WO2023277126A1 - Terminal and wireless communication method - Google Patents
Terminal and wireless communication method Download PDFInfo
- Publication number
- WO2023277126A1 WO2023277126A1 PCT/JP2022/026194 JP2022026194W WO2023277126A1 WO 2023277126 A1 WO2023277126 A1 WO 2023277126A1 JP 2022026194 W JP2022026194 W JP 2022026194W WO 2023277126 A1 WO2023277126 A1 WO 2023277126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trs
- terminal
- information
- timing
- period
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 18
- 230000008859 change Effects 0.000 claims description 21
- 101150096310 SIB1 gene Proteins 0.000 description 32
- 238000010586 diagram Methods 0.000 description 26
- 238000012544 monitoring process Methods 0.000 description 19
- 235000019527 sweetened beverage Nutrition 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 13
- 230000011664 signaling Effects 0.000 description 12
- 230000004913 activation Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- the present disclosure relates to terminals and wireless communication methods.
- LTE Long Term Evolution
- RAT Radio Access Technology
- NR New Radio
- E-UTRA Evolved Universal Terrestrial Radio Access
- a reference signal for tracking (hereinafter referred to as “tracking reference signal (TRS)" is used to synchronize in the time domain and/or frequency domain (hereinafter referred to as “time/frequency synchronization” ) is being considered.
- TRS tracking reference signal
- a terminal in an idle state or an inactive state uses the TRS instead of a synchronization signal to perform time/frequency synchronization before a paging occasion (PO). is expected to reduce the power consumption of the terminal.
- TRS availability instruction instructs the terminal of instruction information regarding the availability of the TRS in the resource and / or period set for the TRS, and / or the instruction information It is also considered to be able to control whether or not TRS is actually transmitted in the relevant resource and/or period by providing a validity period to .
- TRS availability instruction instructs the terminal of instruction information regarding the availability of the TRS in the resource and / or period set for the TRS. It is also considered to be able to control whether or not TRS is actually transmitted in the relevant resource and/or period by providing a validity period to .
- the present disclosure has been made in view of such circumstances, and aims to provide a terminal and a wireless communication method capable of appropriately controlling operations related to TRS.
- a terminal includes a receiving unit that receives system information including indication information indicating that the tracking reference signal is available in resources and / or opportunities configured for the tracking reference signal; a control unit that determines the start timing of a timer related to the validity period of the instruction information, using the timing related to the reception of system information, the timing related to the reception of system information other than the system information, or the boundary of an update period as a reference timing.
- An object of one aspect of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling operations related to TRS.
- FIG. 1 is a diagram showing an example of an outline of a wireless communication system according to this embodiment.
- FIG. 2 is a diagram showing an example of acquisition of an SI message according to this embodiment.
- FIGS. 3A and 3B are diagrams showing examples of TRS availability indications and validity periods according to this embodiment.
- FIG. 4 is a diagram showing another example of the TRS availability indication and validity period according to this embodiment.
- FIG. 5 is a diagram showing an example of TRS-related operations during cell reselection according to the present embodiment.
- FIG. 6 is a diagram illustrating another example of TRS-related operations during cell reselection according to the present embodiment.
- FIGS. 7A and 7B are diagrams showing an example of the operation during activation of the valid timer according to this embodiment.
- FIG. 8 is a diagram showing an example of an SI update procedure according to this embodiment.
- FIG. 9 is a diagram showing an example of the control operation of the validity period of the TRS availability indication according to this embodiment.
- FIG. 10 is a diagram showing another example of the control operation of the validity period of the TRS availability indication according to this embodiment.
- FIG. 11 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment.
- FIG. 12 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
- FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
- FIG. 1 is a diagram showing an example of an overview of a wireless communication system according to this embodiment.
- the wireless communication system 1 may include a terminal 10, a base station 20, and a core network 30.
- the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
- RAT radio access technology
- 6th generation or later RAT can be used.
- the terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like.
- Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on.
- the terminal 10 may be mobile or stationary.
- the terminal 10 is configured to be able to communicate using, for example, NR as the RAT.
- the base station 20 forms one or more cells C and communicates with the terminal 10 using the cells.
- Cell C may be interchangeably referred to as serving cell, carrier, component carrier (CC), and the like.
- the base station 20 may configure one primary cell and one or more secondary cells for the terminal 10 for communication (also called carrier aggregation). That is, one or more cells C include at least primary cells and may include secondary cells.
- one or more bandwidth parts may be set for one cell C.
- the BWP mainly used when the terminal 10 initially accesses the cell is also called initial downlink BWP (Initial DL BWP) and initial uplink BWP (Initial UL BWP).
- the base station 20 broadcasts the information used for setting the frequency position, bandwidth, subcarrier spacing and/or cyclic prefix for each of the initial downlink BWP and the initial uplink BWP in the system information. may
- Base station 20 includes gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB -DU, Remote Radio Head (RRH), Integrated Access and Backhaul/Backhauling (IAB) node, etc.
- the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
- the core network 30 is, for example, an NR-compatible core network (5G Core Network: 5GC), but is not limited to this.
- a device on the core network 30 (hereinafter also referred to as “core network device”) performs mobility management such as paging and location registration of the terminal 10 .
- a core network device may be connected to the base station 20 via a predetermined interface (eg, S1 or NG interface).
- the core network device includes, for example, an Access and Mobility Management Function (AMF) that manages C-plane information (e.g., information related to access and mobility management), and a User that controls transmission of U-plane information (e.g., user data).
- AMF Access and Mobility Management Function
- UPF Plane Function
- the terminal 10 receives downlink (DL) signals from the base station 20 and/or transmits uplink (UL) signals.
- DL downlink
- UL uplink
- One or more cells C are configured in the terminal 10, and at least one of the configured cells is activated.
- the maximum bandwidth of each cell is, for example, 20 MHz or 400 MHz.
- the terminal 10 performs a cell search based on a synchronization signal (eg, Primary Synchronization Signal (PSS) and/or Secondary Synchronization Signal (SSS)) from the base station 20.
- Cell search is a procedure by which the terminal 10 acquires time and frequency synchronization in a cell and detects the identifier of the cell (eg, physical layer cell ID).
- Blocks containing at least one of the synchronization signal, broadcast channel (for example, Physical Broadcast Channel (PBCH)) and broadcast channel demodulation reference signal (DMRS) are synchronization signal blocks (Synchronization Signal Also called Block: SSB), SS/PBCH block, and the like.
- SSB Synchronization Signal Also called Block: SSB
- One or more SSBs may constitute one SS burst, and one or more SS bursts may constitute one SS burst set.
- the SS burst set may be transmitted at regular intervals (eg, 20 ms (2 radio frames)).
- SSBs with different indices correspond to different beams and may be transmitted by sequentially switching beam directions by beam sweeping.
- Terminal 10 determines a search space and/or a control resource set (Control Resource Set: CORESET) based on parameters included in a radio resource control (RRC) message (hereinafter referred to as "RRC parameters").
- RRC radio resource control
- RRC parameters parameters included in a radio resource control (RRC) message
- RRC parameters Within the search space associated with the CORESET, perform downlink control information transmitted via a downlink control channel (for example, physical downlink control channel (PDCCH)) (Downlink Control Information: DCI) monitoring
- the RRC message may include, for example, an RRC setup message, an RRC reconfiguration message, an RRC resume message, system information, and the like.
- DCI monitoring means that the terminal 10 blind-decodes the PDCCH candidate (PDCCH candidate) in the search space set in the assumed DCI format.
- the number of bits (also referred to as size, bit width, etc.) of the DCI format is predetermined or derived according to the number of bits of fields included in the DCI format.
- the terminal 10 specifies the number of bits in the DCI format and the scramble (hereinafter referred to as “CRC scramble”) of the cyclic redundancy check (CRC) bits (also referred to as CRC parity bits) of the DCI format.
- DCI for the terminal 10 is detected based on the Radio Network Temporary Identifier (RNTI).
- RNTI Radio Network Temporary Identifier
- DCI monitoring is also called PDCCH monitoring, monitor, and the like.
- the period during which DCI is monitored is also called a PDCCH monitoring occasion.
- a search space set is a set of one or more search spaces.
- a search space set commonly used by one or more terminals 10 (hereinafter referred to as a "common search space (CSS) set") and a terminal-specific search space set (UE-specific search space (USS) set), and
- the search space set used for PDCCH monitoring of the terminal 10 uses upper layer parameters (for example, RRC Information Element (IE) 'SearchSpace', RRC IE 'pagingSearchSpace', RRC IE 'searchSpaceSIB1', RRC IE 'searchSpaceOtherSystemInformation', etc.).
- RRC Information Element IE
- Terminal 10 may be set in the terminal 10 by Terminal 10 detects DCI that is CRC-scrambled by a specific RNTI (eg, Cell (C)-RNTI, Paging (P)-RNTI, etc.) by PDCCH monitoring using a search space set, and uses the DCI to Controls reception of the scheduled PDSCH and/or transmission of an uplink shared channel (eg, physical uplink shared channel (PUSCH)).
- a specific RNTI eg, Cell (C)-RNTI, Paging (P)-RNTI, etc.
- PDCCH Physical uplink shared channel
- the system information broadcast in Cell C may include a Master Information Block (MIB) and/or one or more System Information Blocks (SIB).
- the MIB is broadcast via a broadcast channel (BCH).
- MIB and SIB1 are also called Minimum System Information, and SIB1 is also called Remaining Minimum System Information (RMSI).
- SIB1 is broadcast via a downlink shared channel (DL-SCH).
- SIB1 is also called Other System Information (OSI).
- SIB1 is cell-specific and SIBx other than SIB1 is cell-specific or area-specific containing one or more cells. This area is also called a system information area or the like.
- SIBx are mapped to a system information (SI) message, and the SI message is broadcast via DL-SCH.
- SI message may be associated with a periodically occurring time-domain window (hereinafter “SI window”) and sent within the SI window.
- SI window a periodically occurring time-domain window
- BCH and DL-SCH may be interchanged with PBCH and physical downlink shared channel (PDSCH), respectively.
- FIG. 2 is a diagram showing an example of obtaining an SI message according to this embodiment.
- SIBx and SIBy are mapped to SI message #0 and SIBz is mapped to SI message #1.
- x, y, and z are arbitrary character strings such as 2, 3, .
- the SI messages #0 and #1 may be broadcast at predetermined intervals, or may be broadcast on demand in response to a request from the terminal 10.
- each SI message #0 may be identical within the modification period.
- FIG. 2 is only an example, the number of SI messages, the number of SIBs mapped to each SI message, whether SIBx, SIBy and SIBz are area-specific or cell-specific, etc. are not shown. Not limited.
- the terminal 10 detects the SSB and acquires the MIB broadcasted via the PBCH.
- Terminal 10 monitors a search space set (eg, Type0-PDCCH CSS set) configured for SIB1 to detect a CRC-scrambled DCI with a specific RNTI (eg, System Information (SI)-RNTI), SIB1 is received via the PDSCH scheduled by the DCI.
- the search space set for SIB1 may be set based on parameters in the MIB, but is not limited to this.
- SIB1 may also include at least one of the following: Information about each SI message (e.g. each 'schedulingInfo' in the RRC IE 'schedulingInfoList') - Identification of the area to which the area-specific SIB belongs (e.g. "systemInformationAreaID" in the RRC IE) - Information about the length of the SI window (e.g. "si-WindowLength” in the RRC IE), where the length is indicated e.g. in number of slots. • Information about the period of each SI message (eg 'si-Periodicity' in the RRC IE 'schedulingInfo'), where the period is indicated eg in number of radio frames.
- Information about each SI message e.g. each 'schedulingInfo' in the RRC IE 'schedulingInfoList'
- Identification of the area to which the area-specific SIB belongs e.g. "systemInformationAreaID” in the RRC IE
- Information about each SIB mapped to each SI message (e.g., each 'SIB-TypeInfo' in 'SIB-Mapping' in the RRC IE 'schedulingInfo'), where the information about each SIB is, for example, information about the SIB type (e.g., RRC IE "type"), information about the version or update count of each SIB (hereinafter referred to as "version information", e.g., RRC IE "valueTag”), information indicating that each SIB is area-specific (e.g. , RRC IE “areaScope”). Note that not including information indicating that each SIB is area-specific may indicate that each SIB is cell-specific.
- Terminal 10 monitors a search space set (eg, Type0A-PDCCH CSS set) configured for OSI to detect a DCI that is CRC scrambled with a specific RNTI (eg, SI-RNTI), and performs scheduling using the DCI.
- SI messages #0 and #1 are received via the PDSCH, and operations are performed based on the OSI (here, SIBx, SIBy, and SIBz) included in the SI messages #0 and #1, respectively.
- SIBx and SIBy included in SI message #0 are area-specific, and SIBz included in SI message #1 is cell-specific.
- the version information of SIB1 (for example, RRC IE "valueTag") shall indicate that SIBx and SIBz have been updated once and have a version of v1, and SIBy has not been updated and have a version of v0.
- the terminal 10 may determine whether or not the stored SIBx is valid based on the version indicated by the version information and the version of the SIBx stored in the terminal 10 itself. For example, when "v1" indicated by valueTag in SIB1 matches the version of stored SIBz, terminal 10 does not need to re-receive SI message #1 including SIBz.
- the terminal 10 may re-receive the SI message #0 including SIBx.
- SIBx, SIBy, and SIBz may have their valuetags incremented by one each time the content is changed.
- paging In paging, when the terminal 10 is in an idle state or an inactive state, a network-initiated message for setting up a connection (hereinafter, a “paging message”) is transmitted to the terminal 10 . Also, in paging, for example, system information change notifications and/or short messages used for public warnings (e.g., Earthquake and Tsunami Warning System (ETWS), Commercial Mobile Alert Service (CMAS), etc.) is transmitted to terminal 10 . The short message may be transmitted to the terminal 10 regardless of the state of the terminal 10 (eg, idle state, inactive state, connected state, etc.).
- EWS Earthquake and Tsunami Warning System
- CMAS Commercial Mobile Alert Service
- the idle state is a state in which an RRC layer connection (hereinafter referred to as "RRC connection") between the terminal 10 and the base station 20 is not established. Also called etc.
- RRC connection an RRC layer connection
- a terminal 10 in an idle state receives system information broadcast in a cell on which it camps.
- the terminal 10 in the idle state transitions to the connected state when the RRC connection is established.
- the inactive state is a state in which the RRC connection is established but suspended, and is also called RRC_INACTIVE state, inactive mode, RRC inactive mode, and the like.
- the terminal 10 in the inactive state receives system information broadcasted in the cell on which it camps.
- the terminal 10 in the inactive state transitions to the connected state when the RRC connection is restarted, and transitions to the idle state when the RRC connection is released.
- the connected state is a state in which the RRC connection is established, and is also called RRC_CONNECTED state, connected mode, RRC connected mode, and the like.
- the terminal 10 in the connected state transitions to the idle state when the RRC connection is released, and transitions to the inactive state when the RRC connection is suspended.
- a terminal 10 in an idle state or an inactive state receives a paging message at a paging occasion (PO), which is a period of a predetermined period, by discontinuous reception (DRX).
- PO paging occasion
- DRX discontinuous reception
- a PO is associated with a paging frame (PF) having a predetermined period.
- the PF may, for example, consist of radio frames identified by a specific number (eg, System frame number (SFN)).
- SFN System frame number
- a PO may be composed of, for example, a subframe, a slot, or a predetermined number of symbols.
- the radio frame may consist of 10 subframes, and one subframe may be 1 ms.
- One slot may include a predetermined number of symbols (eg, 14 symbols).
- PFs may be set with a cycle determined based on the DRX cycle (hereinafter referred to as "paging cycle"), and one PO may be set for each PF. That is, the PO may be set in the terminal 10 in the paging cycle.
- a PO may contain one or more PDCCH monitoring opportunities.
- PO is exemplified as a paging period, but it is of course not limited to this, and other terms corresponding to PF or paging period may be used.
- the terminal 10 monitors a search space set (eg, Type2-PDCCH CSS set) set by a higher layer parameter (eg, RRC IE "pagingSearchSpace") to obtain a specific RNTI (eg, paging (P)-RNTI) CRC-scrambled DCI (hereinafter also referred to as “paging DCI”) may be detected.
- a specific RNTI eg, paging (P)-RNTI
- CRC-scrambled DCI hereinafter also referred to as “paging DCI”
- paging DCI CRC-scrambled DCI
- the terminal 10 may receive a short message transmitted by the paging DCI.
- the paging DCI is used for scheduling the PDSCH used for paging message transmission and/or short message transmission.
- TRS Terminal 10 is under study to perform time/frequency synchronization using TRS.
- a terminal 10 in an idle or inactive state will, in principle, be in a sleep state with reduced power consumption between POs by DRX, but for a predetermined period before the next PO, for time/frequency synchronization.
- a wake-up state is entered. Specifically, it is assumed that the terminal 10 is in the deep sleep state from the previous PO to the predetermined period, and is in the micro sleep state after the predetermined period until the next PO.
- the deep sleep state is a state in which power consumption is further reduced than the micro sleep state.
- the deep sleep state is a state in which power consumption is further reduced than the micro sleep state. For example, when performing time/frequency synchronization using a TRS arranged at a time position closer to the next PO than an SS burst, compared to performing time/frequency synchronization using the SS burst, The period of the deep sleep state of the terminal 10 can be lengthened. Therefore, it is expected that the power consumption of the terminal 10 will be reduced by time/frequency synchronization using TRS.
- the TRS is composed of, for example, a channel state information reference signal (CSI-RS), but is not limited to this.
- TRS may also be referred to as CSI-RS, non-zero power CSI-RS (Non zero power-CSI-RS: NZP-CSI-RS), TRS/CSI-RS, reference signal, or the like.
- TRS may be, for example, at least one of the time/frequency synchronization, tracking, path delay spread, Doppler spread estimation, and loop convergence. Tracking is to track and/or compensate for time and/or frequency variations of the local oscillator of terminal 10 .
- the TRS can be any signal used for the above applications. Also, when the TRS is configured in the terminal 10, the terminal 10 can achieve time/frequency synchronization without referring to the SS burst.
- TRS resources are, for example, one or more resources for NZP-CSI-RS (hereinafter, “NZP-CSI-RS resources”) set (hereinafter, “NZP -CSI-RS resource set”).
- the TRS resource is a predetermined number of slots in a predetermined period (hereinafter referred to as "TRS period", for example, 10, 20, 40 or 80ms period), a predetermined number
- TRS period for example, 10, 20, 40 or 80ms period
- a predetermined periodic period eg, the predetermined number of slots
- TRS occurrence e.g, the predetermined number of slots
- the terminal 10 receives information (hereinafter referred to as "TRS resource/opportunity information") regarding TRS resources and/or TRS opportunities (hereinafter referred to as “TRS resources/opportunities").
- Terminal 10 may configure TRS resources/opportunities based on TRS resource/opportunity information from base station 20 .
- TRS resource/opportunity information for the terminal 10 in the idle or inactive state may be at least part of the TRS resource/opportunity information for the terminal 10 in the connected state.
- TRS resource/opportunity information for terminal 10 in connected state (for example, RRC IE 'NZP-CSI-RS ResourceSet', RRC IE 'CSI-ResourceConfig', etc.) is an RRC message (for example, RRC setup for establishing an RRC connection). message (RRCSetup message) or an RRC reconfiguration message (RRCReconfiguration message) that reconfigures the RRC connection.
- TRS resource/opportunity information for idle or inactive terminals 10 may be system information (eg, SIB1 or SIBx) and/or RRC messages (eg, RRC may be included in release messages (such as RRCRelease message).
- SIB1 or SIBx system information
- RRC messages eg, RRC may be included in release messages (such as RRCRelease message).
- the TRS resource/opportunity information for terminals 10 in an idle or inactive state includes information on TRS power (e.g., powerControlOffsetSS indicating TRS power offset with respect to SSS), information on TRS scrambling ID (scramblingID), Information on the time domain resource to which the TRS is mapped (for example, firstOFDMSymbolInTimeDomain indicating the first symbol for TRS), information on the frequency domain resource to which the TRS is mapped (for example, startingRB indicating the starting resource block of TRS, resource block of TRS nrofRBs, etc.) may be included.
- TRS power e.g., powerControlOffsetSS indicating TRS power offset with respect to SSS
- TRS scrambling ID e.g., information on TRS scrambling ID (scramblingID)
- Information on the time domain resource to which the TRS is mapped for example, firstOFDMSymbolInTimeDomain indicating the first symbol for TRS
- the TRS resource/opportunity information for terminals 10 in an idle or inactive state may include information on Quasi Co-Location (QCL), and an SSB index may be set. That is, the terminal 10 may identify the pseudo collocation relationship between the TRS transmitted in the corresponding TRS resource/opportunity and the SSB by setting the index of the SSB as the TRS resource/opportunity information.
- pseudo-colocation assumes that the large-scale properties of one signal (e.g., TRS) are the same in whole or in part as those of another signal (e.g., SSB).
- the signal (or channel) transmitted at one antenna port is estimated from the signal (or channel) transmitted at another antenna port.
- the wide area characteristics may include Doppler spread, Doppler shift, delay spread, average gain, and/or average delay. good.
- the SSB index set as the information about the pseudo collocation may be the index of the SSB (also called Cell-Defining SSB) related to SIB1. That is, when information about pseudo collocation is configured for the terminal 10 as TRS resource/opportunity information for the terminal 10 in idle or inactive state, an index of SSBs associated with SIB1 may be configured. Based on the index of the SSB associated with SIB1 set by the base station 20, the terminal 10 determines that the TRS transmitted in the corresponding TRS resource/opportunity and the SSB are pseudo collocations (a relationship of pseudo collocations ) can be considered.
- SIB1 may be referred to as RMSI (Remaining Minimum System Information).
- At least one parameter used for configuring TRS resources/opportunities for idle or inactive terminals 10 may be predetermined in the specification.
- the parameters are, for example, information on BWP (e.g., bwp-id indicating BWP ID), information on TRS resources in the time domain (e.g., resourceType indicating aperiodic, semi-persistent, or periodic), information on repetition ( For example, repetition that indicates repetition on or off), aperiodicTriggeringOffset that indicates the time offset between the aperiodic TRS trigger and the TRS resource, the antenna port of all NZP CSI-RS resources in the CSI-RS resource set are the same trs-Info indicating that, information on TRS power (eg, powerControlOffset indicating PDSCH power offset for NZP-CSI-RS), information on the number of antenna ports for TRS (eg, nrofPorts indicating the number of ports), time domain Information on resources (e.g., firstOFDMSYm
- the TRS resource/opportunity information may include parameters commonly used for configuring multiple TRS resources/opportunities and/or parameters used independently.
- Each of the multiple TRS resources/opportunities may be indexed. For example, an index may be provided for each parameter (eg, set of parameters) that is used independently to configure multiple TRS resources/opportunities. That is, parameters that are commonly used to configure multiple TRS resources/opportunities may not be indexed.
- TRS resources/opportunities may be controlled based on higher layer parameters (eg, RRC parameters and/or MAC CE, etc.) and/or physical layer parameters (eg, DCI format, etc.).
- TRS availability instruction the instruction information regarding the availability of TRS in the TRS resource/opportunity as described above.
- TRS availability instruction can be interchanged with TRS transmission availability on a TRS resource/opportunity, and the like.
- TRS is actually transmitted or not (from base station 20)" can be rephrased as “TRS (terminal 10) is available or not available”.
- the TRS availability indication consists of a predetermined number of bits, a first value of which (eg, '1') indicates that the TRS is available (i.e., actually transmitted from base station 20). and a second value of that bit (eg, '0') may indicate that the TRS is not available (ie not actually transmitted from base station 20).
- a predetermined number of bits that make up the TRS availability indication may also indicate whether TRS is available (i.e., actually transmitted from base station 20) on a particular TRS resource/opportunity. good.
- the first bit value indicates that the NZP-CSI- A second bit value (eg, '001' to '110', etc.) indicating that no TRS is transmitted in the entire RS resource set is part of the NZP-CSI-RS resource set, and the second bit Indicates that the TRS is transmitted on the NZP-CSI-RS resource indicated by the value, and a third bit value (eg, '111') indicates that the TRS is transmitted on the entire NZP-CSI-RS resource set.
