WO2023277069A1 - Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector - Google Patents

Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector Download PDF

Info

Publication number
WO2023277069A1
WO2023277069A1 PCT/JP2022/025983 JP2022025983W WO2023277069A1 WO 2023277069 A1 WO2023277069 A1 WO 2023277069A1 JP 2022025983 W JP2022025983 W JP 2022025983W WO 2023277069 A1 WO2023277069 A1 WO 2023277069A1
Authority
WO
WIPO (PCT)
Prior art keywords
pkr
virus
seq
sequence
rna
Prior art date
Application number
PCT/JP2022/025983
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 佐伯
Original Assignee
株式会社レプリテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レプリテック filed Critical 株式会社レプリテック
Priority to AU2022302552A priority Critical patent/AU2022302552A1/en
Priority to JP2023532022A priority patent/JPWO2023277069A1/ja
Priority to CN202280045809.9A priority patent/CN117651774A/en
Priority to EP22833215.1A priority patent/EP4365298A1/en
Priority to CA3225564A priority patent/CA3225564A1/en
Priority to TW111149926A priority patent/TW202400795A/en
Priority to PCT/JP2022/047801 priority patent/WO2024004235A1/en
Publication of WO2023277069A1 publication Critical patent/WO2023277069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/12011Reoviridae
    • C12N2720/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18411Morbillivirus, e.g. Measles virus, canine distemper
    • C12N2760/18421Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18411Morbillivirus, e.g. Measles virus, canine distemper
    • C12N2760/18451Methods of production or purification of viral material
    • C12N2760/18452Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18711Rubulavirus, e.g. mumps virus, parainfluenza 2,4
    • C12N2760/18721Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18711Rubulavirus, e.g. mumps virus, parainfluenza 2,4
    • C12N2760/18751Methods of production or purification of viral material
    • C12N2760/18752Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18821Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18851Methods of production or purification of viral material
    • C12N2760/18852Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20251Methods of production or purification of viral material
    • C12N2760/20252Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for producing a minus-strand RNA viral vector and the produced minus-strand RNA viral vector.
  • Minus-strand RNA viral vectors typified by Sendai virus vectors
  • Minus-strand RNA viral vectors typified by Sendai virus vectors can be advantageously produced in packaging cells by producing them from cDNA (Patent Document 1).
  • E3L of vaccinia virus is a double-stranded RNA-binding protein and has been reported to promote interferon resistance and intracellular proliferation (Non-Patent Document 1).
  • PSR protein kinase R
  • Inhibition of protein kinase R (PKR) using K3L, E3L, VAI RNA, EBER, ⁇ 3, TRBP, and combinations thereof in the production of poxvirus or vaccinia virus, PKR being a double-stranded RNA binding protein is disclosed (Patent Document 2).
  • C8L and K3L are pseudosubstrates of protein kinase R (PKR) (Non-Patent Document 2).
  • NS5A or NS5A(1-148) may inhibit antiviral activity against HCV (Non-Patent Document 3).
  • a virus production method using VAI RNA has been disclosed (Patent Document 3).
  • the present invention provides a method for producing a minus-strand RNA viral vector and the produced minus-strand RNA viral vector.
  • the present inventors found that, in a method for producing a minus-strand RNA virus , It was found that allowing the packaging cell to express the genomic RNA of the minus-strand RNA virus to form the minus-strand RNA virus increased the amount of virus produced in the packaging cell.
  • a method for producing a negative-strand RNA virus or viral vector comprising: from a gene encoding a protein kinase R (PKR) inhibitory factor (e.g., a PKR inhibitory viral factor, human nc886, human p58 IPK , or NS5A, or a combination thereof) operably linked to a regulatory sequence; expressing and supplying the factor to packaging cells; Expressing the genomic RNA of a minus-strand RNA virus or viral vector in a packaging cell to form a minus-strand RNA virus or viral vector in the presence of said factor ⁇ e.g., a PKR-inhibiting factor, e.g., a PKR-inhibiting expressing the genomic RNA of the minus-strand RNA virus or viral vector in the packaging cell in the presence of the viral factor of to form the minus-strand RNA virus or viral vector;
  • the described DNA can be used to express the genomic RNA
  • the PKR inhibitory factor is adenovirus VAI RNA, EB virus EBER, human nc886, HIV virus TAR, poliovirus 2A pro , vaccinia virus E3L, reovirus ⁇ 3, influenza virus NS1 , human p58 IPK , hepatitis C virus NS5A, vaccinia virus K3L, HIV virus Tat, herpes simplex virus Us11, and herpes simplex virus ICP34.5, and orthologs thereof.
  • the minus-strand RNA virus or viral vector is produced in the absence of a helper virus.
  • the genomic RNA further comprises a gene encoding a PKR inhibitory factor operably linked to the regulatory sequence.
  • the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
  • the packaging cells are Vero cells or LLC-MK2 cells.
  • the method described in . (9) The RNA genome of a negative-strand RNA virus or viral vector that expressably contains a gene encoding any one or more of the PKR inhibitory factors.
  • (10) A minus-strand RNA virus or viral vector comprising the RNA genome of (9) above.
  • (11) The minus-strand RNA virus or viral vector according to (10) above, further comprising a target gene.
  • (12) A composition comprising the minus-strand RNA virus or viral vector of (10) or (11) above.
  • composition according to (12) above which has an infectious titer of 1 ⁇ 10 5 CIU/mL or more.
  • (16) The composition according to (12) above, which has an infectious titer of 1 ⁇ 10 6 CIU/mL or more.
  • (17) The composition according to (12) above, which has an infectious titer of 1 ⁇ 10 7 CIU/mL or more.
  • (18) The method according to any one of (1) to (8) above, wherein the PKR inhibitory factor has the sequence set forth in any one of SEQ ID NOS: 4-31.
  • Forming a negative-strand RNA virus or viral vector comprises placing in the packaging cell a plasmid having a gene encoding viral genomic RNA operably linked to a second control sequence and a third control (1) to (8) above, comprising introducing a plasmid having a gene encoding a viral component operably linked to a sequence and expressing the genomic RNA and the viral component in the cell.
  • the method according to any one of (27) The method according to (26) above, wherein the third regulatory sequence is the EF1 ⁇ promoter and the viral component comprises either or both of the N protein and the L protein.
  • the third regulatory sequence is the EF1 ⁇ promoter, and the viral component is one or more selected from the group consisting of N protein, P protein and L protein, or all of them.
  • the method of. (9) The method according to (28) above, wherein the packaging cells are Vero cells.
  • the third regulatory sequence is the EF1 ⁇ promoter and the viral component comprises either or both of the P protein and the L protein.
  • the third regulatory sequence is the EF1 ⁇ promoter and the viral component is the L protein.
  • the packaging cells are LLC-MK2 cells.
  • the packaging cells are LLC-MK2 cells.
  • the PKR inhibitory factor is A method according to any of the above, comprising (i) E3L or a portion thereof, preferably a peptide comprising at least the C-terminal 107 amino acids of E3L, and (ii) K3L. (35) the PKR inhibitory factor is A method according to any of the above, comprising (i) E3L or a portion thereof, preferably a peptide comprising at least the C-terminal 107 amino acids of E3L, and (iii) Y3. (36) The method according to (34) above, wherein the PKR inhibitory factor further comprises VAI. (37) The method according to (35) above, wherein the PKR inhibitory factor further comprises VAI.
  • the PKR inhibitory factor comprises VAI
  • VAI is a molecule having the sequence set forth in SEQ ID NO:17.
  • the PKR inhibitory factor comprises VAI and the PKR inhibitory factor is a molecule having the sequence set forth in SEQ ID NO:19.
  • the PKR inhibitory factor is a molecule having the sequence set forth in any of SEQ ID NOS: 18, 21-26.
  • the PKR inhibitory factor comprises nc886.
  • the PKR inhibitory agent is a molecule having the sequence set forth in SEQ ID NO: 13 or 14.
  • the genomic RNA has a gene encoding a target protein
  • the PKR inhibitory factor is VAI or a sequence according to any one of SEQ ID NOS: 17-26. wherein VAI is contained in the 3'UTR of a gene encoding said protein of interest.
  • the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
  • the packaging cells are Vero cells or LLC-MK2 cells.
  • the packaging cells are a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells, and do not contain other cells. The method described in .
  • RNA genome according to (9) above which has a gene encoding a target protein, and wherein the PKR inhibitory factor has VAI or a sequence according to any one of SEQ ID NOS: 17-26.
  • molecule wherein the RNA molecule having a sequence set forth in VAI or any of SEQ ID NOS: 17-26 is contained in the 3'UTR of a gene encoding said protein of interest.
  • a minus-strand RNA virus or viral vector comprising the RNA genome of (47) above.
  • a method for producing a negative-strand RNA virus or viral vector comprising: expressing the factor from the gene encoding NS5A operably linked to regulatory sequences and supplying it to packaging cells; expressing the genomic RNA of a negative-strand RNA virus or viral vector in a packaging cell in the presence of NS5A to form a negative-strand RNA virus or viral vector; recovering the formed negative-strand RNA virus or viral vector; including the relationship between said virus or viral vector and said NS5A is heterologous and/or the relationship between said regulatory sequence and said NS5A is heterologous; Method.
  • a method for producing a negative-strand RNA virus or viral vector comprising: expressing the factor from a gene encoding the PKR-inhibiting factor operably linked to regulatory sequences and supplying it to packaging cells, wherein the PKR-inhibiting factor is human nc886 (VTRNA2-1) and either or both of human p58 IPK ; allowing the packaging cell to express the genomic RNA of the negative-strand RNA virus or viral vector in the presence of the PKR inhibitory factor to form a negative-strand RNA virus or viral vector; recovering the formed negative-strand RNA virus or viral vector; including, wherein the relationship between the regulatory sequence and the PKR inhibitory factor may be heterologous; Method.
  • the minus-strand RNA virus or viral vector is a Sendai virus vector.
  • the genomic RNA further comprises a gene encoding a PKR inhibitory factor operably linked to the regulatory sequence.
  • the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
  • the packaging cells are Vero cells or LLC-MK2 cells.
  • RNA genome of a negative-strand RNA virus or viral vector that expressably comprises a gene encoding any one or more of the PKR inhibitory factors.
  • a minus-strand RNA virus or viral vector comprising the RNA genome of (56) above.
  • a composition comprising the minus-strand RNA virus or viral vector of (57) or (58) above.
  • (61) A gene expression vector comprising the DNA of (60) above operably linked to a control sequence.
  • a gene expression vector for the RNA genome, comprising a regulatory sequence (preferably a promoter sequence), a first DNA and a second DNA in that order, the first DNA encodes the RNA genome of an RNA virus;
  • the second DNA encodes a protein kinase R (PKR) inhibitory factor (e.g., a PKR inhibitory viral factor (preferably VAI RNA, EBER, nc886, and TAR, and orthologs thereof)).
  • PPKR protein kinase R
  • a gene expression vector that is transcribed into the RNA of (72) The gene expression vector of (71) above, wherein the protein kinase R (PKR) inhibitory factor is VAI. (73) The gene expression vector according to (71) above, further comprising a self-cleaving ribozyme sequence between the first DNA and the second DNA. (74) The gene expression vector of (72) above, further comprising a self-cleaving ribozyme sequence between the first DNA and the second DNA.
  • VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and may have a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17. .
  • VAI RNA wherein the VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and corresponds to a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17; and
  • VAI Any of the above inventions having a sequence that includes either or both of the 5' and 3' sequences of RNA.
  • FIG. 1A is the secondary structure of VAI RNA.
  • the 74th base is indicated by an arrow.
  • FIG. 1B is a sequence containing VAI RNA and its mutated sequence.
  • FIG. 2 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of VAI.
  • FIG. 3 shows the results of an experiment confirming the infectious titer of the minus-strand RNA viral vector produced in FIG.
  • FIG. 4 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of nc886.
  • FIG. 5 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR-inhibiting viral factors.
  • FIG. 1B is a sequence containing VAI RNA and its mutated sequence.
  • FIG. 2 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the
  • FIG. 6 shows the results of an experiment confirming the infectious titer of the minus-strand RNA viral vector produced in FIG.
  • FIG. 7 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of a fusion sequence of a PKR inhibitor.
  • FIG. 8 shows the results of an experiment in which expression promoters were compared in LLC-MK2-F cells and the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR inhibitors was confirmed.
  • FIG. 9 shows the results of an experiment in which expression promoters were compared in Vero-F cells and the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR inhibitors was confirmed.
  • FIG. 9 shows the results of an experiment in which expression promoters were compared in Vero-F cells and the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR inhibitors was confirmed.
  • FIG. 10 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of multiple PKR inhibitors.
  • FIG. 11 shows the results of an experiment confirming the infection titer of the minus-strand RNA viral vector produced in FIG.
  • FIG. 12 shows the results of an experiment confirming the reconstitution efficiency of negative-strand RNA viral vectors produced with or without a PKR inhibitory factor in the viral genome.
  • FIG. 13 shows the results of an experiment confirming the infection titer of the minus-strand RNA viral vector produced in FIG.
  • Fig. 14 shows the results of confirming the reconstitution efficiency of a minus-strand RNA viral vector with VAI RNA extended to the 5' and 3' sides.
  • FIG. 11 shows the results of an experiment confirming the infection titer of the minus-strand RNA viral vector produced in FIG.
  • FIG. 12 shows the results of an experiment confirming the reconstitution efficiency of negative-strand RNA viral vectors produced with or without a
  • FIG. 15 shows the effect of introducing a hammerhead ribozyme between the T7 promoter and the DNA encoding the SeV genome and the efficiency of SeV reconstitution using packaging cells that constitutively expressed a PKR inhibitor.
  • Figure 16 shows that the introduction of the hammerhead ribozyme between the T7 promoter and the DNA encoding the SeV genome and the introduction of the HDV ribozyme between the DNA encoding the SeV genome and the VAI RNA increased the SeV reconstitution efficiency.
  • FIG. 17 shows the results of PCR experiments demonstrating that the HDV ribozyme self-cleavages VAI RNA from the SeV genome.
  • FIG. 17 shows the results of PCR experiments demonstrating that the HDV ribozyme self-cleavages VAI RNA from the SeV genome.
  • FIG. 18 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstitution plasmid on SeV reconstitution efficiency.
  • FIG. 19 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstitution plasmid in combination with E3Y3 on SeV reconstitution efficiency.
  • FIG. 20 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstituting plasmid in combination with E3Y3 on SeV infectious titer.
  • FIG. 21A shows maps of the pCAG-SeV and pEF1-SeV constructs used in the experiment.
  • FIG. 21B shows the reconstitution efficiency of pCAG-SeV and pEF1-SeV.
  • FIG. 22 shows the effect of VAI RNA on the reconstitution efficiency of mumps virus (MuV; family Paramyxoviridae, genus Rubulavirus).
  • FIG. 23 shows the effect of VAI RNA on the reconstitution efficiency of measles virus (MeV; family Paramyxoviridae, genus Morbillivirus).
  • FIG. 24 shows the effect of E3Y3 on the reconstitution efficiency of vesicular stomatitis virus (VSV; family Rhabdoviridae, genus Vesiculovirus).
  • Figure 25 shows the reconstitution efficiency of SeV, MeV, MuV using heterologous RNA polymerases.
  • Figure 26 shows the efficiency of VSV reconstitution using heterologous RNA polymerases.
  • Figure 27A shows a map of the p3vLPNP construct used in the experiment.
  • FIG. 27B shows the results of reconstitution of SeV with pCAG-SeV or pEF1-SeV and p
  • a "minus-strand RNA viral vector” is a recombinant virus obtained by modifying a virus having a minus-strand RNA genome (that is, a minus-strand RNA virus) for introduction of a target gene.
  • Negative-strand RNA viruses include Orthomyxoviridae (orthomyxoviruses such as influenza virus), Paramyxoviridae (paramyxoviruses such as the genus Mobilivirus), Rhabdoviridae (rhabdoviruses such as rabies virus), filo Viridae (filoviruses such as Ebola and Marburg virus), and Bunyaviridae (buniaviruses such as Hantavirus).
  • Paramyxoviruses include viruses of the subfamily Orthoparamyxovirinae.
  • Viruses of the subfamily Orthoparamyxovirinae include viruses of the genus Respirovirus, such as Sendai virus.
  • PPR protein kinase R
  • PKR protein kinase R
  • EIF2AK2 EIF2AK2 gene in humans.
  • PKR contains an N-terminal double-stranded RNA binding domain and a C-terminal kinase domain.
  • the kinase domain has an apoptosis-inducing function.
  • PKR is activated by dimerization by binding to double-stranded RNA, followed by autophosphorylation.
  • Activated PKR phosphorylates the eukaryotic translation initiation factor eIF2 ⁇ . Phosphorylation of eIF2 ⁇ inhibits translation of intracellular mRNA.
  • Activated PKR can also induce apoptosis in cells to prevent viral spread.
  • Some viruses possess factors that oppose PKR ie, PKR-inhibiting viral factors).
  • certain viruses produce decoy RNAs that bind to PKR and prevent its activation.
  • Decoy RNAs include adenovirus VAI RNA (e.g., having the sequence set forth in SEQ ID NO: 17), EB virus EBER (e.g., having the sequence set forth in SEQ ID NO: 4), and HIV TAR (e.g., having the sequence having the sequence described in number 5).
  • Poliovirus 2A pro eg, having the sequence shown in SEQ ID NO: 6 is known as a molecule that induces degradation of PKR.
  • a terminator eg, T7 terminator for T7 polymerase
  • a terminator may be ligated to the 3' end of the nucleotide encoding the RNA.
  • Factors that mask viral double-stranded RNA to prevent activation of PKR include vaccinia virus E3L (e.g., having the sequence set forth in SEQ ID NO: 7), reovirus ⁇ 3 (e.g., having the sequence set forth in SEQ ID NO: 8). ), herpes simplex virus Us11 (eg, having the sequence set forth in SEQ ID NO:29), and influenza virus NS1 (eg, having the sequence set forth in SEQ ID NO:28).
  • Pseudosubstrates include K3L of vaccinia virus (eg, having the sequence set forth in SEQ ID NO: 10) and Tat of HIV (eg, having the sequence set forth in SEQ ID NO: 11).
  • Molecules that induce substrate dephosphorylation include ICP34.5 of herpes simplex virus (eg, having the sequence set forth in SEQ ID NO: 12).
  • PKR inhibitory viral factors are also occurring.
  • nc886 is a non-coding RNA, also referred to as VTRNA2-1, CBL3, and hvg-5. nc886 functions as a direct inhibitor of PKR. nc886 can have, for example, the sequence set forth in SEQ ID NO:13.
  • p58 IPK is a protein that is found as a cytoplasmic protein and functions as an inhibitor of PKR. The p58 IPK can be, for example, human p58 IPK , and can have, for example, the sequence of SEQ ID NO:9. These factors can be naturally occurring.
  • NS5A is a nonstructural protein possessed by hepatitis C virus (HCV).
  • HCV hepatitis C virus
  • NS5A is a phosphorylated protein and has been shown to be essential for HCV genome replication.
  • NS5A (for example, having the sequence set forth in SEQ ID NO: 15) can inhibit antiviral activity against HCV and brain myocardial virus (Medical Journal of Kobe University, 2003, 64(1/2): 7-15 reference).
  • NS5A may be deleted from its C-terminal side (for example, after the 149th amino acid).
  • NS5A can be NS5A(1-148), having amino acids 1-148 thereof (eg, having the sequence set forth in SEQ ID NO: 16). These factors can be naturally occurring.
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 17, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 17 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 17 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR). According to Examples described later, the viral reconstitution rate is improved by inhibiting PKR in packaging cells.
  • PKR eg, PKR such as human PKR and monkey PKR
  • the PKR to be inhibited is preferably the animal species from which the packaging cells are derived.
  • Vero cells are derived from African green monkeys and LLC-MK2 cells are derived from rhesus monkeys. Therefore, it is preferable to inhibit African green monkey and rhesus monkey PKR in these cells, respectively.
  • the VAI RNA may have the 5' sequence of the VAI RNA added to its 5' end.
  • the VAI RNA may extend 5' to include the 5' flanking region. Sequences added to the 5' end include the sequences at positions 1-84 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA.
  • VAI RNA may have the nucleotide sequence set forth in SEQ ID NO:34.
  • the VAI RNA may have the 3' sequence of the VAI RNA added to its 3' end.
  • the VAI RNA may extend 3' to include the 3' flanking region. Sequences added to the 3' end include the sequences of positions 265-330 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA.
  • VAI RNA may have the nucleotide sequence set forth in SEQ ID NO:35.
  • VAI RNA may have the 5' sequence of VAI RNA added to its 5' end and the 3' sequence of VAI RNA added to its 3' end. .
  • the VAI RNA may extend 5' and 3' to include a 5' flanking region and a 3' flanking region, respectively. Sequences added to the 5' end include the sequences at positions 1-84 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA. Sequences added to the 3' end include the sequences of positions 265-330 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA.
  • the VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and is a sequence corresponding to a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17, wherein: (i) VAI RNA and (ii) a sequence containing either or both of the 5' and 3' sequences of VAI RNA.
  • the VAI RNA may have a sequence that is part of SEQ ID NOS: 19, 20, and 23-26 and includes the nucleotide sequence set forth in SEQ ID NO:17.
  • the EBER can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:4, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:4 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 4 can be a nucleic acid, or (iv) can be a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the TAR can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:5, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:5 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:5 can be a nucleic acid, or (iv) can be a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the 2A pro can be a peptide comprising (i) the sequence set forth in SEQ ID NO:6, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:6 , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity with the sequence set forth in SEQ ID NO: 6 or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • E3L can be a peptide comprising (i) the sequence set forth in SEQ ID NO:7, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:7 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:7 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • ⁇ 3 can be (i) a peptide comprising the sequence set forth in SEQ ID NO:8, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:8 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:8 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the p58 IPK can be a peptide comprising (i) the sequence set forth in SEQ ID NO:9, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:9 , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO:9 or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • K3L can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 10, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 10 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 10 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • Tat can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 11, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 11 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 11 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • ICP34.5 can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 12, (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 12 may be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) a sequence having 90% or more or 95% or more identity with the sequence set forth in SEQ ID NO: 12 or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • nc886 can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 13, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 13 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 13 can be a nucleic acid, or (iv) can be a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • nc886 can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 14, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 14 are It can be a nucleic acid consisting of a deleted, substituted, inserted, and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 14 can be a nucleic acid, or (iv) can be a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 18, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 18 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 18 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 19, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 19 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 19 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:20, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:20 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 20 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:21, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:21 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 21 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:22, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:22 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 22 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:23, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:23 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 23. or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:24, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:24 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 24 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:25, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:25 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 25 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:26, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:26 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 26 or (iv) a fragment thereof, and It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • NS1 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:28, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:28 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 28 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • Us11 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:29, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:29 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 29 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • E3K3 can be a fusion sequence of part or all of E3L (e.g., the C-terminal 107 amino acid sequence of E3L) and part or all of K3, preferably part of E3L (more preferably , the C-terminal 107 amino acid sequence of E3L) and K3, and may be a peptide having a function of inhibiting PKR (for example, PKR such as human PKR and monkey PKR).
  • PKR for example, PKR such as human PKR and monkey PKR.
  • E3K3 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:30, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:30 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 30 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • E3Y3 can be a fusion sequence of part or all of E3L (e.g., the C-terminal 107 amino acid sequence of E3L) and part or all of Y3, preferably part of E3L (more preferably , the C-terminal 107 amino acid sequence of E3L) and Y3, and may be a peptide having a function of inhibiting PKR (for example, PKR such as human PKR and monkey PKR).
  • PKR for example, PKR such as human PKR and monkey PKR
  • E3Y3 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:31, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:31 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 31 may be a peptide, or (iv) a fragment thereof, and It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
  • PKR eg, PKR such as human PKR and monkey PKR
  • packaging cells are cells that produce viral vectors.
  • the viral genome of a viral vector performs one or more functions selected from the group consisting of propagation, replication, and spread (including infection of other cells).
  • the factor has been destroyed and engineered so that it cannot proliferate, replicate, or spread after cell infection.
  • the packaging cell complements the disrupted viral factors to produce the viral vector and expresses a portion of the disrupted viral factors to restore viral production.
  • Packaging cells may stably or transiently harbor such factors in their genome.
  • a Sendai virus vector is classically obtained by producing a Sendai virus whose genome lacks the F gene, using packaging cells that supply the F gene.
  • the supplied F gene is activated in the presence of trypsin, but a type of F gene (F5R) that is activated by furin, which is ubiquitously present in cells, has also been developed, increasing the convenience of virus production. (see for example WO2005/071085A).
  • F5R type of F gene
  • vectors have been constructed using Z strains, which are attenuated strains, as a basic skeleton, and have been devised to further enhance safety for medical application to humans.
  • Z strains which are attenuated strains, as a basic skeleton
  • techniques have been developed to delete any one or more of the F, HN, and M genes from the viral genome to render the virus non-transmissible.
  • an F gene-deleted viral genome is preferably used.
  • the viral genome is operably linked to regulatory sequences (eg, the T7 promoter) that can drive production of the viral genome. This allows the Sendai virus genome to be produced in the packaging cells from the cDNA.
  • T7 RNA polymerase can be supplied, for example, by a helper virus such as vaccinia virus. expressing in the packaging cells N, P, F, and L operably linked to regulatory sequences that drive transcription by an RNA polymerase (e.g., pol II), thereby supplying viral particle components; Viral particles can be formed within the packaging cells.
  • a helper virus such as vaccinia virus.
  • RNA polymerase e.g., pol II
  • Viral particles can be formed within the packaging cells.
  • LLC-MK2 cells derived from monkey kidney are used as packaging cells. This results in viral particles that can infect cells once, but cannot subsequently spread to other cells. Virus particles can be used after concentration and/or purification, if desired.
  • the virus' own regulatory sequences are optionally introduced to allow transcription by an RNA-dependent RNA polymerase.
  • Negative-strand RNA viruses include Orthomyxoviridae (orthomyxoviruses such as influenza virus), Paramyxoviridae (paramyxoviruses such as the genus Mobilivirus), Rhabdoviridae (rhabdoviruses such as rabies virus), filo Viridae (filoviruses such as Ebola and Marburg virus), and Bunyaviridae (buniaviruses such as Hantavirus).
  • the minus-strand RNA virus is preferably a Paramyxoviridae virus, preferably a Paramyxoviridae, and preferably a Sendai virus.
  • regulatory sequence refers to a sequence that has the activity of driving a gene operably linked thereto and transcribing RNA from the gene.
  • a control sequence is, for example, a promoter.
  • Promoters include, for example, class I promoters (which can be used for transcription of rRNA precursors), class II promoters (which are composed of a core promoter and an upstream promoter element and can be used for transcription of mRNAs), and class III promoters (which can be used for transcription of mRNA). , II, and III).
  • a minus-strand RNA viral vector has a disrupted (e.g., deleted) factor on its genome that is related to proliferation or infection of a minus-strand RNA virus into cells, and proliferation in cells other than packaging cells. or has reduced or no substantial infectivity.
  • such vectors are rendered initially infective in cells by making them under conditions that supply the packaging cells with factors for disrupted growth or infection. This ensures that vectors obtained from packaging cells are infective, but vectors that subsequently infect cells other than packaging cells are unable to produce more infectious particles, thereby resulting in vector safety has been improved.
  • the method of the present invention comprises: (A) expressing from a gene encoding a protein kinase R (PKR) inhibitory factor operably linked to a first regulatory sequence and supplying the factor to the packaging cell;
  • PPK protein kinase R
  • the first regulatory sequence can be a promoter that can transcribe RNA, for example, mRNA, and for example, various pol II promoters can be used.
  • the pol II promoter is not particularly limited, but includes, for example, CMV promoter, EF1 promoter (EF1 ⁇ promoter), SV40 promoter, MSCV promoter, hTERT promoter, ⁇ actin promoter, CAG promoter, and CBh promoter.
  • Promoters capable of transcription of RNA also include promoters that drive bacteriophage-derived RNA polymerase, such as T7 promoter, T3 promoter, and SP6 promoter, and pol III promoters, such as U6 promoter.
  • a promoter may also be an inducible promoter. These promoters can be preferably used for transcription of RNA factors.
  • An inducible promoter is a promoter that can induce expression of a polynucleotide operably linked to it only in the presence of an inducer driving the promoter.
  • Inducible promoters include promoters that induce gene expression by heating, such as heat shock promoters.
  • Inducible promoters also include promoters in which the inducer that drives the promoter is a drug.
  • Such drug-inducible promoters include, for example, Cumate operator sequences, ⁇ operator sequences (eg, 12 ⁇ Op), tetracycline system-inducible promoters, and the like.
  • Tetracycline-based inducible promoters include, for example, promoters that drive gene expression in the presence of tetracycline or its derivatives (eg, doxycycline), or reverse tetracycline-regulated transactivator (rtTA). Examples of tetracycline-inducible promoters include the TRE3G promoter.
  • Certain viruses are equipped with PKR-inhibiting viral factors to combat PKR.
  • a PKR-inhibiting viral factor naturally possessed by such viruses can be used as the PKR-inhibiting viral factor. Therefore, the species from which the viral genome and the PKR-inhibiting viral factor are derived may be homologous, but preferably heterologous.
  • Protein kinase R (PKR) inhibitory factors include, for example, decoy RNA that binds to PKR.
  • Decoy RNAs include, for example, VAI RNA, EBER, nc886, and TAR, and orthologues thereof.
  • the decoy RNA can be VAI RNA and its orthologues, particularly from adenovirus.
  • the decoy RNA may be EBER and its orthologues, particularly from Epstein-Barr (EB) virus.
  • the decoy RNA may be nc886 and its orthologues, particularly of human origin.
  • the decoy RNA may be TAR and its orthologues, particularly derived from human immunodeficiency virus (HIV). These factors can be preferably used in the present invention.
  • VAI one having the sequence set forth in SEQ ID NO: 17 can be used.
  • the VAI may further comprise its preceding and following sequences on the adenoviral genome.
  • a PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:19.
  • VAI may further include VAII.
  • the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:21.
  • VAI may have one or more mutations selected from the group consisting of substitutions, deletions, insertions and additions.
  • a PKR-inhibiting viral agent can have a sequence with a substitution at base 74 of VAI corresponding to base 74 in the sequence set forth in SEQ ID NO:17.
  • Substitution of the 74th base in the sequence shown in SEQ ID NO: 17 may be any one of G, A and C, preferably C.
  • the PKR-inhibiting viral agent may have a sequence set forth in SEQ ID NO:18 or 20.
  • the PKR-inhibiting viral agent may have a sequence set forth in SEQ ID NO:22 or 23.
  • a PKR-inhibiting viral factor may have a sequence having a substitution at the VAI base corresponding to the 191st base in the sequence set forth in SEQ ID NO:19.
  • the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:24.
  • the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:25.
  • the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:26.
  • nc886 may have the sequence of SEQ ID NO: 13 in certain aspects. nc886 may further comprise sequences before and after VAI. nc886 may further have sequences before and after VAI and have the sequence set forth in SEQ ID NO:14.
  • Protein kinase R (PKR) inhibitory agents also include molecules that induce the degradation of PKR.
  • Molecules that induce degradation of PKR include, for example, 2A pro and its orthologues.
  • the molecule that induces degradation of PKR can be 2A pro and its orthologues, particularly from poliovirus. These factors can be preferably used in the present invention.
  • Protein kinase R (PKR) inhibitory factors also include factors that mask viral double-stranded RNA.
  • Agents that mask viral double-stranded RNA can mask viral double-stranded RNA to prevent activation of PKR.
  • Factors that mask viral double-stranded RNA include, for example, E3L, ⁇ 3, Us11 and NS1 and their orthologues.
  • the factor that masks viral double-stranded RNA can be E3L and its orthologs, particularly from vaccinia virus. In certain preferred embodiments, it may be ⁇ 3 and its orthologues, particularly from reoviruses. In certain preferred embodiments, it may be Us11 and its orthologs, particularly from herpes simplex virus (HSV).
  • the viral double-stranded RNA masking agent can be NS1 and its orthologs, particularly from influenza virus. These factors can be preferably used in the present invention.
  • Protein kinase R (PKR) inhibitory agents also include agents that inhibit PKR dimerization.
  • Factors that inhibit PKR dimerization include, for example, p58 IPK and NS5A and their orthologs.
  • the agent that inhibits PKR dimerization can be p58 IPK and its orthologues, particularly of human origin.
  • the agent that inhibits PKR dimerization can be NS5A and its orthologs, particularly from hepatitis C virus (HCV). These factors can be preferably used in the present invention.
  • NS5A may be deleted from its C-terminal side (for example, after the 149th amino acid).
  • NS5A can be NS5A(1-148) with amino acids 1-148 thereof.
  • Pseudosubstrates include, for example, K3L and Tat and their orthologues.
  • the pseudosubstrate can be K3L and its orthologues, particularly from vaccinia virus.
  • the pseudosubstrate is Tat and its orthologues, particularly from HIV. These factors can be preferably used in the present invention.
  • Protein kinase R (PKR) inhibitory factors also include molecules that induce substrate dephosphorylation.
  • Molecules that induce substrate dephosphorylation include, for example, ICP34.5 and its orthologues.
  • the molecule that induces substrate dephosphorylation is ICP34.5 and its orthologs are derived from herpes simplex virus (HSV). These factors can be preferably used in the present invention.
  • HSV herpes simplex virus
  • the protein kinase R (PKR) inhibitory agent is adenovirus VAI RNA, EB virus EBER, human nc886, HIV virus TAR, poliovirus 2A pro , vaccinia virus E3L, reovirus ⁇ 3 , influenza virus NS1, human p58 IPK , hepatitis C virus NS5A, vaccinia virus K3L, HIV virus Tat, herpes simplex virus Us11, and herpes simplex virus ICP34.5, and orthologs thereof.
  • PTR protein kinase R
  • the protein kinase R (PKR) inhibitory factor may, in some embodiments, be stably integrated into the genome of the packaging cell. Expression can be driven by a first control sequence.
  • the first regulatory sequence can be a constitutive promoter or an inducible promoter.
  • a protein kinase R (PKR) inhibitory agent may, in certain embodiments, be transiently introduced into packaging cells.
  • protein kinase R (PKR) inhibitory agents can be carried on plasmid DNA. Plasmid DNA can be introduced into cells using techniques well known to those of skill in the art, thereby allowing protein kinase R (PKR) inhibitory factors to be expressed intracellularly from the plasmid DNA. Expression can be driven by a first control sequence.
  • the first regulatory sequence can be a constitutive promoter or an inducible promoter.
  • packaging cells can be, for example, Vero cells or LLC-MK2 cells.
  • the packaging cells can be a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells.
  • no cells other than packaging cells are used for virus production.
  • the packaging cell expresses the F gene.
  • the packaging cells constitutively express the F gene.
  • the F protein can be activated with trypsin.
  • the F protein can be F5R.
  • compositions for reconstitution of SeV are provided comprising Vero cells or LLC-MK2 cells. Reconstitution refers to supplying virus or viral vector components to packaging cells to form the virus or viral vector. Reconstitution of SeV can be performed as described herein.
  • a method for producing a minus-strand RNA virus or a minus-strand RNA viral vector comprising: (B) expressing the genomic RNA of a minus-strand RNA virus or viral vector in packaging cells to form a minus-strand RNA virus or viral vector in the presence of the factor ⁇ e.g., a PKR inhibitory factor, e.g., expressing the genomic RNA of a negative-strand RNA virus or negative-strand RNA viral vector in packaging cells in the presence of a PKR-inhibiting viral agent to form a negative-strand RNA virus or negative-strand RNA viral vector ⁇
  • the factor e.g., a PKR inhibitory factor, e.g., expressing the genomic RNA of a negative-strand RNA virus or negative-strand RNA viral vector in packaging cells in the presence of a PKR-inhibiting viral agent to form a negative-strand RNA virus or negative-strand RNA viral vector ⁇
  • a method is provided comprising:
  • the genomic RNA of a negative-strand RNA virus or negative-strand RNA viral vector can be expressed, for example, from a gene expression vector having DNA encoding the genomic RNA operably linked to a second regulatory sequence.
  • a gene expression vector can be used, for example, as long as it is a vector that at least transiently expresses the genomic RNA in cells, and a preferred example is a plasmid vector.
  • the genomic RNA contains 511F for the P protein, 69E, 116A and 183S for the M protein, 262T, 264R and 461E for the HN protein, and 1197S and 1796E for the L protein to minimize vector cytotoxicity. It may have mutations (see, for example, WO2003/025570).
  • virus particle components e.g., F, N, P, L
  • virus particle components e.g., F, N, P, L
  • PTR protein kinase R
  • NS5A protein kinase R
  • nc886 protein kinase R
  • Packaged cells can be cultured under conditions suitable for culture.
  • the gene encoding the viral genome can be driven by the T7 promoter.
  • the packaging cells can be supplied with T7 polymerase.
  • Genes encoding the viral genome may be driven by the CAG promoter or the EF1 promoter.
  • the packaging cells can be further supplied with SeV components (eg, N, P, and L, and equivalents thereof) to facilitate SeV formation in the packaging cells.
  • SeV components eg, N, P, and L, and equivalents thereof
  • the SeV components can be supplied, for example, by introducing a plasmid vector into the packaging cells.
  • the genes encoding the viral particle components are each operably linked to a third regulatory sequence.
  • the genes encoding the viral particle components (eg, F, N, P, L) each operably linked to a third regulatory sequence are integrated on a plasmid.
  • the third regulatory sequence can be a CAG promoter (eg, having the sequence set forth in SEQ ID NO:2).
  • at least one or all of the third regulatory sequences can be a non-CAG promoter, such as the EF1 ⁇ promoter (eg, having the sequence set forth in SEQ ID NO:1).
  • the genes encoding the viral particle components are carried on one or more gene expression vectors (preferably plasmids).
  • these components may be operatively linked to one control sequence or to multiple control sequences.
  • a control sequence can be, for example, the CAG or EF1 promoter.
  • the method for producing a negative-strand RNA virus or negative-strand RNA viral vector comprises: (C) further comprising recovering the formed negative-strand RNA virus or negative-strand RNA viral vector.
  • Virus particles formed in cells can be collected as appropriate. Viral particles formed intracellularly can be released extracellularly. Therefore, virus particles can be recovered from the culture medium. The recovered virus particles can be purified and/or concentrated as appropriate. Thus, an isolated, purified, or concentrated viral vector is provided. The resulting viral vector can be stored as appropriate. Storage can be performed, for example, in a deep freezer (eg, about -80°C), in a freezer (eg, about -20°C), or in a refrigerator (about 4°C). Storage can also be performed in liquid nitrogen. The viral vector is subjected to titer determination as necessary. Viral titers can be determined by methods well known to those skilled in the art.
  • the infectious titer of the minus-strand RNA virus or minus-strand RNA viral vector obtained by the method of the present invention is 1 ⁇ 10 5 CIU/mL or more, 2 ⁇ 10 5 CIU/mL or more, or 3 ⁇ 10 5 CIU.
  • the relationship between the species from which the virus or viral vector is derived and the species from which the PKR inhibitory factor is derived may be heterologous.
  • the species relationship from which the first regulatory sequence and the PKR inhibitory factor are derived may be homologous.
  • the relationship between the species from which the first regulatory sequence and the PKR inhibitory factor are derived may be heterologous.
  • the relationship between the species from which the virus or viral vector is derived and the species from which the PKR inhibitory factor is derived can be homogeneous.
  • the relationship between the species from which the virus or viral vector is derived and the species from which the PKR-inhibitory factor is derived is heterologous, and the first regulatory sequence and the PKR-inhibitory factor are derived from Species relationships can be heterogeneous.
  • the gene encoding the PKR inhibitory factor is integrated into the genome of the packaging cell.
  • the gene encoding the PKR inhibitory factor is incorporated into a vector (eg, plasmid DNA) that is introduced into packaging cells.
  • the position of integration is before the N gene, between the N gene and the P gene, between the P gene and the M gene, between the M gene and the HN gene, between the HN gene and the L gene, or between the L gene on the SeV genome. can be behind.
  • the location of integration may be in the 3'UTR of the gene encoding the protein of interest when the factor is RNA.
  • the N gene is sometimes written as the NP gene.
  • a gene encoding a PKR inhibitory factor is integrated into the RNA genome of a minus-strand RNA virus or minus-strand RNA viral vector.
  • the gene encoding the PKR inhibitory factor may be further integrated into the genome of the packaging cell or into a vector (eg, plasmid DNA) introduced into the packaging cell.
  • a gene encoding a PKR-inhibitory factor is integrated into the RNA genome of a negative-strand RNA virus or negative-strand RNA viral vector and introduced into the genome of or into the packaging cell.
  • a vector eg, plasmid DNA
  • the PKR inhibitory factor is supplied from the packaging cell even when the number of genomes is small, and the PKR inhibitory factor is supplied from the genome when the genome is increased.
  • Stranded RNA viral vectors can be successfully propagated.
  • the PKR inhibitory factor is supplied from the viral genome, and the virus or viral vector is successfully transferred to the cell. can grow within As a result, for example, the effect of increasing the expression level of the target gene mounted on the virus or viral vector can be obtained.
  • virus particles are produced in the absence of helper virus.
  • the virus or viral vector is a paramyxovirus or a paramyxovirus vector
  • the RNA genome is an F gene-deficient RNA genome.
  • the first regulatory sequence can be the CAG promoter or the EF1 promoter, such as the EF1 promoter.
  • the second regulatory sequence is the T7 promoter, and the T7 RNA polymerase can be produced by transcription and translation from the cell genome or plasmid.
  • the Paramyxovirus is Sendai virus.
  • the Paramyxovirus vector is a Sendai virus vector.
  • the Paramyxovirus or Paramyxovirus vector is capable of expressing the N, P, and L proteins. In some aspects, the Paramyxovirus or Paramyxovirus vector does not express one, two, or three selected from the group consisting of the F, HN, and M proteins.
  • the RNA genome lacks RNAs encoding 1, 2, or 3 proteins selected from the group consisting of F, HN, and M proteins. In one preferred embodiment, the Paramyxovirus or Paramyxovirus vector does not express the F protein.
  • the Paramyxovirus or Paramyxovirus vector has an RNA genome capable of expressing V protein and/or C protein.
  • an RNA genome of a minus-strand RNA virus or a minus-strand RNA virus vector and a DNA encoding the RNA genome are provided.
  • the RNA genome in one aspect, expressably comprises genes encoding any one or more of the PKR-inhibiting factors (eg, PKR-inhibiting viral factors).
  • the present invention also provides a minus-strand RNA viral vector comprising the above RNA genome.
  • a negative-strand RNA virus or negative-strand RNA viral vector further has a viral particle that contains the RNA genome.
  • viruses or viral vectors can exhibit stronger growth potential after cell infection.
  • the minus-strand RNA virus is Paramyxovirus, more preferably Sendai virus.
  • the minus-strand RNA viral vector is a Paramyxovirus vector, more preferably a Sendai virus vector.
  • the DNA encoding the RNA genome is operably linked to a second regulatory sequence.
  • a gene expression vector is provided comprising DNA encoding the RNA genome operably linked to a second regulatory sequence.
  • an RNA genome (especially a SeV genome) comprising DNA encoding said genomic gene expression vector is flanked either or both upstream and downstream of said RNA genome by a self-cleaving ribozyme (e.g. a hammer head ribozyme or HDV ribozyme).
  • the gene expression vector may contain sequences of other factors (e.g., PKR-inhibiting factors and factors that promote RNA amplification) via the sequence of the self-cleaving ribozyme (e.g., hammerhead ribozyme or HDV ribozyme). may be ligated so that the RNA genome and the sequences of said other factors are transcribed into a series of RNAs.
  • RNA By constructing in this way, after the RNA genome is transcribed, the RNA can be cleaved at the sequence of a self-cleaving ribozyme (e.g., hammerhead ribozyme or HDV ribozyme) to remove said other factor, RNA is obtained which consists essentially of the genome.
  • a self-cleaving ribozyme e.g., hammerhead ribozyme or HDV ribozyme
  • RNA is obtained which consists essentially of the genome.
  • a self-cleaving ribozyme e.g., hammerhead ribozyme or HDV ribozyme
  • the other factor can be placed 5' to the RNA genome, and a hammerhead ribozyme sequence can be placed between the other factor and the region encoding the RNA genome, or is located 3' of the RNA genome, and the sequence of the HDV ribozyme can be placed between the region encoding the RNA genome and the other elements mentioned above.
  • the gene expression vector comprising DNA encoding the RNA genome includes, for example, a promoter (eg, T7 promoter, CAG promoter, and EF1 promoter), a first self-cleaving ribozyme (eg, 3' the sequence of a self-cleaving ribozyme, preferably a hammerhead ribozyme), the DNA encoding the RNA genome, the sequence of a second self-cleaving ribozyme (e.g., a 5' self-cleaving ribozyme, preferably an HDV ribozyme), and others. may be configured to include an array of factors in this order.
  • a promoter eg, T7 promoter, CAG promoter, and EF1 promoter
  • a first self-cleaving ribozyme eg, 3' the sequence of a self-cleaving ribozyme, preferably a hammerhead ribozyme
  • the DNA encoding the RNA genome
  • promoters e.g., T7 promoter, CAG promoter, EF1 promoter, etc.
  • sequences of other factors e.g., first self-cleaving ribozymes (e.g., 3′ self-cleaving ribozymes, preferably hammer head ribozyme), DNA encoding the RNA genome, and the sequence of a second self-cleaving ribozyme (e.g., 5' self-cleaving ribozyme, preferably HDV ribozyme) in this order.
  • the self-cleaving ribozyme is shown above only as an example, and preferred embodiments are not limited to this.
  • the self-cleaving ribozyme when used, can be arranged so that the RNA genome has 6n bases (where n is a natural number).
  • the gene expression vector may, for example, further include a terminator sequence (eg, a T7 terminator sequence for T7 polymerase) downstream of the sequence of the other factor.
  • a terminator sequence eg, a T7 terminator sequence for T7 polymerase
  • sequences of self-cleaving ribozymes eg, hammerhead ribozymes
  • self-cleaving ribozymes examples include, but are not limited to, hammerhead ribozymes, hepatitis delta virus (HDV) ribozymes, twister ribozymes, twister-sister ribozymes, pistol ribozymes, hairpin ribozymes, and hatchet ribozymes. be done.
  • These self-cleaving ribozymes can be, for example, 5' self-cleaving ribozymes and/or 3' self-cleaving ribozymes.
  • Hh-Rbz eg, SEQ ID NO: 36
  • HDV-Rbz hepatitis delta virus ribozyme
  • a gene expression vector that expresses an RNA virus component may further carry a PKR-inhibitory factor or an RNA amplification-promoting factor.
  • Said gene expression vector provides said component via the sequence of said self-cleaving ribozyme (e.g., as described above, which can be, for example, a hammerhead ribozyme or HDV ribozyme) via the sequence of another factor (e.g., A PKR-inhibiting factor or factor that promotes amplification of RNA) may be ligated so that the RNA genome and the sequence of the other factor are transcribed into a sequence of RNA.
  • the PKR inhibitory factor and/or the factor promoting RNA amplification may be carried independently on a plasmid.
  • a combination of a gene expression vector for the genome, which contains DNA encoding the RNA genome of the virus, and a vector for reconstitution of the virus, which contains DNAs which encode the components of the virus. be done.
  • the combination can be used to reconstitute the viral particles in the cell by co-expression in the cell.
  • a combination is provided for use in reconstituting a viral particle, the combination comprising DNA encoding the RNA genome of the virus and DNA encoding the components of the virus, the DNA comprising , which contains DNA encoding sufficient factors to form viral particles and is carried in one or more gene expression vectors.
  • the RNA genome and DNA encoding the viral components are operably linked to regulatory sequences.
  • a regulatory sequence can be a promoter, such as, but not limited to, the T7 promoter, the CAG promoter, and the EF1 promoter.
  • a Sendai virus or Sendai virus vector may further have a target gene in its RNA genome.
  • a gene of interest can be a gene that one wishes to introduce into a cell.
  • the gene of interest can be expressed in the introduced cells to produce RNA or protein.
  • the gene of interest is expressably carried in the RNA genome.
  • a gene of interest can be a foreign gene.
  • a foreign gene is a term used to distinguish it from a gene endogenous to the cell into which it is introduced.
  • Minus-strand RNA viral vectors were expressed in virus packaging cells. Specifically, the efficacy of PKR inhibitors upon expression was evaluated.
  • Sendai virus was used as a negative-strand RNA virus vector.
  • Sendai virus was collected from the culture supernatant 3 days after introduction of the plasmid mixture into the F gene-expressing cells.
  • the plasmid mixture contained pSeV-EmGFP carrying the Sendai virus genome operably linked to a T7 promoter.
  • the Sendai virus genome contained a gene encoding EmGFP so that the proliferation of the genome could be detected by fluorescence.
  • the Sendai virus genome was assumed to have a deletion of the F gene.
  • F gene-expressing cells were prepared as follows.
  • the SeV F gene (Kozak sequence added, optimized for human codons) was loaded into pCAGGS-neo to construct pCAGGS-F-neo.
  • the resulting plasmid was transfected into Vero cells or LLC-MK2 cells using ViaFect (Promega), and selected using 1-2 mg/mL G418 disulfate solution (Nacalai Tesque) to express F gene. cells were obtained. The resulting cells are designated as Vero-F and LLC-MK2-F.
  • F gene-deleted SeV was produced as follows. ACCESSION: The sequence information of the SeV-Z strain of AB855655 and the J. Phys. General Virology (1997), 78, 2813-2820. pSeV/dF, in which the F gene-deleted SeV genome is transcribed with a T7 promoter, was constructed based on the information of pSeV.
  • pSeV/dF P protein: 511F
  • the resulting plasmid was named pSeV/TSdF.
  • EmGFP which is a GFP mutant, was used as a gene of interest (GOI) to evaluate SeV rearrangement.
  • the GOI is installed in front of the N gene (hereinafter referred to as "+”), between the P gene and the M gene (hereinafter referred to as “PM”), and between the M gene and the HN gene (hereinafter referred to as “MHN”). ) and between the HN gene and the L gene (hereinafter referred to as “HNL”).
  • the EmGFP gene was placed in front of the SeV N gene, and pSeV+EmGFP/TSdF was mainly used.
  • a plasmid for SeV reconstitution was constructed as follows. pCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L, pCAGGS-F5R and pCAGGS-T7 were constructed with reference to WO2005/071092, and this combination is referred to as "CAG".
  • a reconstruction plasmid set with a Kozak sequence added and optimized for human codons and having a promoter different from the above: pCAGGS-NPco, pCAGGS-P4C (-) co, pCAGGS-Lco, pCAGGS-F5Rco, pCAGGS- T7co, pEF1-NPco, pEF1-P4C(-)co, pEF1-Lco, pEF1-F5Rco, and pEF1-T7co were constructed.
  • CAGnpEFL A combination of pCAGGS-NPco, pCAGGS-P4C(-)co, pEF1-Lco, pCAGGS-F5Rco and pCAGGS-T7mco is denoted as CAGnpEFL.
  • a plasmid having a PKR inhibitor was constructed as follows.
  • a sequence having base substitutions (T74A, T74C) at the 74th base of VAI was constructed.
  • a pT7 plasmid was constructed carrying nc886 (108 bp) as another PKR inhibitor.
  • nc886 (272 bp) having VAI sequences before and after each was constructed (SEQ ID NOS: 13, 14).
  • pT7-IRES having an IRES sequence under the T7 promoter was constructed.
  • a plasmid having a PKR inhibitor was constructed as follows.
  • the translated sequences were basically added with Kozak sequences and optimized for human codons.
  • pCAGGS-E3L, pCAGGS-K3L, pCAGGS-Y3, pCAGGS-E3K3, pCAGGS-E3Y3, pCAGGS-NS1, pCAGGS- ⁇ 3, pCAGGS-Us11 were constructed.
  • E3L (SEQ ID NO: 7) and K3L (SEQ ID NO: 10) are vaccinia virus sequences
  • Y3 (SEQ ID NO: 27) is the C-terminal 106 amino acid sequence of SeV C protein
  • NS1 (SEQ ID NO: 28) is the influenza virus sequence
  • ⁇ 3 (SEQ ID NO: 8) is a reovirus sequence
  • Us11 (SEQ ID NO: 29) is an HSV-1 sequence
  • E3K3 (SEQ ID NO: 30) is a fusion sequence between the C-terminal 107 amino acid sequence of E3L and K3L
  • E3Y3 (SEQ ID NO: 31) was a fusion sequence between the C-terminal 107 amino acid sequence of E3L and Y3.
  • SeV Reconstitution in the Presence or Absence of a PKR Inhibitor The ratio of SeV reconstitution plasmid to transfection reagent was in accordance with WO2005/071092. Specifically, plasmids and transfection reagents (TransIT-LT1 Reagent or ViaFect) of the following weights were mixed to obtain a plasmid mix.
  • PKR inhibitors NP, P4C (-), F5R, T7: 0.5 ⁇ g each L: 2 ⁇ g pSeV: 5 ⁇ g Plasmid with PKR inhibitor: 1 ⁇ g Total plasmid: 10 ⁇ g TransIT-LT1 Reagent or ViaFect: 16.5 ⁇ L
  • the weight of the plasmid and the volume of the transfection reagent were mixed at a ratio of 9:15.
  • a plasmid and a transfection reagent were mixed in 225 ⁇ L of OptiMEM, transfected into F gene-expressing cells in a 12-well plate being cultured in 500 ⁇ L of medium (10% FBS/E-MEM), and cultured at 37°C. The cells were cultured at 32° C. from the day after transfection. Medium changes were performed daily with serum-free medium (ITS-X/NEAA/E-MEM) supplemented with 2.5 ⁇ g/mL trypsin. As an indicator of successful SeV reconstitution, EmGFP-positive cells were observed from the day after transfection (an increase in the number of EmGFP-positive cells indicates an improvement in SeV reconstitution efficiency).
  • the fluorescence intensity of the microplate was measured using the system ECLIPSE Ti2-E (Nikon).
  • the culture supernatant on day 3 of transfection was collected, diluted 10 to 100,000 times, infected with Vero cells seeded in a 96-well plate, and the number of GFP-positive cells was counted 3 days after infection using ECLIPSE Ti2-E.
  • the infection titer was calculated.
  • SeV Reconstitution in the Presence of VAI A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. VAI was used as a PKR inhibitor. VAI uses pT7-VAI (180 bp) and pT7-VAI-VAII (478 bp) as wild-type (wt) sequences, and pT7-VAI74a (180 bp), pT7-VAI74c (180 bp) and pT7-VAI74a ( 330 bp) was used.
  • pT7-IRES was used as a control (Ctrl) plasmid for VAI.
  • EmGFP fluorescence-positive cells were observed from the day after transfection. Comparing the fluorescence intensity from EmGFP from day 3 cells, 18-fold over control in the presence of VAI (180 bp) wt, 34-fold over control in the presence of VAI (180 bp) 74a, and 34-fold over control in the presence of VAI (180 bp) 74c It was 53-fold that of the control, 63-fold that of the control in the presence of VAI-VAII, and 146-fold that of the control in the presence of VAI (330 bp)74a.
  • the recovery efficiency of the SeV vector is very low in LLC-MK2, and even when the recovered cells were inoculated into chicken eggs, the HA activity of SeV could not be confirmed in LLC-MK2-derived cells.
  • SeV reconstitution using 293T cells showed an infection titer of about 10 2 CIU/mL using the culture supernatant 3 days after reconstitution (Beaty, SM. et al., mSphere. 2, e00376-16 (2017)). On the other hand, in this example, 2 ⁇ 10 7 CIU/mL was achieved 3 days after reconstitution, indicating a marked increase in the infectious titer.
  • SeV Reconstitution in the Presence of nc886 A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. As plasmids containing PKR inhibitors, pT7-nc886 (108 bp), pT7-nc886 (272 bp) and pT7-VAI74a (330 bp) were used.
  • EmGFP-derived fluorescence intensity from cells increased in all test groups compared to controls.
  • LLC-MK2-F cells improved the SeV reconstitution efficiency by 100-fold or more
  • VERO-F cells improved the SeV reconstitution efficiency by 10-fold or more in VAI, E3L, ⁇ 3, and Us11 (Fig. 5).
  • infection titers were elevated in all test groups compared to controls. In titration, it was VAI, E3L, ⁇ 3, and Us11 that showed high values in both LLC-MK2-F and Vero-F cells (Fig. 6).
  • EmGFP-derived fluorescence intensity from cells increased in all test groups compared to the control.
  • E3Y3 also improved the SeV reconstruction efficiency compared to E3K3 (Fig. 7).
  • E3Y3 was 3.5 times higher than E3L in LLC-MK2-F cells, and Vero-F was 3.5 times higher than E3L. A 6.8-fold improvement was observed for E3Y3 over E3L in cells.
  • Vero-F cells were transfected with pCAGGS-E3L-Hyg or pCAGGS-E3Y3-Hyg, and 500 ⁇ g/mL hygromycin B (Nacalai Cells were selected using Tesk) to obtain Vero-F-E3L and Vero-F-E3Y3 cells, stable lines that constitutively express E3L and E3Y3, respectively.
  • SeV reconstitution plasmids pEF1-NPco, pEF1-P4C(-)co, pEF1-Lco, pCAGGS-F5Rco and pCAGGS-T7mco (EFnpL) and pSeV+EmGFP/TSdF were used in these cells. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured. A two-fold improvement in SeV reconstitution efficiency was observed in Vero-F-E3Y3 cells.
  • P is driven from the CAG promoter and L is driven from the EF1 ⁇ promoter
  • EFnCAGpL with N driven from the EF1 ⁇ promoter and P and L from the CAG promoter In the combination of CAGnpEFL in which P is driven from the CAG promoter and L is driven from the EF1 ⁇ promoter, the effect of different promoters on SeV reconstitution efficiency was investigated. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured.
  • the infection titer of the culture supernatant on day 3 from the start of SeV reconstitution was higher in the LLC-MK2-F cell reconstitution system than in the PKR inhibitor-free control. In the reconstituted system of VERO-F cells, it improved 7460 times.
  • SeV carrying a gene encoding a PKR inhibitor was evaluated for SeV reconstitution efficiency.
  • a cell population containing only LLC-MK2-F was used.
  • CAGnpEFL was used as a plasmid for SeV reconstruction.
  • pSeV includes pSeV(PM)EmGFP/TSdF, pSeV(PM)EmGFP-VAI74a/TSdF (loaded with VAI (180bp)74a), and pSeV(PM)EmGFP-VAI74aL/TSdF (loaded with VAI(330bp)74a).
  • EmGFP-VAI74a had the sequence as shown in SEQ ID NO:32.
  • EmGFP-VAI74aL had the sequence as shown in SEQ ID NO:33.
  • VAI (264 bp) 74c3p (SEQ ID NO: 34) is obtained by adding an 84-mer on the 3' side of VAI to the 3' side of VAI (180 bp) 74c.
  • VAI (246 bp) 74c5p (SEQ ID NO: 35) is obtained by adding an 86-mer on the 5' side of VAI to the 5' side of VAI (180 bp) 74c.
  • a cell population containing only LLC-MK2-F was used as SeV reconstitution cells.
  • CAGnpEFL was used as a plasmid for SeV reconstruction.
  • pSeV used pSeV+EmGFP/TSdF.
  • pCAGGS-NS5A148 was used as a plasmid containing a PKR inhibitor. This plasmid produces NS5A148, which has the amino acid sequence set forth in SEQ ID NO:16. Comparing the fluorescence intensity derived from EmGFP from the cells 3 days after reconstitution, it was 7.3 times that of the control in the presence of NS5A148.
  • Hh-Rbz hammerhead ribozyme
  • Hh-Rbz hammerhead ribozyme
  • a T7 terminator (SEQ ID NO: 38) was placed downstream of VAI (330 bp) 74c.
  • VAI 330 bp
  • a cell population containing only LLC-MK2-F was used.
  • CAGnpEFL was used as a plasmid for SeV reconstruction.
  • pSeV used pSeV+EmGFP/TSdF (control), pSeV+EmGFP/TSdF (Hh), and pSeV+EmGFP/TSdF (Hv).
  • VAI (330 bp) 74c was integrated into the SeV genome obtained using the following primer set (L primer) that amplifies the L gene of the SeV genome and a primer set (Hv primer) that amplifies VAI (330 bp) 74c.
  • L primer primer set that amplifies the L gene of the SeV genome
  • Hv primer primer set that amplifies VAI (330 bp) 74c.
  • the SeV genome transcribed above was collected from Vero cells and cDNA was synthesized. KOD One PCR Master Mix -Blue- (Toyobo) was used as the PCR enzyme.
  • L primer the primer set for amplifying the L gene amplified a part of the L gene as expected in the plasmid (pSeV) carrying the gene encoding SeV, and also in the SeV genome. Part of the L gene was amplified as expected.
  • Hv primers did not amplify VAI (330 bp) 74c in the SeV genome.
  • VAI (330 bp) 74c introduction of VAI (330 bp) 74c into a plasmid for SeV reconstitution
  • VAI (330 bp) 74c was introduced into a plasmid expressing the components of the SeV particle for reconstituting SeV. Specifically, a reconstruction experiment was performed as follows.
  • VAI (330 bp) 74c was additionally loaded into a reconstitution plasmid such as pCAGGS or pEF1 expressing NP, P, L, T7, and F5R, respectively, to obtain a reconstitution plasmid carrying VAI (330 bp) 74c.
  • a reconstitution plasmid such as pCAGGS or pEF1 expressing NP, P, L, T7, and F5R, respectively.
  • pCAGGSv and "pEFv”
  • pCAGGSv-NPco, pCAGGSv-P4C(-)co, pEFv-Lco, pCAGGSv-T7mco, and pCAGGSv-F5Rco, as well as combinations thereof, are denoted as vCAGnpEFL.
  • vCAGnpEFL was used as a plasmid for SeV reconstruction.
  • CAG was used as a control.
  • pSeV+EmGFP/TSdF was used as pSeV. Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, vCAGnpEFL-mix was 43 times higher than the control, as shown in FIG.
  • Hv+vCAGnpEFL-mix+E3Y3 was 29,925 times higher than the control, as shown in FIG. SeV reconstruction was possible even if F5R and E3Y3 were not used during reconstruction.
  • a SeV genome plasmid driven by a CAG promoter or an EF1 promoter in addition to the T7 promoter was constructed (see Fig. 21A).
  • the SeV genomic plasmid with the CAG promoter is denoted as pCAGGS-SeV
  • the SeV genomic plasmid with the EF1 promoter is denoted as pEF1-SeV.
  • a cell population containing only LLC-MK2-F was used as cells for reconstitution.
  • CAGnpEFL was used as a plasmid for SeV reconstruction.
  • pSeV+EmGFP/TSdF Hv
  • pCAG-SeV+EmGFP/TSdF Hv
  • pEF1-SeV+EmGFP/TSdF Hv
  • pT7-VAI 330 bp
  • the reference sequence of the MuV genome was the sequence registered under Accession: KY295913.
  • the MuV minigenome was generated by removing everything between the leader and trailer sequences from the above reference sequence.
  • MeV measles virus
  • MeV-mix was used as a plasmid for MeV reconstruction.
  • MeV-mix contained the following plasmids: pCAGGS-MeV-N, pCAGGS-MeV-P, pCAGGS-MeV-L, pCAGGS-T7mco.
  • pMeV+EmGFP/mini was used as pMeV.
  • pT7-VAI 330 bp
  • the reference sequence of MeV was the sequence registered under Accession: KY295921.
  • the MeV minigenome was constructed by removing everything between the leader and trailer sequences from the above reference sequence.
  • VSV vesicular stomatitis virus
  • VSV vesicular stomatitis virus
  • VSV-mix including pCAGGS-VSV-N, pCAGGS-VSV-P, pCAGGS-VSV-L, and pCAGGS-T7mco
  • pVSV- ⁇ G-GFP-2.6 Kerafast
  • pCAGGS-E3Y3 was used as a PKR inhibitor.
  • the fluorescence intensity was five times higher when E3Y3 was used.
  • a plasmid mixture for MuV reconstruction containing pCAGGS-MuV-N, pCAGGS-MuV-P, pCAGGS-MuV-L and pCAGGS-T7mco is referred to as "MuV-mix”.
  • the MeV genome plasmid used was pMeV+EmGFP/mini, which carries EmGFP in the MeV minigenome that does not express MeV constituent proteins (N, P, M, F, H, L).
  • the MuV genome plasmid used was pMuV+EmGFP/mini, in which EmGFP was incorporated into the MuV minigenome that does not express MuV constituent proteins (N, P, M, F, SH, HN, L).
  • the SeV genome plasmid used was pSeV+EmGFP/TSdF(Hv). A cell population containing only LLC-MK2-F was used as these reconstituting cells.
  • p3vLPNP a plasmid that expresses NP, P, and L from one plasmid was constructed (see FIG. 27A).
  • pSeV avoided the use of T7 polymerase by being driven by the CAG promoter (pCAG-SeV) or the EF1 promoter (pEF1-SeV).
  • SeV was reconstituted with a cell population containing LLC-MK2 only. The results were as shown in Figure 27B.
  • FIG. 27B 7 days after reconstitution, EmGFP fluorescence was observed in both pCAG-SeV and pEF1-SeV, confirming that SeV was reconstituted.
  • T7 polymerase was additionally supplied by the pCAGGS-T7mco plasmid, the efficiency of reconstitution was greatly improved.
  • SEQ ID NO: 1 Example of sequence of EF1 ⁇ promoter SEQ ID NO: 2: Example of sequence of CAG promoter SEQ ID NO: 3: Example of sequence of gene encoding EmGFP SEQ ID NO: 4: Sequence of EBER of EB virus SEQ ID NO: 5 : Sequence of TAR of HIV SEQ ID NO: 6: 2A pro of poliovirus SEQ ID NO: 7: E3L of vaccinia virus SEQ ID NO: 8: Reovirus ⁇ 3 SEQ ID NO:9: Human p58 IPK SEQ ID NO: 10: K3L of vaccinia virus SEQ ID NO: 11: HIV Tat SEQ ID NO: 12: ICP34.5 of herpes simplex virus SEQ ID NO: 13: nc866 SEQ ID NO: 14: long version of nc866 SEQ ID NO: 15: NS5A SEQ ID NO: 16: NS5A (1-148) SEQ ID NO: 17: VAI (180mer) SEQ ID NO: 18

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present disclosure provides a method for producing a negative-strand RNA virus vector. The present disclosure specifically provides a method for producing a negative-strand RNA virus vector in the presence of a PKR inhibitory factor.

Description

マイナス鎖RNAウイルスベクターの製造方法および製造されたマイナス鎖RNAウイルスベクターMethod for producing minus-strand RNA viral vector and produced minus-strand RNA viral vector
 本発明は、マイナス鎖RNAウイルスベクターの製造方法および製造されたマイナス鎖RNAウイルスベクターに関する。 The present invention relates to a method for producing a minus-strand RNA viral vector and the produced minus-strand RNA viral vector.
 センダイウイルスベクターに代表されるマイナス鎖RNAウイルスベクターは、遺伝子導入のため、またはサイトカイン誘導のために有益で有り得る。センダイウイルスベクターに代表されるマイナス鎖RNAウイルスベクターは、cDNAから産生させることによりパッケージング細胞内で有利に産生させることができる(特許文献1)。 Minus-strand RNA viral vectors, typified by Sendai virus vectors, can be useful for gene transfer or for cytokine induction. Minus-strand RNA viral vectors typified by Sendai virus vectors can be advantageously produced in packaging cells by producing them from cDNA (Patent Document 1).
 ワクシニアウイルスのE3Lは、二本鎖RNA結合タンパク質であり、インターフェロン耐性や細胞内での増殖を促進させることが報告されている(非特許文献1)。ポックスウイルス、またはワクシニアウイルスの産生において、K3L、E3L、VAI RNA、EBER、σ3、TRBP、およびこの組合せを用いてプロテインキナーゼR(PKR)を阻害すること、PKRが二本鎖RNA結合タンパク質であることが開示されている(特許文献2)。C8LおよびK3LがプロテインキナーゼR(PKR)の偽基質であることが開示されている(非特許文献2)。NS5AまたはNS5A(1-148)が、HCVに対する抗ウイルス活性を阻害する可能性が示唆されている(非特許文献3)。VAI RNAを用いたウイルス産生方法が開示されている(特許文献3)。 E3L of vaccinia virus is a double-stranded RNA-binding protein and has been reported to promote interferon resistance and intracellular proliferation (Non-Patent Document 1). Inhibition of protein kinase R (PKR) using K3L, E3L, VAI RNA, EBER, σ3, TRBP, and combinations thereof in the production of poxvirus or vaccinia virus, PKR being a double-stranded RNA binding protein is disclosed (Patent Document 2). It has been disclosed that C8L and K3L are pseudosubstrates of protein kinase R (PKR) (Non-Patent Document 2). It has been suggested that NS5A or NS5A(1-148) may inhibit antiviral activity against HCV (Non-Patent Document 3). A virus production method using VAI RNA has been disclosed (Patent Document 3).
WO2005/071092WO2005/071092 WO98/040500WO98/040500 WO95/011983WO95/011983
 本発明は、マイナス鎖RNAウイルスベクターの製造方法および製造されたマイナス鎖RNAウイルスベクターを提供する。 The present invention provides a method for producing a minus-strand RNA viral vector and the produced minus-strand RNA viral vector.
 本発明者らは、マイナス鎖RNAウイルスの製造方法において、PKR阻害性の因子(例えば、PKR阻害性のウイルス性因子、ヒトnc886、ヒトp58IPK、もしくはNS5A、またはこれらの組合せ)の存在下でパッケージング細胞にマイナス鎖RNAウイルスのゲノムRNAを発現させ、マイナス鎖RNAウイルスを形成させることが、パッケージング細胞内でのウイルス産生量を増加させることを見出した。 The present inventors found that, in a method for producing a minus-strand RNA virus , It was found that allowing the packaging cell to express the genomic RNA of the minus-strand RNA virus to form the minus-strand RNA virus increased the amount of virus produced in the packaging cell.
 本発明によれば、例えば、以下の発明が提供され得る。
(1)マイナス鎖RNAウイルスまたはウイルスベクターを製造する方法であって、
 制御配列に作動可能に連結したプロテインキナーゼR(PKR)阻害性の因子(例えば、PKR阻害性のウイルス性因子、ヒトnc886、ヒトp58IPK、もしくはNS5A、またはこれらの組合せ)をコードする遺伝子から当該因子を発現させてパッケージング細胞に供給することと、
 パッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、前記因子の存在下でマイナス鎖RNAウイルスまたはウイルスベクターを形成させることと{例えば、PKR阻害性の因子、例えば、PKR阻害性のウイルス性因子の存在下でパッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、マイナス鎖RNAウイルスまたはウイルスベクターを形成させることと、ここで、好ましくは、下記(13)に記載のDNAを用いて、ゲノムRNAおよび上記PKR阻害性の因子を発現させることができる}、
 形成されたマイナス鎖RNAウイルスまたはウイルスベクターを回収することと、
を含み、
 好ましくは、前記ウイルスまたはウイルスベクターと前記PKR阻害性の因子との関係が異種である、および/または、前記制御配列と前記PKR阻害性の因子との関係が異種である、
方法。
(2)マイナス鎖RNAウイルスまたはウイルスベクターが、センダイウイルスベクターである、上記(1)に記載の方法。
(3)前記PKR阻害性の因子が、アデノウイルスのVAI RNA、EBウイルスのEBER、ヒトnc886、HIVウイルスのTAR、ポリオウイルスの2Apro、ワクシニアウイルスのE3L、レオウイルスのδ3、インフルエンザウイルスのNS1、ヒトp58IPK、C型肝炎ウイルスのNS5A、ワクシニアウイルスのK3L、HIVウイルスのTat、単純ヘルペスウイルスのUs11、および単純ヘルペスウイルスのICP34.5、並びにこれらのオーソログからなる群から選択される1以上である、上記(1)または(2)に記載の方法。
(4)ヘルパーウイルス非存在下でマイナス鎖RNAウイルスまたはウイルスベクターを製造する、上記(1)~(3)のいずれかに記載の方法。
(5)前記ゲノムRNAが、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子をさらに有する、上記(1)~(4)のいずれかに記載の方法。
(6)前記パッケージング細胞が、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子を有するゲノムDNAを有する、上記(1)~(5)のいずれかに記載の方法。
(7)前記パッケージング細胞が、Vero細胞またはLLC-MK2細胞である、上記(1)~(6)のいずれかに記載の方法。
(8)前記パッケージング細胞が、Vero細胞からなる細胞集団またはLLC-MK2細胞からなる細胞集団であって、他の細胞を含まない細胞集団である、上記(1)~(7)のいずれかに記載の方法。
(9)PKR阻害性の因子のいずれか1以上をコードする遺伝子を発現可能に含む、マイナス鎖RNAウイルスまたはウイルスベクターのRNAゲノム。
(10)上記(9)に記載のRNAゲノムを含む、マイナス鎖RNAウイルスまたはウイルスベクター。
(11)目的遺伝子をさらに含む、上記(10)に記載のマイナス鎖RNAウイルスまたはウイルスベクター。
(12)上記(10)または(11)に記載のマイナス鎖RNAウイルスまたはウイルスベクターを含む、組成物。
(13)上記(9)に記載のRNAゲノムをコードするDNA。
(14)制御配列に作動可能に連結された上記(13)に記載のDNAを含む、遺伝子発現ベクター。
According to the present invention, for example, the following inventions can be provided.
(1) A method for producing a negative-strand RNA virus or viral vector, comprising:
from a gene encoding a protein kinase R (PKR) inhibitory factor (e.g., a PKR inhibitory viral factor, human nc886, human p58 IPK , or NS5A, or a combination thereof) operably linked to a regulatory sequence; expressing and supplying the factor to packaging cells;
Expressing the genomic RNA of a minus-strand RNA virus or viral vector in a packaging cell to form a minus-strand RNA virus or viral vector in the presence of said factor {e.g., a PKR-inhibiting factor, e.g., a PKR-inhibiting expressing the genomic RNA of the minus-strand RNA virus or viral vector in the packaging cell in the presence of the viral factor of to form the minus-strand RNA virus or viral vector; The described DNA can be used to express the genomic RNA and the PKR inhibitory factor},
recovering the formed negative-strand RNA virus or viral vector;
including
Preferably, the relationship between said virus or viral vector and said PKR-inhibiting agent is heterologous, and/or the relationship between said regulatory sequence and said PKR-inhibiting agent is heterologous.
Method.
(2) The method according to (1) above, wherein the minus-strand RNA virus or viral vector is a Sendai virus vector.
(3) the PKR inhibitory factor is adenovirus VAI RNA, EB virus EBER, human nc886, HIV virus TAR, poliovirus 2A pro , vaccinia virus E3L, reovirus δ3, influenza virus NS1 , human p58 IPK , hepatitis C virus NS5A, vaccinia virus K3L, HIV virus Tat, herpes simplex virus Us11, and herpes simplex virus ICP34.5, and orthologs thereof. The method according to (1) or (2) above.
(4) The method according to any one of (1) to (3) above, wherein the minus-strand RNA virus or viral vector is produced in the absence of a helper virus.
(5) The method according to any one of (1) to (4) above, wherein the genomic RNA further comprises a gene encoding a PKR inhibitory factor operably linked to the regulatory sequence.
(6) The method according to any one of (1) to (5) above, wherein the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
(7) The method according to any one of (1) to (6) above, wherein the packaging cells are Vero cells or LLC-MK2 cells.
(8) Any one of (1) to (7) above, wherein the packaging cells are a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells, and do not contain other cells. The method described in .
(9) The RNA genome of a negative-strand RNA virus or viral vector that expressably contains a gene encoding any one or more of the PKR inhibitory factors.
(10) A minus-strand RNA virus or viral vector comprising the RNA genome of (9) above.
(11) The minus-strand RNA virus or viral vector according to (10) above, further comprising a target gene.
(12) A composition comprising the minus-strand RNA virus or viral vector of (10) or (11) above.
(13) A DNA encoding the RNA genome of (9) above.
(14) A gene expression vector comprising the DNA of (13) above operably linked to a control sequence.
(15)上記(12)に記載の組成物であって、感染力価が1×10 CIU/mL以上である、組成物。
(16)上記(12)に記載の組成物であって、感染力価が1×10 CIU/mL以上である、組成物。
(17)上記(12)に記載の組成物であって、感染力価が1×10 CIU/mL以上である、組成物。
(18)前記PKR阻害性の因子が、配列番号4~31のいずれかに記載の配列を有する、上記(1)~(8)のいずれかに記載の方法。
(19)前記PKR阻害性の因子が、配列番号4~31のいずれかに記載の配列を有する、上記(9)~(11)のいずれかに記載のマイナス鎖RNAウイルスまたはウイルスベクター。
(20)前記PKR阻害性の因子が、配列番号4~31のいずれかに記載の配列を有する、上記(12)に記載の組成物。
(21)前記PKR阻害性の因子が、配列番号4~31のいずれかに記載の配列を有する、上記(13)に記載のDNA。
(22)前記PKR阻害性の因子が、配列番号4~31のいずれかに記載の配列を有する、上記(14)に記載の遺伝子発現ベクター。
(15) The composition according to (12) above, which has an infectious titer of 1×10 5 CIU/mL or more.
(16) The composition according to (12) above, which has an infectious titer of 1×10 6 CIU/mL or more.
(17) The composition according to (12) above, which has an infectious titer of 1×10 7 CIU/mL or more.
(18) The method according to any one of (1) to (8) above, wherein the PKR inhibitory factor has the sequence set forth in any one of SEQ ID NOS: 4-31.
(19) The minus-strand RNA virus or viral vector according to any one of (9) to (11) above, wherein the PKR inhibitory factor has a sequence according to any one of SEQ ID NOS: 4-31.
(20) The composition according to (12) above, wherein the PKR inhibitory factor has a sequence according to any one of SEQ ID NOS: 4-31.
(21) The DNA according to (13) above, wherein the PKR inhibitory factor has a sequence according to any one of SEQ ID NOS: 4-31.
(22) The gene expression vector according to (14) above, wherein the PKR inhibitory factor has a sequence according to any one of SEQ ID NOS: 4-31.
(23)前記因子を発現させることが、第1の制御配列に作動可能に連結された前記因子をコードする遺伝子を有するプラスミドベクターをパッケージング細胞に導入することにより実施される、上記(1)~(8)のいずれかに記載の方法。
(24)前記ゲノムRNAを発現させることが、第2の制御配列に作動可能に連結された前記ゲノムRNAをコードする遺伝子を有するプラスミドベクターをパッケージング細胞に導入することにより実施される、上記(1)~(8)のいずれかに記載の方法。
(25)前記因子を発現させることが、第1の制御配列に作動可能に連結された前記因子をコードする遺伝子を有するプラスミドベクターをパッケージング細胞に導入することにより実施され、かつ、
 前記ゲノムRNAを発現させることが、第2の制御配列に作動可能に連結された前記ゲノムRNAをコードする遺伝子を有するプラスミドベクターをパッケージング細胞に導入することにより実施される、上記(1)~(8)のいずれかに記載の方法。
(26)マイナス鎖RNAウイルスまたはウイルスベクターを形成させることが、パッケージング細胞に、第2の制御配列に作動可能に連結されたウイルスのゲノムRNAをコードする遺伝子を有するプラスミドと、第3の制御配列に作動可能に連結されたウイルスの構成要素をコードする遺伝子を有するプラスミドを導入し、当該細胞内でゲノムRNAとウイルスの構成要素とを発現させることを含む、上記(1)~(8)のいずれかに記載の方法。
(27)第3の制御配列が、EF1αプロモーターであり、ウイルスの構成要素が、Nタンパク質およびLタンパク質のいずれかまたは両方を含む、上記(26)に記載の方法。(28)第3の制御配列が、EF1αプロモーターであり、ウイルスの構成要素が、Nタンパク質、Pタンパク質およびLタンパク質からなる群から選択される1以上、またはすべてである、上記(26)に記載の方法。
(29)パッケージング細胞が、Vero細胞である、上記(28)に記載の方法。
(30)第3の制御配列が、EF1αプロモーターであり、ウイルスの構成要素が、Pタンパク質およびLタンパク質のいずれかまたは両方を含む、上記(26)に記載の方法。(31)第3の制御配列が、EF1αプロモーターであり、ウイルスの構成要素が、Lタンパク質である、上記(26)に記載の方法。
(32)パッケージング細胞が、LLC-MK2細胞である、上記(30)に記載の方法。
(33)パッケージング細胞が、LLC-MK2細胞である、上記(31)に記載の方法。
(23) The above (1), wherein expressing the factor is carried out by introducing into the packaging cell a plasmid vector having a gene encoding the factor operably linked to a first control sequence. The method according to any one of (8).
(24) The above ( 1) The method according to any one of (8).
(25) expressing the factor is performed by introducing into the packaging cell a plasmid vector having a gene encoding the factor operably linked to a first regulatory sequence; and
(1) to above, wherein the expression of the genomic RNA is performed by introducing a plasmid vector having a gene encoding the genomic RNA operably linked to a second regulatory sequence into the packaging cell. (8) The method according to any one of the above.
(26) Forming a negative-strand RNA virus or viral vector comprises placing in the packaging cell a plasmid having a gene encoding viral genomic RNA operably linked to a second control sequence and a third control (1) to (8) above, comprising introducing a plasmid having a gene encoding a viral component operably linked to a sequence and expressing the genomic RNA and the viral component in the cell. The method according to any one of
(27) The method according to (26) above, wherein the third regulatory sequence is the EF1α promoter and the viral component comprises either or both of the N protein and the L protein. (28) The above (26), wherein the third regulatory sequence is the EF1α promoter, and the viral component is one or more selected from the group consisting of N protein, P protein and L protein, or all of them. the method of.
(29) The method according to (28) above, wherein the packaging cells are Vero cells.
(30) The method according to (26) above, wherein the third regulatory sequence is the EF1α promoter and the viral component comprises either or both of the P protein and the L protein. (31) The method according to (26) above, wherein the third regulatory sequence is the EF1α promoter and the viral component is the L protein.
(32) The method according to (30) above, wherein the packaging cells are LLC-MK2 cells.
(33) The method according to (31) above, wherein the packaging cells are LLC-MK2 cells.
(34)PKR阻害性の因子が、
(i)E3Lまたはその一部、好ましくは、E3Lの少なくともC末端の107アミノ酸を含むペプチドと
(ii)K3Lと
を含む、上記のいずれかに記載の方法。
(35)PKR阻害性の因子が、
(i)E3Lまたはその一部、好ましくは、E3Lの少なくともC末端の107アミノ酸を含むペプチドと
(iii)Y3と
を含む、上記のいずれかに記載の方法。
(36)PKR阻害性の因子が、VAIをさらに含む、上記(34)に記載の方法。
(37)PKR阻害性の因子が、VAIをさらに含む、上記(35)に記載の方法。
(38)PKR阻害性の因子が、VAIを含み、VAIが配列番号17に記載の配列を有する分子である、上記いずれかに記載の方法。
(39)PKR阻害性の因子が、VAIを含み、PKR阻害性の因子が配列番号19に記載の配列を有する分子である、上記いずれかに記載の方法。
(40)PKR阻害性の因子が、配列番号18、21~26のいずれかに記載の配列を有する分子である、上記のいずれかに記載の方法。
(41)PKR阻害性の因子が、nc886を含む、上記のいずれかに記載の方法。
(42)PKR阻害性の因子が、配列番号13または14に記載の配列を有する分子である、上記のいずれかに記載の方法。
(34) the PKR inhibitory factor is
A method according to any of the above, comprising (i) E3L or a portion thereof, preferably a peptide comprising at least the C-terminal 107 amino acids of E3L, and (ii) K3L.
(35) the PKR inhibitory factor is
A method according to any of the above, comprising (i) E3L or a portion thereof, preferably a peptide comprising at least the C-terminal 107 amino acids of E3L, and (iii) Y3.
(36) The method according to (34) above, wherein the PKR inhibitory factor further comprises VAI.
(37) The method according to (35) above, wherein the PKR inhibitory factor further comprises VAI.
(38) The method according to any of the above, wherein the PKR inhibitory factor comprises VAI, and VAI is a molecule having the sequence set forth in SEQ ID NO:17.
(39) The method according to any of the above, wherein the PKR inhibitory factor comprises VAI and the PKR inhibitory factor is a molecule having the sequence set forth in SEQ ID NO:19.
(40) The method according to any of the above, wherein the PKR inhibitory factor is a molecule having the sequence set forth in any of SEQ ID NOS: 18, 21-26.
(41) The method according to any of the above, wherein the PKR inhibitory factor comprises nc886.
(42) The method according to any of the above, wherein the PKR inhibitory agent is a molecule having the sequence set forth in SEQ ID NO: 13 or 14.
(43)上記(5)に記載の方法であって、前記ゲノムRNAが目的タンパク質をコードする遺伝子を有し、PKR阻害性の因子が、VAIまたは配列番号17~26のいずれかに記載の配列を有するRNA分子であり、VAIが、前記目的タンパク質をコードする遺伝子の3’UTRに含まれている、方法。
(44)前記パッケージング細胞が、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子を有するゲノムDNAを有する、上記(43)のいずれかに記載の方法。
(45)前記パッケージング細胞が、Vero細胞またはLLC-MK2細胞である、上記(44)または(45)に記載の方法。
(46)前記パッケージング細胞が、Vero細胞からなる細胞集団またはLLC-MK2細胞からなる細胞集団であって、他の細胞を含まない細胞集団である、上記(44)~(46)のいずれかに記載の方法。
(43) The method according to (5) above, wherein the genomic RNA has a gene encoding a target protein, and the PKR inhibitory factor is VAI or a sequence according to any one of SEQ ID NOS: 17-26. wherein VAI is contained in the 3'UTR of a gene encoding said protein of interest.
(44) The method according to any of (43) above, wherein the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
(45) The method according to (44) or (45) above, wherein the packaging cells are Vero cells or LLC-MK2 cells.
(46) Any one of (44) to (46) above, wherein the packaging cells are a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells, and do not contain other cells. The method described in .
(47)上記(9)に記載のRNAゲノムであって、目的タンパク質をコードする遺伝子を有し、PKR阻害性の因子が、VAIまたは配列番号17~26のいずれかに記載の配列を有するRNA分子であり、VAIまたは配列番号17~26のいずれかに記載の配列を有するRNA分子が、前記目的タンパク質をコードする遺伝子の3’UTRに含まれている、RNAゲノム。
(48)上記(47)に記載のRNAゲノムを含む、マイナス鎖RNAウイルスまたはウイルスベクター。
(47) The RNA genome according to (9) above, which has a gene encoding a target protein, and wherein the PKR inhibitory factor has VAI or a sequence according to any one of SEQ ID NOS: 17-26. molecule, wherein the RNA molecule having a sequence set forth in VAI or any of SEQ ID NOS: 17-26 is contained in the 3'UTR of a gene encoding said protein of interest.
(48) A minus-strand RNA virus or viral vector comprising the RNA genome of (47) above.
(49)マイナス鎖RNAウイルスまたはウイルスベクターを製造する方法であって、
 制御配列に作動可能に連結したNS5Aをコードする遺伝子から当該因子を発現させてパッケージング細胞に供給することと、
 NS5Aの存在下でパッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、マイナス鎖RNAウイルスまたはウイルスベクターを形成させることと、
 形成されたマイナス鎖RNAウイルスまたはウイルスベクターを回収することと、
を含み、
 前記ウイルスまたはウイルスベクターと前記NS5Aとの関係が異種である、および/または、前記制御配列と前記NS5Aとの関係が異種である、
方法。
(50)マイナス鎖RNAウイルスまたはウイルスベクターを製造する方法であって、
 制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子から当該因子を発現させてパッケージング細胞に供給することと、ここで、PKR阻害性の因子は、ヒトnc886(VTRNA2-1)およびヒトp58IPKのいずれか、または両方であり、
 前記PKR阻害性の因子の存在下でパッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、マイナス鎖RNAウイルスまたはウイルスベクターを形成させることと、
 形成されたマイナス鎖RNAウイルスまたはウイルスベクターを回収することと、
を含む、
 ここで、前記制御配列と前記PKR阻害性の因子との関係が異種であってもよい、
方法。
(51)マイナス鎖RNAウイルスまたはウイルスベクターが、センダイウイルスベクターである、上記(49)または(50)に記載の方法。
(52)前記ゲノムRNAが、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子をさらに有する、上記(49)~(51)のいずれかに記載の方法。
(53)前記パッケージング細胞が、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子を有するゲノムDNAを有する、上記(49)~(52)のいずれかに記載の方法。
(54)前記パッケージング細胞が、Vero細胞またはLLC-MK2細胞である、上記(49)~(53)のいずれかに記載の方法。
(55)前記パッケージング細胞が、Vero細胞からなる細胞集団またはLLC-MK2細胞からなる細胞集団であって、他の細胞を含まない細胞集団である、上記(49)~(54)のいずれかに記載の方法。
(56)PKR阻害性の因子のいずれか1以上をコードする遺伝子を発現可能に含む、マイナス鎖RNAウイルスまたはウイルスベクターのRNAゲノム。
(57)上記(56)に記載のRNAゲノムを含む、マイナス鎖RNAウイルスまたはウイルスベクター。
(58)目的遺伝子をさらに含む、上記(57)に記載のマイナス鎖RNAウイルスまたはウイルスベクター。
(59)上記(57)または(58)に記載のマイナス鎖RNAウイルスまたはウイルスベクターを含む、組成物。
(60)上記(56)に記載のRNAゲノムをコードするDNA。
(61)制御配列に作動可能に連結された上記(60)に記載のDNAを含む、遺伝子発現ベクター。
(49) A method for producing a negative-strand RNA virus or viral vector, comprising:
expressing the factor from the gene encoding NS5A operably linked to regulatory sequences and supplying it to packaging cells;
expressing the genomic RNA of a negative-strand RNA virus or viral vector in a packaging cell in the presence of NS5A to form a negative-strand RNA virus or viral vector;
recovering the formed negative-strand RNA virus or viral vector;
including
the relationship between said virus or viral vector and said NS5A is heterologous and/or the relationship between said regulatory sequence and said NS5A is heterologous;
Method.
(50) A method for producing a negative-strand RNA virus or viral vector, comprising:
expressing the factor from a gene encoding the PKR-inhibiting factor operably linked to regulatory sequences and supplying it to packaging cells, wherein the PKR-inhibiting factor is human nc886 (VTRNA2-1) and either or both of human p58 IPK ;
allowing the packaging cell to express the genomic RNA of the negative-strand RNA virus or viral vector in the presence of the PKR inhibitory factor to form a negative-strand RNA virus or viral vector;
recovering the formed negative-strand RNA virus or viral vector;
including,
wherein the relationship between the regulatory sequence and the PKR inhibitory factor may be heterologous;
Method.
(51) The method according to (49) or (50) above, wherein the minus-strand RNA virus or viral vector is a Sendai virus vector.
(52) The method according to any one of (49) to (51) above, wherein the genomic RNA further comprises a gene encoding a PKR inhibitory factor operably linked to the regulatory sequence.
(53) The method according to any one of (49) to (52) above, wherein the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
(54) The method according to any one of (49) to (53) above, wherein the packaging cells are Vero cells or LLC-MK2 cells.
(55) Any one of (49) to (54) above, wherein the packaging cells are a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells, and do not contain other cells. The method described in .
(56) The RNA genome of a negative-strand RNA virus or viral vector that expressably comprises a gene encoding any one or more of the PKR inhibitory factors.
(57) A minus-strand RNA virus or viral vector comprising the RNA genome of (56) above.
(58) The minus-strand RNA virus or viral vector of (57) above, further comprising a gene of interest.
(59) A composition comprising the minus-strand RNA virus or viral vector of (57) or (58) above.
(60) A DNA encoding the RNA genome of (56) above.
(61) A gene expression vector comprising the DNA of (60) above operably linked to a control sequence.
(71)制御配列(好ましくは、プロモーター配列)と第一のDNAと第二のDNAをこの順番で含む、当該RNAゲノムの遺伝子発現ベクター(好ましくは、プラスミド)であって、
 前記第一のDNAは、RNAウイルスのRNAゲノムをコードし、
 前記第二のDNAは、プロテインキナーゼR(PKR)阻害性の因子(例えば、PKR阻害性のウイルス性因子(好ましくは、VAI RNA、EBER、nc886、およびTAR、並びにこれらのオーソログ))をコードし、
 第一のDNAと第二のDNAを含む一つながりの領域を形成し、当該領域は、制御配列に作動可能に連結されており、これにより、第一のDNAと第二のDNAは、一本のRNA内に転写される、遺伝子発現ベクター。
(72)プロテインキナーゼR(PKR)阻害性の因子が、VAIである、上記(71)に記載の遺伝子発現ベクター。
(73)第一のDNAと第二のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(71)に記載の遺伝子発現ベクター。
(74)第一のDNAと第二のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(72)に記載の遺伝子発現ベクター。
(75)制御配列と第一のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(71)に記載の遺伝子発現ベクター。
(76)制御配列と第一のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(72)に記載の遺伝子発現ベクター。
(77)制御配列と第一のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(73)に記載の遺伝子発現ベクター。
(78)制御配列と第一のDNAとの間に、自己切断型リボザイムの配列をさらに含む、上記(74)に記載の遺伝子発現ベクター。
(79)VAI RNAが、配列番号19、20、および23~26の一部であって、配列番号17に記載のヌクレオチド配列を含む配列を有していてもよい、上記いずれかに記載の発明。
(80)VAI RNAが、配列番号19、20、および23~26の一部であって、配列番号17に記載のヌクレオチド配列を含む配列に対応する、(i) VAI RNAと、(ii) VAI RNAの5’側の配列および3’側の配列のいずれかまたは両方を含む配列を有する、上記いずれかに記載の発明。
(71) A gene expression vector (preferably a plasmid) for the RNA genome, comprising a regulatory sequence (preferably a promoter sequence), a first DNA and a second DNA in that order,
the first DNA encodes the RNA genome of an RNA virus;
The second DNA encodes a protein kinase R (PKR) inhibitory factor (e.g., a PKR inhibitory viral factor (preferably VAI RNA, EBER, nc886, and TAR, and orthologs thereof)). ,
forming a contiguous region comprising a first DNA and a second DNA, the region being operably linked to a regulatory sequence, whereby the first DNA and the second DNA are united A gene expression vector that is transcribed into the RNA of
(72) The gene expression vector of (71) above, wherein the protein kinase R (PKR) inhibitory factor is VAI.
(73) The gene expression vector according to (71) above, further comprising a self-cleaving ribozyme sequence between the first DNA and the second DNA.
(74) The gene expression vector of (72) above, further comprising a self-cleaving ribozyme sequence between the first DNA and the second DNA.
(75) The gene expression vector according to (71) above, further comprising a self-cleaving ribozyme sequence between the regulatory sequence and the first DNA.
(76) The gene expression vector of (72) above, further comprising a self-cleaving ribozyme sequence between the control sequence and the first DNA.
(77) The gene expression vector of (73) above, further comprising a self-cleaving ribozyme sequence between the regulatory sequence and the first DNA.
(78) The gene expression vector of (74) above, further comprising a self-cleaving ribozyme sequence between the regulatory sequence and the first DNA.
(79) The invention according to any one of the above, wherein the VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and may have a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17. .
(80) (i) VAI RNA, wherein the VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and corresponds to a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17; and (ii) VAI Any of the above inventions having a sequence that includes either or both of the 5' and 3' sequences of RNA.
図1Aは、VAI RNAの二次構造である。74塩基目を矢印で示した。Figure 1A is the secondary structure of VAI RNA. The 74th base is indicated by an arrow. 図1Bは、VAI RNAを含む配列、およびその変異導入配列である。FIG. 1B is a sequence containing VAI RNA and its mutated sequence. 図2は、VAIの存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 2 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of VAI. 図3は、図2で製造したマイナス鎖RNAウイルスベクターの感染力価を確認した実験の結果である。FIG. 3 shows the results of an experiment confirming the infectious titer of the minus-strand RNA viral vector produced in FIG. 図4は、nc886の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 4 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of nc886. 図5は、PKR阻害性のウイルス性因子の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 5 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR-inhibiting viral factors. 図6は、図5で製造したマイナス鎖RNAウイルスベクターの感染力価を確認した実験の結果である。FIG. 6 shows the results of an experiment confirming the infectious titer of the minus-strand RNA viral vector produced in FIG. 図7は、PKR阻害因子の融合配列の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 7 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of a fusion sequence of a PKR inhibitor. 図8は、LLC-MK2-F細胞で発現用プロモーターの比較を行い、PKR阻害因子の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 8 shows the results of an experiment in which expression promoters were compared in LLC-MK2-F cells and the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR inhibitors was confirmed. 図9は、Vero-F細胞で発現用プロモーターの比較を行い、PKR阻害因子の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 9 shows the results of an experiment in which expression promoters were compared in Vero-F cells and the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of PKR inhibitors was confirmed. 図10は、複数のPKR阻害因子の存在下または非存在下で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 10 shows the results of experiments confirming the reconstitution efficiency of minus-strand RNA viral vectors produced in the presence or absence of multiple PKR inhibitors. 図11は、図10で製造したマイナス鎖RNAウイルスベクターの感染力価を確認した実験の結果である。FIG. 11 shows the results of an experiment confirming the infection titer of the minus-strand RNA viral vector produced in FIG. 図12は、PKR阻害因子をウイルスゲノムに搭載または非搭載で製造したマイナス鎖RNAウイルスベクターの再構成効率を確認した実験の結果である。FIG. 12 shows the results of an experiment confirming the reconstitution efficiency of negative-strand RNA viral vectors produced with or without a PKR inhibitory factor in the viral genome. 図13は、図12で製造したマイナス鎖RNAウイルスベクターの感染力価を確認した実験の結果である。FIG. 13 shows the results of an experiment confirming the infection titer of the minus-strand RNA viral vector produced in FIG. 図14は、5’側および3’側に伸長したVAI RNAによるマイナス鎖RNAウイルスベクターの再構成効率を確認した結果である。Fig. 14 shows the results of confirming the reconstitution efficiency of a minus-strand RNA viral vector with VAI RNA extended to the 5' and 3' sides. 図15は、T7プロモーターとSeVゲノムをコードするDNAの間へのハンマーヘッドリボザイムの導入と、PKR阻害因子を恒常的に発現したパッケージング細胞を用いたSeVの再構成効率に与える効果を示す。FIG. 15 shows the effect of introducing a hammerhead ribozyme between the T7 promoter and the DNA encoding the SeV genome and the efficiency of SeV reconstitution using packaging cells that constitutively expressed a PKR inhibitor. 図16は、T7プロモーターとSeVゲノムをコードするDNAとの間へのハンマーヘッドリボザイムの導入と、SeVゲノムをコードするDNAとVAI RNAとの間へのHDVリボザイムの導入が、SeVの再構成効率に与える効果を示す。Figure 16 shows that the introduction of the hammerhead ribozyme between the T7 promoter and the DNA encoding the SeV genome and the introduction of the HDV ribozyme between the DNA encoding the SeV genome and the VAI RNA increased the SeV reconstitution efficiency. shows the effect on 図17は、HDVリボザイムがSeVゲノムからVAI RNA自己切断していることを示すPCR実験の結果である。FIG. 17 shows the results of PCR experiments demonstrating that the HDV ribozyme self-cleavages VAI RNA from the SeV genome. 図18は、SeVの再構成用プラスミドへのVAI(330bp)74cの導入が、SeVの再構成効率に与える効果を示す。FIG. 18 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstitution plasmid on SeV reconstitution efficiency. 図19は、SeVの再構成用プラスミドへのVAI(330bp)74cの導入とE3Y3の併用が、SeVの再構成効率に与える効果を示す。FIG. 19 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstitution plasmid in combination with E3Y3 on SeV reconstitution efficiency. 図20は、SeVの再構成用プラスミドへのVAI(330bp)74cの導入とE3Y3の併用が、SeVの感染力価に与える効果を示す。FIG. 20 shows the effect of introducing VAI (330 bp) 74c into the SeV reconstituting plasmid in combination with E3Y3 on SeV infectious titer. 図21Aは、実験に用いたpCAG-SeVとpEF1-SeV構築物のマップを示す。FIG. 21A shows maps of the pCAG-SeV and pEF1-SeV constructs used in the experiment. 図21Bは、pCAG-SeVとpEF1-SeVの再構成効率を示す。FIG. 21B shows the reconstitution efficiency of pCAG-SeV and pEF1-SeV. 図22は、VAI RNAのムンプスウイルス(MuV;パラミクソウイルス科ルブラウイルス属)の再構成効率に与える効果を示す。Figure 22 shows the effect of VAI RNA on the reconstitution efficiency of mumps virus (MuV; family Paramyxoviridae, genus Rubulavirus). 図23は、VAI RNAの麻疹ウイルス(MeV;パラミクソウイルス科モルビリウイルス属)の再構成効率に与える効果を示す。FIG. 23 shows the effect of VAI RNA on the reconstitution efficiency of measles virus (MeV; family Paramyxoviridae, genus Morbillivirus). 図24は、E3Y3の水疱性口内炎ウイルス(VSV;ラブドウイルス科ベシクロウイルス属)の再構成効率に与える効果を示す。FIG. 24 shows the effect of E3Y3 on the reconstitution efficiency of vesicular stomatitis virus (VSV; family Rhabdoviridae, genus Vesiculovirus). 図25は、異種RNAポリメラーゼを用いたSeV、MeV、MuVの再構成効率を示す。Figure 25 shows the reconstitution efficiency of SeV, MeV, MuV using heterologous RNA polymerases. 図26は、異種RNAポリメラーゼを用いたVSVの再構成効率を示す。Figure 26 shows the efficiency of VSV reconstitution using heterologous RNA polymerases. 図27Aは、実験に用いたp3vLPNP構築物のマップを示す。Figure 27A shows a map of the p3vLPNP construct used in the experiment. 図27Bは、pCAG-SeVあるいはpEF1-SeVとp3vLPNPを用いたSeVの再構成の結果を示す。FIG. 27B shows the results of reconstitution of SeV with pCAG-SeV or pEF1-SeV and p3vLPNP.
発明の具体的な説明Specific description of the invention
 本明細書では、「マイナス鎖RNAウイルスベクター」とは、マイナス鎖RNAをゲノムとして有するウイルス(すなわち、マイナス鎖RNAウイルス)を目的遺伝子導入用に改変して得られた組換えウイルスである。マイナス鎖RNAウイルスとしては、オルソミクソウイルス科(インフルエンザウイルスなどのオルソミクソウイルス)、パラミクソウイルス科(モービリウイルス属などのパラミクソウイルス)、ラブドウイルス科(狂犬病ウイルスなどのラブドウイルス)、フィロウイルス科(エボラとマールブルグウイルスなどのフィロウイルス)、およびブニアウイルス科(ハンタウイルスなどのブニアウイルス)が挙げられる。パラミクソウイルスとしては、オルソパラミクソウイルス亜科のウイルスが挙げられる。オルソパラミクソウイルス亜科のウイルスとしては、レスピロウイルス属のウイルス、例えば、センダイウイルスが挙げられる。 As used herein, a "minus-strand RNA viral vector" is a recombinant virus obtained by modifying a virus having a minus-strand RNA genome (that is, a minus-strand RNA virus) for introduction of a target gene. Negative-strand RNA viruses include Orthomyxoviridae (orthomyxoviruses such as influenza virus), Paramyxoviridae (paramyxoviruses such as the genus Mobilivirus), Rhabdoviridae (rhabdoviruses such as rabies virus), filo Viridae (filoviruses such as Ebola and Marburg virus), and Bunyaviridae (buniaviruses such as Hantavirus). Paramyxoviruses include viruses of the subfamily Orthoparamyxovirinae. Viruses of the subfamily Orthoparamyxovirinae include viruses of the genus Respirovirus, such as Sendai virus.
 本明細書では、「プロテインキナーゼR」(PKR)とは、二本鎖RNAによって活性化されるタンパク質リン酸化酵素である。PKRは、ヒトではEIF2AK2遺伝子によりコードされる。PKRは、N末端側の二本鎖RNA結合ドメインとC末端側のキナーゼドメインを含む。キナーゼドメインは、アポトーシス誘導機能を有する。PKRは、二本鎖RNAと結合することにより二量体化し、引き続いて自己リン酸化を引き起こして活性化する。活性化したPKRは、真核生物翻訳開始因子eIF2αをリン酸化する。eIF2αのリン酸化により細胞内のmRNAの翻訳が阻害される。活性化したPKRは、ウイルスの拡散を防ぐために細胞にアポトーシスを誘導することもできる。一部のウイルスは、PKRに対抗する因子(すなわち、PKR阻害性のウイルス性因子)を有している。例えば、ある種のウイルスは、PKRに結合して活性化を防ぐデコイRNAを産生する。デコイRNAとしては、アデノウイルスのVAI RNA(例えば、配列番号17に記載の配列を有する)、EBウイルスのEBER(例えば、配列番号4に記載の配列を有する)、およびHIVのTAR(例えば、配列番号5に記載の配列を有する)が挙げられる。PKRの分解を誘導する分子として、ポリオウイルスの2Apro(例えば、配列番号6に記載の配列を有する)が知られている。RNA性の因子に関しては、当該RNAをコードするヌクレオチドの3’末端にターミネーター(例えば、T7ポリメラーゼに対してはT7ターミネーター)が連結されていてもよい。ウイルスの二本鎖RNAをマスクしてPKRの活性化を防ぐ因子として、ワクシニアウイルスのE3L(例えば、配列番号7に記載の配列を有する)、レオウイルスのσ3(例えば、配列番号8に記載の配列を有する)、単純ヘルペスウイルスのUs11(例えば、配列番号29に記載の配列を有する)、およびインフルエンザウイルスのNS1(例えば、配列番号28に記載の配列を有する)が挙げられる。偽基質として、ワクシニアウイルスのK3L(例えば、配列番号10に記載の配列を有する)およびHIVのTat(例えば、配列番号11に記載の配列を有する)が挙げられる。基質の脱リン酸化を誘導する分子として、単純ヘルペスウイルスのICP34.5(例えば、配列番号12に記載の配列を有する)が挙げられる。これらの因子は、PKR阻害性のウイルス性因子である。これらの因子は、天然型であり得る。 As used herein, "protein kinase R" (PKR) is a protein kinase that is activated by double-stranded RNA. PKR is encoded by the EIF2AK2 gene in humans. PKR contains an N-terminal double-stranded RNA binding domain and a C-terminal kinase domain. The kinase domain has an apoptosis-inducing function. PKR is activated by dimerization by binding to double-stranded RNA, followed by autophosphorylation. Activated PKR phosphorylates the eukaryotic translation initiation factor eIF2α. Phosphorylation of eIF2α inhibits translation of intracellular mRNA. Activated PKR can also induce apoptosis in cells to prevent viral spread. Some viruses possess factors that oppose PKR (ie, PKR-inhibiting viral factors). For example, certain viruses produce decoy RNAs that bind to PKR and prevent its activation. Decoy RNAs include adenovirus VAI RNA (e.g., having the sequence set forth in SEQ ID NO: 17), EB virus EBER (e.g., having the sequence set forth in SEQ ID NO: 4), and HIV TAR (e.g., having the sequence having the sequence described in number 5). Poliovirus 2A pro (eg, having the sequence shown in SEQ ID NO: 6) is known as a molecule that induces degradation of PKR. For RNA agents, a terminator (eg, T7 terminator for T7 polymerase) may be ligated to the 3' end of the nucleotide encoding the RNA. Factors that mask viral double-stranded RNA to prevent activation of PKR include vaccinia virus E3L (e.g., having the sequence set forth in SEQ ID NO: 7), reovirus σ3 (e.g., having the sequence set forth in SEQ ID NO: 8). ), herpes simplex virus Us11 (eg, having the sequence set forth in SEQ ID NO:29), and influenza virus NS1 (eg, having the sequence set forth in SEQ ID NO:28). Pseudosubstrates include K3L of vaccinia virus (eg, having the sequence set forth in SEQ ID NO: 10) and Tat of HIV (eg, having the sequence set forth in SEQ ID NO: 11). Molecules that induce substrate dephosphorylation include ICP34.5 of herpes simplex virus (eg, having the sequence set forth in SEQ ID NO: 12). These factors are PKR inhibitory viral factors. These factors can be naturally occurring.
 本明細書では、「nc886」は、ノンコーディングRNAであり、VTRNA2-1、CBL3、およびhvg-5とも呼ばれる。nc886は、PKRの直接的な阻害剤として機能する。nc886は、例えば、配列番号13に記載の配列を有し得る。本明細書では、「p58IPK」は、細胞質タンパク質として発見され、PKRの阻害剤として機能するタンパク質である。p58IPKは、例えば、ヒトp58IPKであり得、例えば、配列番号9の配列を有し得る。これらの因子は、天然型であり得る。 As used herein, "nc886" is a non-coding RNA, also referred to as VTRNA2-1, CBL3, and hvg-5. nc886 functions as a direct inhibitor of PKR. nc886 can have, for example, the sequence set forth in SEQ ID NO:13. As used herein, “p58 IPK ” is a protein that is found as a cytoplasmic protein and functions as an inhibitor of PKR. The p58 IPK can be, for example, human p58 IPK , and can have, for example, the sequence of SEQ ID NO:9. These factors can be naturally occurring.
 本明細書では、「NS5A」は、C型肝炎ウイルス(HCV)が有する非構造タンパク質である。NS5Aは、リン酸化タンパク質であり、HCVのゲノム複製に必須であるとされている。また、NS5A(例えば、配列番号15に記載の配列を有する)は、HCVや脳心筋ウイルスに対する抗ウイルス活性を阻害し得る(Medical Journal of Kobe University, 2003, 64(1/2):7-15参照)。NS5Aは、そのC末端側(例えば、149番目のアミノ酸以降)を欠失していてもよい。例えば、NS5Aは、その1~148番目のアミノ酸を有するNS5A(1~148)(例えば、配列番号16に記載の配列を有する)であり得る。これらの因子は、天然型であり得る。 As used herein, "NS5A" is a nonstructural protein possessed by hepatitis C virus (HCV). NS5A is a phosphorylated protein and has been shown to be essential for HCV genome replication. In addition, NS5A (for example, having the sequence set forth in SEQ ID NO: 15) can inhibit antiviral activity against HCV and brain myocardial virus (Medical Journal of Kobe University, 2003, 64(1/2): 7-15 reference). NS5A may be deleted from its C-terminal side (for example, after the 149th amino acid). For example, NS5A can be NS5A(1-148), having amino acids 1-148 thereof (eg, having the sequence set forth in SEQ ID NO: 16). These factors can be naturally occurring.
 ある態様において、VAI RNAは、(i) 配列番号17に記載の配列を含む核酸であり得、(ii) 配列番号17に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号17に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。後述する実施例によれば、パッケージング細胞においてPKRを阻害することによりウイルスの再構成率が向上する。したがって、阻害するPKRは、好ましくは、パッケージング細胞が由来する動物種である。例えば、Vero細胞は、アフリカミドリザルに由来し、LLC-MK2細胞は、アカゲザルに由来する。したがって、これらの細胞においては、それぞれアフリカミドリザル、およびアカゲザルのPKRを阻害することが好ましい。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 17, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 17 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 17 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR). According to Examples described later, the viral reconstitution rate is improved by inhibiting PKR in packaging cells. Accordingly, the PKR to be inhibited is preferably the animal species from which the packaging cells are derived. For example, Vero cells are derived from African green monkeys and LLC-MK2 cells are derived from rhesus monkeys. Therefore, it is preferable to inhibit African green monkey and rhesus monkey PKR in these cells, respectively.
 ある好ましい態様では、VAI RNAは、その5’末端に、VAI RNAの5’側の配列を付加されていてもよい。ある好ましい態様では、VAI RNAは、5’側の隣接領域を含むように、5’側に伸びていてもよい。5’末端に付加される配列としては、配列番号19、20、および23~26の位置1~84の配列、またはVAI RNAと連続して存在するその一部が挙げられる。例えば、VAI RNAは、配列番号34に記載のヌクレオチド配列を有していてもよい。 In a preferred embodiment, the VAI RNA may have the 5' sequence of the VAI RNA added to its 5' end. In a preferred embodiment, the VAI RNA may extend 5' to include the 5' flanking region. Sequences added to the 5' end include the sequences at positions 1-84 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA. For example, VAI RNA may have the nucleotide sequence set forth in SEQ ID NO:34.
 ある好ましい態様では、VAI RNAは、その3’末端に、VAI RNAの3’側の配列を付加されていてもよい。ある好ましい態様では、VAI RNAは、3’側の隣接領域を含むように、3’側に伸びていてもよい。3’末端に付加される配列としては、配列番号19、20、および23~26の位置265~330の配列、またはVAI RNAと連続して存在するその一部が挙げられる。例えば、VAI RNAは、配列番号35に記載のヌクレオチド配列を有していてもよい。 In a preferred embodiment, the VAI RNA may have the 3' sequence of the VAI RNA added to its 3' end. In a preferred embodiment, the VAI RNA may extend 3' to include the 3' flanking region. Sequences added to the 3' end include the sequences of positions 265-330 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA. For example, VAI RNA may have the nucleotide sequence set forth in SEQ ID NO:35.
 ある好ましい態様では、VAI RNAは、その5’末端に、VAI RNAの5’側の配列を付加され、かつ、その3’末端に、VAI RNAの3’側の配列を付加されていてもよい。ある好ましい態様では、VAI RNAは、5’側の隣接領域および3’側の隣接領域を含むように、それぞれ5’側および3’側に伸びていてもよい。5’末端に付加される配列としては、配列番号19、20、および23~26の位置1~84の配列、またはVAI RNAと連続して存在するその一部が挙げられる。3’末端に付加される配列としては、配列番号19、20、および23~26の位置265~330の配列、またはVAI RNAと連続して存在するその一部が挙げられる。 In a preferred embodiment, VAI RNA may have the 5' sequence of VAI RNA added to its 5' end and the 3' sequence of VAI RNA added to its 3' end. . In a preferred embodiment, the VAI RNA may extend 5' and 3' to include a 5' flanking region and a 3' flanking region, respectively. Sequences added to the 5' end include the sequences at positions 1-84 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA. Sequences added to the 3' end include the sequences of positions 265-330 of SEQ ID NOs: 19, 20, and 23-26, or a portion thereof that is contiguous with VAI RNA.
 ある好ましい態様では、VAI RNAは、配列番号19、20、および23~26の一部であり、かつ配列番号17に記載のヌクレオチド配列を含む配列に対応する配列であって、(i) VAI RNAと、(ii) VAI RNAの5’側の配列および3’側の配列のいずれかまたは両方を含む配列を有していてもよい。例えば、VAI RNAは、配列番号19、20、および23~26の一部であって、配列番号17に記載のヌクレオチド配列を含む配列を有していてもよい。 In a preferred embodiment, the VAI RNA is part of SEQ ID NOS: 19, 20, and 23-26 and is a sequence corresponding to a sequence comprising the nucleotide sequence set forth in SEQ ID NO: 17, wherein: (i) VAI RNA and (ii) a sequence containing either or both of the 5' and 3' sequences of VAI RNA. For example, the VAI RNA may have a sequence that is part of SEQ ID NOS: 19, 20, and 23-26 and includes the nucleotide sequence set forth in SEQ ID NO:17.
 ある態様において、EBERは、(i) 配列番号4に記載の配列を含む核酸であり得、(ii) 配列番号4に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号4に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the EBER can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:4, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:4 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 4 can be a nucleic acid, or (iv) can be a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様において、TARは、(i) 配列番号5に記載の配列を含む核酸であり得、(ii) 配列番号5に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号5に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the TAR can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:5, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:5 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:5 can be a nucleic acid, or (iv) can be a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、2Aproは、(i) 配列番号6に記載の配列を含むペプチドであり得、(ii) 配列番号6に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号6に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, the 2A pro can be a peptide comprising (i) the sequence set forth in SEQ ID NO:6, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:6 , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity with the sequence set forth in SEQ ID NO: 6 or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、E3Lは、(i) 配列番号7に記載の配列を含むペプチドであり得、(ii) 配列番号7に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号7に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, E3L can be a peptide comprising (i) the sequence set forth in SEQ ID NO:7, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:7 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:7 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、σ3は、(i) 配列番号8に記載の配列を含むペプチドであり得、(ii) 配列番号8に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号8に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, σ3 can be (i) a peptide comprising the sequence set forth in SEQ ID NO:8, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:8 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO:8 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、p58IPKは、(i) 配列番号9に記載の配列を含むペプチドであり得、(ii) 配列番号9に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号9に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some aspects, the p58 IPK can be a peptide comprising (i) the sequence set forth in SEQ ID NO:9, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:9 , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO:9 or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、K3Lは、(i) 配列番号10に記載の配列を含むペプチドであり得、(ii) 配列番号10に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号10に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, K3L can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 10, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 10 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 10 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、Tatは、(i) 配列番号11に記載の配列を含むペプチドであり得、(ii) 配列番号11に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号11に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In certain aspects, Tat can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 11, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 11 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 11 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、ICP34.5は、(i) 配列番号12に記載の配列を含むペプチドであり得、(ii) 配列番号12に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号12に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In one aspect, ICP34.5 can be a peptide comprising (i) the sequence set forth in SEQ ID NO: 12, (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO: 12 may be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) a sequence having 90% or more or 95% or more identity with the sequence set forth in SEQ ID NO: 12 or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、nc886は、(i) 配列番号13に記載の配列を含む核酸であり得、(ii) 配列番号13に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号13に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, nc886 can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 13, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 13 are It can be a nucleic acid consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 13 can be a nucleic acid, or (iv) can be a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、nc886は、(i) 配列番号14に記載の配列を含む核酸であり得、(ii) 配列番号14に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号14に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, nc886 can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 14, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 14 are It can be a nucleic acid consisting of a deleted, substituted, inserted, and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 14 can be a nucleic acid, or (iv) can be a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号18に記載の配列を含む核酸であり得、(ii) 配列番号18に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号18に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 18, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 18 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 18 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号19に記載の配列を含む核酸であり得、(ii) 配列番号19に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号19に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO: 19, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO: 19 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 19 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号20に記載の配列を含む核酸であり得、(ii) 配列番号20に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号20に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:20, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:20 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 20 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号21に記載の配列を含む核酸であり得、(ii) 配列番号21に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号21に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:21, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:21 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 21 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号22に記載の配列を含む核酸であり得、(ii) 配列番号22に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号22に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:22, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:22 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 22 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号23に記載の配列を含む核酸であり得、(ii) 配列番号23に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号23に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:23, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:23 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 23. or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号24に記載の配列を含む核酸であり得、(ii) 配列番号24に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号24に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:24, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:24 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 24 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号25に記載の配列を含む核酸であり得、(ii) 配列番号25に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号25に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:25, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:25 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 25 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、VAI RNAは、(i) 配列番号26に記載の配列を含む核酸であり得、(ii) 配列番号26に記載の配列において1、2、3、4、もしくは5個の核酸が、欠失、置換、挿入、及び/若しくは付加された配列からなる核酸であり得、もしくは、(iii) 配列番号26に記載の配列との同一性が90%以上または95%以上である配列を含む核酸であり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有する核酸であり得る。
In some embodiments, the VAI RNA can be (i) a nucleic acid comprising the sequence set forth in SEQ ID NO:26, and (ii) 1, 2, 3, 4, or 5 nucleic acids in the sequence set forth in SEQ ID NO:26 are , deletions, substitutions, insertions, and/or additions, or (iii) a sequence having 90% or more or 95% or more identity to the sequence set forth in SEQ ID NO: 26 or (iv) a fragment thereof, and
It can be a nucleic acid that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、NS1は、(i) 配列番号28に記載の配列を含むペプチドであり得、(ii) 配列番号28に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号28に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, NS1 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:28, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:28 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 28 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、Us11は、(i) 配列番号29に記載の配列を含むペプチドであり得、(ii) 配列番号29に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号29に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, Us11 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:29, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:29 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 29 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、E3K3は、E3Lの一部(例えば、E3LのC末端側107アミノ酸配列)または全部とK3の一部または全部の融合配列であり得、好ましくは、E3Lの一部(より好ましくは、E3LのC末端側107アミノ酸配列)とK3の融合配列であり得、かつ、PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。ある態様では、E3K3は、(i) 配列番号30に記載の配列を含むペプチドであり得、(ii) 配列番号30に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号30に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, E3K3 can be a fusion sequence of part or all of E3L (e.g., the C-terminal 107 amino acid sequence of E3L) and part or all of K3, preferably part of E3L (more preferably , the C-terminal 107 amino acid sequence of E3L) and K3, and may be a peptide having a function of inhibiting PKR (for example, PKR such as human PKR and monkey PKR). In certain aspects, E3K3 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:30, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:30 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 30 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 ある態様では、E3Y3は、E3Lの一部(例えば、E3LのC末端側107アミノ酸配列)または全部とY3の一部または全部の融合配列であり得、好ましくは、E3Lの一部(より好ましくは、E3LのC末端側107アミノ酸配列)とY3の融合配列であり得、かつ、PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。ある態様では、E3Y3は、(i) 配列番号31に記載の配列を含むペプチドであり得、(ii) 配列番号31に記載の配列において1、2、3、4、もしくは5個のアミノ酸が、欠失、置換、挿入、及び/若しくは付加された配列からなるペプチドであり得、もしくは、(iii) 配列番号31に記載の配列との同一性が90%以上または95%以上である配列を含むペプチドであり得、または(iv) これらの断片であり得、かつ、
 PKR(例えば、ヒトPKRおよびサルPKRなどのPKR)を阻害する機能を有するペプチドであり得る。
In some embodiments, E3Y3 can be a fusion sequence of part or all of E3L (e.g., the C-terminal 107 amino acid sequence of E3L) and part or all of Y3, preferably part of E3L (more preferably , the C-terminal 107 amino acid sequence of E3L) and Y3, and may be a peptide having a function of inhibiting PKR (for example, PKR such as human PKR and monkey PKR). In certain aspects, E3Y3 can be a peptide comprising (i) the sequence set forth in SEQ ID NO:31, and (ii) 1, 2, 3, 4, or 5 amino acids in the sequence set forth in SEQ ID NO:31 are It can be a peptide consisting of a deleted, substituted, inserted and/or added sequence, or (iii) contains a sequence that is 90% or more or 95% or more identical to the sequence set forth in SEQ ID NO: 31 may be a peptide, or (iv) a fragment thereof, and
It can be a peptide that has the function of inhibiting PKR (eg, PKR such as human PKR and monkey PKR).
 本明細書では「パッケージング細胞」とは、ウイルスベクターを産生させる細胞である。一般的には、安全性の向上の観点で、ウイルスベクターのウイルスゲノムは、その増殖、複製、および拡散(他の細胞への感染を含む)からなる群から選択される1以上の機能を担う因子が破壊されており、細胞感染後に増殖したり、複製したり、または拡散することができないようにエンジニアリングされている。しかし、ウイルスベクターを産生させるときには、その増殖、複製、および拡散を可能とするために、パッケージング細胞に破壊された因子を補いながらウイルスベクターを産生する。このため、パッケージング細胞は、ウイルスベクターを産生させるために、破壊されたウイルスの因子を補完して、ウイルスの産生量が回復するように、破壊されたウイルスの因子の一部を発現する。パッケージング細胞は、そのような因子をゲノム中に安定的に保有していてもよいし、一時的に保有してもよい。いずれの場合でもウイルス産生中には、補完されるウイルス性因子がパッケージング細胞の細胞内に供給される。一例として、例えば、センダイウイルスベクターは、古典的に、F遺伝子を欠損したゲノムを有するセンダイウイルスを、F遺伝子を供給するパッケージング細胞を用いて産生させることにより得られる。供給されるF遺伝子は、トリプシン存在下で活性化するが、細胞内に普遍的に存在するfurinで活性化するタイプのF遺伝子(F5R)なども開発され、ウイルス製造の利便性が高められている(例えば、WO2005/071085A参照)。近年では、cDNAからセンダイウイルスを産生させる技術が開発されている。例えば、弱毒株であるZ株を基本骨格として、ヒトへの医療応用のために安全性をさらに高める工夫がなされたベクターが作製されている。例えば、ウイルスゲノムからF、HN、およびM遺伝子のうちのいずれか1以上を欠失させ、ウイルスの伝播性を喪失させる技術が開発されている。例えば、F遺伝子欠失ウイルスゲノムが好ましく用いられている。ウイルスゲノムは、制御配列(例えば、T7プロモーター)に作動可能に連結しており、上記制御配列によってウイルスゲノムの産生を駆動することができる。これにより、cDNAからセンダイウイルスゲノムをパッケージング細胞内で産生させることができる。制御配列(例えば、第1、第2、または第3の制御配列)としてT7プロモーターを用いる場合には、T7RNAポリメラーゼは、例えば、ワクシニアウイルスなどのヘルパーウイルスにより供給され得る。パッケージング細胞内には、RNAポリメラーゼ(例えば、polII)による転写を駆動する制御配列に作動可能に連結されたN、P、F、およびLを発現させ、これによってウイルス粒子成分を供給して、パッケージング細胞内でウイルス粒子を形成させることができる。パッケージング細胞としては、例えば、サル腎由来のLLC-MK2細胞が用いられている。これにより、一度は細胞に感染可能であるが、その後は他の細胞に伝播できないウイルス粒子が得られる。ウイルス粒子は必要に応じて濃縮および/または精製してから用いられ得る。ウイルスに外来遺伝子を組込む場合には、RNA依存性RNAポリメラーゼによる転写を可能とするためにウイルス独自の制御配列を必要に応じて導入する。 As used herein, "packaging cells" are cells that produce viral vectors. In general, from the viewpoint of improving safety, the viral genome of a viral vector performs one or more functions selected from the group consisting of propagation, replication, and spread (including infection of other cells). The factor has been destroyed and engineered so that it cannot proliferate, replicate, or spread after cell infection. However, when the viral vector is produced, it is produced while compensating for the factors destroyed by the packaging cells in order to allow its growth, replication and spread. Thus, the packaging cell complements the disrupted viral factors to produce the viral vector and expresses a portion of the disrupted viral factors to restore viral production. Packaging cells may stably or transiently harbor such factors in their genome. In either case, during virus production, complemented viral factors are supplied intracellularly to the packaging cells. As an example, for example, a Sendai virus vector is classically obtained by producing a Sendai virus whose genome lacks the F gene, using packaging cells that supply the F gene. The supplied F gene is activated in the presence of trypsin, but a type of F gene (F5R) that is activated by furin, which is ubiquitously present in cells, has also been developed, increasing the convenience of virus production. (see for example WO2005/071085A). In recent years, techniques for producing Sendai virus from cDNA have been developed. For example, vectors have been constructed using Z strains, which are attenuated strains, as a basic skeleton, and have been devised to further enhance safety for medical application to humans. For example, techniques have been developed to delete any one or more of the F, HN, and M genes from the viral genome to render the virus non-transmissible. For example, an F gene-deleted viral genome is preferably used. The viral genome is operably linked to regulatory sequences (eg, the T7 promoter) that can drive production of the viral genome. This allows the Sendai virus genome to be produced in the packaging cells from the cDNA. When using a T7 promoter as a control sequence (eg, first, second, or third control sequence), T7 RNA polymerase can be supplied, for example, by a helper virus such as vaccinia virus. expressing in the packaging cells N, P, F, and L operably linked to regulatory sequences that drive transcription by an RNA polymerase (e.g., pol II), thereby supplying viral particle components; Viral particles can be formed within the packaging cells. For example, LLC-MK2 cells derived from monkey kidney are used as packaging cells. This results in viral particles that can infect cells once, but cannot subsequently spread to other cells. Virus particles can be used after concentration and/or purification, if desired. When a foreign gene is incorporated into the virus, the virus' own regulatory sequences are optionally introduced to allow transcription by an RNA-dependent RNA polymerase.
 本発明によれば、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターを製造する方法が提供される。マイナス鎖RNAウイルスとしては、オルソミクソウイルス科(インフルエンザウイルスなどのオルソミクソウイルス)、パラミクソウイルス科(モービリウイルス属などのパラミクソウイルス)、ラブドウイルス科(狂犬病ウイルスなどのラブドウイルス)、フィロウイルス科(エボラとマールブルグウイルスなどのフィロウイルス)、およびブニアウイルス科(ハンタウイルスなどのブニアウイルス)が挙げられる。マイナス鎖RNAウイルスとしては、好ましくは、パラミクソウイルス科のウイルスであり、好ましくは、パラミクソウイルスであり、好ましくは、センダイウイルスであり得る。 According to the present invention, a method for producing a minus-strand RNA virus or a minus-strand RNA virus vector is provided. Negative-strand RNA viruses include Orthomyxoviridae (orthomyxoviruses such as influenza virus), Paramyxoviridae (paramyxoviruses such as the genus Mobilivirus), Rhabdoviridae (rhabdoviruses such as rabies virus), filo Viridae (filoviruses such as Ebola and Marburg virus), and Bunyaviridae (buniaviruses such as Hantavirus). The minus-strand RNA virus is preferably a Paramyxoviridae virus, preferably a Paramyxoviridae, and preferably a Sendai virus.
 本明細書では、「制御配列」は、それに作動可能に連結された遺伝子を駆動し、当該遺伝子からRNAを転写する活性を有する配列をいう。制御配列は、例えば、プロモーターである。プロモーターは、例えば、クラスIプロモーター(rRNA前駆体の転写に用いられ得る)、クラスIIプロモーター(コアプロモーターと上流プロモーターエレメントから構成され、mRNAの転写に用いられ得る)、およびクラスIIIプロモーター(I型、II型、およびIII型にさらに大別される)が挙げられる。 As used herein, the term "regulatory sequence" refers to a sequence that has the activity of driving a gene operably linked thereto and transcribing RNA from the gene. A control sequence is, for example, a promoter. Promoters include, for example, class I promoters (which can be used for transcription of rRNA precursors), class II promoters (which are composed of a core promoter and an upstream promoter element and can be used for transcription of mRNAs), and class III promoters (which can be used for transcription of mRNA). , II, and III).
 マイナス鎖RNAウイルスベクターは、ある態様では、そのゲノム上では、マイナス鎖RNAウイルスの細胞への増殖または感染に関する因子が破壊(例えば、欠失)されており、パッケージング細胞以外の細胞内では増殖または感染能力が低下しているか、実質的な感染能力を有しない。上述の通り、そのようなベクターは、パッケージング細胞に破壊された増殖または感染に関する因子を供給した条件下で作製することで、細胞への最初の感染力を付与される。これにより、パッケージング細胞から得られたベクターは感染力を有するが、その後に、パッケージング細胞以外の細胞に感染したベクターは、それ以上の感染性の粒子を生み出すことができず、これによりベクターの安全性が向上させられている。 In one aspect, a minus-strand RNA viral vector has a disrupted (e.g., deleted) factor on its genome that is related to proliferation or infection of a minus-strand RNA virus into cells, and proliferation in cells other than packaging cells. or has reduced or no substantial infectivity. As noted above, such vectors are rendered initially infective in cells by making them under conditions that supply the packaging cells with factors for disrupted growth or infection. This ensures that vectors obtained from packaging cells are infective, but vectors that subsequently infect cells other than packaging cells are unable to produce more infectious particles, thereby resulting in vector safety has been improved.
 ある態様では、本発明の方法は、
(A)第1の制御配列に作動可能に連結したプロテインキナーゼR(PKR)阻害性の因子をコードする遺伝子から当該因子を発現させてパッケージング細胞に供給することを含む。
In one aspect, the method of the present invention comprises:
(A) expressing from a gene encoding a protein kinase R (PKR) inhibitory factor operably linked to a first regulatory sequence and supplying the factor to the packaging cell;
 第1の制御配列は、RNA、例えばmRNAの転写をすることができるプロモーターであり得、例えば、pol II系プロモーターを各種使用することができる。pol II系プロモーターとしては、特に制限されないが、例えばCMVプロモーター、EF1プロモーター(EF1αプロモーター)、SV40プロモーター、MSCVプロモーター、hTERTプロモーター、βアクチンプロモーター、CAGプロモーター、およびCBhプロモーター等が挙げられる。RNAの転写をすることができるプロモーターとしてはまた、T7プロモーター、T3プロモーター、およびSP6プロモーターなどのバクテリオファージ由来のRNAポリメラーゼを駆動するプロモーター、並びにU6プロモーターなどのpol III系プロモーターを用いることもでき、環状DNAに対しては好ましくはT7プロモーターであり得、直鎖状DNAに対しては好ましくはSP6プロモーターであり得る。プロモーターはまた、誘導性プロモーターでもよい。これらのプロモーターは、RNA性の因子の転写に好ましく用いられ得る。誘導性プロモーターは、プロモーターを駆動する誘導因子の存在下でのみ、当該プロモーターに機能的に連結されたポリヌクレオチドの発現を誘導することができるプロモーターである。誘導性プロモーターとしては、ヒートショックプロモーターなどの加熱により遺伝子発現を誘導するプロモーターが挙げられる。また、誘導性プロモーターには、プロモーターを駆動する誘導因子が薬剤であるプロモーターが挙げられる。このような薬剤誘導性プロモーターとしては、例えば、Cumateオペレーター配列、λオペレーター配列(例えば、12×λOp)、テトラサイクリン系誘導性プロモーター等が挙げられる。テトラサイクリン系誘導性プロモーターとしては、例えば、テトラサイクリンもしくはその誘導体(例えば、ドキシサイクリン)、またはリバーステトラサイクリン制御性トランス活性化因子(rtTA)の存在下で遺伝子発現を駆動するプロモーターが挙げられる。テトラサイクリン系誘導性プロモーターとしては、例えば、TRE3Gプロモーターが挙げられる。 The first regulatory sequence can be a promoter that can transcribe RNA, for example, mRNA, and for example, various pol II promoters can be used. The pol II promoter is not particularly limited, but includes, for example, CMV promoter, EF1 promoter (EF1α promoter), SV40 promoter, MSCV promoter, hTERT promoter, β actin promoter, CAG promoter, and CBh promoter. Promoters capable of transcription of RNA also include promoters that drive bacteriophage-derived RNA polymerase, such as T7 promoter, T3 promoter, and SP6 promoter, and pol III promoters, such as U6 promoter. For circular DNA it may preferably be the T7 promoter and for linear DNA it may preferably be the SP6 promoter. A promoter may also be an inducible promoter. These promoters can be preferably used for transcription of RNA factors. An inducible promoter is a promoter that can induce expression of a polynucleotide operably linked to it only in the presence of an inducer driving the promoter. Inducible promoters include promoters that induce gene expression by heating, such as heat shock promoters. Inducible promoters also include promoters in which the inducer that drives the promoter is a drug. Such drug-inducible promoters include, for example, Cumate operator sequences, λ operator sequences (eg, 12×λOp), tetracycline system-inducible promoters, and the like. Tetracycline-based inducible promoters include, for example, promoters that drive gene expression in the presence of tetracycline or its derivatives (eg, doxycycline), or reverse tetracycline-regulated transactivator (rtTA). Examples of tetracycline-inducible promoters include the TRE3G promoter.
 ある種のウイルスは、PKRに対抗するためにPKR阻害性のウイルス性因子を備えている。本発明では、PKR阻害性のウイルス性因子として、このようなウイルスが天然に保有するPKR阻害性のウイルス性因子を用いることができる。したがって、ウイルスゲノムとPKR阻害性のウイルス性因子の由来する種は、同種であってもよいが、好ましくは異種である。 Certain viruses are equipped with PKR-inhibiting viral factors to combat PKR. In the present invention, a PKR-inhibiting viral factor naturally possessed by such viruses can be used as the PKR-inhibiting viral factor. Therefore, the species from which the viral genome and the PKR-inhibiting viral factor are derived may be homologous, but preferably heterologous.
 プロテインキナーゼR(PKR)阻害性の因子としては、例えば、PKRに結合するデコイRNAが挙げられる。デコイRNAとしては、例えば、VAI RNA、EBER、nc886、およびTAR、並びにこれらのオーソログが挙げられる。ある好ましい態様では、デコイRNAは、VAI RNAおよびそのオーソログであり得、特にアデノウイルス由来であり得る。ある好ましい態様では、デコイRNAは、EBERおよびそのオーソログであり得、特にエプスタイン-バー(EB)ウイルス由来であり得る。ある好ましい態様では、デコイRNAは、nc886およびそのオーソログであり得、特にヒト由来であり得る。ある好ましい態様では、デコイRNAは、TARおよびそのオーソログであり得、特にヒト免疫不全ウイルス(HIV)由来であり得る。本発明ではこれらの因子を好ましく用いることができる。 Protein kinase R (PKR) inhibitory factors include, for example, decoy RNA that binds to PKR. Decoy RNAs include, for example, VAI RNA, EBER, nc886, and TAR, and orthologues thereof. In one preferred embodiment, the decoy RNA can be VAI RNA and its orthologues, particularly from adenovirus. In one preferred aspect, the decoy RNA may be EBER and its orthologues, particularly from Epstein-Barr (EB) virus. In one preferred aspect, the decoy RNA may be nc886 and its orthologues, particularly of human origin. In one preferred aspect, the decoy RNA may be TAR and its orthologues, particularly derived from human immunodeficiency virus (HIV). These factors can be preferably used in the present invention.
 VAIとしては、配列番号17に記載の配列を有するものを用いることができる。VAIは、アデノウイルスゲノム上のその前後配列をさらに含んでいてもよい。したがって、PKR阻害性のウイルス性因子は、配列番号19に記載の配列を有するものであってもよい。VAIは、VAIIをさらに含んでいてもよい。例えば、PKR阻害性のウイルス性因子は、配列番号21に記載の配列を有するものであってもよい。VAIは、置換、欠失、挿入、および付加からなる群から選択される1以上の変異を有していてもよい。例えば、PKR阻害性のウイルス性因子としては、配列番号17に記載の配列における74番目の塩基に対応するVAIの塩基において置換を有する配列を有し得る。配列番号17に記載の配列における74番目の塩基の置換は、G、AおよびCのいずれへの置換であってもよいが、好ましくはCへの置換である。好ましい態様では、PKR阻害性のウイルス性因子は、配列番号18または20に記載の配列を有し得る。ある好ましい態様では、PKR阻害性のウイルス性因子は、配列番号22または23に記載の配列を有し得る。
 また例えば、PKR阻害性のウイルス性因子としては、配列番号19に記載の配列における191番目の塩基に対応するVAIの塩基において置換を有する配列を有し得る。好ましい態様では、PKR阻害性のウイルス性因子は、配列番号24に記載の配列を有し得る。
 またある好ましい態様では、PKR阻害性のウイルス性因子は、配列番号25に記載の配列を有し得る。またある好ましい態様では、PKR阻害性のウイルス性因子は、配列番号26に記載の配列を有し得る。
As VAI, one having the sequence set forth in SEQ ID NO: 17 can be used. The VAI may further comprise its preceding and following sequences on the adenoviral genome. Thus, a PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:19. VAI may further include VAII. For example, the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:21. VAI may have one or more mutations selected from the group consisting of substitutions, deletions, insertions and additions. For example, a PKR-inhibiting viral agent can have a sequence with a substitution at base 74 of VAI corresponding to base 74 in the sequence set forth in SEQ ID NO:17. Substitution of the 74th base in the sequence shown in SEQ ID NO: 17 may be any one of G, A and C, preferably C. In preferred embodiments, the PKR-inhibiting viral agent may have a sequence set forth in SEQ ID NO:18 or 20. In one preferred aspect, the PKR-inhibiting viral agent may have a sequence set forth in SEQ ID NO:22 or 23.
Also, for example, a PKR-inhibiting viral factor may have a sequence having a substitution at the VAI base corresponding to the 191st base in the sequence set forth in SEQ ID NO:19. In a preferred embodiment, the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:24.
In another preferred aspect, the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:25. In another preferred embodiment, the PKR-inhibiting viral agent may have the sequence set forth in SEQ ID NO:26.
 nc886は、ある態様では、配列番号13の配列を有し得る。nc886は、VAIの前後配列をさらに含んでいてもよい。nc886は、VAIの前後配列をさらに有し、配列番号14に記載の配列を有していてもよい。 nc886 may have the sequence of SEQ ID NO: 13 in certain aspects. nc886 may further comprise sequences before and after VAI. nc886 may further have sequences before and after VAI and have the sequence set forth in SEQ ID NO:14.
 プロテインキナーゼR(PKR)阻害性の因子としてはまた、PKRの分解を誘導する分子が挙げられる。PKRの分解を誘導する分子としては、例えば、2Aproおよびそのオーソログが挙げられる。ある好ましい態様では、PKRの分解を誘導する分子は、2Aproおよびそのオーソログであり得、特にポリオウイルス由来であり得る。本発明ではこれらの因子を好ましく用いることができる。 Protein kinase R (PKR) inhibitory agents also include molecules that induce the degradation of PKR. Molecules that induce degradation of PKR include, for example, 2A pro and its orthologues. In one preferred aspect, the molecule that induces degradation of PKR can be 2A pro and its orthologues, particularly from poliovirus. These factors can be preferably used in the present invention.
 プロテインキナーゼR(PKR)阻害性の因子としてはまた、ウイルスの二本鎖RNAをマスキングする因子が挙げられる。ウイルスの二本鎖RNAをマスキングする因子は、ウイルスの二本鎖RNAをマスキングしてPKRの活性化を防ぐことができる。ウイルスの二本鎖RNAをマスキングする因子としては、例えば、E3L、σ3、Us11およびNS1並びにこれらのオーソログが挙げられる。ある好ましい態様では、ウイルスの二本鎖RNAをマスキングする因子は、E3Lおよびそのオーソログであり得、特にワクシニアウイルス由来である。ある好ましい態様では、σ3およびそのオーソログであり得、特にレオウイルス由来である。ある好ましい態様では、Us11およびそのオーソログであり得、特に単純ヘルペスウイルス(HSV)由来である。ある好ましい態様では、ウイルスの二本鎖RNAをマスキングする因子は、NS1およびそのオーソログであり得、特にインフルエンザウイルス由来である。本発明ではこれらの因子を好ましく用いることができる。 Protein kinase R (PKR) inhibitory factors also include factors that mask viral double-stranded RNA. Agents that mask viral double-stranded RNA can mask viral double-stranded RNA to prevent activation of PKR. Factors that mask viral double-stranded RNA include, for example, E3L, σ3, Us11 and NS1 and their orthologues. In one preferred embodiment, the factor that masks viral double-stranded RNA can be E3L and its orthologs, particularly from vaccinia virus. In certain preferred embodiments, it may be σ3 and its orthologues, particularly from reoviruses. In certain preferred embodiments, it may be Us11 and its orthologs, particularly from herpes simplex virus (HSV). In a preferred embodiment, the viral double-stranded RNA masking agent can be NS1 and its orthologs, particularly from influenza virus. These factors can be preferably used in the present invention.
 プロテインキナーゼR(PKR)阻害性の因子としてはまた、PKRの二量体化を阻害する因子が挙げられる。PKRの二量体化を阻害する因子としては、例えば、p58IPKおよびNS5A並びにこれらのオーソログが挙げられる。ある好ましい態様では、PKRの二量体化を阻害する因子は、p58IPKおよびそのオーソログであり得、特にヒト由来である。ある好ましい態様では、PKRの二量体化を阻害する因子は、NS5Aおよびそのオーソログであり得、特にC型肝炎ウイルス(HCV)由来である。本発明ではこれらの因子を好ましく用いることができる。NS5Aは、そのC末端側(例えば、149番目のアミノ酸以降)を欠失していてもよい。例えば、NS5Aは、その1~148番目のアミノ酸を有するNS5A(1~148)であり得る。 Protein kinase R (PKR) inhibitory agents also include agents that inhibit PKR dimerization. Factors that inhibit PKR dimerization include, for example, p58 IPK and NS5A and their orthologs. In one preferred embodiment, the agent that inhibits PKR dimerization can be p58 IPK and its orthologues, particularly of human origin. In one preferred aspect, the agent that inhibits PKR dimerization can be NS5A and its orthologs, particularly from hepatitis C virus (HCV). These factors can be preferably used in the present invention. NS5A may be deleted from its C-terminal side (for example, after the 149th amino acid). For example, NS5A can be NS5A(1-148) with amino acids 1-148 thereof.
 プロテインキナーゼR(PKR)阻害性の因子としてはまた、PKRの偽基質が挙げられる。偽基質としては、例えば、K3LおよびTat並びにこれらのオーソログが挙げられる。ある好ましい態様では、偽基質は、K3Lおよびそのオーソログであり得、特にワクシニアウイルス由来である。ある好ましい対象では、偽基質は、Tatおよびそのオーソログであり、特にHIV由来である。本発明ではこれらの因子を好ましく用いることができる。 Protein kinase R (PKR) inhibitory factors also include PKR pseudosubstrates. Pseudosubstrates include, for example, K3L and Tat and their orthologues. In one preferred embodiment, the pseudosubstrate can be K3L and its orthologues, particularly from vaccinia virus. In one preferred subject, the pseudosubstrate is Tat and its orthologues, particularly from HIV. These factors can be preferably used in the present invention.
 プロテインキナーゼR(PKR)阻害性の因子としてはまた、基質の脱リン酸化を誘導する分子が挙げられる。基質の脱リン酸化を誘導する分子としては、例えば、ICP34.5およびそのオーソログが挙げられる。ある好ましい態様では、基質の脱リン酸化を誘導する分子は、ICP34.5およびそのオーソログは単純ヘルペスウイルス(HSV)由来である。本発明ではこれらの因子を好ましく用いることができる。 Protein kinase R (PKR) inhibitory factors also include molecules that induce substrate dephosphorylation. Molecules that induce substrate dephosphorylation include, for example, ICP34.5 and its orthologues. In one preferred embodiment, the molecule that induces substrate dephosphorylation is ICP34.5 and its orthologs are derived from herpes simplex virus (HSV). These factors can be preferably used in the present invention.
 ある態様では、プロテインキナーゼR(PKR)阻害性の因子は、アデノウイルスのVAI RNA、EBウイルスのEBER、ヒトnc886、HIVウイルスのTAR、ポリオウイルスの2Apro、ワクシニアウイルスのE3L、レオウイルスのδ3、インフルエンザウイルスのNS1、ヒトp58IPK、C型肝炎ウイルスのNS5A、ワクシニアウイルスのK3L、HIVウイルスのTat、単純ヘルペスウイルスのUs11、および単純ヘルペスウイルスのICP34.5、並びにこれらのオーソログからなる群から選択される1以上である。 In certain aspects, the protein kinase R (PKR) inhibitory agent is adenovirus VAI RNA, EB virus EBER, human nc886, HIV virus TAR, poliovirus 2A pro , vaccinia virus E3L, reovirus δ3 , influenza virus NS1, human p58 IPK , hepatitis C virus NS5A, vaccinia virus K3L, HIV virus Tat, herpes simplex virus Us11, and herpes simplex virus ICP34.5, and orthologs thereof. One or more to be selected.
 プロテインキナーゼR(PKR)阻害性の因子は、ある態様では、パッケージング細胞のゲノム中に安定的に組込まれていてもよい。発現は、第1の制御配列により駆動され得る。第1の制御配列は、恒常的なプロモーターでもよいし、誘導性プロモーターでもよい。 The protein kinase R (PKR) inhibitory factor may, in some embodiments, be stably integrated into the genome of the packaging cell. Expression can be driven by a first control sequence. The first regulatory sequence can be a constitutive promoter or an inducible promoter.
 プロテインキナーゼR(PKR)阻害性の因子は、ある態様では、パッケージング細胞に一過性に導入されてもよい。例えば、プロテインキナーゼR(PKR)阻害性の因子は、プラスミドDNAに搭載され得る。プラスミドDNAは、当業者に周知の技術を用いて細胞内に導入することができ、これによりプラスミドDNAから細胞内でプロテインキナーゼR(PKR)阻害性の因子を発現させることができる。発現は、第1の制御配列により駆動され得る。第1の制御配列は、恒常的なプロモーターでもよいし、誘導性プロモーターでもよい。 A protein kinase R (PKR) inhibitory agent may, in certain embodiments, be transiently introduced into packaging cells. For example, protein kinase R (PKR) inhibitory agents can be carried on plasmid DNA. Plasmid DNA can be introduced into cells using techniques well known to those of skill in the art, thereby allowing protein kinase R (PKR) inhibitory factors to be expressed intracellularly from the plasmid DNA. Expression can be driven by a first control sequence. The first regulatory sequence can be a constitutive promoter or an inducible promoter.
 ある態様では、パッケージング細胞は、例えば、Vero細胞またはLLC-MK2細胞であり得る。ある態様では、パッケージング細胞は、Vero細胞からなる細胞集団またはLLC-MK2細胞からなる細胞集団であり得る。ある態様では、ウイルスの産生にパッケージング細胞以外の細胞を用いない。ある態様では、パッケージング細胞は、F遺伝子を発現する。ある好ましい態様では、パッケージング細胞は、F遺伝子を恒常的に発現する。ある好ましい態様では、Fタンパク質は、トリプシンで活性化させ得る。ある好ましい態様では、Fタンパク質は、F5Rであり得る。ある好ましい態様では、Vero細胞またはLLC-MK2細胞を含む、SeVの再構成用の組成物が提供される。再構成とは、パッケージング細胞にウイルスまたはウイルスベクターの構成要素を供給して、ウイルスまたはウイルスベクターを形成させることをいう。SeVの再構成は、本明細書に記載の通りに行うことができる。 In some embodiments, packaging cells can be, for example, Vero cells or LLC-MK2 cells. In one aspect, the packaging cells can be a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells. In some embodiments, no cells other than packaging cells are used for virus production. In one aspect, the packaging cell expresses the F gene. In one preferred embodiment, the packaging cells constitutively express the F gene. In one preferred embodiment, the F protein can be activated with trypsin. In one preferred aspect, the F protein can be F5R. In one preferred aspect, compositions for reconstitution of SeV are provided comprising Vero cells or LLC-MK2 cells. Reconstitution refers to supplying virus or viral vector components to packaging cells to form the virus or viral vector. Reconstitution of SeV can be performed as described herein.
 本発明によれば、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターを製造する方法であって、
(B)パッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、前記因子の存在下でマイナス鎖RNAウイルスまたはウイルスベクターを形成させることと{例えば、PKR阻害性の因子、例えば、PKR阻害性のウイルス性因子の存在下でパッケージング細胞にマイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターのゲノムRNAを発現させ、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターを形成させること}
を含む方法が提供される。
According to the present invention, there is provided a method for producing a minus-strand RNA virus or a minus-strand RNA viral vector, comprising:
(B) expressing the genomic RNA of a minus-strand RNA virus or viral vector in packaging cells to form a minus-strand RNA virus or viral vector in the presence of the factor {e.g., a PKR inhibitory factor, e.g., expressing the genomic RNA of a negative-strand RNA virus or negative-strand RNA viral vector in packaging cells in the presence of a PKR-inhibiting viral agent to form a negative-strand RNA virus or negative-strand RNA viral vector}
A method is provided comprising:
 マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターのゲノムRNAは、例えば、第2の制御配列に作動可能に連結された当該ゲノムRNAをコードするDNAを有する遺伝子発現ベクターから発現され得る。遺伝子発現ベクターは、例えば、少なくとも一過的に前記ゲノムRNAを細胞内で発現させるベクターであれば用いることができるが、例えば、好ましい一例では、プラスミドベクターであり得る。前記ゲノムRNAは、ベクターの細胞毒性を最小化するためにPタンパク質に511F、Mタンパク質に69E、116A、及び183S、HNタンパク質に262T、264R、及び461E、並びに、Lタンパク質に1197S、及び1796Eの変異を有していてもよい(例えば、WO2003/025570参照)。当該ゲノムRNAが細胞内で産生されると、パッケージ細胞に供給された他のウイルス粒子の構成要素(例えば、F、N、P、L)と複合化してウイルスまたはウイルスベクター(ウイルス粒子)が形成される。この際に、プロテインキナーゼR(PKR)阻害性の因子、NS5A、もしくはnc886、またはこれらの等価物が細胞内に存在すると、ウイルス粒子の産生量が増大する。パッケージ細胞は、培養に適した条件下で培養することができる。ウイルスゲノムをコードする遺伝子は、T7プロモーターにより駆動することができる。この場合、パッケージング細胞には、T7ポリメラーゼを供給することができる。ウイルスゲノムをコードする遺伝子は、CAGプロモーターまたはEF1プロモーターにより駆動してもよい。 The genomic RNA of a negative-strand RNA virus or negative-strand RNA viral vector can be expressed, for example, from a gene expression vector having DNA encoding the genomic RNA operably linked to a second regulatory sequence. A gene expression vector can be used, for example, as long as it is a vector that at least transiently expresses the genomic RNA in cells, and a preferred example is a plasmid vector. The genomic RNA contains 511F for the P protein, 69E, 116A and 183S for the M protein, 262T, 264R and 461E for the HN protein, and 1197S and 1796E for the L protein to minimize vector cytotoxicity. It may have mutations (see, for example, WO2003/025570). When the genomic RNA is produced in the cell, it complexes with other virus particle components (e.g., F, N, P, L) supplied to the packaging cell to form a virus or virus vector (virus particle). be done. At this time, if a protein kinase R (PKR) inhibitory factor, NS5A, or nc886, or their equivalent is present in the cell, the amount of virus particles produced increases. Packaged cells can be cultured under conditions suitable for culture. The gene encoding the viral genome can be driven by the T7 promoter. In this case, the packaging cells can be supplied with T7 polymerase. Genes encoding the viral genome may be driven by the CAG promoter or the EF1 promoter.
 ある態様では、パッケージング細胞には、SeVの構成要素(例えば、N、P、およびL、並びにこれらの等価物)をさらに供給して、パッケージング細胞におけるSeVの形成を促進させることができる。SeVの構成要素は、例えば、プラスミドベクターをパッケージング細胞に導入することにより供給することができる。 In some embodiments, the packaging cells can be further supplied with SeV components (eg, N, P, and L, and equivalents thereof) to facilitate SeV formation in the packaging cells. The SeV components can be supplied, for example, by introducing a plasmid vector into the packaging cells.
 ある態様では、ウイルス粒子の構成要素(例えば、N、P、L)をコードする遺伝子は、それぞれ第3の制御配列に作動可能に連結されている。ある態様では、それぞれ第3の制御配列に作動可能に連結されているウイルス粒子の構成要素(例えば、F、N、P、L)をコードする遺伝子は、プラスミド上に組込まれている。ある態様では、第3の制御配列は、CAGプロモーター(例えば、配列番号2に記載の配列を有する)であり得る。ある態様では、第3の制御配列の少なくとも1つまたはすべては、非CAGプロモーターであり得、例えば、EF1αプロモーター(例えば、配列番号1に記載の配列を有する)であり得る。ある好ましい態様では、ウイルス粒子の構成要素(例えば、N、P、L)をコードする遺伝子は、1つまたは複数の遺伝子発現ベクター(好ましくはプラスミド)に搭載されている。この場合、これらの構成要素は、1つの制御配列に、または複数の制御配列に作動可能に連結されていてよい。制御配列は、例えば、CAGまたはEF1プロモーターであり得る。 In one aspect, the genes encoding the viral particle components (eg, N, P, L) are each operably linked to a third regulatory sequence. In one aspect, the genes encoding the viral particle components (eg, F, N, P, L) each operably linked to a third regulatory sequence are integrated on a plasmid. In some aspects, the third regulatory sequence can be a CAG promoter (eg, having the sequence set forth in SEQ ID NO:2). In some aspects, at least one or all of the third regulatory sequences can be a non-CAG promoter, such as the EF1α promoter (eg, having the sequence set forth in SEQ ID NO:1). In a preferred embodiment, the genes encoding the viral particle components (eg, N, P, L) are carried on one or more gene expression vectors (preferably plasmids). In this case, these components may be operatively linked to one control sequence or to multiple control sequences. A control sequence can be, for example, the CAG or EF1 promoter.
 本発明のある態様では、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターを製造する方法は、
(C)形成されたマイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターを回収すること
をさらに含む。
In one aspect of the present invention, the method for producing a negative-strand RNA virus or negative-strand RNA viral vector comprises:
(C) further comprising recovering the formed negative-strand RNA virus or negative-strand RNA viral vector.
 細胞内で形成されたウイルス粒子は、適宜回収することができる。細胞内で形成されたウイルス粒子は、細胞外に放出され得る。したがって、ウイルス粒子は、培養液中から回収することができる。回収されたウイルス粒子は、適宜、精製および/または濃縮することができる。このようにして、単離されたウイルスベクター、精製されたウイルスベクター、または濃縮されたウイルスベクターが提供される。得られたウイルスベクターは、適宜保存され得る。保存は、例えば、ディープフリーザー内(例えば、約-80℃)、フリーザー内(例えば、約-20℃)、または冷蔵庫内(約4℃)で行うことができる。保存は、液体窒素内で行うこともできる。ウイルスベクターは、必要に応じてタイター測定(力価測定)に供される。ウイルスのタイターは、当業者に周知の方法で決定することができる。 Virus particles formed in cells can be collected as appropriate. Viral particles formed intracellularly can be released extracellularly. Therefore, virus particles can be recovered from the culture medium. The recovered virus particles can be purified and/or concentrated as appropriate. Thus, an isolated, purified, or concentrated viral vector is provided. The resulting viral vector can be stored as appropriate. Storage can be performed, for example, in a deep freezer (eg, about -80°C), in a freezer (eg, about -20°C), or in a refrigerator (about 4°C). Storage can also be performed in liquid nitrogen. The viral vector is subjected to titer determination as necessary. Viral titers can be determined by methods well known to those skilled in the art.
 ある態様では、本発明に方法により得られるマイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターの感染力価は、1×10 CIU/mL以上、2×10 CIU/mL以上、3×10 CIU/mL以上、4×10 CIU/mL以上、5×10 CIU/mL以上、6×10 CIU/mL以上、7×10 CIU/mL以上、8×10 CIU/mL以上、9×10 CIU/mL以上、1×10 CIU/mL以上、2×10 CIU/mL以上、3×10 CIU/mL以上、4×10 CIU/mL以上、5×10 CIU/mL以上、6×10 CIU/mL以上、7×10 CIU/mL以上、8×10 CIU/mL以上、9×10 CIU/mL以上、1×10 CIU/mL以上、2×10 CIU/mL以上、3×10 CIU/mL以上、4×10 CIU/mL以上、または5×10 CIU/mL以上であり得る。 In certain aspects, the infectious titer of the minus-strand RNA virus or minus-strand RNA viral vector obtained by the method of the present invention is 1×10 5 CIU/mL or more, 2×10 5 CIU/mL or more, or 3×10 5 CIU. /mL or more, 4×10 5 CIU/mL or more, 5×10 5 CIU/mL or more, 6×10 5 CIU/mL or more, 7×10 5 CIU/mL or more, 8×10 5 CIU/mL or more, 9 x10 5 CIU/mL or more, 1 x 10 6 CIU/mL or more, 2 x 10 6 CIU/mL or more, 3 x 10 6 CIU/mL or more, 4 x 10 6 CIU/mL or more, 5 x 10 6 CIU/mL or more mL or more, 6×10 6 CIU/mL or more, 7×10 6 CIU/mL or more, 8×10 6 CIU/mL or more, 9×10 6 CIU/mL or more, 1×10 7 CIU/mL or more, 2× It can be 10 7 CIU/mL or greater, 3 x 10 7 CIU/mL or greater, 4 x 10 7 CIU/mL or greater, or 5 x 10 7 CIU/mL or greater.
 本発明のある態様では、ウイルスまたはウイルスベクターが由来する種と、PKR阻害性の因子が由来する種の関係は、異種であり得る。この態様では、第1の制御配列とPKR阻害性の因子が由来する種の関係は、同種であり得る。 In certain aspects of the present invention, the relationship between the species from which the virus or viral vector is derived and the species from which the PKR inhibitory factor is derived may be heterologous. In this aspect, the species relationship from which the first regulatory sequence and the PKR inhibitory factor are derived may be homologous.
 本発明のある態様では、第1の制御配列とPKR阻害性の因子が由来する種の関係は、異種であり得る。この態様では、ウイルスまたはウイルスベクターが由来する種と、PKR阻害性の因子が由来する種の関係は、同種であり得る。 In certain aspects of the present invention, the relationship between the species from which the first regulatory sequence and the PKR inhibitory factor are derived may be heterologous. In this aspect, the relationship between the species from which the virus or viral vector is derived and the species from which the PKR inhibitory factor is derived can be homogeneous.
 本発明のある態様では、ウイルスまたはウイルスベクターが由来する種と、PKR阻害性の因子が由来する種の関係は、異種であり、かつ、第1の制御配列とPKR阻害性の因子が由来する種の関係は、異種であり得る。 In one aspect of the present invention, the relationship between the species from which the virus or viral vector is derived and the species from which the PKR-inhibitory factor is derived is heterologous, and the first regulatory sequence and the PKR-inhibitory factor are derived from Species relationships can be heterogeneous.
 本発明のある態様では、PKR阻害性の因子をコードする遺伝子は、パッケージング細胞のゲノム中に組込まれている。本発明のある態様では、PKR阻害性の因子をコードする遺伝子は、パッケージング細胞に導入するベクター(例えば、プラスミドDNA)に組込まれている。組込まれる位置は、SeVゲノム上のN遺伝子の前、N遺伝子とP遺伝子の間、P遺伝子とM遺伝子の間、M遺伝子とHN遺伝子の間、HN遺伝子とL遺伝子の間、またはL遺伝子の後ろであり得る。組込まれる位置は、当該因子が、RNAである場合、目的タンパク質をコードする遺伝子の3’UTR中であってもよい。一般にN遺伝子はNP遺伝子と表記されることもある。 In one aspect of the present invention, the gene encoding the PKR inhibitory factor is integrated into the genome of the packaging cell. In one aspect of the invention, the gene encoding the PKR inhibitory factor is incorporated into a vector (eg, plasmid DNA) that is introduced into packaging cells. The position of integration is before the N gene, between the N gene and the P gene, between the P gene and the M gene, between the M gene and the HN gene, between the HN gene and the L gene, or between the L gene on the SeV genome. can be behind. The location of integration may be in the 3'UTR of the gene encoding the protein of interest when the factor is RNA. In general, the N gene is sometimes written as the NP gene.
 本発明のある好ましい態様では、PKR阻害性の因子をコードする遺伝子は、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターのRNAゲノム中に組込まれている。この態様においては、PKR阻害性の因子をコードする遺伝子は、パッケージング細胞のゲノム中またはパッケージング細胞に導入するベクター(例えば、プラスミドDNA)にさらに組込まれていてもよい。したがって、ある好ましい態様では、PKR阻害性の因子をコードする遺伝子は、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターのRNAゲノム中に組込まれ、かつ、パッケージング細胞のゲノム中またはパッケージング細胞に導入するベクター(例えば、プラスミドDNA)にさらに組込まれていている。このようにすることによって、ゲノム数が少ない間もパッケージング細胞からPKR阻害性の因子が供給され、ゲノムが増加したときにはゲノムからもPKR阻害性の因子が供給されて、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターは良好に増加し得る。また、得られたマイナス鎖RNAウイルスまたはウイルスベクターを別の細胞(非パッケージング細胞)に感染させた後も、ウイルスゲノムからPKR阻害性の因子が供給されて、ウイルスまたはウイルスベクターが良好に細胞内で増殖し得る。これにより、例えば、ウイルスまたはウイルスベクターに搭載された目的遺伝子の発現量が高まる効果を得ることができる。 In a preferred embodiment of the present invention, a gene encoding a PKR inhibitory factor is integrated into the RNA genome of a minus-strand RNA virus or minus-strand RNA viral vector. In this embodiment, the gene encoding the PKR inhibitory factor may be further integrated into the genome of the packaging cell or into a vector (eg, plasmid DNA) introduced into the packaging cell. Thus, in one preferred embodiment, a gene encoding a PKR-inhibitory factor is integrated into the RNA genome of a negative-strand RNA virus or negative-strand RNA viral vector and introduced into the genome of or into the packaging cell. It is further incorporated into a vector (eg, plasmid DNA) that carries By doing so, the PKR inhibitory factor is supplied from the packaging cell even when the number of genomes is small, and the PKR inhibitory factor is supplied from the genome when the genome is increased. Stranded RNA viral vectors can be successfully propagated. In addition, even after infecting another cell (non-packaging cell) with the obtained minus-strand RNA virus or viral vector, the PKR inhibitory factor is supplied from the viral genome, and the virus or viral vector is successfully transferred to the cell. can grow within As a result, for example, the effect of increasing the expression level of the target gene mounted on the virus or viral vector can be obtained.
 本発明のある態様では、ヘルパーウイルス非存在下でウイルス粒子を産生する。 In one aspect of the present invention, virus particles are produced in the absence of helper virus.
 本発明のある態様では、ウイルスまたはウイルスベクターが、パラミクソウイルスまたはパラミクソウイルスベクターであり、RNAゲノムがF遺伝子欠損RNAゲノムである。この態様では、第1の制御配列は、CAGプロモーターまたはEF1プロモーター、例えば、EF1プロモーターであり得る。この態様ではまた、第2の制御配列は、T7プロモーターであり、T7RNAポリメラーゼは、細胞ゲノムまたはプラスミド上から転写および翻訳により産生させ得る。ある好ましい対象では、パラミクソウイルスは、センダイウイルスである。また、ある好ましい態様では、パラミクソウイルスベクターは、センダイウイルスベクターである。 In one aspect of the present invention, the virus or viral vector is a paramyxovirus or a paramyxovirus vector, and the RNA genome is an F gene-deficient RNA genome. In this aspect, the first regulatory sequence can be the CAG promoter or the EF1 promoter, such as the EF1 promoter. Also in this aspect, the second regulatory sequence is the T7 promoter, and the T7 RNA polymerase can be produced by transcription and translation from the cell genome or plasmid. In certain preferred subjects, the Paramyxovirus is Sendai virus. In a preferred embodiment, the Paramyxovirus vector is a Sendai virus vector.
 ある態様では、パラミクソウイルスまたはパラミクソウイルスベクターは、N、P、およびLタンパク質を発現することができる。ある態様では、パラミクソウイルスまたはパラミクソウイルスベクターは、F、HN、およびMタンパク質からなる群から選択される1つ、2つ、または3つを発現しない。例えば、RNAゲノムは、F、HN、およびMタンパク質からなる群から選択される1つ、2つ、または3つのタンパク質をコードするRNAを欠失している。ある好ましい態様では、パラミクソウイルスまたはパラミクソウイルスベクターは、Fタンパク質を発現しない。 In some aspects, the Paramyxovirus or Paramyxovirus vector is capable of expressing the N, P, and L proteins. In some aspects, the Paramyxovirus or Paramyxovirus vector does not express one, two, or three selected from the group consisting of the F, HN, and M proteins. For example, the RNA genome lacks RNAs encoding 1, 2, or 3 proteins selected from the group consisting of F, HN, and M proteins. In one preferred embodiment, the Paramyxovirus or Paramyxovirus vector does not express the F protein.
 ある態様では、パラミクソウイルスまたはパラミクソウイルスベクターは、Vタンパク質および/またはCタンパク質を発現可能に含むRNAゲノムを有する。 In one aspect, the Paramyxovirus or Paramyxovirus vector has an RNA genome capable of expressing V protein and/or C protein.
 本発明によれば、マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターのRNAゲノムおよび当該RNAゲノムをコードするDNAが提供される。RNAゲノムは、ある態様では、PKR阻害性の因子(例えば、PKR阻害性のウイルス性因子)のいずれか1以上をコードする遺伝子を発現可能に含む。本発明によればまた、上記のRNAゲノムを含むマイナス鎖RNAウイルスベクターが提供される。マイナス鎖RNAウイルスまたはマイナス鎖RNAウイルスベクターは、RNAゲノムを内包するウイルス粒子をさらに有する。このようなウイルスまたはウイルスベクターは、細胞感染後により強い増殖力を奏し得る。ある好ましい態様では、マイナス鎖RNAウイルスは、パラミクソウイルスであり、より好ましくは、センダイウイルスであり得る。また、ある好ましい態様では、マイナス鎖RNAウイルスベクターは、パラミクソウイルスベクターであり、より好ましくは、センダイウイルスベクターであり得る。ある態様では、当該RNAゲノムをコードするDNAは、第2の制御配列に作動可能に連結されている。ある態様では、第2の制御配列に作動可能に連結された当該RNAゲノムをコードするDNAを含む、遺伝子発現ベクターが提供される。 According to the present invention, an RNA genome of a minus-strand RNA virus or a minus-strand RNA virus vector and a DNA encoding the RNA genome are provided. The RNA genome, in one aspect, expressably comprises genes encoding any one or more of the PKR-inhibiting factors (eg, PKR-inhibiting viral factors). The present invention also provides a minus-strand RNA viral vector comprising the above RNA genome. A negative-strand RNA virus or negative-strand RNA viral vector further has a viral particle that contains the RNA genome. Such viruses or viral vectors can exhibit stronger growth potential after cell infection. In a preferred embodiment, the minus-strand RNA virus is Paramyxovirus, more preferably Sendai virus. In a preferred embodiment, the minus-strand RNA viral vector is a Paramyxovirus vector, more preferably a Sendai virus vector. In one aspect, the DNA encoding the RNA genome is operably linked to a second regulatory sequence. In one aspect, a gene expression vector is provided comprising DNA encoding the RNA genome operably linked to a second regulatory sequence.
 ある好ましい態様では、RNAゲノム(特にSeVゲノム)をコードするDNAを含む、当該ゲノムの遺伝子発現ベクターは、当該RNAゲノムの上流および下流のいずれかまたは両方に隣接して自己切断リボザイム(例えば、ハンマーヘッドリボザイムまたはHDVリボザイム)の配列を含んでいてもよい。また、前記遺伝子発現ベクターは、前記自己切断リボザイム(例えば、ハンマーヘッドリボザイムまたはHDVリボザイム)の配列を介して、他の因子の配列(例えば、PKR阻害性の因子やRNAの増幅を促進する因子)を連結させ、これにより、RNAゲノムと前記他の因子の配列とが一連のRNAに転写させてもよい。このように構成することにより、RNAゲノムが転写された後に、自己切断リボザイム(例えば、ハンマーヘッドリボザイムまたはHDVリボザイム)の配列においてRNAが開裂して、前記他の因子を除去することができ、RNAゲノムから実質的になるRNAが得られる。他の因子の配列として例えば、PKR阻害性の因子やRNAの増幅を促進する因子を連結させておくことで、その作用を発揮させてゲノムの増幅させた上で、当該他の因子を完成したゲノムから除去することができる。例えば、上記他の因子がRNAゲノムの5’側に配置され、上記他の因子とRNAゲノムをコードする領域の間にはハンマーヘッドリボザイムの配列を配置することができ、または、上記他の因子がRNAゲノムの3’側に配置され、RNAゲノムをコードする領域と上記他の因子の間にはHDVリボザイムの配列を配置することができる。より具体的には、RNAゲノムをコードするDNAを含む、その遺伝子発現ベクターは、例えば、プロモーター(例えば、T7プロモーター、CAGプロモーター、およびEF1プロモーターなど)、第一の自己切断リボザイム(例えば、3’自己切断型リボザイム、好ましくは、ハンマーヘッドリボザイム)の配列、RNAゲノムをコードするDNAを、第二の自己切断リボザイム(例えば、5’自己切断型リボザイム、好ましくは、HDVリボザイム)の配列、および他の因子の配列をこの順に含むように構成されていてもよい。また、別の好ましい態様として、プロモーター(例えば、T7プロモーター、CAGプロモーター、およびEF1プロモーターなど)、他の因子の配列、第一の自己切断リボザイム(例えば、3’自己切断型リボザイム、好ましくは、ハンマーヘッドリボザイム)の配列、RNAゲノムをコードするDNAを、第二の自己切断リボザイム(例えば、5’自己切断型リボザイム、好ましくは、HDVリボザイム)の配列をこの順に含むように構成されていてもよい。上記において自己切断型リボザイムは一例として示したに過ぎず、好ましい実施形態はこれに限られない。特に、自己切断型リボザイムを用いる場合には、RNAゲノムの塩基数が6n{ここで、nは自然数}となるように自己切断型リボザイムを配置することができる。遺伝子発現ベクターは、例えば、他の因子の配列の下流にターミネーター配列(例えば、T7ポリメラーゼに対してはT7ターミネーター配列)をさらに含んでいてもよい。自己切断リボザイム(例えば、ハンマーヘッドリボザイム)の配列としては、様々なものが知られている。自己切断リボザイムとしては、特に限定されないが例えば、ハンマーヘッド型リボザイム、デルタ型肝炎ウイルス(HDV)リボザイム、ツイスター型リボザイム、ツイスター・シスター型リボザイム、ピストル型リボザイム、ヘアピン型リボザイム、およびハチェット型リボザイムが挙げられる。これらの自己切断型リボザイムは、例えば、5’自己切断リボザイム、および/または、3’自己切断リボザイムであり得る。中でも、3’自己切断リボザイムとして、Hh-Rbzの配列(例えば、配列番号36)、および5’自己切断リボザイムとしてデルタ型肝炎ウイルスのリボザイム(HDV-Rbz)の配列(例えば、配列番号37)などを用いることができる。 In certain preferred embodiments, an RNA genome (especially a SeV genome) comprising DNA encoding said genomic gene expression vector is flanked either or both upstream and downstream of said RNA genome by a self-cleaving ribozyme (e.g. a hammer head ribozyme or HDV ribozyme). In addition, the gene expression vector may contain sequences of other factors (e.g., PKR-inhibiting factors and factors that promote RNA amplification) via the sequence of the self-cleaving ribozyme (e.g., hammerhead ribozyme or HDV ribozyme). may be ligated so that the RNA genome and the sequences of said other factors are transcribed into a series of RNAs. By constructing in this way, after the RNA genome is transcribed, the RNA can be cleaved at the sequence of a self-cleaving ribozyme (e.g., hammerhead ribozyme or HDV ribozyme) to remove said other factor, RNA is obtained which consists essentially of the genome. For example, by linking a PKR-inhibiting factor or a factor that promotes amplification of RNA as the sequence of another factor, the action is exhibited to amplify the genome, and then the other factor is completed. It can be removed from the genome. For example, the other factor can be placed 5' to the RNA genome, and a hammerhead ribozyme sequence can be placed between the other factor and the region encoding the RNA genome, or is located 3' of the RNA genome, and the sequence of the HDV ribozyme can be placed between the region encoding the RNA genome and the other elements mentioned above. More specifically, the gene expression vector comprising DNA encoding the RNA genome includes, for example, a promoter (eg, T7 promoter, CAG promoter, and EF1 promoter), a first self-cleaving ribozyme (eg, 3' the sequence of a self-cleaving ribozyme, preferably a hammerhead ribozyme), the DNA encoding the RNA genome, the sequence of a second self-cleaving ribozyme (e.g., a 5' self-cleaving ribozyme, preferably an HDV ribozyme), and others. may be configured to include an array of factors in this order. In another preferred embodiment, promoters (e.g., T7 promoter, CAG promoter, EF1 promoter, etc.), sequences of other factors, first self-cleaving ribozymes (e.g., 3′ self-cleaving ribozymes, preferably hammer head ribozyme), DNA encoding the RNA genome, and the sequence of a second self-cleaving ribozyme (e.g., 5' self-cleaving ribozyme, preferably HDV ribozyme) in this order. . The self-cleaving ribozyme is shown above only as an example, and preferred embodiments are not limited to this. In particular, when a self-cleaving ribozyme is used, the self-cleaving ribozyme can be arranged so that the RNA genome has 6n bases (where n is a natural number). The gene expression vector may, for example, further include a terminator sequence (eg, a T7 terminator sequence for T7 polymerase) downstream of the sequence of the other factor. Various sequences of self-cleaving ribozymes (eg, hammerhead ribozymes) are known. Examples of self-cleaving ribozymes include, but are not limited to, hammerhead ribozymes, hepatitis delta virus (HDV) ribozymes, twister ribozymes, twister-sister ribozymes, pistol ribozymes, hairpin ribozymes, and hatchet ribozymes. be done. These self-cleaving ribozymes can be, for example, 5' self-cleaving ribozymes and/or 3' self-cleaving ribozymes. Among them, the sequence of Hh-Rbz (eg, SEQ ID NO: 36) as the 3′ self-cleaving ribozyme, and the sequence of hepatitis delta virus ribozyme (HDV-Rbz) (eg, SEQ ID NO: 37) as the 5′ self-cleaving ribozyme. can be used.
 ある好ましい態様では、RNAウイルスの構成因子を発現する遺伝子発現ベクターは、PKR阻害性の因子やRNAの増幅を促進する因子をさらに搭載していてもよい。前記遺伝子発現ベクターは、前記構成因子に、前記自己切断リボザイム(例えば、上記の通りであり、例えば、ハンマーヘッドリボザイムまたはHDVリボザイムであり得る)の配列を介して、他の因子の配列(例えば、PKR阻害性の因子やRNAの増幅を促進する因子)を連結させ、これにより、RNAゲノムと前記他の因子の配列とが一連のRNAに転写させてもよい。あるいは、ある好ましい態様では、PKR阻害性の因子やRNAの増幅を促進する因子は、独立してプラスミドに搭載されていてもよい。 In a preferred embodiment, a gene expression vector that expresses an RNA virus component may further carry a PKR-inhibitory factor or an RNA amplification-promoting factor. Said gene expression vector provides said component via the sequence of said self-cleaving ribozyme (e.g., as described above, which can be, for example, a hammerhead ribozyme or HDV ribozyme) via the sequence of another factor (e.g., A PKR-inhibiting factor or factor that promotes amplification of RNA) may be ligated so that the RNA genome and the sequence of the other factor are transcribed into a sequence of RNA. Alternatively, in a preferred embodiment, the PKR inhibitory factor and/or the factor promoting RNA amplification may be carried independently on a plasmid.
 本発明によれば、上記ウイルスのRNAゲノムをコードするDNAを含む、当該ゲノムの遺伝子発現ベクターと、上記ウイルスの構成因子をコードするDNAを含む、上記ウイルスの再構成用ベクターとの組合せが提供される。当該組合せは、細胞に共発現させることにより、当該細胞において上記ウイルスの粒子を再構成することに用いることができる。ある態様では、ウイルス粒子を再構成することに用いるための組合せが提供され、組合せは、上記ウイルスのRNAゲノムをコードするDNAと、上記ウイルスの構成因子をコードするDNAを含み、これらのDNAは、ウイルス粒子を構成するに十分な因子をコードするDNAを含み、1以上の遺伝子発現ベクターに搭載されている。RNAゲノム、および上記ウイルスの構成因子をコードするDNAは、制御配列に作動可能に連結されている。制御配列は、プロモーターであり得、プロモーターとしては、特に限定されないが例えば、T7プロモーター、CAGプロモーター、およびEF1プロモーターが挙げられる。 According to the present invention, there is provided a combination of a gene expression vector for the genome, which contains DNA encoding the RNA genome of the virus, and a vector for reconstitution of the virus, which contains DNAs which encode the components of the virus. be done. The combination can be used to reconstitute the viral particles in the cell by co-expression in the cell. In one aspect, a combination is provided for use in reconstituting a viral particle, the combination comprising DNA encoding the RNA genome of the virus and DNA encoding the components of the virus, the DNA comprising , which contains DNA encoding sufficient factors to form viral particles and is carried in one or more gene expression vectors. The RNA genome and DNA encoding the viral components are operably linked to regulatory sequences. A regulatory sequence can be a promoter, such as, but not limited to, the T7 promoter, the CAG promoter, and the EF1 promoter.
 センダイウイルスまたはセンダイウイルスベクターは、そのRNAゲノム中に、目的遺伝子をさらに有し得る。目的遺伝子は、細胞に導入したい遺伝子であり得る。目的遺伝子は、導入された細胞内で発現し、RNAまたはタンパク質を産生させ得る。目的遺伝子は、RNAゲノム中に発現可能に搭載されている。目的遺伝子は、外来遺伝子であり得る。外来遺伝子とは、導入される細胞に対して内在性の遺伝子と区別される意味で用いられる用語である。 A Sendai virus or Sendai virus vector may further have a target gene in its RNA genome. A gene of interest can be a gene that one wishes to introduce into a cell. The gene of interest can be expressed in the introduced cells to produce RNA or protein. The gene of interest is expressably carried in the RNA genome. A gene of interest can be a foreign gene. A foreign gene is a term used to distinguish it from a gene endogenous to the cell into which it is introduced.
マイナス鎖RNAウイルスベクターの調製
 マイナス鎖RNAウイルスベクターをウイルスのパッケージング細胞で発現させた。特に発現の際のPKR阻害因子の有効性を評価した。
Preparation of Minus-strand RNA Viral Vectors Minus-strand RNA viral vectors were expressed in virus packaging cells. Specifically, the efficacy of PKR inhibitors upon expression was evaluated.
 マイナス鎖RNAウイルスベクターとしては、センダイウイルス(SeV)を用いた。センダイウイルスは、F遺伝子発現細胞にプラスミド混合物を導入し、3日後の培養上清から回収した。プラスミド混合物は、T7プロモーターに作動可能に連結されたセンダイウイルスゲノムを搭載したpSeV-EmGFPを含んだ。センダイウイルスゲノムには、ゲノムの増殖を蛍光により検出できるように、EmGFPをコードする遺伝子を搭載した。センダイウイルスゲノムは、F遺伝子の欠失を有するものとした。 Sendai virus (SeV) was used as a negative-strand RNA virus vector. Sendai virus was collected from the culture supernatant 3 days after introduction of the plasmid mixture into the F gene-expressing cells. The plasmid mixture contained pSeV-EmGFP carrying the Sendai virus genome operably linked to a T7 promoter. The Sendai virus genome contained a gene encoding EmGFP so that the proliferation of the genome could be detected by fluorescence. The Sendai virus genome was assumed to have a deletion of the F gene.
(1)F遺伝子発現細胞は以下のように作製した。
 pCAGGS-neoにSeVのF遺伝子(コザック配列付加、ヒトコドンに最適化)を搭載し、pCAGGS-F-neoを構築した。得られたプラスミドをVero細胞、あるいはLLC-MK2細胞にViaFect(プロメガ社)を用いてトランスフェクションし、1~2mg/mLのG418二硫酸塩溶液(ナカライテスク)を用いて選択し、F遺伝子発現細胞を得た。得られた細胞はVero-F、及びLLC-MK2-Fと表記する。
(1) F gene-expressing cells were prepared as follows.
The SeV F gene (Kozak sequence added, optimized for human codons) was loaded into pCAGGS-neo to construct pCAGGS-F-neo. The resulting plasmid was transfected into Vero cells or LLC-MK2 cells using ViaFect (Promega), and selected using 1-2 mg/mL G418 disulfate solution (Nacalai Tesque) to express F gene. cells were obtained. The resulting cells are designated as Vero-F and LLC-MK2-F.
(2)F遺伝子欠失型SeVは、以下のように作製した。
 ACCESSION:AB855655のSeV-Z株の配列情報と、J. General Virology (1997), 78, 2813-2820.のpSeVの情報を基に、T7プロモーターでF遺伝子欠失型SeVゲノムが転写されるpSeV/dFを構築した。SeV-Z株の細胞傷害性を最小化するために、pSeV/dFに次のアミノ酸変異を加えた:Pタンパク質:511F、Mタンパク質:69E、116A、及び183S、HNタンパク質:262T、264R、及び461E、並びに、Lタンパク質:1197S、及び1796E(例えば、WO2003/025570参照)。得られたプラスミドをpSeV/TSdFとした。SeVの再構成を評価するために目的遺伝子(GOI)としてGFPの変異体であるEmGFPを用いた。GOIの搭載位置はN遺伝子の前(以下「+」と表される)、P遺伝子とM遺伝子の間(以下「PM」と表される)、M遺伝子とHN遺伝子の間(以下「MHN」と表される)、HN遺伝子とL遺伝子の間(以下「HNL」と表される)の順で遺伝子発現量が減少する。EmGFP遺伝子の搭載位置はSeVのN遺伝子の前とし、pSeV+EmGFP/TSdFを主に用いた。
(2) F gene-deleted SeV was produced as follows.
ACCESSION: The sequence information of the SeV-Z strain of AB855655 and the J. Phys. General Virology (1997), 78, 2813-2820. pSeV/dF, in which the F gene-deleted SeV genome is transcribed with a T7 promoter, was constructed based on the information of pSeV. To minimize the cytotoxicity of the SeV-Z strain, the following amino acid mutations were made in pSeV/dF: P protein: 511F, M protein: 69E, 116A, and 183S, HN proteins: 262T, 264R, and 461E and L proteins: 1197S and 1796E (see, eg, WO2003/025570). The resulting plasmid was named pSeV/TSdF. EmGFP, which is a GFP mutant, was used as a gene of interest (GOI) to evaluate SeV rearrangement. The GOI is installed in front of the N gene (hereinafter referred to as "+"), between the P gene and the M gene (hereinafter referred to as "PM"), and between the M gene and the HN gene (hereinafter referred to as "MHN"). ) and between the HN gene and the L gene (hereinafter referred to as “HNL”). The EmGFP gene was placed in front of the SeV N gene, and pSeV+EmGFP/TSdF was mainly used.
(3)SeV再構成用のプラスミドは以下のように作製した。
 WO2005/071092を参考にpCAGGS-NP、pCAGGS-P4C(-)、pCAGGS-L、pCAGGS-F5R、pCAGGS-T7を構築し、この組み合わせを「CAG」と表記する。また、コザック配列の付加とヒトコドンへの最適化を行い、上記とは異なるプロモーターを備える再構成用プラスミドセット:pCAGGS-NPco、pCAGGS-P4C(-)co、pCAGGS-Lco、pCAGGS-F5Rco、pCAGGS-T7co、pEF1-NPco、pEF1-P4C(-)co、pEF1-Lco、pEF1-F5Rco、及びpEF1-T7coを構築した。さらに、T7にはP2001-54387Aを参考に430P、849I、880Y変異を導入し、P2003-61683Aを参考に644Y、667Y変異を導入し、得られたT7m配列を搭載するpCAGGS-T7mco、pEF1-T7mcoを構築した。pEF1-NPco、pEF1-P4C(-)co、pEF1-Lco、pCAGGS-F5Rco、pCAGGS-T7mcoの組み合わせを「EFnpL」と表記する。pEF1-NPco、pCAGGS-P4C(-)co、pCAGGS -Lco、pCAGGS-F5Rco、pCAGGS-T7mcoの組み合わせをEFnCAGpLと表記。pCAGGS-NPco、pCAGGS-P4C(-)co、pEF1-Lco、pCAGGS-F5Rco、pCAGGS-T7mcoの組み合わせをCAGnpEFLと表記する。
(3) A plasmid for SeV reconstitution was constructed as follows.
pCAGGS-NP, pCAGGS-P4C(-), pCAGGS-L, pCAGGS-F5R and pCAGGS-T7 were constructed with reference to WO2005/071092, and this combination is referred to as "CAG". In addition, a reconstruction plasmid set with a Kozak sequence added and optimized for human codons and having a promoter different from the above: pCAGGS-NPco, pCAGGS-P4C (-) co, pCAGGS-Lco, pCAGGS-F5Rco, pCAGGS- T7co, pEF1-NPco, pEF1-P4C(-)co, pEF1-Lco, pEF1-F5Rco, and pEF1-T7co were constructed. Furthermore, in T7, 430P, 849I, and 880Y mutations are introduced with reference to P2001-54387A, and 644Y and 667Y mutations are introduced with reference to P2003-61683A. built. The combination of pEF1-NPco, pEF1-P4C(-)co, pEF1-Lco, pCAGGS-F5Rco and pCAGGS-T7mco is denoted as "EFnpL". The combination of pEF1-NPco, pCAGGS-P4C(-)co, pCAGGS-Lco, pCAGGS-F5Rco and pCAGGS-T7mco is denoted as EFnCAGpL. A combination of pCAGGS-NPco, pCAGGS-P4C(-)co, pEF1-Lco, pCAGGS-F5Rco and pCAGGS-T7mco is denoted as CAGnpEFL.
(4)PKR阻害因子を有するプラスミドは以下の通り作製した。
 ノンコーディングRNA評価用配列はT7プロモーターとT7ターミネーターを有するpT7プラスミドに搭載し、pT7-VAI(180bp;配列番号17)、pT7-VAI74a(180bp;配列番号18でV=A)、pT7-VAI74c(180bp;配列番号18でV=C)、pT7-VAI74a(330bp;配列番号26でM=A)、pT7-VAI-VAII(478bp;配列番号21)、pT7-nc886(108bp;配列番号13)、pT7-nc886(272bp;配列番号14)を構築した。VAIのApical Stem(図1)にあるBamHI認識配列の破壊のため、VAIの74塩基目に塩基置換(T74A、T74C)を有する配列を構築した。同様にVAIの3’側にあるNheI認識配列の破壊のため、191塩基目に塩基置換(G191C)を有する配列を構築した(配列番号26でM=A)。これらの塩基置換は、RNAの二次構造に影響を与えず、VAIの機能への影響はないと考えて設計したものである。別のPKR阻害因子としてnc886(108bp)を搭載したpT7プラスミドを構築した。その配列を延長するためにVAIの前後配列をそれぞれ前後にさらに有するnc886(272bp)を構築した(配列番号13,14)。コントロール用プラスミドとしてT7プロモーター下にIRES配列を有するpT7-IRESを構築した。
(4) A plasmid having a PKR inhibitor was constructed as follows.
The non-coding RNA evaluation sequence was mounted on a pT7 plasmid having a T7 promoter and a T7 terminator, pT7-VAI (180 bp; SEQ ID NO: 17), pT7-VAI74a (180 bp; V = A in SEQ ID NO: 18), pT7-VAI74c ( 180 bp; V=C in SEQ ID NO: 18), pT7-VAI74a (330 bp; M=A in SEQ ID NO: 26), pT7-VAI-VAII (478 bp; SEQ ID NO: 21), pT7-nc886 (108 bp; SEQ ID NO: 13), pT7-nc886 (272 bp; SEQ ID NO: 14) was constructed. In order to disrupt the BamHI recognition sequence in the Apical Stem of VAI (Fig. 1), a sequence having base substitutions (T74A, T74C) at the 74th base of VAI was constructed. Similarly, a sequence having a base substitution (G191C) at base 191 was constructed to disrupt the NheI recognition sequence on the 3' side of VAI (M=A in SEQ ID NO: 26). These base substitutions were designed on the assumption that they would not affect the secondary structure of RNA and would not affect the function of VAI. A pT7 plasmid was constructed carrying nc886 (108 bp) as another PKR inhibitor. In order to extend the sequence, nc886 (272 bp) having VAI sequences before and after each was constructed (SEQ ID NOS: 13, 14). As a control plasmid, pT7-IRES having an IRES sequence under the T7 promoter was constructed.
(5)PKR阻害因子を有するプラスミドは以下の通り作製した。
 翻訳される配列には基本的にコザック配列の付加とヒトコドンへの最適化を行った。pCAGGS-E3L、pCAGGS-K3L、pCAGGS-Y3、pCAGGS-E3K3、pCAGGS-E3Y3、pCAGGS-NS1、pCAGGS-σ3、pCAGGS-Us11を構築した。E3L(配列番号7)およびK3L(配列番号10)はワクシニアウイルスの配列、Y3(配列番号27)はSeVのCタンパク質のC末端側106アミノ酸配列、NS1(配列番号28)はインフルエンザウイルスの配列、σ3(配列番号8)はレオウイルスの配列、Us11(配列番号29)はHSV-1の配列、E3K3(配列番号30)はE3LのC末端側107アミノ酸配列とK3Lの融合配列、E3Y3(配列番号31)はE3LのC末端側107アミノ酸配列とY3の融合配列であった。
(5) A plasmid having a PKR inhibitor was constructed as follows.
The translated sequences were basically added with Kozak sequences and optimized for human codons. pCAGGS-E3L, pCAGGS-K3L, pCAGGS-Y3, pCAGGS-E3K3, pCAGGS-E3Y3, pCAGGS-NS1, pCAGGS-σ3, pCAGGS-Us11 were constructed. E3L (SEQ ID NO: 7) and K3L (SEQ ID NO: 10) are vaccinia virus sequences, Y3 (SEQ ID NO: 27) is the C-terminal 106 amino acid sequence of SeV C protein, NS1 (SEQ ID NO: 28) is the influenza virus sequence, σ3 (SEQ ID NO: 8) is a reovirus sequence, Us11 (SEQ ID NO: 29) is an HSV-1 sequence, E3K3 (SEQ ID NO: 30) is a fusion sequence between the C-terminal 107 amino acid sequence of E3L and K3L, E3Y3 (SEQ ID NO: 31) was a fusion sequence between the C-terminal 107 amino acid sequence of E3L and Y3.
(6)PKR阻害因子の存在下、または非存在下におけるSeVの再構成
 SeVの再構成用プラスミドとトランスフェクション試薬比率はWO2005/071092に従った。具体的には、以下の重量のプラスミドとトランスフェクション試薬(TransIT-LT1 ReagentまたはViaFect)を混合してプラスミドミックスを得た。
(6) SeV Reconstitution in the Presence or Absence of a PKR Inhibitor The ratio of SeV reconstitution plasmid to transfection reagent was in accordance with WO2005/071092. Specifically, plasmids and transfection reagents (TransIT-LT1 Reagent or ViaFect) of the following weights were mixed to obtain a plasmid mix.
 PKR阻害因子を含まない条件:
  NP、P4C(-)、F5R、T7:各0.5μg
  L:2μg
  pSeV:5μg
  プラスミドの合計:9μg
  TransIT-LT1 ReagentまたはViaFect:15μL
Conditions without PKR inhibitors:
NP, P4C (-), F5R, T7: 0.5 μg each
L: 2 μg
pSeV: 5 μg
Total plasmid: 9 μg
TransIT-LT1 Reagent or ViaFect: 15 μL
 PKR阻害因子を含む条件:
  NP、P4C(-)、F5R、T7:各0.5μg
  L:2μg
  pSeV:5μg
  PKR阻害因子を有するプラスミド:1μg
  プラスミドの合計:10μg
  TransIT-LT1 ReagentまたはViaFect:16.5μL
Conditions with PKR inhibitors:
NP, P4C (-), F5R, T7: 0.5 μg each
L: 2 μg
pSeV: 5 μg
Plasmid with PKR inhibitor: 1 μg
Total plasmid: 10 μg
TransIT-LT1 Reagent or ViaFect: 16.5 μL
 以下、断りのない限り、プラスミドの重量とトランスフェクション試薬の容積は、9:15となるように混合した。 Below, unless otherwise noted, the weight of the plasmid and the volume of the transfection reagent were mixed at a ratio of 9:15.
 225μLのOptiMEMにプラスミドとトランスフェクション試薬を混和し、500μLの培地(10%FBS/E-MEM)で培養中の12ウェルプレートのF遺伝子発現細胞にトランスフェクションし、37℃で培養した。トランスフェクション翌日から32℃で培養した。培地交換は、2.5μg/mLトリプシンを添加した無血清培地(ITS-X/NEAA/E-MEM)で毎日行った。SeV再構成が成功している指標として、トランスフェクション翌日からEmGFP陽性の細胞が観察され(EmGFPの陽性細胞数増加はSeVの再構成効率向上を示している)、トランスフェクション3日目に蛍光顕微鏡システムECLIPSE Ti2-E(ニコン)を用いてマイクロプレートの蛍光強度を測定した。トランスフェクション3日目の培養上清を回収し、10倍~10万倍希釈を行い、96ウェルプレートに播種したVero細胞に感染させ、感染3日後のGFP陽性細胞数をECLIPSE Ti2-Eを用いて計測し、感染力価を算出した。 A plasmid and a transfection reagent were mixed in 225 μL of OptiMEM, transfected into F gene-expressing cells in a 12-well plate being cultured in 500 μL of medium (10% FBS/E-MEM), and cultured at 37°C. The cells were cultured at 32° C. from the day after transfection. Medium changes were performed daily with serum-free medium (ITS-X/NEAA/E-MEM) supplemented with 2.5 μg/mL trypsin. As an indicator of successful SeV reconstitution, EmGFP-positive cells were observed from the day after transfection (an increase in the number of EmGFP-positive cells indicates an improvement in SeV reconstitution efficiency). The fluorescence intensity of the microplate was measured using the system ECLIPSE Ti2-E (Nikon). The culture supernatant on day 3 of transfection was collected, diluted 10 to 100,000 times, infected with Vero cells seeded in a 96-well plate, and the number of GFP-positive cells was counted 3 days after infection using ECLIPSE Ti2-E. The infection titer was calculated.
(7)VAI存在下におけるSeVの再構成
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdFを用いた。PKR阻害因子としてVAIを用いた。VAIは野生型(wt)の配列としてpT7-VAI(180bp)、pT7-VAI-VAII(478bp)を用い、塩基置換配列としてpT7-VAI74a(180bp)、pT7-VAI74c(180bp)、pT7-VAI74a(330bp)を用いた。VAIのコントロール(Ctrl)プラスミドとしてpT7-IRESを用いた。VAIを併用した細胞ではコントロールとは異なり、トランスフェクションの翌日からEmGFPの蛍光陽性細胞が観察された。3日目の細胞からのEmGFP由来の蛍光強度を比較すると、VAI(180bp)wt存在下でコントロールの18倍、VAI(180bp)74a存在下でコントロールの34倍、VAI(180bp)74c存在下でコントロールの53倍、VAI-VAII存在下でコントロールの63倍、VAI(330bp)74a存在下でコントロールの146倍であり、VAIを併用することでEmGFP陽性細胞が顕著に増加した(図2)。SeV再構成開始から3日目の培養上清のVero細胞への感染力価は、VAI(180bp)wt存在下でコントロールの68倍、VAI(180bp)74a存在下でコントロールの139倍、VAI(180bp)74c存在下でコントロールの282倍、VAI-VAII存在下でコントロールの476倍、 VAI(330bp)74a存在下でコントロールの1962倍であった(図3)。このようにVAIは、SeVの再構成効率を顕著に高めることが明らかである。
(7) SeV Reconstitution in the Presence of VAI A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. VAI was used as a PKR inhibitor. VAI uses pT7-VAI (180 bp) and pT7-VAI-VAII (478 bp) as wild-type (wt) sequences, and pT7-VAI74a (180 bp), pT7-VAI74c (180 bp) and pT7-VAI74a ( 330 bp) was used. pT7-IRES was used as a control (Ctrl) plasmid for VAI. In the cells combined with VAI, unlike the control, EmGFP fluorescence-positive cells were observed from the day after transfection. Comparing the fluorescence intensity from EmGFP from day 3 cells, 18-fold over control in the presence of VAI (180 bp) wt, 34-fold over control in the presence of VAI (180 bp) 74a, and 34-fold over control in the presence of VAI (180 bp) 74c It was 53-fold that of the control, 63-fold that of the control in the presence of VAI-VAII, and 146-fold that of the control in the presence of VAI (330 bp)74a. Three days after the start of SeV reconstitution, the culture supernatant was infected with Vero cells. 180 bp) 282 times higher than the control in the presence of 74c, 476 times higher than the control in the presence of VAI-VAII, and 1962 times higher than the control in the presence of VAI (330 bp) 74a (Fig. 3). Thus, it is clear that VAI significantly enhances the SeV reconstitution efficiency.
 WO2005/071092によると、SeVベクターの回収効率は、LLC-MK2ではとても低く、回収した細胞を鶏卵に接種してもLLC-MK2由来の細胞ではSeVのHA活性が確認できなかったと示されている。293T細胞を用いたSeVの再構成では再構成後3日目の培養上清を用いて10CIU/mL程度の感染力価が示された(Beaty, SM. et al., mSphere. 2, e00376-16 (2017)参照)。これに対して、本実施例では、再構成後3日目で2×10CIU/mLを達成しており、感染力価が顕著に増大している。 According to WO2005/071092, the recovery efficiency of the SeV vector is very low in LLC-MK2, and even when the recovered cells were inoculated into chicken eggs, the HA activity of SeV could not be confirmed in LLC-MK2-derived cells. . SeV reconstitution using 293T cells showed an infection titer of about 10 2 CIU/mL using the culture supernatant 3 days after reconstitution (Beaty, SM. et al., mSphere. 2, e00376-16 (2017)). On the other hand, in this example, 2×10 7 CIU/mL was achieved 3 days after reconstitution, indicating a marked increase in the infectious titer.
(8)nc886存在下におけるSeVの再構成
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdFを用いた。PKR阻害因子を含むプラスミドとして、pT7-nc886(108bp)、pT7-nc886(272bp)、pT7-VAI74a(330bp)を用いた。
(8) SeV Reconstitution in the Presence of nc886 A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. As plasmids containing PKR inhibitors, pT7-nc886 (108 bp), pT7-nc886 (272 bp) and pT7-VAI74a (330 bp) were used.
 再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、nc886(108bp)存在下でコントロールの17倍、nc886(272bp)存在下でコントロールの52倍、VAI(330bp)74a存在下でコントロールの381倍であった(図4)。 Comparing the fluorescence intensity derived from EmGFP from cells on day 3 after reconstitution, it was 17 times higher than control in the presence of nc886 (108 bp), 52 times higher than control in the presence of nc886 (272 bp), and VAI (330 bp) in the presence of 74a. was 381 times that of the control (Fig. 4).
(9)PKR阻害性のウイルス性因子の存在下におけるSeVの再構成
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団またはVero-Fのみを含む細胞を用いた。SeV再構成用のプラスミドとしてはCAGnpEFLを用いた。pSeVとしてはpSeV+EmGFP/TSdFを用いた。PKR阻害プラスミドとしてはpT7-VAI74a(330bp)、pCAGGS-E3L、pCAGGS-K3L、pCAGGS-NS1、pCAGGS-σ3、pCAGGS-Us11、及びpCAGGS-Y3のいずれかを用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を測定した。図5に示されるように、コントロールと比較してすべての試験群において細胞からのEmGFP由来の蛍光強度が上昇した。コントロールと比較して、LLC-MK2-F細胞でSeV再構成効率を100倍以上向上させ、かつVERO-F細胞でSeV再構成効率を10倍以上向上させたのはVAI、E3L、σ3、及びUs11であった(図5)。また、図6に示されるように、コントロールと比較してすべての試験群において感染力価が上昇した。力価測定において、LLC-MK2-FおよびVero-Fの両方の細胞で高い値を示したのはVAI、E3L、σ3、及びUs11であった(図6)。
(9) Reconstitution of SeV in the Presence of PKR-Inhibiting Viral Factor Cells containing only LLC-MK2-F or cells containing only Vero-F were used as cells for SeV reconstitution. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV+EmGFP/TSdF was used as pSeV. Any one of pT7-VAI74a (330 bp), pCAGGS-E3L, pCAGGS-K3L, pCAGGS-NS1, pCAGGS-σ3, pCAGGS-Us11, and pCAGGS-Y3 was used as the PKR-inhibiting plasmid. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured. As shown in FIG. 5, EmGFP-derived fluorescence intensity from cells increased in all test groups compared to controls. Compared to the control, LLC-MK2-F cells improved the SeV reconstitution efficiency by 100-fold or more, and VERO-F cells improved the SeV reconstitution efficiency by 10-fold or more in VAI, E3L, σ3, and Us11 (Fig. 5). Also, as shown in FIG. 6, infection titers were elevated in all test groups compared to controls. In titration, it was VAI, E3L, σ3, and Us11 that showed high values in both LLC-MK2-F and Vero-F cells (Fig. 6).
(10)融合配列存在下におけるSeVの再構成
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団またはVero-Fのみを含む細胞を用いた。SeV再構成用のプラスミドとしてはCAGnpEFLを用いた。pSeVとしてはpSeV+EmGFP/TSdFを用いた。PKR阻害プラスミドとしてはpCAGGS-E3L、pCAGGS-K3L、pCAGGS-E3K3、pCAGGS-E3Y3、及びpCAGGS-Y3のいずれかを用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を測定した。すると、図7に示されるように、コントロールと比較してすべての試験群において細胞からのEmGFP由来の蛍光強度が上昇した。また、E3K3に比べてE3Y3の方がSeV再構成効率を向上させた(図7)。また、SeV再構成用のプラスミドとしてEFnpLを用い、感染後3日目のSeV再構成効率を比較すると、LLC-MK2-F細胞でE3Lに比べてE3Y3の方が3.5倍、Vero-F細胞でE3Lに比べてE3Y3の方が6.8倍の向上が認められた。
(10) Reconstitution of SeV in the Presence of Fusion Sequence A cell population containing only LLC-MK2-F or a cell containing only Vero-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV+EmGFP/TSdF was used as pSeV. Any one of pCAGGS-E3L, pCAGGS-K3L, pCAGGS-E3K3, pCAGGS-E3Y3, and pCAGGS-Y3 was used as the PKR-inhibiting plasmid. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured. Then, as shown in FIG. 7, EmGFP-derived fluorescence intensity from cells increased in all test groups compared to the control. E3Y3 also improved the SeV reconstruction efficiency compared to E3K3 (Fig. 7). In addition, when EFnpL was used as a plasmid for SeV reconstitution and the SeV reconstitution efficiency on day 3 after infection was compared, E3Y3 was 3.5 times higher than E3L in LLC-MK2-F cells, and Vero-F was 3.5 times higher than E3L. A 6.8-fold improvement was observed for E3Y3 over E3L in cells.
(11)PKR阻害因子を恒常的に発現した細胞を用いたSeVの再構成
 Vero-F細胞にpCAGGS-E3L-Hyg、又はpCAGGS-E3Y3-Hygをトランスフェクションし、500μg/mLハイグロマイシンB(ナカライテスク)を用いて細胞を選択し、それぞれE3L及びE3Y3を恒常的に発現する安定株であるVero-F-E3L、及びVero-F-E3Y3細胞を得た。これらの細胞にSeV再構成用プラスミドpEF1-NPco、pEF1-P4C(-)co、pEF1-Lco、pCAGGS-F5Rco、pCAGGS-T7mcoの組み合わせ(EFnpL)とpSeV+EmGFP/TSdFを用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を測定した。Vero-F-E3Y3細胞においてSeV再構成効率の2倍の向上が観察された。
(11) Reconstitution of SeV using cells constitutively expressing PKR inhibitor Vero-F cells were transfected with pCAGGS-E3L-Hyg or pCAGGS-E3Y3-Hyg, and 500 μg/mL hygromycin B (Nacalai Cells were selected using Tesk) to obtain Vero-F-E3L and Vero-F-E3Y3 cells, stable lines that constitutively express E3L and E3Y3, respectively. A combination of SeV reconstitution plasmids pEF1-NPco, pEF1-P4C(-)co, pEF1-Lco, pCAGGS-F5Rco and pCAGGS-T7mco (EFnpL) and pSeV+EmGFP/TSdF were used in these cells. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured. A two-fold improvement in SeV reconstitution efficiency was observed in Vero-F-E3Y3 cells.
(12)発現用プロモーターの比較
 従来技術と比較を行うためにCAGプロモーターとEF1プロモーターの組み合わせを検討した。細胞はLLC-MK2-FおよびVero-Fを用いた。pSeVとしてはpSeV+EmGFP/TSdFを用いた。PKR阻害因子としてはE3Y3を用いた。N、P、LすべてをCAGプロモーターからドライブするCAG;N、P、LすべてをEF1αプロモーターからドライブするEFnpL;NをEF1αプロモーターからドライブし、PとLをCAGプロモーターからドライブするEFnCAGpL;及びNとPをCAGプロモーターからドライブし、LをEF1αプロモーターからドライブするCAGnpEFLの組合せでプロモーターの違いによるSeV再構成功率の影響を調べた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を測定した。
(12) Comparison of promoters for expression A combination of the CAG promoter and the EF1 promoter was examined for comparison with the prior art. LLC-MK2-F and Vero-F cells were used. pSeV+EmGFP/TSdF was used as pSeV. E3Y3 was used as a PKR inhibitor. CAG with all N, P, L driven from the CAG promoter; EFnpL with all N, P, L driven from the EF1α promoter; EFnCAGpL with N driven from the EF1α promoter and P and L from the CAG promoter; In the combination of CAGnpEFL in which P is driven from the CAG promoter and L is driven from the EF1α promoter, the effect of different promoters on SeV reconstitution efficiency was investigated. Fluorescence intensity derived from EmGFP from cells 3 days after reconstitution was measured.
 その結果、LLC-MK2細胞においては、図8に示されるように、SeVの再構成に用いるプラスミドのコドン最適化のみでは、十分なSeVの再構成効率向上は得られなかった(PKR阻害因子E3Y3非存在下のCAG参照)。これに対してE3Y3存在下ではいずれのプロモーターによるドライブによっても十分な効率でのSeVの再構成が認められた。PKR阻害因子E3Y3存在下で、NとPをCAGプロモーター、LをEF1aプロモーターで発現させた系では、SeVの再構成効率がCAG(従来型のプラスミド)と比較して、271倍に向上した。 As a result, in LLC-MK2 cells, as shown in FIG. 8, codon optimization alone of the plasmid used for SeV reconstitution did not sufficiently improve SeV reconstitution efficiency (PKR inhibitor E3Y3 CAG in the absence). In contrast, in the presence of E3Y3, SeV rearrangement was observed with sufficient efficiency by driving with any promoter. In the system in which N and P were expressed using the CAG promoter and L was expressed using the EF1a promoter in the presence of the PKR inhibitor E3Y3, SeV reconstitution efficiency was improved 271-fold compared to CAG (conventional plasmid).
 また、Vero細胞では、図9に示されるように、PKR阻害因子E3Y3存在下では、いずれのプロモーターでも再構成効率が向上したが、N、P、LをEF1プロモーターで発現させることで、CAG(従来型のプラスミド)と比較して、SeVの再構成効率が48倍に向上した。 In addition, in Vero cells, as shown in FIG. 9, in the presence of the PKR inhibitor E3Y3, the reconstitution efficiency was improved with any promoter. Compared to the conventional plasmid), the SeV reconstitution efficiency was improved 48-fold.
(13)PKR阻害因子の組合せの存在下におけるSeVの再構成
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団またはVero-Fのみを含む細胞集団を用いた。pSeVとしてはpSeV+EmGFP/TSdFを用いた。PKR阻害因子としてはVAIおよびE3Y3を用いた。SeV再構成用のプラスミドとしてはLLC-MK2-Fに対してCAGnpEFLを用い、Vero-Fに対してCAGnpEFLおよびEFnpLを用いた。その結果、図10に示されるように、PKR阻害因子を組み合わせることで、PKR阻害因子非存在のコントロールと比較して、1000倍以上にSeVの再構成効率が向上した。
(13) Reconstitution of SeV in the Presence of a Combination of PKR Inhibitors As cells for reconstitution of SeV, a cell population containing only LLC-MK2-F or a cell population containing only Vero-F was used. pSeV+EmGFP/TSdF was used as pSeV. VAI and E3Y3 were used as PKR inhibitors. As plasmids for SeV reconstruction, CAGnpEFL was used for LLC-MK2-F, and CAGnpEFL and EFnpL were used for Vero-F. As a result, as shown in FIG. 10, the combination of PKR inhibitors improved the SeV reconstitution efficiency more than 1000-fold compared to the control without PKR inhibitors.
 また、図11に示されるように、SeV再構成開始から3日目の培養上清の感染力価は、LLC-MK2-F細胞の再構成系では、PKR阻害因子非存在のコントロールと比較して、16,857倍、VERO-F細胞の再構成系では、7460倍に向上した。 In addition, as shown in FIG. 11, the infection titer of the culture supernatant on day 3 from the start of SeV reconstitution was higher in the LLC-MK2-F cell reconstitution system than in the PKR inhibitor-free control. In the reconstituted system of VERO-F cells, it improved 7460 times.
(14)PKR阻害因子を搭載したSeVの再構成
 PKR阻害因子をコードする遺伝子を搭載するSeVに関して、SeV再構成効率を評価した。細胞はLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドとしてはCAGnpEFLを用いた。pSeVとしてはpSeV(PM)EmGFP/TSdF、pSeV(PM)EmGFP-VAI74a/TSdF(VAI(180bp)74aを搭載する)、pSeV(PM)EmGFP-VAI74aL/TSdF(VAI(330bp)74aを搭載する)を用いた。EmGFP-VAI74aは、配列番号32に示される通りの配列を有した。EmGFP-VAI74aLは、配列番号33に示される通りの配列を有した。
(14) Reconstitution of SeV carrying a PKR inhibitor SeV carrying a gene encoding a PKR inhibitor was evaluated for SeV reconstitution efficiency. A cell population containing only LLC-MK2-F was used. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV includes pSeV(PM)EmGFP/TSdF, pSeV(PM)EmGFP-VAI74a/TSdF (loaded with VAI (180bp)74a), and pSeV(PM)EmGFP-VAI74aL/TSdF (loaded with VAI(330bp)74a). was used. EmGFP-VAI74a had the sequence as shown in SEQ ID NO:32. EmGFP-VAI74aL had the sequence as shown in SEQ ID NO:33.
 結果は図12および13に示される通りであった。図12に示されるように、コントロール(EmGFP)の再構成効率に比べ、VAI(180bp)74aを搭載したSeVは3倍、VAI(330bp)74aを搭載したSeVは16倍に再構成効率が向上した。また、図13に示されるように、SeV再構成開始から3日目の培養上清の感染力価は、コントロール(EmGFP)の再構成効率に比べ、VAI(180bp)74aを搭載したSeVは3倍、VAI(330bp)74aを搭載したSeVは66倍であった。 The results were as shown in Figures 12 and 13. As shown in FIG. 12, compared to the reconstitution efficiency of the control (EmGFP), SeV with VAI (180 bp) 74a improved the reconstitution efficiency by 3 times and SeV with VAI (330 bp) 74a by 16 times. did. In addition, as shown in FIG. 13, the infection titer of the culture supernatant on day 3 after the start of SeV reconstitution was 3 for SeV carrying VAI (180 bp) 74a compared to the reconstitution efficiency for the control (EmGFP). fold, SeV with VAI (330 bp) 74a was 66 fold.
(14-2)VAI(180bp)74cに対する当該配列の5’配列追加または3’配列追加の影響
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdFを用いた。PKR阻害因子を含むプラスミドとして、pT7-VAI(180bp)74c、pT7-VAI(264bp)74c3p、pT7-VAI(246bp)74c5p、pT7-VAI(330bp)74cを用いた。VAI(264bp)74c3p(配列番号34)は、VAI(180bp)74cの3’側に対して、VAIの3’側の84merを追加したものである。また、VAI(246bp)74c5p(配列番号35)は、VAI(180bp)74cの5’側に対して、VAIの5’側の86merを追加したものである。
(14-2) Effect of addition of 5' or 3' sequence of the sequence on VAI (180 bp) 74c A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. As plasmids containing PKR inhibitors, pT7-VAI (180 bp) 74c, pT7-VAI (264 bp) 74c3p, pT7-VAI (246 bp) 74c5p, and pT7-VAI (330 bp) 74c were used. VAI (264 bp) 74c3p (SEQ ID NO: 34) is obtained by adding an 84-mer on the 3' side of VAI to the 3' side of VAI (180 bp) 74c. In addition, VAI (246 bp) 74c5p (SEQ ID NO: 35) is obtained by adding an 86-mer on the 5' side of VAI to the 5' side of VAI (180 bp) 74c.
 再構成後3日目の細胞からのEmGFP由来の蛍光強度をpT7-VAI(180bp)74c存在下と比較すると、図14に示されるように、pT7-VAI(264bp)74c3pは2.1倍、 pT7-VAI(246bp)74c5pは6.8倍、 pT7-VAI(330bp)74cは15.7倍であった。このことから、VAIの5’側配列は、再構成効率の向上により強く寄与することが示唆された。 Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution with that in the presence of pT7-VAI (180 bp)74c, as shown in FIG. pT7-VAI (246 bp) 74c5p was 6.8-fold and pT7-VAI (330 bp) 74c was 15.7-fold. This suggested that the VAI 5'-side sequence more strongly contributes to the improvement of the rearrangement efficiency.
(15)EBER1の組込みによるウイルス増殖への影響
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdFを用いた。PKR阻害因子を含むプラスミドとして、pT7-EBER(337bp)を用いた。このプラスミドでは、EBER1の前後にVAIの前後配列がそれぞれ導入されている。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、EBER1(337bp)存在下でコントロールの3.8倍であった。
(15) Effect of EBER1 Integration on Viral Growth A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. As a plasmid containing a PKR inhibitor, pT7-EBER (337 bp) was used. In this plasmid, sequences before and after VAI are introduced before and after EBER1, respectively. Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, it was 3.8 times higher than the control in the presence of EBER1 (337 bp).
(16)NS5A148の組込みによるウイルス増殖への影響 (16) Effect of NS5A148 integration on virus proliferation
 SeVの再構成用細胞としてはLLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdFを用いた。PKR阻害因子を含むプラスミドとして、pCAGGS-NS5A148を用いた。このプラスミドは、配列番号16に記載のアミノ酸配列を有するNS5A148を産生する。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、NS5A148存在下でコントロールの7.3倍であった。 A cell population containing only LLC-MK2-F was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF. As a plasmid containing a PKR inhibitor, pCAGGS-NS5A148 was used. This plasmid produces NS5A148, which has the amino acid sequence set forth in SEQ ID NO:16. Comparing the fluorescence intensity derived from EmGFP from the cells 3 days after reconstitution, it was 7.3 times that of the control in the presence of NS5A148.
(17)ハンマーヘッドリボザイム配列の導入
 SeVの再構成用細胞としてはVero-Fのみを含む細胞集団、あるいはクローニングしたVero-F-E3Y3のみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdF、あるいはT7プロモーター配列下にハンマーヘッドリボザイム配列(配列番号36)を有するpSeV+EmGFP/TSdF(Hh)を用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、pSeV+EmGFP/TSdF(コントロール:Ctrl)を用いたVero-F細胞ではEmGFP陽性細胞が観察されなかったのに対し、Vero-F-E3Y3細胞ではEmGFP陽性細胞が観察された。図15に示されるように、pSeV+EmGFP/TSdF(Hh)を用いたVero-F-E3Y3細胞ではVero-F細胞と比較し、EmGFPの蛍光強度が37.7倍であった。
(17) Introduction of Hammerhead Ribozyme Sequence A cell population containing only Vero-F or a cell population containing only cloned Vero-F-E3Y3 was used as SeV reconstitution cells. CAGnpEFL was used as a plasmid for SeV reconstruction. As pSeV, pSeV+EmGFP/TSdF or pSeV+EmGFP/TSdF(Hh) having a hammerhead ribozyme sequence (SEQ ID NO: 36) under the T7 promoter sequence was used. Comparing the fluorescence intensity derived from EmGFP from cells on day 3 after reconstitution, no EmGFP-positive cells were observed in Vero-F cells using pSeV+EmGFP/TSdF (control: Ctrl). -EmGFP positive cells were observed in E3Y3 cells. As shown in FIG. 15, in Vero-F-E3Y3 cells using pSeV+EmGFP/TSdF(Hh), the fluorescence intensity of EmGFP was 37.7 times higher than in Vero-F cells.
 さらに実験を行った。SeVゲノムを転写するプラスミドのT7プロモーターとSeVゲノムをコードする領域との間にハンマーヘッドリボザイム(Hh-Rbz)配列を配置したベクターを作製した(pSeV/TSdF(Hh))。Hh-Rbzとしては、配列番号36に記載の配列を有するものを用いた。さらにSeVゲノムをコードする領域の直下にHDVリボザイム(HDV-Rbz)配列を配置し、さらにその下流にVAI(330bp)74cを配置したベクターを作製した(pSeV/TSdF(Hv))。HDV-Rbzとしては、配列番号37に記載の配列を有するものを用いた。VAI(330bp)74cの下流にはT7ターミネータ(配列番号38)を配置した。これにより、SeVゲノムが転写されると、ハンマーヘッドリボザイムとHDVリボザイムの作用によって、SeVゲノム部分のみが切り出され、SeVゲノムからVAIなどの他の因子が除去される。LLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドはCAGnpEFLを用いた。pSeVはpSeV+EmGFP/TSdF(コントロール)、pSeV+EmGFP/TSdF(Hh)、pSeV+EmGFP/TSdF(Hv)を用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、図16に示されるように、pSeV+EmGFP/TSdF(Hh)はコントロールの52.5倍、pSeV+EmGFP/TSdF(Hv)は506.7倍であった。 We conducted further experiments. A vector was constructed in which a hammerhead ribozyme (Hh-Rbz) sequence was placed between the T7 promoter of the plasmid that transcribes the SeV genome and the region encoding the SeV genome (pSeV/TSdF(Hh)). Hh-Rbz having the sequence shown in SEQ ID NO: 36 was used. Furthermore, a vector (pSeV/TSdF(Hv)) was constructed in which the HDV ribozyme (HDV-Rbz) sequence was placed immediately below the region encoding the SeV genome, and VAI (330 bp) 74c was placed downstream thereof. HDV-Rbz having the sequence shown in SEQ ID NO:37 was used. A T7 terminator (SEQ ID NO: 38) was placed downstream of VAI (330 bp) 74c. Thus, when the SeV genome is transcribed, only the SeV genome portion is cut out by the action of hammerhead ribozyme and HDV ribozyme, and other factors such as VAI are removed from the SeV genome. A cell population containing only LLC-MK2-F was used. CAGnpEFL was used as a plasmid for SeV reconstruction. pSeV used pSeV+EmGFP/TSdF (control), pSeV+EmGFP/TSdF (Hh), and pSeV+EmGFP/TSdF (Hv). Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, pSeV+EmGFP/TSdF(Hh) was 52.5 times higher than the control, and pSeV+EmGFP/TSdF(Hv) was 506.5 times higher than the control, as shown in FIG. was seven times.
 以下のSeVゲノムのL遺伝子を増幅するプライマーセット(L primer)とVAI(330bp)74cを増幅するプライマーセット(Hv primer)をそれぞれ用いて、得られたSeVゲノムにVAI(330bp)74cが組込まれているかどうかを検討した。
 L遺伝子増幅用のフォワードプライマー: TGGGTCATTCCCTGACCAGA(配列番号39)
 L遺伝子増幅用のリバースプライマー : CAGCTTCGATCGTTCTGCAC(配列番号40)
 VAI増幅用のフォワードプライマー : ATCGAGCCTTATGACAGC(配列番号41)
 VAI増幅用のリバースプライマー  : GATACCCTTGCGAATTTATCCACC(配列番号42)
VAI (330 bp) 74c was integrated into the SeV genome obtained using the following primer set (L primer) that amplifies the L gene of the SeV genome and a primer set (Hv primer) that amplifies VAI (330 bp) 74c. We considered whether or not
Forward primer for L gene amplification: TGGGTCATTCCCTGACCAGA (SEQ ID NO: 39)
Reverse primer for L gene amplification: CAGCTTCGATCGTTCTGCAC (SEQ ID NO: 40)
Forward primer for VAI amplification: ATCGAGCCTTATGACAGC (SEQ ID NO: 41)
Reverse primer for VAI amplification: GATACCCTTGCGAATTTATCCACC (SEQ ID NO: 42)
 上記により転写されたSeVゲノムをVero細胞から回収し、cDNAを合成した。PCR酵素はKOD One PCR Master Mix -Blue- (東洋紡)を用いた。図17に示されるように、L遺伝子を増幅するプライマーセット(L primer)は、SeVをコードする遺伝子を搭載したプラスミド(pSeV)においてL遺伝子の一部を想定通りに増幅し、SeVゲノムにおいてもL遺伝子の一部を想定通りに増幅させた。これに対して、Hv primerは、SeVゲノムにおいてVAI(330bp)74cを増幅することはなかった。このことは、プラスミドからSeVゲノムが転写された後に、HDVリボザイムによりVAI(330bp)74cがSeVゲノムから切断され、失われたことを示唆する。その場合であっても、図16に示されるように、SeVの再構成効率の向上効果を発揮していることは明らかである。 The SeV genome transcribed above was collected from Vero cells and cDNA was synthesized. KOD One PCR Master Mix -Blue- (Toyobo) was used as the PCR enzyme. As shown in FIG. 17, the primer set for amplifying the L gene (L primer) amplified a part of the L gene as expected in the plasmid (pSeV) carrying the gene encoding SeV, and also in the SeV genome. Part of the L gene was amplified as expected. In contrast, Hv primers did not amplify VAI (330 bp) 74c in the SeV genome. This suggests that the VAI (330 bp) 74c was cleaved and lost from the SeV genome by the HDV ribozyme after the SeV genome was transcribed from the plasmid. Even in that case, as shown in FIG. 16, it is clear that the SeV reconstruction efficiency is improved.
(18)SeVの再構成用プラスミドへのVAI(330bp)74cの導入
 上記(17)は、SeVゲノムをコードする遺伝子を搭載したプラスミドへのVAI(330bp)74cの導入を記述した。本実施例では、SeVを再構成するためのSeV粒子の構成要素を発現するプラスミドに対してVAI(330bp)74cを導入した。具体的には以下の通りに再構成実験を実施した。
(18) Introduction of VAI (330 bp) 74c into a plasmid for SeV reconstitution The above (17) described introduction of VAI (330 bp) 74c into a plasmid carrying a gene encoding the SeV genome. In this example, VAI (330 bp) 74c was introduced into a plasmid expressing the components of the SeV particle for reconstituting SeV. Specifically, a reconstruction experiment was performed as follows.
 NP、P、L、T7、およびF5Rをそれぞれ発現するpCAGGSやpEF1などの再構成用プラスミドにVAI(330bp)74cを追加搭載して、VAI(330bp)74cを搭載した再構成用プラスミドを得た(それぞれ、「pCAGGSv」および「pEFv」と表記する)。pCAGGSv-NPco、pCAGGSv-P4C(-)co、pEFv-Lco、pCAGGSv-T7mco、およびpCAGGSv-F5Rco、並びにこの組み合わせをvCAGnpEFLと表記する。再構成用の細胞としては、LLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドとしては、vCAGnpEFLを用いた。コントロールとしては、CAGを用いた。pSeVとしてはpSeV+EmGFP/TSdFを用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、図18に示されるように、vCAGnpEFL-mixはコントロールの43倍であった。 VAI (330 bp) 74c was additionally loaded into a reconstitution plasmid such as pCAGGS or pEF1 expressing NP, P, L, T7, and F5R, respectively, to obtain a reconstitution plasmid carrying VAI (330 bp) 74c. (Denoted as "pCAGGSv" and "pEFv", respectively). pCAGGSv-NPco, pCAGGSv-P4C(-)co, pEFv-Lco, pCAGGSv-T7mco, and pCAGGSv-F5Rco, as well as combinations thereof, are denoted as vCAGnpEFL. A cell population containing only LLC-MK2-F was used as cells for reconstitution. vCAGnpEFL was used as a plasmid for SeV reconstruction. CAG was used as a control. pSeV+EmGFP/TSdF was used as pSeV. Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, vCAGnpEFL-mix was 43 times higher than the control, as shown in FIG.
(19)SeVの再構成用プラスミドへのVAI(330bp)74cの導入
 上記(18)に対して、さらにE3Y3を追加導入した条件で実験を行った。pSeVとしてはpSeV+EmGFP/TSdF(コントロール)、およびpSeV+EmGFP/TSdF(Hv)を用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、図19に示されるようにHv+vCAGnpEFL-mix+E3Y3はコントロールの2,836倍であった。得られた培養上清の感染力価を比較すると、図20に示されるように、Hv+vCAGnpEFL-mix+E3Y3はコントロールの29,925倍であった。なお、F5RとE3Y3は再構成時に用いなくても、SeVの再構成は可能であった。
(19) Introduction of VAI (330 bp) 74c into SeV Reconstitution Plasmid An experiment was performed under the conditions of (18) above, in which E3Y3 was additionally introduced. As pSeV, pSeV+EmGFP/TSdF (control) and pSeV+EmGFP/TSdF (Hv) were used. Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, Hv+vCAGnpEFL-mix+E3Y3 was 2,836 times higher than the control, as shown in FIG. Comparing the infection titers of the obtained culture supernatants, Hv+vCAGnpEFL-mix+E3Y3 was 29,925 times higher than the control, as shown in FIG. SeV reconstruction was possible even if F5R and E3Y3 were not used during reconstruction.
(20)その他のベクター構成について
 T7プロモーター以外にCAGプロモーターもしくはEF1プロモーターで作動させるSeVゲノムプラスミドを構築した(図21A参照)。CAGプロモーターを有するSeVゲノムプラスミドをpCAGGS-SeVと表記し、EF1プロモーターを有するSeVゲノムプラスミドをpEF1-SeVと表記する。再構成用の細胞としては、LLC-MK2-Fのみを含む細胞集団を用いた。SeV再構成用のプラスミドとしては、CAGnpEFLを用いた。SeVゲノムプラスミドとしては、pSeV+EmGFP/TSdF(Hv)、pCAG-SeV+EmGFP/TSdF(Hv)、またはpEF1-SeV+EmGFP/TSdF(Hv)を用いた。再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、図21Bに示されるように、pCAG-SeVはコントロール(pSeV)の1.44倍、pEF1-SeVは1.6倍であった。
(20) Other vector constructions A SeV genome plasmid driven by a CAG promoter or an EF1 promoter in addition to the T7 promoter was constructed (see Fig. 21A). The SeV genomic plasmid with the CAG promoter is denoted as pCAGGS-SeV, and the SeV genomic plasmid with the EF1 promoter is denoted as pEF1-SeV. A cell population containing only LLC-MK2-F was used as cells for reconstitution. CAGnpEFL was used as a plasmid for SeV reconstruction. As the SeV genome plasmid, pSeV+EmGFP/TSdF (Hv), pCAG-SeV+EmGFP/TSdF (Hv), or pEF1-SeV+EmGFP/TSdF (Hv) was used. Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, pCAG-SeV was 1.44 times higher than the control (pSeV) and pEF1-SeV was 1.6 times higher than the control (pSeV), as shown in Figure 21B. there were.
(21)SeV以外のパラミクソウイルスの再構成実験(MuV)
 ムンプスウイルス(MuV;パラミクソウイルス科ルブラウイルス属)の再構成用細胞としてはLLC-MK2のみを含む細胞集団を用いた。MuV再構成用のプラスミドとしてはMuV-mixを用いた。MuV-mixは、以下のプラスミドを含んだ:pCAGGS-MuV-N、pCAGGS-MuV-P、pCAGGS-MuV-L、pCAGGS-T7mco。pMuVとしてはpMuV+EmGFP/miniを用いた。PKR阻害因子を含むプラスミドとしてpT7-VAI(330bp)74cを用いた。MuVゲノムの参考配列は、Accession:KY295913に登録された配列であった。MuVミニゲノムは、上記参考配列からリーダー配列とトレイラー配列の間を全て除去して作製された。
(21) Paramyxovirus reconstitution experiment other than SeV (MuV)
As cells for reconstitution of mumps virus (MuV; family of Paramyxoviridae, genus Rubulavirus), a cell population containing only LLC-MK2 was used. MuV-mix was used as a plasmid for MuV reconstruction. MuV-mix contained the following plasmids: pCAGGS-MuV-N, pCAGGS-MuV-P, pCAGGS-MuV-L, pCAGGS-T7mco. pMuV+EmGFP/mini was used as pMuV. As a plasmid containing a PKR inhibitor, pT7-VAI (330 bp)74c was used. The reference sequence of the MuV genome was the sequence registered under Accession: KY295913. The MuV minigenome was generated by removing everything between the leader and trailer sequences from the above reference sequence.
 まとめるとMuVの再構成では、以下のプラスミドが用いられた。
pMuV+EmGFP/mini
pCAGGS-MuV-N
pCAGGS-MuV-P
pCAGGS-MuV-L
pCAGGS-T7mco
In summary, the following plasmids were used for MuV reconstitution.
pMuV+EmGFP/mini
pCAGGS-MuV-N
pCAGGS-MuV-P
pCAGGS-MuV-L
pCAGGS-T7mco
 再構成後3日目の細胞からのMuV再構成のEmGFP由来の蛍光強度をコントロールと比較すると、図22に示されるように、VAI(330bp)74c存在下では184倍であった。  Comparing the fluorescence intensity derived from MuV-reconstituted EmGFP from cells 3 days after reconstitution with the control, it was 184-fold in the presence of VAI (330 bp) 74c, as shown in FIG.
(22)SeV以外のパラミクソウイルスの再構成実験(MeV)
 麻疹ウイルス(MeV;パラミクソウイルス科モルビリウイルス属)の再構成用細胞としてはLLC-MK2のみを含む細胞集団を用いた。MeV再構成用のプラスミドとしてはMeV-mixを用いた。MeV-mixは、以下のプラスミドを含んだ:pCAGGS-MeV-N、pCAGGS-MeV-P、pCAGGS-MeV-L、pCAGGS-T7mco。pMeVとしてはpMeV+EmGFP/miniを用いた。PKR阻害因子を含むプラスミドとしてpT7-VAI(330bp)74cを用いた。MeVの参考配列は、Accession:KY295921に登録された配列であった。MeVのミニゲノムは、上記参考配列からリーダー配列とトレイラー配列の間を全て除去して作製された。
(22) Paramyxovirus reconstitution experiment other than SeV (MeV)
As cells for reconstitution of measles virus (MeV; genus Morbillivirus, family Paramyxoviridae), a cell population containing only LLC-MK2 was used. MeV-mix was used as a plasmid for MeV reconstruction. MeV-mix contained the following plasmids: pCAGGS-MeV-N, pCAGGS-MeV-P, pCAGGS-MeV-L, pCAGGS-T7mco. pMeV+EmGFP/mini was used as pMeV. As a plasmid containing a PKR inhibitor, pT7-VAI (330 bp)74c was used. The reference sequence of MeV was the sequence registered under Accession: KY295921. The MeV minigenome was constructed by removing everything between the leader and trailer sequences from the above reference sequence.
 まとめるとMeVの再構成では、以下のプラスミドが用いられた。
pMeV+EmGFP/mini
pCAGGS-MeV-N
pCAGGS-MeV-P
pCAGGS-MeV-L
pCAGGS-T7mco
pT7-VAI(330)74c
In summary, the following plasmids were used in the reconstitution of MeV.
pMeV+EmGFP/mini
pCAGGS-MeV-N
pCAGGS-MeV-P
pCAGGS-MeV-L
pCAGGS-T7mco
pT7-VAI(330)74c
 再構成後3日目の細胞からのMeV再構成のEmGFP由来の蛍光強度をコントロールと比較すると、図23に示されるように、VAI(330bp)74c存在下でのMeVの再構成効率は、コントロールの120倍であった。 Comparing the EmGFP-derived fluorescence intensity of MeV reconstitution from cells 3 days after reconstitution with control, as shown in FIG. was 120 times.
(23)SeV以外のパラミクソウイルスの再構成実験(VSV)
 水疱性口内炎ウイルス(VSV;ラブドウイルス科ベシクロウイルス属)の再構成用細胞としては、LLC-MK2のみを含む細胞集団を用いた。VSVの再構成にはVSV-mix(pCAGGS-VSV-N、pCAGGS-VSV-P、pCAGGS-VSV-L、およびpCAGGS-T7mcoを含む)を用いた。VSVゲノムプラスミドとしてはpVSV-ΔG-GFP-2.6(Kerafast社)を用いた。PKR阻害因子としてはpCAGGS-E3Y3を用いた。
(23) Paramyxovirus reconstitution experiment (VSV) other than SeV
As cells for reconstitution of vesicular stomatitis virus (VSV; family Rhabdoviridae, genus Vesiculovirus), a cell population containing only LLC-MK2 was used. VSV-mix (including pCAGGS-VSV-N, pCAGGS-VSV-P, pCAGGS-VSV-L, and pCAGGS-T7mco) was used for VSV reconstruction. As the VSV genome plasmid, pVSV-ΔG-GFP-2.6 (Kerafast) was used. pCAGGS-E3Y3 was used as a PKR inhibitor.
 再構成後7日目の細胞からのEGFP由来の蛍光強度を比較すると、図24に示されるように、E3Y3を用いた場合は5倍の蛍光強度であった。 When comparing the EGFP-derived fluorescence intensity from the cells 7 days after reconstitution, as shown in FIG. 24, the fluorescence intensity was five times higher when E3Y3 was used.
(24)異種RNAポリメラーゼを用いたSeV、MeV、MuVの再構成
 以下では、pCAGGS-NPco(SeV)、 pCAGGS-P4C(-)co(SeV)、 pEF1-Lco(SeV)、 pCAGGS-T7mcoを含むSeV再構成用のプラスミド混合物を「SeV-mix」と表記する。また、pCAGGS-MeV-N、 pCAGGS-MeV-P、 pCAGGS-MeV-L、 pCAGGS-T7mcoを含むMeV再構成用のプラスミド混合物を「MeV-mix」と表記する。さらに、pCAGGS-MuV-N、 pCAGGS-MuV-P、 pCAGGS-MuV-L、 pCAGGS-T7mcoを含むMuV再構成用のプラスミド混合物を「MuV-mix」と表記する。
(24) Reconstitution of SeV, MeV, and MuV using heterologous RNA polymerase The following includes pCAGGS-NPco (SeV), pCAGGS-P4C (-) co (SeV), pEF1-Lco (SeV), and pCAGGS-T7mco The plasmid mixture for SeV reconstitution is designated as "SeV-mix". A plasmid mixture for MeV reconstruction containing pCAGGS-MeV-N, pCAGGS-MeV-P, pCAGGS-MeV-L and pCAGGS-T7mco is referred to as "MeV-mix". Furthermore, a plasmid mixture for MuV reconstruction containing pCAGGS-MuV-N, pCAGGS-MuV-P, pCAGGS-MuV-L and pCAGGS-T7mco is referred to as "MuV-mix".
 MeVゲノムプラスミドはMeVの構成タンパク質(N、P、M、F、H、L)を発現しないMeVミニゲノムにEmGFPを搭載したpMeV+EmGFP/miniを用いた。MuVゲノムプラスミドはMuVの構成タンパク質(N、P、M、F、SH、HN、L)を発現しないMuVミニゲノムにEmGFPを搭載したpMuV+EmGFP/miniを用いた。SeVゲノムプラスミドはpSeV+EmGFP/TSdF(Hv)を用いた。これらの再構成用細胞としては、LLC-MK2-Fのみを含む細胞集団を用いた。 The MeV genome plasmid used was pMeV+EmGFP/mini, which carries EmGFP in the MeV minigenome that does not express MeV constituent proteins (N, P, M, F, H, L). The MuV genome plasmid used was pMuV+EmGFP/mini, in which EmGFP was incorporated into the MuV minigenome that does not express MuV constituent proteins (N, P, M, F, SH, HN, L). The SeV genome plasmid used was pSeV+EmGFP/TSdF(Hv). A cell population containing only LLC-MK2-F was used as these reconstituting cells.
 再構成後3日目の細胞からのEmGFP由来の蛍光強度を比較すると、図25に示されるように、SeVゲノムは、SeV-mixのみではなく、MeV-mixやMuV-mixの異種ポリメラーゼを用いても再構成された。同様に、MeVゲノムやMuVゲノムも異種ポリメラーゼによって再構成された。SeVゲノムをSeV-mixを用いて再構成を行った蛍光強度を1として比較すると、MeV-mixを用いた場合は0.68、MuV-mixを用いた場合は0.65の蛍光強度であった(図27参照)。MeVゲノムをMeV-mixを用いて再構成を行った蛍光強度を1として比較すると、SeV-mixを用いた場合は0.31、MuV-mixを用いた場合は0.71の蛍光強度であった(図25参照)。MuVゲノムをMuV-mixを用いて再構成を行った蛍光強度を1として比較すると、SeV-mixを用いた場合は1.22、MeV-mixを用いた場合は0.86の蛍光強度であった(図25参照)。 Comparing the fluorescence intensity derived from EmGFP from cells 3 days after reconstitution, as shown in FIG. was reconfigured. Similarly, the MeV and MuV genomes have also been reconstructed by heterologous polymerases. When comparing the fluorescence intensity of the SeV genome reconstructed using SeV-mix as 1, the fluorescence intensity was 0.68 when MeV-mix was used and 0.65 when MuV-mix was used. (See FIG. 27). Comparing the fluorescence intensity of the MeV genome reconstructed using MeV-mix as 1, the fluorescence intensity was 0.31 when SeV-mix was used and 0.71 when MuV-mix was used. (See FIG. 25). When comparing the fluorescence intensity of the MuV genome reconstructed using MuV-mix as 1, the fluorescence intensity was 1.22 when SeV-mix was used and 0.86 when MeV-mix was used. (See FIG. 25).
(25)異種RNAポリメラーゼを用いたVSVの構築
 VSVの再構成用の細胞としては、LLC-MK2のみを含む細胞集団を用いた。VSVの再構成にはSeV-mixを用いた。VSVゲノムプラスミドとしてはpVSV-ΔG-GFP-2.6(Kerafast社)を用いた。PKR阻害因子としては、pCAGGS-E3Y3を用いた。
(25) Construction of VSV Using Heterologous RNA Polymerase A cell population containing only LLC-MK2 was used as cells for reconstitution of VSV. SeV-mix was used for reconstruction of VSV. As the VSV genome plasmid, pVSV-ΔG-GFP-2.6 (Kerafast) was used. As a PKR inhibitor, pCAGGS-E3Y3 was used.
 再構成後3日目の細胞からのEGFP由来の蛍光強度を比較すると、図26に示されるように、VSVゲノムはSeV-mixで再構成されることが確認されると共に、E3Y3を追加で細胞に導入した場合は、E3Y3非存在下と比較して47.5倍の蛍光強度を示した。 Comparing EGFP-derived fluorescence intensity from cells 3 days after reconstitution, as shown in FIG. When E3Y3 was introduced into E3Y3, the fluorescence intensity was 47.5 times higher than that in the absence of E3Y3.
 さらに、NP、P、およびLを一つのプラスミドから発現させるプラスミド(p3vLPNP)を構築した(図27A参照)。pSeVは、CAGプロモーター(pCAG-SeV)またはEF1プロモーター(pEF1-SeV)により駆動させることにより、T7ポリメラーゼの使用を回避した。上記と同様にSeVをLLC-MK2のみを含む細胞集団により再構成させた。結果は、図27Bに示される通りであった。図27Bに示されるように、再構成7日後に、pCAG-SeVおよびpEF1-SeVのいずれにおいてもEmGFPの蛍光が観察され、SeVが再構成されたことが確認された。但し、T7ポリメラーゼをさらにpCAGGS-T7mcoプラスミドにより供給すると、再構成の効率が大きく改善した。 Furthermore, a plasmid (p3vLPNP) that expresses NP, P, and L from one plasmid was constructed (see FIG. 27A). pSeV avoided the use of T7 polymerase by being driven by the CAG promoter (pCAG-SeV) or the EF1 promoter (pEF1-SeV). As above, SeV was reconstituted with a cell population containing LLC-MK2 only. The results were as shown in Figure 27B. As shown in FIG. 27B, 7 days after reconstitution, EmGFP fluorescence was observed in both pCAG-SeV and pEF1-SeV, confirming that SeV was reconstituted. However, when T7 polymerase was additionally supplied by the pCAGGS-T7mco plasmid, the efficiency of reconstitution was greatly improved.
配列表の説明
配列番号1:EF1αプロモーターの配列の例
配列番号2:CAGプロモーターの配列の例
配列番号3:EmGFPをコードする遺伝子の配列の例
配列番号4:EBウイルスのEBERの配列
配列番号5:HIVのTARの配列
配列番号6:ポリオウイルスの2Apro
配列番号7:ワクシニアウイルスのE3L
配列番号8:レオウイルスのσ3
配列番号9:ヒトp58IPK
配列番号10:ワクシニアウイルスのK3L
配列番号11:HIVのTat
配列番号12:単純ヘルペスウイルスのICP34.5
配列番号13:nc866
配列番号14:nc866のロングバージョン
配列番号15:NS5A
配列番号16:NS5A(1~148)
配列番号17:VAI(180mer)
配列番号18:VAI(c.74U>V)
配列番号19:VAI(330mer)
配列番号20:VAI(330mer;c.74U>V)
配列番号21:VAI-VAII
配列番号22:VAI(180mer:c.74U>M)
配列番号23:VAI(330mer:c.74U>M)
配列番号24:VAI(330mer;c.191C>D)
配列番号25:VAI(330mer;c.74U>V、c.191C>D)
配列番号26:VAI(330mer;c.74U>M、c.191C>G)
配列番号27:センダイウイルスのCタンパク質のC末端106アミノ酸
配列番号28:インフルエンザウイルスのNS1
配列番号29:単純ヘルペスウイルスのUs11
配列番号30:融合タンパク質E3K3
配列番号31:融合タンパク質E3Y3
配列番号32:EmGFP-VAI(74U>A)
配列番号33:EmGFP-VAI74aL(74U>A)
配列番号34:VAI(264bp)74c3p
配列番号35:VAI(246bp)74c5p
配列番号36:Hh-Rbzの配列の一例
配列番号37:HDV-Rbzの配列の一例
配列番号38:T7ターミネーター配列の一例
配列番号39:L遺伝子増幅用のフォワードプライマー
配列番号40:L遺伝子増幅用のリバースプライマー
配列番号41:VAI増幅用のフォワードプライマー
配列番号42:VAI増幅用のリバースプライマー
Description of Sequence Listing SEQ ID NO: 1: Example of sequence of EF1α promoter SEQ ID NO: 2: Example of sequence of CAG promoter SEQ ID NO: 3: Example of sequence of gene encoding EmGFP SEQ ID NO: 4: Sequence of EBER of EB virus SEQ ID NO: 5 : Sequence of TAR of HIV SEQ ID NO: 6: 2A pro of poliovirus
SEQ ID NO: 7: E3L of vaccinia virus
SEQ ID NO: 8: Reovirus σ3
SEQ ID NO:9: Human p58 IPK
SEQ ID NO: 10: K3L of vaccinia virus
SEQ ID NO: 11: HIV Tat
SEQ ID NO: 12: ICP34.5 of herpes simplex virus
SEQ ID NO: 13: nc866
SEQ ID NO: 14: long version of nc866 SEQ ID NO: 15: NS5A
SEQ ID NO: 16: NS5A (1-148)
SEQ ID NO: 17: VAI (180mer)
SEQ ID NO: 18: VAI (c.74U>V)
SEQ ID NO: 19: VAI (330mer)
SEQ ID NO: 20: VAI (330mer; c.74U>V)
SEQ ID NO:21: VAI-VAII
SEQ ID NO: 22: VAI (180mer: c.74U>M)
SEQ ID NO: 23: VAI (330mer: c.74U>M)
SEQ ID NO: 24: VAI (330mer; c.191C>D)
SEQ ID NO: 25: VAI (330mer; c.74U>V, c.191C>D)
SEQ ID NO: 26: VAI (330mer; c.74U>M, c.191C>G)
SEQ ID NO: 27: C-terminal 106 amino acids of C protein of Sendai virus SEQ ID NO: 28: NS1 of influenza virus
SEQ ID NO: 29: Us11 of herpes simplex virus
SEQ ID NO: 30: Fusion protein E3K3
SEQ ID NO: 31: fusion protein E3Y3
SEQ ID NO: 32: EmGFP-VAI (74U>A)
SEQ ID NO: 33: EmGFP-VAI74aL (74U>A)
SEQ ID NO: 34: VAI (264 bp) 74c3p
SEQ ID NO: 35: VAI (246 bp) 74c5p
SEQ ID NO: 36: Example of Hh-Rbz sequence SEQ ID NO: 37: Example of HDV-Rbz sequence SEQ ID NO: 38: Example of T7 terminator sequence SEQ ID NO: 39: Forward primer for L gene amplification SEQ ID NO: 40: L gene amplification SEQ ID NO: 41: forward primer for VAI amplification SEQ ID NO: 42: reverse primer for VAI amplification

Claims (14)

  1.  マイナス鎖RNAウイルスまたはウイルスベクターを製造する方法であって、
     制御配列に作動可能に連結したプロテインキナーゼR(PKR)阻害性の因子をコードする遺伝子から当該因子を発現させてパッケージング細胞に供給することと、
     パッケージング細胞にマイナス鎖RNAウイルスまたはウイルスベクターのゲノムRNAを発現させ、前記因子の存在下でマイナス鎖RNAウイルスまたはウイルスベクターを形成させることと、
     形成されたマイナス鎖RNAウイルスまたはウイルスベクターを回収することと、
    を含み、
     PKR阻害性の因子は、PKR阻害性のウイルス性因子であるか、または、nc886もしくはp58IPKであり、
     前記ウイルスまたはウイルスベクターと前記PKR阻害性の因子との関係が異種である、および/または、前記制御配列と前記PKR阻害性の因子との関係が異種である、
    方法。
    A method for producing a negative-strand RNA virus or viral vector, comprising:
    expressing a protein kinase R (PKR) inhibitory factor from a gene encoding the factor operably linked to regulatory sequences and supplying the factor to packaging cells;
    expressing the genomic RNA of a negative-strand RNA virus or viral vector in a packaging cell to form a negative-strand RNA virus or viral vector in the presence of said factor;
    recovering the formed negative-strand RNA virus or viral vector;
    including
    the PKR-inhibiting factor is a PKR-inhibiting viral factor or nc886 or p58 IPK ;
    the relationship between said virus or viral vector and said PKR-inhibitory agent is heterologous, and/or the relationship between said regulatory sequence and said PKR-inhibitory agent is heterologous;
    Method.
  2.  マイナス鎖RNAウイルスまたはウイルスベクターが、センダイウイルスベクターである、請求項1に記載の方法。 The method according to claim 1, wherein the negative-strand RNA virus or viral vector is a Sendai virus vector.
  3.  前記PKR阻害性の因子が、アデノウイルスのVAI RNA、EBウイルスのEBER、HIVウイルスのTAR、ポリオウイルスの2Apro、ワクシニアウイルスのE3L、レオウイルスのδ3、インフルエンザウイルスのNS1、ヒトp58IPK、C型肝炎ウイルスのNS5A、ワクシニアウイルスのK3L、HIVウイルスのTat、ヒトnc886、単純ヘルペスウイルスのUs11、および単純ヘルペスウイルスのICP34.5、並びにこれらのオーソログからなる群から選択される1以上である、請求項1または2に記載の方法。 The PKR inhibitory factor is adenovirus VAI RNA, EB virus EBER, HIV virus TAR, poliovirus 2A pro , vaccinia virus E3L, reovirus δ3, influenza virus NS1, human p58 IPK , C NS5A of hepatitis virus, K3L of vaccinia virus, Tat of HIV virus, human nc886, Us11 of herpes simplex virus, and ICP34.5 of herpes simplex virus, and one or more selected from the group consisting of orthologs thereof; 3. A method according to claim 1 or 2.
  4.  ヘルパーウイルス非存在下でマイナス鎖RNAウイルスまたはウイルスベクターを製造する、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the minus-strand RNA virus or viral vector is produced in the absence of a helper virus.
  5.  前記ゲノムRNAが、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子をさらに有する、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein said genomic RNA further comprises a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
  6.  前記パッケージング細胞が、制御配列に作動可能に連結したPKR阻害性の因子をコードする遺伝子を有するゲノムDNAを有する、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the packaging cell has genomic DNA having a gene encoding a PKR inhibitory factor operably linked to a regulatory sequence.
  7.  前記パッケージング細胞が、Vero細胞またはLLC-MK2細胞である、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the packaging cells are Vero cells or LLC-MK2 cells.
  8.  前記パッケージング細胞が、Vero細胞からなる細胞集団またはLLC-MK2細胞からなる細胞集団であって、他の細胞を含まない細胞集団である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the packaging cells are a cell population consisting of Vero cells or a cell population consisting of LLC-MK2 cells and do not contain other cells. .
  9.  PKR阻害性の因子のいずれか1以上をコードする遺伝子を発現可能に含む、マイナス鎖RNAウイルスまたはウイルスベクターのRNAゲノム。 An RNA genome of a negative-strand RNA virus or viral vector that expressably contains a gene encoding any one or more of the PKR inhibitory factors.
  10.  請求項9に記載のゲノムを含む、マイナス鎖RNAウイルスまたはウイルスベクター。 A minus-strand RNA virus or viral vector comprising the genome according to claim 9.
  11.  目的遺伝子をさらに含む、請求項10に記載のマイナス鎖RNAウイルスまたはウイルスベクター。 The minus-strand RNA virus or viral vector according to claim 10, further comprising a target gene.
  12.  請求項10または11に記載のマイナス鎖RNAウイルスまたはウイルスベクターを含む、組成物。 A composition comprising the negative-strand RNA virus or viral vector according to claim 10 or 11.
  13.  請求項9に記載のRNAゲノムをコードするDNA。 A DNA encoding the RNA genome according to claim 9.
  14.  制御配列に作動可能に連結された請求項13に記載のDNAを含む、遺伝子発現ベクター。


     
    A gene expression vector comprising the DNA of claim 13 operably linked to regulatory sequences.


PCT/JP2022/025983 2021-06-30 2022-06-29 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector WO2023277069A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2022302552A AU2022302552A1 (en) 2021-06-30 2022-06-29 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector
JP2023532022A JPWO2023277069A1 (en) 2021-06-30 2022-06-29
CN202280045809.9A CN117651774A (en) 2021-06-30 2022-06-29 Method for producing minus-strand RNA viral vector and minus-strand RNA viral vector produced thereby
EP22833215.1A EP4365298A1 (en) 2021-06-30 2022-06-29 Method of producing negative-strand rna virus vector and produced negative-strand rna virus vector
CA3225564A CA3225564A1 (en) 2021-06-30 2022-06-29 Method of producing negative-strand rna virus vector and produced negative-strand rna virus vector
TW111149926A TW202400795A (en) 2021-06-30 2022-12-26 Method for producing negative-strand RNA virus vector and produced negative-strand RNA virus vector
PCT/JP2022/047801 WO2024004235A1 (en) 2021-06-30 2022-12-26 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108757 2021-06-30
JP2021108757 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277069A1 true WO2023277069A1 (en) 2023-01-05

Family

ID=84691835

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/025983 WO2023277069A1 (en) 2021-06-30 2022-06-29 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector
PCT/JP2022/047801 WO2024004235A1 (en) 2021-06-30 2022-12-26 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047801 WO2024004235A1 (en) 2021-06-30 2022-12-26 Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector

Country Status (7)

Country Link
EP (1) EP4365298A1 (en)
JP (1) JPWO2023277069A1 (en)
CN (1) CN117651774A (en)
AU (1) AU2022302552A1 (en)
CA (1) CA3225564A1 (en)
TW (1) TW202400795A (en)
WO (2) WO2023277069A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011983A1 (en) 1993-10-25 1995-05-04 Creative Biomolecules, Inc. Methods and compositions for high protein production from recombinant dna
WO1998040500A1 (en) 1997-03-12 1998-09-17 Virogenetics Corporation Vectors having enhanced expression and methods of making and uses thereof
JP2001514518A (en) * 1997-03-12 2001-09-11 ヴァイロジェネティクス コーポレイション Vectors with improved expression and methods for their production and use
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
WO2005071092A1 (en) 2004-01-22 2005-08-04 Dnavec Research Inc. METHOD OF PRODUCING MINUS STRAND RNA VIRUS VECTOR WITH THE USE OF HYBRID PROMOTER CONTAINING CYTOMEGALOVIRUS ENHANCER AND AVIAN β-ACTIN PROMOTER
WO2005071085A1 (en) 2004-01-22 2005-08-04 Dnavec Research Inc. Process for producing virus vector
JP2005534326A (en) * 2002-08-07 2005-11-17 バヴァリアン・ノルディック・アクティーゼルスカブ Vaccinia virus host range gene to increase avipox virus titer
JP2015534826A (en) * 2012-11-09 2015-12-07 バイオエヌテック アーゲーBioNTech AG Cell RNA expression method
KR20200069259A (en) * 2018-12-06 2020-06-16 국립암센터 A composition for promoting oncolytic virus activity or enhancing virus production comprising nc886
JP2020534810A (en) * 2017-09-13 2020-12-03 バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh How to enhance RNA expression in cells

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011983A1 (en) 1993-10-25 1995-05-04 Creative Biomolecules, Inc. Methods and compositions for high protein production from recombinant dna
WO1998040500A1 (en) 1997-03-12 1998-09-17 Virogenetics Corporation Vectors having enhanced expression and methods of making and uses thereof
JP2001514519A (en) * 1997-03-12 2001-09-11 ヴァイロジェネティクス コーポレイション Vectors with enhanced expression and methods for their production and use
JP2001514518A (en) * 1997-03-12 2001-09-11 ヴァイロジェネティクス コーポレイション Vectors with improved expression and methods for their production and use
WO2003025570A1 (en) 2001-09-18 2003-03-27 Dnavec Research Inc. Method of examining (-) strand rna virus vector having lowered ability to form grains and method of constructing the same
JP2005534326A (en) * 2002-08-07 2005-11-17 バヴァリアン・ノルディック・アクティーゼルスカブ Vaccinia virus host range gene to increase avipox virus titer
WO2005071092A1 (en) 2004-01-22 2005-08-04 Dnavec Research Inc. METHOD OF PRODUCING MINUS STRAND RNA VIRUS VECTOR WITH THE USE OF HYBRID PROMOTER CONTAINING CYTOMEGALOVIRUS ENHANCER AND AVIAN β-ACTIN PROMOTER
WO2005071085A1 (en) 2004-01-22 2005-08-04 Dnavec Research Inc. Process for producing virus vector
JP2015534826A (en) * 2012-11-09 2015-12-07 バイオエヌテック アーゲーBioNTech AG Cell RNA expression method
JP2020534810A (en) * 2017-09-13 2020-12-03 バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh How to enhance RNA expression in cells
KR20200069259A (en) * 2018-12-06 2020-06-16 국립암센터 A composition for promoting oncolytic virus activity or enhancing virus production comprising nc886

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BEATY, SM. ET AL., MSPHERE, vol. 2, 2017, pages e00376 - 16
J. GENERAL VIROLOGY, vol. 78, 1997, pages 2813 - 2820
M. K. KOBAYASHI ET AL., VIROLOGY, vol. 276, 2000, pages 424 - 434
MEDICAL JOURNAL OF KOBE UNIVERSITY, vol. 64, no. 1/2, 2003, pages 7 - 15
T. SHORS ET AL., VIROLOGY, vol. 239, 1997, pages 269 - 276
T. TAGUCHI ET AL., J. GEN. VIROL., vol. 85, 2004, pages 959 - 969

Also Published As

Publication number Publication date
TW202400795A (en) 2024-01-01
JPWO2023277069A1 (en) 2023-01-05
AU2022302552A1 (en) 2024-02-08
WO2024004235A1 (en) 2024-01-04
CN117651774A (en) 2024-03-05
EP4365298A1 (en) 2024-05-08
CA3225564A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
KR101279677B1 (en) Methods for producing minus-strand RNA viral vectors using hybrid promoter comprising cytomegalovirus enhancer and chicken β-actin promoter
ES2423518T3 (en) Cells and methodology to generate unsegmented negative sense chain RNA viruses
JP4936482B2 (en) Improved persistent infection Sendai virus vector
JP6927883B2 (en) Improved paramyxovirus vector
Marschalek et al. The importance of being short: the role of rabies virus phosphoprotein isoforms assessed by differential IRES translation initiation
KR20090114431A (en) Attenuated minus-stranded RNA virus
WO2023277069A1 (en) Method for producing negative-strand rna virus vector and produced negative-strand rna virus vector
KR20050100379A (en) Paramyxovirus vector encoding ribozyme and utilization thereof
WO2023127871A1 (en) Temperature-sensitive minus-strand rna virus or virus vector and rna genome thereof
Dibben et al. Roles of the PVM M2-1, M2-2 and P gene ORF 2 (P-2) proteins in viral replication
JP6947825B2 (en) Polynucleotides and their use to modify target sequences
Kim Enterovirus Recombination as a Target for Viral Attenuation and Antiviral Therapeutics
EP4367225A1 (en) Vsv rescue
JP2022537268A (en) A novel mechanism that regulates RNA virus replication and gene expression
JP2013524798A (en) Genetically modified paramyxovirus for the treatment of neoplastic diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532022

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3225564

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280045809.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022302552

Country of ref document: AU

Ref document number: AU2022302552

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022833215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833215

Country of ref document: EP

Effective date: 20240130

Ref document number: 2022302552

Country of ref document: AU

Date of ref document: 20220629

Kind code of ref document: A