WO2023277080A1 - Aerial projection device - Google Patents

Aerial projection device Download PDF

Info

Publication number
WO2023277080A1
WO2023277080A1 PCT/JP2022/026020 JP2022026020W WO2023277080A1 WO 2023277080 A1 WO2023277080 A1 WO 2023277080A1 JP 2022026020 W JP2022026020 W JP 2022026020W WO 2023277080 A1 WO2023277080 A1 WO 2023277080A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
screen
half mirror
hologram
Prior art date
Application number
PCT/JP2022/026020
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 ▲高▼田
好洸 小田
康平 鈴木
嘉軌 森口
隆史 山崎
永久 三谷
十内 内田
Original Assignee
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学 filed Critical 国立大学法人高知大学
Priority to JP2023532029A priority Critical patent/JPWO2023277080A1/ja
Publication of WO2023277080A1 publication Critical patent/WO2023277080A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present invention relates to an aerial projection device.
  • Patent Document 1 describes an aerial image forming device capable of projecting an image displayed on a display device in the air.
  • this aerial image forming apparatus light output from a display device is reflected by a beam splitter toward a retroreflective sheet, and the light retroreflected by the retroreflective sheet passes through the beam splitter and travels in the air. It forms an image.
  • 2002-200002 also describes a spatial display device capable of forming an image displayed on an image display unit in the air.
  • this spatial display device the light output from the image display unit is reflected by the selective reflection film toward the retroreflection material, retroreflected by the retroreflection material, transmitted through the selective reflection film, and condensed in the air. It is an image.
  • JP 2019-207574 A Japanese Patent Application Laid-Open No. 2018-92000
  • the aerial image forming apparatus and the spatial display apparatus described in Patent Documents 1 and 2 images displayed on the display device or the image display unit can be displayed in the air.
  • the display device and the image display unit are required to emit image light having three-dimensional positional information, and the structure thereof becomes complicated.
  • the image display unit disclosed in Patent Document 2 has a microlens array arranged on the display surface of a display panel such as a liquid crystal display panel.
  • An aerial image forming apparatus or spatial display apparatus using such an image display means having a complicated structure is complicated as a whole.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an aerial projection device capable of displaying an image in the air using an image display means with a simple structure.
  • An aerial projection apparatus which has been made to achieve the above object, comprises a holographic projector section for emitting diffracted light obtained by diffracting irradiated parallel light based on interference information of a hologram of a predetermined image; a screen onto which the predetermined image is projected by irradiating the diffracted light; and a projection unit composed of a retroreflective element that is irradiated with the transmitted light or reflected light of the half mirror, and the transmitted diffused light of the half mirror Alternatively, the reflected light is retroreflected by the retroreflective element and emitted in the opposite direction along the original incident path, and the reflected light reflected by the half mirror or the transmitted light transmitted through the half mirror forms the predetermined image. is formed in the air on one side of the half mirror.
  • the range of expression of the aerial projection device can be widened. can.
  • the retroreflective element is tilted so that a virtual image corresponding to the real image viewed on the other side of the half mirror moves out of the field of view due to specular reflection of the retroreflective element, so that the real image is Clearly visible.
  • the holographic projector unit emits diffracted light diffracted based on the interference information of each hologram of at least two predetermined images, and the screen is irradiated with the diffracted light based on the interference information of one of the predetermined images.
  • the screen is irradiated with diffracted light based on the interference information of the other of the predetermined images along with one of the predetermined images formed in the air via the half mirror and the retroreflective element. without passing through the half mirror and illuminating the retroreflected light exit surface of the retroreflective element, the other of the predetermined images is projected, and the retroreflected light emitted from the retroreflected light exit surface is projected. Due to the light reflected by the half mirror, the other virtual image of the predetermined image can be visually recognized in the air on the side opposite to the reflecting surface of the half mirror, so that the real image and the virtual image can be recognized at the same time.
  • the screen and/or the retroreflective element are arranged at a position forward or rearward of a predetermined position projected based on the interference information of the hologram so that the real image and/or the virtual image appear blurred.
  • the real image and the virtual image can be made to appear blurred, and the expression range of the aerial projection device can be further expanded.
  • a stereoscopic image can be formed in the air because the screen is a stereoscopic screen.
  • the screen is made of Japanese paper or non-woven fabric, a screen such as a three-dimensional screen can be easily formed.
  • At least two pairs of the half mirror and the screen are provided, and the two pairs are arranged in series with a predetermined interval so that the real image is formed in the air on the same side of each of the half mirrors. By being installed, a complex real image can be formed in the air.
  • the projection image corresponding to one of the real images is projected by the holographic projector such that at least one of the real images formed in the air on the same surface side of each of the half mirrors moves in a direction toward or away from the half mirror. Since the screen projected from the unit is movable in the direction of contact and separation with respect to the half mirror, by moving the screen in the direction of contact and separation with respect to the half mirror, the real images It is possible to add motion such that one of the real images is superimposed on the other, or behind the other real image.
  • the hologram is a computer-generated hologram, and a spatial light modulator is provided for modulating the parallel light into diffracted light based on the interference information of the computer-generated hologram, so that a desired hologram can be easily created. preferable.
  • the computer-generated hologram is an amplitude hologram, and the amplitude hologram is represented by the following formula (1) can speed up the calculation of the amplitude hologram.
  • the computer-generated hologram is a phase hologram, and the phase hologram is represented by the following formula (2) can increase the calculation speed of the phase hologram.
  • the aerial projection apparatus irradiates the image display means with a hologram in which interference information of a predetermined image is recorded and diffracted light diffracted based on the interference information of this hologram.
  • a simple structure consisting of a screen having both lightness and diffusing properties can be achieved, and the structure of the entire device can also be simplified.
  • FIG. 1 is a schematic diagram illustrating an aerial projection device to which the present invention is applied;
  • FIG. 11 is a schematic diagram illustrating another aerial projection device to which the present invention is applied;
  • FIG. 11 is a schematic diagram illustrating another aerial projection device to which the present invention is applied;
  • FIG. 10 is an explanatory diagram illustrating the state of a real image when the position of the screen is moved, in another aerial projection device to which the present invention is applied;
  • FIG. 11 is another aerial projection device to which the invention is applied, and is an explanatory diagram for explaining movement of a virtual image visually recognized corresponding to a real image when the retroreflective element is tilted.
  • FIG. 11 is a schematic diagram illustrating another aerial projection device to which the present invention is applied
  • FIG. 10 is an explanatory diagram illustrating the state of a real image when the position of the screen is moved, in another aerial projection device to which the present invention is applied
  • FIG. 11 is another aerial projection device to which the invention is applied, and is an explanatory diagram for
  • FIG. 10 is a schematic diagram illustrating another aerial projection device to which the present invention is applied, which allows a real image and a virtual image to be visually recognized at the same time.
  • FIG. 10 is a schematic diagram illustrating the states of the real image and the virtual image when the retroreflective sheet is moved, in the aerial projection device to which the present invention is applied and in which a real image and a virtual image can be visually recognized at the same time.
  • FIG. 10 is a schematic diagram illustrating a state in which a retroreflective sheet is divided and arranged when a planar screen is used, in an aerial projection device to which the present invention is applied and in which a real image and a virtual image can be viewed simultaneously; FIG.
  • FIG. 10 is a schematic diagram illustrating a state in which a retroreflective sheet is divided and arranged in an aerial projection apparatus that allows viewing of a real image and a virtual image at the same time using a stereoscopic screen to which the present invention is applied;
  • FIG. 2 is a schematic diagram illustrating a measuring device for measuring visible light transmittance and diffusivity of a material used for a screen;
  • FIG. 4 is a schematic diagram illustrating an aerial projection device that allows a plurality of virtual images to be visually recognized in the air at the same time;
  • FIG. 12 is a perspective view illustrating an installation state of a retroreflective sheet used in the aerial projection device shown in FIG.
  • FIG. 11; 12A and 12B are schematic diagrams for explaining how a virtual image appears when a light shielding object is placed on the other surface side of the second half mirror that constitutes the aerial projection device shown in FIG. 11;
  • FIG. 12 is a schematic diagram illustrating movement of a virtual image when one of the two retroreflective sheets used in the aerial projection device shown in FIG. 11 is vertically moved;
  • 12A and 12B are schematic diagrams for explaining movement of a virtual image when an optical path from one half mirror 30 of two retroreflective sheets used in the aerial projection apparatus shown in FIG. 11 is lengthened.
  • 12A and 12B are schematic diagrams for explaining the movement of a virtual image when one retroreflective sheet is used in the aerial projection device shown in FIG.
  • FIG. 11 is a schematic diagram illustrating how a virtual image appears when two retroreflective sheets used in the aerial projection device shown in FIG. 11 are arranged side by side in the horizontal direction of a rectangular half mirror;
  • FIG. 18(a) is a schematic diagram for explaining a guide device for guiding the stereoscopic screen to the projection position of the holographic projector section of the aerial projection device.
  • FIG. 18(b) is a perspective view showing a projection state when the stereoscopic screen is positioned at the projection position of the holographic projector unit, and
  • FIG. 10 is a perspective view showing a projection state in this case;
  • FIG. 19(a) is a front view showing the projection state when the planar screen is positioned at the projection position of the holographic projector unit, and FIG. FIG. 10 is a front view showing a projection state when the object is out of the (focus position);
  • FIG. 19 is a schematic diagram illustrating an example in which the guide device shown in FIG. 18 is used as a personal authentication device;
  • FIG. 19 is a schematic diagram illustrating an example in which the guide device shown in FIG. 18 is used in another personal authentication device; It is a conceptual diagram for explaining the principle of creating a computer-generated hologram.
  • FIG. 4 is a schematic diagram illustrating the configuration of a CGH calculator that calculates an amplitude hologram; Pseudocode to compute the amplitude hologram.
  • FIG. 4 is a flow chart for computing amplitude holograms
  • FIG. 4 is a schematic diagram illustrating the configuration of a CGH calculator that calculates a phase hologram; Pseudocode to compute the phase hologram.
  • Fig. 4 is a flow chart for computing a phase hologram;
  • FIG. 29(a) is another pseudocode to compute the amplitude hologram, and
  • FIG. 29(b) is another pseudocode to compute the phase hologram.
  • 4 is a schematic diagram illustrating a case where three projection units 10b of the aerial projection device shown in FIG. 3 are arranged;
  • FIG. FIG. 31 is a schematic diagram illustrating the moving direction of the real image when the frame 26 of the projection unit 10b-2 of the two projection units 10b-1 and 10b-2 shown in FIG. 30 is vertically moved;
  • FIG. 1(a) An aerial projection device to which the present invention is applied is shown in FIG. 1(a).
  • the aerial projection device 10 shown in FIG. 1(a) comprises a holographic projector section 10a and a projection section 10b.
  • the holographic projector section 10a is composed of a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14, a first half mirror 22, and a parallel light emitting section 15. .
  • the parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 .
  • a cubic computer-generated hologram (CGH) as a predetermined image input from the tablet terminal device 11 is calculated by the CGH calculation unit 17 of the PC 12 and displayed on the SLM 14 .
  • the interference fringes displayed on the SLM 14 are interference information hologrammed such that a cube is projected at a given location.
  • Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15. After being condensed once by the objective lens 18, the parallel light spreads, becomes parallel light by the plano-convex lens 20, and reaches the SLM 14 by the first half mirror 22.
  • the parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the hologram interference information displayed on the display surface, emerges from the display surface of the SLM 14 , and is emitted from the first half mirror 22 . and is emitted to the projection unit 10b.
  • the projection unit 10b includes a mirror 24, a horizontally placed frame 26, a three-dimensional screen 28 supported by a support base 27 placed on the frame portion of the frame 26, and inclined at 45° with respect to the frame 26. It is composed of a second half mirror 30 having an inclination angle of 45° and a retroreflective sheet 32 as a retroreflective element arranged so as to face the frame 26 .
  • the diffracted light incident on the projection unit 10b from the holographic projector unit 10a is reflected by the mirror 24 placed at an inclination angle of 45°, passes through the hollow part of the frame 26, and irradiates the three-dimensional screen 28.
  • the three-dimensional screen 28 is formed in a shape similar to a cube as a predetermined image for which the computer-generated hologram is calculated, and is supported by a support base 27 at a predetermined position which is the premise of the calculation of the computer-generated hologram.
  • the three-dimensional screen 28 is formed by pasting a Japanese paper 28c (texture pasting paper: basis weight 18 g/m 2 ) to a frame 28b.
  • the Japanese paper 28c has a transmittance of 55% or more on the optical axis of the irradiated visible light (a green laser beam with a wavelength of 532 nm). 30, the diffusion rate of -10° to +10° with respect to the optical axis of the visible light (green laser light with a wavelength of 532 nm) of the visible light transmitted through the Japanese paper 28c among the irradiated visible light. 15% or more.
  • the Japanese paper 28c forms three faces of a cube, and is supported by the support base 27 so that the three faces to which the Japanese paper 28c is pasted face the frame 26 as shown in FIG. 1(a).
  • a projection image 28a of a hologramized cube is projected.
  • the Japanese paper 28c forming the three surfaces of the three-dimensional screen 28 is a transmissive diffuser through which at least part of the irradiated diffracted light is transmitted and diffused.
  • the light transmitted through each of the projection points 29a, 29a is diffused to become transmitted diffused light. This transmitted diffused light is transmitted through the second half mirror 30 and is incident on the retroreflective sheet 32 .
  • the retroreflective sheet 32 has a large number of glass beads 33b arranged in a transparent resin layer 33c formed on one side of a reflective sheet 33a. retroreflection in which the outgoing light is emitted in the direction opposite to the incident light along the incident path of the incident light.
  • the diffused light incident on the retroreflective sheet 32 is emitted in the opposite direction along the incident path of the incident light as shown in FIG.
  • a three-dimensional cubic real image 34 is formed in the air on one side of the half mirror 30 .
  • Projection points 29a and 29b of a cubic projection image 28a projected onto the stereoscopic screen 28 correspond to imaging points 34a and 34b of the real image 34, respectively.
  • FIG. 1(a) has a shape viewed from the side, and an enlarged view thereof viewed from the front is shown in FIG. 1(d).
  • Points 34a and 34b shown in FIG. 1(d) correspond to imaging points 34a and 34b of the real image 34 shown in FIG. 1(a).
  • the real image 34 shown in FIG. 1 was a cube, but when changing the shape to another shape, the other shape is input from the tablet terminal device 11 to the PC 12, and the computer-generated hologram of the other shape is calculated by the PC 12.
  • the SLM 14 can easily display interference fringes of other shapes. The same applies when adding a pattern to the shape.
  • the retroreflection sheet 32 shown in FIG. 1(c) uses a large number of glass beads 33b, it may be a retroreflection sheet using a large number of prisms.
  • the projection unit 10b of the aerial projection apparatus 10 shown in FIG. 1 is arranged parallel to the frame 26 in which the retroreflective sheet 32 is arranged horizontally. It may also be arranged perpendicular to the body 26 . Also in this case, the real image 34 is formed at substantially the same aerial position as the projection unit 10b shown in FIG. However, in this case, when the real image 34 is viewed from the front, the image reflected by the retroreflective sheet 32 may enter the field of vision.
  • FIG. 3(c) shows the shape of the real image 38 (triangle) formed in the air as viewed from the front.
  • FIG. 3(c) shows imaging points 38a and 38b of the real image 38 corresponding to the projection points 37a and 37b of the projection image 36a shown in FIGS. 3(a) and 3(b).
  • the interference fringes displayed on the SLM 14 of the holographic projector section 10a are arranged such that a predetermined image is clearly projected on the installed stereoscopic screen 28 or screen 36, in other words, It is a computer-generated hologram (CGH) calculated by the CGH calculator 17 of the PC 12 so that the 3D screen 28 or the screen 36 is in focus.
  • CGH computer-generated hologram
  • this real image 38' is formed at a position closer to the second half mirror 30 as shown in FIG. 4(a).
  • the aerial image can be made into a blurred shape simply by moving the position of the screen 36, and the range of representation of the aerial image can be expanded.
  • the aerial image can be changed from a blurred shape located far away to a clear shape located close, and an object moving from far to near can be represented. It becomes possible.
  • the position of the screen 36 is moved behind the focal position of the CGH, but even if it is moved forward (toward the mirror 24) of the focal position of the CGH, the real image 38' becomes blurred.
  • FIG. 4 shows an example of the screen 36, the stereoscopic screen 28 can be moved in the same way.
  • the retroreflection sheet 32 shown in FIGS. 1 to 4 part of the irradiated diffracted light is mirror-reflected to form a real image 38 on the other side of the second half mirror 30 as shown in FIG. A corresponding virtual image 39 is visible.
  • This virtual image 39 poses no problem if the real image 38 is clear, but if the real image 38 becomes somewhat unclear, the virtual image 39 may become an eyesore.
  • by inclining the retroreflective sheet 32 as shown in FIG. can.
  • the retroreflective sheet 32 indicated by the solid line in FIG. 5(b) is tilted so that the real image 38 side (the front side from the viewer) is lowered, in which case the virtual image 39' moves downward.
  • the retroreflective sheet 32' indicated by the dashed line in FIG. 5B is tilted so that the real image 38 side is higher, in which case the virtual image 39'' moves upward.
  • the virtual image 39 can be moved leftward and rightward and out of the field of vision even when the retroreflective sheet 32 is tilted leftward and rightward.
  • the aerial projection device that forms a real image in the air.
  • the diffracted light diffracted based on the interference information of each hologram of at least two predetermined images can be simultaneously emitted from the holographic projector section 10a. Therefore, as shown in FIG. 6A, part of the diffracted light based on the interference information of one of the predetermined images is irradiated onto the screen 36 placed on the frame 26 to project the projected image 36a.
  • One of the real images 38 of the predetermined image formed in the air by the transmitted diffused light transmitted through the screen 36 and diffused via the second half mirror 30 and the retroreflective sheet 32 as a retroreflective element can be visually recognized.
  • the real image 38 and the virtual image 42 can be viewed simultaneously as shown in FIG. 6(b).
  • the focal position of one CGH of the predetermined image is the screen 36 and the focal position of the other CGH of the predetermined image is the retroreflective sheet 32 .
  • the virtual image 42 can be displayed in a clear state by moving only the screen 36 to the front or rear of the CGH focal position as shown in FIG. 4 without changing the CGH focal position. , so that only the real image 38 has a blurred shape.
  • FIG. 7(a) by moving the retroreflective sheet 32 to a position 32' behind the focal position of the CGH, the projection image 40' projected onto the retroreflective sheet 32 is blurred.
  • a virtual image 42' having a blurred shape can be obtained as shown in FIG. 7(b).
  • FIG. 8 shows an example of the screen 36, but even when the stereoscopic screen 28 is used, it can be divided into a retroreflective sheet 32a for real images and a retroreflective sheet 32b for virtual images as shown in FIG. Similarly, only the retroreflective sheet 32b can be moved, only the virtual image 42 can be blurred, and the position can also be moved.
  • the stereoscopic screen 28 or the screen 36, or the retroreflective sheet 32 is moved without changing the focal position of the CGH, and the real image 34 (stereoscopic screen 28) or the real image 38 (screen 36) and/or the virtual image is displayed. 42 is blurred and its position is also moved, but by changing the focus position of the CGH, the real image 38 and/or the virtual image 42 can be obtained without moving the screen 36 or the stereoscopic screen 28 or the retroreflective sheet 32. It can be made into a blurred shape without changing the position of . Since the CGH is calculated by the CGH calculator 17 of the PC 12, it is possible to quickly change the focus position of the CGH.
  • the measurement of such visible light transmittance was performed using the measuring apparatus shown in FIG.
  • the 10 includes a light source 50 that emits visible light such as laser light, an objective lens 52, a plano-convex lens 54, a plate-like body 56 having a hole 58 with a predetermined diameter in the center, and a light meter (laser power meter). ) and a light-receiving surface 62 .
  • the plate-like body 56 is erected at a distance L from the light source 50 so that the center line of the hole 58 coincides with the optical axis 51 of the laser beam from the light source 50 .
  • the light-receiving surface 62 of the light meter is arranged so that the hole 58 and the light-receiving surface 62 of the light meter face each other at a position where the distance M from the plate-like body 56 is equal to the height from the screen to the middle point of the second half mirror 30. is provided in If the screen is a stereoscopic screen 28 as shown in FIG. 1, this distance M is the height between the top end of the stereoscopic screen 28 and the midpoint of the second half mirror 30 (the height indicated by M in FIG. 1). . Further, the light receiving surface 62 of the light meter is provided so as to be rotatable about the center line of the hole 58 as shown in FIG. The radius of rotation of the light receiving surface 62 is the distance M.
  • the light emitted from the light source 50 is once condensed by the objective lens 52, spreads, becomes parallel light by the plano-convex lens 54, and irradiates the hole 58 of the plate-like body 56.
  • T the quantity
  • T/T 0 the transmittance.
  • the distance between the light receiving surface 62 of the light meter and the screen material attached to the hole 58 is always kept at 15 cm (rotational radius of the light receiving surface 62: 15 cm), and the light receiving surface 62 of the light meter is aligned with the optical axis 51.
  • the amount of received light is measured at a position 62' after rotating by a predetermined angle ⁇ [theta].
  • This amount of received light is the amount of diffusion (T') transmitted through the measurement object 60 and diffused in the ⁇ directions.
  • the diffusivity is the ratio (T'/T 1 ) ⁇ 100 to the amount of light received (T 1 ) measured at the position of 0°.
  • a screen having a transmittance of at least 47% on the optical axis of the irradiated visible light clearly formed a real image in the air even in a bright room. Visible and particularly preferred.
  • a screen with a transmittance of less than 47% tends to make it extremely difficult to visually recognize a real image formed in the air in a bright room or the like, but the real image can be visually recognized in a dark room or the like.
  • Materials for screens with a visible light transmittance of 47% or more include woven fabrics, nonwoven fabrics, Japanese paper, acrylic diffusion plates made of resin (FANTAREX DREAM D-710M, FANTAREX DREAM D-709M manufactured by Nitto Jushi Kogyo Co., Ltd. Both are trade names), and DF-LFV3-100 (trade name) manufactured by CCS Co., Ltd.).
  • This transmittance is preferably between 55 and 65%.
  • the retroreflective element by tilting the retroreflective element as described above, it is possible to move the virtual image in the left-right direction or the front-rear direction so that only the real image enters the field of view and is out of the field of view. Also, in order to block excess diffracted light that passes through the second half mirror 30 and irradiates the retroreflective sheet 32 without being irradiated onto the screen, the peripheral portion of the mirror 24 is covered with a light blocking mask to prevent the virtual image. Sometimes it can be erased.
  • At the height M from the highest point of the stereoscopic screen 28 to the middle point of the second half mirror 30 shown in FIG. is preferably at least 15%.
  • a screen having such a diffusion rate can form a clear real image in the air even in a bright room.
  • a screen with a diffusion rate of less than 15% in some ranges, especially -10° and/or +10° makes it difficult to see the real image formed in the air in a bright room. There is a tendency.
  • a screen with a diffusion rate of 78% or more in the range of -10° to +10° even if the transmittance is 65% or more, a real image formed in the air can be visually recognized.
  • Japanese paper or non - woven fabric is preferable for the screens shown in FIGS. Specifically, thin paper (machine-made Japanese paper: basis weight: 15 g/m 2 ), Hidaka Co., Ltd. Tengu sticker (weight basis: 18 g/m 2 ), Usumi no 3 momme (weight basis: 20.42 g/m 2 ). be able to.
  • the aerial projection device shown in FIG. 11 irradiates parallel light onto a hologram which is created so that each of a plurality of predetermined images is projected at different predetermined positions, and diffracted light diffracted based on the interference information of this hologram is converted into A holographic projector unit 10a to be emitted, a second half mirror 30 installed at an angle with respect to the irradiated diffracted light and through which the diffracted light is irradiated and transmitted, and a predetermined distance from one side of the second half mirror 30 A plurality of sheets arranged without overlapping each other, which are separated from each other and are arranged at predetermined positions where the diffracted light transmitted through the second half mirror 30 is irradiated and projection images corresponding to each of the predetermined images are projected.
  • retroreflective sheets 32a and 32b as retroreflective elements, and the retroreflective sheets 32a and 32b are configured to project the retroreflectivity of the projected image emitted from the retroreflective light exit surface.
  • the retroreflected light exit surface is set facing one side of the half mirror 30 so that the reflected light is reflected by the second half mirror 30 and can be visually recognized as a virtual image in the air on the other side of the second half mirror 30,
  • At least one retroreflective sheet among the retroreflective sheets 32a and 32b is movably provided at the projection position of the corresponding predetermined image, or all of the retroreflective sheets 32a and 32b or movably provided.
  • Each of the remaining retroreflective sheets other than the retroreflective sheet is arranged at the projection position of the corresponding predetermined image.
  • the holographic projector section 10a shown in FIG. 11 includes a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14, a first half mirror 22, and a parallel light emitting section 15. consists of The parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 .
  • a computer-generated hologram (CGH) of a predetermined image such as characters and figures input from the tablet terminal device 11 is calculated by the CGH calculation unit 17 of the PC 12 and displayed on the SLM 14 .
  • CGH computer-generated hologram
  • the interference fringes displayed on the SLM 14 are interference information created so that a given image is formed at a given position.
  • Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15. After being condensed once by the objective lens 18, the parallel light spreads, becomes parallel light by the plano-convex lens 20, and reaches the SLM 14 by the first half mirror 22. It is the light reflected in the direction of the display surface.
  • the parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the interference information of the hologram displayed on the display surface, emerges from the display surface of the SLM 14, and passes through the first half mirror 22. Then, the light is emitted to the projection unit 10b.
  • the projection unit 10b includes a mirror 24 arranged at an inclination angle of 45°, a second half mirror 30 arranged at an inclination angle of 45°, and one surface side (inclined surface side) of the second half mirror 30. It is composed of retroreflection sheets 32a and 32b as disposed retroreflection elements.
  • the retroreflective sheet 32 a is arranged on the lower end side of the inclined surface of the second half mirror 30
  • the retroreflective sheet 32 b is arranged on the upper end side of the inclined surface of the second half mirror 30 .
  • the retroreflection sheets 32a and 32b which are arranged without overlapping each other, have their retroreflected light exit surfaces facing one side of the second half mirror 30, and the CGH is calculated by the CGH calculator 17 of the PC 12. It is also the projection plane of the predetermined image.