- the base station 20 the value set as the TRS availability indication (eg, "000", “001” to "110", etc., and / or each of "111") and the NZP-CSI-RS
- the association with resource sets may be configured using higher layer signaling such as RRC messages.
- #0 to #3 in NZP-CSI-RS resources #0 to #3 may correspond to indices given to TRS resources/opportunities.
- each of the parameters e.g., sets of parameters
- Each of a plurality of TRS resources/opportunities may be identified by indicating the index as .
- the terminal 10 may identify TRS resources/opportunities. Terminal 10 may also determine TRS availability on the identified TRS resource/opportunity based on the TRS availability indication (or bit value).
- the TRS availability indication may indicate that TRS is available (that is, actually transmitted from base station 20). For example, the TRS availability indication is notified (or set to true) to the terminal 10 only when the TRS is actually transmitted from the base station 20 in the TRS resource/opportunity, and the TRS availability indication is not transmitted when the TRS is not actually transmitted. may not be notified to the terminal 10 . Conversely, the TRS availability indication may be notified to the terminal 10 only when the TRS is not actually transmitted.
- L1 signaling Physical layer (L1)-based signaling (hereinafter referred to as “L1 signaling”) or RRC layer signaling (hereinafter referred to as “RRC signaling”) may be used for such TRS availability indication signaling.
- RRC signaling RRC layer signaling
- the TRS availability indication may be the value of a predetermined field in DCI, or a specific signal (eg, SSB or TRS, etc.) or a specific sequence of such specific signals.
- the DCI including the TRS availability indication may be the DCI used for scheduling the PDSCH that carries the paging message (also referred to as "paging DCI"), or may be used for paging early indication (PEI).
- field also called "PEI DCI”
- paging DCI and/or PEI DCI may be a specific RNTI configured using higher layer signaling such as RRC messages (e.g., P- RNTI) may be CRC scrambled.
- the PEI is instruction information regarding paging targets in the PO. Based on the PEI (or based on whether or not the PEI is detected), the terminal 10 determines whether the terminal 10 or the group (or subgroup) to which the terminal 10 belongs is a paging target in the PO. do. The terminal 10 can reduce power consumption by skipping PDCCH monitoring and/or reception and/or decoding of paging messages for POs not targeted for paging.
- the PEI is not limited to the value of a predetermined field of DCI, but may be a specific signal (eg, SSB or TRS) or a specific sequence of the specific signal. This particular signal may be used as a TRS availability indication.
- the TRS availability indication is the value of a parameter or IE included in system information (such as SIB1 or SIBx other than SIB1) or an RRC message (such as an RRC release message used to release an RRC connection).
- system information such as SIB1 or SIBx other than SIB1
- RRC message such as an RRC release message used to release an RRC connection
- valid time The period during which the TRS availability indication as described above is considered valid (hereinafter referred to as “validity time”) may be defined in advance by specifications. Alternatively, information about the valid period (hereinafter referred to as “valid period information”) may be signaled from the base station 20 to the terminal 10 .
- the lifetime information may be included, for example, in system information, RRC messages, or DCI (eg, the paging DCI or PEI DCI described above).
- the validity period may be indicated by the number of predetermined time units (e.g., radio frames, slots, subframes, symbols, etc.), may be indicated by time (e.g., milliseconds, etc.), or may be indicated by the number of paging cycles. , PO or the number of DRX cycles. If the terminal receives a TRS availability indication within the validity period, the terminal may not reacquire another TRS availability indication within the validity period.
- the validity period may be controlled using a timer (hereinafter referred to as "validity timer").
- the valid timer may, for example, be started based on detection of TRS availability indication, may be started based on detection of system information, paging DCI or PEI DCI, SSB, SS burst or It may be initiated based on the PO.
- the validity timer may expire when a period predetermined by the specification or a period indicated by validity period information elapses. Terminal 10 may assume that TRS is not available on the TRS resource/opportunity in question if no TRS availability indication is received by the expiration of the validity timer.
- Figs. 3(A) and 3(B) are diagrams showing an example of a TRS availability indication and a validity period according to this embodiment.
- the deep sleep state is set from the end timing T0 of the previous PO to the start timing T1 of receiving the SS burst, and from the end timing T3 of the SS burst to the start timing T4 of the next PO.
- the micro-sleep state is assumed except for the TRS availability indication and TRS reception periods.
- Timings T5 to T9 are the same as timings T0 to T4. Note that FIGS. 3A and 3B are merely examples, and the period during which the terminal 10 is in the deep sleep state and/or the micro sleep state can be changed as appropriate.
- the TRS availability indication is included in the PEI DCI.
- the terminal 10 detects the PEI DCI through monitoring at PDCCH monitoring opportunities configured for PEI.
- the terminal 10 determines whether TRS is transmitted before the subsequent PO based on the TRS availability indication in the PEI DCI. For example, the terminal 10 determines, based on the PEI DCI detected at timing T2, that TRS will be transmitted on the TRS resource/opportunity before the next PO. On the other hand, the terminal 10 determines, based on the PEI DCI detected at timing T8, that no TRS will be transmitted on the TRS resource/opportunity before the next PO.
- the effective period of the TRS availability indication indicating that the TRS is available is from the detection timing of the PEI DCI including the TRS availability indication to the start timing of the next PO. good.
- the timer may be started at the PEI DCI detection timing T2, and stopped or expired at the next PO start timing T4.
- FIG. 3(B) differs from FIG. 3(A) in that the TRS availability indication is included in the paging DCI.
- the terminal 10 may operate by replacing PEI DCI in FIG. 3(A) with paging DCI.
- the effective period of the TRS availability indication may be from the end timing of the PO that detected the paging DCI including the TRS availability indication to the start timing of the next PO. According to the TRS availability indication using paging DCI, it is possible to flexibly change whether to transmit TRS in the configured TRS resources even if PEI is not transmitted.
- FIGS. 4A and 4B are diagrams showing other examples of TRS availability indications and validity periods according to this embodiment.
- FIGS. 4A and 4B differ from FIGS. 3A and 3B in that the validity period of the TRS availability indication spans one or more POs.
- FIG. 4(A) will explain the TRS availability indication included in the paging DCI, focusing on the differences from FIG. 3(B). Note that the validity period over one or more POs can also be applied to the TRS availability indication using the PEI described in FIG. 3(A).
- the validity period of the TRS availability indication may be 4 paging cycles.
- the TRS availability indication is TRS in the TRS resource set for 4 paging cycles from the PO. may indicate whether or not is sent.
- FIG. 4(B) shows an example of a TRS availability indication in system information (eg, SIB1 or SIBx).
- Terminal 10 may determine whether TRS is transmitted on TRS resources configured before each PO based on the availability indication in the system information. According to the TRS availability indication using system information, it is suitable for the case where the valid period is relatively long.
- the PDCCH monitoring opportunity for DCI used for TRS availability indication may be determined based on the time position of at least one of the SS burst, the SS burst set, and the PO.
- the PDCCH monitoring occasion may be determined based on the time position and the time offset for the time position.
- the time offset may be based on the subcarrier spacing of the SSB or Bandwidth part (BWP).
- TRS-related operations As described above, by notifying the terminal 10 of the TRS availability indication and/or providing a valid period for the TRS availability indication, it is possible to control whether or not to actually transmit the TRS in the TRS resource/period. When doing so, it is desirable to appropriately control operations related to TRS (hereinafter referred to as “TRS-related operations”).
- TRS-related operations operations related to TRS (hereinafter referred to as “TRS-related operations”).
- SIBx other than SIB1 (where x is an SIB type identifier such as 2, 3, 4, etc.) will be described as an example of system information, but the system information in this embodiment is not limited to SIBx. Also, although the terminal 10 is assumed to be in an idle state or an inactive state below, this does not preclude application in a connected state.
- TRS-related operation during cell reselection TRS-related operation of the terminal 10 during cell reselection will be described.
- the terminal 10 receives SIBx during cell selection or cell reselection. It is assumed that the SIBx is either area-specific or cell-specific. When performing cell reselection between cells in the same area, terminal 10 does not need to re-receive area-specific SIBx.
- the SIBx used for TRS resource/opportunity configuration is assumed to be either area-specific or cell-specific.
- the terminal 10 can use TRS in the TRS resource/opportunity based on whether the SIBx used for setting the TRS resource/opportunity is area-specific. Controls the validity timer for the validity period of the TRS availability indication.
- FIG. 5 is a diagram showing an example of TRS-related operations during cell reselection according to this embodiment.
- cells #0 and #1 are included in area #1, and cells #2 and #3 are included in area #2.
- terminal 10 camps on cell #0 and receives area #1 specific SIBx from base station 20 forming cell #0.
- Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx.
- the terminal 10 camping on cell #0 receives the TRS availability indication.
- the TRS availability indication may be included in any of the area #1 specific SIBx, paging DCI, PEI DCI, TRS as PEI or RRC messages.
- the terminal 10 starts a valid timer for the TRS availability indication at timing T1.
- the terminal 10 reselects the cell #1 belonging to the same area #1 as the cell #0 at timing T2. Since the SIBx received in cell #0 is specific to area #1 and the reselected cell #1 belongs to the same area #1 as cell #0, terminal 10 does not stop the validity timer at timing T2. continue running the relevant TRS-related operations. Also, since terminal 10 receives SIBx specific to area #1 in cell #0, it is not necessary to receive SIBx again when cell #1 is reselected.
- terminal 10 reselects cell #2 belonging to area #2 different from cell #1 at timing T3. Since the reselected cell #2 belongs to the area #2 different from the area #1 to which the cell #1 belongs, the terminal 10 stops the validity timer at the timing T3 without waiting for the expiration at the timing T4. Note that stopping (stopping) the validity timer may be translated into resetting or discarding (discard).
- terminal 10 When cell #2 is reselected, terminal 10 receives SIBx from base station 20 forming cell #2 because the area IDs to which cells #1 and #2 belong are different. In FIG. 5, it is assumed that the SIBx is specific to area #2, but the present invention is not limited to this.
- Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx.
- the terminal 10 camping on the cell #2 may receive the TRS availability indication and start the valid timer of the TRS availability indication at timing T3. The validity timer expires at time T5, terminating the validity period of the TRS availability indication received in cell #2.
- the terminal 10 resets the validity timer if cell reselection is performed between cells #0 and #1 belonging to the same area #1. continue without On the other hand, if the terminal 10 performs cell reselection between cells #1 and #2 belonging to different areas #1 and #2, respectively, it resets the validity timer. Therefore, even when the terminal 10 moves between cells belonging to the same area or between cells belonging to different areas, it is possible to appropriately control the valid period of the TRS availability indication.
- FIG. 6 is a diagram showing another example of TRS-related operations during cell reselection according to this embodiment.
- cell-specific SIBx shall be broadcast respectively.
- terminal 10 camps on cell #4 and receives SIBx unique to cell #4 from base station 20 forming cell #4.
- Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx.
- the terminal 10 camping on cell #4 receives the TRS availability indication.
- the TRS availability indication may be included in any of the cell #4 specific SIBx, paging DCI, PEI DCI, TRS as PEI or RRC messages.
- the terminal 10 activates the validity timer of the TRS availability indication at timing T1. For example, in FIG. 6, the valid period is from timing T1 to T3.
- terminal 10 reselects cell #5, which is different from cell #4, at timing T2.
- the terminal 10 stops the validity timer at timing T2 without waiting for the expiration at timing T3.
- the terminal 10 receives SIBx specific to cell #5 and configures TRS resources/opportunities based on the TRS resource/opportunity information in the SIBx.
- the terminal 10 that camps on cell #5 may receive the TRS availability indication and start the validity timer of the TRS availability indication at timing T2.
- the validity timer expires at time T4, ending the validity period of the TRS availability indication received in cell #5.
- the terminal 10 controls the validity timer of the TRS availability indication based on whether the SIBx containing the TRS resource/opportunity information is area-specific. Therefore, even when the terminal 10 moves between cells, it is possible to appropriately control the effective period of the TRS availability indication.
- the terminal 10 may use a valid timer to control the valid period of the TRS availability indication. For example, the terminal 10 may determine that the TRS availability indication is valid from the start of the validity timer to the expiration or stop of the validity timer (that is, while the validity timer is running). An operation in which TRS transmission is stopped for reasons such as the fact that there is no terminal in the connected state in the cell even while the valid timer is running is also assumed.
- FIGS. 7(A) and (B) are diagrams showing an example of TRS operation during valid timer activation according to the present embodiment.
- the TRS availability indication shall be included in, but not limited to, the paging DCI, higher layer signaling such as system information or RRC messages, or PEI DCI or It may be signaled to the terminal 10 using physical layer signaling such as a specific signal. Further, it goes without saying that the start timing of the valid timer is not limited to the illustrated one.
- FIG. 7(A) shows an example in which the validity timer started at timing T1 expires at timing T2.
- terminal 10 detects paging DCI including a TRS availability indication (first indication information) indicating that TRS can be used at PDCCH monitoring opportunities in PO#0.
- the terminal 10 may start a valid timer in response to detection of the TRS availability indication, and determine the period until the valid timer expires as the valid period of the TRS availability indication. Based on the TRS availability indication, terminal 10 determines that TRS is available on the TRS resource/opportunity within the validity period.
- terminal 10 detects a paging DCI indicating that TRS is not available at the PDCCH monitoring opportunity in PO#4 after expiration of the validity timer. Terminal 10 determines that TRS is not available in TRS resources/opportunities based on the paging DCI.
- FIG. 7(B) shows an example in which the valid timer started at timing T1 is stopped at timing T1'.
- terminal 10 receives a TRS availability indication (second indication information) indicating that TRS is not available at timing T1′ during activation of the valid timer.
- (A) is different.
- FIG. 7(B) will be described with a focus on differences from FIG. 7(A).
- Terminal 10 detects a paging DCI containing a TRS availability indication indicating that TRS is not available at the PDCCH monitoring opportunity in PO#2 while the validity timer is running. Terminal 10 stops the validity timer upon detection of the TRS availability indication. Terminal 10 determines that TRS is not available in TRS resources/opportunities after stopping the timer. In this way, when the valid timer is stopped at timing T1', the terminal 10 may determine that the valid period of the TRS availability indication detected at PO#0 has expired without waiting for the expiration of the valid timer. .
- the TRS availability indication indicating that the TRS that is notified during activation of the valid timer is not available is a specific value of at least some bits of the reserved field of the paging DCI (for example, 2 bits out of 6 bits value "00").
- the terminal 10 receives the It may stop the validity timer and assume that no TRS is available on subsequent TRS resources/opportunities. As a result, the terminal 10 can operate properly even when the operation of the system side changes whether or not to transmit the TRS.
- SI Change Notification As described in FIG. (hereinafter referred to as “SI Change Notification”) and in the next update period, obtain the SI message containing the changed SIBx.
- SI change notification is also called "SI change indication" or the like.
- SI change notification for example, a short message in paging DCI may be used.
- the paging DCI may be monitored at each PO within the certain update period.
- the terminal 10 may receive an SI message containing SIBx updated in the next update period based on the SI change notification detected in the previous update period.
- the update period may, for example, consist of a predetermined number of radio frames.
- the update period boundary may be determined, for example, based on the SFN and the number of radio frames that make up the update period.
- TRS it is desirable to be able to change whether or not TRS is actually transmitted in TRS resources/opportunities depending on various factors. For example, when overall system traffic increases, it is assumed that TRS overhead is reduced by not actually transmitting TRS on configured TRS resources/opportunities. On the other hand, when the traffic of the entire system decreases, it is assumed that the power consumption reduction effect of the terminal 10 is enhanced by actually transmitting the TRS in the set TRS resource/opportunity.
- SI update procedure an update procedure for the SI message
- the SI update procedure does not assume that the value of the TRS availability indication in SIBx (or whether SIBx includes the TRS availability indication) is changed. Therefore, there is a possibility that the timing at which the TRS availability indication becomes effective and/or the validity period of the TRS availability indication cannot be appropriately controlled only by using the SI update procedure.
- the terminal 10 may set the reference timing (hereinafter “reference timing )”) may be used to determine when the TRS availability indication becomes valid (ie, when the validity timer starts).
- the reference timing may be, for example, the timing for the reception of SIBx containing the TRS availability indication indicating that the TRS is available, the timing for the reception of SIBx or SIB1 other than the SIBx, or the boundary of the update period.
- the timing related to reception may be the start or end timing of a received radio frame, slot or symbol, or may be the start or end timing of a period used for reception (for example, SI window).
- the terminal 10 may determine the start timing of the valid timer based on the reference timing and the offset with respect to the reference timing.
- the offset may be defined by the number of slots, the number of radio frames, the number of hyper-radio frames, time (eg, milliseconds), integer multiples of paging cycles, integer multiples of DRX periods, or the like.
- the offset may be specified in advance or notified from the base station 20 .
- the value of the offset may be 0, and the terminal 10 may determine the reference timing as the timing at which the TRS availability indication becomes valid.
- the terminal 10 may receive information about the offset (hereinafter referred to as "offset information") from the base station 20.
- the offset information may be included in SIBx containing the TRS availability indication, may be included in another SIBx, may be included in SIB1, or may be included in another RRC message. good.
- FIG. 8 is a diagram showing an example of an SI update procedure according to this embodiment.
- the TRS availability indication in SIBx indicates that TRS is actually transmitted on the TRS resource/opportunity, and if TRS is not actually transmitted, SIBx shall not contain the TRS availability indication.
- a TRS availability indication may be included in SIBx indicating whether or not TRS is actually transmitted on the TRS resource/opportunity.
- the SIBx transmitted within the previous update period does not contain a TRS availability indication, indicating that no TRS is actually transmitted on the TRS resource/opportunity.
- the base station 20 sends an SI change notification in the SI message containing SIBx on the PO.
- terminal 10 detects the SI change notification through PDCCH monitoring in PO, terminal 10 receives SIB1 in the next update period, and receives an SI message including changed SIBx based on SIB1.
- the terminal 10 may receive the MIB before the SIB1 after the boundary.
- the version information of SIBx in SIB1 in FIG. 8 indicates v1 incremented by 1 from v0. Since the version information of SIBx in SIB1 (here, v1) does not match the version information of SIBx (here, v0) stored in terminal 10, terminal 10 acquires an SI message containing SIBx of v1. You may Terminal 10 determines that TRS is actually transmitted on the TRS resource/opportunity based on the TRS availability indication in SIBx for v1.
- the terminal 10 may use the boundary of the update period as the reference timing, and determine the timing at which the TRS availability indication becomes effective based on the reference timing and the offset.
- the terminal 10 may start the valid timer at the determined timing.
- the terminal 10 may determine the period from when the valid timer is started until the valid timer expires as the valid period of the TRS availability indication.
- the valid period may be defined as an integral multiple of the update period.
- the base station 20 stops transmitting TRS on the TRS resource/opportunity when the valid timer expires. Also, the base station 20 may stop reporting SIBx of v1. The base station 20 does not have to transmit the SI change notification even if it stops transmitting the TRS after the valid timer expires. That is, the base station 20 does not need to broadcast SIBx of v2 indicating that the TRS will not be transmitted after the valid timer expires. Moreover, version information of SIBx in SIB1 is not updated, and v1 may be maintained.
- the boundary of the update period is used as the reference timing. It may be the timing related to the window, the timing related to the reception of SIB1, or the like.
- the base station 20 broadcasts information on the effective period of the TRS availability instruction (hereinafter referred to as "effective period information") based on the elapsed time from the start of the active timer.
- effective period information may be included in SIBx including the TRS availability indication, or may be included in other SIBs (eg, other SIBx or SIB1, etc.).
- the validity time information may indicate how long the TRS availability indication is valid. Note that the elapsed time from the start of the activated valid timer may be rephrased as the remaining time until the valid timer expires.
- the valid period information may indicate, for example, the remaining time until the expiration timing of the valid timer, and the remaining time may be updated based on the elapsed time from the start timing of the valid period.
- the validity period information may indicate, for example, the expiration timing of the validity timer, the number of the radio frame, the number of the hyper radio frame, or the like. That is, the validity period information may absolutely indicate the expiration timing of the validity timer.
- lifetime information may be defined using Universal Time Coordinated (UTC) time to indicate when a TRS availability indication (eg, the contents of the TRS availability indication) will expire.
- UTC Universal Time Coordinated
- FIG. 9 is a diagram showing an example of control operation for the valid period of the TRS availability indication according to this embodiment.
- the terminal 10A is camping on a certain cell and the validity timer indicating the validity period of the TRS availability indication in SIBx is being activated.
- the start timing of activation of the validity timer is equal to the end timing of reception of SIBx, but this is only an example and is not limited to this. As described above, the start timing may be determined based on the reference timing and the offset.
- the validity period information in SIBx indicates the remaining time until the validity timer expires.
- the remaining time indicated by the valid period information included in each SIBx is determined based on the elapsed time from the start of the valid timer from the initial value. good too.
- validity period information in SIBx received while the validity timer is not running indicates an initial value of 10 seconds.
- the validity period information in SIBx received while the validity timer is running may indicate a remaining time of 3 seconds based on the elapsed time from the initial value of 10 seconds.
- the value indicated by the validity period information in SIBx may be updated based on the elapsed time from the start timing of the validity timer.
- the remaining time indicated by the validity period information in SIBx may be updated for each cycle of SIBx.
- the base station 20 may not transmit the SI change notification even if the valid period information in SIBx is updated.
- the base station 20 when extending the initial value (10 seconds in FIG. 9) indicated by the valid period information in SIBx, the base station 20 performs the SI update procedure based on the SI change notification, and the extended initial value is You may broadcast SIBx of v2 containing the effective period information to show.
- FIG. 10 is a diagram showing another example of the control operation of the validity period of the TRS availability indication according to this embodiment.
- the validity period information indicates SFN#128 as the expiration timing of the validity period.
- Other operations in FIG. 10 are as explained in FIG.
- the validity period information in SIBx indicates the time at which the validity period expires or the index in units of time, so that it is not necessary to update sequentially based on the elapsed time from the start timing of the validity timer. Therefore, it is possible to avoid mismatching of expiration timings of valid timers between the terminals 10 without performing the updating operation of the valid period information in the base station 20 described with reference to FIG.
- FIG. 11 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment.
- Each device in the wireless communication system 1 (for example, the terminal 10, the base station 20, the CN 30, etc.) includes a processor 11, a storage device 12, a communication device 13 that performs wired or wireless communication, an input device that receives various input operations, and various It includes an input/output device 14 for outputting information.
- the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the wireless communication system 1 .
- the processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment.
- Each device within the wireless communication system 1 may be configured with one or more processors 11 .
- Each device may also be called a computer.
- the storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive).
- the storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
- the communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
- RF Radio Frequency
- BB BaseBand
- the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device.
- the BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
- the input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
- Each device in the wireless communication system 1 may omit part of the hardware shown in FIG. 11, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 11 may be configured by one or a plurality of chips.
- FIG. 12 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
- terminal 10 includes receiver 101 , transmitter 102 , and controller 103 .
- All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
- the storage medium storing the program may be a non-transitory computer readable medium.
- the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
- the receiving unit 101 receives the downstream signal. Also, the receiving section 101 may receive information and/or data transmitted via a downlink signal.
- “receiving” may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
- the downlink signal may include, for example, at least one of PDSCH, PDCCH, downlink reference signal, synchronization signal, PBCH, and the like.
- Receiving section 101 monitors PDCCH candidates in the search space to detect DCI.
- Receiving section 101 receives downlink user data and/or higher layer control information (eg, Medium Access Control Element (MAC CE), RRC message, NAS message, etc.) via PDSCH scheduled using DCI.
- MAC CE Medium Access Control Element
- the receiving unit 101 receives SIBx (system information). Also, the receiving unit 101 may receive indication information indicating that the TRS can be used in the TRS resource/period (resource and/or period) (see (1) and (2) above, for example). The indication information may be included in SIBx, paging DCI or PEI DCI.
- the receiving unit 101 may receive indication information (second indication information) indicating that the TRS is available in the TRS resource/opportunity while the valid timer is running (for example, the (2)).
- the indication information may be included in the paging DCI, or may be a specific value of at least some bits of the reserved field of the paging DCI.
- the receiving unit 101 may receive SIBx including indication information indicating that TRS is available in the TRS resource/opportunity (see (3) above, for example).
- the receiving unit 101 may receive the SIBx in the next update period based on the SI change notification (system information change notification) detected in the previous update period (see FIG. 8, for example).
