spectroscopy
CN106295667A (en) * 2015-05-19 2017-01-04 中国科学院沈阳自动化研究所 A kind of method and application thereof selecting optimum spectrum based on genetic algorithm
CN105740951A (en) * 2016-02-29 2016-07-06 嘉兴学院 Computer color-matching method for leather finishing
CN106067065A (en) * 2016-06-07 2016-11-02 宁波检验检疫科学技术研究院 Spectrum analysis Model transfer technology based on radial base neural net
CN108710114A (en) * 2018-04-18 2018-10-26 上海交通大学 Turbulent flow object detection method based on BP neural network multicategory classification
WO2020176914A1 (en) * 2019-03-01 2020-09-10 Avl List Gmbh Method and system for the open-loop and/or closed-loop control of at least one exhaust gas aftertreatment component

Similar Documents

Publication Publication Date Title
Bhandari et al. Dark satellite image enhancement using knee transfer function and gamma correction based on DWT–SVD
Parekh et al. Improved sparse low-rank matrix estimation
Stanković et al. Vertex-frequency graph signal processing: A comprehensive review
Chen et al. Optimization-inspired deep learning high-resolution inversion for seismic data
Shukla et al. Generalized fractional filter-based algorithm for image denoising
Zhang et al. Multi-focus image fusion algorithm based on compound PCNN in Surfacelet domain
Baohua et al. A multi-focus image fusion algorithm based on an improved dual-channel PCNN in NSCT domain
Liu et al. Spectral blind deconvolution with differential entropy regularization for infrared spectrum
Liu et al. Adaptive sparse coding on PCA dictionary for image denoising
Wang et al. Poisson noise removal of images on graphs using tight wavelet frames
Bian Spectral preprocessing methods
WO2023279338A1 (en) Neural spectral field reconstruction for spectrometer
Peel et al. Assessing the performance of rational spline-based empirical mode decomposition using a global annual precipitation dataset
Pande-Chhetri et al. Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping
Emzir et al. Non-stationary multi-layered Gaussian priors for Bayesian inversion
Turquais* et al. Dictionary learning for signal-to-noise ratio enhancement
Das et al. Review of adaptive decomposition-based data preprocessing for renewable generation rich power system applications
Hao et al. Sparse approximate solution of fitting surface to scattered points by MLASSO model
Wei et al. Fusion of multispectral and hyperspectral images based on sparse representation
Sizikov et al. Reconstruction of continuous spectra by the regularization method using model spectra
Averbuch et al. Deconvolution by matching pursuit using spline wavelet packets dictionaries
Xiaohui et al. An algorithm of generating random number by wavelet denoising method and its application
Ferraioli et al. Joint phase unwrapping and speckle filtering by using convolutional neural networks
González-Marcos et al. Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra
Chen et al. Image decomposition and denoising based on Shearlet and nonlocal data fidelity term

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE