WO2023279218A1 - Cylinders or tubes assembled by means of a new method for eliminating interference - Google Patents

Cylinders or tubes assembled by means of a new method for eliminating interference Download PDF

Info

Publication number
WO2023279218A1
WO2023279218A1 PCT/CL2022/050069 CL2022050069W WO2023279218A1 WO 2023279218 A1 WO2023279218 A1 WO 2023279218A1 CL 2022050069 W CL2022050069 W CL 2022050069W WO 2023279218 A1 WO2023279218 A1 WO 2023279218A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
pressure
cylinders
cylinder
chamber
Prior art date
Application number
PCT/CL2022/050069
Other languages
Spanish (es)
French (fr)
Inventor
Mauricio Eduardo MULET MARTÍNEZ
Original Assignee
CASTRO ARRIAGADA, Luis Osvaldo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTRO ARRIAGADA, Luis Osvaldo filed Critical CASTRO ARRIAGADA, Luis Osvaldo
Priority to CN202280047710.2A priority Critical patent/CN117642238A/en
Priority to EP22836446.9A priority patent/EP4368309A1/en
Publication of WO2023279218A1 publication Critical patent/WO2023279218A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/24Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor

Definitions

  • the present invention relates to devices used to exert pressure on objects.
  • Today cylindrical tubes are made joined by interference that is eliminated when the larger cylinder is heated so that it dilates or expands, and/or the smaller one is cooled so that it contracts; so that the interference disappears and they can be assembled or joined by assembling them as a single tube. After it recovers its normal temperature, it tends to recover its dimensions and cannot, remaining “joined by interference”.
  • the interference that can be made to disappear momentarily due to the effect of temperature variation is very little, and the cylinders to be joined must have an internal diameter of the external cylinder, slightly less than the external diameter of the internal cylinder. In addition, it has difficulty with maintaining the temperature differences for a few minutes to mount them or to mount a new cylinder on another already assembled. This was used in the making of Blakely cannons over 150 years ago.
  • the interference that is made to disappear momentarily by the effect of temperature variation can be made greater, to join short sections and only once, like a gear or a railway wheel to an axis. But it is not possible to join a set of tightly joined thin cylinders by interference achieved by variations in temperature.
  • the first mechanism to make high isostatic pressure is the thick-walled cylindrical chamber, measuring the width of the wall as a percentage of the diameter of the cylinder; obviously the thicker it supports the more pressure. But when it gets thicker, the greater the difference in reaction stress between the inner and outer edge that the chamber wall makes; as can be seen in Figure 2 and its description.
  • the way to make greater pressure than a thick-walled cylinder is the "wound chamber"; that a cylinder is wound around the axial axis, kilometers of plate with calculated tension; which exerts pressure up to 600 MPa, two and three times higher pressure, than a single thick-walled chamber, 30% of the diameter of the cylinder.
  • the coiled chamber has the serious drawback that it does not accept reaction effort in the axial direction, so that large "yokes” must be placed on the outside, for external support, affirming the covers that can be one at each end of the cylinder; which must be fully scrolled each time a camera is loaded or unloaded.
  • HPP technology is known, high pressure processing to prepare pasteurized foods under pressure, or HIP technology, hot isostatic pressing; used in metallurgy to make castings or remove imperfections.
  • HIP technology is not made at such high pressure, only up to 300 MPa of pressure, because it does so by compressing a gas that is usually argon, which is heated.
  • the chamber closing mechanism which requires yokes and hydraulic cylinders that make hot work more difficult.
  • Temperature interference bonding technology was used in the execution of the Blakely barrel; “He was the first to build cannons made of concentric tubes with various degrees of elasticity, the inner tube having greater elasticity because it had to withstand more effort.
  • the hoops, or rings were placed on the red-hot, slightly conical tube, in such a way that when they cooled, they contracted and compressed it, leaving the barrel in initial tension. This allowed him to build very resistant cannons, of great caliber and light weight”.
  • the multiple wall chamber is another way to generate high pressure, but we could say that they are attempts at other inventions that were made for the same purpose; patent application CL 201902913 and patent application CL 201902988.
  • a new technical solution has been found that overcomes the drawbacks of the previously mentioned applications and is based on a new joint by isostatic pressure interference.
  • the new joining method by isostatic pressure interference which is possible, serves to assemble two or ten or more cylindrical tubes by interference, of any dimension, which allows ultra-high pressure chambers or multi-chambers to be made.
  • Figure 1 Shows two tubular chambers, inside an assembly chamber 301, where when applying pressure inside the assembly chamber, the diameters of the tubular chambers change, because pressure never enters each tubular chamber.
  • Viewing detail A (left); With no pressure between the two tubular chambers, it does not allow the cylinders to join due to interference.