  • the diffracted light incident on the projection unit 10b from the holographic projector unit 10a is reflected by the mirror 24, passes through the second half mirror 30, and irradiates the retroreflected light exit surfaces of the retroreflective sheets 32a and 32b.
  • a projected image a is projected onto the retroreflective light exit surface of the retroreflective sheet 32a irradiated with the diffracted light.
  • the retroreflected light is emitted in the direction opposite to the incident light of the projected image a.
  • This retroreflected light is reflected by one side of the second half mirror 30 and enters the human eye, and a virtual image a corresponding to the projected image a can be seen in the air on the other side of the second half mirror 30 .
  • the depth from the other side of the second half mirror 30 to the virtual image a is the height from the one side of the second half mirror 30 to the retroreflective sheet 32a (indicated by Fa in FIG. 11). shown).
  • a projection image b is projected onto the retroreflection light exit surface of the retroreflection sheet 32b irradiated with the diffracted light. From the retroreflected light exit surface of the retroreflective sheet 32b on which the projected image b is projected, the retroreflected light is emitted in the direction opposite to the incident light of the projected image b. This retroreflected light is reflected by one surface side of the second half mirror 30 and enters the human eye, and a virtual image b corresponding to the projected image b is formed on the other surface side of the second half mirror 30 behind the virtual image a. can be visually recognized. The depth from the other side of the second half mirror 30 to the virtual image b (indicated by Fb' in FIG.
  • the retroreflecting elements as retroreflective elements are placed at the projection positions corresponding to each of the predetermined images so that all the virtual images corresponding to the plurality of predetermined images can be seen at the same time.
  • the reflective sheets 32a and 32b clear virtual images a and b of a plurality of predetermined images can be seen at the same time.
  • the height Fa from one side of the second half mirror 30 to the projection plane of the retroreflective sheet 32a is longer than the height Fb from one side of the second half mirror 30 to the retroreflective sheet 32b.
  • the reason why the virtual image b can be visually recognized behind the virtual image a is that the retroreflective sheet 32 a is arranged on the lower end side of the inclined surface of the second half mirror 30 .
  • each of the virtual images a and b is retroreflected from one surface side of the second half mirror 30 corresponding to each of the virtual images a and b so that each of the virtual images a and b can be seen at different positions from the other surface side of the second half mirror 30 .
  • a character "A” is projected from the holographic projector unit 10a (see FIG. 11) onto a projection surface (hereinafter simply referred to as a projection surface), which is the retroreflected light exit surface of the retroreflective sheet 32a. ” is projected, and the character “B” is projected as a projection image b onto a projection surface (hereinafter simply referred to as a projection surface), which is the retroreflected light exit surface of the retroreflective sheet 32b.
  • the letter “A” projected onto the retroreflective sheet 32a appears as a virtual image a on the other side of the second half mirror 30, and the letter “B” is projected onto the projection surface of the retroreflective sheet 32b.
  • the character "B” as the virtual image b on the other side of the second half mirror 30 can be visually recognized on the back side of the character "A” as the virtual image a.
  • the single holographic projector unit 10a can project the letters "A” and "B” from one side of the second half mirror 30 to the other side of the second half mirror 30 with different senses of distance. virtual images can be seen at the same time.
  • the virtual images a and b could not be seen. It is presumed that this is due to the difference in reflection between the mirror and the retroreflective sheet. Also, when white paper or black paper was placed instead of the retroreflective sheets 32a and 32b, the virtual images a and b were visible, but extremely unclear. It is presumed that the white paper or black paper has a lower reflectance in the direction of retroreflection than the retroreflective sheet.
  • the positions at which the virtual images a and b can be visually recognized correspond to the distance (optical path length) between the retroreflective sheets 32a and 32b and the second half mirror 30.
  • the retroreflective sheet 32a shown in FIG. and the second half mirror 30 to bend the optical path between the retroreflective sheet 32a and the second half mirror 30 to increase the optical path length.
  • the projection unit 10b shown in FIGS. 11 to 15 two retroreflective sheets are arranged, but in the projection unit 10b shown in FIG. 16, there is only one movable retroreflective sheet 32a.
  • the holographic projector section 10a irradiates the diffracted light so as to project the projected images a and b onto a predetermined position on one surface side (inclined surface) of the second half mirror 30, the retroreflective sheet shown in FIG.
  • the projection image a is projected and the virtual image a can be visually recognized on the other side of the second half mirror 30 .
  • the retroreflection sheet 32a at the projection position of the projection image a is moved to the projection position 32a' where the projection image b is projected, the virtual image a disappears, but the projection image b is not projected onto the retroreflection sheet 32a.
  • a virtual image b can be visually recognized on the other side of the second half mirror 30 .
  • the virtual image b can be visually recognized on the back side of the virtual image a.
  • the retroreflective sheets 32a and 32b are arranged in series at the lower end side and the upper end side of the second half mirror 30 as shown in FIG.
  • the position of b is also affected by the tilt of the second half mirror 30 .
  • FIG. In order to avoid such an influence due to the inclination of the second half mirror 30, as shown in FIG. is preferred.
  • the aerial projection device 10 In the aerial projection device 10 described above, diffracted light is emitted from the holographic projector section 10a so that a predetermined image is projected at the projection position (focus position) of the CGH. Accurately knowing the focal position of this CGH is necessary to obtain a clear real or virtual image or a desired blurred real or virtual image.
  • the focal position of CGH can be accurately known by a guide device that guides the projection object to a predetermined spatial position.
  • This guide device includes a hologram formed with an interference pattern adjusted so that an image of a predetermined shape having a pattern with narrow gaps is imaged at a predetermined spatial position, and a projection target object guided to a predetermined spatial position.
  • a parallel light emitting means for emitting parallel light is provided.
  • the guide method using this guide device uses a holographic projector whose imaging position is adjusted so that an image of a predetermined shape having a pattern with narrow gaps is projected at a predetermined spatial position, and is placed near this spatial position.
  • the projection target is guided to a spatial position where the pattern of the image formed on the projection target matches the pattern of the image.
  • a guide device 70 shown in FIG. 18 is composed of a holographic projector section 10a and a stereoscopic screen 28 as a projection target mounted on a mounting table 75 so as to be slidable in the arrow F direction.
  • the holographic projector section 10 a is composed of a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14 , a half mirror 22 and a parallel light emitting section 15 .
  • the parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 .
  • a cubic computer-generated hologram (CGH) having a pattern of narrow gaps is calculated by the CGH calculation unit 17 of the PC 12 as a predetermined image input from the tablet terminal device 11 and displayed on the SLM 14 .
  • the interference fringes of the hologram displayed on the SLM 14 are interference information whose projection position (focal position) is calculated such that a cube as a predetermined image is projected at a predetermined spatial position.
  • Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15.
  • the parallel light spreads becomes parallel light by the plano-convex lens 20, and is converted into parallel light by the half mirror 22 on the display surface of the SLM 14.
  • the parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the interference information of the hologram displayed on the display surface, emerges from the display surface of the SLM 14, passes through the half mirror 22, and passes through the half mirror 22. It is projected onto the stereoscopic screen 28 .
  • the three-dimensional screen 28 has a cubic shape, as shown in FIG. 18(a), and is formed by attaching a white sheet to a frame.
  • the three-dimensional screen 28 is supported by support rods 73 on a support base 74 which is slidably placed on a mounting base 75 in the direction of arrow F. 18(a), two side surfaces of the three-dimensional screen 28 on the support base 74 shown in FIG. 18(a) are projected from the holographic projector section 10a.
  • the 3D screen 28 is slidably mounted on the mounting table 75, and is adjusted to be a projection surface on which images of the corresponding two surfaces of the cube are projected.
  • a cubic image with a pattern of narrow gaps is projected from the holographic projector unit 10a located on the left side of the holographic projector unit 10. This image is input from the tablet-type terminal device 11.
  • the pattern matches the pattern projected on the stereoscopic screen 28, it is found that the stereoscopic screen 28 is positioned at the projection position (focus position) of the holographic projector section 10a.
  • the narrow gap pattern may be a pattern consisting of a plurality of thin lines and dots at predetermined intervals, for example, the projection plane of the stereoscopic screen 28 positioned at the projection position (focal position) of the holographic projector section 10a (Fig. 18 ( a) If the angles of the three-dimensional screen 28 shown in (b) are A, B, B', A', C', and C, then sides AB, sides BB', sides B'-A', sides A'-C' side C'-C, the plane surrounded by side CA)), a plurality of thin straight dotted lines as shown in FIG. 18(b) are formed through narrow gaps. It is preferable that the dotted line pattern 76 is projected. As shown in FIG.
  • the projection plane of the stereoscopic screen 28 is viewed from the direction of projection of the diffracted light, as shown in FIG. 18(c). 18B, a slanted line pattern 77 different from the dotted line pattern 76 in FIG. 18B can be visually recognized. Further, even when the stereoscopic screen 28 is positioned closer to the holographic projector unit 10a than the projection position (focus position) of the holographic projector unit 10a, when the projection plane of the stereoscopic screen 28 is viewed from the direction of projection of the diffracted light, As shown in FIG.
  • a slanted line pattern 77 different from the dotted line pattern 76 in FIG. 18(b) can be visually recognized. From the pattern of the dotted line pattern 76 projected onto the projection surface of the stereoscopic screen 28 in this way, it can be easily determined whether or not the stereoscopic screen 28 is positioned at the projection position (focus position). Can be guided to the projection position (focus position).
  • a dotted line pattern 78 in which a plurality of thin dotted lines are formed at narrow intervals is preferable.
  • FIG. 19(a) when the thin straight dotted lines forming the dotted line pattern 78 can be clearly discerned over the entire projection surface of the screen 36 or the retroreflective sheet 32, the screen 36 or the retroreflective sheet 32 can be clearly identified. It can be seen that the sheet 32 is positioned at the projection position (focus position) of the holographic projector section 10a.
  • FIG. 19B when an inclined line pattern 79 different from the dotted line pattern 78 in FIG. It can be seen that it is installed at a position distant from the focal position). Therefore, by moving the screen 36 or the retroreflective sheet 32 to the position where the dotted line pattern 78 shown in FIG.
  • the guide device 70 shown in FIG. 18 can be used for a personal identification device, for example, a personal identification device using the iris of the human eye as shown in FIG.
  • the device shown in FIG. 20 is used for determining the position of a subject for an iris-based personal identification device.
  • an image having a pattern of narrow gaps is projected onto the subject's forehead from the holographic projector unit 10a.
  • the image projected on the subject's forehead is captured by the camera 80 and displayed on the display device 82 so that the subject can see it.
  • the image projected on the subject's forehead matches the pattern of the image input from the tablet terminal device 11, the subject's eyes are within the depth range of the iris imaging camera (not shown).
  • the image having the narrow gap pattern may be a narrow gap pattern, for example, a dotted line pattern 78 in which a plurality of thin dotted lines are formed with narrow gaps, as shown in FIG. 19(a).
  • a narrow gap pattern for example, a dotted line pattern 78 in which a plurality of thin dotted lines are formed with narrow gaps, as shown in FIG. 19(a).
  • the SLM 14 is equipped with a light emitting diode (LED). Light may be applied, or infrared light that is invisible to humans but recognizable by the camera 80 may be applied.
  • LED light emitting diode
  • the guide device 70 shown in FIG. 18 can be used as a personal authentication device using a hand vein as shown in FIG.
  • the device shown in FIG. 21 is used to determine the position of the subject's hand in a vein personal identification device.
  • the position determining apparatus shown in FIG. 21 when the subject's hand is extended onto the vein imaging camera 84, an image having a pattern of narrow gaps is projected onto the arm from the holographic projector unit 10a.
  • the image projected on the subject's arm can be directly viewed by the subject, and when the pattern of the image input from the tablet-type terminal device 11 matches, the subject's hand falls within the depth range of the vein imaging camera 84. ing.
  • the image having the pattern of narrow gaps may be a pattern of narrow gaps, for example, a dotted line pattern 78 in which a plurality of fine lines are formed with narrow gaps, as shown in FIG. 19(a).
  • a pattern projected on the subject's arm becomes a slanted line pattern 79 as shown in FIG.
  • the subject moves the hand and arm vertically to a position where the pattern displayed on the arm becomes the dotted line pattern 78 shown in FIG. 19(a).
  • the SLM 14 may be irradiated with laser light so that the diffracted light from the SLM 14 does not enter the subject's eyes and the pattern projected onto the arm is made clear.
  • a computer-generated hologram (CGH) of a predetermined image input from the tablet terminal device 11 to the PC 12 is calculated by the CGH calculator 17 and output to the SLM 14 .
  • a computer-generated hologram (CGH) calculated by the CGH calculator 17 will be described.
  • the light intensity I comp (x h , y h , 0) at each point (x h , y h , 0) is given by the following formula (3) can be expressed as
  • the SLM 14 includes one that displays an amplitude hologram and one that displays a phase hologram.
  • phase I phase (x h , y h , 0) at each point (x h , y h , 0) on the phase hologram is expressed by the following formula (5) can be expressed as Im ⁇ I comp ⁇ in the above equation (5) is the imaginary part, Re ⁇ I comp ⁇ is the real part, and the above equation (4) is the same as, the above formula (3) becomes the following formula (6) can be expressed as
  • the amplitude hologram can be calculated based on the above equation (4), and the phase hologram can be calculated based on the above equation (6), which can be used for CGH calculation of a three-dimensional still image.
  • the amplitude hologram can be calculated based on the above equation (4)
  • the phase hologram can be calculated based on the above equation (6), which can be used for CGH calculation of a three-dimensional still image.
  • a further improvement in calculation speed is required compared to the CGH calculation using the above formula (4) or the above formula (6).
  • the above formula (4) representing the light intensity of the amplitude hologram (I amp (x h , y h , 0)) is changed to the following formula (7) transformed like
  • the above formula (6) representing the phase of the phase hologram (I phase (x h , y h , 0)) is changed to the following formula (8) transformed like
  • a position coordinate data storage unit 17a for storing position coordinate data of a point light source of a three-dimensional image, and values obtained by calculating sinX and cosX in the x direction of the CGH based on the position coordinate data in the position coordinate data storage unit 17a are stored.
  • a CGH x-direction trigonometric function table 17b a CGH y-direction trigonometric function table 17c that stores values obtained by calculating sinY and cosY in the CGH y-direction based on the position coordinate data in the position coordinate data storage unit 17a;
  • An amplitude hologram calculator 17d that calculates the light intensity (I amp (x h , y h , 0)) of the amplitude hologram using the trigonometric function values stored in the trigonometric function tables 17b and 17c, and the amplitude hologram calculator 17d
  • An amplitude hologram data storage unit 17e is provided for storing the calculated light intensity (I amp (x h , y h , 0)) of the amplitude hologram and outputting it to the SLM 14 .
  • FIG. 24 shows a pseudo code for calculating the amplitude hologram in the CGH calculator 17 shown in FIG. 23, and FIG. 25 shows its flow chart.
  • the pseudo code shown in FIG. 24 assumes that the CGH resolution is W ⁇ H, and the flowchart shown in FIG. 25 is for a 3D moving image, but it can also be applied to a 3D still image.
  • the trigonometric function table 17c is created after creating the trigonometric function table 17b, but the trigonometric function table 17b may be created after creating the trigonometric function table 17c. 17b and 17c may be created in parallel.
  • the creation of the trigonometric function tables 17b and 17c, the calculation of the amplitude hologram by the amplitude hologram calculator 17d, and the output of the amplitude hologram to the SLM 14 by the amplitude hologram data storage unit 17e may be processed in parallel. Furthermore, when the trigonometric function tables 17b and 17c are created in advance for each frame of the three-dimensional moving image, and the amplitude holograms to be displayed on the SLM 14 can be created and displayed by using them, the point light source loop is the first in the flowchart shown in FIG. It may be an inner loop.
  • the imaginary/real part calculator 17f that calculates the imaginary part Im ⁇ Icomp ⁇ and the real part Re ⁇ Icomp ⁇ using the trigonometric function values stored in the imaginary/real part calculator 17f
  • the imaginary/real part storage unit 17g of the imaginary part Im ⁇ Icomp ⁇ and the real part Re ⁇ Icomp ⁇ , and the imaginary/real part Im ⁇ Icomp ⁇ and the real part Re ⁇ Icomp ⁇ stored in the imaginary/real part storage unit 17g are stored as A phase hologram calculator 17h that calculates the phase of the phase hologram (I phase (x h , y h , 0)) using the phase hologram calculator 17h, and the phase hologram calculated by the phase hologram calculator 17h (I phase (x
  • FIG. 27 Pseudo code for calculating the phase hologram in the CGH calculator 17 shown in FIG. 26 is shown in FIG. 27, and its flow chart is shown in FIG.
  • the pseudo code shown in FIG. 27 assumes that the CGH resolution is W ⁇ H, and the flowchart shown in FIG. 28 is for a 3D moving image, but it can also be applied to a 3D still image.
  • the trigonometric function table 17c is created after the trigonometric function table 17b is created, but the trigonometric function table 17b may be created after the trigonometric function table 17c is created. 17b and 17c may be created in parallel.
  • the trigonometric function tables 17b and 17c are created, the imaginary part Im ⁇ Icomp ⁇ and the real part Re ⁇ Icomp ⁇ are calculated in the imaginary/real part calculator 17f, and the phase hologram phase is calculated in the phase hologram calculator 17h.
  • the calculation of (I phase (x h , y h , 0)) and the output of the phase hologram from the phase hologram data storage unit 17i to the SLM 14 may be processed in parallel.
  • the trigonometric function tables 17b and 17c are created in advance in each frame of the three-dimensional moving image, and the phase hologram to be displayed on the SLM 14 can be created and displayed by using them, the point light source loop is the first in the flowchart shown in FIG. It may be an inner loop.
  • the CGH calculation unit 17 for calculating the amplitude hologram based on the above formula (7) or calculating the phase hologram based on the above formula (8) is implemented by a CPU (Central Processing Unit) and/or a GPU (Graphics Processing Unit). Unit).
  • CPU and GPU have a plurality of cores, but in order to realize real-time reproduction of 3D moving images, at least 30 CGHs must be calculated per second and reproduced.
  • the number of cores that a CPU has is much smaller than that of a GPU, and the processing speed of the CPU is slow. Although it can be used for processing 3D still images, it is not suitable for processing 3D moving images.
  • a GPU has many cores and can be used not only for processing 3D still images but also for 3D moving image processing.
  • FIG. 30 shows a case where three projection units 10b shown in FIG. 3 are installed.
  • 30A the projection units 10b-1, 10b-2, and 10b-3 are arranged in series so that real images are formed on the same surface side of the second half mirror 30.
  • a flat screen 36 is mounted on each frame 26, and each screen 36 is diffracted from a hologram having a different figure from the holographic projector unit 10a (not shown) shown in FIG. 1(a).
  • Light 1, diffracted light 2, and diffracted light 3 are irradiated.
  • Circular images 36a-1, 36a-2 and 36a-3 projected onto each screen 36 are formed as real images 38-1, 38-2 and 38-3 in the space on one side of each second half mirror 30. image.
  • these real images 38-1, 38-2, and 38-3 appear concentric as shown in FIG. 30(c).
  • Diffracted light 1, diffracted light 2, and diffracted light 3 shown in FIG. 30 may be emitted from the same holographic projector unit, or may be emitted from different holographic projector units.
  • 30 uses a flat screen 36, but by using a three-dimensional screen 28 as shown in FIG. 1, a complex real image formed in the air can be viewed from multiple angles. Although three retroreflective sheets 32 are used in FIG. good.
  • the frame 26 on which the screens of the three projection units 10b-1, 10b-2, and 10b-3 shown in FIG. 30 are mounted has the same height, but as shown in FIG.
  • the screen 36 By moving the frame 26 in the vertical direction, the screen 36 also moves in the vertical direction, and the real image formed in the air moves in the horizontal direction to come into contact with or separate from the real image on the other stage.
  • the two projection units 10b-1 and 10b-2 shown in FIG. 30 are arranged in series so that real images 38-1 and 38-2 are formed in the air on the same side of the second half mirror 30. It is A flat screen 36 is mounted on each frame 26, and each screen 36 is diffracted from a hologram having a different figure from the holographic projector unit 10a (not shown) shown in FIG.
  • the frame 26 of the projection unit 10b-2 is lowered to the lower position 26-2 and the projection position (focus position) of the holographic projector unit is aligned with the screen 36-2 moved to the position 26-2.
  • the formed real image 38-2′′ moves to the left (arrow f-2 direction) of the real image 38-2 and approaches the real image 38-1 of the projection unit 10b-1.
  • the real image 38 of the projection unit 10b moved in the left-right direction can come into contact with or separate from another real image 38, and the real image can move in various ways.
  • the projection unit 10b-2 is vertically moved, but by moving the frame 26 of the projection unit 10b-1 together, the projection unit 10b-
  • the real image 38-1 of 1 can also be moved in the left-right direction so that it overlaps with the real image 38-2 of the projection unit 10b-2, or the real image 38-1 can be moved behind the real image 38-2.
  • two retroreflective sheets 32 were used, one retroreflective sheet 32 may be used as long as it is large enough to cover the two second half mirrors 30. Note that FIG. Although the planar screen 36 has been described above, the 3D screen 28 can similarly give various movements to the real image.
  • a reflective SLM was used as the SLM 14, but a transmissive SLM may be used. may be entered.
  • the computer-generated hologram calculated by the PC 12 is displayed on the SLM 14, the hologram interference fringes may be printed on a film.
  • the SLM 14 is irradiated with laser light, it may be irradiated with light from a light emitting diode (LED).
  • LED light emitting diode
  • Example 1 The visible light transmittance and diffusivity of the screen material are measured.
  • measuring device A measuring apparatus shown in FIG. 10 was used. in the measuring device, Light source 50: emits green laser light (wavelength: 532 nm) Hole diameter of hole 58: 2.5 cm Light meter: Laser power meter (LP1 manufactured by Sanwa Electric Instrument Co., Ltd.) Distance L: 1m Distance M: When measuring transmittance: 0 cm When measuring diffusivity: 15 cm
  • the amount of received light was measured by rotating the light receiving surface 62 of the laser power meter shown in FIG.
  • the distance between the light-receiving surface 62 of the laser power meter and the screen material attached to the hole 58 was always kept at 15 cm (rotating radius of the light-receiving surface 62: 15 cm).
  • the amount of received light measured at a position where the light receiving surface 62 is rotated by an angle ⁇ with respect to the optical axis 51 is the amount of diffused light (T') transmitted through the screen material and diffused by an angle ⁇ with respect to the optical axis 51. .
  • the diffusivity of each screen material shown in Table 1 is shown in Table 2 below.
  • Example 2 A three-dimensional screen 28 shown in FIG. 1(b) was produced using the screen materials shown in Table 1, and characters and patterns of "Kochi" were drawn.
  • the stereoscopic screen 28 was placed in a bright room (527 lux (lx)), and the aerial projection apparatus 10 shown in FIG.
  • As the retroreflective sheet 32 an aerial display reflector RF-Ax manufactured by Nippon Carbide Industry Co., Ltd. is used.
  • the distance M to the intermediate point was set to 15 cm.
  • a green laser beam (wavelength: 532 nm) was emitted from the parallel light emitting portion 15 .
  • the screen materials 10, 13, and 15 have a transmitted light amount of 55 to 65% on the optical axis of the three-dimensional screen 28, and the light Since the diffusivity over the entire range of -10° to +10° with respect to the axis is also 15% or more, even in a bright room, the letters and patterns of "Kochi" in the real image 34 could be clearly seen.
  • a virtual image (corresponding to the virtual image 39 shown in FIG. 5A) generated by specular reflection of the diffused light irradiated to the retroreflective sheet 32 is generated.
  • Example 3 the screen material No. 2 was evaluated as "poorly visible” ( ⁇ ) for the real image 34 in a bright room (527 lux (lx)). 5 (cotton (plain lawn)), No. 9 (machine paper (machine-made paper)), No. 11 (Tengu paste: basis weight 34 g/cm 2 )), and No. 1 in Table 1.
  • Each of the screen materials of diffusion plates 16 to 22 was made into a flat screen, and the words “Kochi” were written on this screen to obtain a screen 36 shown in FIG. 3(a). Using this screen 36, it was visually observed whether or not a real image 38 of characters "Kochi” could be visually recognized in the air from the front by the aerial projector shown in FIG. 3(a) in a bright room (527 lux (lx)). As a result, as shown in Table 4 below, the real image 38 of the characters "Kochi” was "clearly visible” (++) on the entire screen.
  • Example 4 The CGH calculation unit 17 of the PC 12 shown in FIG. 1 was provided in the CPU or GPU, and the CGH creation speed depending on the difference in the CGH calculation formula of the amplitude hologram was measured by changing the number of object points. The results are shown in Table 5 below. Calculation formula for amplitude hologram Equation (4) above [pseudocode: FIG. 29(a)] Equation (7) above [pseudocode: FIG. 24] CGH calculator 17 CPU: Core (trademark) i7-8700K manufactured by INTEL Corporation GPU: GeForce RTXTM 3080 from NVIDIA Corporation
  • Equation (7) the CGH creation speed by Equation (7) is faster than Equation (4), and the CGH creation speed of GPU is considerably faster than that of CPU. can be applied to 3D moving images.
  • the calculation load of the cos function becomes large.
  • a cos table with 8-bit integer values from -127 to 127 was used to speed up the calculation.
  • Intel C++ compiler classic Version 2021.2.0 (option: -O3 -xCORE-AVX2 -qopenmp) was used as a compiler, and the number of OpenMP threads was set to 12.
  • Example 5 The CGH calculation unit 17 of the PC 12 shown in FIG. 1 was provided in the CPU or GPU, and the CGH creation speed depending on the difference in the CGH calculation formula of the phase hologram was measured by changing the number of object points. The results are shown in Table 6 below. Calculation formula for phase hologram Equation (6) above [pseudocode: FIG. 29(b)] Equation (8) above [pseudocode: FIG. 27] CGH calculator 17 CPU: Core (trademark) i7-8700K manufactured by INTEL Corporation GPU: GeForce RTXTM 3080 from NVIDIA Corporation
  • Equation (8) the CGH creation speed by Equation (8) is faster than Equation (6), and the CGH creation speed of GPU is considerably faster than that of CPU. It can be seen that it can be applied to three-dimensional moving images.
  • the calculation load of the cosine and sin functions becomes large.
  • Calculation speed was increased using cos and sin tables in which 1 to +1 are integer values of -127 to 127 of 8 bits.
  • Intel C++ compiler classic Version 2021.2.0 (option: -O3 -xCORE-AVX2 -qopenmp) was used as a compiler, and the number of OpenMP threads was set to 12.
  • the aerial projection device according to the present invention can be used as an aerial projection device capable of forming an image of an elevator button in the air, or an aerial projection device capable of forming a predetermined image in the air for education, games, and the like.
  • 10 aerial projection device
  • 10a holographic projector unit
  • 10b, 10b-1, 10b-2, 10b-3 projection unit
  • 11 tablet terminal device
  • 12 personal computer
  • 14 spatial light modulator (SLM )
  • 15 parallel light emitting section
  • 16 laser beam emitting section
  • 17 CGH calculation section
  • 17a position coordinate data storage section
  • 17b, 17c trigonometric function table
  • 17d amplitude hologram calculation section
  • 17e amplitude hologram data Storage unit
  • 17f Imaginary part/real part calculation unit
  • 17g Imaginary part/real part storage unit
  • 17h Phase hologram calculation unit 17i: Phase hologram data storage unit
  • 22 first half mirror
  • 24, 35 mirror
  • 26 frame
  • 26', 26-1, 26-2 position of frame 26, 27, 74: support
  • 28 three-dimensional screen
  • 28a projection image of cube 28b: frame 28c: Japanese paper 29a, 29b, 37a, 37b
  • b' moving position of virtual image b
  • angle
  • W number of horizontal pixels of CGH
  • H number of vertical pixels of CGH
  • xh x-direction position coordinates of pixels on hologram
  • yh y-direction position coordinates of pixels on the hologram
  • ⁇ x pixel size in x -direction
  • ⁇ y pixel size in y -direction
  • P( xn, yn , zn) n of three-dimensional object position coordinates of the th object point P