- the receiving section 101 may receive offset information with respect to the reference timing.
- the receiving unit 101 may receive validity period information regarding the validity period of the indication information indicating that the TRS is available in the TRS resource/opportunity.
- the validity period information may indicate the remaining time until expiration of the validity timer, and the remaining time may be updated based on the elapsed time from the start timing of the validity period (eg, FIG. 9).
- the validity period information may indicate the time of expiration timing, the radio frame number, or the hyper radio frame number (eg, FIG. 10).
- the transmission unit 102 transmits an upstream signal. Also, the transmitting section 102 may transmit information and/or data transmitted via an uplink signal. Here, “transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals.
- the uplink signal is, for example, an uplink shared channel (e.g., Physical Uplink Shared channel: PUSCH), a random access preamble (e.g., Physical Random Access Channel: PRACH), at least an uplink reference signal, etc. may contain one.
- PUSCH Physical Uplink Shared channel
- PRACH Physical Random Access Channel
- Transmitting section 102 may transmit uplink user data and/or higher layer control information (eg, MAC CE, RRC messages, etc.) via PUSCH scheduled using the DCI received by receiving section 101. good.
- higher layer control information eg, MAC CE, RRC messages, etc.
- the control unit 103 performs various controls in the terminal 10.
- control unit 103 may configure TRS resources/opportunities based on SIBx or RRC messages.
- control unit 103 when performing reselection of the cell to camp on, based on whether SIBx is area-specific, may control a valid timer related to the valid period of the TRS availability indication (for example, (1) above, see FIGS. 5 and 6). Specifically, when SIBx is area-specific, control section 103 may continue the valid timer if cell reselection is performed between cells belonging to the same area while the valid timer is running. Further, when SIBx is area-specific, control section 103 may stop the valid timer if cell reselection is performed between cells belonging to different areas while the valid timer is running. Also, if SIBx is not area-specific, control section 103 may stop the valid timer if cell reselection is performed between cells while the valid timer is running.
- control unit 103 controls a validity timer regarding the validity period of the TRS availability indication. Specifically, the control unit 103 starts a timer related to the validity period of the first indication information indicating that the TRS is available in the TRS resource/opportunity (for example, (2) above, FIG. 7A) reference). Also, the control unit 103 stops the valid timer if the receiving unit 101 receives the second indication information indicating that the TRS is not available in the TRS resource/opportunity while the valid timer is running. (See (2) above and FIG. 7B, for example).
- control unit 103 when the control unit 103 detects a DCI (for example, paging DCI) that is CRC scrambled by a specific RNTI in the PDCCH monitoring opportunity in the PO, based on the second indication information in the DCI, A valid timer may be stopped (see, for example, FIG. 7B). Also, the control unit 103 may determine that the TRS is not transmitted in the TRS resource/opportunity after a predetermined timing after the valid timer is stopped (see FIG. 7B, for example).
- a DCI for example, paging DCI
- control unit 103 may determine the start timing of the valid timer using the timing related to the reception of SIBx, the timing related to the reception of system information other than the system information, or the boundary of the update period as a reference timing (for example, the above ( 3), see FIG. 8).
- the control unit 103 may determine the start timing of the valid timer based on the reference timing and the offset indicated by the offset information.
- the control unit 103 may determine the expiration timing of the valid timer based on the valid period information.
- FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
- the base station 20 includes a receiver 201, a transmitter 202, and a controller 203.
- FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
- the base station 20 includes a receiver 201, a transmitter 202, and a controller 203.
- FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
- the base station 20 includes a receiver 201, a transmitter 202, and a controller 203.
- All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
- the storage medium storing the program may be a computer-readable non-temporary storage medium.
- the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
- the receiving unit 201 receives the upstream signal. Also, the receiving section 201 may receive information and/or data transmitted via the uplink signal.
- the transmission unit 202 transmits the downlink signal. Also, the transmitting section 202 may transmit information and/or data transmitted via the downlink signal. Specifically, transmitting section 202 transmits SIBx (system information). Also, the transmitting unit 202 may transmit indication information indicating that the TRS can be used in the TRS resource/period (resource and/or period).
- SIBx system information
- the transmitting unit 202 may transmit indication information indicating that the TRS can be used in the TRS resource/period (resource and/or period).
- the transmitting unit 202 may transmit indication information (second indication information) indicating that the TRS is available in the TRS resource/opportunity (for example, the (2)).
- the transmitting unit 202 may transmit SIBx including indication information indicating that TRS is available in the TRS resource/opportunity (see (3) above, for example).
- the transmitter 202 may transmit the SIBx in the next update period based on the SI change notification (system information change notification) detected in the previous update period (see FIG. 8, for example).
- the transmitting section 202 may transmit offset information with respect to the reference timing.
- the transmitting unit 202 may transmit valid period information regarding the valid period.
- the control unit 203 performs various controls in the base station 20. For example, the control unit 203 may control whether or not to transmit TRS on a TRS resource/opportunity based on various factors. Part of the information transmitted from the transmission unit 202 of the base station may be transmitted by a transmission unit within the device on the core network 30 .
- Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
- a slot may be named any unit of time having a predetermined number of symbols.
- RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers. Also, the "first .
- the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like.
- singularity and plurality in the above embodiments may be interchanged.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A terminal comprising a reception unit for receiving system information including instruction information indicating that a tracking reference signal is available at a resource and/or an opportunity configured for the tracking reference signal, and a control unit which, using as a reference timing a timing related to reception of the system information, a timing related to reception of system information other than the system information, or a boundary of or an update period, determines a start timing of a timer related to a valid period of the instruction information.
Description
本出願は、2021年6月30日に出願された日本国特許出願2021-108258号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
This application is based on Japanese Patent Application No. 2021-108258 filed on June 30, 2021, and claims the benefit of its priority. incorporated herein by reference.
本開示は、端末及び無線通信方法に関する。
The present disclosure relates to terminals and wireless communication methods.
国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)のリリース15が仕様化されている(例えば、非特許文献1)。LTE及び/又はLTE-Advancedは、Evolved Universal Terrestrial Radio Access(E-UTRA)とも呼ばれる。
In the Third Generation Partnership Project (3GPP), an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation Radio Access Technology (RAT), and LTE-Advanced, which is the 4th generation RAT As a successor, Release 15 of New Radio (NR), which is a fifth generation (5G) RAT, has been specified (for example, Non-Patent Document 1). LTE and/or LTE-Advanced is also called Evolved Universal Terrestrial Radio Access (E-UTRA).
現在、3GPPでは、トラッキング用の参照信号(以下、「トラッキング参照信号(Tracking Reference Signal:TRS)」と呼ぶ)を用いて、時間領域及び/又は周波数領域における同期(以下、「時間/周波数同期」という)を行うこと等が検討されている。例えば、アイドル状態(Idle state)又は非アクティブ状態(Inactive state)の端末が、同期信号(Synchronization Signal)の代わりに当該TRSを利用して、ページング機会(Paging Occasion:PO)前の時間/周波数同期を行うことにより、当該端末の消費電力を低減することが期待されている。
Currently, in 3GPP, a reference signal for tracking (hereinafter referred to as "tracking reference signal (TRS)") is used to synchronize in the time domain and/or frequency domain (hereinafter referred to as "time/frequency synchronization" ) is being considered. For example, a terminal in an idle state or an inactive state uses the TRS instead of a synchronization signal to perform time/frequency synchronization before a paging occasion (PO). is expected to reduce the power consumption of the terminal.
また、TRS用に設定されたリソース及び/又は期間における当該TRSの利用可能性(availability)に関する指示情報(以下、「TRSアベイラビリティ指示」という)を端末に通知すること、及び/又は、当該指示情報に有効期間を設けることにより、当該リソース及び/又は期間においてTRSを実際に送信するか否かを制御可能とすることも検討されている。
本開示はこのような事情に鑑みてなされたものであり、TRSに関する動作を適切に制御可能な端末及び無線通信方法を提供することを目的の一つとする。 In addition, notifying the terminal of instruction information (hereinafter referred to as "TRS availability instruction") regarding the availability of the TRS in the resource and / or period set for the TRS, and / or the instruction information It is also considered to be able to control whether or not TRS is actually transmitted in the relevant resource and/or period by providing a validity period to .
The present disclosure has been made in view of such circumstances, and aims to provide a terminal and a wireless communication method capable of appropriately controlling operations related to TRS.
本開示はこのような事情に鑑みてなされたものであり、TRSに関する動作を適切に制御可能な端末及び無線通信方法を提供することを目的の一つとする。 In addition, notifying the terminal of instruction information (hereinafter referred to as "TRS availability instruction") regarding the availability of the TRS in the resource and / or period set for the TRS, and / or the instruction information It is also considered to be able to control whether or not TRS is actually transmitted in the relevant resource and/or period by providing a validity period to .
The present disclosure has been made in view of such circumstances, and aims to provide a terminal and a wireless communication method capable of appropriately controlling operations related to TRS.
本開示の一態様に係る端末は、トラッキング参照信号用に設定されるリソース及び/又は機会において前記トラッキング参照信号が利用可能であることを示す指示情報を含むシステム情報を受信する受信部と、前記システム情報の受信に関するタイミング、前記システム情報以外のシステム情報の受信に関するタイミング又は更新期間の境界を基準タイミングとして、前記指示情報の有効期間に関するタイマの開始タイミングを決定する制御部と、を備える。
A terminal according to an aspect of the present disclosure includes a receiving unit that receives system information including indication information indicating that the tracking reference signal is available in resources and / or opportunities configured for the tracking reference signal; a control unit that determines the start timing of a timer related to the validity period of the instruction information, using the timing related to the reception of system information, the timing related to the reception of system information other than the system information, or the boundary of an update period as a reference timing.
本開示の一態様によれば、TRSに関する動作を適切に制御可能な端末及び無線通信方法を提供することを目的の一つとする。
An object of one aspect of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling operations related to TRS.
以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
The present embodiment will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and overlapping descriptions are omitted.
図1は、本実施形態に係る無線通信システムの概要の一例を示す図である。図1に示すように、無線通信システム1は、端末10と、基地局20と、コアネットワーク30と、を含んでもよい。なお、図1に示す端末10、基地局20の数は例示にすぎず、図示する数に限られない。
FIG. 1 is a diagram showing an example of an overview of a wireless communication system according to this embodiment. As shown in FIG. 1, the wireless communication system 1 may include a terminal 10, a base station 20, and a core network 30. Note that the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
無線通信システム1の無線アクセス技術(Radio Access Technology:RAT)としては、例えば、NRが想定されるが、これに限られず、例えば、第6世代以降のRAT等、種々のRATを利用できる。
As the radio access technology (RAT) of the wireless communication system 1, for example, NR is assumed, but it is not limited to this, and various RATs such as the 6th generation or later RAT can be used.
端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。端末10は、RATとして、例えば、NRを用いて通信可能に構成される。
The terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like. Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on. The terminal 10 may be mobile or stationary. The terminal 10 is configured to be able to communicate using, for example, NR as the RAT.
基地局20は、一以上のセルCを形成し、当該セルを用いて端末10と通信する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)等と相互に言い換えられてもよい。例えば、基地局20は、一つのプライマリセルと一以上のセカンダリセルを端末10に対して設定し、通信してもよい(キャリアアグリゲーションとも称される)。すなわち、一以上のセルCは、プライマリセルを少なくとも含み、セカンダリセルを含んでもよい。
The base station 20 forms one or more cells C and communicates with the terminal 10 using the cells. Cell C may be interchangeably referred to as serving cell, carrier, component carrier (CC), and the like. For example, the base station 20 may configure one primary cell and one or more secondary cells for the terminal 10 for communication (also called carrier aggregation). That is, one or more cells C include at least primary cells and may include secondary cells.
また、一つのセルCに対して、一つ又は複数の帯域幅部分(Bandwidth Part:BWP)が設定されてもよい。ここで、主に端末10がセルに初期アクセスする際に用いられるBWPは、初期下りリンクBWP(Initial DL BWP)及び初期上りリンクBWP(Initial UL BWP)とも称される。例えば、基地局20は、初期下りリンクBWP及び初期上りリンクBWPのそれぞれに対する周波数位置、帯域幅、サブキャリア間隔及び/又はサイクリックプリフィックスを設定するために用いられる情報をシステム情報に含めて報知してもよい。
Also, one or more bandwidth parts (BWP) may be set for one cell C. Here, the BWP mainly used when the terminal 10 initially accesses the cell is also called initial downlink BWP (Initial DL BWP) and initial uplink BWP (Initial UL BWP). For example, the base station 20 broadcasts the information used for setting the frequency position, bandwidth, subcarrier spacing and/or cyclic prefix for each of the initial downlink BWP and the initial uplink BWP in the system information. may
基地局20は、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、低電力ノード(low-power node)、Central Unit(CU)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、Integrated Access and Backhaul/Backhauling(IAB)ノード等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。
Base station 20 includes gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB -DU, Remote Radio Head (RRH), Integrated Access and Backhaul/Backhauling (IAB) node, etc. The base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
コアネットワーク30は、例えば、NRに対応したコアネットワーク(5G Core Network:5GC)であるが、これに限られない。コアネットワーク30上の装置(以下、「コアネットワーク装置」ともいう)は、端末10のページング、位置登録等のモビリティ管理(mobility management)を行う。コアネットワーク装置は、所定のインタフェース(例えば、S1又はNGインタフェース)を介して基地局20に接続されてもよい。
The core network 30 is, for example, an NR-compatible core network (5G Core Network: 5GC), but is not limited to this. A device on the core network 30 (hereinafter also referred to as “core network device”) performs mobility management such as paging and location registration of the terminal 10 . A core network device may be connected to the base station 20 via a predetermined interface (eg, S1 or NG interface).
コアネットワーク装置は、例えば、Cプレーンの情報(例えば、アクセス及び移動管理等に関する情報)を管理するAccess and Mobility Management Function(AMF)、Uプレーンの情報(例えば、ユーザデータ)の伝送制御を行うUser Plane Function(UPF)の少なくとも一つ等を含んでもよい。
The core network device includes, for example, an Access and Mobility Management Function (AMF) that manages C-plane information (e.g., information related to access and mobility management), and a User that controls transmission of U-plane information (e.g., user data). At least one Plane Function (UPF) may be included.
無線通信システム1において、端末10は、基地局20からの下り(downlink:DL)信号の受信及び/又は上り信号(uplink:UL)の送信を行う。端末10には、一以上のセルCが設定(configure)され、設定されたセルの少なくとも一つがアクティベイト(activate)される。各セルの最大帯域幅は、例えば、20MHz又は400MHz等である。
In the wireless communication system 1, the terminal 10 receives downlink (DL) signals from the base station 20 and/or transmits uplink (UL) signals. One or more cells C are configured in the terminal 10, and at least one of the configured cells is activated. The maximum bandwidth of each cell is, for example, 20 MHz or 400 MHz.
また、端末10は、基地局20からの同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal:PSS)及び/又はセカンダリ同期信号(Secondary Synchronization Signal:SSS))に基づいて、セルサーチを行う。セルサーチとは、端末10が、セルにおける時間及び周波数の同期を取得し、当該セルの識別子(例えば、物理レイヤセルID)を検出する手順である。
Also, the terminal 10 performs a cell search based on a synchronization signal (eg, Primary Synchronization Signal (PSS) and/or Secondary Synchronization Signal (SSS)) from the base station 20. Cell search is a procedure by which the terminal 10 acquires time and frequency synchronization in a cell and detects the identifier of the cell (eg, physical layer cell ID).
上記同期信号、報知チャネル(例えば、物理報知チャネル(Physical Broadcast Channel:PBCH))及び報知チャネルの復調用参照信号(Demodulation Reference Signal:DMRS)の少なくとも一つを含むブロックは、同期信号ブロック(Synchronization Signal Block:SSB)、SS/PBCHブロック等とも呼ばれる。一以上のSSBは一つのSSバーストを構成し、一以上のSSバーストが一つのSSバーストセットを構成してもよい。SSバーストセットが所定周期(例えば、20ms(2無線フレーム))で送信されてもよい。マルチビーム運用の場合、異なるインデックスのSSBは、異なるビームに対応し、ビームスウィーピングにより順次ビーム方向を切り替えて送信されてもよい。
Blocks containing at least one of the synchronization signal, broadcast channel (for example, Physical Broadcast Channel (PBCH)) and broadcast channel demodulation reference signal (DMRS) are synchronization signal blocks (Synchronization Signal Also called Block: SSB), SS/PBCH block, and the like. One or more SSBs may constitute one SS burst, and one or more SS bursts may constitute one SS burst set. The SS burst set may be transmitted at regular intervals (eg, 20 ms (2 radio frames)). In the case of multi-beam operation, SSBs with different indices correspond to different beams and may be transmitted by sequentially switching beam directions by beam sweeping.
端末10は、無線リソース制御(Radio Resource Control:RRC)メッセージに含まれるパラメータ(以下、「RRCパラメータ」という)に基づいて、サーチスペース及び/又は制御リソースセット(Control Resource Set:CORESET)を決定し、当該CORESETに関連付けられるサーチスペース内で、下り制御チャネル(例えば、物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)を介して伝送される下り制御情報(Downlink Control Information:DCI)のモニタリングを実行する。なお、RRCメッセージは、例えば、RRCセットアップメッセージ、RRC再構成(reconfiguration)メッセージ、RRC再開(resume)メッセージ、システム情報等を含んでもよい。
Terminal 10 determines a search space and/or a control resource set (Control Resource Set: CORESET) based on parameters included in a radio resource control (RRC) message (hereinafter referred to as "RRC parameters"). , Within the search space associated with the CORESET, perform downlink control information transmitted via a downlink control channel (for example, physical downlink control channel (PDCCH)) (Downlink Control Information: DCI) monitoring Note that the RRC message may include, for example, an RRC setup message, an RRC reconfiguration message, an RRC resume message, system information, and the like.
DCIのモニタリングとは、端末10が、想定されるDCIフォーマットでサーチスペースセット内のPDCCH候補(PDCCH candidate)をブラインド復号することである。DCIフォーマットのビット数(サイズ、ビット幅等ともいう)は、当該DCIフォーマットに含まれるフィールドのビット数に応じて、予め定められる又は導出される。端末10は、DCIフォーマットのビット数と、当該DCIフォーマットの巡回冗長検査(Cyclic Redundancy Check:CRC)ビット(CRCパリティビットとも称される)のスクランブル(以下、「CRCスクランブル」という)に用いられる特定の無線ネットワーク一時識別子(Radio Network Temporary Identifier:RNTI)とに基づいて、当該端末10に対するDCIを検出する。DCIのモニタリングは、PDCCHモニタリング、モニタ等とも呼ばれる。また、DCIのモニタリングを行う期間は、PDCCHモニタリング機会(PDCCH monitoring occasion)とも呼ばれる。
DCI monitoring means that the terminal 10 blind-decodes the PDCCH candidate (PDCCH candidate) in the search space set in the assumed DCI format. The number of bits (also referred to as size, bit width, etc.) of the DCI format is predetermined or derived according to the number of bits of fields included in the DCI format. The terminal 10 specifies the number of bits in the DCI format and the scramble (hereinafter referred to as “CRC scramble”) of the cyclic redundancy check (CRC) bits (also referred to as CRC parity bits) of the DCI format. DCI for the terminal 10 is detected based on the Radio Network Temporary Identifier (RNTI). DCI monitoring is also called PDCCH monitoring, monitor, and the like. Also, the period during which DCI is monitored is also called a PDCCH monitoring occasion.
サーチスペースセットは、一以上のサーチスペースの集合であり、一以上の端末10に共通に用いられるサーチスペースセット(以下、「共通サーチスペース(Common search space:CSS)セット」という)と、端末固有のサーチスペースセット(UE-specific search space(USS)セット)と、を含んでもよい。端末10のPDCCHモニタリングに用いられるサーチスペースセットは、上位レイヤパラメータ(例えば、RRC Information Element(IE)「SearchSpace」、RRC IE「pagingSearchSpace」、RRC IE「searchSpaceSIB1」、RRC IE「searchSpaceOtherSystemInformation」等)を用いて端末10に設定されてもよい。端末10は、サーチスペースセットを用いたPDCCHモニタリングにより、特定のRNTI(例えば、Cell(C)-RNTI、Paging(P)-RNTI等)によりCRCスクランブルされるDCIを検出し、当該DCIを用いてスケジューリングされるPDSCHの受信及び/又は上り共有チャネル(例えば、物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)の送信を制御する。
A search space set is a set of one or more search spaces. A search space set commonly used by one or more terminals 10 (hereinafter referred to as a "common search space (CSS) set") and a terminal-specific search space set (UE-specific search space (USS) set), and The search space set used for PDCCH monitoring of the terminal 10 uses upper layer parameters (for example, RRC Information Element (IE) 'SearchSpace', RRC IE 'pagingSearchSpace', RRC IE 'searchSpaceSIB1', RRC IE 'searchSpaceOtherSystemInformation', etc.). may be set in the terminal 10 by Terminal 10 detects DCI that is CRC-scrambled by a specific RNTI (eg, Cell (C)-RNTI, Paging (P)-RNTI, etc.) by PDCCH monitoring using a search space set, and uses the DCI to Controls reception of the scheduled PDSCH and/or transmission of an uplink shared channel (eg, physical uplink shared channel (PUSCH)).
(システム情報)
セルCで報知(broadcast)されるシステム情報は、マスター情報ブロック(Master Information Block:MIB)及び/又は一以上のシステム情報ブロック(System Information Block:SIB)を含んでもよい。MIBは、ブロードキャストチャネル(Broadcast Channel:BCH)を介して報知される。MIB及びSIB1は、Minimum System Informationとも呼ばれ、SIB1は、Remaining Minimum System Information(RMSI)とも呼ばれる。SIB1は、下り共有チャネル(Downlink Shared Channel:DL-SCH)を介して報知される。SIB1以外のSIBx(x=2、3、…等の任意の文字列)は、Other System Information(OSI)とも呼ばれる。SIB1はセル固有であり、SIB1以外のSIBxはセル固有又は一以上のセルを含むエリア固有である。当該エリアはシステム情報エリア等とも呼ばれる。 (System information)
The system information broadcast in Cell C may include a Master Information Block (MIB) and/or one or more System Information Blocks (SIB). The MIB is broadcast via a broadcast channel (BCH). MIB and SIB1 are also called Minimum System Information, and SIB1 is also called Remaining Minimum System Information (RMSI). SIB1 is broadcast via a downlink shared channel (DL-SCH). SIBx (an arbitrary character string such as x=2, 3, . . . ) other than SIB1 is also called Other System Information (OSI). SIB1 is cell-specific and SIBx other than SIB1 is cell-specific or area-specific containing one or more cells. This area is also called a system information area or the like.
セルCで報知(broadcast)されるシステム情報は、マスター情報ブロック(Master Information Block:MIB)及び/又は一以上のシステム情報ブロック(System Information Block:SIB)を含んでもよい。MIBは、ブロードキャストチャネル(Broadcast Channel:BCH)を介して報知される。MIB及びSIB1は、Minimum System Informationとも呼ばれ、SIB1は、Remaining Minimum System Information(RMSI)とも呼ばれる。SIB1は、下り共有チャネル(Downlink Shared Channel:DL-SCH)を介して報知される。SIB1以外のSIBx(x=2、3、…等の任意の文字列)は、Other System Information(OSI)とも呼ばれる。SIB1はセル固有であり、SIB1以外のSIBxはセル固有又は一以上のセルを含むエリア固有である。当該エリアはシステム情報エリア等とも呼ばれる。 (System information)
The system information broadcast in Cell C may include a Master Information Block (MIB) and/or one or more System Information Blocks (SIB). The MIB is broadcast via a broadcast channel (BCH). MIB and SIB1 are also called Minimum System Information, and SIB1 is also called Remaining Minimum System Information (RMSI). SIB1 is broadcast via a downlink shared channel (DL-SCH). SIBx (an arbitrary character string such as x=2, 3, . . . ) other than SIB1 is also called Other System Information (OSI). SIB1 is cell-specific and SIBx other than SIB1 is cell-specific or area-specific containing one or more cells. This area is also called a system information area or the like.
一以上のSIBxは、システム情報(System information:SI)メッセージにマッピングされ、当該SIメッセージがDL-SCHを介して報知される。各SIメッセージは、周期的に発生する時間領域ウィンドウ(以下、「SIウィンドウ」という)に関連付けられ、SIウィンドウ内で送信されてもよい。なお、BCH及びDL-SCHは、それぞれ、PBCH及び物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)と相互に言い換えられてもよい。
One or more SIBx are mapped to a system information (SI) message, and the SI message is broadcast via DL-SCH. Each SI message may be associated with a periodically occurring time-domain window (hereinafter “SI window”) and sent within the SI window. Note that BCH and DL-SCH may be interchanged with PBCH and physical downlink shared channel (PDSCH), respectively.
図2は、本実施形態に係るSIメッセージの取得の一例を示す図である。図2では、一例として、SIBx及びSIByがSIメッセージ#0にマッピングされ、SIBzがSIメッセージ#1にマッピングされる場合を想定する。ここで、x、y及びzは、それぞれ、2、3、…等の任意の文字列であり、SIBのタイプ(以下、「SIBタイプ」という)の識別子であればよい。SIメッセージ#0及び#1は所定周期で報知されてもよいし、端末10からの要求に応じてオンデマンドで報知されてもよい。また、更新期間(modification)内では各SIメッセージ#0は同一であってもよい。なお、図2は例示にすぎず、SIメッセージの数、各SIメッセージにマッピングされるSIBの数、SIBx、SIBy及びSIBzがエリア固有又はセル固有のどちらであるか否か等は図示するものに限られない。
FIG. 2 is a diagram showing an example of obtaining an SI message according to this embodiment. In FIG. 2, as an example, it is assumed that SIBx and SIBy are mapped to SI message # 0 and SIBz is mapped to SI message # 1. Here, x, y, and z are arbitrary character strings such as 2, 3, . The SI messages # 0 and #1 may be broadcast at predetermined intervals, or may be broadcast on demand in response to a request from the terminal 10. FIG. Also, each SI message # 0 may be identical within the modification period. It should be noted that FIG. 2 is only an example, the number of SI messages, the number of SIBs mapped to each SI message, whether SIBx, SIBy and SIBz are area-specific or cell-specific, etc. are not shown. Not limited.
例えば、図2に示すように、端末10は、SSBを検出し、PBCHを介して報知されるMIBを取得する。端末10は、SIB1用に設定されるサーチスペースセット(例えば、Type0-PDCCH CSS set)をモニタリングして特定のRNTI(例えば、System Information(SI)-RNTI)でCRCスクランブルされたDCIを検出し、当該DCIによりスケジューリングされるPDSCHを介して、SIB1を受信する。当該SIB1用のサーチスペースセットは、MIB内のパラメータに基づいて設定されてもよいが、これに限られない。
For example, as shown in FIG. 2, the terminal 10 detects the SSB and acquires the MIB broadcasted via the PBCH. Terminal 10 monitors a search space set (eg, Type0-PDCCH CSS set) configured for SIB1 to detect a CRC-scrambled DCI with a specific RNTI (eg, System Information (SI)-RNTI), SIB1 is received via the PDSCH scheduled by the DCI. The search space set for SIB1 may be set based on parameters in the MIB, but is not limited to this.
また、SIB1は、以下の少なくとも一つを含んでもよい。
・各SIメッセージに関する情報(例えば、RRC IE「schedulingInfoList」内の各「schedulingInfo」)
・エリア固有のSIBが属するエリアの識別情報(例えば、RRC IEの「systemInformationAreaID」)
・SIウィンドウの長さに関する情報(例えば、RRC IEの「si-WindowLength」)、ここで、当該長さは例えばスロット数で示される。
・各SIメッセージの周期に関する情報(例えば、RRC IE「schedulingInfo」内の「si-Periodicity」)、ここで、当該周期は例えば無線フレーム数で示される。
・各SIメッセージにマッピングされる各SIBに関する情報(例えば、RRC IE「schedulingInfo」内「SIB-Mapping」内の各「SIB-TypeInfo」)、ここで、各SIBに関する情報は、例えばSIBタイプに関する情報(例えば、RRC IE「type」)、各SIBのバージョン又は更新回数に関する情報(以下、「バージョン情報」という、例えば、RRC IE「valueTag」)、各SIBがエリア固有であることを示す情報(例えば、RRC IE「areaScope」)の少なくとも一つを含んでもよい。なお、各SIBがエリア固有であることを示す情報を含まないことは、各SIBがセル固有であることを示してもよい。 SIB1 may also include at least one of the following:
Information about each SI message (e.g. each 'schedulingInfo' in the RRC IE 'schedulingInfoList')
- Identification of the area to which the area-specific SIB belongs (e.g. "systemInformationAreaID" in the RRC IE)
- Information about the length of the SI window (e.g. "si-WindowLength" in the RRC IE), where the length is indicated e.g. in number of slots.
• Information about the period of each SI message (eg 'si-Periodicity' in the RRC IE 'schedulingInfo'), where the period is indicated eg in number of radio frames.
Information about each SIB mapped to each SI message (e.g., each 'SIB-TypeInfo' in 'SIB-Mapping' in the RRC IE 'schedulingInfo'), where the information about each SIB is, for example, information about the SIB type (e.g., RRC IE "type"), information about the version or update count of each SIB (hereinafter referred to as "version information", e.g., RRC IE "valueTag"), information indicating that each SIB is area-specific (e.g. , RRC IE “areaScope”). Note that not including information indicating that each SIB is area-specific may indicate that each SIB is cell-specific.
・各SIメッセージに関する情報(例えば、RRC IE「schedulingInfoList」内の各「schedulingInfo」)
・エリア固有のSIBが属するエリアの識別情報(例えば、RRC IEの「systemInformationAreaID」)
・SIウィンドウの長さに関する情報(例えば、RRC IEの「si-WindowLength」)、ここで、当該長さは例えばスロット数で示される。
・各SIメッセージの周期に関する情報(例えば、RRC IE「schedulingInfo」内の「si-Periodicity」)、ここで、当該周期は例えば無線フレーム数で示される。
・各SIメッセージにマッピングされる各SIBに関する情報(例えば、RRC IE「schedulingInfo」内「SIB-Mapping」内の各「SIB-TypeInfo」)、ここで、各SIBに関する情報は、例えばSIBタイプに関する情報(例えば、RRC IE「type」)、各SIBのバージョン又は更新回数に関する情報(以下、「バージョン情報」という、例えば、RRC IE「valueTag」)、各SIBがエリア固有であることを示す情報(例えば、RRC IE「areaScope」)の少なくとも一つを含んでもよい。なお、各SIBがエリア固有であることを示す情報を含まないことは、各SIBがセル固有であることを示してもよい。 SIB1 may also include at least one of the following:
Information about each SI message (e.g. each 'schedulingInfo' in the RRC IE 'schedulingInfoList')
- Identification of the area to which the area-specific SIB belongs (e.g. "systemInformationAreaID" in the RRC IE)
- Information about the length of the SI window (e.g. "si-WindowLength" in the RRC IE), where the length is indicated e.g. in number of slots.
• Information about the period of each SI message (eg 'si-Periodicity' in the RRC IE 'schedulingInfo'), where the period is indicated eg in number of radio frames.
Information about each SIB mapped to each SI message (e.g., each 'SIB-TypeInfo' in 'SIB-Mapping' in the RRC IE 'schedulingInfo'), where the information about each SIB is, for example, information about the SIB type (e.g., RRC IE "type"), information about the version or update count of each SIB (hereinafter referred to as "version information", e.g., RRC IE "valueTag"), information indicating that each SIB is area-specific (e.g. , RRC IE “areaScope”). Note that not including information indicating that each SIB is area-specific may indicate that each SIB is cell-specific.
端末10は、OSI用に設定されるサーチスペースセット(例えば、Type0A-PDCCH CSS set)をモニタリングして特定のRNTI(例えば、SI-RNTI)でCRCスクランブルされたDCIを検出し、当該DCIによりスケジューリングされるPDSCHを介して、SIメッセージ#0及び#1を受信して、SIメッセージ#0及び#1それぞれに含まれるOSI(ここでは、SIBx、SIBy及びSIBz)に基づく動作を行う。
Terminal 10 monitors a search space set (eg, Type0A-PDCCH CSS set) configured for OSI to detect a DCI that is CRC scrambled with a specific RNTI (eg, SI-RNTI), and performs scheduling using the DCI. SI messages # 0 and #1 are received via the PDSCH, and operations are performed based on the OSI (here, SIBx, SIBy, and SIBz) included in the SI messages # 0 and #1, respectively.
例えば、図2では、SIメッセージ#0に含まれるSIBx及びSIByはエリア固有であり、SIメッセージ#1に含まれるSIBzはセル固有である。また、SIB1のバージョン情報(例えば、RRC IE「valueTag」)は、SIBx及びSIBzが1回更新されてバージョンがv1であり、SIByは更新されずにバージョンがv0であることを示すものとする。例えば、端末10は、バージョン情報が示すバージョンと、自端末10で記憶されたSIBxのバージョンとに基づいて、当該記憶されたSIBxが有効であるか否かを判断してもよい。例えば、SIB1内のvalueTagが示す「v1」と記憶されたSIBzのバージョンが一致する場合、端末10は、SIBzを含むSIメッセージ#1を再受信しなくともよい。一方、SIB1内のvalueTagが示すバージョン「v1」と記憶されたSIBxのバージョンが一致しない場合、端末10は、SIBxを含むSIメッセージ#0を再受信してもよい。このように、SIBx、SIBy及びSIBzは、内容の変更毎にvaluetagが1カウントアップされてもよい。
For example, in FIG. 2, SIBx and SIBy included in SI message # 0 are area-specific, and SIBz included in SI message # 1 is cell-specific. Also, the version information of SIB1 (for example, RRC IE "valueTag") shall indicate that SIBx and SIBz have been updated once and have a version of v1, and SIBy has not been updated and have a version of v0. For example, the terminal 10 may determine whether or not the stored SIBx is valid based on the version indicated by the version information and the version of the SIBx stored in the terminal 10 itself. For example, when "v1" indicated by valueTag in SIB1 matches the version of stored SIBz, terminal 10 does not need to re-receive SI message # 1 including SIBz. On the other hand, if the version “v1” indicated by the valueTag in SIB1 does not match the version of the stored SIBx, the terminal 10 may re-receive the SI message # 0 including SIBx. In this way, SIBx, SIBy, and SIBz may have their valuetags incremented by one each time the content is changed.
(ページング)
ページングでは、端末10がアイドル状態又はインアクティブ状態である場合に、ネットワーク主導でコネクションをセットアップするためのメッセージ(以下、「ページングメッセージ」)が端末10に伝送される。また、ページングでは、例えば、システム情報の変更通知、及び/又は、公的警報(public warning)(例えば、Earthquake and Tsunami Warning System(ETWS)、Commercial Mobile Alert Service(CMAS)等)に用いられるショートメッセージが端末10に伝送される。当該ショートメッセージは、端末10の状態(例えば、アイドル状態、非アクティブ状態又はコネクティッド状態等)に関係なく、端末10に伝送されてもよい。 (paging)
In paging, when the terminal 10 is in an idle state or an inactive state, a network-initiated message for setting up a connection (hereinafter, a “paging message”) is transmitted to the terminal 10 . Also, in paging, for example, system information change notifications and/or short messages used for public warnings (e.g., Earthquake and Tsunami Warning System (ETWS), Commercial Mobile Alert Service (CMAS), etc.) is transmitted toterminal 10 . The short message may be transmitted to the terminal 10 regardless of the state of the terminal 10 (eg, idle state, inactive state, connected state, etc.).
ページングでは、端末10がアイドル状態又はインアクティブ状態である場合に、ネットワーク主導でコネクションをセットアップするためのメッセージ(以下、「ページングメッセージ」)が端末10に伝送される。また、ページングでは、例えば、システム情報の変更通知、及び/又は、公的警報(public warning)(例えば、Earthquake and Tsunami Warning System(ETWS)、Commercial Mobile Alert Service(CMAS)等)に用いられるショートメッセージが端末10に伝送される。当該ショートメッセージは、端末10の状態(例えば、アイドル状態、非アクティブ状態又はコネクティッド状態等)に関係なく、端末10に伝送されてもよい。 (paging)
In paging, when the terminal 10 is in an idle state or an inactive state, a network-initiated message for setting up a connection (hereinafter, a “paging message”) is transmitted to the terminal 10 . Also, in paging, for example, system information change notifications and/or short messages used for public warnings (e.g., Earthquake and Tsunami Warning System (ETWS), Commercial Mobile Alert Service (CMAS), etc.) is transmitted to
ここで、アイドル状態は、端末10が基地局20との間のRRCレイヤのコネクション(以下、「RRCコネクション」という)が確立(establish)されていない状態であり、RRC_IDLE、アイドルモード、RRCアイドルモード等とも呼ばれる。アイドル状態の端末10は、キャンプオンするセルで報知されるシステム情報を受信する。アイドル状態の端末10は、RRCコネクションが確立されると、コネクティッド状態に遷移する。
Here, the idle state is a state in which an RRC layer connection (hereinafter referred to as "RRC connection") between the terminal 10 and the base station 20 is not established. Also called etc. A terminal 10 in an idle state receives system information broadcast in a cell on which it camps. The terminal 10 in the idle state transitions to the connected state when the RRC connection is established.
また、非アクティブ状態は、上記RRCコネクションが確立されているが、一時停止(suspend)された状態であり、RRC_INACTIVE状態、非アクティブモード、RRC非アクティブモード等とも呼ばれる。非アクティブ状態の端末10は、キャンプオンするセルで報知されるシステム情報を受信する。非アクティブ状態の端末10は、RRCコネクションが再開されるとコネクティッド状態に遷移し、当該RRCコネクションが解放(release)されるとアイドル状態に遷移する。
In addition, the inactive state is a state in which the RRC connection is established but suspended, and is also called RRC_INACTIVE state, inactive mode, RRC inactive mode, and the like. The terminal 10 in the inactive state receives system information broadcasted in the cell on which it camps. The terminal 10 in the inactive state transitions to the connected state when the RRC connection is restarted, and transitions to the idle state when the RRC connection is released.
コネクティッド状態は、上記RRCコネクションが確立されている状態であり、RRC_CONNECTED状態、コネクティッドモード、RRCコネクティッドモード等とも呼ばれる。コネクティッド状態の端末10は、RRCコネクションが解放されるとアイドル状態に遷移し、RRCコネクションが一時停止されると非アクティブ状態に遷移する。
The connected state is a state in which the RRC connection is established, and is also called RRC_CONNECTED state, connected mode, RRC connected mode, and the like. The terminal 10 in the connected state transitions to the idle state when the RRC connection is released, and transitions to the inactive state when the RRC connection is suspended.
アイドル状態又は非アクティブ状態の端末10は、間欠受信(Discontinuous Reception:DRX)により、所定周期の期間であるページング機会(Paging occasion:PO)においてページングメッセージを受信する。POは、所定周期のページングフレーム(Paging frame:PF)に関連付けられる。PFは、例えば、特定の番号(例えば、システムフレーム番号(System frame number:SFN))で識別される無線フレームで構成されてもよい。POは、例えば、サブフレーム、スロット又は所定周のシンボルで構成されてもよい。
A terminal 10 in an idle state or an inactive state receives a paging message at a paging occasion (PO), which is a period of a predetermined period, by discontinuous reception (DRX). A PO is associated with a paging frame (PF) having a predetermined period. The PF may, for example, consist of radio frames identified by a specific number (eg, System frame number (SFN)). A PO may be composed of, for example, a subframe, a slot, or a predetermined number of symbols.
ここで、無線フレームは10サブフレームで構成され、1サブフレームは1msであってもよい。スロットはニューメロロジー(例えば、サブキャリア間隔(Subcarrier spacing:SCS))に基づく時間単位であり、例えば、SCS=15kHzの場合は1スロットが1サブフレームと等しくともよい。1スロットには所定数のシンボル(例えば、14シンボル)が含まれてもよい。
Here, the radio frame may consist of 10 subframes, and one subframe may be 1 ms. A slot is a time unit based on numerology (eg, Subcarrier spacing (SCS)), eg, one slot may equal one subframe if SCS = 15 kHz. One slot may include a predetermined number of symbols (eg, 14 symbols).
例えば、端末10には、DRX周期に基づいて決定される周期(以下、「ページングサイクル」という)でPFが設定され、PF毎に一つのPOが設定されてもよい。すなわち、端末10にページングサイクルでPOが設定されてもよい。POは、一以上のPDCCHモニタリング機会を含んでもよい。以下では、ページング期間としてPOを例示するが、これに限られず、PF又はページング期間に相当する他の用語が用いられてもよいことは勿論である。
For example, in the terminal 10, PFs may be set with a cycle determined based on the DRX cycle (hereinafter referred to as "paging cycle"), and one PO may be set for each PF. That is, the PO may be set in the terminal 10 in the paging cycle. A PO may contain one or more PDCCH monitoring opportunities. In the following, PO is exemplified as a paging period, but it is of course not limited to this, and other terms corresponding to PF or paging period may be used.
端末10は、上位レイヤパラメータ(例えば、RRC IE「pagingSearchSpace」)によって設定されるサーチスペースセット(例えば、Type2-PDCCH CSS set)をモニタリングして、特定のRNTI(例えば、ページング(P)-RNTI)によりCRCスクランブルされるDCI(以下、「ページングDCI」ともいう)を検出してもよい。端末10は、ページングDCIを用いてスケジューリングされるPDSCHを介して、ページングメッセージを受信する。ここで、当該特定のRNTI(例えば、P-RNTI)を示す情報は、上位レイヤシグナリングにより端末10に設定されてもよい。
The terminal 10 monitors a search space set (eg, Type2-PDCCH CSS set) set by a higher layer parameter (eg, RRC IE "pagingSearchSpace") to obtain a specific RNTI (eg, paging (P)-RNTI) CRC-scrambled DCI (hereinafter also referred to as “paging DCI”) may be detected. The terminal 10 receives the paging message via the PDSCH scheduled using the paging DCI. Here, information indicating the specific RNTI (for example, P-RNTI) may be set in the terminal 10 by higher layer signaling.
また、端末10は、ページングDCIにより伝送されるショートメッセージを受信してもよい。このように、ページングDCIは、ページングメッセージの伝送に用いられるPDSCHのスケジューリング及び/又はショートメッセージの伝送に用いられる。
Also, the terminal 10 may receive a short message transmitted by the paging DCI. Thus, the paging DCI is used for scheduling the PDSCH used for paging message transmission and/or short message transmission.
(TRS)
端末10は、TRSを用いて時間/周波数同期を行うことが検討されている。例えば、アイドル状態又は非アクティブ状態の端末10は、DRXにより、PO間において原則、消費電力が低減されたスリープ状態となるが、次のPOの前の所定期間には時間/周波数同期のためにウェイクアップ(wake up)状態となる。具体的には、端末10は、前のPOから当該所定期間までは、ディープスリープ状態となり、当該所定期間後次のPOまではマイクロスリープ状態となることが想定される。 (TRS)
Terminal 10 is under study to perform time/frequency synchronization using TRS. For example, a terminal 10 in an idle or inactive state will, in principle, be in a sleep state with reduced power consumption between POs by DRX, but for a predetermined period before the next PO, for time/frequency synchronization. A wake-up state is entered. Specifically, it is assumed that the terminal 10 is in the deep sleep state from the previous PO to the predetermined period, and is in the micro sleep state after the predetermined period until the next PO.
端末10は、TRSを用いて時間/周波数同期を行うことが検討されている。例えば、アイドル状態又は非アクティブ状態の端末10は、DRXにより、PO間において原則、消費電力が低減されたスリープ状態となるが、次のPOの前の所定期間には時間/周波数同期のためにウェイクアップ(wake up)状態となる。具体的には、端末10は、前のPOから当該所定期間までは、ディープスリープ状態となり、当該所定期間後次のPOまではマイクロスリープ状態となることが想定される。 (TRS)
ここで、ディープスリープ状態は、マイクロスリープ状態よりも更に消費電力が低減された状態である。例えば、SSバーストよりも次のPOに近い時間位置に配置されたTRSを用いて時間/周波数同期を行う場合、当該SSバーストを用いて時間/周波数同期を行う場合と比較して、PO間における端末10のディープスリープ状態の期間を長くできる。このため、TRSを用いた時間/周波数同期による端末10の消費電力の削減が期待されている。
Here, the deep sleep state is a state in which power consumption is further reduced than the micro sleep state. For example, when performing time/frequency synchronization using a TRS arranged at a time position closer to the next PO than an SS burst, compared to performing time/frequency synchronization using the SS burst, The period of the deep sleep state of the terminal 10 can be lengthened. Therefore, it is expected that the power consumption of the terminal 10 will be reduced by time/frequency synchronization using TRS.
ここで、TRSは、例えば、チャネル状態情報参照信号(Channel State Information-Reference Signal:CSI-RS)で構成されるが、これに限られない。TRSは、CSI-RS、非ゼロパワーのCSI-RS(Non zero power-CSI-RS:NZP-CSI-RS)、TRS/CSI-RS、参照信号等と言い換えられてもよい。
Here, the TRS is composed of, for example, a channel state information reference signal (CSI-RS), but is not limited to this. TRS may also be referred to as CSI-RS, non-zero power CSI-RS (Non zero power-CSI-RS: NZP-CSI-RS), TRS/CSI-RS, reference signal, or the like.
TRSの用途は、例えば、上記時間/周波数同期、トラッキング、パス遅延スプレッド(path delay spread)、ドップラスプレッド(Doppler spread)の推定、及び、ループ収束(loop convergence)の少なくとも一つであればよい。トラッキングとは、端末10の局部発振器(local oscillator)の時間及び/又は周波数変化(time and/or frequency variations)を追跡(track)及び/又は補償(compensate)することである。TRSは、上記用途に用いられるどのような信号であってもよい。また、端末10にTRSが設定される場合、端末10はSSバーストを参照せずに時間/周波数同期をとることができる。
The use of TRS may be, for example, at least one of the time/frequency synchronization, tracking, path delay spread, Doppler spread estimation, and loop convergence. Tracking is to track and/or compensate for time and/or frequency variations of the local oscillator of terminal 10 . The TRS can be any signal used for the above applications. Also, when the TRS is configured in the terminal 10, the terminal 10 can achieve time/frequency synchronization without referring to the SS burst.
以上のようなTRS用のリソース(以下、「TRSリソース」は、例えば、NZP-CSI-RS用の一以上のリソース(以下、「NZP-CSI-RSリソース」という)のセット(以下、「NZP-CSI-RSリソースセット」)で構成されてもよい。TRSリソースは、所定周期(以下、「TRS周期」という、例えば、10、20、40又は80ms周期)の所定数のスロットにおいて、所定数のシンボル及び所定数のサブキャリアで構成されてもよい。TRSリソースを含む所定周期の期間(例えば、上記所定数のスロット)は、TRS機会(occasion)、TRS/CSI-RS機会等とも呼ばれる。
The above resources for TRS (hereinafter, "TRS resources" are, for example, one or more resources for NZP-CSI-RS (hereinafter, "NZP-CSI-RS resources") set (hereinafter, "NZP -CSI-RS resource set"). The TRS resource is a predetermined number of slots in a predetermined period (hereinafter referred to as "TRS period", for example, 10, 20, 40 or 80ms period), a predetermined number A predetermined periodic period (eg, the predetermined number of slots) containing TRS resources is also called a TRS occurrence, a TRS/CSI-RS opportunity, and so on.
端末10は、TRSリソース及び/又はTRS機会(以下、「TRSリソース/機会」という)に関する情報(以下、「TRSリソース/機会情報」という)を受信する。端末10は、基地局20からのTRSリソース/機会情報に基づいて、TRSリソース/機会を設定してもよい。
The terminal 10 receives information (hereinafter referred to as "TRS resource/opportunity information") regarding TRS resources and/or TRS opportunities (hereinafter referred to as "TRS resources/opportunities"). Terminal 10 may configure TRS resources/opportunities based on TRS resource/opportunity information from base station 20 .
なお、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会情報は、コネクティッド状態の端末10向けのTRSリソース/機会情報の少なくとも一部であってもよい。コネクティッド状態の端末10向けのTRSリソース/機会情報(例えば、RRC IE「NZP-CSI-RS ResourceSet」、RRC IE「CSI-ResourceConfig」等)は、RRCメッセージ(例えば、RRCコネクションを確立するRRCセットアップメッセージ(RRCSetup message)又はRRCコネクションを再構成するRRC再構成メッセージ(RRCReconfiguration message))に含まれてもよい。
Note that the TRS resource/opportunity information for the terminal 10 in the idle or inactive state may be at least part of the TRS resource/opportunity information for the terminal 10 in the connected state. TRS resource/opportunity information for terminal 10 in connected state (for example, RRC IE 'NZP-CSI-RS ResourceSet', RRC IE 'CSI-ResourceConfig', etc.) is an RRC message (for example, RRC setup for establishing an RRC connection). message (RRCSetup message) or an RRC reconfiguration message (RRCReconfiguration message) that reconfigures the RRC connection.
一方、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会情報は、システム情報(例えば、SIB1又はSIBx)、及び/又は、RRCメッセージ(例えば、RRCコネクションの解放又は一時停止に用いられるRRC解放メッセージ(RRCRelease message)等)に含まれてもよい。例えば、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会情報には、TRSの電力に関する情報(例えば、SSSに対するTRSの電力オフセットを示すpowerControlOffsetSS)、TRSのスクランブルIDに関する情報(scramblingID)、TRSがマッピングされる時間領域リソースに関する情報(例えば、TRS用の最初のシンボルを示すfirstOFDMSymbolInTimeDomain)、TRSがマッピングされる周波数領域リソースに関する情報(例えば、TRSの開始リソースブロックを示すstartingRB、TRSのリソースブロック数を示すnrofRBs等)が含まれてもよい。
On the other hand, TRS resource/opportunity information for idle or inactive terminals 10 may be system information (eg, SIB1 or SIBx) and/or RRC messages (eg, RRC may be included in release messages (such as RRCRelease message). For example, the TRS resource/opportunity information for terminals 10 in an idle or inactive state includes information on TRS power (e.g., powerControlOffsetSS indicating TRS power offset with respect to SSS), information on TRS scrambling ID (scramblingID), Information on the time domain resource to which the TRS is mapped (for example, firstOFDMSymbolInTimeDomain indicating the first symbol for TRS), information on the frequency domain resource to which the TRS is mapped (for example, startingRB indicating the starting resource block of TRS, resource block of TRS nrofRBs, etc.) may be included.
また、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会情報には、疑似コロケーション(Quasi Co-Location:QCL)に関する情報が含まれ、SSBのインデックスが設定されてもよい。すなわち、端末10は、TRSリソース/機会情報としてSSBのインデックスが設定されることによって、対応するTRSリソース/機会において送信されるTRSと当該SSBとの疑似コロケーションの関係性を識別してもよい。ここで、疑似コロケーションとは、ある信号(例えば、TRS)の広域特性(large-scale properties)が、別の信号(例えば、SSB)の広域特性と、全て又は一部において同じであると想定し得ることを示してもよい。例えば、2つのアンテナポートが疑似コロケーションであるとは、ある1つのアンテナポートにおいて送信される信号(又は、チャネル)が、別の1つのアンテナポートにおいて送信される信号(又は、チャネル)から推定し得ることを示してもよい。ここで、例えば、広域特性は、ドップラ拡散(Doppler spread)、ドップラシフト(Doppler shift)、遅延拡散(delay spread)、平均利得(average gain)、及び/又は、平均遅延(average delay)を含んでもよい。
In addition, the TRS resource/opportunity information for terminals 10 in an idle or inactive state may include information on Quasi Co-Location (QCL), and an SSB index may be set. That is, the terminal 10 may identify the pseudo collocation relationship between the TRS transmitted in the corresponding TRS resource/opportunity and the SSB by setting the index of the SSB as the TRS resource/opportunity information. Here, pseudo-colocation assumes that the large-scale properties of one signal (e.g., TRS) are the same in whole or in part as those of another signal (e.g., SSB). You can show that you get For example, when two antenna ports are pseudo-colocated, the signal (or channel) transmitted at one antenna port is estimated from the signal (or channel) transmitted at another antenna port. You can show that you get Here, for example, the wide area characteristics may include Doppler spread, Doppler shift, delay spread, average gain, and/or average delay. good.
ここで、疑似コロケーションに関する情報として設定されるSSBのインデックスは、SIB1に関連するSSB(Cell-Defining SSBとも称する)のインデックスであってもよい。すなわち、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会情報として、端末10に対して疑似コロケーションに関する情報が設定される場合、SIB1に関連するSSBのインデックスが設定されてもよい。端末10は、基地局20によって設定されたSIB1に関連するSSBのインデックスに基づいて、対応するTRSリソース/機会において送信されるTRSと当該SSBとが疑似コロケーションである(疑似コロケーションの関係性である)とみなしてもよい。ここで、SIB1を、RMSI(Remaining Minimum System Information)と称してもよい。
Here, the SSB index set as the information about the pseudo collocation may be the index of the SSB (also called Cell-Defining SSB) related to SIB1. That is, when information about pseudo collocation is configured for the terminal 10 as TRS resource/opportunity information for the terminal 10 in idle or inactive state, an index of SSBs associated with SIB1 may be configured. Based on the index of the SSB associated with SIB1 set by the base station 20, the terminal 10 determines that the TRS transmitted in the corresponding TRS resource/opportunity and the SSB are pseudo collocations (a relationship of pseudo collocations ) can be considered. Here, SIB1 may be referred to as RMSI (Remaining Minimum System Information).
また、アイドル状態又は非アクティブ状態の端末10向けのTRSリソース/機会の設定に用いられる少なくとも一つのパラメータは、仕様で予め定められてもよい。当該パラメータは、例えば、BWPに関する情報(例えば、BWP IDを示すbwp-id)、時間領域におけるTRSリソースに関する情報(例えば、非周期的、セミパーシステント又は周期的を示すresourceType)、繰り返しに関する情報(例えば、繰り返しのオン又はオフを示すrepetition)、非周期的なTRSのトリガとTRSリソースとの時間オフセットを示すaperiodicTriggeringOffset、CSI-RSリソースセット内の全NZP CSI-RSリソースのアンテナポートが同一であることを示すtrs-Info、TRSの電力に関する情報(例えば、NZP-CSI-RSに対するPDSCHの電力オフセットを示すpowerControlOffset)、TRS用のアンテナポート数に関する情報(例えば、ポート数を示すnrofPorts)、時間領域リソースに関する情報(例えば、リソースブロック内の時間領域割り当てを示すfirstOFDMSYmbolInTimeDomain2)、TRSの符号分割多重(Code Division Multiplexing:CDM)のタイプを示すcdm-Type、TRSリソースの密度に関する情報(例えば、density)の少なくとも一つであってもよい。なお、上記の通り、ここでのTRSは、NZP CSI-RS等と言い換えられてもよい。
Also, at least one parameter used for configuring TRS resources/opportunities for idle or inactive terminals 10 may be predetermined in the specification. The parameters are, for example, information on BWP (e.g., bwp-id indicating BWP ID), information on TRS resources in the time domain (e.g., resourceType indicating aperiodic, semi-persistent, or periodic), information on repetition ( For example, repetition that indicates repetition on or off), aperiodicTriggeringOffset that indicates the time offset between the aperiodic TRS trigger and the TRS resource, the antenna port of all NZP CSI-RS resources in the CSI-RS resource set are the same trs-Info indicating that, information on TRS power (eg, powerControlOffset indicating PDSCH power offset for NZP-CSI-RS), information on the number of antenna ports for TRS (eg, nrofPorts indicating the number of ports), time domain Information on resources (e.g., firstOFDMSYmbolInTimeDomain2 indicating time domain allocation within a resource block), cdm-Type indicating the type of TRS code division multiplexing (CDM), information on the density of TRS resources (e.g., density) It may be at least one. As mentioned above, the TRS here may be rephrased as NZP CSI-RS or the like.
また、TRSリソース/機会情報は、複数のTRSリソース/機会の設定に共通に用いられるパラメータ、及び/又は、独立に用いられるパラメータを含んでもよい。複数のTRSリソース/機会それぞれにインデックスが付与されてもよい。例えば、複数のTRSリソース/機会の設定に独立に用いられるパラメータ(例えば、パラメータのセット)のそれぞれに対してインデックスが付与されてもよい。すなわち、複数のTRSリソース/機会の設定に共通に用いられるパラメータに対してインデックスは付与されなくてもよい。このように、TRSリソース/機会は、上位レイヤパラメータ(例えば、RRCパラメータ及び/又はMAC CE等)及び/又は物理レイヤパラメータ(例えば、DCIフォーマット等)に基づいて制御されてもよい。
In addition, the TRS resource/opportunity information may include parameters commonly used for configuring multiple TRS resources/opportunities and/or parameters used independently. Each of the multiple TRS resources/opportunities may be indexed. For example, an index may be provided for each parameter (eg, set of parameters) that is used independently to configure multiple TRS resources/opportunities. That is, parameters that are commonly used to configure multiple TRS resources/opportunities may not be indexed. Thus, TRS resources/opportunities may be controlled based on higher layer parameters (eg, RRC parameters and/or MAC CE, etc.) and/or physical layer parameters (eg, DCI format, etc.).
以上のようなTRSリソース/機会におけるTRSの利用可能性に関する指示情報(以下、「TRSアベイラビリティ指示」という)を、基地局20から端末10にシグナリングすることが検討されている。なお、TRSの利用可能性は、TRSリソース/機会におけるTRSの送信可能性等と相互に言い換えることができる。また、以下において「TRSが(基地局20から)実際に送信される又は送信されない」は、「(端末10が)TRSを利用可能である又は利用可能でない」と言い換えることができる。
Consideration is underway to signal from the base station 20 to the terminal 10 the instruction information regarding the availability of TRS in the TRS resource/opportunity as described above (hereinafter referred to as "TRS availability instruction"). It should be noted that TRS availability can be interchanged with TRS transmission availability on a TRS resource/opportunity, and the like. Also, hereinafter, "TRS is actually transmitted or not (from base station 20)" can be rephrased as "TRS (terminal 10) is available or not available".
TRSアベイラビリティ指示は、所定数のビットで構成され、当該ビットの第1の値(例えば、「1」)はTRSが利用可能であること(すなわち、基地局20から実際に送信されること)を示し、当該ビットの第2の値(例えば、「0」)はTRSが利用可能でないこと(すなわち、基地局20から実際に送信されないこと)を示してもよい。また、TRSアベイラビリティ指示を構成する所定数のビットは、特定のTRSリソース/機会においてTRSが利用可能であるか否か(すなわち、基地局20から実際に送信されるか否か)を示してもよい。例えば、TRSリソースがNZP-CSI-RSリソース#0~#3を含むNZP-CSI-RSリソースセットで構成される場合、第1のビット値(例えば、「000」)は、当該NZP-CSI-RSリソースセット全体でTRSが送信されないことを示し、第2のビット値(例えば、「001」~「110」等)は、NZP-CSI-RSリソースセットの一部であり、当該第2のビット値が示すNZP-CSI-RSリソースでTRSが送信されることを示し、第3のビット値(例えば、「111」)は当該NZP-CSI-RSリソースセット全体でTRSが送信されることを示してもよい。
The TRS availability indication consists of a predetermined number of bits, a first value of which (eg, '1') indicates that the TRS is available (i.e., actually transmitted from base station 20). and a second value of that bit (eg, '0') may indicate that the TRS is not available (ie not actually transmitted from base station 20). A predetermined number of bits that make up the TRS availability indication may also indicate whether TRS is available (i.e., actually transmitted from base station 20) on a particular TRS resource/opportunity. good. For example, if the TRS resources are configured in the NZP-CSI-RS resource set including NZP-CSI-RS resources # 0 to #3, the first bit value (eg, '000') indicates that the NZP-CSI- A second bit value (eg, '001' to '110', etc.) indicating that no TRS is transmitted in the entire RS resource set is part of the NZP-CSI-RS resource set, and the second bit Indicates that the TRS is transmitted on the NZP-CSI-RS resource indicated by the value, and a third bit value (eg, '111') indicates that the TRS is transmitted on the entire NZP-CSI-RS resource set. may
また、例えば、基地局20は、TRSアベイラビリティ指示としてセットされる値(例えば、「000」、「001」~「110」等、及び/又は、「111」のそれぞれ)と当該NZP-CSI-RSリソースセットとの対応を、RRCメッセージ等の上位レイヤシグナリングを用いて設定してもよい。ここで、NZP-CSI-RSリソース#0~#3における#0~#3は、TRSリソース/機会に対して付与されるインデックスに対応してもよい。例えば、上述のように、複数のTRSリソース/機会の設定に独立に用いられるパラメータ(例えば、パラメータのセット)のそれぞれに対してインデックスが付与され、TRSアベイラビリティ指示(又は、ビットの値)に対応して当該インデックスが指示されることによって、複数のTRSリソース/機会のそれぞれが識別されてもよい。すなわち、端末10は、複数のTRSリソース/機会の設定に共通に用いられるパラメータ、及び、TRSアベイラビリティ指示(又は、ビットの値)により指示されたインデックスに対応するTRSリソース/機会のパラメータに基づいて、TRSリソース/機会を識別してもよい。また、端末10は、TRSアベイラビリティ指示(又は、ビットの値)に基づいて、識別したTRSリソース/機会におけるTRS利用可能性を決定してもよい。
Also, for example, the base station 20, the value set as the TRS availability indication (eg, "000", "001" to "110", etc., and / or each of "111") and the NZP-CSI-RS The association with resource sets may be configured using higher layer signaling such as RRC messages. Here, #0 to #3 in NZP-CSI-RS resources # 0 to #3 may correspond to indices given to TRS resources/opportunities. For example, as described above, each of the parameters (e.g., sets of parameters) that are used independently to configure multiple TRS resources/opportunities are indexed and correspond to TRS availability indications (or bit values). Each of a plurality of TRS resources/opportunities may be identified by indicating the index as . That is, the terminal 10, a parameter commonly used for setting a plurality of TRS resources / opportunities, and a TRS availability indication (or bit value) based on the parameter of the TRS resource / opportunity corresponding to the index indicated , may identify TRS resources/opportunities. Terminal 10 may also determine TRS availability on the identified TRS resource/opportunity based on the TRS availability indication (or bit value).
或いは、TRSアベイラビリティ指示は、TRSが利用可能であること(すなわち、基地局20から実際に送信されること)を示してもよい。例えば、TRSリソース/機会においてTRSが基地局20から実際に送信される場合にのみTRSアベイラビリティ指示が端末10に通知され(又はtrueに設定され)、当該TRSが実際に送信されない場合にTRSアベイラビリティ指示が端末10に通知されなくともよい。これとは逆に、TRSが実際に送信されない場合にのみTRSアベイラビリティ指示が端末10に通知されてもよい。
Alternatively, the TRS availability indication may indicate that TRS is available (that is, actually transmitted from base station 20). For example, the TRS availability indication is notified (or set to true) to the terminal 10 only when the TRS is actually transmitted from the base station 20 in the TRS resource/opportunity, and the TRS availability indication is not transmitted when the TRS is not actually transmitted. may not be notified to the terminal 10 . Conversely, the TRS availability indication may be notified to the terminal 10 only when the TRS is not actually transmitted.
このようなTRSアベイラビリティ指示のシグナリングには、物理レイヤ(L1)ベースのシグナリング(以下、「L1シグナリング」という)、又は、RRCレイヤのシグナリング(以下、「RRCシグナリング」という)が用いられてもよい。
Physical layer (L1)-based signaling (hereinafter referred to as “L1 signaling”) or RRC layer signaling (hereinafter referred to as “RRC signaling”) may be used for such TRS availability indication signaling. .
L1シグナリングを用いる場合、TRSアベイラビリティ指示は、DCIの所定フィールドの値であってもよいし、特定の信号(例えば、SSB又はTRS等)又は当該特定の信号の特定のシーケンスであってもよい。TRSアベイラビリティ指示を含むDCIは、ページングメッセージを伝送するPDSCHのスケジューリングに用いられるDCI(「ページングDCI」とも呼ばれる)であってもよいし、又は、ページング事前指示(Paging early indication(PEI)に用いられるフィールドを含むDCI(「PEI DCI」とも呼ばれる)であってもよい。例えば、ページングDCI及び/又はPEI DCIは、RRCメッセージ等の上位レイヤシグナリングを用いて設定された特定のRNTI(例えば、P-RNTI)によりCRCスクランブルされてもよい。
When using L1 signaling, the TRS availability indication may be the value of a predetermined field in DCI, or a specific signal (eg, SSB or TRS, etc.) or a specific sequence of such specific signals. The DCI including the TRS availability indication may be the DCI used for scheduling the PDSCH that carries the paging message (also referred to as "paging DCI"), or may be used for paging early indication (PEI). field (also called "PEI DCI"), for example, paging DCI and/or PEI DCI may be a specific RNTI configured using higher layer signaling such as RRC messages (e.g., P- RNTI) may be CRC scrambled.
PEIは、POにおけるページング対象に関する指示情報である。端末10は、PEIに基づいて(又はPEIが検出されるか否かに基づいて)、POにおいて当該端末10又は当該端末10が属するグループ(又はサブグループ)がページング対象であるか否かを決定する。端末10は、ページング対象外であるPOには、PDCCHモニタリング、及び/又は、ページングメッセージの受信及び/又は復号をスキップすることで、消費電力を削減できる。なお、PEIは、DCIの所定フィールドの値に限られず、特定の信号(例えば、SSB又はTRS)又は当該特定の信号の特定のシーケンスであってもよい。当該特定の信号が、TRSアベイラビリティ指示として用いられてもよい。
The PEI is instruction information regarding paging targets in the PO. Based on the PEI (or based on whether or not the PEI is detected), the terminal 10 determines whether the terminal 10 or the group (or subgroup) to which the terminal 10 belongs is a paging target in the PO. do. The terminal 10 can reduce power consumption by skipping PDCCH monitoring and/or reception and/or decoding of paging messages for POs not targeted for paging. Note that the PEI is not limited to the value of a predetermined field of DCI, but may be a specific signal (eg, SSB or TRS) or a specific sequence of the specific signal. This particular signal may be used as a TRS availability indication.
RRCシグナリングを用いる場合、TRSアベイラビリティ指示は、システム情報(例えば、SIB1又はSIB1以外のSIBx等)又はRRCメッセージ(例えば、RRCコネクションの解放に用いられるRRC解放メッセージ等)に含まれるパラメータ又はIEの値であってもよい。
When using RRC signaling, the TRS availability indication is the value of a parameter or IE included in system information (such as SIB1 or SIBx other than SIB1) or an RRC message (such as an RRC release message used to release an RRC connection). may be
以上のようなTRSアベイラビリティ指示が有効とみなされる期間(以下、「有効期間(validity time)」という)は、予め仕様で定められてもよい。又は、当該有効期間に関する情報(以下、「有効期間情報」という)が、基地局20から端末10にシグナリングされてもよい。有効期間情報は、例えば、システム情報、RRCメッセージ、又は、DCI(例えば、上記ページングDCI又はPEI DCI)に含まれてもよい。当該有効期間は、所定の時間単位(例えば、無線フレーム、スロット、サブフレーム又はシンボル等)の数で示されてもよいし、時間(例えば、ミリ秒等)で示されてよいし、ページングサイクル、PO又はDRX周期の数で示されてもよい。端末は、有効期間内にTRSアベイラビリティ指示を受信するなら、当該有効期間内において他のTRSアベイラビリティ指示を再取得しなくともよい。
The period during which the TRS availability indication as described above is considered valid (hereinafter referred to as "validity time") may be defined in advance by specifications. Alternatively, information about the valid period (hereinafter referred to as “valid period information”) may be signaled from the base station 20 to the terminal 10 . The lifetime information may be included, for example, in system information, RRC messages, or DCI (eg, the paging DCI or PEI DCI described above). The validity period may be indicated by the number of predetermined time units (e.g., radio frames, slots, subframes, symbols, etc.), may be indicated by time (e.g., milliseconds, etc.), or may be indicated by the number of paging cycles. , PO or the number of DRX cycles. If the terminal receives a TRS availability indication within the validity period, the terminal may not reacquire another TRS availability indication within the validity period.
当該有効期間はタイマ(以下、「有効タイマ(validity timer)」という)を用いて制御されてもよい。当該有効タイマは、例えば、TRSアベイラビリティ指示の検出に基づいて開始されてもよいし、システム情報、ページングDCI又はPEI DCIの検出に基づいて開始(start)されてもよいし、SSB、SSバースト又はPOに基づいて開始されてもよい。有効タイマは、仕様で予め定められた期間、又は、有効期間情報が示す期間が経過すると満了(expire)してもよい。端末10は、有効タイマが満了するまでにTRSアベイラビリティ指示が受信されない場合、端末10は、該当するTRSリソース/機会においてTRSが利用可能でないと想定してもよい。
The validity period may be controlled using a timer (hereinafter referred to as "validity timer"). The valid timer may, for example, be started based on detection of TRS availability indication, may be started based on detection of system information, paging DCI or PEI DCI, SSB, SS burst or It may be initiated based on the PO. The validity timer may expire when a period predetermined by the specification or a period indicated by validity period information elapses. Terminal 10 may assume that TRS is not available on the TRS resource/opportunity in question if no TRS availability indication is received by the expiration of the validity timer.
図3(A)及び(B)は、本実施形態に係るTRSアベイラビリティ指示及び有効期間の一例を示す図である。例えば、図3(A)及び(B)では、前のPOの終了タイミングT0からSSバーストの受信の開始タイミングT1まではディープスリープ状態となり、SSバーストの終了タイミングT3から次のPOの開始タイミングT4まではTRSアベイラビリティ指示及びTRSの受信期間を除いてマイクロスリープ状態であるものとする。タイミングT5からT9についてもタイミングT0からT4と同様である。なお、図3(A)及び(B)は例示にすぎず、端末10がディープスリープ状態及び/又はマイクロスリープ状態となる期間は適宜変更可能である。
Figs. 3(A) and 3(B) are diagrams showing an example of a TRS availability indication and a validity period according to this embodiment. For example, in FIGS. 3A and 3B, the deep sleep state is set from the end timing T0 of the previous PO to the start timing T1 of receiving the SS burst, and from the end timing T3 of the SS burst to the start timing T4 of the next PO. Until then, the micro-sleep state is assumed except for the TRS availability indication and TRS reception periods. Timings T5 to T9 are the same as timings T0 to T4. Note that FIGS. 3A and 3B are merely examples, and the period during which the terminal 10 is in the deep sleep state and/or the micro sleep state can be changed as appropriate.
例えば、図3(A)では、PEI DCI内にTRSアベイラビリティ指示が含まれる。端末10は、PEI用に設定されるPDCCHモニタリング機会におけるモニタリングにより、当該PEI DCIを検出する。端末10は、PEI DCI内のTRSアベイラビリティ指示に基づいて後続のPO前にTRSが送信されるか否かを決定する。例えば、端末10は、タイミングT2で検出されるPEI DCIに基づいて、次のPOの前のTRSリソース/機会においてTRSが送信されると決定する。一方、端末10は、タイミングT8で検出されるPEI DCIに基づいて、次のPOの前のTRSリソース/機会においてTRSが送信されないと決定する。
For example, in FIG. 3(A), the TRS availability indication is included in the PEI DCI. The terminal 10 detects the PEI DCI through monitoring at PDCCH monitoring opportunities configured for PEI. The terminal 10 determines whether TRS is transmitted before the subsequent PO based on the TRS availability indication in the PEI DCI. For example, the terminal 10 determines, based on the PEI DCI detected at timing T2, that TRS will be transmitted on the TRS resource/opportunity before the next PO. On the other hand, the terminal 10 determines, based on the PEI DCI detected at timing T8, that no TRS will be transmitted on the TRS resource/opportunity before the next PO.
図3(A)に示すように、TRSが利用可能であることを示すTRSアベイラビリティ指示の有効期間は、当該TRSアベイラビリティ指示を含むPEI DCIの検出タイミングから次のPOの開始タイミングまでであってもよい。なお、図3(A)では、PEI DCIの検出タイミングT2においてタイマが起動され、当該タイマは次のPOの開始タイミングT4に停止又は満了してもよい。
As shown in FIG. 3(A), the effective period of the TRS availability indication indicating that the TRS is available is from the detection timing of the PEI DCI including the TRS availability indication to the start timing of the next PO. good. Note that in FIG. 3A, the timer may be started at the PEI DCI detection timing T2, and stopped or expired at the next PO start timing T4.
一方、図3(B)では、ページングDCI内にTRSアベイラビリティ指示が含まれる点で、図3(A)と異なる。図3(B)では、端末10は、図3(A)のPEI DCIをページングDCIに読み替えて動作してもよい。図3(B)に示すように、TRSアベイラビリティ指示の有効期間は、当該TRSアベイラビリティ指示を含むページングDCIを検出したPOの終了タイミングから次のPOの開始タイミングまでであってもよい。ページングDCIを用いたTRSアベイラビリティ指示によると、PEIが送信されない場合でも、設定されたTRSリソースにおいてTRSを送信するか否かを柔軟に変更できる。
On the other hand, FIG. 3(B) differs from FIG. 3(A) in that the TRS availability indication is included in the paging DCI. In FIG. 3(B), the terminal 10 may operate by replacing PEI DCI in FIG. 3(A) with paging DCI. As shown in FIG. 3B, the effective period of the TRS availability indication may be from the end timing of the PO that detected the paging DCI including the TRS availability indication to the start timing of the next PO. According to the TRS availability indication using paging DCI, it is possible to flexibly change whether to transmit TRS in the configured TRS resources even if PEI is not transmitted.
図4(A)及び(B)は、本実施形態に係るTRSアベイラビリティ指示及び有効期間の他の例を示す図である。図4(A)及び(B)では、TRSアベイラビリティ指示の有効期間が一以上のPOに渡る点で図3(A)及び3(B)と異なる。
FIGS. 4A and 4B are diagrams showing other examples of TRS availability indications and validity periods according to this embodiment. FIGS. 4A and 4B differ from FIGS. 3A and 3B in that the validity period of the TRS availability indication spans one or more POs.
図4(A)では、ページングDCIに含まれるTRSアベイラビリティ指示について図3(B)との相違点を中心に説明する。なお、一以上のPOに渡る有効期間については、図3(A)で説明したPEIを用いたTRSアベイラビリティ指示にも適用可能である。例えば、図4(A)では、TRSアベイラビリティ指示の有効期間は、4ページングサイクルであってもよい。例えば、図4(A)に示すように、あるPOにおいてTRSアベイラビリティ指示を含むページングDCIが検出される場合、当該TRSアベイラビリティ指示は、当該POから4ページングサイクルの間に設定されたTRSリソースにおいてTRSが送信されるか否かを示してもよい。
FIG. 4(A) will explain the TRS availability indication included in the paging DCI, focusing on the differences from FIG. 3(B). Note that the validity period over one or more POs can also be applied to the TRS availability indication using the PEI described in FIG. 3(A). For example, in FIG. 4A, the validity period of the TRS availability indication may be 4 paging cycles. For example, as shown in FIG. 4A, when paging DCI including a TRS availability indication is detected in a certain PO, the TRS availability indication is TRS in the TRS resource set for 4 paging cycles from the PO. may indicate whether or not is sent.
図4(B)では、システム情報(例えば、SIB1又はSIBx)内のTRSアベイラビリティ指示の一例が示される。端末10は、システム情報内のアベイラビリティ指示に基づいて、各POの前に設定されたTRSリソースにおいてTRSが送信されるか否かを決定してもよい。システム情報を用いたTRSアベイラビリティ指示によると、有効期間が比較的長いケースに適する。
FIG. 4(B) shows an example of a TRS availability indication in system information (eg, SIB1 or SIBx). Terminal 10 may determine whether TRS is transmitted on TRS resources configured before each PO based on the availability indication in the system information. According to the TRS availability indication using system information, it is suitable for the case where the valid period is relatively long.
なお、図3及び4において、TRSアベイラビリティ指示に用いられるDCI用のPDCCHモニタリング機会は、SSバースト、SSバーストセット及びPOの少なくとも一つの時間位置に基づいて決定されてもよい。例えば、当該PDCCHモニタリング機会は、当該時間位置と当該時間位置に対する時間オフセットに基づいて決定されてもよい。当該時間オフセットは、SSB又は帯域幅部分(Bandwidth part:BWP)のサブキャリア間隔に基づいてもよい。
In addition, in FIGS. 3 and 4, the PDCCH monitoring opportunity for DCI used for TRS availability indication may be determined based on the time position of at least one of the SS burst, the SS burst set, and the PO. For example, the PDCCH monitoring occasion may be determined based on the time position and the time offset for the time position. The time offset may be based on the subcarrier spacing of the SSB or Bandwidth part (BWP).
(TRS関連動作)
以上のように、TRSアベイラビリティ指示を端末10に通知すること、及び/又は、当該TRSアベイラビリティ指示に有効期間を設けることにより、TRSリソース/期間においてTRSを実際に送信するか否かを制御可能とする場合、TRSに関する動作(以下、「TRS関連動作」)を適切に制御することが望まれる。以下では、(1)端末10がキャンプオンするセルの再選択(以下、「セル再選択」という)を実施する場合、(2)有効タイマが起動中である場合、(3)システム情報を用いてTRSの利用可能性を指示する場合におけるTRS関連動作について説明する。 (TRS related operation)
As described above, by notifying theterminal 10 of the TRS availability indication and/or providing a valid period for the TRS availability indication, it is possible to control whether or not to actually transmit the TRS in the TRS resource/period. When doing so, it is desirable to appropriately control operations related to TRS (hereinafter referred to as “TRS-related operations”). In the following, (1) when performing reselection of the cell where the terminal 10 camps on (hereinafter referred to as "cell reselection"), (2) when the valid timer is running, (3) using system information TRS related operations are described in the case where the TRS availability is indicated by the
以上のように、TRSアベイラビリティ指示を端末10に通知すること、及び/又は、当該TRSアベイラビリティ指示に有効期間を設けることにより、TRSリソース/期間においてTRSを実際に送信するか否かを制御可能とする場合、TRSに関する動作(以下、「TRS関連動作」)を適切に制御することが望まれる。以下では、(1)端末10がキャンプオンするセルの再選択(以下、「セル再選択」という)を実施する場合、(2)有効タイマが起動中である場合、(3)システム情報を用いてTRSの利用可能性を指示する場合におけるTRS関連動作について説明する。 (TRS related operation)
As described above, by notifying the
なお、以下では、システム情報の一例として、SIB1以外のSIBx(xは、2、3、4等のSIBタイプの識別子)を説明するが、本実施形態におけるシステム情報がSIBxに限られない。また、以下では、端末10は、アイドル状態又は非アクティブ状態であるものとするが、コネクティッド状態における適用を妨げるものでない。
In the following, SIBx other than SIB1 (where x is an SIB type identifier such as 2, 3, 4, etc.) will be described as an example of system information, but the system information in this embodiment is not limited to SIBx. Also, although the terminal 10 is assumed to be in an idle state or an inactive state below, this does not preclude application in a connected state.
(1)セル再選択時のTRS関連動作
セル再選択時の端末10のTRS関連動作について説明する。端末10は、セル選択又はセル再選択時にSIBxを受信する。当該SIBxはエリア固有又はセル固有のどちらかであることが想定される。端末10は、同一のエリア内のセル間でセル再選択を実施する場合、エリア固有のSIBxを再受信しなくともよい。TRSリソース/機会の設定に用いられるSIBxは、エリア固有又はセル固有のどちらであることも想定される。 (1) TRS-related operation during cell reselection TRS-related operation of the terminal 10 during cell reselection will be described. The terminal 10 receives SIBx during cell selection or cell reselection. It is assumed that the SIBx is either area-specific or cell-specific. When performing cell reselection between cells in the same area, terminal 10 does not need to re-receive area-specific SIBx. The SIBx used for TRS resource/opportunity configuration is assumed to be either area-specific or cell-specific.
セル再選択時の端末10のTRS関連動作について説明する。端末10は、セル選択又はセル再選択時にSIBxを受信する。当該SIBxはエリア固有又はセル固有のどちらかであることが想定される。端末10は、同一のエリア内のセル間でセル再選択を実施する場合、エリア固有のSIBxを再受信しなくともよい。TRSリソース/機会の設定に用いられるSIBxは、エリア固有又はセル固有のどちらであることも想定される。 (1) TRS-related operation during cell reselection TRS-related operation of the terminal 10 during cell reselection will be described. The terminal 10 receives SIBx during cell selection or cell reselection. It is assumed that the SIBx is either area-specific or cell-specific. When performing cell reselection between cells in the same area, terminal 10 does not need to re-receive area-specific SIBx. The SIBx used for TRS resource/opportunity configuration is assumed to be either area-specific or cell-specific.
そこで、端末10は、キャンプオンするセルの再選択を実施する場合、TRSリソース/機会の設定に用いられるSIBxがエリア固有であるか否かに基づいて、当該TRSリソース/機会においてTRSが利用可能であることを示すTRSアベイラビリティ指示の有効期間に関する有効タイマを制御する。
Therefore, when reselecting a cell to camp on, the terminal 10 can use TRS in the TRS resource/opportunity based on whether the SIBx used for setting the TRS resource/opportunity is area-specific. Controls the validity timer for the validity period of the TRS availability indication.
図5は、本実施形態に係るセル再選択時におけるTRS関連動作の一例を示す図である。例えば、図5では、セル#0及び#1がエリア#1に含まれ、セル#2及び#3がエリア#2に含まれるものとする。図5において端末10はセル#0にキャンプオンし、セル#0を形成する基地局20から、エリア#1固有のSIBxを受信する。端末10は、当該SIBxに含まれるTRSリソース/機会情報に基づいてTRSリソース/機会を設定してもよい。
FIG. 5 is a diagram showing an example of TRS-related operations during cell reselection according to this embodiment. For example, in FIG. 5, cells # 0 and #1 are included in area # 1, and cells # 2 and #3 are included in area # 2. In FIG. 5, terminal 10 camps on cell # 0 and receives area # 1 specific SIBx from base station 20 forming cell # 0. Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx.
また、セル#0にキャンプオンする端末10は、TRSアベイラビリティ指示を受信する。当該TRSアベイラビリティ指示は、上記エリア#1固有のSIBx、ページングDCI、PEI DCI、PEIとしてのTRS又はRRCメッセージのいずれかに含まれてもよい。端末10は、タイミングT1において、TRSアベイラビリティ指示の有効タイマを開始する。
Also, the terminal 10 camping on cell # 0 receives the TRS availability indication. The TRS availability indication may be included in any of the area # 1 specific SIBx, paging DCI, PEI DCI, TRS as PEI or RRC messages. The terminal 10 starts a valid timer for the TRS availability indication at timing T1.
例えば、図5において、端末10は、タイミングT2においてセル#0と同一のエリア#1に属するセル#1を再選択する。セル#0で受信したSIBxがエリア#1固有であり、再選択されたセル#1はセル#0と同一のエリア#1に属するので、端末10は、タイミングT2において、有効タイマを停止せずに当該TRS関連動作の起動(running)を継続する。また、端末10は、セル#0でエリア#1固有のSIBxを受信しているので、セル#1の再選択の際には、当該SIBxを再度受信しなくともよい。
For example, in FIG. 5, the terminal 10 reselects the cell # 1 belonging to the same area # 1 as the cell # 0 at timing T2. Since the SIBx received in cell # 0 is specific to area # 1 and the reselected cell # 1 belongs to the same area # 1 as cell # 0, terminal 10 does not stop the validity timer at timing T2. continue running the relevant TRS-related operations. Also, since terminal 10 receives SIBx specific to area # 1 in cell # 0, it is not necessary to receive SIBx again when cell # 1 is reselected.
また、図5において、端末10は、タイミングT3においてセル#1とは異なるエリア#2に属するセル#2を再選択する。再選択されたセル#2はセル#1が属するエリア#1とは異なるエリア#2に属するので、端末10は、タイミングT4における満了を待たずに、タイミングT3において有効タイマを停止する。なお、当該有効タイマの停止(stop)は、リセット又は廃棄(discard)等と言い換えられてもよい。
Also, in FIG. 5, terminal 10 reselects cell # 2 belonging to area # 2 different from cell # 1 at timing T3. Since the reselected cell # 2 belongs to the area # 2 different from the area # 1 to which the cell # 1 belongs, the terminal 10 stops the validity timer at the timing T3 without waiting for the expiration at the timing T4. Note that stopping (stopping) the validity timer may be translated into resetting or discarding (discard).
端末10は、セル#2の再選択の際には、セル#1及び#2がそれぞれ属するエリアIDが異なるので、セル#2を形成する基地局20からSIBxを受信する。なお、図5では、当該SIBxがエリア#2固有であるものとするが、これに限られない。端末10は、当該SIBxに含まれるTRSリソース/機会情報に基づいてTRSリソース/機会を設定してもよい。セル#2にキャンプオンする端末10は、TRSアベイラビリティ指示を受信し、タイミングT3において当該TRSアベイラビリティ指示の有効タイマを開始してもよい。当該有効タイマはタイミングT5で満了し、セル#2で受信されたTRSアベイラビリティ指示の有効期間が終了する。
When cell # 2 is reselected, terminal 10 receives SIBx from base station 20 forming cell # 2 because the area IDs to which cells # 1 and #2 belong are different. In FIG. 5, it is assumed that the SIBx is specific to area # 2, but the present invention is not limited to this. Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx. The terminal 10 camping on the cell # 2 may receive the TRS availability indication and start the valid timer of the TRS availability indication at timing T3. The validity timer expires at time T5, terminating the validity period of the TRS availability indication received in cell # 2.
このように、TRSリソース/機会情報を含むSIBxがエリア固有である場合、端末10は、同一のエリア#1に属するセル#0及び#1間においてセル再選択を実施するなら、有効タイマをリセットせずに継続する。一方、端末10は、異なるエリア#1及び#2にそれぞれ属するセル#1及び#2間においてセル再選択を実施するなら、有効タイマをリセットする。このため、端末10が同一のエリアに属するセル間又は異なるエリアに属するセル間において移動する場合であっても、TRSアベイラビリティ指示の有効期間を適切に制御できる。
Thus, if the SIBx containing the TRS resource/opportunity information is area-specific, the terminal 10 resets the validity timer if cell reselection is performed between cells # 0 and #1 belonging to the same area # 1. continue without On the other hand, if the terminal 10 performs cell reselection between cells # 1 and #2 belonging to different areas # 1 and #2, respectively, it resets the validity timer. Therefore, even when the terminal 10 moves between cells belonging to the same area or between cells belonging to different areas, it is possible to appropriately control the valid period of the TRS availability indication.
図6は、本実施形態に係るセル再選択時におけるTRS関連動作の他の例を示す図である。例えば、図6のセル#4及び#5では、それぞれ、セル固有のSIBxが報知されるものとする。図6において端末10はセル#4にキャンプオンし、セル#4を形成する基地局20から、セル#4固有のSIBxを受信する。端末10は、当該SIBxに含まれるTRSリソース/機会情報に基づいてTRSリソース/機会を設定してもよい。
FIG. 6 is a diagram showing another example of TRS-related operations during cell reselection according to this embodiment. For example, in cells # 4 and #5 in FIG. 6, cell-specific SIBx shall be broadcast respectively. In FIG. 6, terminal 10 camps on cell # 4 and receives SIBx unique to cell # 4 from base station 20 forming cell # 4. Terminal 10 may configure the TRS resource/opportunity based on the TRS resource/opportunity information included in the SIBx.
また、セル#4にキャンプオンする端末10は、TRSアベイラビリティ指示を受信する。当該TRSアベイラビリティ指示は、上記セル#4固有のSIBx、ページングDCI、PEI DCI、PEIとしてのTRS又はRRCメッセージのいずれかに含まれてもよい。端末10は、タイミングT1において当該TRSアベイラビリティ指示の有効タイマを起動する。例えば、図6では、当該有効期間はタイミングT1からT3までである。
Also, the terminal 10 camping on cell # 4 receives the TRS availability indication. The TRS availability indication may be included in any of the cell # 4 specific SIBx, paging DCI, PEI DCI, TRS as PEI or RRC messages. The terminal 10 activates the validity timer of the TRS availability indication at timing T1. For example, in FIG. 6, the valid period is from timing T1 to T3.
図6において、端末10は、タイミングT2においてセル#4とは異なるセル#5を再選択する。端末10は、タイミングT3における満了を待たずに、タイミングT2において有効タイマを停止する。また、端末10は、セル#5固有のSIBxを受信し、当該SIBx内のTRSリソース/機会情報に基づいて、TRSリソース/機会を設定する。セル#5にキャンプオンする端末10は、TRSアベイラビリティ指示を受信し、タイミングT2において当該TRSアベイラビリティ指示の有効タイマを起動してもよい。当該有効タイマはタイミングT4で満了し、セル#5で受信されたTRSアベイラビリティ指示の有効期間が終了する。
In FIG. 6, terminal 10 reselects cell # 5, which is different from cell # 4, at timing T2. The terminal 10 stops the validity timer at timing T2 without waiting for the expiration at timing T3. Also, the terminal 10 receives SIBx specific to cell # 5 and configures TRS resources/opportunities based on the TRS resource/opportunity information in the SIBx. The terminal 10 that camps on cell # 5 may receive the TRS availability indication and start the validity timer of the TRS availability indication at timing T2. The validity timer expires at time T4, ending the validity period of the TRS availability indication received in cell # 5.
以上の通り、端末10は、TRSリソース/機会情報を含むSIBxがエリア固有であるか否かに基づいて、TRSアベイラビリティ指示の有効タイマを制御する。したがって、端末10が、セル間を移動する場合であっても、TRSアベイラビリティ指示の有効期間を適切に制御できる。
As described above, the terminal 10 controls the validity timer of the TRS availability indication based on whether the SIBx containing the TRS resource/opportunity information is area-specific. Therefore, even when the terminal 10 moves between cells, it is possible to appropriately control the effective period of the TRS availability indication.
(2)有効タイマ起動中のTRS関連動作
次に、有効タイマ起動中においてTRSの送信が停止される場合における端末10の動作について説明する。端末10は、有効タイマを用いて、当該TRSアベイラビリティ指示の有効期間を制御してもよい。例えば、端末10は、有効タイマを開始してから満了又は停止するまでの間(すなわち、有効タイマが起動している間)においてTRSアベイラビリティ指示が有効であると判断してもよい。このような有効タイマの起動中においてもセルにコネクティッド状態の端末が存在しなくなったこと等を理由として、TRSの送信を停止する運用も想定される。 (2) TRS-Related Operation During Activation of Valid Timer Next, the operation of the terminal 10 when TRS transmission is stopped during activation of the valid timer will be described. The terminal 10 may use a valid timer to control the valid period of the TRS availability indication. For example, the terminal 10 may determine that the TRS availability indication is valid from the start of the validity timer to the expiration or stop of the validity timer (that is, while the validity timer is running). An operation in which TRS transmission is stopped for reasons such as the fact that there is no terminal in the connected state in the cell even while the valid timer is running is also assumed.
次に、有効タイマ起動中においてTRSの送信が停止される場合における端末10の動作について説明する。端末10は、有効タイマを用いて、当該TRSアベイラビリティ指示の有効期間を制御してもよい。例えば、端末10は、有効タイマを開始してから満了又は停止するまでの間(すなわち、有効タイマが起動している間)においてTRSアベイラビリティ指示が有効であると判断してもよい。このような有効タイマの起動中においてもセルにコネクティッド状態の端末が存在しなくなったこと等を理由として、TRSの送信を停止する運用も想定される。 (2) TRS-Related Operation During Activation of Valid Timer Next, the operation of the terminal 10 when TRS transmission is stopped during activation of the valid timer will be described. The terminal 10 may use a valid timer to control the valid period of the TRS availability indication. For example, the terminal 10 may determine that the TRS availability indication is valid from the start of the validity timer to the expiration or stop of the validity timer (that is, while the validity timer is running). An operation in which TRS transmission is stopped for reasons such as the fact that there is no terminal in the connected state in the cell even while the valid timer is running is also assumed.
図7(A)及び(B)は、本実施形態に係る有効タイマ起動中のTRS動作の一例を示す図である。図7(A)及び(B)では、TRSアベイラビリティ指示は、ページングDCIに含まれるものとするが、これに限られず、システム情報又はRRCメッセージ等の上位レイヤシグナリング、又は、PEI DCI又はPEI用の特定の信号等の物理レイヤシグナリングを用いて端末10にシグナリングされればよい。また、有効タイマの開始タイミングは図示するものに限られないことは勿論である。
FIGS. 7(A) and (B) are diagrams showing an example of TRS operation during valid timer activation according to the present embodiment. In FIGS. 7(A) and (B), the TRS availability indication shall be included in, but not limited to, the paging DCI, higher layer signaling such as system information or RRC messages, or PEI DCI or It may be signaled to the terminal 10 using physical layer signaling such as a specific signal. Further, it goes without saying that the start timing of the valid timer is not limited to the illustrated one.
図7(A)では、タイミングT1において開始された有効タイマがタイミングT2で満了する一例が示される。図7(A)に示すように、端末10は、PO#0内のPDCCHモニタリング機会においてTRSを利用可能であることを示すTRSアベイラビリティ指示(第1の指示情報)を含むページングDCIを検出する。端末10は、TRSアベイラビリティ指示の検出に応じて有効タイマを開始し、当該有効タイマが満了するまでの間を当該TRSアベイラビリティ指示の有効期間と判断してもよい。端末10は、当該TRSアベイラビリティ指示に基づいて、有効期間内のTRSリソース/機会においてTRSが利用可能であると判断する。
FIG. 7(A) shows an example in which the validity timer started at timing T1 expires at timing T2. As shown in FIG. 7A, terminal 10 detects paging DCI including a TRS availability indication (first indication information) indicating that TRS can be used at PDCCH monitoring opportunities in PO# 0. The terminal 10 may start a valid timer in response to detection of the TRS availability indication, and determine the period until the valid timer expires as the valid period of the TRS availability indication. Based on the TRS availability indication, terminal 10 determines that TRS is available on the TRS resource/opportunity within the validity period.
また、端末10は、有効タイマの満了後のPO#4内のPDCCHモニタリング機会においてTRSを利用可能でないことを示すページングDCIを検出する。端末10は、当該ページングDCIに基づいてTRSリソース/機会において、TRSが利用可能でないと判断する。
Also, terminal 10 detects a paging DCI indicating that TRS is not available at the PDCCH monitoring opportunity in PO# 4 after expiration of the validity timer. Terminal 10 determines that TRS is not available in TRS resources/opportunities based on the paging DCI.
図7(B)では、タイミングT1において開始された有効タイマがタイミングT1’で停止する一例が示される。図7(B)に示すように、端末10は、有効タイマの起動中のタイミングT1’においてTRSが利用可能でないことを示すTRSアベイラビリティ指示(第2の指示情報)を受信する点で、図7(A)と異なる。図7(B)は図7(A)との相違点を中心に説明する。
FIG. 7(B) shows an example in which the valid timer started at timing T1 is stopped at timing T1'. As shown in FIG. 7B, terminal 10 receives a TRS availability indication (second indication information) indicating that TRS is not available at timing T1′ during activation of the valid timer. (A) is different. FIG. 7(B) will be described with a focus on differences from FIG. 7(A).
端末10は、有効タイマの起動中のPO#2内のPDCCHモニタリング機会において、TRSが利用可能でないことを示すTRSアベイラビリティ指示を含むページングDCIを検出する。端末10は、TRSアベイラビリティ指示の検出に応じて有効タイマを停止する。端末10は、当該タイマを停止後のTRSリソース/機会においてTRSを利用可能でないと判断する。このように、端末10は、タイミングT1’において有効タイマを停止すると、当該有効タイマの満了を待たずに、PO#0で検出されたTRSアベイラビリティ指示の有効期間が終了したと判断してもよい。
Terminal 10 detects a paging DCI containing a TRS availability indication indicating that TRS is not available at the PDCCH monitoring opportunity in PO# 2 while the validity timer is running. Terminal 10 stops the validity timer upon detection of the TRS availability indication. Terminal 10 determines that TRS is not available in TRS resources/opportunities after stopping the timer. In this way, when the valid timer is stopped at timing T1', the terminal 10 may determine that the valid period of the TRS availability indication detected at PO# 0 has expired without waiting for the expiration of the valid timer. .
なお、有効タイマの起動中に通知されるTRSが利用可能でないことを示すTRSアベイラビリティ指示は、ページングDCIのリザーブドフィールドの少なくとも一部のビットの特定の値(例えば、6ビット中の2ビットの値「00」)であってもよい。
Note that the TRS availability indication indicating that the TRS that is notified during activation of the valid timer is not available is a specific value of at least some bits of the reserved field of the paging DCI (for example, 2 bits out of 6 bits value "00").
以上のように、TRSが利用可能であることを示すTRSアベイラビリティ指示の有効期間に関する有効タイマの起動中に、TRSが利用可能でないことを示すTRSアベイラビリティ指示を受信される場合、端末10は、当該有効タイマを停止し、後続のTRSリソース/機会においてTRSが利用可能でないと想定してもよい。これにより、システム側の運用によりTRSを送信するか否かを変更する場合でも、端末10が適切に動作できる。
As described above, when the TRS availability indication indicating that the TRS is not available is received while the validity timer for the validity period of the TRS availability indication indicating that the TRS is available is being activated, the terminal 10 receives the It may stop the validity timer and assume that no TRS is available on subsequent TRS resources/opportunities. As a result, the terminal 10 can operate properly even when the operation of the system side changes whether or not to transmit the TRS.
(3)SIBxに基づくTRS関連動作
次に、SIBxを用いてTRSの利用可能性を指示する場合における端末10の動作について説明する。具体的には、(3.1)SIBxを用いたTRSの利用可能性に関する指示の変更動作、(3.2)SIBxを用いたTRSの利用可能性に関する指示の有効期間の制御動作について説明する。 (3) TRS-related operation based on SIBx Next, the operation of the terminal 10 when indicating TRS availability using SIBx will be described. Specifically, (3.1) change operation of the instruction regarding the availability of TRS using SIBx, and (3.2) control operation of the effective period of the instruction regarding the availability of TRS using SIBx will be described. .
次に、SIBxを用いてTRSの利用可能性を指示する場合における端末10の動作について説明する。具体的には、(3.1)SIBxを用いたTRSの利用可能性に関する指示の変更動作、(3.2)SIBxを用いたTRSの利用可能性に関する指示の有効期間の制御動作について説明する。 (3) TRS-related operation based on SIBx Next, the operation of the terminal 10 when indicating TRS availability using SIBx will be described. Specifically, (3.1) change operation of the instruction regarding the availability of TRS using SIBx, and (3.2) control operation of the effective period of the instruction regarding the availability of TRS using SIBx will be described. .
(3.1)SIBxを用いたTRSアベイラビリティ指示の変更動作
図2で説明したように、一般に、SIBxの内容が変更される場合、端末10は、ある更新期間において、当該SIBxの変更に関する通知情報(以下、「SI変更通知」という)を検出し、次の更新期間において、変更されたSIBxを含むSIメッセージを取得する。当該SI変更通知は、「SI change indication」等とも呼ばれる。SI変更通知には、例えば、ページングDCI内のショートメッセージが用いられてもよい。当該ページングDCIは、当該ある更新期間内の各POでモニタリングされてもよい。 (3.1) Change operation of TRS availability indication using SIBx As described in FIG. (hereinafter referred to as “SI Change Notification”) and in the next update period, obtain the SI message containing the changed SIBx. The SI change notification is also called "SI change indication" or the like. For the SI change notification, for example, a short message in paging DCI may be used. The paging DCI may be monitored at each PO within the certain update period.
図2で説明したように、一般に、SIBxの内容が変更される場合、端末10は、ある更新期間において、当該SIBxの変更に関する通知情報(以下、「SI変更通知」という)を検出し、次の更新期間において、変更されたSIBxを含むSIメッセージを取得する。当該SI変更通知は、「SI change indication」等とも呼ばれる。SI変更通知には、例えば、ページングDCI内のショートメッセージが用いられてもよい。当該ページングDCIは、当該ある更新期間内の各POでモニタリングされてもよい。 (3.1) Change operation of TRS availability indication using SIBx As described in FIG. (hereinafter referred to as “SI Change Notification”) and in the next update period, obtain the SI message containing the changed SIBx. The SI change notification is also called "SI change indication" or the like. For the SI change notification, for example, a short message in paging DCI may be used. The paging DCI may be monitored at each PO within the certain update period.
端末10は、前の更新期間において検出されたSI変更通知に基づいて、次の更新期間で更新されたSIBxを含むSIメッセージを受信してもよい。更新期間は、例えば、所定数の無線フレームで構成されてもよい。当該更新期間の境界(boundary)は、例えば、SFNと更新期間を構成する無線フレームの数とに基づいて決定されてもよい。
The terminal 10 may receive an SI message containing SIBx updated in the next update period based on the SI change notification detected in the previous update period. The update period may, for example, consist of a predetermined number of radio frames. The update period boundary may be determined, for example, based on the SFN and the number of radio frames that make up the update period.
ところで、TRSリソース/機会においてTRSが実際に送信されるか否かは、種々の要因で変更可能とすることが望まれる。例えば、システム全体のトラヒックが増加する場合、設定されたTRSリソース/機会においてTRSを実際には送信しないことで、TRSによるオーバヘッドを削減することが想定される。一方、システム全体のトラヒックが減少する場合、設定されたTRSリソース/機会においてTRSを実際に送信することで、端末10の消費電力の低減効果を高めることが想定される。
By the way, it is desirable to be able to change whether or not TRS is actually transmitted in TRS resources/opportunities depending on various factors. For example, when overall system traffic increases, it is assumed that TRS overhead is reduced by not actually transmitting TRS on configured TRS resources/opportunities. On the other hand, when the traffic of the entire system decreases, it is assumed that the power consumption reduction effect of the terminal 10 is enhanced by actually transmitting the TRS in the set TRS resource/opportunity.
このように、TRSリソース/機会においてTRSが実際に送信されるか否かが変更される場合、当該変更をどのように端末10に通知するかが問題となる。ここで、端末10が、SIBx内のTRSアベイラビリティ指示に基づいてTRSリソース/機会においてTRSが実際に送信されるか否かを決定する場合、SIメッセージのアップデート手順(update procedure)(以下、「SIアップデート手順」という)を用いることが想定される。
Thus, when it is changed whether or not TRS is actually transmitted in the TRS resource/opportunity, the problem is how to notify the terminal 10 of the change. Here, when the terminal 10 determines whether TRS is actually transmitted on the TRS resource/opportunity based on the TRS availability indication in SIBx, an update procedure for the SI message (hereinafter “SI update procedure”) is assumed to be used.
しかしながら、当該SIアップデート手順では、SIBx内のTRSアベイラビリティ指示の値(又は、SIBxがTRSアベイラビリティ指示を含むか否か)が変更されることは想定されていない。このため、SIアップデート手順を用いるだけでは、上記TRSアベイラビリティ指示が有効となるタイミング、及び/又は、当該TRSアベイラビリティ指示の有効期間を適切に制御できない恐れがある。
However, the SI update procedure does not assume that the value of the TRS availability indication in SIBx (or whether SIBx includes the TRS availability indication) is changed. Therefore, there is a possibility that the timing at which the TRS availability indication becomes effective and/or the validity period of the TRS availability indication cannot be appropriately controlled only by using the SI update procedure.
そこで、SIアップデート手順により変更されたSIBx内のTRSアベイラビリティ指示がTRSリソース/機会においてTRSが実際に送信されることを示す場合、端末10は、基準となるタイミング(以下、「基準タイミング(reference timing)」という)に基づいて、当該TRSアベイラビリティ指示が有効となるタイミング(すなわち、有効タイマの開始タイミング)を決定してもよい。
Therefore, if the TRS availability indication in SIBx modified by the SI update procedure indicates that TRS is actually transmitted on the TRS resource/opportunity, the terminal 10 may set the reference timing (hereinafter "reference timing )”) may be used to determine when the TRS availability indication becomes valid (ie, when the validity timer starts).
当該基準タイミングは、例えば、TRSが利用可能であることを示すTRSアベイラビリティ指示を含むSIBxの受信に関するタイミング、当該SIBx以外のSIBx又はSIB1の受信に関するタイミング、又は、更新期間の境界であってもよい。受信に関するタイミングとは、受信した無線フレーム、スロット又はシンボルについての開始又は終了タイミングであってもよいし、受信に用いる期間(例えば、SIウィンドウ)の開始又は終了タイミング等であってもよい。
The reference timing may be, for example, the timing for the reception of SIBx containing the TRS availability indication indicating that the TRS is available, the timing for the reception of SIBx or SIB1 other than the SIBx, or the boundary of the update period. . The timing related to reception may be the start or end timing of a received radio frame, slot or symbol, or may be the start or end timing of a period used for reception (for example, SI window).
また、端末10は、上記基準タイミングと、当該基準タイミングに対するオフセットとに基づいて、有効タイマの開始タイミングを決定してもよい。当該オフセットは、スロットの数、無線フレームの数、ハイパー無線フレームの数、時間(例えば、ミリ秒)、ページングサイクルの整数倍、又は、DRX周期の整数倍等によって規定されてもよい。当該オフセットは、予め仕様で定められてもよいし、基地局20から通知されてもよい。また、当該オフセットの値は0であってもよく、端末10は、上記基準タイミングをTRSアベイラビリティ指示が有効となるタイミングとして決定してもよい。
Also, the terminal 10 may determine the start timing of the valid timer based on the reference timing and the offset with respect to the reference timing. The offset may be defined by the number of slots, the number of radio frames, the number of hyper-radio frames, time (eg, milliseconds), integer multiples of paging cycles, integer multiples of DRX periods, or the like. The offset may be specified in advance or notified from the base station 20 . Also, the value of the offset may be 0, and the terminal 10 may determine the reference timing as the timing at which the TRS availability indication becomes valid.
また、端末10は、当該オフセットに関する情報(以下、「オフセット情報」という)を基地局20から受信してもよい。当該オフセット情報は、TRSアベイラビリティ指示を含むSIBxに含まれてもよいし、他のSIBxに含まれてもよいし、又は、SIB1に含まれてもよいし、他のRRCメッセージに含まれてもよい。
Also, the terminal 10 may receive information about the offset (hereinafter referred to as "offset information") from the base station 20. The offset information may be included in SIBx containing the TRS availability indication, may be included in another SIBx, may be included in SIB1, or may be included in another RRC message. good.
図8は、本実施形態に係るSIアップデート手順の一例を示す図である。例えば、図8では、SIBx内のTRSアベイラビリティ指示は、TRSリソース/機会においてTRSが実際に送信されることを示し、TRSが実際に送信されない場合は、SIBxはTRSアベイラビリティ指示を含まないものとするが、上記の通り、TRSリソース/機会においてTRSが実際に送信されるか否かを示すTRSアベイラビリティ指示がSIBx内に含まれてもよいことは勿論である。
FIG. 8 is a diagram showing an example of an SI update procedure according to this embodiment. For example, in FIG. 8, the TRS availability indication in SIBx indicates that TRS is actually transmitted on the TRS resource/opportunity, and if TRS is not actually transmitted, SIBx shall not contain the TRS availability indication. However, as noted above, it should be appreciated that a TRS availability indication may be included in SIBx indicating whether or not TRS is actually transmitted on the TRS resource/opportunity.
例えば、図8では、前の更新期間内で送信されるSIBxは、TRSアベイラビリティ指示を含まず、TRSリソース/機会においてTRSが実際には送信されないことを示す。一方、当該前の更新期間内にTRSが実際に送信すべき要因が検知されると、基地局20は、SIBxを含むSIメッセージのSI変更通知をPOにおいて送信する。端末10は、POにおけるPDCCHモニタリングによりSI変更通知を検出すると、次の更新期間においてSIB1を受信し、当該SIB1に基づいて、変更されたSIBxを含むSIメッセージを受信する。なお、図示しないが、端末10は、境界後SIB1の前にMIBを受信してもよい。
For example, in FIG. 8, the SIBx transmitted within the previous update period does not contain a TRS availability indication, indicating that no TRS is actually transmitted on the TRS resource/opportunity. On the other hand, if a TRS should actually send a trigger within the previous update period, the base station 20 sends an SI change notification in the SI message containing SIBx on the PO. When terminal 10 detects the SI change notification through PDCCH monitoring in PO, terminal 10 receives SIB1 in the next update period, and receives an SI message including changed SIBx based on SIB1. Although not shown, the terminal 10 may receive the MIB before the SIB1 after the boundary.
また、図8のSIB1内のSIBxのバージョン情報(例えば、RRC IE「valueTag」)は、v0から1加算されたv1を示す。端末10は、SIB1内のSIBxのバージョン情報(ここでは、v1)と、端末10内で記憶するSIBxのバージョン情報(ここでは、v0)とが一致しないので、v1のSIBxを含むSIメッセージを取得してもよい。端末10は、v1のSIBx内のTRSアベイラビリティ指示に基づいて、TRSリソース/機会においてTRSが実際に送信されると判断する。
Also, the version information of SIBx in SIB1 in FIG. 8 (eg, RRC IE "valueTag") indicates v1 incremented by 1 from v0. Since the version information of SIBx in SIB1 (here, v1) does not match the version information of SIBx (here, v0) stored in terminal 10, terminal 10 acquires an SI message containing SIBx of v1. You may Terminal 10 determines that TRS is actually transmitted on the TRS resource/opportunity based on the TRS availability indication in SIBx for v1.
また、図8では、端末10は、更新期間の境界を基準タイミングとし、当該基準タイミングとオフセットに基づいて、TRSアベイラビリティ指示が有効となるタイミングを決定してもよい。端末10は、決定したタイミングで有効タイマを開始してもよい。端末10は、当該有効タイマを開始してから有効タイマが満了するまでの間を、当該TRSアベイラビリティ指示の有効期間として決定してもよい。当該有効期間は、更新期間の整数倍で規定されてもよい。
Also, in FIG. 8, the terminal 10 may use the boundary of the update period as the reference timing, and determine the timing at which the TRS availability indication becomes effective based on the reference timing and the offset. The terminal 10 may start the valid timer at the determined timing. The terminal 10 may determine the period from when the valid timer is started until the valid timer expires as the valid period of the TRS availability indication. The valid period may be defined as an integral multiple of the update period.
図8に示すように、基地局20は、当該有効タイマが満了すると、TRSリソース/機会におけるTRSの送信を停止する。また、基地局20は、v1のSIBxの報知を停止してもよい。基地局20は、有効タイマの満了後においてTRSの送信を停止しても、SI変更通知を送信しなくともよい。すなわち、基地局20は、有効タイマの満了後において、当該TRSが送信されないことを示すv2のSIBxを報知する必要はない。また、SIB1内のSIBxのバージョン情報も更新せず、v1を維持すればよい。
As shown in FIG. 8, the base station 20 stops transmitting TRS on the TRS resource/opportunity when the valid timer expires. Also, the base station 20 may stop reporting SIBx of v1. The base station 20 does not have to transmit the SI change notification even if it stops transmitting the TRS after the valid timer expires. That is, the base station 20 does not need to broadcast SIBx of v2 indicating that the TRS will not be transmitted after the valid timer expires. Moreover, version information of SIBx in SIB1 is not updated, and v1 may be maintained.
なお、図8では、更新期間の境界を基準タイミングとしたが、上記の通り、基準タイミングは、TRSアベイラビリティ指示を含むv1のSIBxを含むSIメッセージの受信に関するタイミング、当該SIメッセージが送信されるSIウィンドウに関するタイミング、又は、SIB1の受信に関するタイミング等であってもよい。
In FIG. 8, the boundary of the update period is used as the reference timing. It may be the timing related to the window, the timing related to the reception of SIB1, or the like.
以上のように、SIアップデート手順により変更されたSIBx内のTRSアベイラビリティ指示がTRSリソース/機会においてTRSが実際に送信されることを示す場合でも、有効タイマの開始タイミング、及び/又は、当該TRSアベイラビリティ指示の有効期間を適切に制御できる。
As described above, even if the TRS availability indication in SIBx modified by the SI update procedure indicates that TRS is actually transmitted on the TRS resource/opportunity, the start timing of the valid timer and/or the TRS availability You have good control over how long instructions are valid.
(3.2)SIBxを用いた有効期間の制御動作
ところで、あるセルにキャンプオンする端末10がSIBxに基づいて上記有効タイマを起動している間に、他の端末10が当該あるセルへのキャンプオンを開始することが想定される。この場合、当該有効タイマが満了すると、基地局20はTRSリソース/機会においてTRSを実際には送信しないので、同一のセルに属する端末10間において、有効タイマの満了タイミング(すなわち、SIBx内のTRSアベイラビリティ指示の有効期間の終了タイミング)が一致する必要がある。 (3.2) Validity period control operation using SIBx By the way, while the terminal 10 camping on a certain cell is activating the valid timer based on SIBx, another terminal 10 It is assumed that camp-on will start. In this case, when the valid timer expires, thebase station 20 does not actually transmit the TRS in the TRS resource/opportunity, so between the terminals 10 belonging to the same cell, the expiration timing of the valid timer (that is, the TRS in SIBx The end timing of the validity period of the availability indication) must match.
ところで、あるセルにキャンプオンする端末10がSIBxに基づいて上記有効タイマを起動している間に、他の端末10が当該あるセルへのキャンプオンを開始することが想定される。この場合、当該有効タイマが満了すると、基地局20はTRSリソース/機会においてTRSを実際には送信しないので、同一のセルに属する端末10間において、有効タイマの満了タイミング(すなわち、SIBx内のTRSアベイラビリティ指示の有効期間の終了タイミング)が一致する必要がある。 (3.2) Validity period control operation using SIBx By the way, while the terminal 10 camping on a certain cell is activating the valid timer based on SIBx, another terminal 10 It is assumed that camp-on will start. In this case, when the valid timer expires, the
そこで、基地局20は、TRSアベイラビリティ指示の有効期間に関する情報(以下、「有効期間情報」)を報知する際に、起動中の有効タイマが開始してからの経過時間に基づいて、当該有効期間情報を生成する。当該有効時間情報は、TRSアベイラビリティ指示を含むSIBxに含まれてもよいし、他のSIB(例えば、他のSIBx又はSIB1等)に含まれてもよい。例えば、当該有効時間情報は、TRSアベイラビリティ指示がどのくらいの期間有効であるかを示してもよい。なお、当該起動中の有効タイマが開始してからの経過時間は、当該有効タイマが満了するまでの残り時間と言い換えられてもよい。
Therefore, the base station 20 broadcasts information on the effective period of the TRS availability instruction (hereinafter referred to as "effective period information") based on the elapsed time from the start of the active timer. Generate information. The validity time information may be included in SIBx including the TRS availability indication, or may be included in other SIBs (eg, other SIBx or SIB1, etc.). For example, the validity time information may indicate how long the TRS availability indication is valid. Note that the elapsed time from the start of the activated valid timer may be rephrased as the remaining time until the valid timer expires.
当該有効期間情報は、例えば、有効タイマの満了タイミングまでの残り時間を示し、残り時間は、当該有効期間の開始タイミングからの経過時間に基づいて更新されてもよい。或いは、当該有効期間情報は、例えば、有効タイマの満了タイミングの時刻、無線フレームの番号又はハイパー無線フレームの番号等を示してもよい。すなわち、有効期間情報は、有効タイマの満了タイミングを絶対的に示してもよい。例えば、有効期間情報は、UTC(Universal Time Coordinated)時間を用いて規定され、TRSアベイラビリティ指示(例えば、TRSアベイラビリティ指示のコンテンツ)がいつ満了するかを示してもよい。
The valid period information may indicate, for example, the remaining time until the expiration timing of the valid timer, and the remaining time may be updated based on the elapsed time from the start timing of the valid period. Alternatively, the validity period information may indicate, for example, the expiration timing of the validity timer, the number of the radio frame, the number of the hyper radio frame, or the like. That is, the validity period information may absolutely indicate the expiration timing of the validity timer. For example, lifetime information may be defined using Universal Time Coordinated (UTC) time to indicate when a TRS availability indication (eg, the contents of the TRS availability indication) will expire.
図9は、本実施形態に係るTRSアベイラビリティ指示の有効期間の制御動作の一例を示す図である。例えば、図9では、あるセルに端末10Aがキャンプオンしており、SIBx内のTRSアベイラビリティ指示の有効期間を示す有効タイマが起動中であるものとする。なお、図9では、有効タイマの起動の開始タイミングが、SIBxの受信の終了タイミングと等しいが、例示にすぎず、これに限られない。上記の通り、当該開始タイミングは、基準タイミングとオフセットとに基づいて決定されればよい。
FIG. 9 is a diagram showing an example of control operation for the valid period of the TRS availability indication according to this embodiment. For example, in FIG. 9, it is assumed that the terminal 10A is camping on a certain cell and the validity timer indicating the validity period of the TRS availability indication in SIBx is being activated. In FIG. 9, the start timing of activation of the validity timer is equal to the end timing of reception of SIBx, but this is only an example and is not limited to this. As described above, the start timing may be determined based on the reference timing and the offset.
例えば、図9では、SIBx内の有効期間情報は、有効タイマが満了するまでの残り時間を示す。図9に示すように、所定周期でSIBxが報知される場合、各SIBxに含まれる有効期間情報が示す残り時間は、初期値から有効タイマを開始してからの経過時間に基づいて決定されてもよい。例えば、有効タイマが起動していない間に受信されたSIBx内の有効期間情報は、初期値の10秒を示す。一方、当該有効タイマの起動中に受信されたSIBx内の有効期間情報は、初期値の10秒からの経過時間に基づいて残り時間3秒を示してもよい。
For example, in FIG. 9, the validity period information in SIBx indicates the remaining time until the validity timer expires. As shown in FIG. 9, when SIBx is broadcast at a predetermined cycle, the remaining time indicated by the valid period information included in each SIBx is determined based on the elapsed time from the start of the valid timer from the initial value. good too. For example, validity period information in SIBx received while the validity timer is not running indicates an initial value of 10 seconds. On the other hand, the validity period information in SIBx received while the validity timer is running may indicate a remaining time of 3 seconds based on the elapsed time from the initial value of 10 seconds.
このように、SIBx内の有効期間情報が示す値は、有効タイマの開始タイミングからの経過時間に基づいて更新されてもよい。これにより、端末10Aにおける有効タイマの起動中に端末10Bが端末10Aと同一のセルにキャンプオンする場合にも端末10A及び10B間における有効タイマの満了タイミングの不一致を回避できる。
In this way, the value indicated by the validity period information in SIBx may be updated based on the elapsed time from the start timing of the validity timer. As a result, even when the terminal 10B camps on the same cell as the terminal 10A while the valid timer of the terminal 10A is running, it is possible to avoid mismatching of the expiration timings of the valid timers between the terminals 10A and 10B.
なお、図9に示すように、SIBx内の有効期間情報が示す残り時間は、SIBxの周期毎に更新されてもよい。基地局20は、SIBx内の有効期間情報が更新されても、上記SI変更通知を送信しなくともよい。一方、SIBx内の有効期間情報が示す初期値(図9では、10秒)を延長する場合、基地局20は、上記SI変更通知に基づくSIアップデート手順を実施して、延長後の初期値を示す有効期間情報を含むv2のSIBxを報知してもよい。
It should be noted that, as shown in FIG. 9, the remaining time indicated by the validity period information in SIBx may be updated for each cycle of SIBx. The base station 20 may not transmit the SI change notification even if the valid period information in SIBx is updated. On the other hand, when extending the initial value (10 seconds in FIG. 9) indicated by the valid period information in SIBx, the base station 20 performs the SI update procedure based on the SI change notification, and the extended initial value is You may broadcast SIBx of v2 containing the effective period information to show.
図10は、本実施形態に係るTRSアベイラビリティ指示の有効期間の制御動作の他の例を示す図である。例えば、図10では、有効期間情報は、有効期間の満了タイミングとしてSFN#128を示す。なお、図10における他の動作は、図9で説明した通りである。
FIG. 10 is a diagram showing another example of the control operation of the validity period of the TRS availability indication according to this embodiment. For example, in FIG. 10, the validity period information indicates SFN# 128 as the expiration timing of the validity period. Other operations in FIG. 10 are as explained in FIG.
このように、SIBx内の有効期間情報が、有効期間が満了する時間又は時間単位のインデックスを示すことにより、有効タイマの開始タイミングからの経過時間に基づいて逐次更新する必要がない。このため、図9で説明した基地局20における有効期間情報の更新動作を行わずとも、端末10間における有効タイマの満了タイミングの不一致を回避できる。
In this way, the validity period information in SIBx indicates the time at which the validity period expires or the index in units of time, so that it is not necessary to update sequentially based on the elapsed time from the start timing of the validity timer. Therefore, it is possible to avoid mismatching of expiration timings of valid timers between the terminals 10 without performing the updating operation of the valid period information in the base station 20 described with reference to FIG.
(無線通信システムの構成)
次に、以上のような無線通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。 (Configuration of wireless communication system)
Next, the configuration of each device of theradio communication system 1 as described above will be described. Note that the following configuration is for showing the configuration required in the description of the present embodiment, and does not exclude that each device has functional blocks other than those illustrated.
次に、以上のような無線通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。 (Configuration of wireless communication system)
Next, the configuration of each device of the
<ハードウェア構成>
図11は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、端末10、基地局20、CN30など)は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。 <Hardware configuration>
FIG. 11 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment. Each device in the wireless communication system 1 (for example, the terminal 10, thebase station 20, the CN 30, etc.) includes a processor 11, a storage device 12, a communication device 13 that performs wired or wireless communication, an input device that receives various input operations, and various It includes an input/output device 14 for outputting information.
図11は、本実施形態に係る無線通信システム内の各装置のハードウェア構成の一例を示す図である。無線通信システム1内の各装置(例えば、端末10、基地局20、CN30など)は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。 <Hardware configuration>
FIG. 11 is a diagram showing an example of the hardware configuration of each device in the wireless communication system according to this embodiment. Each device in the wireless communication system 1 (for example, the terminal 10, the
プロセッサ11は、例えば、CPU(Central Processing Unit)であり、無線通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。無線通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。
The processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the wireless communication system 1 . The processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment. Each device within the wireless communication system 1 may be configured with one or more processors 11 . Each device may also be called a computer.
記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。
The storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive). The storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。
The communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をパケットに変換する処理、及び、パケットをデジタルベースバンド信号に変換する処理を行う。
For example, the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device. The BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。
The input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
以上説明したハードウェア構成は一例に過ぎない。無線通信システム1内の各装置は、図11に記載したハードウェアの一部が省略されていてもよいし、図11に記載されていないハードウェアを備えていてもよい。また、図11に示すハードウェアが1又は複数のチップにより構成されていてもよい。
The hardware configuration described above is just an example. Each device in the wireless communication system 1 may omit part of the hardware shown in FIG. 11, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 11 may be configured by one or a plurality of chips.
<機能ブロック構成>
≪端末≫
図12は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。図12に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。 <Functional block configuration>
≪Device≫
FIG. 12 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment. As shown in FIG. 12 ,terminal 10 includes receiver 101 , transmitter 102 , and controller 103 .
≪端末≫
図12は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。図12に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。 <Functional block configuration>
≪Device≫
FIG. 12 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment. As shown in FIG. 12 ,
なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
受信部101は、下り信号を受信する。また、受信部101は、下り信号を介して伝送された情報及び/又はデータを受信してもよい。ここで、「受信する」とは、例えば、無線信号の受信、デマッピング、復調、復号、モニタリング、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。下り信号は、例えば、PDSCH、PDCCH、下り参照信号、同期信号、PBCH等の少なくとも一つを含んでもよい。
The receiving unit 101 receives the downstream signal. Also, the receiving section 101 may receive information and/or data transmitted via a downlink signal. Here, "receiving" may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals. The downlink signal may include, for example, at least one of PDSCH, PDCCH, downlink reference signal, synchronization signal, PBCH, and the like.
受信部101は、サーチスペース内のPDCCH候補をモニタリングして、DCIを検出する。受信部101は、DCIを用いてスケジューリングされるPDSCHを介して、下りユーザデータ及び/又は上位レイヤの制御情報(例えば、Medium Access Control Element(MAC CE)、RRCメッセージ又はNASメッセージ等)を受信してもよい。
Receiving section 101 monitors PDCCH candidates in the search space to detect DCI. Receiving section 101 receives downlink user data and/or higher layer control information (eg, Medium Access Control Element (MAC CE), RRC message, NAS message, etc.) via PDSCH scheduled using DCI. may
具体的には、受信部101は、SIBx(システム情報)を受信する。また、受信部101は、TRSリソース/期間(リソース及び/又は期間)においてTRSを利用可能であることを示す指示情報を受信してもよい(例えば、上記(1)、(2)参照)。当該指示情報は、SIBx、ページングDCI又はPEI DCI内に含まれてもよい。
Specifically, the receiving unit 101 receives SIBx (system information). Also, the receiving unit 101 may receive indication information indicating that the TRS can be used in the TRS resource/period (resource and/or period) (see (1) and (2) above, for example). The indication information may be included in SIBx, paging DCI or PEI DCI.
また、受信部101は、有効タイマが起動している間に、TRSリソース/機会においてTRSが利用可能であることを示す指示情報(第2の指示情報)を受信してもよい(例えば、上記(2)参照)。当該指示情報は、ページングDCIに含まれてもよく、当該ページングDCIのリザーブドフィールドの少なくとも一部のビットの特定の値であってもよい。
Further, the receiving unit 101 may receive indication information (second indication information) indicating that the TRS is available in the TRS resource/opportunity while the valid timer is running (for example, the (2)). The indication information may be included in the paging DCI, or may be a specific value of at least some bits of the reserved field of the paging DCI.
また、受信部101は、TRSリソース/機会においてTRSが利用可能であることを示す指示情報を含むSIBxを受信してもよい(例えば、上記(3)参照)。受信部101は、前の更新期間において検出されたSI変更通知(システム情報の変更通知)に基づいて、次の更新期間において上記SIBxを受信してもよい(例えば、図8参照)。また、受信部101は、基準タイミングに対するオフセット情報を受信してもよい。
Also, the receiving unit 101 may receive SIBx including indication information indicating that TRS is available in the TRS resource/opportunity (see (3) above, for example). The receiving unit 101 may receive the SIBx in the next update period based on the SI change notification (system information change notification) detected in the previous update period (see FIG. 8, for example). Also, the receiving section 101 may receive offset information with respect to the reference timing.
また、受信部101は、TRSリソース/機会においてTRSが利用可能であることを示す指示情報の有効期間に関する有効期間情報を受信してもよい。当該有効期間情報は、有効タイマの満了タイミングまでの残り時間を示し、当該残り時間は、前記有効期間の開始タイミングからの経過時間に基づいて更新されてもよい(例えば、図9)。又は、当該有効期間情報は、満了タイミングの時刻、無線フレームの番号又はハイパー無線フレームの番号を示してもよい(例えば、図10)。
Also, the receiving unit 101 may receive validity period information regarding the validity period of the indication information indicating that the TRS is available in the TRS resource/opportunity. The validity period information may indicate the remaining time until expiration of the validity timer, and the remaining time may be updated based on the elapsed time from the start timing of the validity period (eg, FIG. 9). Alternatively, the validity period information may indicate the time of expiration timing, the radio frame number, or the hyper radio frame number (eg, FIG. 10).
送信部102は、上り信号を送信する。また、送信部102は、上り信号を介して伝送される情報及び/又はデータを送信してもよい。ここで、「送信する」とは、例えば、符号化、変調、マッピング、無線信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。上り信号は、例えば、上り共有チャネル(例えば、物理上り共有チャネル(Physical Uplink Shared channel:PUSCH)、ランダムアクセスプリアンブル(例えば、物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)、上り参照信号等の少なくとも一つを含んでもよい。
The transmission unit 102 transmits an upstream signal. Also, the transmitting section 102 may transmit information and/or data transmitted via an uplink signal. Here, "transmitting" may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals. The uplink signal is, for example, an uplink shared channel (e.g., Physical Uplink Shared channel: PUSCH), a random access preamble (e.g., Physical Random Access Channel: PRACH), at least an uplink reference signal, etc. may contain one.
送信部102は、受信部101で受信されたDCIを用いてスケジューリングされるPUSCHを介して、上りユーザデータ及び/又は上位レイヤの制御情報(例えば、MAC CE、RRCメッセージ等)を送信してもよい。
Transmitting section 102 may transmit uplink user data and/or higher layer control information (eg, MAC CE, RRC messages, etc.) via PUSCH scheduled using the DCI received by receiving section 101. good.
制御部103は、端末10における各種制御を行う。
The control unit 103 performs various controls in the terminal 10.
例えば、制御部103は、SIBx又はRRCメッセージに基づいて、TRSリソース/機会を設定してもよい。
For example, the control unit 103 may configure TRS resources/opportunities based on SIBx or RRC messages.
また、制御部103は、キャンプオンするセルの再選択を実施する場合、SIBxがエリア固有であるか否かに基づいて、TRSアベイラビリティ指示の有効期間に関する有効タイマを制御してもよい(例えば、上記(1)、図5及び6参照)。具体的には、制御部103は、SIBxがエリア固有である場合、有効タイマの起動中に同一のエリアに属するセル間でセル再選択を実施するなら、有効タイマを継続してもよい。また、制御部103は、SIBxがエリア固有である場合、有効タイマの起動中に異なるエリアそれぞれ属するセル間でセル再選択を実施するなら、有効タイマを停止してもよい。また、制御部103は、SIBxがエリア固有でない場合、有効タイマの起動中にセル間でセル再選択を実施するなら、有効タイマを停止してもよい。
Further, the control unit 103, when performing reselection of the cell to camp on, based on whether SIBx is area-specific, may control a valid timer related to the valid period of the TRS availability indication (for example, (1) above, see FIGS. 5 and 6). Specifically, when SIBx is area-specific, control section 103 may continue the valid timer if cell reselection is performed between cells belonging to the same area while the valid timer is running. Further, when SIBx is area-specific, control section 103 may stop the valid timer if cell reselection is performed between cells belonging to different areas while the valid timer is running. Also, if SIBx is not area-specific, control section 103 may stop the valid timer if cell reselection is performed between cells while the valid timer is running.
また、制御部103は、TRSアベイラビリティ指示の有効期間に関する有効タイマを制御する。具体的には、制御部103は、TRSリソース/機会においてTRSが利用可能であることを示す第1の指示情報の有効期間に関するタイマを開始する(例えば、上記(2)、図7(A)参照)。また、制御部103は、有効タイマが起動している間に、TRSリソース/機会においてTRSが利用可能でないことを示す第2の指示情報が受信部101によって受信される場合、有効タイマを停止してもよい(例えば、上記(2)、図7(B)参照)。
Also, the control unit 103 controls a validity timer regarding the validity period of the TRS availability indication. Specifically, the control unit 103 starts a timer related to the validity period of the first indication information indicating that the TRS is available in the TRS resource/opportunity (for example, (2) above, FIG. 7A) reference). Also, the control unit 103 stops the valid timer if the receiving unit 101 receives the second indication information indicating that the TRS is not available in the TRS resource/opportunity while the valid timer is running. (See (2) above and FIG. 7B, for example).
具体的には、制御部103は、POにおけるPDCCHモニタリング機会において特定のRNTIによりCRCスクランブルされたDCI(例えば、ページングDCI)が検出される場合、DCI内の上記第2の指示情報に基づいて、有効タイマを停止してもよい(例えば、図7(B)参照)。また、制御部103は、有効タイマの停止後の所定タイミング以降のTRSリソース/機会において、TRSが送信されないと判断してもよい(例えば、図7(B)参照)。
Specifically, when the control unit 103 detects a DCI (for example, paging DCI) that is CRC scrambled by a specific RNTI in the PDCCH monitoring opportunity in the PO, based on the second indication information in the DCI, A valid timer may be stopped (see, for example, FIG. 7B). Also, the control unit 103 may determine that the TRS is not transmitted in the TRS resource/opportunity after a predetermined timing after the valid timer is stopped (see FIG. 7B, for example).
また、制御部103は、SIBxの受信に関するタイミング、前記システム情報以外のシステム情報の受信に関するタイミング又は更新期間の境界を基準タイミングとして、有効タイマの開始タイミングを決定してもよい(例えば、上記(3)、図8参照)。制御部103は、当該基準タイミングと、オフセット情報が示すオフセットとに基づいて、有効タイマの開始タイミングを決定してもよい。また、制御部103は、上記有効期間情報に基づいて、有効タイマの満了タイミングを決定してもよい。
In addition, the control unit 103 may determine the start timing of the valid timer using the timing related to the reception of SIBx, the timing related to the reception of system information other than the system information, or the boundary of the update period as a reference timing (for example, the above ( 3), see FIG. 8). The control unit 103 may determine the start timing of the valid timer based on the reference timing and the offset indicated by the offset information. Also, the control unit 103 may determine the expiration timing of the valid timer based on the valid period information.
≪基地局≫
図13は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図13に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。 ≪Base station≫
FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment. As shown in FIG. 13, thebase station 20 includes a receiver 201, a transmitter 202, and a controller 203. FIG.
図13は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図13に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。 ≪Base station≫
FIG. 13 is a diagram showing an example of the functional block configuration of the base station according to this embodiment. As shown in FIG. 13, the
なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
受信部201は、上記上り信号を受信する。また、受信部201は、上記上り信号を介して伝送された情報及び/又はデータを受信してもよい。
The receiving unit 201 receives the upstream signal. Also, the receiving section 201 may receive information and/or data transmitted via the uplink signal.
送信部202は、上記下り信号を送信する。また、送信部202は、上記下り信号を介して伝送される情報及び/又はデータを送信してもよい。具体的には、送信部202は、SIBx(システム情報)を送信する。また、送信部202は、TRSリソース/期間(リソース及び/又は期間)においてTRSを利用可能であることを示す指示情報を送信してもよい。
The transmission unit 202 transmits the downlink signal. Also, the transmitting section 202 may transmit information and/or data transmitted via the downlink signal. Specifically, transmitting section 202 transmits SIBx (system information). Also, the transmitting unit 202 may transmit indication information indicating that the TRS can be used in the TRS resource/period (resource and/or period).
また、送信部202は、有効タイマが起動している間に、TRSリソース/機会においてTRSが利用可能であることを示す指示情報(第2の指示情報)を送信してもよい(例えば、上記(2)参照)。
In addition, while the valid timer is running, the transmitting unit 202 may transmit indication information (second indication information) indicating that the TRS is available in the TRS resource/opportunity (for example, the (2)).
また、送信部202は、TRSリソース/機会においてTRSが利用可能であることを示す指示情報を含むSIBxを送信してもよい(例えば、上記(3)参照)。送信部202は、前の更新期間において検出されたSI変更通知(システム情報の変更通知)に基づいて、次の更新期間において上記SIBxを送信してもよい(例えば、図8参照)。また、送信部202は、基準タイミングに対するオフセット情報を送信してもよい。また、送信部202は、有効期間に関する有効期間情報を送信してもよい
Also, the transmitting unit 202 may transmit SIBx including indication information indicating that TRS is available in the TRS resource/opportunity (see (3) above, for example). The transmitter 202 may transmit the SIBx in the next update period based on the SI change notification (system information change notification) detected in the previous update period (see FIG. 8, for example). Also, the transmitting section 202 may transmit offset information with respect to the reference timing. Also, the transmitting unit 202 may transmit valid period information regarding the valid period.
制御部203は、基地局20における各種制御を行う。例えば、制御部203は、TRSリソース/機会においてTRSを送信するか否かを種々の要因に基づいて制御してもよい。なお、基地局の送信部202から送信される一部の情報は、コアネットワーク30上の装置内の送信部が送信してもよい。
The control unit 203 performs various controls in the base station 20. For example, the control unit 203 may control whether or not to transmit TRS on a TRS resource/opportunity based on various factors. Part of the information transmitted from the transmission unit 202 of the base station may be transmitted by a transmission unit within the device on the core network 30 .
(補足)
上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。 (supplement)
Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。 (supplement)
Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
また、上記実施形態における各種の信号、情報、パラメータ、IE、チャネル、時間単位及び周波数単位の名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。また、「第1の~」、「第2の~」は、複数の情報又は信号の単なる識別にすぎず、適宜順番が入れ替えられてもよい。
Also, the names of various signals, information, parameters, IEs, channels, time units, and frequency units in the above embodiments are merely examples, and may be replaced with other names. For example, a slot may be named any unit of time having a predetermined number of symbols. Also, RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers. Also, the "first .
また、上記実施形態における端末10の用途(例えば、RedCap、IoT向け等)は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。
In addition, the use of the terminal 10 in the above embodiment (for example, for RedCap, IoT, etc.) is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.). Also, the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like. Also, singularity and plurality in the above embodiments may be interchanged.
以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。
The embodiments described above are for facilitating understanding of the present disclosure, and are not for limiting interpretation of the present disclosure. Flowcharts, sequences, elements included in the embodiments, their arrangement, indexes, conditions, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. Moreover, it is possible to partially replace or combine at least part of the configurations described in the above embodiments.
1…無線通信システム、20…基地局、30…コアネットワーク、101…受信部、102…送信部、103…制御部、201…受信部、202…送信部、203…制御部、11…プロセッサ、12…記憶装置、13…通信装置、14…入出力装置
Reference Signs List 1 wireless communication system 20 base station 30 core network 101 receiver 102 transmitter 103 controller 201 receiver 202 transmitter 203 controller 11 processor 12... storage device, 13... communication device, 14... input/output device
Claims (8)
- トラッキング参照信号用に設定されるリソース及び/又は機会において前記トラッキング参照信号が利用可能であることを示す指示情報を含むシステム情報を受信する受信部と、
前記システム情報の受信に関するタイミング、前記システム情報以外のシステム情報の受信に関するタイミング又は更新期間の境界を基準タイミングとして、前記指示情報の有効期間に関するタイマの開始タイミングを決定する制御部と、
を備える端末。 a receiving unit for receiving system information including indication information indicating that the tracking reference signal is available on resources and/or opportunities configured for the tracking reference signal;
a control unit that determines the start timing of a timer related to the effective period of the instruction information, using the timing related to the reception of the system information, the timing related to the reception of the system information other than the system information, or the boundary of an update period as a reference timing;
terminal with - 前記受信部は、前の更新期間において検出されたシステム情報の変更通知に基づいて、次の更新期間において前記指示情報を含む前記システム情報を受信する、
請求項1に記載の端末。 The receiving unit receives the system information including the instruction information in the next update period based on the system information change notification detected in the previous update period.
A terminal according to claim 1 . - 前記受信部は、前記基準タイミングに対するオフセットに関する情報を受信し、
前記制御部は、前記基準タイミングと前記オフセットとに基づいて、前記タイマの開始タイミングを決定する、
請求項1又は請求項2に記載の端末。 The receiving unit receives information about an offset with respect to the reference timing,
The control unit determines start timing of the timer based on the reference timing and the offset.
The terminal according to claim 1 or 2. - 前記タイマを開始してから前記タイマが満了するまでの前記有効期間は、前記更新期間の整数倍で規定される、
請求項1から請求項3のいずれかにに記載の端末。 The valid period from the start of the timer to the expiration of the timer is defined as an integral multiple of the update period,
A terminal according to any one of claims 1 to 3. - 前記システム情報は、前記指示情報の有効期間に関する情報を含み、
前記制御部は、前記有効期間に関する情報に基づいて、前記タイマの満了タイミングを決定する、
請求項1から請求項4のいずれかに記載の端末。 the system information includes information about the validity period of the indication information;
The control unit determines the expiration timing of the timer based on the information about the valid period,
A terminal according to any one of claims 1 to 4. - 前記有効期間に関する情報は、前記満了タイミングまでの残り時間を示し、
前記残り時間は、前記有効期間の開始タイミングからの経過時間に基づいて更新される、
請求項5に記載の端末。 The information on the valid period indicates the remaining time until the expiration timing,
the remaining time is updated based on the elapsed time from the start timing of the valid period;
A terminal according to claim 5 . - 前記有効期間に関する情報は、前記満了タイミングの時刻、無線フレームの番号又はハイパー無線フレームの番号を示す、
請求項5に記載の端末。 The information about the valid period indicates the time of the expiration timing, the number of the radio frame, or the number of the hyper radio frame.
A terminal according to claim 5 . - トラッキング参照信号用に設定されるリソース及び/又は機会において前記トラッキング参照信号が利用可能であることを示す指示情報を含むシステム情報を受信する工程と、
前記システム情報の受信に関するタイミング、前記システム情報以外のシステム情報の受信に関するタイミング又は更新期間の境界を基準タイミングとして、前記指示情報の有効期間に関するタイマの開始タイミングを決定する工程と、
を有する端末の無線通信方法。 receiving system information including indication information indicating that the tracking reference signal is available on resources and/or opportunities configured for the tracking reference signal;
determining the start timing of a timer relating to the effective period of the instruction information, using the timing relating to the reception of the system information, the timing relating to the reception of the system information other than the system information, or the boundary of the update period as a reference timing;
A wireless communication method for a terminal having
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021108258A JP2023005947A (en) | 2021-06-30 | 2021-06-30 | Terminal and wireless communication method |
JP2021-108258 | 2021-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023277126A1 true WO2023277126A1 (en) | 2023-01-05 |
Family
ID=84692750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/026194 WO2023277126A1 (en) | 2021-06-30 | 2022-06-30 | Terminal and wireless communication method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023005947A (en) |
WO (1) | WO2023277126A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180167918A1 (en) * | 2016-12-13 | 2018-06-14 | Sharp Laboratories Of America, Inc. | Wireless telecommunications methods and apparatus comprising advance notification of change of system information |
WO2020030715A1 (en) * | 2018-08-08 | 2020-02-13 | Sony Corporation | Infrastructure equipment, communications devices and methods |
-
2021
- 2021-06-30 JP JP2021108258A patent/JP2023005947A/en active Pending
-
2022
- 2022-06-30 WO PCT/JP2022/026194 patent/WO2023277126A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180167918A1 (en) * | 2016-12-13 | 2018-06-14 | Sharp Laboratories Of America, Inc. | Wireless telecommunications methods and apparatus comprising advance notification of change of system information |
WO2020030715A1 (en) * | 2018-08-08 | 2020-02-13 | Sony Corporation | Infrastructure equipment, communications devices and methods |
Non-Patent Citations (2)
Title |
---|
ERICSSON: "Provisioning of TRS occasions to Idle/Inactive UEs", 3GPP DRAFT; R1-2105792, vol. RAN WG1, 12 May 2021 (2021-05-12), pages 1 - 12, XP052011717 * |
INTEL CORPORATION: "Discussion on TRS/CSI-RS Design in idle/inactive mode", 3GPP DRAFT; R1-2104917, vol. RAN WG1, 12 May 2021 (2021-05-12), pages 1 - 5, XP052011135 * |
Also Published As
Publication number | Publication date |
---|---|
JP2023005947A (en) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220070783A1 (en) | Nr paging early indicator | |
US10904910B2 (en) | System information modification and acquisition procedure | |
US11218353B2 (en) | Paging in beamformed wireless communication system | |
US10165511B2 (en) | Method and communication device for establishing a discontinuous reception mode configuration | |
US20230082719A1 (en) | Method of operating a wireless communication device in a disconnected operational mode, wireless communication device and base station | |
US20240129817A1 (en) | Terminal, base station, and wireless communication method | |
US20240154757A1 (en) | Terminal, and wireless communication method | |
WO2023008483A1 (en) | Communication device, base station, and communication method | |
WO2023277126A1 (en) | Terminal and wireless communication method | |
JP2022108894A (en) | Terminal, base station and radio communication method | |
WO2023080131A1 (en) | Terminal, base station, and wireless communication method | |
WO2022234842A1 (en) | Terminal, base station, and wireless communication method | |
WO2022234841A1 (en) | Terminal and wireless communication method | |
WO2022234840A1 (en) | Terminal, base station, and wireless communication method | |
WO2023132325A1 (en) | Terminal, base station, and communication method | |
WO2022234839A1 (en) | Terminal, base station, and wireless communication method | |
WO2023277026A1 (en) | Terminal and wireless communication method | |
WO2023277027A1 (en) | Terminal and wireless communication method | |
WO2023153340A1 (en) | Terminal, base station, and wireless communication method | |
WO2023008481A1 (en) | Communication device, base station, and communication method | |
JP7556795B2 (en) | Terminal, base station and wireless communication method | |
JP7441808B2 (en) | Base station and wireless communication method | |
US20240365333A1 (en) | Terminal, base station, and communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22833272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22833272 Country of ref document: EP Kind code of ref document: A1 |