  • Viewing detail B (right); as the pressure in the assembly chamber increases, the internal diameter of the larger tubular chamber increases and the external diameter of the smaller tubular chamber decreases; issue that now allows one tubular chamber to be inserted inside the other.
  • Figure 2 Shows a section of a thick-walled cylinder with the stresses developed by the pressure PA it supports; next to it is a cylinder assembled by union with interference of isostatic pressure, formed by six thin cylinders, of the same wall thickness and of the same material, which supports PB, greater than PA, which has the same tension in all the cylinders, product of which it is pre-compressed and pre-stressed when it is without pressure.
  • FIG. 3 Shows a cylindrical tube to be assembled 101, which is preliminarily assembled with a larger auxiliary tube 201, forming a tubular chamber with ringed caps 211 and 212. Another tubular chamber must be assembled with a smaller cylindrical tube 102, with another smaller auxiliary tube 202 than the smaller cylindrical tube.
  • Figure 4 Shows a chamber of several cylinders joined with interference, so that the smaller diameter ones are pre-compressed and the larger diameter ones are pre-stressed, the chamber being without pressure.
  • the pre-compressed cylinders and those pre-stressed at the beginning are all pre-stressed at maximum pressure.
  • the invention refers to a method of joining two or more concentric cylinders (101, 102), with isostatic pressure interference, which have some roughness or fine grooves, which allows them not to slip once assembled.
  • two tubular chambers or auxiliary chambers must be prepared, as shown in Figure 1, formed by one of the cylinders to be joined (101) with an auxiliary cylinder (201), which are placed concentrically joined by two ringed covers ( 111 and 112).
  • a second, slightly smaller tubular chamber is built compared to the previous one; with the cylinder to be joined by interference (102), which can have roughness or grooves on the outside that goes on the outside, and the smaller auxiliary cylinder (202) on the inside; joined with two covers (113 and 114) as in the previous case.
  • the smaller tubular chamber does not enter the inner cylinder of the larger tubular chamber under normal circumstances, they interfere with each other.
  • the tubular chambers are subjected to high pressure one after the other, inside an assembly chamber (301); keeping the interior of each tubular chamber between the covers, without pressure; so that of the larger tubular chamber, the internal diameter of the smaller cylinder increases by 51, and in the smaller tubular chamber the external diameter of the larger cylinder decreases by 52; due to the increase in pressure in the assembly chamber.
  • the dimensions of the tubular chambers when under high pressure are such that the internal diameter of the largest tubular chamber; is equal to or greater than the external diameter of the largest cylinder of the smallest tubular chamber; then the pressure interference has disappeared and they can be mounted.
  • tubular chambers are subjected to a force that forces them to move the smaller one inside the larger one, when pressure conditions occur and the diameters vary; then the smaller tubular chamber will enter into the larger tubular chamber. It can be due to gravity or an elastic band arranged, which is forcing a tubular chamber inside the other when the interference disappears; and settle gently.
  • This cylinder resists higher pressure than a simple thick-walled cylinder of the same material and dimensions; because when it is at maximum pressure, it makes the same effort regardless of whether it is measured or calculated at a more central or external point of the wall, as shown in Figure 2.
  • the chamber (301) does not need as much pressure to produce the union by interference of tubes that can be used to manufacture another chamber, which is to resist high pressure. It is enough that the chamber (301) exerts sufficient pressure to ensure that one of the cylinders to be joined is thin-walled and is at maximum effort when assembling.
  • only one cylinder to be joined can be used to make a tubular chamber and the other cylinder to be joined does not contract or expand with pressure, but the interference is made to disappear with the expansion of the smaller cylinder of the tubular chamber.
  • Example 1 Uses of the cylinder or union chamber by interference of isostatic pressure.
  • chambers such as the one shown in Figure 4 can easily be made by adding solid tops. It can be used for the same purposes of making pressure pasteurized foods, but much simpler than the HHP system, which it needs a large tension winder; or apply it to metallurgy making a system that replaces the HIP system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a method for interference-joining of concentric cylinders, where the smaller cylinder (102) does not fit into the larger cylinder (101), involving the use of auxiliary cylinders, inside an assembly chamber (301), such that the interference is momentarily eliminated by means of isostatic pressure, and one cylinder is fitted into the other, yielding an interference-joined thicker cylinder. The pressure is released and it is removed from the assembly chamber (301), finally leaving only the two interference-joined cylinders. It is possible to assemble 3 or 10 or more cylinders in the same way, assembling a thick cylinder, pre-compressed on the inside and pre-stressed on the outside. Several interference-joined cylinders exert the same stress when the cylinder withstands the maximum pressure, such that it withstands a greater pressure than a single cylinder with the same total wall thickness, which always reduces the stress from a maximum at the inside of the wall to a lower percentage at the outside edge.

Description

CILINDROS O TUBOS MONTADOS POR NUEVA FORMA DE ELIMINAR LA CYLINDERS OR TUBES ASSEMBLED BY A NEW WAY TO ELIMINATE THE
INTERFERENCIA INTERFERENCE
Campo técnico La presente invención se relaciona con los dispositivos que se utilizan para realizar presión sobre los objetos. Technical field The present invention relates to devices used to exert pressure on objects.
Estado de la Técnica State of the Art
Cuando se echa un fluido a presión al interior de una cámara o de un cilindro de paredes gruesas, el esfuerzo de reacción al interior de la pared es mayor hacia el lado central y va perdiendo intensidad hacia la periferia. Si se lograra que la tensión, sea uniforme cuando está a la máxima presión, el cilindro soportaría mayor presión. When a pressurized fluid is poured into a thick-walled chamber or cylinder, the reaction stress inside the wall is greater towards the central side and decreases in intensity towards the periphery. If the tension were to be uniform when it is at maximum pressure, the cylinder would support greater pressure.
Dos tubos cilindricos, que se unen con interferencia, porque no cabe el menor dentro del cilindro mayor, a menos que se haga un artilugio; hace que quede la pared pretensada hacia afuera y precomprimida hacia adentro, estando el cilindro grueso sin presión. Los cilindros unidos con interferencia resisten más presión que los cilindros unidos sin interferencia. Two cylindrical tubes, which join with interference, because the smaller one does not fit inside the larger cylinder, unless a device is made; it causes the wall to be prestressed outwards and pre-compressed inwards, the thick cylinder being without pressure. Interference-joined cylinders resist more pressure than non-interference-joined cylinders.
Hoy día se hacen tubos cilindricos unidos por interferencia que se logra eliminar cuando se calienta el cilindro mayor para que se dilate o expanda, y/o se enfría el menor para que se contraiga; de modo que desaparece la interferencia y se pueden montar o unir ensamblándolos como un solo tubo. Después recupera la temperatura normal, tienden a recuperar sus dimensiones y no pueden, quedando “unidos por la interferencia”. La interferencia que se logra hacer desaparecer momentáneamente por efecto de variación de la temperatura es muy poca, debiendo los cilindros a unir tener un diámetro interno del cilindro exterior, levemente inferior al diámetro externo del cilindro interior. Además, tiene dificultad con mantener las diferencias de temperatura por unos minutos para montarlos o para montar un nuevo cilindro sobre otro ya montado. Esto se usó en la confección de cañones Blakely, hace más de 150 años atrás. Today cylindrical tubes are made joined by interference that is eliminated when the larger cylinder is heated so that it dilates or expands, and/or the smaller one is cooled so that it contracts; so that the interference disappears and they can be assembled or joined by assembling them as a single tube. After it recovers its normal temperature, it tends to recover its dimensions and cannot, remaining “joined by interference”. The interference that can be made to disappear momentarily due to the effect of temperature variation is very little, and the cylinders to be joined must have an internal diameter of the external cylinder, slightly less than the external diameter of the internal cylinder. In addition, it has difficulty with maintaining the temperature differences for a few minutes to mount them or to mount a new cylinder on another already assembled. This was used in the making of Blakely cannons over 150 years ago.
La interferencia que se logra hacer desaparecer momentáneamente por efecto de variación de la temperatura se puede hacer mayor, para unir secciones cortas y solo una vez, como un engranaje o una rueda de ferrocarril a un eje. Pero no es posible unir un conjunto de cilindros delgados unidos fuertemente por interferencia lograda por variaciones de la temperatura. The interference that is made to disappear momentarily by the effect of temperature variation can be made greater, to join short sections and only once, like a gear or a railway wheel to an axis. But it is not possible to join a set of tightly joined thin cylinders by interference achieved by variations in temperature.
El primer mecanismo de hacer alta presión isostática, es la cámara cilindrica de pared gruesa, medida el ancho de la pared como porcentaje del diámetro del cilindro; obviamente entre más gruesa soporta más presión. Pero cuando se hace más gruesa, mayor diferencia en el esfuerzo de reacción entre el borde interno y externo que hace la pared de la cámara; como se puede apreciar en la Figura 2 y su descripción. The first mechanism to make high isostatic pressure is the thick-walled cylindrical chamber, measuring the width of the wall as a percentage of the diameter of the cylinder; obviously the thicker it supports the more pressure. But when it gets thicker, the greater the difference in reaction stress between the inner and outer edge that the chamber wall makes; as can be seen in Figure 2 and its description.
La manera de hacer mayor presión que un cilindro de pared gruesa, es la “cámara bobinada”; que a un cilindro se le enrolla en torno al eje axial, kilómetros de pletina con tensión calculada; que hace presión hasta los 600 MPa, dos y tres veces más alta presión, que una cámara de simple pared gruesa, de un 30% del diámetro del cilindro. The way to make greater pressure than a thick-walled cylinder is the "wound chamber"; that a cylinder is wound around the axial axis, kilometers of plate with calculated tension; which exerts pressure up to 600 MPa, two and three times higher pressure, than a single thick-walled chamber, 30% of the diameter of the cylinder.
La cámara bobinada tiene el serio inconveniente que no acepta esfuerzo de reacción en sentido axial, de modo que se le debe poner grandes “yugos” por fuera, de soporte externo, afirmando las tapas que pueden ser una en cada extremo del cilindro; que se debe desplazar completamente cada vez que se carga o descarga una cámara. The coiled chamber has the serious drawback that it does not accept reaction effort in the axial direction, so that large "yokes" must be placed on the outside, for external support, affirming the covers that can be one at each end of the cylinder; which must be fully scrolled each time a camera is loaded or unloaded.
Es conocida la tecnología HPP, procesado por altas presiones para preparar alimentos pasteurizados por presión, o la tecnología HIP, prensado isostático en caliente; usado en metalurgia para hacer piezas fundidas o eliminar imperfecciones. HPP technology is known, high pressure processing to prepare pasteurized foods under pressure, or HIP technology, hot isostatic pressing; used in metallurgy to make castings or remove imperfections.
La tecnología HIP, no se hace a tan alta presión, solo hasta los 300 MPa de presión, porque lo hace comprimiendo un gas que suele ser argón, que se calienta. Además, el mecanismo de cierre de la cámara, que necesita de yugos y de cilindros hidráulicos que hacen más difícil el trabajo en caliente. La tecnología de unión por interferencia por temperatura se usó en la ejecución del cañón Blakely; “fue el primero que construyó cañones formados de tubos concéntricos con diversos grados de elasticidad, teniendo el tubo interior mayor elasticidad por tener que soportar mayor esfuerzo. Los zunchos o anillos, se colocaban en el tubo ligeramente cónico al rojo vivo, de tal manera que cuando se enfriaban, se contraían y lo comprimían, dejando al cañón en tensión inicial. Esto le permitió construir cañones, muy resistentes, de gran calibre y de poco peso”. HIP technology is not made at such high pressure, only up to 300 MPa of pressure, because it does so by compressing a gas that is usually argon, which is heated. In addition, the chamber closing mechanism, which requires yokes and hydraulic cylinders that make hot work more difficult. Temperature interference bonding technology was used in the execution of the Blakely barrel; “He was the first to build cannons made of concentric tubes with various degrees of elasticity, the inner tube having greater elasticity because it had to withstand more effort. The hoops, or rings, were placed on the red-hot, slightly conical tube, in such a way that when they cooled, they contracted and compressed it, leaving the barrel in initial tension. This allowed him to build very resistant cannons, of great caliber and light weight”.
Se hace presión más alta aun, de 10 o 100 GPa y más, para experimentar solamente, en dimensiones microscópicas en la Celda del Yunque de Diamante. Se han hecho miles de investigaciones básicas solamente, porque no se puede hacer en tamaño natural, deseable para seguir con investigación aplicada en nuevos materiales, livianos, súper duros y resistentes; materiales eléctricos, superconducción, etc. Even higher pressure is made, from 10 or 100 GPa and more, to experiment only, in microscopic dimensions in the Diamond Anvil Cell. Thousands of basic investigations have only been done, because it cannot be done in natural size, desirable to continue with applied research on new lightweight, super hard and resistant materials; electrical materials, superconducting, etc.
La cámara de pared múltiple, es otra manera de generar alta de presión, pero podríamos decir que son intentos de otras invenciones, que se hicieron con el mismo propósito; solicitud de patente CL 201902913 y solicitud de patente CL 201902988. Sin embargo se ha encontrado una nueva solución técnica que supera los inconvenientes de las solicitudes mencionadas previamente y que se basa en una nueva unión por interferencia de presión isostática. The multiple wall chamber is another way to generate high pressure, but we could say that they are attempts at other inventions that were made for the same purpose; patent application CL 201902913 and patent application CL 201902988. However, a new technical solution has been found that overcomes the drawbacks of the previously mentioned applications and is based on a new joint by isostatic pressure interference.
El nuevo método de unión por interferencia de presión isostática, que es posible hacer, sirve para ensamblar dos o diez y más tubos cilindricos por interferencia, de cualquier dimensión, lo que permite hacer cámaras o multicámaras de ultra alta presión. The new joining method by isostatic pressure interference, which is possible, serves to assemble two or ten or more cylindrical tubes by interference, of any dimension, which allows ultra-high pressure chambers or multi-chambers to be made.
Breve descripción de las Figuras Brief description of the Figures
Figura 1. Muestra dos cámaras tubulares, dentro de una cámara de ensamble 301 , donde al echar presión dentro de la cámara de ensamble, cambian los diámetros de las cámaras tubulares, porque nunca le entra presión dentro de cada cámara tubular. Figure 1. Shows two tubular chambers, inside an assembly chamber 301, where when applying pressure inside the assembly chamber, the diameters of the tubular chambers change, because pressure never enters each tubular chamber.
Detalles: Viendo el detalle A (izquierda); sin presión entre las dos cámaras tubulares, no deja que se unan los cilindros por la interferencia. Viendo el detalle B (derecha); al aumentar la presión en la cámara de ensamble, aumenta el diámetro interno de la cámara tubular mayor y disminuye el diámetro externo de la cámara tubular menor; cuestión que ahora permite que se introduzca una cámara tubular dentro de la otra. Details: Viewing detail A (left); With no pressure between the two tubular chambers, it does not allow the cylinders to join due to interference. Viewing detail B (right); as the pressure in the assembly chamber increases, the internal diameter of the larger tubular chamber increases and the external diameter of the smaller tubular chamber decreases; issue that now allows one tubular chamber to be inserted inside the other.
Figura 2. Muestra un corte de un cilindro de pared gruesa con las tensiones desarrolladas por la presión PA que soporta; al lado está un cilindro montado por unión con interferencia de presión isostática, formado por seis cilindros delgados, del mismo espesor de pared y del mismo material, que soporta PB, mayor que PA, que tiene la misma tensión todos los cilindros, producto de que está precomprimido y pretensado cuando está sin presión. Figure 2. Shows a section of a thick-walled cylinder with the stresses developed by the pressure PA it supports; next to it is a cylinder assembled by union with interference of isostatic pressure, formed by six thin cylinders, of the same wall thickness and of the same material, which supports PB, greater than PA, which has the same tension in all the cylinders, product of which it is pre-compressed and pre-stressed when it is without pressure.
Figura 3. Muestra un tubo cilindrico que se va a ensamblar 101 , el que se arma preliminarmente con un tubo auxiliar mayor 201 , formando una cámara tubular con tapas anilladas 211 y 212. Se deben armar otra cámara tubular con un tubo cilindrico menor 102, con otro tubo auxiliar menor 202, que el tubo cilindrico menor. Figure 3. Shows a cylindrical tube to be assembled 101, which is preliminarily assembled with a larger auxiliary tube 201, forming a tubular chamber with ringed caps 211 and 212. Another tubular chamber must be assembled with a smaller cylindrical tube 102, with another smaller auxiliary tube 202 than the smaller cylindrical tube.
Figura 4. Muestra una cámara de varios cilindros unidos con interferencia, de modo que están precomprimidos los de menor diámetro y pretensado los de mayor diámetro, estando la cámara sin presión. Cuando esta con presión máxima la cámara los cilindros precomprimidos y los pretensados al inicio, quedan todos pretensados a la máxima presión. Figure 4. Shows a chamber of several cylinders joined with interference, so that the smaller diameter ones are pre-compressed and the larger diameter ones are pre-stressed, the chamber being without pressure. When the chamber is at maximum pressure, the pre-compressed cylinders and those pre-stressed at the beginning are all pre-stressed at maximum pressure.
Descripción de la Invención Description of the invention
La invención se refiere a un método de unir dos o más cilindros concéntricos (101 , 102), con interferencia de presión isostática, los cuales tienen cierta rugosidad o ranuras finas, lo que permite que estos no se deslicen una vez montados. The invention refers to a method of joining two or more concentric cylinders (101, 102), with isostatic pressure interference, which have some roughness or fine grooves, which allows them not to slip once assembled.
Para ello, se deben preparar dos cámaras tubulares o cámaras auxiliares, como se observa en la Figura 1 , formadas por uno de los cilindros a unir (101 ) con un cilindro auxiliar (201 ), que se ponen concéntricos unidos por dos tapas anilladas (111 y 112). Uno (101 ) dentro de otro (201 ); están no más de un 15% del radio separados, como se observa en la Figura 3. Se construye una segunda cámara tubular un poco más pequeña en comparación con la nterior; con el cilindro a unir por interferencia (102), que puede tener rugosidad o ranuras por el exterior que va por fuera, y el cilindro auxiliar menor (202) por dentro; unidos con dos tapas (113 y 114) como en el caso anterior. La cámara tubular menor no entra en el cilindro interno de la cámara tubular mayor en circunstancias normales, hacen interferencia una con la otra. For this, two tubular chambers or auxiliary chambers must be prepared, as shown in Figure 1, formed by one of the cylinders to be joined (101) with an auxiliary cylinder (201), which are placed concentrically joined by two ringed covers ( 111 and 112). One (101 ) inside another (201 ); they are no more than 15% of the radius apart, as seen in Figure 3. A second, slightly smaller tubular chamber is built compared to the previous one; with the cylinder to be joined by interference (102), which can have roughness or grooves on the outside that goes on the outside, and the smaller auxiliary cylinder (202) on the inside; joined with two covers (113 and 114) as in the previous case. The smaller tubular chamber does not enter the inner cylinder of the larger tubular chamber under normal circumstances, they interfere with each other.
Se someten a alta presión las cámaras tubulares una a continuación de la otra, al interior de una cámara de ensamble (301 ); manteniendo el interior de cada cámara tubular entre las tapas, sin presión; de manera qué de la cámara tubular mayor, el diámetro interno del cilindro menor aumenta en 51 , y en la cámara tubular menor el diámetro externo del cilindro mayor, disminuye en 52; por el aumento de presión en la cámara de ensamble. The tubular chambers are subjected to high pressure one after the other, inside an assembly chamber (301); keeping the interior of each tubular chamber between the covers, without pressure; so that of the larger tubular chamber, the internal diameter of the smaller cylinder increases by 51, and in the smaller tubular chamber the external diameter of the larger cylinder decreases by 52; due to the increase in pressure in the assembly chamber.
Si las dimensiones de las cámaras tubulares cuando están sometidas a alta presión son de manera que el diámetro interno de la cámara tubular más grande; sea igual o mayor al diámetro externo del cilindro mayor de la cámara tubular más pequeña; entonces ha desaparecido la interferencia producto de la presión y se pueden montar. If the dimensions of the tubular chambers when under high pressure are such that the internal diameter of the largest tubular chamber; is equal to or greater than the external diameter of the largest cylinder of the smallest tubular chamber; then the pressure interference has disappeared and they can be mounted.
Si las cámaras tubulares, son sometidas a una fuerza que las obligue a desplazar la menor dentro de la mayor, cuando se den las condiciones de presión y hagan variar los diámetros; entonces la cámara tubular menor entrará dentro de la cámara tubular mayor. Puede ser por gravedad o una banda elástica dispuesta, que esté forzando para que ingrese una cámara tubular dentro de la otra cuando desaparezca la interferencia; y se acomodan suavemente. If the tubular chambers are subjected to a force that forces them to move the smaller one inside the larger one, when pressure conditions occur and the diameters vary; then the smaller tubular chamber will enter into the larger tubular chamber. It can be due to gravity or an elastic band arranged, which is forcing a tubular chamber inside the other when the interference disappears; and settle gently.
Cuando se baja la presión de la cámara de ensamble, se traban las cámaras tubulares fuertemente porque tienden a retomar sus diámetros. Se extraen las cámaras tubulares pegadas y se desarman, dejando solo los dos cilindros unidos por interferencia. Luego se le pone otro cilindro por interferencia y se unen de igual manera y otro, hasta que tenemos un cilindro formado por varios cilindros concéntricos. Se le pones sendas tapas y se logra una cámara de unión por interferencia de presión isostática. Notar que el cilindro unido con interferencia, queda pretensado por fuera y precomprimido por dentro cuando está sin fluido, pero que cambia el lado precomprimido a comprimido y se uniforma el esfuerzo en la medida que le ingresa fluido a presión. When the pressure in the assembly chamber is lowered, the tubular chambers jam strongly because they tend to resume their diameters. The stuck tubular chambers are removed and disassembled, leaving only the two cylinders joined by interference. Then another cylinder is placed by interference and they are joined in the same way and another, until we have a cylinder made up of several concentric cylinders. Two covers are put on it and a union chamber is achieved by interference of isostatic pressure. Note that the interference-joined cylinder remains prestressed on the outside and pre-stressed on the inside when it is empty of fluid, but that the pre-stressed side changes to compressed and the stress becomes uniform as fluid enters it under pressure.
Este cilindro, resiste más alta presión, que uno de simple pared gruesa del mismo material y dimensiones; porque cuando está a presión máxima, hace el mismo esfuerzo independiente de que se mida o calcule en un punto más al centro o más externo de la pared, como se muestra en la Figura 2. This cylinder resists higher pressure than a simple thick-walled cylinder of the same material and dimensions; because when it is at maximum pressure, it makes the same effort regardless of whether it is measured or calculated at a more central or external point of the wall, as shown in Figure 2.
Existen alternativas de hacer la nueva unión por interferencia de presión isostática, que son variaciones de las cámaras tubulares, que se arman con uno, dos o ningún cilindro auxiliar, tapas que en algunos casos son circulares y un otros anilladas. There are alternatives to make the new union by interference of isostatic pressure, which are variations of the tubular chambers, which are assembled with one, two or no auxiliary cylinders, covers that in some cases are circular and in others ringed.
Notar que la cámara (301), no necesita tanta presión para producir la unión por interferencia de tubos que pueden ser para fabricar otra cámara, que sí es para resistir alta presión. Basta que la cámara (301 ) haga una presión suficiente para lograr que uno de los cilindros a unir sea de pared delgada y esté al máximo esfuerzo al momento de ensamblar. Note that the chamber (301) does not need as much pressure to produce the union by interference of tubes that can be used to manufacture another chamber, which is to resist high pressure. It is enough that the chamber (301) exerts sufficient pressure to ensure that one of the cylinders to be joined is thin-walled and is at maximum effort when assembling.
Alternativamente, se puede usar solo un cilindro a unir se haga cámara tubular y el otro cilindro a unir no se contraiga ni expanda con la presión, pero se logra hacer desaparecer la interferencia con la expansión del cilindro menor de la cámara tubular. Alternatively, only one cylinder to be joined can be used to make a tubular chamber and the other cylinder to be joined does not contract or expand with pressure, but the interference is made to disappear with the expansion of the smaller cylinder of the tubular chamber.
Para evitar el pandeo por la presión externa que tienen los cilindros a unir por interferencia, al estar con mucha presión externa, se le instalan soportes internos adecuados. In order to avoid buckling due to the external pressure that the cylinders have to join due to interference, when they are under a lot of external pressure, adequate internal supports are installed.
Ejemplo 1. Usos del cilindro o cámara de unión por interferencia de presión isostática. Example 1. Uses of the cylinder or union chamber by interference of isostatic pressure.
Construido un cilindro grueso de unión por interferencia, se pueden hacer cámaras fácilmente, como la que se muestra en la Figura 4, agregándole tapas macizas. Se puede usar con los mismos propósitos de hacer alimentos pasteurizados por presión, pero mucho más simple que el sistema HHP, que necesita de gran bobinadora con tensión; o aplicarlo para metalurgia haciendo un sistema que reemplace al sistema HIP. Constructed from a thick interference-jointed cylinder, chambers such as the one shown in Figure 4 can easily be made by adding solid tops. It can be used for the same purposes of making pressure pasteurized foods, but much simpler than the HHP system, which it needs a large tension winder; or apply it to metallurgy making a system that replaces the HIP system.
Como cilindro para hacer cañones precomprimidos por dentro y pretensados por fuera, mucho mejor que un cañón con interferencia por temperatura, para cañones delgados de f 0,5 centímetros o gruesos de f 50 centímetros. As a cylinder to make barrels that are pre-compressed on the inside and pre-stressed on the outside, much better than a barrel with temperature interference, for thin barrels of f 0.5 centimeters or thick ones of f 50 centimeters.
En una multicámara donde es mucha la ventaja de hacer ultra alta presión y no es posible aplicar las cámaras bobinadas, por los yugos de soporte externo que tienen. Para hacer tanques de almacenamiento de hidrógeno, construido de cilindros unidos por interferencia de presión isostática, que resultan mejores a los nuevos tanques bobinados, sin yugos. Hay que hacer distintos modelos para la función específica, para la presión, para el tamaño, la temperatura, etc. In a multi-chamber where there is a great advantage of making ultra-high pressure and it is not possible to apply coiled chambers, due to the external support yokes they have. To make hydrogen storage tanks, constructed of cylinders joined by isostatic pressure interference, which are better than the newer wound tanks, without yokes. Different models have to be made for the specific function, for the pressure, for the size, for the temperature, etc.
PIEZAS QUE SE MUESTRAN EN LOS DIBUJOS
Figure imgf000009_0001
PARTS SHOWN IN THE DRAWINGS
Figure imgf000009_0001