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is an aerial projection device that can display an image in midair by using an image display means having a simple structure. This aerial projection device 10 is configured from: a holographic projector unit 10a that emits diffracted light which is illuminated collimated light diffracted on the basis of interference information regarding a hologram of a cube which is a prescribed image; and a projection unit 10b that comprises a stereoscopic screen 28 onto which the diffracted light is illuminated such that the cube is projected thereon, a second half-silvered mirror 30 which is disposed at an angle relative to the diffracted light illuminated onto the stereoscopic screen 28 at a location illuminated by transmitted-diffused light of the diffracted light that has been transmitted through and diffused by the screen, and a retroreflective sheet 32 which is illuminated by light transmitted through the second half-silvered mirror 30, wherein a real image 34 of the cube is formed in midair by reflected light, which is obtained by the light transmitted through the second half-silvered mirror 30, of the transmitted-diffused light, being reflected by the retroreflective sheet 32, emitted in the opposite direction along the original incidence path, and reflected by the second half-silvered mirror 30.

Description

空中投影装置aerial projection device
 本発明は空中投影装置に関するものである。 The present invention relates to an aerial projection device.
 感染症の感染予防等のためにエレベータ等のボタンを非接触タイプとすべく、空中にボタンの画像を結像できる空中投影装置、或いは教育やゲーム等のために空中に所定の画像を結像できる空中投影装置が望まれている。このような空中投影装置としては、例えば、下記特許文献1に、表示デバイスに表示された画像を空中に投影できる空中画像形成装置が記載されている。この空中画像形成装置は、表示デバイスから出力された光が、ビームスプリッタにより再帰性反射シートの方向に反射され、この再帰性反射シートで再帰性反射された光はビームスプリッタを透過して空中で結像するものである。また、下記特許文献2にも、画像表示ユニットに表示された画像を空中に結像できる空間表示装置が記載されている。この空間表示装置は、画像表示ユニットから出力された光は、選択反射膜により再帰性反射材の方向に反射され、再帰性反射材で再帰性反射され、選択反射膜を透過して空中で結像するものである。 Aerial projectors that can image button images in the air, or image predetermined images in the air for education, games, etc., in order to make the buttons of elevators and the like non-contact type for the prevention of infection of infectious diseases. What is desired is an aerial projection system that can As such an aerial projection device, for example, Patent Document 1 below describes an aerial image forming device capable of projecting an image displayed on a display device in the air. In this aerial image forming apparatus, light output from a display device is reflected by a beam splitter toward a retroreflective sheet, and the light retroreflected by the retroreflective sheet passes through the beam splitter and travels in the air. It forms an image. In addition, Japanese Unexamined Patent Application Publication No. 2002-200002 also describes a spatial display device capable of forming an image displayed on an image display unit in the air. In this spatial display device, the light output from the image display unit is reflected by the selective reflection film toward the retroreflection material, retroreflected by the retroreflection material, transmitted through the selective reflection film, and condensed in the air. It is an image.
特開2019-207574号公報JP 2019-207574 A 特開2018-92000号公報Japanese Patent Application Laid-Open No. 2018-92000
 前述した特許文献1、2に記載された空中画像形成装置や空間表示装置によれば、表示デバイスや画像表示ユニットに表示された画像を空中に表示できる。しかしながら、表示デバイスや画像表示ユニットからは、特許文献2に記載されているように、立体的な位置情報を有する画像光を出射することを要し、その構造は複雑なものとなる。例えば、特許文献2の画像表示ユニットは、液晶表示パネル等の表示パネルの表示面にマイクロレンズアレイが配列されたものである。このような複雑構造の画像表示手段を用いた空中画像形成装置や空間表示装置は全体が複雑化する。 According to the aerial image forming apparatus and the spatial display apparatus described in Patent Documents 1 and 2, images displayed on the display device or the image display unit can be displayed in the air. However, as described in Patent Document 2, the display device and the image display unit are required to emit image light having three-dimensional positional information, and the structure thereof becomes complicated. For example, the image display unit disclosed in Patent Document 2 has a microlens array arranged on the display surface of a display panel such as a liquid crystal display panel. An aerial image forming apparatus or spatial display apparatus using such an image display means having a complicated structure is complicated as a whole.
 本発明は前記の課題を解決するためになされたもので、簡単な構造の画像表示手段を用いて空中に画像を表示できる空中投影装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an aerial projection device capable of displaying an image in the air using an image display means with a simple structure.
 前記の目的を達成するためになされた本発明に係る空中投影装置は、照射された平行光が所定像のホログラムの干渉情報に基づいて回折された回折光が射出されるホログラフィックプロジェクタ部と、前記回折光が照射されて前記所定像が投影されるスクリーンと、前記回折光のうち前記スクリーンを透過し拡散した透過拡散光が照射される位置に、前記スクリーンに照射される前記回折光に対して傾斜して設置されているハーフミラーと、前記ハーフミラーの透過光又は反射光が照射される再帰性反射素子とから成る投影部とで構成され、前記透過拡散光の前記ハーフミラーの透過光又は反射光が前記再帰性反射素子で再帰性反射されて元の入射経路に沿って逆方向に射出して前記ハーフミラーで反射した反射光又は前記ハーフミラーを透過した透過光により、前記所定像の実像が前記ハーフミラーの一面側の空中に結像されることを特徴とするものである。 An aerial projection apparatus according to the present invention, which has been made to achieve the above object, comprises a holographic projector section for emitting diffracted light obtained by diffracting irradiated parallel light based on interference information of a hologram of a predetermined image; a screen onto which the predetermined image is projected by irradiating the diffracted light; and a projection unit composed of a retroreflective element that is irradiated with the transmitted light or reflected light of the half mirror, and the transmitted diffused light of the half mirror Alternatively, the reflected light is retroreflected by the retroreflective element and emitted in the opposite direction along the original incident path, and the reflected light reflected by the half mirror or the transmitted light transmitted through the half mirror forms the predetermined image. is formed in the air on one side of the half mirror.
 前記実像がぼやけて見えるように、前記スクリーンが前記ホログラムの干渉情報に基づいて投影される所定位置よりも前方又は後方の位置に配置されていることにより、空中投影装置の表現幅を広げることができる。 By arranging the screen at a position in front of or behind a predetermined position where the screen is projected based on the interference information of the hologram so that the real image appears blurred, the range of expression of the aerial projection device can be widened. can.
 前記再帰性反射素子の鏡面反射により、前記ハーフミラーの他面側に視認される前記実像に対応する虚像が視野外に移動するように前記再帰性反射素子が傾斜されていることにより、実像が明瞭に視認できる。 The retroreflective element is tilted so that a virtual image corresponding to the real image viewed on the other side of the half mirror moves out of the field of view due to specular reflection of the retroreflective element, so that the real image is Clearly visible.
 前記ホログラフィックプロジェクタ部から、少なくとも二つの所定像の各ホログラムの干渉情報に基づいて回折された回折光が射出され、前記所定像の一方の前記干渉情報に基づく回折光より、前記スクリーンに照射されて前記ハーフミラー及び前記再帰性反射素子を経由して空中に結像される前記所定像の一方の実像に併せて、前記所定像の他方の前記干渉情報に基づく回折光が前記スクリーンに照射されることなく前記ハーフミラーを透過して前記再帰性反射素子の再帰性反射光射出面に照射されて、前記所定像の他方が投影されると共に、前記再帰性反射光射出面から射出された再帰性反射光の前記ハーフミラーでの反射光により、前記ハーフミラーの反射面と反対面側の空中に前記所定像の他方の虚像が視認できることにより、実像と虚像とを同時に認識できる。 The holographic projector unit emits diffracted light diffracted based on the interference information of each hologram of at least two predetermined images, and the screen is irradiated with the diffracted light based on the interference information of one of the predetermined images. The screen is irradiated with diffracted light based on the interference information of the other of the predetermined images along with one of the predetermined images formed in the air via the half mirror and the retroreflective element. without passing through the half mirror and illuminating the retroreflected light exit surface of the retroreflective element, the other of the predetermined images is projected, and the retroreflected light emitted from the retroreflected light exit surface is projected. Due to the light reflected by the half mirror, the other virtual image of the predetermined image can be visually recognized in the air on the side opposite to the reflecting surface of the half mirror, so that the real image and the virtual image can be recognized at the same time.
 前記実像及び/又は前記虚像がぼやけて見えるように、前記スクリーン及び/又は前記再帰性反射素子が前記ホログラムの干渉情報に基づいて投影される所定位置よりも前方又は後方の位置に配置されていることにより、実像及び虚像の一方又は両方をぼけて見えるようにでき、空中投影装置の表現幅を更に広げることができる。 The screen and/or the retroreflective element are arranged at a position forward or rearward of a predetermined position projected based on the interference information of the hologram so that the real image and/or the virtual image appear blurred. As a result, one or both of the real image and the virtual image can be made to appear blurred, and the expression range of the aerial projection device can be further expanded.
 前記スクリーンが、立体スクリーンであることにより、空中に立体像を結像できる。 A stereoscopic image can be formed in the air because the screen is a stereoscopic screen.
 前記スクリーンが、和紙又は不織布で形成されていることにより、立体スクリーン等のスクリーンを簡単に形成できる  Since the screen is made of Japanese paper or non-woven fabric, a screen such as a three-dimensional screen can be easily formed.
 前記ハーフミラーと前記スクリーンとの組み合わせが少なくとも二対設けられ、前記二対の組み合わせが、前記ハーフミラーの各々の同一面側の空中に前記実像が結像するように所定間隔を置いて直列に設置されていることにより、複雑な実像を空中に結像させることができる。 At least two pairs of the half mirror and the screen are provided, and the two pairs are arranged in series with a predetermined interval so that the real image is formed in the air on the same side of each of the half mirrors. By being installed, a complex real image can be formed in the air.
 前記ハーフミラーの各々の同一面側の空中に結像した前記実像の少なくとも一方が前記ハーフミラーに対して接離方向に移動するように、前記実像の一方に対応する投影像が前記ホログラフィックプロジェクタ部から投影される前記スクリーンが前記ハーフミラーに対して接離方向に移動可能に設けられていることによって、スクリーンをハーフミラーに対して接離方向に移動することにより、実像同士を接離又は重ねたり、実像の一方を実像の他方の後側とするような動きを付与できる。 The projection image corresponding to one of the real images is projected by the holographic projector such that at least one of the real images formed in the air on the same surface side of each of the half mirrors moves in a direction toward or away from the half mirror. Since the screen projected from the unit is movable in the direction of contact and separation with respect to the half mirror, by moving the screen in the direction of contact and separation with respect to the half mirror, the real images It is possible to add motion such that one of the real images is superimposed on the other, or behind the other real image.
 前記ホログラムが、計算機合成ホログラムであって、前記平行光を前記計算機合成ホログラムの干渉情報に基づいて回折光に変調する空間光変調器が設けられていることにより、所望のホログラムを簡単に作成でき好ましい。 The hologram is a computer-generated hologram, and a spatial light modulator is provided for modulating the parallel light into diffracted light based on the interference information of the computer-generated hologram, so that a desired hologram can be easily created. preferable.
 前記計算機合成ホログラムが、振幅ホログラムであって、前記振幅ホログラムが下記数式(1)
Figure JPOXMLDOC01-appb-M000003
に基づいて計算されていることにより、振幅ホログラムの計算速度を高めることができる。
The computer-generated hologram is an amplitude hologram, and the amplitude hologram is represented by the following formula (1)
Figure JPOXMLDOC01-appb-M000003
can speed up the calculation of the amplitude hologram.
 前記計算機合成ホログラムが、位相ホログラムであって、前記位相ホログラムが下記数式(2)
Figure JPOXMLDOC01-appb-M000004
に基づいて計算されていることにより、位相ホログラムの計算速度を高めることができる。
The computer-generated hologram is a phase hologram, and the phase hologram is represented by the following formula (2)
Figure JPOXMLDOC01-appb-M000004
can increase the calculation speed of the phase hologram.
 本発明に係る空中投影装置は、画像表示手段を、所定像の干渉情報が記録されたホログラムと、このホログラムの干渉情報に基づいて回折された回折光を照射し、所定像が投影される透光性と拡散性とを併せ有するスクリーンとから成る簡単な構造とすることができ、装置全体としても簡単な構造にできる。 The aerial projection apparatus according to the present invention irradiates the image display means with a hologram in which interference information of a predetermined image is recorded and diffracted light diffracted based on the interference information of this hologram. A simple structure consisting of a screen having both lightness and diffusing properties can be achieved, and the structure of the entire device can also be simplified.
本発明を適用する空中投影装置を説明する略線図である。1 is a schematic diagram illustrating an aerial projection device to which the present invention is applied; FIG. 本発明を適用する他の空中投影装置を説明する略線図である。FIG. 11 is a schematic diagram illustrating another aerial projection device to which the present invention is applied; 本発明を適用する他の空中投影装置を説明する略線図である。FIG. 11 is a schematic diagram illustrating another aerial projection device to which the present invention is applied; 本発明を適用する他の空中投影装置であって、スクリーンの位置を移動したときの実像の状態を説明する説明図である。FIG. 10 is an explanatory diagram illustrating the state of a real image when the position of the screen is moved, in another aerial projection device to which the present invention is applied; 発明を適用する他の空中投影装置であって、再帰性反射素子を傾斜したとき、実像に対応して視認される虚像の移動を説明する説明図である。FIG. 11 is another aerial projection device to which the invention is applied, and is an explanatory diagram for explaining movement of a virtual image visually recognized corresponding to a real image when the retroreflective element is tilted. 本発明を適用する他の空中投影装置であって、実像と虚像とを同時に視認できる空中投影装置を説明する略線図である。FIG. 10 is a schematic diagram illustrating another aerial projection device to which the present invention is applied, which allows a real image and a virtual image to be visually recognized at the same time. 本発明を適用する、実像と虚像とを同時に視認できる空中投影装置であって、再帰性反射シートを移動したときの実像と虚像との状態を説明する略線図である。FIG. 10 is a schematic diagram illustrating the states of the real image and the virtual image when the retroreflective sheet is moved, in the aerial projection device to which the present invention is applied and in which a real image and a virtual image can be visually recognized at the same time. 本発明を適用する、実像と虚像とを同時に視認できる空中投影装置であって、平面状のスクリーンを用いたときの再帰性反射シートを分割して配置した状態を説明する略線図である。FIG. 10 is a schematic diagram illustrating a state in which a retroreflective sheet is divided and arranged when a planar screen is used, in an aerial projection device to which the present invention is applied and in which a real image and a virtual image can be viewed simultaneously; 本発明を適用する、立体スクリーンを用いて実像と虚像とを同時に視認できる空中投影装置であって、再帰性反射シートを分割して配置した状態を説明する略線図である。FIG. 10 is a schematic diagram illustrating a state in which a retroreflective sheet is divided and arranged in an aerial projection apparatus that allows viewing of a real image and a virtual image at the same time using a stereoscopic screen to which the present invention is applied; スクリーンに用いる材料の可視光の透過率及び拡散率の測定装置を説明する略線図である。FIG. 2 is a schematic diagram illustrating a measuring device for measuring visible light transmittance and diffusivity of a material used for a screen; 複数の虚像を同時に空中に視認できる空中投影装置を説明する略線図である。FIG. 4 is a schematic diagram illustrating an aerial projection device that allows a plurality of virtual images to be visually recognized in the air at the same time; 図11に示す空中投影装置で用いる再帰性反射シートの設置状態を説明する斜視図である。FIG. 12 is a perspective view illustrating an installation state of a retroreflective sheet used in the aerial projection device shown in FIG. 11; 図11に示す空中投影装置を構成する第2ハーフミラーの他面側に遮光物を置いた場合の虚像の見え方を説明する略線図である。12A and 12B are schematic diagrams for explaining how a virtual image appears when a light shielding object is placed on the other surface side of the second half mirror that constitutes the aerial projection device shown in FIG. 11; 図11に示す空中投影装置で用いる二枚の再帰性反射シートの一方を上下方向に移動したときの虚像の動きを説明する略線図である。FIG. 12 is a schematic diagram illustrating movement of a virtual image when one of the two retroreflective sheets used in the aerial projection device shown in FIG. 11 is vertically moved; 図11に示す空中投影装置で用いる二枚の再帰性反射シートの一方のハーフミラー30からの光路を長くした場合の虚像の動きを説明する略線図である。12A and 12B are schematic diagrams for explaining movement of a virtual image when an optical path from one half mirror 30 of two retroreflective sheets used in the aerial projection apparatus shown in FIG. 11 is lengthened. 図11に示す空中投影装置で用いる再帰性反射シートを一枚とし、その再帰性反射シートを可動可能とした場合の虚像の動きを説明する略線図である。12A and 12B are schematic diagrams for explaining the movement of a virtual image when one retroreflective sheet is used in the aerial projection device shown in FIG. 11 and the retroreflective sheet is made movable; 図11に示す空中投影装置で用いる二枚の再帰性反射シートを長方形のハーフミラーの左右方向に並列状に配置した場合の虚像の見え方を説明する略線図である。FIG. 12 is a schematic diagram illustrating how a virtual image appears when two retroreflective sheets used in the aerial projection device shown in FIG. 11 are arranged side by side in the horizontal direction of a rectangular half mirror; 図18(a)は空中投影装置のホログラフィックプロジェクタ部の投影位置に立体スクリーンをガイドするガイド装置を説明する概略図である。図18(b)は立体スクリーンがホログラフィックプロジェクタ部の投影位置に位置する場合の投影状態を示す斜視図であり、図18(c)は立体スクリーンがホログラフィックプロジェクタ部の投影位置から外れている場合の投影状態を示す斜視図である。FIG. 18(a) is a schematic diagram for explaining a guide device for guiding the stereoscopic screen to the projection position of the holographic projector section of the aerial projection device. FIG. 18(b) is a perspective view showing a projection state when the stereoscopic screen is positioned at the projection position of the holographic projector unit, and FIG. FIG. 10 is a perspective view showing a projection state in this case; 図19(a)は平面状のスクリーンがホログラフィックプロジェクタ部の投影位置に位置する場合の投影状態を示す正面図であり、図19(b)は平面状のスクリーンがホログラフィックプロジェクタ部の投影位置(焦点位置)から外れている場合の投影状態を示す正面図である。FIG. 19(a) is a front view showing the projection state when the planar screen is positioned at the projection position of the holographic projector unit, and FIG. FIG. 10 is a front view showing a projection state when the object is out of the (focus position); 図18に示すガイド装置を個人認証装置に用いた例を説明する略線図である。FIG. 19 is a schematic diagram illustrating an example in which the guide device shown in FIG. 18 is used as a personal authentication device; 図18に示すガイド装置を他の個人認証装置に用いた例を説明する略線図である。FIG. 19 is a schematic diagram illustrating an example in which the guide device shown in FIG. 18 is used in another personal authentication device; 計算機合成ホログラムの作成の原理を説明するための概念図である。It is a conceptual diagram for explaining the principle of creating a computer-generated hologram. 振幅ホログラムを計算するCGH計算部の構成を説明する略線図である。FIG. 4 is a schematic diagram illustrating the configuration of a CGH calculator that calculates an amplitude hologram; 振幅ホログラムを計算する疑似コードである。Pseudocode to compute the amplitude hologram. 振幅ホログラムを計算するフローチャートである。Fig. 4 is a flow chart for computing amplitude holograms; 位相ホログラムを計算するCGH計算部の構成を説明する略線図である。FIG. 4 is a schematic diagram illustrating the configuration of a CGH calculator that calculates a phase hologram; 位相ホログラムを計算する疑似コードである。Pseudocode to compute the phase hologram. 位相ホログラムを計算するフローチャートである。Fig. 4 is a flow chart for computing a phase hologram; 図29(a)は振幅ホログラムを計算する他の疑似コードであり、図29(b)は位相ホログラムを計算する他の疑似コードである。FIG. 29(a) is another pseudocode to compute the amplitude hologram, and FIG. 29(b) is another pseudocode to compute the phase hologram. 図3に示す空中投影装置の投影部10bを三台配置した場合について説明する略線図である。4 is a schematic diagram illustrating a case where three projection units 10b of the aerial projection device shown in FIG. 3 are arranged; FIG. 図30に示す二台の投影部10b-1,10b-2のうち、投影部10b-2の枠体26を上下方向に移動したとき、実像の移動方向を説明する略線図である。FIG. 31 is a schematic diagram illustrating the moving direction of the real image when the frame 26 of the projection unit 10b-2 of the two projection units 10b-1 and 10b-2 shown in FIG. 30 is vertically moved;
 以下、本発明を詳細に説明するが、本発明の範囲はこれらに限定されるものではない。 Although the present invention will be described in detail below, the scope of the present invention is not limited to these.
 本発明を適用する空中投影装置を図1(a)に示す。図1(a)に示す空中投影装置10はホログラフィックプロジェクタ部10aと投影部10bとから構成される。ホログラフィックプロジェクタ部10aは、タブレット型端末装置11が接続されたパーソナルコンピュータ(PC)12、反射型の空間光変調器(SLM)14、第1ハーフミラー22及び平行光射出部15から構成される。平行光射出部15は、レーザ光射出部16、対物レンズ18及び平凸レンズ20から成る。ホログラフィックプロジェクタ部10aは、タブレット型端末装置11から入力された所定像としての立方体の計算機合成ホログラム(CGH)がPC12のCGH計算部17で計算されてSLM14に表示される。SLM14に表示される干渉縞は、立方体が所定位置に投影されるようにホログラム化された干渉情報である。このような干渉縞が表示されているSLM14の表示面に平行光が照射される。この平行光は、平行光射出部15のレーザ光射出部16から射出されたレーザ光が対物レンズ18で一旦集光した後に広がり、平凸レンズ20で平行光となり、第1ハーフミラー22によりSLM14の表示面の方向に反射された光である。SLM14の表示面に照射された平行光は、表示面に表示されているホログラム化された干渉情報に基づいて回折された回折光となって、SLM14の表示面から射出し、第1ハーフミラー22を透過して投影部10bに射出される。 An aerial projection device to which the present invention is applied is shown in FIG. 1(a). The aerial projection device 10 shown in FIG. 1(a) comprises a holographic projector section 10a and a projection section 10b. The holographic projector section 10a is composed of a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14, a first half mirror 22, and a parallel light emitting section 15. . The parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 . In the holographic projector unit 10 a , a cubic computer-generated hologram (CGH) as a predetermined image input from the tablet terminal device 11 is calculated by the CGH calculation unit 17 of the PC 12 and displayed on the SLM 14 . The interference fringes displayed on the SLM 14 are interference information hologrammed such that a cube is projected at a given location. Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15. After being condensed once by the objective lens 18, the parallel light spreads, becomes parallel light by the plano-convex lens 20, and reaches the SLM 14 by the first half mirror 22. It is the light reflected in the direction of the display surface. The parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the hologram interference information displayed on the display surface, emerges from the display surface of the SLM 14 , and is emitted from the first half mirror 22 . and is emitted to the projection unit 10b.
 投影部10bは、鏡24、水平に載置された枠体26、枠体26の枠部分に載置された支承台27により支承された立体スクリーン28、枠体26に対して45°に傾斜(傾斜角45°)している第2ハーフミラー30及び枠体26に対向するように配置された再帰性反射素子としての再帰性反射シート32から構成される。ホログラフィックプロジェクタ部10aから投影部10bに入射した回折光は、傾斜角45°で置かれた鏡24で反射し枠体26の中空部を通過して立体スクリーン28を照射する。立体スクリーン28は、計算機合成ホログラムが計算された所定像としての立方体と相似形に形成されており、計算機合成ホログラムの計算の前提となった所定位置に支承台27で支承されている。 The projection unit 10b includes a mirror 24, a horizontally placed frame 26, a three-dimensional screen 28 supported by a support base 27 placed on the frame portion of the frame 26, and inclined at 45° with respect to the frame 26. It is composed of a second half mirror 30 having an inclination angle of 45° and a retroreflective sheet 32 as a retroreflective element arranged so as to face the frame 26 . The diffracted light incident on the projection unit 10b from the holographic projector unit 10a is reflected by the mirror 24 placed at an inclination angle of 45°, passes through the hollow part of the frame 26, and irradiates the three-dimensional screen 28. FIG. The three-dimensional screen 28 is formed in a shape similar to a cube as a predetermined image for which the computer-generated hologram is calculated, and is supported by a support base 27 at a predetermined position which is the premise of the calculation of the computer-generated hologram.
 立体スクリーン28は、図1(b)に示すように枠28bに和紙28c(典具貼紙:目付18g/m)が貼付されて形成されている。和紙28cは、照射した可視光(波長532nmのグリーンレーザ光)の光軸での透過率が55%以上であり、図1(a)に示すように立体スクリーン28の最上点と第2ハーフミラー30の中間点との高さにおいて、照射した可視光のうち和紙28cを透過した透過光の可視光(波長532nmのグリーンレーザ光)の光軸に対して-10°~+10°の拡散率が15%以上のものである。このような和紙28cは、立方体の三面を形成しており、図1(a)に示すように和紙28cが貼られた三面が枠体26方向を向くように支承台27で支承されている。このような立体スクリーン28に回折光が照射されると、ホログラム化された立方体の投影像28aが投影される。立体スクリーン28の三面を形成する和紙28cは、照射された回折光の少なくとも一部が透過し拡散する透過拡散体であるから、図1(a)に示すように、例えば、立方体の投影像28aの投影点29a,29aの各々を透過した光は拡散して透過拡散光となる。この透過拡散光は、第2ハーフミラー30を透過して再帰性反射シート32に入射される。 As shown in FIG. 1B, the three-dimensional screen 28 is formed by pasting a Japanese paper 28c (texture pasting paper: basis weight 18 g/m 2 ) to a frame 28b. The Japanese paper 28c has a transmittance of 55% or more on the optical axis of the irradiated visible light (a green laser beam with a wavelength of 532 nm). 30, the diffusion rate of -10° to +10° with respect to the optical axis of the visible light (green laser light with a wavelength of 532 nm) of the visible light transmitted through the Japanese paper 28c among the irradiated visible light. 15% or more. The Japanese paper 28c forms three faces of a cube, and is supported by the support base 27 so that the three faces to which the Japanese paper 28c is pasted face the frame 26 as shown in FIG. 1(a). When such a stereoscopic screen 28 is irradiated with diffracted light, a projection image 28a of a hologramized cube is projected. The Japanese paper 28c forming the three surfaces of the three-dimensional screen 28 is a transmissive diffuser through which at least part of the irradiated diffracted light is transmitted and diffused. The light transmitted through each of the projection points 29a, 29a is diffused to become transmitted diffused light. This transmitted diffused light is transmitted through the second half mirror 30 and is incident on the retroreflective sheet 32 .
 再帰性反射シート32は、図1(c)に示すように反射シート33aの一面側に形成された透明樹脂層33c中に多数のガラスビーズ33bが配置されおり、図1(c)に示すように入射光の入射経路に沿って入射光と逆方向に射出光が射出する再帰性反射をするものである。このような再帰性反射シート32に入射した拡散光は、図1(a)に示すように入射光の入射経路に沿って逆方向に射出し、第2ハーフミラー30で反射されて、第2ハーフミラー30の一面側の空中に三次元像である立方体の実像34を結像する。立体スクリーン28に投影された立方体の投影像28aの投影点29a,29bの各々は、実像34の結像点34a,34bに対応する。図1(a)に示す実像34は、側面方向から見た形状であり、その正面から見た拡大図を図1(d)に示す。図1(d)に示す点34a,34bは、図1(a)に示す実像34の結像点34a,34bに対応する。図1に示す実像34は立方体であったが、その形状を他の形状に変更する場合、他の形状をタブレット型端末装置11からPC12に入力し、PC12で他の形状の計算機合成ホログラムを計算することにより、SLM14に他の形状の干渉縞に簡単に表示できる。また、形状に模様を加える場合も、同様である。尚、図1(c)に示す再帰性反射シート32は、多数のガラスビーズ33bを用いたものであったが、多数のプリズムを用いた再帰性反射シートであってもよい。 As shown in FIG. 1(c), the retroreflective sheet 32 has a large number of glass beads 33b arranged in a transparent resin layer 33c formed on one side of a reflective sheet 33a. retroreflection in which the outgoing light is emitted in the direction opposite to the incident light along the incident path of the incident light. The diffused light incident on the retroreflective sheet 32 is emitted in the opposite direction along the incident path of the incident light as shown in FIG. A three-dimensional cubic real image 34 is formed in the air on one side of the half mirror 30 . Projection points 29a and 29b of a cubic projection image 28a projected onto the stereoscopic screen 28 correspond to imaging points 34a and 34b of the real image 34, respectively. The real image 34 shown in FIG. 1(a) has a shape viewed from the side, and an enlarged view thereof viewed from the front is shown in FIG. 1(d). Points 34a and 34b shown in FIG. 1(d) correspond to imaging points 34a and 34b of the real image 34 shown in FIG. 1(a). The real image 34 shown in FIG. 1 was a cube, but when changing the shape to another shape, the other shape is input from the tablet terminal device 11 to the PC 12, and the computer-generated hologram of the other shape is calculated by the PC 12. , the SLM 14 can easily display interference fringes of other shapes. The same applies when adding a pattern to the shape. Although the retroreflection sheet 32 shown in FIG. 1(c) uses a large number of glass beads 33b, it may be a retroreflection sheet using a large number of prisms.
 図1に示す空中投影装置10の投影部10bは、再帰性反射シート32が水平に配置された枠体26に平行に配置されているが、図2に示すように再帰性反射シート32を枠体26に対して垂直に配置してもよい。この場合も、実像34は図1に示す投影部10bと略同一の空中位置に結像する。但し、この場合、実像34を正面から見たとき、再帰性反射シート32での反射像が視野に入ることがある。 The projection unit 10b of the aerial projection apparatus 10 shown in FIG. 1 is arranged parallel to the frame 26 in which the retroreflective sheet 32 is arranged horizontally. It may also be arranged perpendicular to the body 26 . Also in this case, the real image 34 is formed at substantially the same aerial position as the projection unit 10b shown in FIG. However, in this case, when the real image 34 is viewed from the front, the image reflected by the retroreflective sheet 32 may enter the field of vision.
 図1及び図2では、立体スクリーン28を用いていたが、図3に示すように一枚の和紙の周縁部を枠体26の枠部に貼着して平面状のスクリーン36(以下、単にスクリーン36と称する)としてもよい。このような一枚のスクリーン36に投影される投影像36aは、図3(b)に示すように二次元像(三角形)であり、その空中に結像される実像38も二次元像である。空中に結像された実像38(三角形)の正面から見た形状を図3(c)に示す。図3(a)(b)に示す投影像36aの投影点37a,37bに対応する実像38の結像点38a,38bを図3(c)に示す。 1 and 2, the three-dimensional screen 28 was used, but as shown in FIG. 3, a flat screen 36 (hereinafter simply referred to as screen 36). A projection image 36a projected onto such a single screen 36 is a two-dimensional image (triangle) as shown in FIG. 3(b), and a real image 38 formed in the air is also a two-dimensional image. . FIG. 3(c) shows the shape of the real image 38 (triangle) formed in the air as viewed from the front. FIG. 3(c) shows imaging points 38a and 38b of the real image 38 corresponding to the projection points 37a and 37b of the projection image 36a shown in FIGS. 3(a) and 3(b).
 図1~図3に示す空中投影装置10では、ホログラフィックプロジェクタ部10aのSLM14に表示される干渉縞は、設置された立体スクリーン28又はスクリーン36に所定像が明瞭に投影されるように、換言すれば立体スクリーン28又はスクリーン36に焦点が合うようにPC12のCGH計算部17で計算された計算機合成ホログラム(CGH)である。ここで、CGHの焦点位置を変更することなく、図3(a)のスクリーン36が載置された枠体26を図4(a)に示すように第2ハーフミラー30側の位置26′、すなわちCGHの焦点位置よりも後方に移動すると、図4(b)に示すようにスクリーン36に投影される投影像36a′(二次元像(三角形))はぼやけた形状となり、結像する実像38′も図4(c)に示すようにぼやけた形状となる。しかも、この実像38′は、図4(a)に示すように第2ハーフミラー30側に寄った位置に結像する。このように、スクリーン36の位置を移動するのみで空中像をぼやけた形状とすることができ、空中像の表現の範囲を拡大できる。例えば、スクリーン36を第2ハーフミラー30側から次第に離すことにより、空中像を遠くに位置するぼけた形状から近くに位置する明瞭な形状とすることができ、遠くから近くに移動するものの表現が可能となる。図4では、スクリーン36の位置をCGHの焦点位置よりも後方に移動したが、CGHの焦点位置よりも前方(鏡24側)に移動した場合も、実像38′はぼけた形状となる。但し、この場合、実像38′と第2ハーフミラー30との間は、実像38と第2ハーフミラー30との間よりも広がる。尚、図4では、スクリーン36の例を示したが、立体スクリーン28でも、その位置を移動させることで同様なことが可能である。 In the aerial projection device 10 shown in FIGS. 1 to 3, the interference fringes displayed on the SLM 14 of the holographic projector section 10a are arranged such that a predetermined image is clearly projected on the installed stereoscopic screen 28 or screen 36, in other words, It is a computer-generated hologram (CGH) calculated by the CGH calculator 17 of the PC 12 so that the 3D screen 28 or the screen 36 is in focus. Here, without changing the focal position of the CGH, the frame 26 on which the screen 36 of FIG. That is, when the focal position of the CGH is moved backward, the projection image 36a' (two-dimensional image (triangle)) projected on the screen 36 becomes blurred as shown in FIG. ' also has a blurred shape as shown in FIG. 4(c). Moreover, this real image 38' is formed at a position closer to the second half mirror 30 as shown in FIG. 4(a). In this manner, the aerial image can be made into a blurred shape simply by moving the position of the screen 36, and the range of representation of the aerial image can be expanded. For example, by gradually moving the screen 36 away from the second half mirror 30 side, the aerial image can be changed from a blurred shape located far away to a clear shape located close, and an object moving from far to near can be represented. It becomes possible. In FIG. 4, the position of the screen 36 is moved behind the focal position of the CGH, but even if it is moved forward (toward the mirror 24) of the focal position of the CGH, the real image 38' becomes blurred. However, in this case, the space between the real image 38 ′ and the second half mirror 30 is wider than the space between the real image 38 and the second half mirror 30 . Although FIG. 4 shows an example of the screen 36, the stereoscopic screen 28 can be moved in the same way.
 図1~図4に示す再帰性反射シート32では、照射された回折光の一部が鏡面反射されて、図5(a)に示すように第2ハーフミラー30の他面側に実像38に対応する虚像39が視認される。この虚像39は、実像38が明瞭な場合は問題ないが、実像38がやや不明瞭となった場合、虚像39が目障りとなることがある。このような場合、図5(b)に示すように再帰性反射シート32を傾斜することにより、実像38の位置を変えることなく虚像39を視野外に移動させることができ実像38を確実に視認できる。図5(b)の実線で示す再帰性反射シート32は実像38側(観者からは前側)が低くなるように傾斜した場合であって、その場合、虚像39′は下側に移動する。一方、図5(b)の一点鎖線で示す再帰性反射シート32′は実像38側が高くなるように傾斜した場合であって、その場合、虚像39″は上側に移動する。図5では、再帰性反射シート32を前後に傾斜した場合を示したが、再帰性反射シート32を左右方向に傾斜した場合も、虚像39は左右方向に移動して視野外とすることができる。 In the retroreflection sheet 32 shown in FIGS. 1 to 4, part of the irradiated diffracted light is mirror-reflected to form a real image 38 on the other side of the second half mirror 30 as shown in FIG. A corresponding virtual image 39 is visible. This virtual image 39 poses no problem if the real image 38 is clear, but if the real image 38 becomes somewhat unclear, the virtual image 39 may become an eyesore. In such a case, by inclining the retroreflective sheet 32 as shown in FIG. can. The retroreflective sheet 32 indicated by the solid line in FIG. 5(b) is tilted so that the real image 38 side (the front side from the viewer) is lowered, in which case the virtual image 39' moves downward. On the other hand, the retroreflective sheet 32' indicated by the dashed line in FIG. 5B is tilted so that the real image 38 side is higher, in which case the virtual image 39'' moves upward. In FIG. Although the retroreflection sheet 32 is tilted forward and backward, the virtual image 39 can be moved leftward and rightward and out of the field of vision even when the retroreflective sheet 32 is tilted leftward and rightward.
 図1~図5は、実像を空中に結像する空中投影装置について説明してきたが、ホログラフィックプロジェクタ部10aを構成するPC12のCGH計算部17では、複数の所定像についての各ホログラムの干渉情報を同時にSLM14に表示できるから、ホログラフィックプロジェクタ部10aからは、少なくとも二つの所定像の各ホログラムの干渉情報に基づいて回折された回折光を同時に射出できる。このため、図6(a)に示すように、所定像の一方の干渉情報に基づく回折光の一部を、枠体26に載置されているスクリーン36に照射して投影像36aを投影し、スクリーン36を透過し拡散した透過拡散光を第2ハーフミラー30及び再帰性反射素子としての再帰性反射シート32を経由して空中に結像した所定像の一方の実像38を視認できる。同時に、所定像の他方の干渉情報に基づく回折光をスクリーン36に照射することなく第2ハーフミラー30を透過して再帰性反射シート32の再帰性反射光射出面に照射して所定像の他方の投影像40を投影すると共に、この再帰性反射光射出面の投影像40の投影点40a,40bの各々からの再帰性反射光が第2ハーフミラー30での反射光により、第2ハーフミラー30の反射面と反対面側の空中に所定像の他方の虚像42を視認できる。図6に示す点42a,42bは、投影像40の投影点40a,40bの対応点である。このように、図6(a)に示す空中投影装置10によれば、図6(b)に示すように実像38と虚像42とを同時に視認できる。尚、図6に示す空中投影装置10では、所定像の一方のCGHの焦点位置はスクリーン36であり、所定像の他方のCGHの焦点位置は再帰性反射シート32である。 1 to 5 have explained the aerial projection device that forms a real image in the air. can be simultaneously displayed on the SLM 14, the diffracted light diffracted based on the interference information of each hologram of at least two predetermined images can be simultaneously emitted from the holographic projector section 10a. Therefore, as shown in FIG. 6A, part of the diffracted light based on the interference information of one of the predetermined images is irradiated onto the screen 36 placed on the frame 26 to project the projected image 36a. One of the real images 38 of the predetermined image formed in the air by the transmitted diffused light transmitted through the screen 36 and diffused via the second half mirror 30 and the retroreflective sheet 32 as a retroreflective element can be visually recognized. At the same time, without irradiating the screen 36 with the diffracted light based on the interference information of the other of the predetermined image, it passes through the second half mirror 30 and irradiates the retroreflected light exit surface of the retroreflective sheet 32 to irradiate the other of the predetermined image. , and the retroreflected light from each of the projection points 40a and 40b of the projected image 40 of the retroreflected light exit surface is reflected by the second half mirror 30, and is reflected by the second half mirror The other virtual image 42 of the predetermined image can be visually recognized in the air on the side opposite to the reflecting surface of 30 . Points 42 a and 42 b shown in FIG. 6 correspond to the projection points 40 a and 40 b of the projection image 40 . As described above, according to the aerial projection device 10 shown in FIG. 6(a), the real image 38 and the virtual image 42 can be viewed simultaneously as shown in FIG. 6(b). In the aerial projection apparatus 10 shown in FIG. 6, the focal position of one CGH of the predetermined image is the screen 36 and the focal position of the other CGH of the predetermined image is the retroreflective sheet 32 .
 図6に示す空中投影装置10でも、CGHの焦点位置を変更することなく、図4に示すようにスクリーン36のみをCGHの焦点位置の前方又は後方に移動することにより、虚像42を明瞭な状態に保持して、実像38のみをぼけた形状とすることができる。また、図7(a)に示すように再帰性反射シート32をCGHの焦点位置よりも後方の位置32′に移動することにより、再帰性反射シート32に投影される投影像40′はぼけた形状となり、図7(b)に示すようにぼけた形状の虚像42′とすることができる。虚像42′は、位置32′に移動した再帰性反射シート32と第2ハーフミラー30との間隙が広がるので、図7(a)に示すように虚像42よりも第2ハーフミラー30から離れた位置となる。実像38は、スクリーン36の位置が変わらないので、同じ位置に明瞭な状態を維持して結像する。尚、図7(a)に示す点42a′,42b′は、位置32′に移動した再帰性反射シート32の投影点40a′,40b′の対応点である。 In the aerial projection apparatus 10 shown in FIG. 6 as well, the virtual image 42 can be displayed in a clear state by moving only the screen 36 to the front or rear of the CGH focal position as shown in FIG. 4 without changing the CGH focal position. , so that only the real image 38 has a blurred shape. Further, as shown in FIG. 7(a), by moving the retroreflective sheet 32 to a position 32' behind the focal position of the CGH, the projection image 40' projected onto the retroreflective sheet 32 is blurred. A virtual image 42' having a blurred shape can be obtained as shown in FIG. 7(b). Since the gap between the retroreflective sheet 32 moved to the position 32' and the second half mirror 30 widens, the virtual image 42' is separated from the second half mirror 30 as shown in FIG. position. Since the position of the screen 36 does not change, the real image 38 is formed at the same position while maintaining a clear state. Points 42a' and 42b' shown in FIG. 7(a) correspond to the projected points 40a' and 40b' of the retroreflective sheet 32 moved to the position 32'.
 図8に示すように実像用の再帰性反射シート32aと虚像用の再帰性反射シート32bとに分割することにより、再帰性反射シート32bのみを移動し、虚像42のみをぼかし形状とし且つ位置も移動できる。また、実像38のみをぼかし形状としたい場合は、スクリーン36の位置を移動することにより達成できる。図8では、スクリーン36の例を示したが、立体スクリーン28を用いた場合でも、図9に示すように実像用の再帰性反射シート32aと虚像用の再帰性反射シート32bとに分割することにより、同様に再帰性反射シート32bのみを移動し、虚像42のみをぼかし形状とし且つ位置も移動できる。 As shown in FIG. 8, by dividing the retroreflective sheet 32a for the real image and the retroreflective sheet 32b for the virtual image, only the retroreflective sheet 32b is moved, and only the virtual image 42 is blurred and the position is also changed. can move. If only the real image 38 is desired to be blurred, this can be achieved by moving the position of the screen 36 . FIG. 8 shows an example of the screen 36, but even when the stereoscopic screen 28 is used, it can be divided into a retroreflective sheet 32a for real images and a retroreflective sheet 32b for virtual images as shown in FIG. Similarly, only the retroreflective sheet 32b can be moved, only the virtual image 42 can be blurred, and the position can also be moved.
 以上の説明では、CGHの焦点位置を変更することなく立体スクリーン28又はスクリーン36、或いは再帰性反射シート32を移動して、実像34(立体スクリーン28)又は実像38(スクリーン36)及び/又は虚像42をぼかし形状とし且つその位置も移動していたが、CGHの焦点位置を変更することにより、スクリーン36又は立体スクリーン28、或いは再帰性反射シート32を移動することなく実像38及び/又は虚像42の位置を変えずにぼかし形状とすることができる。CGHはPC12のCGH計算部17で算出されるから、迅速にCGHの焦点位置の変更が可能である。 In the above description, the stereoscopic screen 28 or the screen 36, or the retroreflective sheet 32 is moved without changing the focal position of the CGH, and the real image 34 (stereoscopic screen 28) or the real image 38 (screen 36) and/or the virtual image is displayed. 42 is blurred and its position is also moved, but by changing the focus position of the CGH, the real image 38 and/or the virtual image 42 can be obtained without moving the screen 36 or the stereoscopic screen 28 or the retroreflective sheet 32. It can be made into a blurred shape without changing the position of . Since the CGH is calculated by the CGH calculator 17 of the PC 12, it is possible to quickly change the focus position of the CGH.
 図1~図9に示す空中投影装置10の立体スクリーン28又はスクリーン36で用いた和紙28cは、照射した可視光(波長532nmのグリーンレーザ光)の光軸での透過率が55%以上であり、且つ図1に示すように立体スクリーン28の最上点と第2ハーフミラー30の中間点との高さにおいて、可視光の光軸に対して-10°~+10°の全範囲に亘って拡散率が15%以上のものである。このような可視光の透過率の測定は、図10に示す測定装置を用いて行った。図10に示す測定装置は、レーザ光等の可視光を出射する光源50、対物レンズ52、平凸レンズ54、中央に所定径の穴58が開口された板状体56及び光量計(レーザーパワーメータ)の受光面62とから構成される。板状体56は、光源50からの距離Lの箇所に、穴58の中心線が光源50からのレーザ光の光軸51に一致するように立設されている。光量計の受光面62は、板状体56からの距離Mがスクリーンから第2ハーフミラー30の中間点までの高さと等しくなる位置に、穴58と光量計の受光面62とが対向するように設けられている。この距離Mは、スクリーンが図1に示すように立体スクリーン28の場合、立体スクリーン28の最上端と第2ハーフミラー30の中間点との高さ(図1にMと示す高さ)である。更に、光量計の受光面62は、図10に示すように穴58の中心線に対して回動可能に設けられている。受光面62の回動半径は距離Mである。図10に示す測定装置では、光源50から出射された光は対物レンズ52で一旦集光した後に広がり、平凸レンズ54で平行光とされて板状体56の穴58を照射し、穴58の透過光量を光量計の受光面62で受光して測定する。この測定は、先ず、穴58を閉塞するように光量計の受光面62を板状体56に当接して行った(図10においてM=0cmとした)。このときの光の透過量をTとする。次いで、穴58を塞ぐように測定対象60を貼着し、受光面62を穴58に対向する位置(M=0cm)に設置した光量計により測定した、穴58及びスクリーン用材料を透過した受光量をTとする。(T/T)×100を透過率とする。
 更に、光量計の受光面62と穴58に貼着したスクリーン用材用との距離を常に15cmに保持(受光面62の回動半径:15cm)し、光量計の受光面62を光軸51に対して所定角±θ回動して位置62′で受光量を測定する。この受光量は測定対象60を透過し角度±θ方向に拡散した拡散量(T′)である。拡散率は、角度0°の位置で測定した受光量(T)との比率(T′/T)×100である。
The Japanese paper 28c used in the three-dimensional screen 28 or the screen 36 of the aerial projection device 10 shown in FIGS. , and as shown in FIG. 1, at the height between the highest point of the stereoscopic screen 28 and the middle point of the second half mirror 30, the light diffuses over the entire range of -10° to +10° with respect to the optical axis of visible light. A rate of 15% or more. The measurement of such visible light transmittance was performed using the measuring apparatus shown in FIG. The measurement apparatus shown in FIG. 10 includes a light source 50 that emits visible light such as laser light, an objective lens 52, a plano-convex lens 54, a plate-like body 56 having a hole 58 with a predetermined diameter in the center, and a light meter (laser power meter). ) and a light-receiving surface 62 . The plate-like body 56 is erected at a distance L from the light source 50 so that the center line of the hole 58 coincides with the optical axis 51 of the laser beam from the light source 50 . The light-receiving surface 62 of the light meter is arranged so that the hole 58 and the light-receiving surface 62 of the light meter face each other at a position where the distance M from the plate-like body 56 is equal to the height from the screen to the middle point of the second half mirror 30. is provided in If the screen is a stereoscopic screen 28 as shown in FIG. 1, this distance M is the height between the top end of the stereoscopic screen 28 and the midpoint of the second half mirror 30 (the height indicated by M in FIG. 1). . Further, the light receiving surface 62 of the light meter is provided so as to be rotatable about the center line of the hole 58 as shown in FIG. The radius of rotation of the light receiving surface 62 is the distance M. In the measuring apparatus shown in FIG. 10, the light emitted from the light source 50 is once condensed by the objective lens 52, spreads, becomes parallel light by the plano-convex lens 54, and irradiates the hole 58 of the plate-like body 56. The amount of transmitted light is received by the light-receiving surface 62 of the photometer and measured. This measurement was first performed by bringing the light-receiving surface 62 of the photometer into contact with the plate-like body 56 so as to close the hole 58 (M=0 cm in FIG. 10). The amount of light transmitted at this time is assumed to be T0 . Then, the measured object 60 is attached so as to close the hole 58, and the light receiving surface 62 is measured by a light meter installed at a position (M = 0 cm) facing the hole 58. Let the quantity be T. Let (T/T 0 )×100 be the transmittance.
Furthermore, the distance between the light receiving surface 62 of the light meter and the screen material attached to the hole 58 is always kept at 15 cm (rotational radius of the light receiving surface 62: 15 cm), and the light receiving surface 62 of the light meter is aligned with the optical axis 51. The amount of received light is measured at a position 62' after rotating by a predetermined angle ±[theta]. This amount of received light is the amount of diffusion (T') transmitted through the measurement object 60 and diffused in the ±θ directions. The diffusivity is the ratio (T'/T 1 )×100 to the amount of light received (T 1 ) measured at the position of 0°.
 図10に示す測定装置で測定した結果からは、スクリーンとしては、照射した可視光の光軸での透過率が少なくとも47%であるものが、明るい室内等でも空中に結像する実像が明瞭に視認でき特に好ましい。透過率が47%未満のスクリーンは、明るい室内等では空中に結像する実像が著しく視認し難くなる傾向があるが、暗い室内等では実像を視認できる。可視光の透過率が47%以上のスクリーン用材料としては、織物、不織布、和紙、アクリル等の樹脂製の拡散板(日東樹脂工業株式会社製のFANTAREX DREAM D-710M, FANTAREX DREAM D-709M(いずれも商品名)、シーシーエス株式会社製のDF-LFV3-100(商品名))を挙げることができる。この透過率は、55~65%であることが好ましい。透過率が65%を超えるスクリーン、例えば透明フィルムから成る透明スクリーンでも、空中に実像は結像するが、再帰性反射素材の再帰性反射に因る虚像が同時に視認されて実像が見え難くなる傾向がある。但し、前述したように再帰性反射素子を傾斜することにより、実像のみが視野に入るように虚像を左右方向又は前後方向に移動して視野外とすることができる。また、スクリーンに照射されることなく第2ハーフミラー30を透過して再帰性反射シート32を照射する過剰な回折光を遮光すべく、鏡24の周辺部を遮光マスクで覆うことによっても虚像を消去できる場合もある。 From the results of measurement with the measurement apparatus shown in FIG. 10, it was found that a screen having a transmittance of at least 47% on the optical axis of the irradiated visible light clearly formed a real image in the air even in a bright room. Visible and particularly preferred. A screen with a transmittance of less than 47% tends to make it extremely difficult to visually recognize a real image formed in the air in a bright room or the like, but the real image can be visually recognized in a dark room or the like. Materials for screens with a visible light transmittance of 47% or more include woven fabrics, nonwoven fabrics, Japanese paper, acrylic diffusion plates made of resin (FANTAREX DREAM D-710M, FANTAREX DREAM D-709M manufactured by Nitto Jushi Kogyo Co., Ltd. Both are trade names), and DF-LFV3-100 (trade name) manufactured by CCS Co., Ltd.). This transmittance is preferably between 55 and 65%. A screen with a transmittance of more than 65%, such as a transparent screen made of a transparent film, forms a real image in the air, but a virtual image due to retroreflection of the retroreflective material is simultaneously visible, making it difficult to see the real image. There is However, by tilting the retroreflective element as described above, it is possible to move the virtual image in the left-right direction or the front-rear direction so that only the real image enters the field of view and is out of the field of view. Also, in order to block excess diffracted light that passes through the second half mirror 30 and irradiates the retroreflective sheet 32 without being irradiated onto the screen, the peripheral portion of the mirror 24 is covered with a light blocking mask to prevent the virtual image. Sometimes it can be erased.
 図1に示す立体スクリーン28の最上点から第2ハーフミラー30の中間点までの高さMにおいて、照射した可視光の光軸に対して-10°~+10°の全範囲に亘って拡散率が少なくとも15%のものを好適に用いることができる。このような拡散率を有するスクリーンによれば、明るい室内等でも空中に明瞭な実像を結像できる。-10°~+10°の範囲において、一部範囲、特に-10°及び/又は+10°での拡散率が15%未満となるスクリーンは、明るい室内等では空中に結像する実像が見え難くなる傾向にある。この-10°~+10°の範囲における拡散率が78%以上のスクリーンの場合、その透過率が65%以上であっても、空中に結像する実像を好適に視認できる。
 このような測定結果から、図1~図9に示すスクリーンには、和紙又は不織布が好ましく、特に、目付が11~24g/mのものをスクリーンとして好適に用いることができる。具体的には、薄葉紙(機械漉き和紙:目付15g/m)、ひだか有限会社製の典具貼紙(目付18g/m)、薄美濃3匁(目付20.42g/m)を挙げることができる。
At the height M from the highest point of the stereoscopic screen 28 to the middle point of the second half mirror 30 shown in FIG. is preferably at least 15%. A screen having such a diffusion rate can form a clear real image in the air even in a bright room. In the range of -10° to +10°, a screen with a diffusion rate of less than 15% in some ranges, especially -10° and/or +10°, makes it difficult to see the real image formed in the air in a bright room. There is a tendency. In the case of a screen with a diffusion rate of 78% or more in the range of -10° to +10°, even if the transmittance is 65% or more, a real image formed in the air can be visually recognized.
Based on these measurement results, Japanese paper or non - woven fabric is preferable for the screens shown in FIGS. Specifically, thin paper (machine-made Japanese paper: basis weight: 15 g/m 2 ), Hidaka Co., Ltd. Tengu sticker (weight basis: 18 g/m 2 ), Usumi no 3 momme (weight basis: 20.42 g/m 2 ). be able to.
 以上、述べてきた空中投影装置では、空中に実像が結像されるものであったが、図11に示すように空中に虚像のみが視認できるものであってもよい。図11に示す空中投影装置は、複数の所定像の各々が異なる所定位置に投影されるように作成されたホログラムに平行光が照射され、このホログラムの干渉情報に基づいて回折された回折光が射出されるホログラフィックプロジェクタ部10aと、照射される回折光に対して傾斜して設置され、回折光が照射されて透過する第2ハーフミラー30と、第2ハーフミラー30の一面側から所定距離離れた位置であって、第2ハーフミラー30を透過した回折光が照射されて所定像の各々に対応する投影像が投影される所定位置に配置された、互いに重なる部分なく配置された複数枚の再帰性反射素子としての再帰性反射シート32a,32bとから成る投影部10bとで構成され、再帰性反射シート32a,32bは、その再帰性反射光射出面から射出された投影像の再帰性反射光が第2ハーフミラー30で反射し、第2ハーフミラー30の他面側の空中に虚像として視認できるように、再帰性反射光射出面がハーフミラー30の一面側に向いて設置され、再帰性反射シート32a,32bのうち少なくとも一枚の再帰性反射シートは、対応する所定像の投影位置に移動可能に設けられ、或いは再帰性反射シート32a,32bの全部又は移動可能に設けられた再帰性反射シートを除く残余の再帰性反射シートの各々は、対応する所定像の投影位置に配置されているものである。 In the aerial projection device described above, a real image is formed in the air, but as shown in FIG. 11, only a virtual image may be visually recognized in the air. The aerial projection device shown in FIG. 11 irradiates parallel light onto a hologram which is created so that each of a plurality of predetermined images is projected at different predetermined positions, and diffracted light diffracted based on the interference information of this hologram is converted into A holographic projector unit 10a to be emitted, a second half mirror 30 installed at an angle with respect to the irradiated diffracted light and through which the diffracted light is irradiated and transmitted, and a predetermined distance from one side of the second half mirror 30 A plurality of sheets arranged without overlapping each other, which are separated from each other and are arranged at predetermined positions where the diffracted light transmitted through the second half mirror 30 is irradiated and projection images corresponding to each of the predetermined images are projected. retroreflective sheets 32a and 32b as retroreflective elements, and the retroreflective sheets 32a and 32b are configured to project the retroreflectivity of the projected image emitted from the retroreflective light exit surface. The retroreflected light exit surface is set facing one side of the half mirror 30 so that the reflected light is reflected by the second half mirror 30 and can be visually recognized as a virtual image in the air on the other side of the second half mirror 30, At least one retroreflective sheet among the retroreflective sheets 32a and 32b is movably provided at the projection position of the corresponding predetermined image, or all of the retroreflective sheets 32a and 32b or movably provided. Each of the remaining retroreflective sheets other than the retroreflective sheet is arranged at the projection position of the corresponding predetermined image.
 図11に示すホログラフィックプロジェクタ部10aは、タブレット型端末装置11が接続されたパーソナルコンピュータ(PC)12、反射型の空間光変調器(SLM)14、第1ハーフミラー22及び平行光射出部15から構成される。平行光射出部15は、レーザ光射出部16、対物レンズ18及び平凸レンズ20から成る。ホログラフィックプロジェクタ部10aは、タブレット型端末装置11から入力された文字や図形等の所定像の計算機合成ホログラム(CGH)がPC12のCGH計算部17で計算されてSLM14に表示される。SLM14に表示される干渉縞は、所定像が所定位置に結像されるように作成された干渉情報である。このような干渉縞が表示されているSLM14の表示面に平行光が照射される。この平行光は、平行光射出部15のレーザ光射出部16から射出されたレーザ光が対物レンズ18で一旦集光した後に広がり、平凸レンズ20で平行光となり、第1ハーフミラー22によりSLM14の表示面の方向に反射された光である。SLM14の表示面に照射された平行光は、表示面に表示されているホログラムの干渉情報に基づいて回折された回折光となって、SLM14の表示面から射出し、第1ハーフミラー22を透過して投影部10bに射出される。 The holographic projector section 10a shown in FIG. 11 includes a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14, a first half mirror 22, and a parallel light emitting section 15. consists of The parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 . In the holographic projector unit 10 a , a computer-generated hologram (CGH) of a predetermined image such as characters and figures input from the tablet terminal device 11 is calculated by the CGH calculation unit 17 of the PC 12 and displayed on the SLM 14 . The interference fringes displayed on the SLM 14 are interference information created so that a given image is formed at a given position. Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15. After being condensed once by the objective lens 18, the parallel light spreads, becomes parallel light by the plano-convex lens 20, and reaches the SLM 14 by the first half mirror 22. It is the light reflected in the direction of the display surface. The parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the interference information of the hologram displayed on the display surface, emerges from the display surface of the SLM 14, and passes through the first half mirror 22. Then, the light is emitted to the projection unit 10b.
 投影部10bは、傾斜角45°に傾斜して配置されている鏡24及び傾斜角45°に設置されている第2ハーフミラー30と、第2ハーフミラー30の一面側(傾斜面側)に配置された再帰性反射素子としての再帰性反射シート32a,32bとから構成される。再帰性反射シート32aは第2ハーフミラー30の傾斜面の下端側に配置され、再帰性反射シート32bは第2ハーフミラー30の傾斜面の上端側に配置されている。互いに重なる部分なく配置されている再帰性反射シート32a,32bは、いずれの再帰性反射光射出面も第2ハーフミラー30の一面側を向いており、PC12のCGH計算部17でCGHが計算された所定像の投影面でもある。このような投影部10bにホログラフィックプロジェクタ部10aから入射した回折光は、鏡24で反射し第2ハーフミラー30を透過して再帰性反射シート32a,32bの再帰性反射光射出面を照射する。回折光が照射された再帰性反射シート32aの再帰性反射光射出面には、投影像aが投影される。投影像aが投影された再帰性反射シート32aの再帰性反射光射出面からは、投影像aの入射光と逆方向に再帰性反射光が射出する。この再帰性反射光は、第2ハーフミラー30の一面側で反射されて人の目に入り、第2ハーフミラー30の他面側の空中に投影像aに対応する虚像aが視認できる。第2ハーフミラー30の他面側から虚像aまでの奥行き(図11にFa′で示す)は、第2ハーフミラー30の一面側から再帰性反射シート32aまでの高さ(図11にFaで示す)に等しい。また、回折光が照射された再帰性反射シート32bの再帰性反射光射出面には、投影像bが投影される。投影像bが投影された再帰性反射シート32bの再帰性反射光射出面からは、投影像bの入射光と逆方向に再帰性反射光が射出する。この再帰性反射光は、第2ハーフミラー30の一面側で反射されて人の目に入り、第2ハーフミラー30の他面側に投影像bに対応する虚像bが虚像aよりも奥側に視認できる。第2ハーフミラー30の他面側から虚像bまでの奥行き(図11にFb′で示す)も、第2ハーフミラー30の一面側から再帰性反射シート32bまでの高さ(図11にFbで示す)に等しい。このように、第2ハーフミラー30の一面側から見たとき、複数の所定像に対応する虚像の全てが同時に見えるように、所定像の各々に対応する投影位置に再帰性反射素子としての再帰性反射シート32a,32bの各々が配置されていることにより、同時に複数の所定像についての明瞭な虚像a,虚像bを見ることができる。 The projection unit 10b includes a mirror 24 arranged at an inclination angle of 45°, a second half mirror 30 arranged at an inclination angle of 45°, and one surface side (inclined surface side) of the second half mirror 30. It is composed of retroreflection sheets 32a and 32b as disposed retroreflection elements. The retroreflective sheet 32 a is arranged on the lower end side of the inclined surface of the second half mirror 30 , and the retroreflective sheet 32 b is arranged on the upper end side of the inclined surface of the second half mirror 30 . The retroreflection sheets 32a and 32b, which are arranged without overlapping each other, have their retroreflected light exit surfaces facing one side of the second half mirror 30, and the CGH is calculated by the CGH calculator 17 of the PC 12. It is also the projection plane of the predetermined image. The diffracted light incident on the projection unit 10b from the holographic projector unit 10a is reflected by the mirror 24, passes through the second half mirror 30, and irradiates the retroreflected light exit surfaces of the retroreflective sheets 32a and 32b. . A projected image a is projected onto the retroreflective light exit surface of the retroreflective sheet 32a irradiated with the diffracted light. From the retroreflected light exit surface of the retroreflective sheet 32a on which the projected image a is projected, the retroreflected light is emitted in the direction opposite to the incident light of the projected image a. This retroreflected light is reflected by one side of the second half mirror 30 and enters the human eye, and a virtual image a corresponding to the projected image a can be seen in the air on the other side of the second half mirror 30 . The depth from the other side of the second half mirror 30 to the virtual image a (indicated by Fa' in FIG. 11) is the height from the one side of the second half mirror 30 to the retroreflective sheet 32a (indicated by Fa in FIG. 11). shown). A projection image b is projected onto the retroreflection light exit surface of the retroreflection sheet 32b irradiated with the diffracted light. From the retroreflected light exit surface of the retroreflective sheet 32b on which the projected image b is projected, the retroreflected light is emitted in the direction opposite to the incident light of the projected image b. This retroreflected light is reflected by one surface side of the second half mirror 30 and enters the human eye, and a virtual image b corresponding to the projected image b is formed on the other surface side of the second half mirror 30 behind the virtual image a. can be visually recognized. The depth from the other side of the second half mirror 30 to the virtual image b (indicated by Fb' in FIG. 11) is also the height from the one side of the second half mirror 30 to the retroreflective sheet 32b (indicated by Fb in FIG. 11). shown). In this way, when viewed from one side of the second half mirror 30, the retroreflecting elements as retroreflective elements are placed at the projection positions corresponding to each of the predetermined images so that all the virtual images corresponding to the plurality of predetermined images can be seen at the same time. By arranging each of the reflective sheets 32a and 32b, clear virtual images a and b of a plurality of predetermined images can be seen at the same time.
 また、第2ハーフミラー30の一面側から再帰性反射シート32aの投影面までの高さFaは、第2ハーフミラー30の一面側から再帰性反射シート32bまでの高さFbよりも長いが、虚像bが虚像aよりも奥側に視認できるのは、再帰性反射シート32aが第2ハーフミラー30の傾斜面の下端側に配置されていることによるものである。このように、虚像a,虚像bの各々が、第2ハーフミラー30の他面側から異なる位置に見えるように、虚像a,虚像bの各々に対応する第2ハーフミラー30の一面側から再帰性反射素子としての再帰性反射シート32a,32bまでの高さFa,Fbが調整されていることにより、同時に複数の所定像についての明瞭な虚像が異なる位置に見ることができる。 Further, the height Fa from one side of the second half mirror 30 to the projection plane of the retroreflective sheet 32a is longer than the height Fb from one side of the second half mirror 30 to the retroreflective sheet 32b. The reason why the virtual image b can be visually recognized behind the virtual image a is that the retroreflective sheet 32 a is arranged on the lower end side of the inclined surface of the second half mirror 30 . In this way, each of the virtual images a and b is retroreflected from one surface side of the second half mirror 30 corresponding to each of the virtual images a and b so that each of the virtual images a and b can be seen at different positions from the other surface side of the second half mirror 30 . By adjusting the heights Fa and Fb to the retroreflective sheets 32a and 32b as the retroreflective elements, clear virtual images of a plurality of predetermined images can be seen at different positions at the same time.
 図12には、ホログラフィックプロジェクタ部10a(図11参照)から、再帰性反射シート32aの再帰性反射光射出面である投影面(以下、単に投影面という。)に投影像aとして文字「A」を投影すると共に、再帰性反射シート32bの再帰性反射光射出面である投影面(以下、単に投影面という。)に投影像bとして文字「B」を投影した状態を示す。再帰性反射シート32aに投影された文字「A」は第2ハーフミラー30の他面側に虚像aとしての文字「A」が見え、再帰性反射シート32bの投影面に投影された文字「B」は第2ハーフミラー30の他面側に虚像bとしての文字「B」が虚像aの文字「A」よりも奥側に視認できる。このように、1台のホログラフィックプロジェクタ部10aにより、第2ハーフミラー30の一面側から第2ハーフミラー30の他面側に、距離感の異なる文字「A」と文字「B」との鮮明な虚像を同時に見ることができる。 In FIG. 12, a character "A" is projected from the holographic projector unit 10a (see FIG. 11) onto a projection surface (hereinafter simply referred to as a projection surface), which is the retroreflected light exit surface of the retroreflective sheet 32a. ” is projected, and the character “B” is projected as a projection image b onto a projection surface (hereinafter simply referred to as a projection surface), which is the retroreflected light exit surface of the retroreflective sheet 32b. The letter "A" projected onto the retroreflective sheet 32a appears as a virtual image a on the other side of the second half mirror 30, and the letter "B" is projected onto the projection surface of the retroreflective sheet 32b. , the character "B" as the virtual image b on the other side of the second half mirror 30 can be visually recognized on the back side of the character "A" as the virtual image a. In this way, the single holographic projector unit 10a can project the letters "A" and "B" from one side of the second half mirror 30 to the other side of the second half mirror 30 with different senses of distance. virtual images can be seen at the same time.
 ここで、図11の再帰性反射シート32a,32bに代えて鏡を配置したところ、虚像a、bは見えなかった。鏡と再帰性反射シートとの反射の違いによるものと推察される。また、再帰性反射シート32a,32bに代えて白紙又は黒紙を配置したところ、虚像a、bは視認できるものの著しく不鮮明であった。白紙又は黒紙の再帰反射する方向への反射率が再帰性反射シートよりも低いことによるものと推察される。 Here, when a mirror was placed instead of the retroreflection sheets 32a and 32b in FIG. 11, the virtual images a and b could not be seen. It is presumed that this is due to the difference in reflection between the mirror and the retroreflective sheet. Also, when white paper or black paper was placed instead of the retroreflective sheets 32a and 32b, the virtual images a and b were visible, but extremely unclear. It is presumed that the white paper or black paper has a lower reflectance in the direction of retroreflection than the retroreflective sheet.
 図11に示す虚像aと虚像bとの間に図13に示すように遮光板31を挿入しても、遮光板31を透過して虚像bを視認できる。また、図14に示すように再帰性反射シート32bを、矢印fの方向(第2ハーフミラー30の方向)に移動して位置32b′の位置にすることにより、虚像bの視認できる位置を矢印f′(第2ハーフミラー30の方向)に移動し、虚像aよりも手前の位置b′とすることができる。但し、再帰性反射シート32bを移動する際に、図14に示す位置32b′に投影像bが投影される計算機合成ホログラム(CGH)がPC12のCGH計算部17で計算されてSLM14に表示されていることが必要である。 Even if a light shielding plate 31 is inserted as shown in FIG. 13 between the virtual image a and the virtual image b shown in FIG. 11, the virtual image b can be visually recognized through the light shielding plate 31. Further, as shown in FIG. 14, by moving the retroreflective sheet 32b in the direction of the arrow f (the direction of the second half mirror 30) to the position 32b', the position where the virtual image b can be visually recognized is indicated by the arrow. It can be moved to f' (in the direction of the second half mirror 30) to a position b' in front of the virtual image a. However, when the retroreflective sheet 32b is moved, a computer-generated hologram (CGH) in which the projection image b is projected at the position 32b' shown in FIG. It is necessary to be
 図11~図14に示すように虚像a,bが視認できる位置は、再帰性反射シート32a,32bと第2ハーフミラー30との距離(光路長)に対応し、再帰性反射シートと第2ハーフミラー30との距離(光路長)が長いほど、虚像は第2ハーフミラー30よりも奥側に視認できる。再帰性反射シートと第2ハーフミラー30との距離(光路長)を長くとりたい場合であって、部屋の広さ等の物理的制約があるとき、図15に示すように再帰性反射シート32aと第2ハーフミラー30との間に鏡35を設置して再帰性反射シート32aと第2ハーフミラー30との光路を曲折して光路長を長くしてもよい。 As shown in FIGS. 11 to 14, the positions at which the virtual images a and b can be visually recognized correspond to the distance (optical path length) between the retroreflective sheets 32a and 32b and the second half mirror 30. The longer the distance (optical path length) to the half mirror 30 is, the more the virtual image can be visually recognized on the back side of the second half mirror 30 . When it is desired to increase the distance (optical path length) between the retroreflective sheet and the second half mirror 30, and there are physical restrictions such as the size of the room, the retroreflective sheet 32a shown in FIG. and the second half mirror 30 to bend the optical path between the retroreflective sheet 32a and the second half mirror 30 to increase the optical path length.
 図11~図15に示す投影部10bでは、二枚の再帰性反射シートを配置していたが、図16に示す投影部10bのように可動可能の一枚の再帰性反射シート32aのみであってもよい。ホログラフィックプロジェクタ部10aからは第2ハーフミラー30の一面側(傾斜面)の所定位置に投影像a,bを投影するように回折光が照射されているので、図16に示す再帰性反射シート32aの位置では、投影像aが投影されて虚像aが第2ハーフミラー30の他面側に視認できる。投影像aの投影位置にある再帰性反射シート32aを、投影像bが投影される投影位置32a′に移動すると、虚像aは消滅するが、再帰性反射シート32aに投影像bが投影されて虚像bが第2ハーフミラー30の他面側に視認できる。虚像bは虚像aよりも奥側に視認できる。このように移動可能に設けた再帰性反射シート32aを投影像bが投影される位置に移動することにより、虚像aと遠近感が異なる虚像bに視認できる。 In the projection unit 10b shown in FIGS. 11 to 15, two retroreflective sheets are arranged, but in the projection unit 10b shown in FIG. 16, there is only one movable retroreflective sheet 32a. may Since the holographic projector section 10a irradiates the diffracted light so as to project the projected images a and b onto a predetermined position on one surface side (inclined surface) of the second half mirror 30, the retroreflective sheet shown in FIG. At the position 32 a , the projection image a is projected and the virtual image a can be visually recognized on the other side of the second half mirror 30 . When the retroreflection sheet 32a at the projection position of the projection image a is moved to the projection position 32a' where the projection image b is projected, the virtual image a disappears, but the projection image b is not projected onto the retroreflection sheet 32a. A virtual image b can be visually recognized on the other side of the second half mirror 30 . The virtual image b can be visually recognized on the back side of the virtual image a. By moving the retroreflective sheet 32a movably provided in this way to the position where the projected image b is projected, the virtual image b can be visually recognized with a perspective different from that of the virtual image a.
 図11~図16の投影部10bでは、図12に示すように再帰性反射シート32a,32bを第2ハーフミラー30の下端側と上端側とに直列状に配置していたが、虚像a,bの位置は第2ハーフミラー30の傾斜にも影響される。このような第2ハーフミラー30の傾斜による影響を避けるには、図17(a)に示すように長方形の第2ハーフミラー30の左右方向に再帰性反射シート32a,32bを並列状に配置することが好ましい。このような再帰性反射シート32a,32bの配置とすることにより、図17(b)に示すように再帰性反射シート32a,32bの各々の第2ハーフミラー30からの距離(光路長)に応じた位置に虚像a,bが視認できることを予測可能である。 11 to 16, the retroreflective sheets 32a and 32b are arranged in series at the lower end side and the upper end side of the second half mirror 30 as shown in FIG. The position of b is also affected by the tilt of the second half mirror 30 . In order to avoid such an influence due to the inclination of the second half mirror 30, as shown in FIG. is preferred. By arranging the retroreflection sheets 32a and 32b in this way, as shown in FIG. It is possible to predict that the virtual images a and b can be visually recognized at the positions corresponding to the positions.
 以上、説明してきた空中投影装置10では、ホログラフィックプロジェクタ部10aからは、CGHの投影位置(焦点位置)に所定像が投影されるように回折光が射出されている。このCGHの焦点位置を正確に知ることが、明瞭な実像又は虚像、或いは所望のぼけた形状の実像又は虚像を得るために必要である。CGHの焦点位置は、投影対象体を所定の空間位置にガイドするガイド装置によって正確に知ることができる。このガイド装置は、狭間隙の模様を有する所定形状の映像が所定の空間位置に結像するように調整された干渉模様が形成されているホログラムと、この投影対象体が所定の空間位置にガイドされたとき、ホログラムに照射された平行光を記干渉模様に基づいて回折した回折光が照射されて投影対象体に結像された模様と映像の模様とが一致するように、ホログラムに向けて平行光を射出する平行光射出手段とが設けられているものである。このガイド装置を用いたガイド方法は、狭間隙の模様を有する所定形状の映像が所定の空間位置に投影されるように結像位置が調整されたホログラフィックプロジェクタを用い、この空間位置近傍に配置した投影対象体に、ホログラフィックプロジェクタから映像を投影したとき、投影対象体に映った結像の模様と映像の模様とが一致する空間位置に、投影対象体をガイドするものである。 In the aerial projection device 10 described above, diffracted light is emitted from the holographic projector section 10a so that a predetermined image is projected at the projection position (focus position) of the CGH. Accurately knowing the focal position of this CGH is necessary to obtain a clear real or virtual image or a desired blurred real or virtual image. The focal position of CGH can be accurately known by a guide device that guides the projection object to a predetermined spatial position. This guide device includes a hologram formed with an interference pattern adjusted so that an image of a predetermined shape having a pattern with narrow gaps is imaged at a predetermined spatial position, and a projection target object guided to a predetermined spatial position. When the hologram is projected, the parallel light irradiated to the hologram is diffracted based on the interference pattern. A parallel light emitting means for emitting parallel light is provided. The guide method using this guide device uses a holographic projector whose imaging position is adjusted so that an image of a predetermined shape having a pattern with narrow gaps is projected at a predetermined spatial position, and is placed near this spatial position. When an image is projected from the holographic projector onto the projection target, the projection target is guided to a spatial position where the pattern of the image formed on the projection target matches the pattern of the image.
 このガイド装置及びガイド方法について、図18を用いて詳細に説明する。図18に示すガイド装置70は、ホログラフィックプロジェクタ部10aと載置台75上に矢印F方向にスライド可能に載置された投影対象体としての立体スクリーン28とから構成される。ホログラフィックプロジェクタ部10aは、タブレット型端末装置11が接続されたパーソナルコンピュータ(PC)12、反射型の空間光変調器(SLM)14、ハーフミラー22及び平行光射出部15から構成される。平行光射出部15は、レーザ光射出部16、対物レンズ18及び平凸レンズ20から成る。ホログラフィックプロジェクタ部10aは、タブレット型端末装置11から入力された所定像として狭間隙の模様を有する立方体の計算機合成ホログラム(CGH)がPC12のCGH計算部17で計算されてSLM14に表示される。SLM14に表示されるホログラムの干渉縞は、所定像としての立方体が所定の空間位置に投影されるように投影位置(焦点位置)が計算された干渉情報である。このような干渉縞が表示されているSLM14の表示面に平行光が照射される。この平行光は、平行光射出部15のレーザ光射出部16から射出されたレーザ光が対物レンズ18で一旦集光した後に広がり、平凸レンズ20で平行光となり、ハーフミラー22によりSLM14の表示面の方向に反射された光である。SLM14の表示面に照射された平行光は、表示面に表示されているホログラムの干渉情報に基づいて回折された回折光となって、SLM14の表示面から射出し、ハーフミラー22を透過して立体スクリーン28に射出される。 This guide device and guide method will be described in detail with reference to FIG. A guide device 70 shown in FIG. 18 is composed of a holographic projector section 10a and a stereoscopic screen 28 as a projection target mounted on a mounting table 75 so as to be slidable in the arrow F direction. The holographic projector section 10 a is composed of a personal computer (PC) 12 to which a tablet terminal device 11 is connected, a reflective spatial light modulator (SLM) 14 , a half mirror 22 and a parallel light emitting section 15 . The parallel light emitting section 15 is composed of a laser light emitting section 16 , an objective lens 18 and a plano-convex lens 20 . In the holographic projector unit 10 a , a cubic computer-generated hologram (CGH) having a pattern of narrow gaps is calculated by the CGH calculation unit 17 of the PC 12 as a predetermined image input from the tablet terminal device 11 and displayed on the SLM 14 . The interference fringes of the hologram displayed on the SLM 14 are interference information whose projection position (focal position) is calculated such that a cube as a predetermined image is projected at a predetermined spatial position. Parallel light is applied to the display surface of the SLM 14 on which such interference fringes are displayed. This parallel light is emitted from the laser light emitting portion 16 of the parallel light emitting portion 15. After being condensed once by the objective lens 18, the parallel light spreads, becomes parallel light by the plano-convex lens 20, and is converted into parallel light by the half mirror 22 on the display surface of the SLM 14. is the light reflected in the direction of The parallel light irradiated to the display surface of the SLM 14 becomes diffracted light based on the interference information of the hologram displayed on the display surface, emerges from the display surface of the SLM 14, passes through the half mirror 22, and passes through the half mirror 22. It is projected onto the stereoscopic screen 28 .
 立体スクリーン28は、図18(a)に示すように立方体形状であって、枠に白色シートが貼付されて形成されている。この立体スクリーン28は、載置台75上に矢印F方向にスライド可能に載置されている支承台74に支持棒73を介して支持されており、矢印F′で示すように水平方向及び矢印F″で示すように垂直方向にも回動可能に設けられている。図18(a)に示す支承台74上の立体スクリーン28は、その側面の二面がホログラフィックプロジェクタ部10aから射出される回折光が照射されて立方体の対応する二面の映像が投影される投影面となるように調整されている。このように載置台75上にスライド可能に載置された立体スクリーン28の投影面に、その左側に位置するホログラフィックプロジェクタ部10aから、狭間隙の模様を有する立方体の映像が投影される。この映像は、タブレット型端末装置11から入力されたものであり、入力された映像の模様と立体スクリーン28に投影された模様とが一致したとき、立体スクリーン28はホログラフィックプロジェクタ部10aの投影位置(焦点位置)に位置していることが判る。 The three-dimensional screen 28 has a cubic shape, as shown in FIG. 18(a), and is formed by attaching a white sheet to a frame. The three-dimensional screen 28 is supported by support rods 73 on a support base 74 which is slidably placed on a mounting base 75 in the direction of arrow F. 18(a), two side surfaces of the three-dimensional screen 28 on the support base 74 shown in FIG. 18(a) are projected from the holographic projector section 10a. The 3D screen 28 is slidably mounted on the mounting table 75, and is adjusted to be a projection surface on which images of the corresponding two surfaces of the cube are projected. A cubic image with a pattern of narrow gaps is projected from the holographic projector unit 10a located on the left side of the holographic projector unit 10. This image is input from the tablet-type terminal device 11. When the pattern matches the pattern projected on the stereoscopic screen 28, it is found that the stereoscopic screen 28 is positioned at the projection position (focus position) of the holographic projector section 10a.
 この狭間隙の模様としては、所定間隔を介して複数の細線及び点から成る模様、例えばホログラフィックプロジェクタ部10aの投影位置(焦点位置)に位置している立体スクリーン28の投影面(図18(a)(b)に示す立体スクリーン28の角をA,B,B′,A′,C′,C,とすると、辺A-B、辺B-B′、辺B′-A′、辺A′-C′辺C′-C、辺C-Aで囲まれる面)の全面に亘って、図18(b)に示すような複数本の細い直線状の点線が狭間隙を介して形成されている点線模様76が投影されるものが好ましい。図18(a)に示すように立体スクリーン28を、その辺A-A′が最もホログラフィックプロジェクタ部10a側となるように載置台75上に載置したとき、ホログラフィックプロジェクタ部10aからの回折光が照射されて立体スクリーン28の白色シートの投影面に映った点線模様76が、回折光の投射方向から立体スクリーン28の投影面を見て、図18(b)に示すように、立体スクリーン28の投影面の全面に亘って点線模様76を構成する細い直線状の点線が明確に判別できる場合、立体スクリーン28はホログラフィックプロジェクタ部10aの投影位置(焦点位置)に位置していることが判る。一方、立体スクリーン28がホログラフィックプロジェクタ部10aの投影位置(焦点位置)よりも遠くに位置している場合、回折光の投射方向から立体スクリーン28の投影面を見たとき、図18(c)に示すように、図18(b)の点線模様76と異なる傾斜線模様77が視認できる。また、立体スクリーン28がホログラフィックプロジェクタ部10aの投影位置(焦点位置)よりもホログラフィックプロジェクタ部10a側に位置している場合も、回折光の投射方向から立体スクリーン28の投影面を見たとき、図18(c)に示すように、図18(b)の点線模様76と異なる傾斜線模様77が視認できる。このように立体スクリーン28の投影面に投影された点線模様76の模様により、立体スクリーン28が投影位置(焦点位置)に位置しているか否かを簡単に判別でき、立体スクリーン28をスライドして投影位置(焦点位置)にガイドできる。 The narrow gap pattern may be a pattern consisting of a plurality of thin lines and dots at predetermined intervals, for example, the projection plane of the stereoscopic screen 28 positioned at the projection position (focal position) of the holographic projector section 10a (Fig. 18 ( a) If the angles of the three-dimensional screen 28 shown in (b) are A, B, B', A', C', and C, then sides AB, sides BB', sides B'-A', sides A'-C' side C'-C, the plane surrounded by side CA)), a plurality of thin straight dotted lines as shown in FIG. 18(b) are formed through narrow gaps. It is preferable that the dotted line pattern 76 is projected. As shown in FIG. 18(a), when the three-dimensional screen 28 is placed on the mounting table 75 so that the side AA' is closest to the holographic projector section 10a, the diffraction from the holographic projector section 10a is A dotted line pattern 76 projected on the projection surface of the white sheet of the stereoscopic screen 28 by irradiation of light appears as shown in FIG. If the thin straight dotted lines forming the dotted line pattern 76 can be clearly discerned over the entire projection surface of the stereoscopic screen 28, it means that the stereoscopic screen 28 is located at the projection position (focus position) of the holographic projector section 10a. I understand. On the other hand, when the stereoscopic screen 28 is located farther than the projection position (focus position) of the holographic projector unit 10a, the projection plane of the stereoscopic screen 28 is viewed from the direction of projection of the diffracted light, as shown in FIG. 18(c). 18B, a slanted line pattern 77 different from the dotted line pattern 76 in FIG. 18B can be visually recognized. Further, even when the stereoscopic screen 28 is positioned closer to the holographic projector unit 10a than the projection position (focus position) of the holographic projector unit 10a, when the projection plane of the stereoscopic screen 28 is viewed from the direction of projection of the diffracted light, As shown in FIG. 18(c), a slanted line pattern 77 different from the dotted line pattern 76 in FIG. 18(b) can be visually recognized. From the pattern of the dotted line pattern 76 projected onto the projection surface of the stereoscopic screen 28 in this way, it can be easily determined whether or not the stereoscopic screen 28 is positioned at the projection position (focus position). Can be guided to the projection position (focus position).
 また、図3に示すように平面状のスクリーン36や図11に示すように再帰性反射シート32a,32bに所定像を投影する場合、図19(a)に示すように狭間隙の模様、例えば複数本の細い点線が狭間隙で形成されている点線模様78とすることが好ましい。図19(a)に示すように、スクリーン36又は再帰性反射シート32の投影面の全面に亘って点線模様78を構成する細い直線状の点線が明確に判別できる場合、スクリーン36又は再帰性反射シート32はホログラフィックプロジェクタ部10aの投影位置(焦点位置)に位置していることが判る。一方、図19(b)に示すように、図19(a)の点線模様78と異なる傾斜線模様79が見えたとき、スクリーン36又は再帰性反射シート32はホログラフィックプロジェクタ部10aの投影位置(焦点位置)から離れた位置に設置されていることが判る。このため、スクリーン36又は再帰性反射シート32を図19(a)に示す点線模様78となる位置まで移動することにより、ホログラフィックプロジェクタ部10aの投影位置(焦点位置)に正確に設置できる。 When a predetermined image is projected onto the flat screen 36 as shown in FIG. 3 or the retroreflective sheets 32a and 32b as shown in FIG. A dotted line pattern 78 in which a plurality of thin dotted lines are formed at narrow intervals is preferable. As shown in FIG. 19(a), when the thin straight dotted lines forming the dotted line pattern 78 can be clearly discerned over the entire projection surface of the screen 36 or the retroreflective sheet 32, the screen 36 or the retroreflective sheet 32 can be clearly identified. It can be seen that the sheet 32 is positioned at the projection position (focus position) of the holographic projector section 10a. On the other hand, as shown in FIG. 19B, when an inclined line pattern 79 different from the dotted line pattern 78 in FIG. It can be seen that it is installed at a position distant from the focal position). Therefore, by moving the screen 36 or the retroreflective sheet 32 to the position where the dotted line pattern 78 shown in FIG.
 図18に示すガイド装置70を、個人認証装置、例えば図20に示すように、人の目の虹彩による個人認証装置に用いることができる。図20に示す装置は、虹彩による個人認証装置の被験者の位置決定に用いるものである。図20に示す位置決定装置は、被験者の額にホログラフィックプロジェクタ部10aから狭間隙の模様を有する映像が投影される。被験者の額に投影された映像は、カメラ80で撮影されて表示装置82に表示され、被験者が見ることができる。被験者の額に投影された映像が、タブレット型端末装置11から入力された映像の模様と一致したとき、被験者の目は虹彩撮影用カメラ(図示せず)の深度範囲内に入っている。この狭間隙の模様を有する映像は、図19(a)に示すように狭間隙の模様、例えば複数本の細い点線が狭間隙で形成されている点線模様78であってもよい。被験者の額に投影されてカメラ80で撮影され表示装置82に表示された模様が、図19(a)に示す点線模様78であるとき、被験者の目が個人認証装置の虹彩撮影用カメラ(図示せず)の深度範囲内に入っており、被験者の虹彩を虹彩撮影用カメラで撮影できる。一方、表示装置82に表示された模様が、図19(b)に示すように傾斜線模様79であるとき、被験者の虹彩が顔虹彩撮影用カメラの深度範囲内に位置せず、被験者は、表示装置82に表示される模様が図19(a)に示す点線模様78となる位置に顔を移動する。尚、図20に示すように被験者の額にホログラフィックプロジェクタ部10aから点線模様78を投影したとき、SLM14からの回折光が被験者の目に入るおそれがある場合、SLM14に発光ダイオード(LED)の光を照射してもよく、人が認識できないがカメラ80で認識できる赤外線光を照射してもよい。 The guide device 70 shown in FIG. 18 can be used for a personal identification device, for example, a personal identification device using the iris of the human eye as shown in FIG. The device shown in FIG. 20 is used for determining the position of a subject for an iris-based personal identification device. In the position determining apparatus shown in FIG. 20, an image having a pattern of narrow gaps is projected onto the subject's forehead from the holographic projector unit 10a. The image projected on the subject's forehead is captured by the camera 80 and displayed on the display device 82 so that the subject can see it. When the image projected on the subject's forehead matches the pattern of the image input from the tablet terminal device 11, the subject's eyes are within the depth range of the iris imaging camera (not shown). The image having the narrow gap pattern may be a narrow gap pattern, for example, a dotted line pattern 78 in which a plurality of thin dotted lines are formed with narrow gaps, as shown in FIG. 19(a). When the pattern projected on the subject's forehead, photographed by the camera 80 and displayed on the display device 82 is the dotted line pattern 78 shown in FIG. not shown), and the subject's iris can be imaged by the iris imaging camera. On the other hand, when the pattern displayed on the display device 82 is the slanted line pattern 79 as shown in FIG. The face is moved to a position where the pattern displayed on the display device 82 becomes the dotted line pattern 78 shown in FIG. 19(a). 20, when the dotted line pattern 78 is projected from the holographic projector unit 10a onto the subject's forehead, if there is a risk that the diffracted light from the SLM 14 may enter the subject's eyes, the SLM 14 is equipped with a light emitting diode (LED). Light may be applied, or infrared light that is invisible to humans but recognizable by the camera 80 may be applied.
 また、図18に示すガイド装置70を、図21に示すように手の静脈による個人認証装置に用いることができる。図21に示す装置は、静脈による個人認証装置の被験者の手の位置決定に用いるものである。図21に示す位置決定装置は、被験者の手が静脈撮影用カメラ84上に差し出されたとき、腕にホログラフィックプロジェクタ部10aから狭間隙の模様を有する映像が投影される。被験者の腕に投影された映像は、被験者が直接見ることができ、タブレット型端末装置11から入力された映像の模様と一致したとき、被験者の手は静脈撮影用カメラ84の深度範囲内に入っている。この狭間隙の模様を有する映像は、図19(a)に示すように狭間隙の模様、例えば複数本の細線が狭間隙で形成されている点線模様78であってもよい。被験者の腕に投影された模様が、図19(b)に示すように傾斜線模様79となって点線模様78と一致しないとき、被験者の手が静脈撮影用カメラ84の深度範囲内に位置せず、被験者は、腕に表示される模様が図19(a)に示す点線模様78となる位置に手及び腕を上下方向に移動する。尚、図21に示す装置では、SLM14からの回折光が被験者の目に入るおそれがなく、腕に投影する模様を明瞭にすべく、SLM14にレーザ光を照射してもよい。 Also, the guide device 70 shown in FIG. 18 can be used as a personal authentication device using a hand vein as shown in FIG. The device shown in FIG. 21 is used to determine the position of the subject's hand in a vein personal identification device. In the position determining apparatus shown in FIG. 21, when the subject's hand is extended onto the vein imaging camera 84, an image having a pattern of narrow gaps is projected onto the arm from the holographic projector unit 10a. The image projected on the subject's arm can be directly viewed by the subject, and when the pattern of the image input from the tablet-type terminal device 11 matches, the subject's hand falls within the depth range of the vein imaging camera 84. ing. The image having the pattern of narrow gaps may be a pattern of narrow gaps, for example, a dotted line pattern 78 in which a plurality of fine lines are formed with narrow gaps, as shown in FIG. 19(a). When the pattern projected on the subject's arm becomes a slanted line pattern 79 as shown in FIG. First, the subject moves the hand and arm vertically to a position where the pattern displayed on the arm becomes the dotted line pattern 78 shown in FIG. 19(a). In the apparatus shown in FIG. 21, the SLM 14 may be irradiated with laser light so that the diffracted light from the SLM 14 does not enter the subject's eyes and the pattern projected onto the arm is made clear.
 以上、述べてきた空中投影装置10は、タブレット型端末装置11からPC12に入力された所定像の計算機合成ホログラム(CGH)をCGH計算部17で計算してSLM14に出力している。このCGH計算部17で計算する計算機合成ホログラム(CGH)について説明する。図22に示すN個の物体点で構成された三次元物体の計算機合成ホログラム(以下、単にCGHと称する)は、三次元物体の各物体点を点光源としたとき、図22に示すCGH上の各点(xh,yh,0)における光強度Icomp(xh,yh,0)は下記数式(3)
Figure JPOXMLDOC01-appb-M000005
で表すことができる。
In the aerial projection device 10 described above, a computer-generated hologram (CGH) of a predetermined image input from the tablet terminal device 11 to the PC 12 is calculated by the CGH calculator 17 and output to the SLM 14 . A computer-generated hologram (CGH) calculated by the CGH calculator 17 will be described. A computer-generated hologram (hereinafter simply referred to as CGH) of a three-dimensional object composed of N object points shown in FIG. The light intensity I comp (x h , y h , 0) at each point (x h , y h , 0) is given by the following formula (3)
Figure JPOXMLDOC01-appb-M000005
can be expressed as
 ところで、SLM14には、振幅ホログラムを表示するものと、位相ホログラムを表示するものがある。ここで、図22に示すように三次元物体上のn番目の点光源の位置座標をP(xn,yn,zn)とし、その明るさをAn、1ピクセルの大きさをΔx×Δy、x,y方向にi,j番目に位置するCGHのピクセルの座標を(xh,yh)=(iΔx,jΔy)とすると、振幅ホログラム上の各点(xh,yh,0)における光強度Iamp(xh,yh,0)は、下記数式(4)
Figure JPOXMLDOC01-appb-M000006
で表すことができる。
By the way, the SLM 14 includes one that displays an amplitude hologram and one that displays a phase hologram. Here, as shown in FIG. 22, the position coordinates of the n -th point light source on the three-dimensional object are P( xn , yn , zn ), its brightness is An, and the size of one pixel is Δ x ×Δ y , if the coordinates of the i-th and j-th CGH pixels in the x and y directions are (x h , y h )=(iΔ x , jΔ y ), each point on the amplitude hologram (x h , y h ,0) is obtained by the following formula (4)
Figure JPOXMLDOC01-appb-M000006
can be expressed as
 また、位相ホログラム上の各点(xh,yh,0)における位相Iphase(xh,yh,0)は、下記数式(5)
Figure JPOXMLDOC01-appb-M000007
で表すことができる。
上記数式(5)のIm{Icomp}は虚部であり、Re{Icomp}は実部であって、上記数式(4)
と同じであるから、上記数式(3)は下記数式(6)
Figure JPOXMLDOC01-appb-M000008
で表すことができる。
Also, the phase I phase (x h , y h , 0) at each point (x h , y h , 0) on the phase hologram is expressed by the following formula (5)
Figure JPOXMLDOC01-appb-M000007
can be expressed as
Im{I comp } in the above equation (5) is the imaginary part, Re{I comp } is the real part, and the above equation (4)
is the same as, the above formula (3) becomes the following formula (6)
Figure JPOXMLDOC01-appb-M000008
can be expressed as
 上記数式(4)に基づいて振幅ホログラムを、上記数式(6)に基づいて位相ホログラムを計算でき、三次元静止画のCGHの計算用として用いることができる。
 唯、三次元動画においては、上記数式(4)又は上記数式(6)を用いたCGHの計算よりも、更なる計算速度の向上が求められる。このため、CGHの計算速度を向上すべく、振幅ホログラムの光強度(Iamp(xh,yh,0))を表す上記数式(4)を下記数式(7)
Figure JPOXMLDOC01-appb-M000009
のように変形した。
 また、位相ホログラムの位相(Iphase(xh,yh,0))を表す上記数式(6)を下記数式(8)
Figure JPOXMLDOC01-appb-M000010
のように変形した。
The amplitude hologram can be calculated based on the above equation (4), and the phase hologram can be calculated based on the above equation (6), which can be used for CGH calculation of a three-dimensional still image.
However, in the case of 3D moving images, a further improvement in calculation speed is required compared to the CGH calculation using the above formula (4) or the above formula (6). Therefore, in order to improve the calculation speed of CGH, the above formula (4) representing the light intensity of the amplitude hologram (I amp (x h , y h , 0)) is changed to the following formula (7)
Figure JPOXMLDOC01-appb-M000009
transformed like
Also, the above formula (6) representing the phase of the phase hologram (I phase (x h , y h , 0)) is changed to the following formula (8)
Figure JPOXMLDOC01-appb-M000010
transformed like
 空中投影装置10のPC12のCGH計算部17で上記数式(7)に基づいて振幅ホログラムを計算するために、図23に示すようにCGH計算部17内に、タブレット型端末装置11から入力される三次元像の点光源の位置座標のデータを記憶する位置座標データ記憶部17aと、位置座標データ記憶部17aの位置座標データに基づいてCGHのx方向のsinX,cosXを計算した値を記憶するCGHのx方向の三角関数テーブル17bと、位置座標データ記憶部17aの位置座標データに基づいてCGHのy方向のsinY,cosYを計算した値を記憶するCGHのy方向の三角関数テーブル17cと、三角関数テーブル17b、17cに記憶された三角関数値を用いて振幅ホログラムの光強度(Iamp(xh,yh,0))を計算する振幅ホログラム計算部17dと、振幅ホログラム計算部17dで算出された振幅ホログラムの光強度(Iamp(xh,yh,0))を記憶してSLM14に出力する振幅ホログラムデータ記憶部17eとが設けられている。 In order to calculate the amplitude hologram based on the above formula (7) in the CGH calculation unit 17 of the PC 12 of the aerial projection device 10, as shown in FIG. A position coordinate data storage unit 17a for storing position coordinate data of a point light source of a three-dimensional image, and values obtained by calculating sinX and cosX in the x direction of the CGH based on the position coordinate data in the position coordinate data storage unit 17a are stored. a CGH x-direction trigonometric function table 17b; a CGH y-direction trigonometric function table 17c that stores values obtained by calculating sinY and cosY in the CGH y-direction based on the position coordinate data in the position coordinate data storage unit 17a; An amplitude hologram calculator 17d that calculates the light intensity (I amp (x h , y h , 0)) of the amplitude hologram using the trigonometric function values stored in the trigonometric function tables 17b and 17c, and the amplitude hologram calculator 17d An amplitude hologram data storage unit 17e is provided for storing the calculated light intensity (I amp (x h , y h , 0)) of the amplitude hologram and outputting it to the SLM 14 .
 図23に示すCGH計算部17で振幅ホログラムを計算するための疑似コードは図24であり、そのフローチャートを図25に示す。図24に示す疑似コードは、CGHの解像度をW×Hとし、図25に示すフローチャートは三次元動画のものであるが、三次元静止画であっても適用できる。
 図24及び図25では、三角関数テーブル17bを作成してから三角関数テーブル17cを作成しているが、三角関数テーブル17cを作成してから三角関数テーブル17bを作成してもよく、三角関数テーブル17b、17cを並列に作成してもよい。また、三角関数テーブル17b、17cの作成、振幅ホログラムの計算部17dでの振幅ホログラムの計算、振幅ホログラムデータ記憶部17eによる振幅ホログラムのSLM14への出力を並列処理してもよい。更に、三次元動画の各フレームにおいて、予め三角関数テーブル17b、17cが作成され、それを用いてSLM14に表示する振幅ホログラムを作成し表示できる場合、図25に示すフローチャートで点光源ループを一番内側のループとしてもよい。
FIG. 24 shows a pseudo code for calculating the amplitude hologram in the CGH calculator 17 shown in FIG. 23, and FIG. 25 shows its flow chart. The pseudo code shown in FIG. 24 assumes that the CGH resolution is W×H, and the flowchart shown in FIG. 25 is for a 3D moving image, but it can also be applied to a 3D still image.
24 and 25, the trigonometric function table 17c is created after creating the trigonometric function table 17b, but the trigonometric function table 17b may be created after creating the trigonometric function table 17c. 17b and 17c may be created in parallel. The creation of the trigonometric function tables 17b and 17c, the calculation of the amplitude hologram by the amplitude hologram calculator 17d, and the output of the amplitude hologram to the SLM 14 by the amplitude hologram data storage unit 17e may be processed in parallel. Furthermore, when the trigonometric function tables 17b and 17c are created in advance for each frame of the three-dimensional moving image, and the amplitude holograms to be displayed on the SLM 14 can be created and displayed by using them, the point light source loop is the first in the flowchart shown in FIG. It may be an inner loop.
 PC12のCGH計算部17で上記数式(8)に基づいて位相ホログラムを計算するために、図26に示すようにCGH計算部17内に、タブレット型端末装置11から入力される三次元像の点光源の位置座標データを記憶する位置座標データ記憶部17aと、位置座標データ記憶部17aの位置座標データに基づいてCGHのx方向のsinX,cosXを計算した値を記憶するCGHのx方向の三角関数テーブル17bと、位置座標データ記憶部17aの位置座標データに基づいてCGHのy方向のsinY,cosYを計算した値を記憶するCGHのy方向の三角関数テーブル17cと、三角関数テーブル17b、17cに記憶された三角関数値を用いて虚部Im{Icomp}と、実部Re{Icomp}とを計算する虚部・実部計算部17fと、虚部・実部計算部17fで計算された虚部Im{Icomp}、実部Re{Icomp}の虚部・実部記憶部17gと、虚部・実部記憶部17gに記憶された虚部Im{Icomp}、実部Re{Icomp}を用いて位相ホログラムの位相(Iphase(xh,yh,0))を計算する位相ホログラム計算部17hと、位相ホログラム計算部17hで算出された位相ホログラムの位相(Iphase(xh,yh,0))を記憶してSLM14に出力する位相ホログラムデータ記憶部17iとが設けられている。 In order to calculate the phase hologram based on the above formula (8) in the CGH calculation unit 17 of the PC 12, points of the three-dimensional image input from the tablet terminal device 11 are stored in the CGH calculation unit 17 as shown in FIG. A position coordinate data storage unit 17a for storing position coordinate data of the light source, and a CGH x direction triangle for storing values obtained by calculating sinX and cosX in the x direction of the CGH based on the position coordinate data in the position coordinate data storage unit 17a. A function table 17b, a CGH y-direction trigonometric function table 17c storing values obtained by calculating sinY and cosY in the CGH y-direction based on the position coordinate data of the position coordinate data storage unit 17a, and trigonometric function tables 17b and 17c The imaginary/real part calculator 17f that calculates the imaginary part Im{Icomp} and the real part Re{Icomp} using the trigonometric function values stored in the imaginary/real part calculator 17f, and The imaginary/real part storage unit 17g of the imaginary part Im{Icomp} and the real part Re{Icomp}, and the imaginary/real part Im{Icomp} and the real part Re{Icomp} stored in the imaginary/real part storage unit 17g are stored as A phase hologram calculator 17h that calculates the phase of the phase hologram (I phase (x h , y h , 0)) using the phase hologram calculator 17h, and the phase hologram calculated by the phase hologram calculator 17h (I phase (x h , y h ,0)) and outputs it to the SLM 14 is provided.
 図26に示すCGH計算部17で位相ホログラムを計算するための疑似コードは図27であり、そのフローチャートを図28に示す。図27に示す疑似コードは、CGHの解像度をW×Hとし、図28に示すフローチャートは三次元動画のものであるが、三次元静止画であっても適用できる。
 図27及び図28では、三角関数テーブル17bを作成してから三角関数テーブル17cを作成しているが、三角関数テーブル17cを作成してから三角関数テーブル17bを作成してもよく、三角関数テーブル17b、17cを並列に作成してもよい。また、三角関数テーブル17b、17cの作成、虚部・実部計算部17fでの虚部Im{Icomp}と、実部Re{Icomp}との計算、位相ホログラム計算部17hでの位相ホログラムの位相(Iphase(xh,yh,0))の計算、位相ホログラムデータ記憶部17iによる位相ホログラムのSLM14への出力を並列処理してもよい。更に、三次元動画の各フレームにおいて、予め三角関数テーブル17b、17cが作成され、それを用いてSLM14に表示する位相ホログラムを作成し表示できる場合、図28に示すフローチャートで点光源ループを一番内側のループとしてもよい。
Pseudo code for calculating the phase hologram in the CGH calculator 17 shown in FIG. 26 is shown in FIG. 27, and its flow chart is shown in FIG. The pseudo code shown in FIG. 27 assumes that the CGH resolution is W×H, and the flowchart shown in FIG. 28 is for a 3D moving image, but it can also be applied to a 3D still image.
27 and 28, the trigonometric function table 17c is created after the trigonometric function table 17b is created, but the trigonometric function table 17b may be created after the trigonometric function table 17c is created. 17b and 17c may be created in parallel. In addition, the trigonometric function tables 17b and 17c are created, the imaginary part Im{Icomp} and the real part Re{Icomp} are calculated in the imaginary/real part calculator 17f, and the phase hologram phase is calculated in the phase hologram calculator 17h. The calculation of (I phase (x h , y h , 0)) and the output of the phase hologram from the phase hologram data storage unit 17i to the SLM 14 may be processed in parallel. Furthermore, when the trigonometric function tables 17b and 17c are created in advance in each frame of the three-dimensional moving image, and the phase hologram to be displayed on the SLM 14 can be created and displayed by using them, the point light source loop is the first in the flowchart shown in FIG. It may be an inner loop.
 上記数式(7)に基づいて振幅ホログラムを計算処理し、或いは上記数式(8)に基づいて位相ホログラムを計算処理するCGH計算部17を、CPU(中央演算処理装置)及び/又はGPU(Graphics Processing Unit)内に設けることができる。
 ところで、CPU及びGPUはいずれも複数のコアを持つが、三次元動画のリアルタイム再生を実現するには、1秒間に最低でも30枚のCGHを計算し、それを再生しなければならない。しかし、CPUが持つコア数はGPUに比べて格段に少なく、CPUによる処理速度は遅く、三次元静止画像の処理に用いることはできるものの、三次元動画処理には適しない。一方、GPUは多数のコアを持っており、三次元静止画像の処理には勿論のこと、三次元動画処理にも用いることができる。
The CGH calculation unit 17 for calculating the amplitude hologram based on the above formula (7) or calculating the phase hologram based on the above formula (8) is implemented by a CPU (Central Processing Unit) and/or a GPU (Graphics Processing Unit). Unit).
By the way, both CPU and GPU have a plurality of cores, but in order to realize real-time reproduction of 3D moving images, at least 30 CGHs must be calculated per second and reproduced. However, the number of cores that a CPU has is much smaller than that of a GPU, and the processing speed of the CPU is slow. Although it can be used for processing 3D still images, it is not suitable for processing 3D moving images. On the other hand, a GPU has many cores and can be used not only for processing 3D still images but also for 3D moving image processing.
 これまでの説明では、投影部10bが一台の場合を説明してきたが、複数台の投影部を設置してもよい。図30に図3に示す投影部10bを三台設置した場合を示す。図30(a)では、投影部10b-1,10b-2,10b-3が第2ハーフミラー30の同一面側に実像が結像するように直列に配置されている。各枠体26には、平面状のスクリーン36が載置されており、各スクリーン36には図1(a)に示すホログラフィックプロジェクタ部10a(図示せず)から、異なった図形のホログラムの回折光1、回折光2,回折光3が照射される。回折光1が照射されたスクリーン36には、図30(b)に示す円形像36a-1が投影され、回折光2が照射されたスクリーン36には、図30(b)に示すように円形像36a-1よりも小径の円形像36a-2が投影され、回折光3が照射されたスクリーン36には、図30(b)に示すように円形像36a-1及び円形像36a-2よりも小径の円形像36a-3が投影される。これら各スクリーン36に投影された円形像36a-1.36a-2,36a-3は、各第2ハーフミラー30の一面側の空間に実像38-1,38-2,38-3として結像する。これらの実像38-1,38-2,38-3は、実像38-1側から見ると、図30(c)に示すように同心円状に見える。このように複数の投影部10bを配置することにより、複雑な実像を空中に結像させることができる。図30に示す回折光1、回折光2,回折光3は、同一のホログラフィックプロジェクタ部から射出されてもよく、異なるホログラフィックプロジェクタ部から射出されてもよい。また、図30は、平面状のスクリーン36を用いていたが、図1に示すように立体スクリーン28を用いることにより、空中に結像した複雑な実像を多面から見ることができる。尚、図30では、三枚の再帰性反射シート32を使用していたが、三枚の第2ハーフミラー30を覆うことができる大きさの再帰性反射シート32ならば一枚であってもよい。 In the explanation so far, the case where there is one projection unit 10b has been explained, but a plurality of projection units may be installed. FIG. 30 shows a case where three projection units 10b shown in FIG. 3 are installed. 30A, the projection units 10b-1, 10b-2, and 10b-3 are arranged in series so that real images are formed on the same surface side of the second half mirror 30. In FIG. A flat screen 36 is mounted on each frame 26, and each screen 36 is diffracted from a hologram having a different figure from the holographic projector unit 10a (not shown) shown in FIG. 1(a). Light 1, diffracted light 2, and diffracted light 3 are irradiated. A circular image 36a-1 shown in FIG. 30(b) is projected onto the screen 36 irradiated with the diffracted light 1, and an image 36a-1 shown in FIG. 30(b) is projected onto the screen 36 irradiated with the diffracted light 2. A circular image 36a-2 having a diameter smaller than that of the circular image 36a-1 is projected onto the screen 36 irradiated with the diffracted light 3, as shown in FIG. A circular image 36a-3 having a smaller diameter than the image 36a-2 is projected. Circular images 36a-1, 36a-2 and 36a-3 projected onto each screen 36 are formed as real images 38-1, 38-2 and 38-3 in the space on one side of each second half mirror 30. image. When viewed from the real image 38-1 side, these real images 38-1, 38-2, and 38-3 appear concentric as shown in FIG. 30(c). By arranging a plurality of projection units 10b in this way, a complicated real image can be formed in the air. Diffracted light 1, diffracted light 2, and diffracted light 3 shown in FIG. 30 may be emitted from the same holographic projector unit, or may be emitted from different holographic projector units. 30 uses a flat screen 36, but by using a three-dimensional screen 28 as shown in FIG. 1, a complex real image formed in the air can be viewed from multiple angles. Although three retroreflective sheets 32 are used in FIG. good.
 図30に示す三台の投影部10b―1,10b-2,10b-3の各スクリーンが載置された枠体26は同一の高さであるが、図31に示すように、一台の枠体26を上下方向に移動することにより、スクリーン36も上下方向に移動し空中に結像される実像が左右方向に移動して他台の実像と接離する。図31では、図30に示す二台の投影部10b―1,10b-2が第2ハーフミラー30の同一面側の空中に実像38-1,38-2が結像するように直列に配置されている。各枠体26には、平面状のスクリーン36が載置されており、各スクリーン36には図1(a)に示すホログラフィックプロジェクタ部10a(図示せず)から、異なった図形のホログラムの回折光1、回折光2が照射されて実像38-1,38-2が各第2ハーフミラー30の一面側に結像している。ここで、投影部10b-2の枠体26を上方の位置26-1に上昇し、且つ位置26-1に移動したスクリーン36-1にホログラフィックプロジェクタ部の投影位置(焦点位置)が合ったとき、結像した実像38-2′は実像38-2よりも右側方向(矢印f-1方向)に移動し、投影部10b-1の実像38-1よりも離れる。一方、投影部10b-2の枠体26を下方の位置26-2に降下し、且つ位置26-2に移動したスクリーン36-2にホログラフィックプロジェクタ部の投影位置(焦点位置)が合ったとき、結像した実像38-2″は実像38-2よりも左側(矢印f-2方向)に移動し、投影部10b-1の実像38-1に近接する。このように複数台の投影部10bのスクリーン36が載置された枠体26を上下方向に移動することにより、左右方向に移動した投影部10bの実像38が他の実像38に接離することができ、実像に多様な動きを付与できる。図31では、投影部10b-2の枠体26のみを上下方向に移動したが、投影部10b-1の枠体26も併せて上下方向に移動することにより、投影部10b-1の実像38-1も左右方向に移動し、投影部10b-2の実像38-2と重ねたり、実像38-1を実像38-2の後ろ側に移動したりすることもできる。図31でも、二枚の再帰性反射シート32を用いたが、二枚の第2ハーフミラー30を覆うことができる大きさの再帰性反射シート32ならば一枚であってもよい。尚、図31では、平面状のスクリーン36について説明したが、立体スクリーン28でも同様に実像に多様な動きを付与できる。 The frame 26 on which the screens of the three projection units 10b-1, 10b-2, and 10b-3 shown in FIG. 30 are mounted has the same height, but as shown in FIG. By moving the frame 26 in the vertical direction, the screen 36 also moves in the vertical direction, and the real image formed in the air moves in the horizontal direction to come into contact with or separate from the real image on the other stage. In FIG. 31, the two projection units 10b-1 and 10b-2 shown in FIG. 30 are arranged in series so that real images 38-1 and 38-2 are formed in the air on the same side of the second half mirror 30. It is A flat screen 36 is mounted on each frame 26, and each screen 36 is diffracted from a hologram having a different figure from the holographic projector unit 10a (not shown) shown in FIG. 1(a). Light 1 and diffracted light 2 are irradiated, and real images 38 - 1 and 38 - 2 are formed on one surface side of each second half mirror 30 . Here, the frame 26 of the projection unit 10b-2 is raised to the upper position 26-1, and the projection position (focus position) of the holographic projector unit is aligned with the screen 36-1 moved to the position 26-1. Then, the formed real image 38-2' moves to the right (in the direction of the arrow f-1) from the real image 38-2 and is separated from the real image 38-1 of the projection unit 10b-1. On the other hand, when the frame 26 of the projection unit 10b-2 is lowered to the lower position 26-2 and the projection position (focus position) of the holographic projector unit is aligned with the screen 36-2 moved to the position 26-2. , the formed real image 38-2″ moves to the left (arrow f-2 direction) of the real image 38-2 and approaches the real image 38-1 of the projection unit 10b-1. By vertically moving the frame 26 on which the screen 36 of 10b is mounted, the real image 38 of the projection unit 10b moved in the left-right direction can come into contact with or separate from another real image 38, and the real image can move in various ways. 31, only the frame 26 of the projection unit 10b-2 is vertically moved, but by moving the frame 26 of the projection unit 10b-1 together, the projection unit 10b- The real image 38-1 of 1 can also be moved in the left-right direction so that it overlaps with the real image 38-2 of the projection unit 10b-2, or the real image 38-1 can be moved behind the real image 38-2. However, although two retroreflective sheets 32 were used, one retroreflective sheet 32 may be used as long as it is large enough to cover the two second half mirrors 30. Note that FIG. Although the planar screen 36 has been described above, the 3D screen 28 can similarly give various movements to the real image.
 以上の説明では、SLM14として反射型のものを用いていたが、透過型のSLMであってもよく、タブレット型端末装置11からPC12に所定像を入力していたが、直接PC12に所定像を入力してもよい。また、PC12で計算した計算機合成ホログラムをSLM14に表示していたが、フィルムにホログラムの干渉縞を印刷したものであってもよい。更に、SLM14にレーザ光を照射していたが、発光ダイオード(LED)の光を照射してもよい。 In the above description, a reflective SLM was used as the SLM 14, but a transmissive SLM may be used. may be entered. Further, although the computer-generated hologram calculated by the PC 12 is displayed on the SLM 14, the hologram interference fringes may be printed on a film. Further, although the SLM 14 is irradiated with laser light, it may be irradiated with light from a light emitting diode (LED).
 以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.
(実施例1)
 スクリーン用材料の可視光の透過率及び拡散率を測定する。
(測定装置)
 図10に示す測定装置を用いた。測定装置において、
   光源50:グリーンレーザ光(波長532nm)を出射
   穴58の穴径:2.5cm
   光量計:レーザパワーメータ(三和電気計器株式会社製のLP1)
   距離L:1m
   距離M:透過率を測定する場合:0cm
拡散率を測定する場合:15cm
(Example 1)
The visible light transmittance and diffusivity of the screen material are measured.
(measuring device)
A measuring apparatus shown in FIG. 10 was used. in the measuring device,
Light source 50: emits green laser light (wavelength: 532 nm) Hole diameter of hole 58: 2.5 cm
Light meter: Laser power meter (LP1 manufactured by Sanwa Electric Instrument Co., Ltd.)
Distance L: 1m
Distance M: When measuring transmittance: 0 cm
When measuring diffusivity: 15 cm
(スクリーン用材料)
 測定に用いたスクリーン用材料を下記表1に示す。表1に示すスクリーン用材料は全て白地である。