Claims

REIVINDICACIONES
1. Método de unir dos o más cilindros concéntricos (101 , 102), con interferencia de presión isostática, uno o dos de los cuales pueden ser cilindros ya unidos con interferencia; tubos cilindricos auxiliares (201 , 202), tapas (211 , 212, 213, 214) y cámara de ensamble (301) de alta presión, que se usarán como herramientas del proceso de unir por interferencia de presión isostática; guías elásticas y estructurales, para empujar un cilindro dentro de otro, estando en el interior de la cámara de ensamble (301); CARACTERIZADO porque se preparan cada par o juego de cilindros (101 , 201) y (102, 202), concéntricos, con las respectivas tapas (211 , 212), (213, 214), soldadas o pegadas formando cámaras auxiliares o tubulares; de manera que se someten a presión dentro de la cámara de ensamble (301 ), con líquido o gas, teniendo la consideración que no le ingrese presión al interior de las cámaras tubulares, a través de las tapas; deben estar ambas cámaras tubulares, consecutivas armadas con artificio, con unas pequeñas guías, de modo que cuando suba la presión y desaparezca la interferencia, porque la presión aumenta el diámetro del cilindro (101), de la cámara tubular mayor y disminuye el diámetro del cilindro (102) de la cámara tubular menor, entonces, está en condiciones de encajar y deslizarse y meterse la cámara tubular menor, dentro en la cámara tubular mayor, a través de la guía que se hizo para tal efecto, encajándose por que se acciona el mecanismo que hace fuerza para tal efecto, que puede ir por el interior de los tubos de menor radio o por fuera; después que se produce el deslizamiento o ajuste, se quita la presión de la cámara de ensamble (301) a los cilindros ya encajados, se produce variación en los diámetros y tienden a volver al diámetro inicial los tubos que se unen por interferencia (101) y (102); se sacan los cilindros auxiliares y queda solo ambos cilindros unidos por interferencia. 1. Method of joining two or more concentric cylinders (101, 102), with isostatic pressure interference, one or two of which may be cylinders already joined with interference; auxiliary cylindrical tubes (201, 202), covers (211, 212, 213, 214) and high-pressure assembly chamber (301), which will be used as tools in the joining process by isostatic pressure interference; elastic and structural guides, to push one cylinder into another, being inside the assembly chamber (301); CHARACTERIZED because each pair or set of cylinders (101, 201) and (102, 202) are prepared, concentric, with the respective covers (211, 212), (213, 214), welded or glued, forming auxiliary or tubular chambers; so that they are put under pressure inside the assembly chamber (301), with liquid or gas, considering that no pressure enters the interior of the tubular chambers, through the covers; Both consecutive tubular chambers must be armed with artifice, with small guides, so that when the pressure rises and the interference disappears, because the pressure increases the diameter of the cylinder (101), of the larger tubular chamber and the diameter of the cylinder decreases. cylinder (102) of the smaller tubular chamber, then, is in a position to fit and slide and insert the smaller tubular chamber, inside the larger tubular chamber, through the guide that was made for this purpose, fitting because it is activated the mechanism that exerts force for this purpose, which can go inside the tubes with a smaller radius or outside; After the sliding or adjustment occurs, the pressure of the assembly chamber (301) is removed from the already fitted cylinders, there is a variation in the diameters and the tubes that are joined by interference (101) tend to return to the initial diameter. and (102); The auxiliary cylinders are removed and only the two cylinders are joined by interference.
2. El método según la reivindicación 1 , CARACTERIZADO porque se prepara un par de tubos cilindricos (101 y 201) con tapas, otro tubo 102, con tapas circulares o sin tapas, que la interferencia se da entre los tubos (101 , 102), que de manera análoga al caso de la reivindicación 1 , con la presión en la cámara de ensamble (301) desaparece la interferencia, ocasión en que se desliza un tubo cilindrico (102) dentro del otro (101); se baja la presión en la cámara de ensamble y se desmonta el cilindro auxiliar y las tapas, quedando finalmente los cilindros unidos por la interferencia. 2. The method according to claim 1, CHARACTERIZED in that a pair of cylindrical tubes (101 and 201) with lids is prepared, another tube 102, with circular lids or without lids, that the interference occurs between the tubes (101, 102) , which analogously to the case of claim 1, with the pressure in the assembly chamber (301) the interference disappears, when a cylindrical tube (102) slides inside the other (101); the pressure in the assembly chamber is lowered and the auxiliary cylinder and the covers are disassembled, finally leaving the cylinders united by the interference.
3. El método según la reivindicación 1 , CARACTERIZADO porque se prepara un par de tubos cilindricos (102 y 202) con tapas, otro tubo 101 sin tapas; con la interferencia se da igualmente en los tubos 101 y 102; que de manera análoga al caso anterior, con la presión desaparece la interferencia, ocasión en que se desliza un tubo cilindrico (102) dentro del otro (101); se baja la presión en la cámara de ensamble (301 ) y se desmonta el cilindro auxiliar y las tapas, quedando finalmente los cilindros unidos por la interferencia.3. The method according to claim 1, CHARACTERIZED in that a pair of cylindrical tubes (102 and 202) with lids is prepared, another tube 101 without lids; with interference it also occurs in tubes 101 and 102; that in a similar way to the previous case, with the pressure the interference disappears, occasion in which a cylindrical tube (102) slides inside the other (101); The pressure in the assembly chamber (301) is lowered and the auxiliary cylinder and the covers are disassembled, finally leaving the cylinders joined by the interference.
4. El método según la reivindicación 1 ; CARACTERIZADO porque se prepara un tubo cilindrico 102 con tapas circulares, otro tubo 101 sin tapas, sometido a presión desaparece la interferencia, ocasión en que se desliza un tubo cilindrico (102) dentro del otro (101); se baja la presión en la cámara de ensamble (301 ) y se desmontan las tapas, quedando finalmente los cilindros unidos por la interferencia. 4. The method according to claim 1; CHARACTERIZED because a cylindrical tube 102 with circular caps is prepared, another tube 101 without caps, under pressure the interference disappears, when a cylindrical tube (102) slides inside the other (101); The pressure in the assembly chamber (301) is lowered and the covers are disassembled, finally leaving the cylinders united by the interference.
PCT/CL2022/050069 2021-07-05 2022-06-30 Cylinders or tubes assembled by means of a new method for eliminating interference WO2023279218A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280047710.2A CN117642238A (en) 2021-07-05 2022-06-30 Cylinder or tube assembled by new method for eliminating interference
EP22836446.9A EP4368309A1 (en) 2021-07-05 2022-06-30 Cylinders or tubes assembled by means of a new method for eliminating interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2021001788A CL2021001788A1 (en) 2021-07-05 2021-07-05 Cylinders or tubes mounted by new way to eliminate interference
CL1788-2021 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023279218A1 true WO2023279218A1 (en) 2023-01-12

Family

ID=81535998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050069 WO2023279218A1 (en) 2021-07-05 2022-06-30 Cylinders or tubes assembled by means of a new method for eliminating interference

Country Status (5)

Country Link
EP (1) EP4368309A1 (en)
CN (1) CN117642238A (en)
AR (1) AR126378A1 (en)
CL (1) CL2021001788A1 (en)
WO (1) WO2023279218A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2022002608A1 (en) * 2022-09-26 2023-03-03 Mulet Martinez Mauricio Isostatic pressure interference joint
CL2022002776A1 (en) * 2022-10-07 2023-03-03 Luis Osvaldo Castro Arriagada New union due to isostatic pressure interference in the depth of the sea

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068562A (en) * 1960-04-15 1962-12-18 Struthers Wells Corp Method of making pressure vessels
US3345732A (en) * 1964-06-11 1967-10-10 Gen Dynamics Corp Method of shrink fitting and apparatus therefor
DE102015117956A1 (en) * 2015-10-21 2017-04-27 Salzgitter Flachstahl Gmbh Composite tube consisting of a support tube and at least one protective tube and method for producing this
ES2635277A1 (en) * 2016-03-30 2017-10-03 Metronics Technologies, S.L. Process for manufacturing containers for the treatment of high pressure food (Machine-translation by Google Translate, not legally binding)
CL2019002988A1 (en) 2019-10-18 2020-02-28 Mauricio Eduardo Mulet Martinez Electric multi-chamber with multiple walls with pressure multipliers
CL2019002913A1 (en) 2019-10-14 2020-04-03 Luis Osvaldo Castro Arriagada Multiple wall tube or chamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068562A (en) * 1960-04-15 1962-12-18 Struthers Wells Corp Method of making pressure vessels
US3345732A (en) * 1964-06-11 1967-10-10 Gen Dynamics Corp Method of shrink fitting and apparatus therefor
DE102015117956A1 (en) * 2015-10-21 2017-04-27 Salzgitter Flachstahl Gmbh Composite tube consisting of a support tube and at least one protective tube and method for producing this
ES2635277A1 (en) * 2016-03-30 2017-10-03 Metronics Technologies, S.L. Process for manufacturing containers for the treatment of high pressure food (Machine-translation by Google Translate, not legally binding)
CL2019002913A1 (en) 2019-10-14 2020-04-03 Luis Osvaldo Castro Arriagada Multiple wall tube or chamber
CL2019002988A1 (en) 2019-10-18 2020-02-28 Mauricio Eduardo Mulet Martinez Electric multi-chamber with multiple walls with pressure multipliers

Also Published As

Publication number Publication date
CN117642238A (en) 2024-03-01
EP4368309A1 (en) 2024-05-15
CL2021001788A1 (en) 2022-04-22
AR126378A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2023279218A1 (en) Cylinders or tubes assembled by means of a new method for eliminating interference
CN103322857B (en) Small two-stage light-gas gun
US4195390A (en) Apparatus and method for manipulation and sleeving of tubular members
CN208703398U (en) A kind of Oil & Gas Storage pipeline plug
ES2953643T3 (en) Modular split sleeve
WO2015132763A3 (en) High pressure valve assembly
JP5762093B2 (en) Fluid cooling system for aircraft / spacecraft and fluid cooling method for aircraft / spacecraft
US20180170582A1 (en) System for supplying an igniter with propellant
CN102692149B (en) The container of heat accumulation and heat release equipment, heat accumulation and cluster of fuel elements and energy generation devices
WO2016205966A1 (en) Ultra-high isostatic pressure booster or intensifier in a multi-wall multi-chamber
Rolland et al. Isobaric storage of compressed air: Introduction of a novel concept based on phase change materials and pressure equalizing modules
US247591A (en) Expansion-joint
US3276477A (en) Cushioning means for hydraulic system
RU2006118398A (en) FUEL TANK INFLATING SYSTEM (OPTIONS)
US3089520A (en) Metallic piping system for fluids at high temperature
ES2506740A1 (en) Multi-layer conduit or container for high-pressure fluids
RU180891U1 (en) Reception / launch chamber for cleaning and diagnostics of the linear part of oil trunk pipelines
WO2021072563A1 (en) Multiple walled tube or chamber
US3208646A (en) Hydropneumatic accumulator
US2173678A (en) High-pressure bellows structure
US9216309B1 (en) Adiabatic expansion nozzle design criteria
WO2024069413A1 (en) Isostatic interference-fit joint
US4480858A (en) Flexible pipeline joints
US2565648A (en) Elastic fluid turbine connection
Bernier Scaling and designing large-bore two-stage high velocity guns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280047710.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024500650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022836446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022836446

Country of ref document: EP

Effective date: 20240205