 
(Screen material)
The screen materials used for the measurements are shown in Table 1 below. All the screen materials shown in Table 1 are white.

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(透過率の測定)
 表1に示すスクリーン用材料の各々について照射した可視光の光軸での透過率を測定した。測定は、上述したように図10に示す光源50から出射したグリーンレーザ光(波長532nm)の平行光を穴58に照射し、受光面62を穴58に当接する位置(M=0cm)に設置したレーザパワーメータにより、穴58をスクリーン用材料で閉塞してないときの受光量Tを測定した。次いで、穴58を塞ぐようにスクリーン用材料を貼着し、受光面62を穴58に対向する位置(M=0cm)に設置したレーザパワーメータにより、穴58及びスクリーン用材料を透過した透過光の受光量Tを測定する。(T/T)×100を透過率とする。表1に示すスクリーン用材料の各々の透過率を下記表2に示す。
(Measurement of transmittance)
For each of the screen materials shown in Table 1, the transmittance of irradiated visible light along the optical axis was measured. For the measurement, as described above, the hole 58 is irradiated with parallel light of green laser light (wavelength 532 nm) emitted from the light source 50 shown in FIG. A laser power meter was used to measure the amount of received light T0 when the holes 58 were not closed with the screen material. Next, a screen material was attached so as to block the holes 58, and a laser power meter was installed at a position (M = 0 cm) where the light receiving surface 62 faced the holes 58, and the transmitted light transmitted through the holes 58 and the screen material is measured. Let (T/T 0 )×100 be the transmittance. The transmittance of each screen material shown in Table 1 is shown in Table 2 below.
(拡散率の測定)
 図10に示すレーザパワーメータの受光面62を光軸51に対して角度+10°~-10°回動して受光量を測定した。レーザパワーメータの受光面62と穴58に貼着したスクリーン用材料との距離は常に15cmを保持した(受光面62の回動半径:15cm)。受光面62が光軸51に対して角度±θ回動した位置で測定した受光量は、スクリーン用材料を透過して光軸51に対して角度±θ拡散した拡散光量(T′)である。光軸51に対して角度±θの位置での拡散率は、角度0°の位置(M=15cm)で測定した受光量(T)との比率(T′/T)で表す。表1に示すスクリーン用材料の各々の拡散率を下記表2に示す。
(Measurement of diffusivity)
The amount of received light was measured by rotating the light receiving surface 62 of the laser power meter shown in FIG. The distance between the light-receiving surface 62 of the laser power meter and the screen material attached to the hole 58 was always kept at 15 cm (rotating radius of the light-receiving surface 62: 15 cm). The amount of received light measured at a position where the light receiving surface 62 is rotated by an angle ±θ with respect to the optical axis 51 is the amount of diffused light (T') transmitted through the screen material and diffused by an angle ±θ with respect to the optical axis 51. . The diffusivity at an angle ±θ with respect to the optical axis 51 is represented by the ratio (T'/T 1 ) to the amount of light received (T 1 ) measured at a position with an angle of 0° (M=15 cm). The diffusivity of each screen material shown in Table 1 is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(実施例2)
 表1のスクリーン用材料を用いて図1(b)に示す立体スクリーン28を作製し、「高知」の文字と模様とを描いた。この立体スクリーン28を明るい部屋(527ルックス(lx))に設置した図1(a)に示す空中投影装置10で空中に立方体の実像34が正面から視認できるか否かを肉眼観察した。再帰性反射シート32としては、日本カーバイド工業株式会社製の空中ディスプレイ用リフレクタRF-Axを用い、SLM14から立体スクリーン28までの距離を3mとし、立体スクリーン28の最上端から第2ハーフミラー30の中間点までの距離Mを15cmとした。平行光射出部15からグリーンレーザ光(波長532nm)を出射した。
 更に、室内灯を消灯し且つ窓を遮光カーテンで覆った暗い部屋(0.03ルックス(lx))において、明るい部屋と同様にして肉眼観察をした。結果を下記表3に示す。表3において、実像34が「よく見える」ときは(++)、「判別できる」ときは(+)、「よく見えない」ときは(±)を表示した。
 尚、部屋の照度は、コニカミノルタジャパン株式会社製の照度計(T-10A(商品名))で測定した。
(Example 2)
A three-dimensional screen 28 shown in FIG. 1(b) was produced using the screen materials shown in Table 1, and characters and patterns of "Kochi" were drawn. The stereoscopic screen 28 was placed in a bright room (527 lux (lx)), and the aerial projection apparatus 10 shown in FIG. As the retroreflective sheet 32, an aerial display reflector RF-Ax manufactured by Nippon Carbide Industry Co., Ltd. is used. The distance M to the intermediate point was set to 15 cm. A green laser beam (wavelength: 532 nm) was emitted from the parallel light emitting portion 15 .
Furthermore, in a dark room (0.03 lux (lx)) in which the room lights were turned off and the windows were covered with light-shielding curtains, observation was carried out with the naked eye in the same manner as in the bright room. The results are shown in Table 3 below. In Table 3, (++) is indicated when the real image 34 is "clearly visible", (+) is indicated when "identifiable", and (±) is indicated when "not clearly visible".
The illuminance of the room was measured with an illuminometer (T-10A (trade name)) manufactured by Konica Minolta Japan, Inc.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2及び表3から明らかなように、No.5,9,11のスクリーン用材料は、光軸での透過率が47%未満であり、明るい室内の空中に実像34が「よく見えない」(±)となっている。立体スクリーン28の透過光量が少なくなったことによるものである。
 これに対し、No.1~4,6~8,10,12~15のスクリーン用材料は、光軸での透過率が47%以上であり、明るい室内でも空中に実像34を見ることができた。これらは、立体スクリーン28の透過光量がNo.5,9,11のスクリーン用材料よりも増加したからである。特に、No.10,13,15のスクリーン用材料(薄葉紙、典具貼紙(18 g/m2)、薄美濃3匁)は、立体スクリーン28の光軸での透過光量が55~65%であり、且つ光軸に対して-10°~+10°の全範囲に亘る拡散率も15%以上であるから、明るい室内においても、実像34の「高知」の文字及び模様を明瞭に見ることができた。このように立体スクリーン28の透過率及び拡散率が共に高い場合、再帰性反射シート32に照射された拡散光が鏡面反射することにより生じる虚像(図5(a)に示す虚像39に相当)が見え難くなり、実像34が見え易くなったからである。立体スクリーン28の拡散率が高いと、図1(a)に示す立体スクリーン28の投影点29aから広範囲に拡散された拡散光は再帰性反射シート32で再帰性反射されて広範囲から結像点34aに集中されて見え易くなり、他方、再帰性反射シート32の鏡面反射光は広がることにより虚像は見え難くなるものと推察される。
 これに対し、No.1~4,6~8,14では、実像34に重ねて虚像(図5(a)に示す虚像39に相当)も見えたが、図5(b)に示すように再帰性反射シート32を傾斜することにより、虚像を視野外に移動させることができた。
 このように明るい部屋(527ルックス(lx))では、実像34を「判別できる」(+)又は「よく見えない」(±)とされたNo.2,5,6,9,11,12の立体スクリーン28でも、暗い部屋(0.03ルックス(lx))では、いずれも実像34が「よく見える」(++)となっている。
As is clear from Tables 2 and 3, No. The screen materials 5, 9, and 11 have a transmittance at the optical axis of less than 47%, and the real image 34 is "not well visible" (±) in the air in a bright room. This is because the amount of light transmitted through the stereoscopic screen 28 has decreased.
On the other hand, No. The screen materials 1 to 4, 6 to 8, 10, and 12 to 15 had a transmittance of 47% or more on the optical axis, and a real image 34 could be seen in the air even in a bright room. These are the three-dimensional screens 28 having a transmitted light amount of No. This is because it increased more than 5, 9, and 11 screen materials. In particular, No. The screen materials 10, 13, and 15 (thin paper, tengu paste (18 g/m 2 ), thin Mino 3 momme) have a transmitted light amount of 55 to 65% on the optical axis of the three-dimensional screen 28, and the light Since the diffusivity over the entire range of -10° to +10° with respect to the axis is also 15% or more, even in a bright room, the letters and patterns of "Kochi" in the real image 34 could be clearly seen. When the stereoscopic screen 28 has both high transmittance and high diffusivity, a virtual image (corresponding to the virtual image 39 shown in FIG. 5A) generated by specular reflection of the diffused light irradiated to the retroreflective sheet 32 is generated. This is because the real image 34 has become less visible and easier to see. When the diffusion rate of the stereoscopic screen 28 is high, the diffused light diffused over a wide range from the projection point 29a of the stereoscopic screen 28 shown in FIG. On the other hand, it is presumed that the specular reflected light from the retroreflective sheet 32 spreads out, making the virtual image difficult to see.
On the other hand, No. 1 to 4, 6 to 8, and 14, a virtual image (corresponding to the virtual image 39 shown in FIG. 5(a)) superimposed on the real image 34 was also visible, but as shown in FIG. By tilting, the virtual image could be moved out of the field of view.
In such a bright room (527 lux (lx)), the real image 34 was judged to be "distinguishable" (+) or "not well visible" (±). 2, 5, 6, 9, 11, and 12, the real image 34 is "well visible" (++) in a dark room (0.03 lux (lx)).
(実施例3)
 実施例2において、明るい部屋(527ルックス(lx))で実像34を「よく見えない」(±)とされたスクリーン用材料であるNo.5(綿(ローン無地)),No.9(機械紙(機械漉き紙)),No.11(典具貼紙:目付34g/cm))、及び表1のNo.16~22の拡散板の各スクリーン材料を平面状のスクリーンに作製し、このスクリーンに「高知」の文言を記載して図3(a)に示すスクリーン36とした。このスクリーン36を用い、明るい部屋(527ルックス(lx))で図3(a)に示す空中投影装置により空中に「高知」の文字の実像38が正面から視認できるか否かを肉眼観察した。その結果、下記表4に示すように全スクリーンで「高知」の文字の実像38が「よく見える」(++)であった。
(Example 3)
In Example 2, the screen material No. 2 was evaluated as "poorly visible" (±) for the real image 34 in a bright room (527 lux (lx)). 5 (cotton (plain lawn)), No. 9 (machine paper (machine-made paper)), No. 11 (Tengu paste: basis weight 34 g/cm 2 )), and No. 1 in Table 1. Each of the screen materials of diffusion plates 16 to 22 was made into a flat screen, and the words "Kochi" were written on this screen to obtain a screen 36 shown in FIG. 3(a). Using this screen 36, it was visually observed whether or not a real image 38 of characters "Kochi" could be visually recognized in the air from the front by the aerial projector shown in FIG. 3(a) in a bright room (527 lux (lx)). As a result, as shown in Table 4 below, the real image 38 of the characters "Kochi" was "clearly visible" (++) on the entire screen.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(実施例4)
 図1に示すPC12のCGH計算部17を、CPU又はGPU内に設け、振幅ホログラムのCGHの計算式の違いによるCGH作成速度を物体点の点数を変更して測定した。その結果を下記表5に示す。
 振幅ホログラムの計算式
  上記数式(4)[疑似コード:図29(a)]
  上記数式(7)[疑似コード:図24]
 CGH計算部17
  CPU:INTEL Corporation 製のCore(商標)i7-8700K
    GPU:NVIDIA Corporation 製のGeForce RTX(商標)3080
(Example 4)
The CGH calculation unit 17 of the PC 12 shown in FIG. 1 was provided in the CPU or GPU, and the CGH creation speed depending on the difference in the CGH calculation formula of the amplitude hologram was measured by changing the number of object points. The results are shown in Table 5 below.
Calculation formula for amplitude hologram Equation (4) above [pseudocode: FIG. 29(a)]
Equation (7) above [pseudocode: FIG. 24]
CGH calculator 17
CPU: Core (trademark) i7-8700K manufactured by INTEL Corporation
GPU: GeForce RTX™ 3080 from NVIDIA Corporation
Figure JPOXMLDOC01-appb-T000015
 表5から明らかなように、数式(7)によるCGH作成速度は、数式(4)よりも速く、且つGPUのCGH作成速度はCPUよりもかなり速いことから、GPUの数式(7)による振幅ホログラムを三次元動画に適用可能であることが判る。
 ここで、数式(4)の計算をCPUで行う際、cos関数の計算負荷が大きくなるため、0~2πの1周期において256等分にサンプリングし、サンプリングしたcos関数の値域-1~+1を8ビットの-127~127の整数値としたcosテーブルを用いて計算高速化した。また、コンパイラとしてIntel C++ compiler classic Version 2021.2.0 (オプション: -O3 -xCORE-AVX2 -qopenmp) を用い、OpenMPのスレッド数を12とした。
Figure JPOXMLDOC01-appb-T000015
As is clear from Table 5, the CGH creation speed by Equation (7) is faster than Equation (4), and the CGH creation speed of GPU is considerably faster than that of CPU. can be applied to 3D moving images.
Here, when the calculation of formula (4) is performed by the CPU, the calculation load of the cos function becomes large. A cos table with 8-bit integer values from -127 to 127 was used to speed up the calculation. Also, Intel C++ compiler classic Version 2021.2.0 (option: -O3 -xCORE-AVX2 -qopenmp) was used as a compiler, and the number of OpenMP threads was set to 12.
(実施例5)
 図1に示すPC12のCGH計算部17をCPU又はGPU内に設け、位相ホログラムのCGHの計算式の違いによるCGH作成速度を物体点の点数を変更して測定した。その結果を下記表6に示す。
 位相ホログラムの計算式
  上記数式(6)[疑似コード:図29(b)]
  上記数式(8)[疑似コード:図27]
 CGH計算部17
  CPU:INTEL Corporation 製のCore(商標)i7-8700K
  GPU:NVIDIA Corporation 製のGeForce RTX(商標)3080

 
(Example 5)
The CGH calculation unit 17 of the PC 12 shown in FIG. 1 was provided in the CPU or GPU, and the CGH creation speed depending on the difference in the CGH calculation formula of the phase hologram was measured by changing the number of object points. The results are shown in Table 6 below.
Calculation formula for phase hologram Equation (6) above [pseudocode: FIG. 29(b)]
Equation (8) above [pseudocode: FIG. 27]
CGH calculator 17
CPU: Core (trademark) i7-8700K manufactured by INTEL Corporation
GPU: GeForce RTX™ 3080 from NVIDIA Corporation

Figure JPOXMLDOC01-appb-T000016
 表6から明らかなように、数式(8)によるCGH作成速度は、数式(6)よりも速く且つGPUのCGH作成速度はCPUよりもかなり速いことから、GPUの数式(8)による位相ホログラムを三次元動画に適用可能であることが判る。
 ここで、数式(6)の計算をCPUで行う際、cos及びsin関数の計算負荷が大きくなるため、0~2πの1周期において256等分にサンプリングし、サンプリングしたcos及びsin関数の値域-1~+1を8ビットの-127~127の整数値としたcos及びsinテーブルを用いて計算高速化した。また、コンパイラとしてIntel C++ compiler classic Version 2021.2.0 (オプション: -O3 -xCORE-AVX2 -qopenmp) を用い、OpenMPのスレッド数を12とした。
Figure JPOXMLDOC01-appb-T000016
As is clear from Table 6, the CGH creation speed by Equation (8) is faster than Equation (6), and the CGH creation speed of GPU is considerably faster than that of CPU. It can be seen that it can be applied to three-dimensional moving images.
Here, when the calculation of formula (6) is performed by the CPU, the calculation load of the cosine and sin functions becomes large. Calculation speed was increased using cos and sin tables in which 1 to +1 are integer values of -127 to 127 of 8 bits. Also, Intel C++ compiler classic Version 2021.2.0 (option: -O3 -xCORE-AVX2 -qopenmp) was used as a compiler, and the number of OpenMP threads was set to 12.
 本発明に係る空中投影装置は、エレベータ等のボタンの画像を空中に結像できる空中投影装置、教育やゲーム等のために空中に所定の画像を結像できる空中投影装置に用いることができる。 The aerial projection device according to the present invention can be used as an aerial projection device capable of forming an image of an elevator button in the air, or an aerial projection device capable of forming a predetermined image in the air for education, games, and the like.
 10:空中投影装置、10a:ホログラフィックプロジェクタ部、10b,10b-1,10b-2,10b-3:投影部、11:タブレット型端末装置、12:パーソナルコンピュータ、14:空間光変調器(SLM)、15:平行光射出部、16:レーザ光射出部、17:CGH計算部、17a:位置座標データ記憶部、17b,17c:三角関数テーブル、17d:振幅ホログラム計算部、17e:振幅ホログラムデータ記憶部、17f:虚部・実部計算部、17g:虚部・実部記憶部、17h:位相ホログラム計算部、17i:位相ホログラムデータ記憶部、18,52:対物レンズ、20,54:平凸レンズ、22:第1ハーフミラー、24,35:鏡、26:枠体、26′,26-1,26-2:枠体26の位置、27,74:支承台、28:立体スクリーン、28a:立方体の投影像、28b:枠、28c:和紙、29a,29b,37a,37b,37a′,37b′,40a,40b,40a′,40b′:投影点、30:第2ハーフミラー、31:遮光板、32,32a,32b:再帰性反射シート、32′:再帰性反射シート32の位置、32b′:再帰性反射シート32bの位置、32a′:投影位置、33a:反射シート、33b:ガラスビーズ、33c:透明樹脂層、34,38,38′,38-1,38-2,38-3,38-2′,38-2″:実像、34a,34b,38a,38b,38a′,38b′:結像点、36,36-1,36-2:スクリーン、36a,36a′,36a-1,36a-2,36a-3,40,40′:投影像、39,39′,39″,42,42′:虚像、39a,39a′:結像点38aの対応点、39b,39b′:結像点38bの対応点、42a,42b,42a′,42b′:投影点、40a,40b,40a′,40b′の対応点、50:光源、51:光軸、56:板状体、58:穴、60:測定対象、62:受光面、62′:位置、70:ガイド装置、73:支持棒、75:載置台、76,78:点線模様、77,79:傾斜線模様、80:カメラ、82:表示装置、84:静脈撮影用カメラ、A,B,C,A′,B′,C′:立体スクリーン28の角、F:支承台74のスライド方向、F-1,F―2:枠体26の移動方向、F′:立体スクリーン28の水平面での回動方向、Fa,Fb:高さ、Fa′,Fb′:奥行き、L,M:距離、F″:立体スクリーン28の垂直面での回動方向、f:再帰性反射シート32bの移動方向、f-1,f-2:実像38-2の移動方向、f′:虚像bの移動方向、b′:虚像bの移動位置、θ:角度、W:CGHの横のピクセル数,H:CGHの縦のピクセル数、xh:ホログラム上のピクセルのx方向の位置座標、yh:ホログラム上のピクセルのy方向の位置座標、Δx:x方向のピクセルの大きさ、Δy:y方向のピクセルの大きさ、P(xn,n, z):三次元物体のn番目の物体点Pの位置座標
 
 
 
 

 
10: aerial projection device, 10a: holographic projector unit, 10b, 10b-1, 10b-2, 10b-3: projection unit, 11: tablet terminal device, 12: personal computer, 14: spatial light modulator (SLM ), 15: parallel light emitting section, 16: laser beam emitting section, 17: CGH calculation section, 17a: position coordinate data storage section, 17b, 17c: trigonometric function table, 17d: amplitude hologram calculation section, 17e: amplitude hologram data Storage unit 17f: Imaginary part/real part calculation unit 17g: Imaginary part/real part storage unit 17h: Phase hologram calculation unit 17i: Phase hologram data storage unit 18, 52: Objective lens 20, 54: Flat Convex lens, 22: first half mirror, 24, 35: mirror, 26: frame, 26', 26-1, 26-2: position of frame 26, 27, 74: support, 28: three-dimensional screen, 28a : projection image of cube 28b: frame 28c: Japanese paper 29a, 29b, 37a, 37b, 37a', 37b', 40a, 40b, 40a', 40b': projection point 30: second half mirror 31: Light shielding plate 32, 32a, 32b: retroreflective sheet 32': position of retroreflective sheet 32 32b': position of retroreflective sheet 32b 32a': projection position 33a: reflective sheet 33b: glass Beads 33c: transparent resin layer 34, 38, 38', 38-1, 38-2, 38-3, 38-2', 38-2'': real images 34a, 34b, 38a, 38b, 38a', 38b': image forming point, 36, 36-1, 36-2: screen, 36a, 36a', 36a-1, 36a-2, 36a-3, 40, 40': projection image, 39, 39', 39 '', 42, 42': virtual images, 39a, 39a': corresponding points of the imaging point 38a, 39b, 39b': corresponding points of the imaging point 38b, 42a, 42b, 42a', 42b': projection points, 40a, Corresponding points of 40b, 40a' and 40b', 50: light source, 51: optical axis, 56: plate-like body, 58: hole, 60: measurement object, 62: light receiving surface, 62': position, 70: guide device, 73: support rod, 75: mounting table, 76, 78: dotted line pattern, 77, 79: inclined line pattern, 80: camera, 82: display device, 84: vein imaging camera, A, B, C, A', B', C': corners of the three-dimensional screen 28, F: sliding direction of the support base 74, F-1, F-2: moving direction of the frame 26, F': turning direction of the three-dimensional screen 28 in the horizontal plane, Fa, Fb: height, Fa', Fb': depth, L, M: distance , F″: rotation direction of the stereoscopic screen 28 in the vertical plane, f: movement direction of the retroreflective sheet 32b, f-1, f-2: movement direction of the real image 38-2, f′: movement of the virtual image b. direction, b': moving position of virtual image b, θ: angle, W: number of horizontal pixels of CGH, H : number of vertical pixels of CGH, xh: x-direction position coordinates of pixels on hologram, yh : y-direction position coordinates of pixels on the hologram, Δx: pixel size in x -direction, Δy: pixel size in y -direction, P( xn, yn , zn): n of three-dimensional object position coordinates of the th object point P




Claims (12)

  1.  照射された平行光が所定像のホログラムの干渉情報に基づいて回折された回折光が射出されるホログラフィックプロジェクタ部と、前記回折光が照射されて前記所定像が投影されるスクリーンと、前記回折光のうち前記スクリーンを透過し拡散した透過拡散光が照射される位置に、前記スクリーンに照射される前記回折光に対して傾斜して設置されているハーフミラーと、前記ハーフミラーの透過光又は反射光が照射される再帰性反射素子とから成る投影部とで構成され、
     前記透過拡散光の前記ハーフミラーの透過光又は反射光が前記再帰性反射素子で再帰性反射されて元の入射経路に沿って逆方向に射出して前記ハーフミラーで反射した反射光又は前記ハーフミラーを透過した透過光により、前記所定像の実像が前記ハーフミラーの一面側の空中に結像されることを特徴とする空中投影装置。
    A holographic projector unit that emits diffracted light obtained by diffracting the irradiated parallel light based on interference information of a hologram of a predetermined image, a screen that is irradiated with the diffracted light and projects the predetermined image, and the diffraction a half mirror installed at a position where transmitted diffused light that has passed through the screen and diffused out of the light is irradiated so as to be inclined with respect to the diffracted light irradiated onto the screen; and transmitted light from the half mirror or and a projection unit composed of a retroreflective element irradiated with reflected light,
    The transmitted light or the reflected light of the half mirror of the transmitted diffused light is retroreflected by the retroreflective element, emitted in the opposite direction along the original incident path, and reflected by the half mirror or the half mirror. An aerial projection apparatus, wherein a real image of the predetermined image is formed in the air on one side of the half mirror by transmitted light that has passed through a mirror.
  2.  前記実像がぼやけて見えるように、前記スクリーンが前記ホログラムの干渉情報に基づいて投影される所定位置よりも前方又は後方の位置に配置されていることを特徴とする請求項1に記載の空中投影装置。 2. The aerial projection according to claim 1, wherein said screen is arranged at a position forward or rearward of a predetermined position projected on the basis of interference information of said hologram so that said real image appears blurred. Device.
  3.  前記再帰性反射素子の鏡面反射により、前記ハーフミラーの他面側に視認される前記実像に対応する虚像が視野外に移動するように前記再帰性反射素子が傾斜されていることを特徴とする請求項1に記載の空中投影装置。 The retroreflective element is tilted so that a virtual image corresponding to the real image viewed on the other side of the half mirror moves out of the field of view due to specular reflection of the retroreflective element. The aerial projection device according to claim 1.
  4.  前記ホログラフィックプロジェクタ部から、少なくとも二つの所定像の各ホログラムの干渉情報に基づいて回折された回折光が射出され、
     前記所定像の一方の前記干渉情報に基づく回折光より、前記スクリーンに照射されて前記ハーフミラー及び前記再帰性反射素子を経由して空中に結像される前記所定像の一方の実像に併せて、
     前記所定像の他方の前記干渉情報に基づく回折光が前記スクリーンに照射されることなく前記ハーフミラーを透過して前記再帰性反射素子の再帰性反射光射出面に照射されて、前記所定像の他方が投影されると共に、前記再帰性反射光射出面から射出された再帰性反射光の前記ハーフミラーでの反射光により、前記ハーフミラーの反射面と反対面側の空中に前記所定像の他方の虚像が視認できることを特徴とする請求項1に記載の空中投影装置。
    Diffracted light diffracted based on interference information of each hologram of at least two predetermined images is emitted from the holographic projector unit,
    The screen is irradiated with the diffracted light based on the interference information of one of the predetermined images, and the real image of one of the predetermined images is formed in the air via the half mirror and the retroreflective element. ,
    The diffracted light based on the interference information of the other of the predetermined image is transmitted through the half mirror without being irradiated to the screen, and is irradiated to the retroreflected light exit surface of the retroreflective element, thereby forming the predetermined image. The other image is projected, and the retroreflected light emitted from the retroreflected light exit surface is reflected by the half mirror, causing the other of the predetermined images to be projected in the air on the side opposite to the reflecting surface of the half mirror. 2. The aerial projection device according to claim 1, wherein a virtual image of is visible.
  5.  前記実像及び/又は前記虚像がぼやけて見えるように、前記スクリーン及び/又は前記再帰性反射素子が前記ホログラムの干渉情報に基づいて投影される所定位置よりも前方又は後方の位置に配置されていることを特徴とする請求項4に記載の空中投影装置。 The screen and/or the retroreflective element are arranged at a position forward or rearward of a predetermined position projected based on the interference information of the hologram so that the real image and/or the virtual image appear blurred. 5. The aerial projection device according to claim 4, characterized in that:
  6.  前記スクリーンが、立体スクリーンであることを特徴とする請求項1に記載の空中投影装置。 The aerial projection device according to claim 1, wherein the screen is a stereoscopic screen.
  7.  前記スクリーンが、和紙又は不織布で形成されていることを特徴する請求項1又は請求項6に記載の空中投影装置。 The aerial projection device according to claim 1 or claim 6, wherein the screen is made of Japanese paper or non-woven fabric.
  8.  前記ハーフミラーと前記スクリーンとの組み合わせが少なくとも二対設けられ、前記二対の組み合わせが、前記ハーフミラーの各々の同一面側の空中に前記実像が結像するように所定間隔を置いて直列に設置されていることを特徴とする請求項1に記載の空中投影装置。 At least two pairs of the half mirror and the screen are provided, and the two pairs are arranged in series with a predetermined interval so that the real image is formed in the air on the same side of each of the half mirrors. 2. The aerial projection device according to claim 1, wherein the aerial projection device is installed.
  9.  前記実像の少なくとも一方が前記ハーフミラーに対して接離方向に移動するように、前記実像の一方に対応する投影像が前記ホログラフィックプロジェクタ部から投影される前記スクリーンが前記ハーフミラーに対して接離方向に移動可能に設けられていることを特徴とする請求項8に記載の空中投影装置。 The screen on which a projected image corresponding to one of the real images is projected from the holographic projector unit is in contact with the half mirror such that at least one of the real images moves in a contacting/separating direction with respect to the half mirror. 9. The aerial projection device according to claim 8, wherein the aerial projection device is provided so as to be movable in a separation direction.
  10.  前記ホログラムが、計算機合成ホログラムであって、前記平行光を前記計算機合成ホログラムの干渉情報に基づいて回折光に変調する空間光変調器が設けられていることを特徴とする請求項1に記載の空中投影装置。 2. The hologram according to claim 1, wherein said hologram is a computer-generated hologram, and a spatial light modulator is provided for modulating said parallel light into diffracted light based on interference information of said computer-generated hologram. Aerial projection device.
  11.  前記計算機合成ホログラムが、振幅ホログラムであって、前記振幅ホログラムが下記数式(1)
    Figure JPOXMLDOC01-appb-M000001
    に基づいて計算されていることを特徴とする請求項10に記載の空中投影装置。
    The computer-generated hologram is an amplitude hologram, and the amplitude hologram is represented by the following formula (1)
    Figure JPOXMLDOC01-appb-M000001
    11. The aerial projection device of claim 10, wherein the aerial projection device is calculated based on .
  12.  前記計算機合成ホログラムが位相ホログラムであって、前記位相ホログラムが下記数式(2)
    Figure JPOXMLDOC01-appb-M000002
    に基づいて計算されていることを特徴とする請求項10に記載の空中投影装置。

     
    The computer-generated hologram is a phase hologram, and the phase hologram is represented by the following formula (2)
    Figure JPOXMLDOC01-appb-M000002
    11. The aerial projection device of claim 10, wherein the aerial projection device is calculated based on .

PCT/JP2022/026020 2021-06-29 2022-06-29 Aerial projection device WO2023277080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532029A JPWO2023277080A1 (en) 2021-06-29 2022-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107811 2021-06-29
JP2021-107811 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023277080A1 true WO2023277080A1 (en) 2023-01-05

Family

ID=84690246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026020 WO2023277080A1 (en) 2021-06-29 2022-06-29 Aerial projection device

Country Status (2)

Country Link
JP (1) JPWO2023277080A1 (en)
WO (1) WO2023277080A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113182A (en) * 2004-10-13 2006-04-27 Masaaki Okamoto Multi-viewpoint stereoscopic display device
US20180224803A1 (en) * 2017-02-06 2018-08-09 Boe Technology Group Co., Ltd. Backlight module, spatial light modulator, holographic display device and holographic display method therefor
WO2020167263A1 (en) * 2019-02-12 2020-08-20 Cy Vision A.S. Holographic head-up display device
WO2020189411A1 (en) * 2019-03-20 2020-09-24 ソニー株式会社 Image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113182A (en) * 2004-10-13 2006-04-27 Masaaki Okamoto Multi-viewpoint stereoscopic display device
US20180224803A1 (en) * 2017-02-06 2018-08-09 Boe Technology Group Co., Ltd. Backlight module, spatial light modulator, holographic display device and holographic display method therefor
WO2020167263A1 (en) * 2019-02-12 2020-08-20 Cy Vision A.S. Holographic head-up display device
WO2020189411A1 (en) * 2019-03-20 2020-09-24 ソニー株式会社 Image display device

Also Published As

Publication number Publication date
JPWO2023277080A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9270978B2 (en) Method and device for 3-D display based on random constructive interference
JP5664640B2 (en) Light source device, image display device, projector, and illumination device
KR102227780B1 (en) Optical module
US8654234B2 (en) Bi-directional screen
CN201199289Y (en) Three-dimensional display apparatus base on random constructive interference
US9641828B2 (en) Projector and projection display device
EP0580354B1 (en) Stereoscopic display apparatus and method
EP0580353B1 (en) Stereoscopic display apparatus and method
US20010006426A1 (en) Holographic projection screen for displaying a three-dimensional color images and optical display system using the holographic screen
JP2004534276A (en) Image projection apparatus and method
WO2020080111A1 (en) Image display device
JP2007316640A (en) Light modulator for reducing laser speckles and light modulator module
TWI518371B (en) Surface lighting device and backlight device
WO2019073688A1 (en) Image display device
WO2023277080A1 (en) Aerial projection device
TWI640721B (en) Surface lighting device and backlight device
KR102110085B1 (en) Showcase displaying 3-dimension images and control method thereof
CA2536629A1 (en) Method for producing a medium for reproducing three-dimensional configurations
KR20020062662A (en) Hologram forming method
JP2023008930A (en) head-up display device
JP2023008931A (en) Projection object body guide method and projection object body guide machine
WO2024079832A1 (en) Interface device
WO2021111954A1 (en) Image display device
JP2004336680A (en) Image display device
KR20210086361A (en) Align Apparatus using the Hollogram

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532029

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE