WO2023277051A1 - Adjuvant - Google Patents

Adjuvant Download PDF

Info

Publication number
WO2023277051A1
WO2023277051A1 PCT/JP2022/025905 JP2022025905W WO2023277051A1 WO 2023277051 A1 WO2023277051 A1 WO 2023277051A1 JP 2022025905 W JP2022025905 W JP 2022025905W WO 2023277051 A1 WO2023277051 A1 WO 2023277051A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
acid
compound
group
alkyl
Prior art date
Application number
PCT/JP2022/025905
Other languages
French (fr)
Japanese (ja)
Inventor
晶 山▲崎▼
茂宜 石塚
デンジャーフィールド,エマ・マリア
ストッカー,ブリジット・ルイス
ティマー,マテウス・サイモン・マリア
タケル 松尾
暢次朗 江口
Original Assignee
国立大学法人大阪大学
ヴィクトリア リンク リミテッド
株式会社 SENTAN Pharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, ヴィクトリア リンク リミテッド, 株式会社 SENTAN Pharma filed Critical 国立大学法人大阪大学
Priority to JP2023532008A priority Critical patent/JPWO2023277051A1/ja
Publication of WO2023277051A1 publication Critical patent/WO2023277051A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an immunostimulant.
  • Immunostimulants are used to enhance the immune response to vaccines. Humoral immunity conferred by vaccines is insufficient to protect against some pathogens. Therefore, there is a need for immunostimulants that enhance acquired cellular (Th1) immunity. Th1 cells secrete cytokines that activate macrophages and induce the production of opsonizing antibodies by B cells. Cell-mediated immunity activates cytotoxic T lymphocytes (CTLs), a subgroup of T cells that induce the death of pathogen-infected cells. In cell-mediated immunity, natural killer (NK) cells are also activated and play a major role in apoptosis in tumors and virus-infected cells.
  • CTLs cytotoxic T lymphocytes
  • NK natural killer cells are also activated and play a major role in apoptosis in tumors and virus-infected cells.
  • PAMPs are molecules associated with pathogen groups recognized by cells that contribute to the innate immune system. Many molecules can act as PAMPs, including glycans and glycoconjugates. PAMPs bind to PRRs and the specificity of the resulting immune response is directed by the type of PRR activated and the structure of each PAMP.
  • Mincle is activated by several PAMPs such as the Mycobacterium tuberculosis cell wall glycolipid trehalose dimycolate (TDM). Activation of Mincle induces the FcR ⁇ -Syk-Card9-Bcl10-Malt1 signaling axis and immune response.
  • TDM Mycobacterium tuberculosis cell wall glycolipid trehalose dimycolate
  • FcR ⁇ -Syk-Card9-Bcl10-Malt1 the FcR ⁇ -Syk-Card9-Bcl10-Malt1 signaling axis and immune response.
  • TDM is highly toxic and difficult to synthesize as it is a complex mixture of compounds.
  • Patent Document 1 discloses a vaccine adjuvant comprising a liposomal formulation incorporating TDB as a glycolipid within the liposome to improve stability in aqueous formulations.
  • Patent Document 2 shows that a bralutemicin analogue containing a long-chain lipophilic tail has potent Mincle agonist activity and is a Th1-stimulating immunostimulator.
  • the degree of enhancement of acquired cellular immunity depends on the efficiency of PAMP binding to PRR.
  • the brartemicin analogue disclosed in Patent Document 2 has not been examined for transport to PRR in vivo, and there is room for improvement in order to further enhance the enhancement of acquired cell-mediated immunity.
  • the present invention has been made in view of the above circumstances, and aims to provide an immunostimulant capable of inducing a high immune response.
  • the immunostimulant according to the present invention is Compounds of Formula 1 [wherein X a and X b are each independently selected from O or NH; Y a and Y b are each independently selected from the group comprising —I, —Br, —Cl, —F, —OH, —R 1 and OR 1 , wherein R 1 is alkyl having 1 to 6 carbon atoms, carbon selected from alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms, wherein alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms are each —OH or 1 carbon atom; optionally substituted with ⁇ 6 alkoxy, n and m are each independently 0 to 4, and Z a and Z b are each independently selected from R 2 , —OR 2 , —NHR 2 , —NHC(O)—R 2 and SR 2
  • X a and X b are O; You can do it.
  • the aryl ring is attached directly to the carbon of C ⁇ O in the absence of alk a and alk b respectively; You can do it.
  • n and m are 1; Y a and Y b are —OH; You can do it.
  • Z a and Z b are —OR 2 ,
  • R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms, and alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and 5 carbon atoms.
  • Each alkynyl of -26 may be substituted with -OH or alkoxy of 1-6 carbon atoms.
  • Z a and Z b are —OR 2 , R 2 is alkyl having 18 carbon atoms, r and s are 1; You can do it.
  • the biocompatible particles are lactic acid/glycolic acid copolymer particles, You can do it.
  • the 50% diameter of the biocompatible particles is is 200 nm or less, You can do it.
  • the immunostimulant according to the present invention is used in combination with vaccines You can do it.
  • the vaccine is is a vaccine against SARS-CoV-2, You can do it.
  • the immunostimulant according to the present invention can induce a high immune response.
  • FIG. 1 is a diagram showing the particle size distribution of compound-containing nanoparticles according to Example 1.
  • FIG. 1 is a diagram showing GFP positive rates according to Test Example 1.
  • FIG. 10 is a graph showing changes over time in body weight of mice according to Test Example 2.
  • FIG. (A), (B), (C) and (D) show the body weight of mice dosed with spike protein alone, compound-free nanoparticles, compound-containing nanoparticles and compound, respectively.
  • FIG. 5 is a graph showing changes over time in the average body weight of the mice shown in FIG. 4; FIG.
  • FIG. 10 is a graph showing temporal changes in the amount of antibody produced in mice according to Test Example 2.
  • FIG. (A), (B), (C) and (D) show the body weight of mice dosed with spike protein alone, compound-free nanoparticles, compound-containing nanoparticles and compound, respectively.
  • FIG. 7 is a graph showing changes over time in average antibody production levels in the mice shown in FIG. 6.
  • FIG. (A) shows the average amount of spike protein-specific IgG during the test period.
  • (B) shows the average amount of IgG from 0 to 7 weeks shown in (A).
  • the immunostimulant according to the present embodiment contains biocompatible particles containing the compound of Formula 1 below.
  • X a and X b are each independently selected from O or NH.
  • X a may be O and X b may be NH
  • X a may be NH and X b may be O
  • X a and X b may be NH.
  • X a and X b are O.
  • Y a and Y b are each independently selected from the group comprising —I, —Br, —Cl, —F, —OH, —R 1 and OR 1 .
  • R 1 is selected from alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms.
  • Each of alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms may be substituted with —OH or alkoxy having 1 to 6 carbon atoms.
  • Y a and Y b are each —OH or —CH 3 , preferably Y a and Y b are —OH.
  • n and m are each independently 0-4.
  • n and m are one.
  • Z a and Z b are each independently selected from R 2 , —OR 2 , —NHR 2 , —NHC(O)—R 2 and SR 2 .
  • R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms.
  • Each of alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms may be substituted with —OH or alkoxy having 1 to 6 carbon atoms.
  • Z a and Z b are —OR 2 and R 2 is 18 carbon alkyl.
  • r and s are each independently 1 to 3; Preferably r and s are one.
  • alk a and alk b may each be independently selected from alkylene having 1 to 4 carbon atoms, alkenylene having 2 to 4 carbon atoms and alkynylene having 2 to 4 carbon atoms ;
  • r and S are each selected from 0-4.
  • n and m are each one and r and S are each one.
  • Alkyl means any saturated hydrocarbon group having any number of carbon atoms, for example up to 30 carbon atoms.
  • Alkyl includes cyclic (including fused bicyclic) alkyl groups, straight and branched chain alkyl groups, and straight or branched chain alkyl groups substituted with cyclic alkyl groups. Examples of alkyl groups are methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl.
  • Alkenyl means any hydrocarbon group having at least one double bond and up to 30 carbon atoms. Alkenyl includes both straight-chain and branched-chain alkenyl groups. Examples of alkenyl include ethenyl, n-propenyl, iso-propenyl, n-butenyl, iso-butenyl, sec-butenyl, t-butenyl, n-pentenyl, 1,1-dimethylpropenyl. 1,2-dimethylpropenyl, 2,2-dimethylpropenyl, 1-ethylpropenyl, 2-ethylpropenyl, n-hexenyl and 1-methyl-2-ethylpropenyl groups.
  • Alkynyl means any hydrocarbon group having at least one triple bond and up to 30 carbon atoms. Alkynyl includes both straight-chain and branched-chain alkynyl groups. Examples of alkynyl include ethynyl, n-propynyl, iso-propynyl, n-butynyl, iso-butynyl, sec-butynyl, t-butynyl, n-pentynyl and the like.
  • Alkoxy means an O-alkyl group.
  • Alkylene means a divalent group corresponding to an alkyl group. Examples of alkylene include methylene, cyclohexylene and ethylene groups. An alkylene can contain one or more cyclic alkylene groups in the alkylene chain. Alkylene may include a cyclohexylene group attached to a methylene group. Alkylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkylene may include one or more arylene moieties within the alkylene chain, eg, a phenylene group within the alkylene chain.
  • Alkenylene means a divalent group corresponding to an alkene group. Alkenylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkenylene may contain one or more arylene moieties within the alkenylene chain, eg, a phenylene group may be contained within the alkenylene chain.
  • Alkynylene means a divalent group corresponding to an alkynyl group. Alkynylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkynylene may optionally include one or more arylene moieties within the alkynylene chain, for example, a phenylene group may be included within the alkynylene chain.
  • Aryl means an aromatic group having 4 to 18 carbon atoms, including heteroaromatic groups.
  • Aryl includes fused groups such as monocyclic, bicyclic and tricyclic groups.
  • aryl include phenyl, indenyl, 1-naphthyl, 2-naphthyl, azulenyl, heptalenyl, biphenyl, inrdacenyl, acenaphthyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, cyclopenta Cyclooctenyl group, benzocyclooctenyl group, pyridyl group, pyrrolyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazolyl group (1-H-1,2,3-triazol-1-yl and 1-H-1 , 2,3-triazol-4-yl group), tetrazol
  • Substituted means that one or more hydrogen atoms of an indicated group have been replaced with one or more independently selected suitable substituents. provided that the normal valence of each atom to which the substituent is attached is not exceeded, and preferably the substitution results in a stable compound. Suitable substituents include optional substituents set forth herein.
  • the compounds according to the present embodiment are 6,6'-di-O-(2-hydroxy-4-butoxybenzoyl)- ⁇ , ⁇ '-D-trehalose, 6,6'-di-O-(2- hydroxy-4-methoxybenzoyl)- ⁇ , ⁇ '-D-trehalose and 6,6'-di-O-(2,4-dihydroxybenzoyl)- ⁇ , ⁇ '-D-trehalose.
  • Biocompatible particles are particles whose main component is a biocompatible polymer.
  • Biocompatible polymers have varying average chain lengths that lead to differences in internal viscosity and polymer properties.
  • the polymer used in the present embodiment is preferably a biodegradable polymer that is biocompatible with low irritation and toxicity to living bodies and is degraded and metabolized after administration.
  • Biodegradable polymers include, for example, macromolecules produced by microorganisms such as polyhydroxybutyrate and polyhydroxyvalerate, and natural high-molecular weight compounds such as collagen, cellulose acetate, bacterial cellulose, high amylose corn starch, starch and chitosan. molecules and the like.
  • the molecular weight of the biocompatible polymer is for example 5000-200000 or 15000-25000.
  • the biocompatible polymer is preferably biocompatible polyester.
  • Biocompatible polyesters include, for example, D,L-lactide, D-lactide, L-lactide, D,L-lactic acid, D-lactic acid, L-lactic acid, glycolide, glycolic acid, ⁇ -caprolactone, ⁇ -hydroxyhexanoic acid, It is a polyester synthesized by polymerizing one or more monomers selected from ⁇ -butyrolactone, ⁇ -hydroxybutyric acid, ⁇ -valerolactone, ⁇ -hydroxyvaleric acid, hydroxybutyric acid, malic acid, and the like.
  • the biocompatible polymer is polylactic acid, polyglycolic acid, lactic acid-aspartic acid copolymer, lactic acid-glycolic acid copolymer (PLGA) or polyethylene glycol/chitosan modified-PLGA (PEG/CS-PLGA).
  • PLGA polyglycolic acid
  • PEG/CS-PLGA polyethylene glycol/chitosan modified-PLGA
  • PLGA is a copolymer consisting of lactic acid (or lactide) and glycolic acid (or glycolide) in a ratio of, for example, 1:99 to 99:1, preferably 3:1.
  • the biocompatible particles according to the embodiment are preferably nano-sized and have a particle diameter of, for example, 1 to 800 nm.
  • the particle size of the biocompatible particles is 500 nm or less, 400 nm or less, 300 nm or less, or 200 nm or less.
  • the particle size of the biocompatible particles is 10-500 nm, 25-300 nm, 30-250 nm, more preferably 30-300 nm or 40-200 nm.
  • the particle size of biocompatible particles is measured by sieving method, sedimentation method, microscopic method, light scattering method, laser diffraction/scattering method, electrical resistance test, observation by transmission electron microscope, observation by scanning electron microscope, etc. can.
  • the particle size may be measured with a known particle size distribution meter.
  • the particle diameter can be represented by an equivalent stalk diameter, an equivalent circle diameter, or an equivalent sphere diameter depending on the measurement method.
  • the particle size of the biocompatible particles may be an average particle size, a volume average particle size, an area average particle size, or the like, with a plurality of particles being measured.
  • the particle size of the biocompatible particles described above may be an average particle size calculated from a volume distribution or the like based on a measurement such as a laser diffraction/scattering method. Specifically, when the cumulative curve is obtained with the total volume of the group of particles as 100%, the volume average particle diameter (50% diameter; D 50 ), which is the particle diameter at the point where the cumulative curve reaches 50%, is the particle diameter. It may be the diameter. Cumulative curves and D50 can be determined using a commercially available particle size analyzer.
  • the biocompatible particles have a particle diameter span value of 3.0 or less.
  • a span value is obtained by (D 90 -D 10 )/D 50 .
  • D90 is the 90 % diameter, which is the particle diameter at the point where the cumulative curve reaches 90%.
  • D10 is the 10 % diameter, which is the particle diameter at the point where the cumulative curve reaches 10%.
  • the biocompatible particles have a particle diameter span value of 5.0 or less, 4.0 or less, preferably 3.0 or less, and more preferably 2.5 or less.
  • the content of the compound in the biocompatible particles is not particularly limited, but is 5% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, relative to the mass of the biocompatible particles. 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or less, 90% by mass or less, 80% by mass or less, 70% by mass or less, It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the compound content in the biocompatible particles is 10-80%, 12-50% or 15-40% by weight.
  • the content rate is the mass of the compound relative to the mass of the biocompatible particles calculated based on the quantified value of the concentration of the compound extracted from the biocompatible particles.
  • the biocompatible particles may contain excipients.
  • Excipients enhance the fluidity of the biocompatible particles and enhance the stability of the compound. Any pharmacologically acceptable excipient can be used.
  • excipients include water, saline, oils such as animal oils, vegetable oils, synthetic oils and petroleum oils, aqueous dextrose, glycerol, starch glucose, lactose, mannitol, trehalose, inositol, erythritol, lactose, sucrose, sucrose.
  • PVA polyvinyl alcohol
  • PVP polyvinyl alcohol
  • natural polymers synthetic polymers, glycine, leucine, isoleucine, arginine and amino acids such as histidine, gelatin, sodium stearate, glyceryl monostearate, sodium chloride, propylene glycol, ethanol, wetting agents, emulsifiers, binders, dispersants, thickeners, lubricants, pH adjusters, Examples include solubilizers, softeners, surfactants, and the like. More preferably, the excipient is PVA.
  • the mass ratio of compound to excipient in the biocompatible particles ranges from 100:1 to 1:100.
  • the mass ratio of the compound contained in the biocompatible particles to the excipient is preferably 10:1 to 1:20, more preferably 8:1 to 1:15, still more preferably 6:1. ⁇ 1:10 or 4:1 to 1:10.
  • compound 4 (X is O or NH) in which R is protected with a benzyl group, trimethylsilyl group or levulinoyl group or is unprotected and R is H is reacted with a coupling reagent. or an activated form of compound (carboxylic acid) 5, such as the anhydride or acid chloride, is used to condense with compound 5. Subsequent optional deprotection using, for example, hydrogenation, acid or base provides compound 3.
  • Coupling reagents are, for example, N,N'-dicyclohexylcarbodiimide (DCC), BOP reagents, HATU, COMU, triphenylphosphine (Ph 3 P)/DEAD, or derivatives thereof.
  • DCC N,N'-dicyclohexylcarbodiimide
  • BOP reagents BOP reagents
  • HATU HATU
  • COMU trihenylphosphine
  • Ph 3 P triphenylphosphine
  • Compound 4 (where X is NH) is also formed by reduction of the corresponding azide using a reducing agent such as hydrogen, hydride, sulfide or phosphine. Further, compound 4 is subjected to an enzyme-, acid- or base-catalyzed reaction together with an ester derivative of compound 5. Subsequent optional deprotection using, for example, hydrogenation, acid or base, can also lead to the formation of compound 3.
  • a reducing agent such as hydrogen, hydride, sulfide or phosphine.
  • compound 7 in which R 1 is protected with a benzyl group, trimethylsilyl group or levulinoyl group, or in which unprotected R 1 is H (X a is O or NH; Y is OR 2 (where R 2 is H or a protecting group), or Y is NR 2 R 3 (wherein R 2 and R 3 are H or a protecting group)) under the action of a coupling reagent, or compound (carboxylic acid) 8 is condensed with compound 8 using an activated form such as the anhydride or acid chloride of This is followed by optional deprotection using, for example, hydrogenation, acid or base to form compound 9 ( Xb is O or NH).
  • Condensation of compound 9 with compound 10 is then carried out under the action of a coupling reagent or using an activated form such as the anhydride or acid chloride of compound (carboxylic acid) 10, optionally e.g. Hydrogenation, deprotection using acid or base gives compound 6.
  • compound 7 (Xa is NH) or compound 9 ( Xb is NH) is formed by reduction of the corresponding azide using a reducing agent such as hydrogen, hydride, sulfide or phosphine. Further, compound 7 or compound 9 is subjected to an enzyme-, acid-, or base-catalyzed reaction along with compound 8 or the ester derivative of compound 10. Subsequent optional deprotection using, for example, hydrogenation, acid or base, can form compound 6.
  • a method of making the biocompatible particles includes a mixing step and a precipitation step.
  • an emulsifier aqueous solution hereinafter referred to as "A liquid”
  • a raw material solution hereinafter referred to as “B liquid”
  • a liquid an emulsifier aqueous solution
  • B liquid a raw material solution
  • liquid A will be described.
  • the emulsifier dissolved in liquid A is not particularly limited as long as it enhances the dispersion stability of the particles.
  • emulsifiers include surfactants, polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, water-soluble resins, lecithin, saponins, sterols, glycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, polyglycerin.
  • surfactants polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, water-soluble resins, lecithin, saponins, sterols, glycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, polyglycerin.
  • examples include fatty acid esters and polysorbates.
  • the emulsifier is polyvinyl alcohol (hereinafter referred to as "PVA").
  • PVA polyvinyl alcohol
  • Commercially available PVA can be used as an emulsifier.
  • PVA may be used for industrial or medical purposes, but PVA containing little residual organic solvent or containing no organic solvent is preferred.
  • the concentration of the emulsifier in liquid A is, for example, 0.01 to 10.0% by mass, 0.01 to 5.0% by mass, preferably 0.05 to 2% by mass. It is preferable that the pH of the thin film fluid in which the A liquid and the B liquid are mixed is 6-8. Therefore, the pH of liquid A is preferably adjusted to, for example, 7-8. Any pH adjusting agent may be used to adjust the pH of liquid A. For example, alkaline species such as sodium hydrogen carbonate, sodium carbonate, calcium hydroxide, ammonia, sodium hydroxide and potassium hydroxide may be used.
  • Liquid B contains an organic solvent in which the compound is dissolved.
  • the organic solvent is not particularly limited, but solvents including acetone and ethanol are preferred.
  • the compound and PLGA are dissolved in the solvent.
  • the compound and PLGA are added to acetone, dissolved using ultrasonic waves or Clearmix, and then ethanol is added and mixed.
  • the mass ratio of PLGA to the compound is, for example, 10:1 to 1:10, 8:1 to 1:8, 6:1 to 1:6, 5:1 to 1:5 or 4:1 to 1. :4.
  • the volume ratio of acetone to ethanol is 3:1 to 1:1, preferably 2:1 to 1:1.
  • the drug and PLGA may be added to a mixed solution obtained by mixing acetone and ethanol in advance. If necessary, the solvent for liquid B may be mixed with a solvent other than acetone and ethanol.
  • the A liquid and the B liquid are introduced between processing surfaces that are arranged to face each other and at least one of which rotates relative to the other. Thereby, a thin film fluid is formed between the processing surfaces, and the A liquid and the B liquid are mixed.
  • the mixed A and B liquids react in the thin film fluid to form nanoparticles containing compounds.
  • the deposition step deposits the formed nanoparticles into a thin film fluid.
  • FIG. 1 shows a schematic diagram of a cross-section of a thin film rotary disperser 100 .
  • the thin film rotary disperser 100 includes a holder 10 , a holder 20 , an introduction section 30 , a fluid pressure application section 40 , an introduction section 50 , a fluid supply section 60 and a case 70 .
  • the holder 10 is arranged below the holder 20 .
  • the holder 10 and the holder 20 hold the processing section 11 and the processing section 21, respectively.
  • the processing section 11 and the processing section 21 are each annular (ring-shaped).
  • the processing section 11 has a processing surface 1 .
  • the processing section 21 has a processing surface 2 facing the processing surface 1 .
  • a contact surface pressure applying portion 22 is arranged between the holder 20 and the processing portion 21 .
  • the contact surface pressure applying unit 22 applies pressure (hereinafter, simply referred to as “back pressure”) to the processing unit 21 to bring the processing unit 21 closer to the processing unit 11 below. Therefore, the processing surface 1 and the processing surface 2 can move toward and away from each other.
  • the holder 10 is rotated relative to the holder 20 around the axis of the holder 10 by a motor, as shown in FIG. As a result, the processing surfaces 1 arranged to face each other rotate relative to the processing surface 2 .
  • a fluid pressure application section 40 is connected to the introduction section 30 .
  • a liquid is supplied between the processing surface 1 and the processing surface 2 by pressurizing the A liquid by the fluid pressure applying unit 40 having a compressor. More specifically, the A liquid is introduced from the introducing section 30 into the space inside the holder 10 and the holder 20 by being pressurized by the fluid pressure applying section 40 . Furthermore, the A liquid passes between the processing surface 1 and the processing surface 2 and tries to escape to the outside of the holder 10 and the holder 20 . At this time, the holder 20 receiving the pressure of the A liquid moves away from the holder 10 against the back pressure. As a result, a minute gap is formed between the processing surface 1 and the processing surface 2 . Alternatively, the A liquid may be directly supplied between the processing surface 1 and the processing surface 2 from the introduction part 30 .
  • the introduction part 50 is a passage for liquid B provided inside the processing part 21 .
  • a fluid supply section 60 having a compressor is connected to one end of the introduction section 50 .
  • the fluid supply unit 60 supplies the B liquid between the processing surface 1 and the processing surface 2 via the introduction unit 50 .
  • Liquid B is supplied from the introduction part 50 between the processing surface 1 and the processing surface 2 and joins with the A liquid.
  • the A liquid and the B liquid join between the processing surface 1 and the processing surface 2 maintaining a minute gap to form a thin film fluid.
  • Mixing and reaction of the A liquid and the B liquid are promoted in the thin film fluid.
  • the product produced by the reaction of liquid A and liquid B contains a medicinal component and precipitates in the thin film fluid as uniform fine nanoparticles.
  • the precipitated nanoparticles are discharged outside the holder 10 and the holder 20 while being suspended in the liquid.
  • the case 70 is arranged outside the outer peripheral surfaces of the holder 10 and the holder 20 .
  • the case 70 accommodates the nanoparticle dispersion discharged outside the holder 10 and the holder 20 .
  • Apparatus suitable for the above manufacturing method includes, for example, the forced thin film microreactor ULREA SS-11 (manufactured by M Technic).
  • ULREA SS-11 manufactured by M Technic
  • the number of rotations of the holder 10, the back pressure, the flow rates and temperatures of the A and B liquids, etc. can be appropriately set.
  • a vibrator or an ultrasonic device is attached to the thin film rotary disperser 100, or a mixing channel You may use the micro waterway which deform
  • the immunostimulant according to the present embodiment is produced by a known method, and contains 0.000001 to 99.9% by weight, 0.00001 to 99.8% by weight, and 0.0001 to 99.7% by weight of the active ingredient. , 0.001-99.6% by weight, 0.01-99.5% by weight, 0.1-99% by weight, 0.5-60% by weight, 1-50% by weight, or 1-20% by weight of living organisms Contains compatible particles.
  • the administration route of the immunostimulant according to the present embodiment to humans and animals other than humans is not particularly limited.
  • intradermal, subcutaneous or intramuscular injection is particularly preferable, and in this case, one aspect of the immunostimulant is an injection.
  • the immunostimulant may be, for example, a combination drug containing a pharmacologically acceptable carrier.
  • Pharmaceutically acceptable carriers are various organic or inorganic carrier substances used as pharmaceutical ingredients.
  • Pharmaceutically acceptable carriers are, for example, excipients, lubricants, binders and disintegrants in solid formulations, or solvents, solubilizers, suspending agents, tonicity agents and buffers in liquid formulations. and as an analgesic, etc., in an immunostimulant.
  • Additives such as preservatives, antioxidants, coloring agents and sweeteners may also be added as necessary.
  • the dosage of the immunostimulant according to the present embodiment is appropriately determined according to the age, body weight, symptoms, etc. of the administration subject.
  • the immunostimulant is administered in an effective amount of the compound.
  • An effective amount is that amount of the compound necessary to produce the desired result, that amount necessary to slow, inhibit, prevent, reverse or cure the condition being treated or treated.
  • the dosage of the immunostimulant is, for example, 0.01 mg/kg to 1000 mg/kg, preferably 0.1 mg/kg to 200 mg/kg, more preferably 0.2 mg/kg to 20 mg/kg, and Single or multiple doses can be administered.
  • the pharmaceutical composition may also be administered at different dosing frequencies, such as daily, every other day, once a week, every other week, once a month, and the like. Preferably, the dosing frequency is easily determined by a physician or the like. Amounts outside the above ranges can also be used, if desired.
  • the immunostimulant according to this embodiment is preferably used together with a vaccine.
  • “Combination” refers to administering an immunostimulant and a vaccine to the same patient for a given period of time.
  • the immunostimulant is preferably administered simultaneously with the vaccine, but each may be administered separately in chronological order, such as by administering the other while the effect of one remains.
  • the route of administration of the immunostimulant and vaccine may be the same or different.
  • Immunostimulatory agents may be incorporated into vaccines and administered as vaccine compositions.
  • the adjuvant and vaccine are administered over a defined period of time according to a single regimen that defines the dose and regimen of each adjuvant and vaccine.
  • An immunostimulatory agent when used in combination with a vaccine, accelerates, prolongs or enhances the antigen-specific immune response to the vaccine.
  • Vaccines are not particularly limited as long as they can be used to prevent or treat various diseases, especially infectious diseases caused by pathogens, cancer and other diseases.
  • the vaccine is against the novel coronavirus (SARS-CoV-2) that causes novel coronavirus disease (COVID-19).
  • the immunostimulant according to the present embodiment can enhance the immune response induced by the above compounds and increase the production of antigen-specific IgG antibodies.
  • use of the above compounds for the manufacture of an immunostimulant is provided.
  • methods are provided for enhancing, reinforcing, promoting, accelerating or prolonging the immune response induced by the compounds.
  • the above compounds may have an asymmetric or chiral center.
  • Asymmetric or chiral centers can be designated as (R) or (S), depending on the three-dimensional arrangement of the substituents on the chiral atom.
  • All stereochemically isomeric, d-isomers, l-isomers, including diastereomeric, enantiomeric and epimeric forms of a compound, as well as enantiomerically enriched mixtures and diastereomerically enriched stereochemical isomers are included in the above compounds, including mixtures of the above compounds.
  • individual enantiomers can be synthetically prepared from commercially available enantiopure starting materials. Enantiomers can also be prepared by preparing an enantiomeric mixture and resolving the mixture into the individual enantiomers. Resolution includes conversion of a mixture of enantiomers to a mixture of diastereomers and separation of diastereomers by, for example, recrystallization or chromatography, and other suitable methods known in the art.
  • the above compounds may also exist as conformational or geometric stereoisomers, including cis, trans, syn, anti,
  • E Electronicd Device
  • Z Visual Component
  • All such stereoisomers and any mixtures thereof are included in the above compounds.
  • Any tautomers of the above compounds or mixtures thereof are also included in the above compounds.
  • the above compounds may also exist as isotopologues and isotopomers, wherein one or more atoms in the compound are replaced with different isotopes.
  • Suitable isotopes include, for example, 1H, 2H ( D), 3H (T), 12C , 13C , 14C , 16O and 18O .
  • Isotopologues and isotopomers are also included in the above compounds.
  • a pharmacologically acceptable salt of the above compound may be contained in the biocompatible particles.
  • Salts include acid addition, base addition, and quaternary salts of basic nitrogen-containing groups.
  • Acid addition salts can be prepared by reacting a compound in its free base form with an inorganic or organic acid. Examples of inorganic acids include, but are not limited to, hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and phosphoric acid.
  • organic acids include acetic acid, trifluoroacetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, fumaric acid, pyruvic acid, aspartic acid, glutamic acid, stearic acid.
  • Acids include, but are not limited to, salicylic acid, methanesulfonic acid, benzenesulfonic acid, isethionic acid, sulfanilic acid, adipic acid, butyric acid, and pivalic acid.
  • Base addition salts can be prepared by reacting the compound in the free acid form with an inorganic or organic base.
  • inorganic base addition salts include alkali metal salts, alkaline earth metal salts, and other physiologically acceptable metal salts such as aluminum, calcium, lithium, magnesium, potassium, sodium, or zinc salts.
  • organic base addition salts include amine salts such as salts of trimethylamine, diethylamine, ethanolamine, diethanolamine and ethylenediamine.
  • a quaternary salt of a basic nitrogen-containing group in a compound is, for example, converting the compound to alkyl halides such as methyl, ethyl, propyl, butyl chloride, bromide and iodide, dialkyl sulfates such as dimethyl sulfate, diethyl, dibutyl and diamyl sulfate. and the like.
  • the compounds also include N-oxides of the above compounds.
  • the compounds described above form solvates with various solvents and can exist as solvates with various solvents. All solvated and unsolvated forms of the compounds are included in the above compounds.
  • reaction b the product of reaction b) was reacted with triethylsilane (Et 3 SiH) and dichloromethane (CH 2 Cl 2 ) in the presence of trifluoroacetic acid (TFA) at room temperature for 30 minutes (yield 80%).
  • Et 3 SiH triethylsilane
  • CH 2 Cl 2 dichloromethane
  • TFA trifluoroacetic acid
  • C18Brar nanoparticulation Using ULREA SS-11 (manufactured by M Technic), C18Brar nanoparticles (C18Brar-NP) were prepared as follows. First, the A liquid tank was filled with the A liquid, and the A liquid was fed at 40 mL/min at 10°C, and then the B liquid was fed at 10 mL/min at 50°C.
  • Liquid A is an aqueous solution containing PVA (Gosenol EG-05P) at a concentration of 0.1 mg/ml.
  • nanoparticles not containing C18Brar were produced as follows. First, the A liquid tank was filled with the A liquid, and the A liquid was fed at 40 mL/min at 10°C, and then the B liquid was fed at 10 mL/min at 50°C.
  • Liquid A is an aqueous solution containing PVA (Gosenol EG-05P) at a concentration of 0.1 mg/ml.
  • FIG. 2 shows the particle size distribution of C18Brar-NP.
  • the D50 of C18Brar-NP was 125 nm with a span value of 2.0.
  • Empty-NP had a D 50 of 147 nm and a span value of 0.9.
  • Test Example 1 Evaluation of C18Brar Content Based on Activity by Mincle Reporter Cells
  • Mincle and reporter cells expressing FcRg as an adapter molecule were used.
  • Mincle reporter cells were produced by transfecting the Mincle and FcR ⁇ CDS sequences with a retroviral vector.
  • C18Brar stock solution in chloroform:methanol (2:1) was serially diluted with 2-propanol and added to 96-well plates. The solvent was dried and the plates were coated with C18Brar.
  • C18Brar-NP or Empty-NP was suspended in medium (RPMI containing 10% FCS), serially diluted to each concentration, and added to the plate at 100 ⁇ l/well.
  • medium was added to C18Brar-coated wells at 100 ⁇ l/well to match volume and final concentration.
  • a Mincle reporter cell suspension (6 ⁇ 10 5 cells/ml) was added to each plate at 100 ⁇ l/well (final concentration 3 ⁇ 10 4 cells/well) for stimulation. Cells were cultured in a CO2 incubator at 37°C for 20 hours.
  • Mincle reporter cells express CD3 in T cell hybridomas.
  • GFP was expressed by stimulation with a monoclonal antibody (2C11, manufactured by MBL) against CD3e contained in the T cell receptor complex.
  • trehalose-6,6'-dimycolate TDM
  • 2-propanol was treated with 2-propanol at 1.5 ⁇ g/ It was diluted to ml, added to 20 ⁇ l/well, and stimulated in the same manner as the C18Brar drug substance group.
  • the GFP expression of the Mincle reporter cells was evaluated with a flow cytometer.
  • a calibration curve was prepared using the GFP positive rate in the C18Brar raw material as a standard, and the C18Brar content was quantified from the GFP positive rate by stimulation with C18Brar-NP.
  • FIG. 3 shows the GFP positive rate.
  • the amount of C18Brar-NP corresponding to 0.131 ⁇ g/well of C18Brar drug substance was 20 ⁇ g/well.
  • Test Example 2 Immunity test A SARS-CoV-2 spike protein (full length, trimer, hereinafter also referred to as "spike protein") was prepared as follows. The extracellular domain of the S protein with a foldon sequence followed by a 9 ⁇ His tag and a Strep tag at the C-terminus was cloned into the expression vector pCMV. The polybasic cleavage site (RRAR) of the S protein was replaced with alanine and K986P and V987P substitutions were introduced to stabilize the structure.
  • RRAR polybasic cleavage site
  • the Empty-NP, C18Brar-NP and the spike protein prepared in Example 1 were diluted with PBS or suspended in PBS to prepare a predetermined concentration.
  • C18Brar-oil-in-water (C18Brar-o/w) was prepared by adding 0.5% Tween-80.5% mineral oil to a PBS solution of C18Brar (94.5% PBS).
  • Mice were administered 10 ⁇ g of spike protein alone or 10 ⁇ g of spike protein and each sample subcutaneously (base of tail, 100 ⁇ l/side).
  • the doses per mouse of Empty-NP, C18Brar-NP and C18Brar-o/w were 7.65 mg, 7.65 mg and 50 ⁇ g, respectively.
  • Blood was collected from the cheeks of the mice every week from week 0 (immediately before immunization) after immunization, and serum was collected. Also, the body weight of the mice was measured every week.
  • a boost was given by administering PBS containing 10 ⁇ g of spike protein again to the same site as the first. After the boost, blood was drawn every other week and serum was collected. Body weight was also measured in the same manner.
  • spike protein-specific antibody in serum was measured by ELISA.
  • a commercially available monoclonal antibody 1A9 manufactured by GENETEX
  • GENETEX monoclonal antibody 1A9
  • Serum was diluted with 10% BSA/PBS from 100-fold to 10000-fold and used for measurement.
  • a 96-well plate manufactured by Themo Fisher Scientific whose surface was coated with nickel was coated with a His-tagged spike protein (manufactured by R&D).
  • the diluted serum, HRP-labeled anti-mouse IgG (SouthernBiotech) and TMB coloring kit were allowed to react in order, and OD450 was measured.
  • the amount of antibody in the serum was quantified using the calibration curve obtained by 1A9.
  • Figures 4 (A), (B), (C) and (D) show the body weight of mice administered spike protein alone, Empty-NP, C18Brar-NP and C18Brar-o/w, respectively.
  • FIG. 5 shows the average body weight of mice administered each sample. No body weight loss was observed in any of the samples.
  • FIG. 7(A) shows the average amount of spike protein-specific IgG. After boosting, the amount of IgG in the C18Brar-NP administration group increased significantly.
  • FIG. 7(B) which shows the average IgG amount from 0 to 7 weeks shown in FIG. 7(A), the amount of IgG in the C18Brar-NP administration group increased even before the boost.
  • the present invention is suitable for pharmaceuticals, especially immunostimulants that enhance the effects of vaccines.
  • Reference Signs List 1 2 processing surface 10, 20 holder 11, 21 processing unit 22 contact surface pressure applying unit 30, 50 introduction unit 40 fluid pressure applying unit 60 fluid supply unit 70 case 100 thin film rotary disperser

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

According to the present invention, an adjuvant includes biocompatible particles that contain the compound of formula 1.

Description

免疫賦活剤Immunostimulant
 本発明は、免疫賦活剤に関する。 The present invention relates to an immunostimulant.
 ワクチンに対する免疫応答を増強するために免疫賦活剤(アジュバント)が使用されている。ワクチンによって得られる体液性免疫は、一部の病原体に対する防御には不十分である。このため、獲得細胞性(Th1)免疫を増強する免疫賦活剤が必要となる。Th1細胞は、マクロファージを活性化するサイトカインを分泌し、B細胞によるオプソニン化抗体の産生を誘導する。細胞性免疫では、病原体感染細胞の死を誘導するT細胞のサブグループである細胞傷害性Tリンパ球(CTL)が活性化される。細胞性免疫では、ナチュラルキラー(NK)細胞も活性化され、腫瘍及びウイルス感染細胞におけるアポトーシスにおいて主要な役割を果たす。 Immunostimulants (adjuvants) are used to enhance the immune response to vaccines. Humoral immunity conferred by vaccines is insufficient to protect against some pathogens. Therefore, there is a need for immunostimulants that enhance acquired cellular (Th1) immunity. Th1 cells secrete cytokines that activate macrophages and induce the production of opsonizing antibodies by B cells. Cell-mediated immunity activates cytotoxic T lymphocytes (CTLs), a subgroup of T cells that induce the death of pathogen-infected cells. In cell-mediated immunity, natural killer (NK) cells are also activated and play a major role in apoptosis in tumors and virus-infected cells.
 有効なTh1刺激性の免疫賦活剤は、プロフェッショナル抗原提示細胞(APC)上のパターン認識受容体(PRR)を活性化することによって自然免疫系に働きかけることが多い。近年、マクロファージ及び樹状細胞(DC)の表面上のPRRとして、マクロファージ誘導性C型レクチン(Mincle)が同定された。Mincleはワクチン開発の有望な標的とされている。 Effective Th1-stimulating immunostimulants often work with the innate immune system by activating pattern recognition receptors (PRRs) on professional antigen-presenting cells (APCs). Recently, a macrophage-inducible C-type lectin (Mincle) was identified as a PRR on the surface of macrophages and dendritic cells (DC). Mincle has been identified as a promising target for vaccine development.
 病原体関連分子パターン(PAMP)は、自然免疫系に寄与する細胞によって認識される病原体群に関連している分子である。多数の分子は、グリカン及び複合糖質を含めてPAMPとして働くことができる。PAMPはPRRに結合し、その結果として生じる免疫応答の特異性が、活性化されるPRRのタイプ及びそれぞれのPAMPの構造によって方向付けられる。 Pathogen-associated molecular patterns (PAMPs) are molecules associated with pathogen groups recognized by cells that contribute to the innate immune system. Many molecules can act as PAMPs, including glycans and glycoconjugates. PAMPs bind to PRRs and the specificity of the resulting immune response is directed by the type of PRR activated and the structure of each PAMP.
 Mincleは、結核菌(Mycobacterium tuberculosis)細胞壁の糖脂質トレハロースジミコレート(TDM)等のいくつかのPAMPによって活性化される。Mincleの活性化により、FcRγ-Syk-Card9-Bcl10-Malt1シグナル伝達軸及び免疫応答が誘導される。しかし、TDMは毒性が高く、化合物の複合混合物であるため合成が困難である。 Mincle is activated by several PAMPs such as the Mycobacterium tuberculosis cell wall glycolipid trehalose dimycolate (TDM). Activation of Mincle induces the FcRγ-Syk-Card9-Bcl10-Malt1 signaling axis and immune response. However, TDM is highly toxic and difficult to synthesize as it is a complex mixture of compounds.
 TDMの誘導体であるトレハロースジベヘネート(TDB)もMincleに結合し、Mincleを活性化する。特許文献1には、水性製剤中での安定性を向上させるために、リポソーム内に糖脂質としてのTDBが組み込まれたリポソーム製剤を含むワクチンアジュバントが開示されている。 A derivative of TDM, trehalose dibehenate (TDB), also binds to Mincle and activates Mincle. Patent Document 1 discloses a vaccine adjuvant comprising a liposomal formulation incorporating TDB as a glycolipid within the liposome to improve stability in aqueous formulations.
 また、特許文献2には、長鎖親油性尾部を含むブラルテミシン類似体が強力なMincleアゴニスト活性を有し、Th1刺激性の免疫賦活剤となることが示されている。 In addition, Patent Document 2 shows that a bralutemicin analogue containing a long-chain lipophilic tail has potent Mincle agonist activity and is a Th1-stimulating immunostimulator.
特表2008-505131号公報Japanese Patent Publication No. 2008-505131 特表2021-501791号公報Japanese Patent Publication No. 2021-501791
 獲得細胞性免疫の増強の程度は、PAMPのPRRへの結合の効率に依存する。特許文献2に開示されたブラルテミシン類似体については、生体内でのPRRへの輸送について検討されておらず、獲得細胞性免疫の増強をさらに向上させるために改良の余地がある。 The degree of enhancement of acquired cellular immunity depends on the efficiency of PAMP binding to PRR. The brartemicin analogue disclosed in Patent Document 2 has not been examined for transport to PRR in vivo, and there is room for improvement in order to further enhance the enhancement of acquired cell-mediated immunity.
 本発明は、上記実情に鑑みてなされたものであり、高い免疫応答を誘導することができる免疫賦活剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide an immunostimulant capable of inducing a high immune response.
 本発明に係る免疫賦活剤は、
 式1の化合物
Figure JPOXMLDOC01-appb-C000002
[式1中、X及びXはそれぞれ独立してO又はNHから選択され、
 Y及びYはそれぞれ独立して-I、-Br、-Cl、-F、-OH、-R及びORを含む群から選択され、Rは炭素数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルから選択され、炭素数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよく、
 n及びmはそれぞれ独立して0~4であり、Z及びZはそれぞれ独立してR、-OR -NHR、-NHC(O)-R及びS-Rから選択され、Rは炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルから選択され、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよく、
 r及びsはそれぞれ独立して1~3であり、
 alk及びalkはそれぞれ独立して、炭素数1~4のアルキレン、炭素数2~4のアルケニレン及び炭素数2~4のアルキニレンから選択され、又はalk及びalkはそれぞれ存在せずにアリール環がC=Oの炭素に直接結合してもよく、
 n+r=1~5であり、m+s=1~5である。]
 を含有する生体適合性粒子を含む。
The immunostimulant according to the present invention is
Compounds of Formula 1
Figure JPOXMLDOC01-appb-C000002
[wherein X a and X b are each independently selected from O or NH;
Y a and Y b are each independently selected from the group comprising —I, —Br, —Cl, —F, —OH, —R 1 and OR 1 , wherein R 1 is alkyl having 1 to 6 carbon atoms, carbon selected from alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms, wherein alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms are each —OH or 1 carbon atom; optionally substituted with ~6 alkoxy,
n and m are each independently 0 to 4, and Z a and Z b are each independently selected from R 2 , —OR 2 , —NHR 2 , —NHC(O)—R 2 and SR 2 and R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms, and alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and each alkynyl of 5 to 26 may be substituted with -OH or alkoxy having 1 to 6 carbon atoms,
r and s are each independently 1 to 3;
alk a and alk b are each independently selected from alkylene of 1 to 4 carbon atoms, alkenylene of 2 to 4 carbon atoms and alkynylene of 2 to 4 carbon atoms, or alk a and alk b are each absent; the aryl ring may be directly attached to the carbon of C=O,
n+r=1-5 and m+s=1-5. ]
including biocompatible particles containing
 X及びXがOである、
 こととしてもよい。
X a and X b are O;
You can do it.
 alk及びalkがそれぞれ存在せずにアリール環がC=Oの炭素に直接結合している、
 こととしてもよい。
the aryl ring is attached directly to the carbon of C═O in the absence of alk a and alk b respectively;
You can do it.
 n及びmが1であり、
 Y及びYが、-OHである、
 こととしてもよい。
n and m are 1;
Y a and Y b are —OH;
You can do it.
 Z及びZが-ORであって、
 Rは、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルから選択され、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されてもよい。
Z a and Z b are —OR 2 ,
R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms, and alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and 5 carbon atoms. Each alkynyl of -26 may be substituted with -OH or alkoxy of 1-6 carbon atoms.
 Z及びZが-ORであって、
 Rが、炭素数18のアルキルであって、
 r及びsが1である、
 こととしてもよい。
Z a and Z b are —OR 2 ,
R 2 is alkyl having 18 carbon atoms,
r and s are 1;
You can do it.
 前記生体適合性粒子は、乳酸・グリコール酸共重合体粒子である、
 こととしてもよい。
The biocompatible particles are lactic acid/glycolic acid copolymer particles,
You can do it.
 前記生体適合性粒子の50%径は、
 200nm以下である、
 こととしてもよい。
The 50% diameter of the biocompatible particles is
is 200 nm or less,
You can do it.
 上記本発明に係る免疫賦活剤は、
 ワクチンと併用される、
 こととしてもよい。
The immunostimulant according to the present invention is
used in combination with vaccines
You can do it.
 前記ワクチンは、
 SARS-CoV-2に対するワクチンである、
 こととしてもよい。
The vaccine is
is a vaccine against SARS-CoV-2,
You can do it.
 本発明に係る免疫賦活剤によれば、高い免疫応答を誘導することができる。 The immunostimulant according to the present invention can induce a high immune response.
本発明の実施の形態に係る薄膜回転式分散機の構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the thin-film rotary dispersion machine which concerns on embodiment of this invention. 実施例1に係る化合物含有ナノ粒子の粒度分布を示す図である。1 is a diagram showing the particle size distribution of compound-containing nanoparticles according to Example 1. FIG. 試験例1に係るGFP陽性率を示す図である。1 is a diagram showing GFP positive rates according to Test Example 1. FIG. 試験例2に係るマウスの体重の経時変化を示す図である。(A)、(B)、(C)及び(D)はそれぞれスパイクタンパク質のみ、化合物非含有ナノ粒子、化合物含有ナノ粒子及び化合物を投与したマウスの体重を示す。FIG. 10 is a graph showing changes over time in body weight of mice according to Test Example 2. FIG. (A), (B), (C) and (D) show the body weight of mice dosed with spike protein alone, compound-free nanoparticles, compound-containing nanoparticles and compound, respectively. 図4に示すマウスの平均体重の経時変化を示す図である。FIG. 5 is a graph showing changes over time in the average body weight of the mice shown in FIG. 4; 試験例2に係るマウスにおける抗体産生量の経時変化を示す図である。(A)、(B)、(C)及び(D)はそれぞれスパイクタンパク質のみ、化合物非含有ナノ粒子、化合物含有ナノ粒子及び化合物を投与したマウスの体重を示す。FIG. 10 is a graph showing temporal changes in the amount of antibody produced in mice according to Test Example 2. FIG. (A), (B), (C) and (D) show the body weight of mice dosed with spike protein alone, compound-free nanoparticles, compound-containing nanoparticles and compound, respectively. 図6に示すマウスにおける抗体産生量の平均値の経時変化を示す図である。(A)は試験期間中のスパイクタンパク質特異的なIgGの量の平均値を示す。(B)は(A)に示された0~7週のIgGの量の平均値を示す。FIG. 7 is a graph showing changes over time in average antibody production levels in the mice shown in FIG. 6. FIG. (A) shows the average amount of spike protein-specific IgG during the test period. (B) shows the average amount of IgG from 0 to 7 weeks shown in (A).
 本発明に係る実施の形態について図面を参照しながら説明する。なお、本発明は下記の実施の形態によって限定されるものではない。 An embodiment according to the present invention will be described with reference to the drawings. In addition, the present invention is not limited to the following embodiments.
 本実施の形態に係る免疫賦活剤は、下記式1の化合物を含有する生体適合性粒子を含む。 The immunostimulant according to the present embodiment contains biocompatible particles containing the compound of Formula 1 below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式1中、X及びXはそれぞれ独立してO又はNHから選択される。XがOでXがNHであってもよいし、XがNHでXがOであってもよいし、X及びXがNHであってもよい。好ましくは、X及びXはOである。 In Formula 1, X a and X b are each independently selected from O or NH. X a may be O and X b may be NH, X a may be NH and X b may be O, or X a and X b may be NH. Preferably X a and X b are O.
 Y及びYはそれぞれ独立して-I、-Br、-Cl、-F、-OH、-R及びORを含む群から選択される。ここで、Rは炭素(原子)数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルから選択される。炭素数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよい。好ましくは、Y及びYは、それぞれ-OH又は-CHであって、好ましくはY及びYは-OHである。n及びmはそれぞれ独立して0~4である。好ましくは、n及びmは1である。 Y a and Y b are each independently selected from the group comprising —I, —Br, —Cl, —F, —OH, —R 1 and OR 1 . Here, R 1 is selected from alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms. Each of alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms may be substituted with —OH or alkoxy having 1 to 6 carbon atoms. Preferably Y a and Y b are each —OH or —CH 3 , preferably Y a and Y b are —OH. n and m are each independently 0-4. Preferably n and m are one.
 Z及びZはそれぞれ独立してR、-OR、-NHR、-NHC(O)-R及びS-Rから選択される。ここで、Rは炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルから選択される。炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよい。好ましくは、Z及びZが-ORかつRが炭素数18のアルキルである。r及びsはそれぞれ独立して1~3である。好適には、r及びsが1である。 Z a and Z b are each independently selected from R 2 , —OR 2 , —NHR 2 , —NHC(O)—R 2 and SR 2 . Here, R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms. Each of alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms may be substituted with —OH or alkoxy having 1 to 6 carbon atoms. Preferably, Z a and Z b are —OR 2 and R 2 is 18 carbon alkyl. r and s are each independently 1 to 3; Preferably r and s are one.
 alk及びalkはそれぞれ独立して、炭素数1~4のアルキレン、炭素数2~4のアルケニレン及び炭素数2~4のアルキニレンから選択されてもよいし、alk及びalkはそれぞれ存在せずにアリール環がC=Oの炭素に直接結合してもよい。 alk a and alk b may each be independently selected from alkylene having 1 to 4 carbon atoms, alkenylene having 2 to 4 carbon atoms and alkynylene having 2 to 4 carbon atoms ; The aryl ring may be attached directly to the carbon of C=O without
 n+r=1~5であり、m+s=1~5である。例えば、n及びmがそれぞれ1の場合、r及びSはそれぞれ0~4から選択される。好ましくは、n及びmがそれぞれ1であって、r及びSがそれぞれ1である。  n+r=1 to 5 and m+s=1 to 5. For example, if n and m are each 1, r and S are each selected from 0-4. Preferably, n and m are each one and r and S are each one.
 “アルキル”は、任意の炭素数、例えば炭素数30までの任意の飽和炭化水素基を意味する。アルキルには、環式(縮合二環式を含む)アルキル基、直鎖及び分枝鎖アルキル基、並びに環式アルキル基で置換されている直鎖又は分枝鎖アルキル基を包含する。アルキル基の例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、シクロプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基、2-エチルプロピル基、n-ヘキシル基、シクロヘキシル基、シクロオクチル基、及び1-メチル-2-エチルプロピル基が挙げられる。 "Alkyl" means any saturated hydrocarbon group having any number of carbon atoms, for example up to 30 carbon atoms. Alkyl includes cyclic (including fused bicyclic) alkyl groups, straight and branched chain alkyl groups, and straight or branched chain alkyl groups substituted with cyclic alkyl groups. Examples of alkyl groups are methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl. group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, cyclohexyl group, cyclooctyl group, and 1-methyl-2-ethylpropyl groups.
 “アルケニル”は、少なくとも1つの二重結合を有し、炭素数30まで任意の炭化水素基を意味する。アルケニルは、直鎖アルケニル基と分枝鎖アルケニル基の両方を包含する。アルケニルの例としては、エテニル基、n-プロペニル基、iso-プロペニル基、n-ブテニル基、iso-ブテニル基、sec-ブテニル基、t-ブテニル基、n-ペンテニル基、1,1-ジメチルプロペニル基、1,2-ジメチルプロペニル基、2,2-ジメチルプロペニル基、1-エチルプロペニル基、2-エチルプロペニル基、n-ヘキセニル基及び1-メチル-2-エチルプロペニル基が挙げられる。 "Alkenyl" means any hydrocarbon group having at least one double bond and up to 30 carbon atoms. Alkenyl includes both straight-chain and branched-chain alkenyl groups. Examples of alkenyl include ethenyl, n-propenyl, iso-propenyl, n-butenyl, iso-butenyl, sec-butenyl, t-butenyl, n-pentenyl, 1,1-dimethylpropenyl. 1,2-dimethylpropenyl, 2,2-dimethylpropenyl, 1-ethylpropenyl, 2-ethylpropenyl, n-hexenyl and 1-methyl-2-ethylpropenyl groups.
 “アルキニル”は、少なくとも1つの三重結合を有し、炭素数30までの任意の炭化水素基を意味する。アルキニルは直鎖アルキニル基と分枝鎖アルキニル基の両方を包含する。アルキニルの例としては、エチニル基、n-プロピニル基、iso-プロピニル基、n-ブチニル基、iso-ブチニル基、sec-ブチニル基、t-ブチニル基及びn-ペンチニル基等が挙げられる。 "Alkynyl" means any hydrocarbon group having at least one triple bond and up to 30 carbon atoms. Alkynyl includes both straight-chain and branched-chain alkynyl groups. Examples of alkynyl include ethynyl, n-propynyl, iso-propynyl, n-butynyl, iso-butynyl, sec-butynyl, t-butynyl, n-pentynyl and the like.
 “アルコキシ”は、O-アルキル基を意味する。“アシル”は、C(=O)R’基を意味し、R’は上述のアルキルである。 "Alkoxy" means an O-alkyl group. "Acyl" means a C(=O)R' group, where R' is alkyl as defined above.
 “アルキレン”は、アルキル基に対応する2価基を意味する。アルキレンの例としては、メチレン基、シクロへキシレン基及びエチレン基が挙げられる。アルキレンは、アルキレン鎖中に1つ又は複数の環式アルキレン基を含むことができる。アルキレンは、メチレン基に結合しているシクロへキシレン基を包含してもよい。アルキレンが、ヒドロキシル、ハロゲン、アルキル及びアリールからなる群から選択される1つ又は複数の置換基で置換されていてもよい。アルキレンは、アルキレン鎖内に1つ又は複数のアリーレン部分を含んでもよく、例えば、アルキレン鎖内にフェニレン基が含まれていてもよい。 "Alkylene" means a divalent group corresponding to an alkyl group. Examples of alkylene include methylene, cyclohexylene and ethylene groups. An alkylene can contain one or more cyclic alkylene groups in the alkylene chain. Alkylene may include a cyclohexylene group attached to a methylene group. Alkylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkylene may include one or more arylene moieties within the alkylene chain, eg, a phenylene group within the alkylene chain.
 “アルケニレン”は、アルケン基に対応する2価基を意味する。アルケニレンは、ヒドロキシル、ハロゲン、アルキル及びアリールからなる群から選択される1つ又は複数の置換基で置換されていてもよい。アルケニレンは、アルケニレン鎖内に1つ又は複数のアリーレン部分を含んでもよく、例えば、フェニレン基がアルケニレン鎖内に含まれていてもよい。 "Alkenylene" means a divalent group corresponding to an alkene group. Alkenylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkenylene may contain one or more arylene moieties within the alkenylene chain, eg, a phenylene group may be contained within the alkenylene chain.
 “アルキニレン”は、アルキニル基に対応する2価基を意味する。アルキニレンは、ヒドロキシル、ハロゲン、アルキル及びアリールからなる群から選択される1つ又は複数の置換基で置換されていてもよい。アルキニレンは、アルキニレン鎖内に1つ又は複数のアリーレン部分を場合によって含んでもよく、例えば、フェニレン基がアルキニレン鎖内に含まれていてもよい。 "Alkynylene" means a divalent group corresponding to an alkynyl group. Alkynylene may be optionally substituted with one or more substituents selected from the group consisting of hydroxyl, halogen, alkyl and aryl. An alkynylene may optionally include one or more arylene moieties within the alkynylene chain, for example, a phenylene group may be included within the alkynylene chain.
 “アリール”は、炭素数4~18の芳香族基を意味し、ヘテロ芳香族基を包含する。アリールとしては、単環式基、二環式基及び三環式基等の縮合基が挙げられる。アリールの例として、フェニル基、インデニル基、1-ナフチル基、2-ナフチル基、アズレニル基、ヘプタレニル基、ビフェニル基、インルダセニル基、アセナフチル基、フルオレニル基、フェナレニル基、フェナントレニル基、アントラセニル基、シクロペンタシクロオクテニル基、ベンゾシクロオクテニル基、ピリジル基、ピロリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアゾリル基(1-H-1,2,3-トリアゾール-1-イル及び1-H-1,2,3-トリアゾール-4-イル基を含む)、テトラゾリル基、ベンゾトリアゾリル基、ピラゾリル基、イミダゾリル基、ベンゾイミダゾリル基、インドリル基、イソインドリル基、インドリジニル基、プリニル基、インダゾリル基、フリル基、ピラニル基、ベンゾフリル基、イソベンゾフリル基、チエニル基、チアゾリル基、イソチアゾリル基、ベンゾチアゾリル基、オキサゾリル基及びイソオキサゾリル基が挙げられる。 "Aryl" means an aromatic group having 4 to 18 carbon atoms, including heteroaromatic groups. Aryl includes fused groups such as monocyclic, bicyclic and tricyclic groups. Examples of aryl include phenyl, indenyl, 1-naphthyl, 2-naphthyl, azulenyl, heptalenyl, biphenyl, inrdacenyl, acenaphthyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, cyclopenta Cyclooctenyl group, benzocyclooctenyl group, pyridyl group, pyrrolyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazolyl group (1-H-1,2,3-triazol-1-yl and 1-H-1 , 2,3-triazol-4-yl group), tetrazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, indolyl group, isoindolyl group, indolizinyl group, purinyl group, indazolyl group, furyl group , pyranyl, benzofuryl, isobenzofuryl, thienyl, thiazolyl, isothiazolyl, benzothiazolyl, oxazolyl and isoxazolyl.
 “置換される”とは、示された基の1個又は複数の水素原子が独立して選択される1個又は複数の好適な置換基で置き換えられていることを意味する。ただし、置換基が結合している各原子の通常の原子価を超えていないこと、好ましくは、置換によって、安定な化合物になることを条件とする。好適な置換基には、本明細書に示されている任意選択の置換基が含まれる。 "Substituted" means that one or more hydrogen atoms of an indicated group have been replaced with one or more independently selected suitable substituents. provided that the normal valence of each atom to which the substituent is attached is not exceeded, and preferably the substitution results in a stable compound. Suitable substituents include optional substituents set forth herein.
 上記式1の化合物として化合物2a~2pを下記に例示する。 Compounds 2a to 2p are exemplified below as compounds of formula 1 above.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本実施の形態に係る化合物は、6,6’-ジ-O-(2-ヒドロキシ-4-ブトキシベンゾイル)-α,α’-D-トレハロース、6,6’-ジ-O-(2-ヒドロキシ-4-メトキシベンゾイル)-α,α’-D-トレハロース及び6,6’-ジ-O-(2,4-ジヒドロキシベンゾイル)-α,α’-D-トレハロースであってもよい。 The compounds according to the present embodiment are 6,6'-di-O-(2-hydroxy-4-butoxybenzoyl)-α,α'-D-trehalose, 6,6'-di-O-(2- hydroxy-4-methoxybenzoyl)-α,α'-D-trehalose and 6,6'-di-O-(2,4-dihydroxybenzoyl)-α,α'-D-trehalose.
 生体適合性粒子は、生体適合性ポリマーを主成分とする粒子である。生体適合性ポリマーは、その様々な平均鎖長によって、内部粘性及びポリマー特性の差異をもたらす。本実施の形態で用いられるポリマーは、生体への刺激及び毒性が低い生体適合性を備え、投与後分解して代謝される生体内分解性のものが好ましい。生体内分解性のポリマーとしては、例えば、ポリヒドロキシブチレート及びポリヒドロキシバレレート等の微生物によって産生される高分子、並びにコラーゲン、酢酸セルロース、バクテリアセルロース、ハイアミロースコーンスターチ、澱粉及びキトサン等の天然高分子等が挙げられる。生体適合性ポリマーの分子量は、例えば5000~200000又は15000~25000である。  Biocompatible particles are particles whose main component is a biocompatible polymer. Biocompatible polymers have varying average chain lengths that lead to differences in internal viscosity and polymer properties. The polymer used in the present embodiment is preferably a biodegradable polymer that is biocompatible with low irritation and toxicity to living bodies and is degraded and metabolized after administration. Biodegradable polymers include, for example, macromolecules produced by microorganisms such as polyhydroxybutyrate and polyhydroxyvalerate, and natural high-molecular weight compounds such as collagen, cellulose acetate, bacterial cellulose, high amylose corn starch, starch and chitosan. molecules and the like. The molecular weight of the biocompatible polymer is for example 5000-200000 or 15000-25000.
 生体適合性ポリマーは、好ましくは生体適合性ポリエステルである。生体適合性ポリエステルは、例えばD,L-ラクチド、D-ラクチド、L-ラクチド、D,L-乳酸、D-乳酸、L-乳酸、グリコリド、グリコール酸、ε-カプロラクトン、ε-ヒドロキシヘキサン酸、γ-ブチロラクトン、γ-ヒドロキシ酪酸、δ-バレロラクトン、δ-ヒドロキシ吉草酸、ヒドロキシ酪酸及びリンゴ酸等から選択される1種以上のモノマーを重合することにより合成されるポリエステルである。好ましくは、生体適合性ポリマーは、ポリ乳酸、ポリグリコール酸、乳酸・アスパラギン酸共重合体、乳酸・グリコール酸共重合体(PLGA)又はポリエチレングリコール/キトサン修飾-PLGA(PEG/CS-PLGA)である。 The biocompatible polymer is preferably biocompatible polyester. Biocompatible polyesters include, for example, D,L-lactide, D-lactide, L-lactide, D,L-lactic acid, D-lactic acid, L-lactic acid, glycolide, glycolic acid, ε-caprolactone, ε-hydroxyhexanoic acid, It is a polyester synthesized by polymerizing one or more monomers selected from γ-butyrolactone, γ-hydroxybutyric acid, δ-valerolactone, δ-hydroxyvaleric acid, hydroxybutyric acid, malic acid, and the like. Preferably, the biocompatible polymer is polylactic acid, polyglycolic acid, lactic acid-aspartic acid copolymer, lactic acid-glycolic acid copolymer (PLGA) or polyethylene glycol/chitosan modified-PLGA (PEG/CS-PLGA). be.
 PLGAは、例えば1:99~99:1、好ましくは3:1の割合の乳酸(又はラクチド)とグリコール酸(又はグリコライド)とからなるコポリマーである。PLGAは、任意のモノマーから一般的な方法で合成してもよいし、市販のものを使用してもよい。市販のPLGAとしては、例えばPLGA7520(乳酸:グリコール酸=75:25、平均重量分子量20,000、和光純薬工業社製)が挙げられる。乳酸及びグリコール酸の含有量が25重量%~65重量%であるPLGAは非晶質であり、アセトン等の有機溶媒に可溶である点で好ましい。 PLGA is a copolymer consisting of lactic acid (or lactide) and glycolic acid (or glycolide) in a ratio of, for example, 1:99 to 99:1, preferably 3:1. PLGA may be synthesized from arbitrary monomers by a general method, or commercially available products may be used. Examples of commercially available PLGA include PLGA7520 (lactic acid:glycolic acid=75:25, average weight molecular weight: 20,000, manufactured by Wako Pure Chemical Industries, Ltd.). PLGA with a lactic acid and glycolic acid content of 25% to 65% by weight is preferred because it is amorphous and soluble in an organic solvent such as acetone.
 実施の形態に係る生体適合性粒子は、好ましくはナノサイズであって、その粒子径は、例えば1~800nmである。生体適合性粒子の粒子径は、500nm以下、400nm以下、300nm以下又は200nm以下である。例えば、生体適合性粒子の粒子径は、10~500nm、25~300nm、30~250nm、より好ましくは30~300nm又は40~200nmである。 The biocompatible particles according to the embodiment are preferably nano-sized and have a particle diameter of, for example, 1 to 800 nm. The particle size of the biocompatible particles is 500 nm or less, 400 nm or less, 300 nm or less, or 200 nm or less. For example, the particle size of the biocompatible particles is 10-500 nm, 25-300 nm, 30-250 nm, more preferably 30-300 nm or 40-200 nm.
 生体適合性粒子の粒子径は、ふるい分け法、沈降法、顕微鏡法、光散乱法、レーザー回折・散乱法、電気的抵抗試験、透過型電子顕微鏡による観察、及び走査型電子顕微鏡による観察等で測定できる。粒子径は公知の粒度分布計で測定してもよい。粒子径は、測定方法に応じて、ストーク相当径、円相当径、球相当径で表すことができる。また、生体適合性粒子の粒子径は、複数の粒子を測定対象として、平均で表した平均粒子径、体積平均粒子径及び面積平均粒子径等であってもよい。 The particle size of biocompatible particles is measured by sieving method, sedimentation method, microscopic method, light scattering method, laser diffraction/scattering method, electrical resistance test, observation by transmission electron microscope, observation by scanning electron microscope, etc. can. The particle size may be measured with a known particle size distribution meter. The particle diameter can be represented by an equivalent stalk diameter, an equivalent circle diameter, or an equivalent sphere diameter depending on the measurement method. In addition, the particle size of the biocompatible particles may be an average particle size, a volume average particle size, an area average particle size, or the like, with a plurality of particles being measured.
 例えば、上述の生体適合性粒子の粒子径は、レーザー回折・散乱法等の測定に基づく体積分布等から算出される平均粒子径であってもよい。具体的には、粒子の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径である体積平均粒子径(50%径;D50)を粒子径としてもよい。累積カーブ及びD50は、市販の粒度分布計を用いて求めることができる。 For example, the particle size of the biocompatible particles described above may be an average particle size calculated from a volume distribution or the like based on a measurement such as a laser diffraction/scattering method. Specifically, when the cumulative curve is obtained with the total volume of the group of particles as 100%, the volume average particle diameter (50% diameter; D 50 ), which is the particle diameter at the point where the cumulative curve reaches 50%, is the particle diameter. It may be the diameter. Cumulative curves and D50 can be determined using a commercially available particle size analyzer.
 生体適合性粒子の粒子径のスパン値は3.0以下である。スパン値は、(D90-D10)/D50で求められる。ここで、D90は上記累積カーブが90%となる点の粒子径である90%径である。D10は上記累積カーブが10%となる点の粒子径である10%径である。好ましくは、生体適合性粒子の粒子径のスパン値は、5.0以下、4.0以下、好ましくは3.0以下、より好ましくは、2.5以下である。 The biocompatible particles have a particle diameter span value of 3.0 or less. A span value is obtained by (D 90 -D 10 )/D 50 . Here, D90 is the 90 % diameter, which is the particle diameter at the point where the cumulative curve reaches 90%. D10 is the 10 % diameter, which is the particle diameter at the point where the cumulative curve reaches 10%. Preferably, the biocompatible particles have a particle diameter span value of 5.0 or less, 4.0 or less, preferably 3.0 or less, and more preferably 2.5 or less.
 生体適合性粒子における上記化合物の含有率は特に限定されないが、生体適合性粒子の質量に対して5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上であってもよく、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってもよい。好ましくは、生体適合性粒子における化合物の含有率は10~80質量%、12~50質量%又は15~40質量%である。ここでの含有率とは、生体適合性粒子から抽出された化合物の濃度を定量した値に基づいて算出された生体適合性粒子の質量に対する化合物の質量である。 The content of the compound in the biocompatible particles is not particularly limited, but is 5% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, relative to the mass of the biocompatible particles. 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or less, 90% by mass or less, 80% by mass or less, 70% by mass or less, It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. Preferably, the compound content in the biocompatible particles is 10-80%, 12-50% or 15-40% by weight. Here, the content rate is the mass of the compound relative to the mass of the biocompatible particles calculated based on the quantified value of the concentration of the compound extracted from the biocompatible particles.
 生体適合性粒子は賦形剤を含有してもよい。賦形剤は、生体適合性粒子の流動性を高めたり、化合物の安定性を高めたりする。薬理学的に許容される任意の賦形剤が使用できる。例えば、賦形剤としては、水、生理食塩水、動物油、植物油、合成油及び石油等の油、水性デキストロース、グリセロール、デンプングルコース、乳糖、マンニトール、トレハロース、イノシトール、エリスリトール、ラクトース、スクロース、ショ糖、プルラン、ソルビトール、デンプン類、デキストリン、デキストラン、アルギン酸ナトリウム、結晶セルロース、メチルセルロース、カルメロースナトリウム、ポリビニルアルコール(PVA)及びPVP等の糖類、天然高分子、合成高分子、グリシン、ロイシン、イソロイシン、アルギニン及びヒスチジン等のアミノ酸類、ゼラチン、ステアリン酸ナトリウム、モノステアリン酸グリセリン、塩化ナトリウム、プロピレングリコール、エタノール、湿潤剤、乳化剤、結合剤、分散剤、粘稠化剤、滑沢剤、pH調整剤、可溶化剤、軟化剤、並びに界面活性剤等が挙げられる。より好ましくは、賦形剤はPVAである。 The biocompatible particles may contain excipients. Excipients enhance the fluidity of the biocompatible particles and enhance the stability of the compound. Any pharmacologically acceptable excipient can be used. For example, excipients include water, saline, oils such as animal oils, vegetable oils, synthetic oils and petroleum oils, aqueous dextrose, glycerol, starch glucose, lactose, mannitol, trehalose, inositol, erythritol, lactose, sucrose, sucrose. , pullulan, sorbitol, starches, dextrin, dextran, sodium alginate, sugars such as crystalline cellulose, methylcellulose, carmellose sodium, polyvinyl alcohol (PVA) and PVP, natural polymers, synthetic polymers, glycine, leucine, isoleucine, arginine and amino acids such as histidine, gelatin, sodium stearate, glyceryl monostearate, sodium chloride, propylene glycol, ethanol, wetting agents, emulsifiers, binders, dispersants, thickeners, lubricants, pH adjusters, Examples include solubilizers, softeners, surfactants, and the like. More preferably, the excipient is PVA.
 生体適合性粒子における化合物と賦形剤との質量比は、100:1~1:100の範囲である。生体適合性粒子に含有される化合物と賦形剤との質量比は、好ましくは10:1~1:20であり、より好ましくは8:1~1:15であり、さらに好ましくは6:1~1:10又は4:1~1:10である。 The mass ratio of compound to excipient in the biocompatible particles ranges from 100:1 to 1:100. The mass ratio of the compound contained in the biocompatible particles to the excipient is preferably 10:1 to 1:20, more preferably 8:1 to 1:15, still more preferably 6:1. ~1:10 or 4:1 to 1:10.
 次に本実施の形態に係る免疫賦活剤の製造方法について説明する。上述の化合物は、公知の化学合成方法に従って調製することができる。以下に示すスキーム1を参照して構造が対称的な化合物3を合成する方法を例示する。化合物3におけるY、Z、n及びmは、それぞれ上記式1で定義されたY、Z、n及びrと同じであり、pは0~4である。ただし、XがOであり、nが0であり、Zが-ORであり、RがC16~C22であり、mが1又は2であるとき、pは3ではないことを条件とする。 Next, a method for producing an immunostimulant according to this embodiment will be described. The compounds described above can be prepared according to known chemical synthesis methods. A method for synthesizing the structurally symmetric compound 3 is illustrated with reference to Scheme 1 shown below. Y, Z, n and m in Compound 3 are the same as Y a , Z a , n and r defined in Formula 1 above, and p is 0-4. with the proviso that when X is O, n is 0, Z is —OR 2 , R 2 is C 16 -C 22 and m is 1 or 2, then p is not 3. and
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 化合物3の合成では、例えばRがベンジル基、トリメチルシリル基又はレブリノイル基で保護されている、又は保護されていないRがHである化合物4(XがO又はNH)を、カップリング試薬の作用下で、あるいは化合物(カルボン酸)5の無水物又は酸塩化物等の活性化型を使用して化合物5と縮合させる。続いて、場合によっては、例えば水素化、酸又は塩基を使用して脱保護し、化合物3を得る。カップリング試薬は、例えば、N,N’-ジシクロヘキシルカルボジイミド(DCC)、BOP試薬、HATU、COMU、トリフェニルホスフィン(PhP)/DEAD、又はそれらの誘導体である。 In the synthesis of compound 3, for example, compound 4 (X is O or NH) in which R is protected with a benzyl group, trimethylsilyl group or levulinoyl group or is unprotected and R is H is reacted with a coupling reagent. or an activated form of compound (carboxylic acid) 5, such as the anhydride or acid chloride, is used to condense with compound 5. Subsequent optional deprotection using, for example, hydrogenation, acid or base provides compound 3. Coupling reagents are, for example, N,N'-dicyclohexylcarbodiimide (DCC), BOP reagents, HATU, COMU, triphenylphosphine (Ph 3 P)/DEAD, or derivatives thereof.
 また、化合物4(XがNH)を、水素、ヒドリド、スルフィド又はホスフィン等の還元剤を使用して対応するアジドを還元することにより形成させる。さらに、化合物4を化合物5のエステル誘導体とともに、酵素、酸又は塩基を触媒とする反応に供する。続いて、場合によっては、例えば水素化、酸又は塩基を使用して脱保護し、化合物3を形成させることもできる。 Compound 4 (where X is NH) is also formed by reduction of the corresponding azide using a reducing agent such as hydrogen, hydride, sulfide or phosphine. Further, compound 4 is subjected to an enzyme-, acid- or base-catalyzed reaction together with an ester derivative of compound 5. Subsequent optional deprotection using, for example, hydrogenation, acid or base, can also lead to the formation of compound 3.
 続いて、構造が対称的な化合物6を合成する方法を以下に示すスキーム2を参照して例示する。化合物6において、Y、Y、Z、Z、n、m、r及びsは、それぞれ上記式1で定義された通りである。p及びqは独立して0~4である。 Subsequently, a method for synthesizing the structurally symmetric compound 6 is illustrated with reference to Scheme 2 shown below. In compound 6, Y a , Y b , Z a , Z b , n, m, r and s are each as defined in Formula 1 above. p and q are independently 0-4.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 化合物6の合成では、例えばRがベンジル基、トリメチルシリル基又はレブリノイル基で保護されている、又は保護されていないRがHである化合物7(XがO又はNH;YがOR(ここでRがH又は保護基)、又はYがNR(ここでR、RがH又は保護基))を、カップリング試薬の作用下で、あるいは化合物(カルボン酸)8の無水物又は酸塩化物等の活性化型を使用して化合物8と縮合させる。続いて、場合によっては、例えば水素化、酸又は塩基を使用して脱保護し、化合物9(XがO又はNH)を形成させる。次に、カップリング試薬の作用下で、あるいは化合物(カルボン酸)10の無水物又は酸塩化物等の活性化型を使用して化合物9と化合物10との縮合を行い、場合によっては、例えば水素化、酸又は塩基を使用して脱保護し、化合物6を得る。 In the synthesis of compound 6, for example, compound 7 in which R 1 is protected with a benzyl group, trimethylsilyl group or levulinoyl group, or in which unprotected R 1 is H (X a is O or NH; Y is OR 2 ( where R 2 is H or a protecting group), or Y is NR 2 R 3 (wherein R 2 and R 3 are H or a protecting group)) under the action of a coupling reagent, or compound (carboxylic acid) 8 is condensed with compound 8 using an activated form such as the anhydride or acid chloride of This is followed by optional deprotection using, for example, hydrogenation, acid or base to form compound 9 ( Xb is O or NH). Condensation of compound 9 with compound 10 is then carried out under the action of a coupling reagent or using an activated form such as the anhydride or acid chloride of compound (carboxylic acid) 10, optionally e.g. Hydrogenation, deprotection using acid or base gives compound 6.
 また、化合物7(XがNH)又は化合物9(XがNH)を、水素、ヒドリド、スルフィド又はホスフィン等の還元剤を使用して対応するアジドを還元することにより形成させる。さらに、化合物7又は化合物9を化合物8又は化合物10のエステル誘導体とともに、酵素、酸、又は塩基を触媒とする反応に供する。続いて、場合によっては、例えば水素化、酸又は塩基を使用して脱保護し、化合物6を形成することができる。 Alternatively, compound 7 (Xa is NH) or compound 9 ( Xb is NH) is formed by reduction of the corresponding azide using a reducing agent such as hydrogen, hydride, sulfide or phosphine. Further, compound 7 or compound 9 is subjected to an enzyme-, acid-, or base-catalyzed reaction along with compound 8 or the ester derivative of compound 10. Subsequent optional deprotection using, for example, hydrogenation, acid or base, can form compound 6.
 次に、生体適合性粒子の製造方法について例示する。当該生体適合性粒子の製造方法は、混合ステップと、析出ステップと、を含む。混合ステップでは、乳化剤水溶液(以下“A液”とする)と、原料溶液(以下“B液”とする)とを薄膜流体中で混合する。まず、A液について説明する。A液に溶解された乳化剤は、粒子の分散安定性を高めるものであれば特に限定されない。例えば、乳化剤は、界面活性剤、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、水溶性樹脂、レシチン、サポニン類、ステロール類、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル及びポリソルベート等である。 Next, the method for producing biocompatible particles will be exemplified. A method of making the biocompatible particles includes a mixing step and a precipitation step. In the mixing step, an emulsifier aqueous solution (hereinafter referred to as "A liquid") and a raw material solution (hereinafter referred to as "B liquid") are mixed in the thin film fluid. First, liquid A will be described. The emulsifier dissolved in liquid A is not particularly limited as long as it enhances the dispersion stability of the particles. For example, emulsifiers include surfactants, polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, water-soluble resins, lecithin, saponins, sterols, glycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, polyglycerin. Examples include fatty acid esters and polysorbates.
 好適には、乳化剤は、ポリビニルアルコール(以下“PVA”とする)である。乳化剤としてのPVAは市販のものを用いることができる。PVAは工業用でも医薬用でもよいが、残存した有機溶媒が少ない、又は有機溶媒が含まれないものが好ましい。 Preferably, the emulsifier is polyvinyl alcohol (hereinafter referred to as "PVA"). Commercially available PVA can be used as an emulsifier. PVA may be used for industrial or medical purposes, but PVA containing little residual organic solvent or containing no organic solvent is preferred.
 A液における乳化剤の濃度は、例えば、0.01~10.0質量%、0.01~5.0質量%、好ましくは0.05~2質量%である。A液とB液とが混合された薄膜流体のpHが6~8であることが好ましい。このため、A液のpHは、例えば7~8に調整されるのが好ましい。A液のpHを調整するためのpH調整剤は任意であるが、例えば、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カルシウム、アンモニア、水酸化ナトリウム及び水酸化カリウム等のアルカリ種を用いればよい。 The concentration of the emulsifier in liquid A is, for example, 0.01 to 10.0% by mass, 0.01 to 5.0% by mass, preferably 0.05 to 2% by mass. It is preferable that the pH of the thin film fluid in which the A liquid and the B liquid are mixed is 6-8. Therefore, the pH of liquid A is preferably adjusted to, for example, 7-8. Any pH adjusting agent may be used to adjust the pH of liquid A. For example, alkaline species such as sodium hydrogen carbonate, sodium carbonate, calcium hydroxide, ammonia, sodium hydroxide and potassium hydroxide may be used.
 続いて、B液について説明する。B液は、上記化合物が溶解する有機溶媒を含む。有機溶媒は特に限定されないが、好ましくは、アセトン及びエタノールを含む溶媒である。該溶媒中には、化合物及びPLGAが溶解されている。B液の調製では、例えば、化合物とPLGAとをアセトンに添加し、超音波又はクレアミックスを用いて溶解させ、さらにエタノールを加えて混合する。ここで、PLGAと化合物との質量比は、例えば10:1~1:10、8:1~1:8、6:1~1:6、5:1~1:5又は4:1~1:4である。アセトンとエタノールとの体積比は、3:1~1:1、好ましくは2:1~1:1である。なお、アセトンとエタノールとをあらかじめ混合して得られた混合液に薬剤とPLGAとを添加してもよい。必要に応じて、B液の溶媒には、アセトン及びエタノール以外の溶媒が混合されてもよい。 Next, I will explain the B liquid. Liquid B contains an organic solvent in which the compound is dissolved. The organic solvent is not particularly limited, but solvents including acetone and ethanol are preferred. The compound and PLGA are dissolved in the solvent. In the preparation of solution B, for example, the compound and PLGA are added to acetone, dissolved using ultrasonic waves or Clearmix, and then ethanol is added and mixed. Here, the mass ratio of PLGA to the compound is, for example, 10:1 to 1:10, 8:1 to 1:8, 6:1 to 1:6, 5:1 to 1:5 or 4:1 to 1. :4. The volume ratio of acetone to ethanol is 3:1 to 1:1, preferably 2:1 to 1:1. The drug and PLGA may be added to a mixed solution obtained by mixing acetone and ethanol in advance. If necessary, the solvent for liquid B may be mixed with a solvent other than acetone and ethanol.
 混合ステップでは、A液とB液とを、互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面間に導入する。これにより、処理用面間に薄膜流体が形成され、A液とB液とが混合される。 In the mixing step, the A liquid and the B liquid are introduced between processing surfaces that are arranged to face each other and at least one of which rotates relative to the other. Thereby, a thin film fluid is formed between the processing surfaces, and the A liquid and the B liquid are mixed.
 混合されたA液及びB液は薄膜流体中で反応し、化合物を含有したナノ粒子が形成される。析出ステップでは、形成されたナノ粒子を薄膜流体中に析出させる。 The mixed A and B liquids react in the thin film fluid to form nanoparticles containing compounds. The deposition step deposits the formed nanoparticles into a thin film fluid.
 ここで、上記製造方法に好適な装置の一例について説明する。図1は、薄膜回転式分散機100の断面の概略図を示す。薄膜回転式分散機100は、ホルダ10と、ホルダ20と、導入部30と、流体圧付与部40と、導入部50と、流体供給部60と、ケース70と、を備える。 Here, an example of an apparatus suitable for the above manufacturing method will be described. FIG. 1 shows a schematic diagram of a cross-section of a thin film rotary disperser 100 . The thin film rotary disperser 100 includes a holder 10 , a holder 20 , an introduction section 30 , a fluid pressure application section 40 , an introduction section 50 , a fluid supply section 60 and a case 70 .
 ホルダ10は、ホルダ20の下方に配設される。ホルダ10及びホルダ20は、それぞれ処理部11及び処理部21を保持する。処理部11及び処理部21は、それぞれ環状(リング状)である。処理部11は、処理用面1を有する。処理部21は、処理用面1に対向する処理用面2を有する。ホルダ20と処理部21との間には、接面圧付与部22が配置される。接面圧付与部22は、処理部21に圧力(以下、単に「背圧」とする)をかけることで処理部21を下方の処理部11に接近させる。このため、処理用面1と処理用面2とは、相互に近接及び離反可能である。 The holder 10 is arranged below the holder 20 . The holder 10 and the holder 20 hold the processing section 11 and the processing section 21, respectively. The processing section 11 and the processing section 21 are each annular (ring-shaped). The processing section 11 has a processing surface 1 . The processing section 21 has a processing surface 2 facing the processing surface 1 . A contact surface pressure applying portion 22 is arranged between the holder 20 and the processing portion 21 . The contact surface pressure applying unit 22 applies pressure (hereinafter, simply referred to as “back pressure”) to the processing unit 21 to bring the processing unit 21 closer to the processing unit 11 below. Therefore, the processing surface 1 and the processing surface 2 can move toward and away from each other.
 ホルダ10は、図1に示すように、モーターによってホルダ10の軸心を中心としてホルダ20に対して相対的に回転する。これにより、互いに対向して配設された処理用面1が処理用面2に対して相対的に回転する。 The holder 10 is rotated relative to the holder 20 around the axis of the holder 10 by a motor, as shown in FIG. As a result, the processing surfaces 1 arranged to face each other rotate relative to the processing surface 2 .
 導入部30には、流体圧付与部40が接続されている。コンプレッサを備える流体圧付与部40がA液に加圧することで、処理用面1と処理用面2との間にA液が供給される。より詳細には、A液は、流体圧付与部40による加圧によって導入部30からホルダ10及びホルダ20の内側の空間に導入される。さらにA液は、処理用面1と処理用面2との間を通り、ホルダ10及びホルダ20の外側に抜けようとする。このとき、A液の送圧を受けたホルダ20は、背圧に抵抗して、ホルダ10から遠ざかる。これにより、処理用面1と処理用面2との間に微小な間隔ができる。なお、A液が導入部30から処理用面1と処理用面2との間に直接供給されるようにしてもよい。 A fluid pressure application section 40 is connected to the introduction section 30 . A liquid is supplied between the processing surface 1 and the processing surface 2 by pressurizing the A liquid by the fluid pressure applying unit 40 having a compressor. More specifically, the A liquid is introduced from the introducing section 30 into the space inside the holder 10 and the holder 20 by being pressurized by the fluid pressure applying section 40 . Furthermore, the A liquid passes between the processing surface 1 and the processing surface 2 and tries to escape to the outside of the holder 10 and the holder 20 . At this time, the holder 20 receiving the pressure of the A liquid moves away from the holder 10 against the back pressure. As a result, a minute gap is formed between the processing surface 1 and the processing surface 2 . Alternatively, the A liquid may be directly supplied between the processing surface 1 and the processing surface 2 from the introduction part 30 .
 導入部50は、処理部21の内部に設けられたB液の通路である。導入部50の一端には、コンプレッサを備える流体供給部60が接続されている。流体供給部60は、導入部50を介して、処理用面1と処理用面2との間にB液を供給する。処理用面1と処理用面2との間に導入部50からB液が供給され、A液と合流する。 The introduction part 50 is a passage for liquid B provided inside the processing part 21 . A fluid supply section 60 having a compressor is connected to one end of the introduction section 50 . The fluid supply unit 60 supplies the B liquid between the processing surface 1 and the processing surface 2 via the introduction unit 50 . Liquid B is supplied from the introduction part 50 between the processing surface 1 and the processing surface 2 and joins with the A liquid.
 処理用面2に対する処理用面1の相対的な回転により、A液及びB液は、微小間隔を保った処理用面1及び処理用面2との間で合流して薄膜流体となる。薄膜流体内では、A液とB液との混合及び反応が促進される。A液とB液との反応で生成した生成物は、薬効成分を含有し、均一で微細なナノ粒子として薄膜流体中に析出する。析出したナノ粒子は、液体に懸濁された状態でホルダ10及びホルダ20の外側に排出される。 Due to relative rotation of the processing surface 1 with respect to the processing surface 2, the A liquid and the B liquid join between the processing surface 1 and the processing surface 2 maintaining a minute gap to form a thin film fluid. Mixing and reaction of the A liquid and the B liquid are promoted in the thin film fluid. The product produced by the reaction of liquid A and liquid B contains a medicinal component and precipitates in the thin film fluid as uniform fine nanoparticles. The precipitated nanoparticles are discharged outside the holder 10 and the holder 20 while being suspended in the liquid.
 ケース70は、ホルダ10及びホルダ20の外周面の外側に配置される。ケース70は、ホルダ10及びホルダ20の外側に排出されたナノ粒子分散液を収容する。 The case 70 is arranged outside the outer peripheral surfaces of the holder 10 and the holder 20 . The case 70 accommodates the nanoparticle dispersion discharged outside the holder 10 and the holder 20 .
 上記の製造方法に好適な装置として、例えば、強制薄膜式マイクロリアクターであるULREA SS-11(エム・テクニック社製)が挙げられる。ULREA SS-11を用いる場合、ホルダ10の回転数、背圧、A液及びB液の流速及び温度等を適宜設定することができる。 Apparatus suitable for the above manufacturing method includes, for example, the forced thin film microreactor ULREA SS-11 (manufactured by M Technic). When using ULREA SS-11, the number of rotations of the holder 10, the back pressure, the flow rates and temperatures of the A and B liquids, etc. can be appropriately set.
 なお、A液とB液の混合を高め、速やかな相分離によって、より微細なナノ粒子を再現良く得るために、バイブレーター又は超音波装置を薄膜回転式分散機100に装着したり、混合流路をより複雑に変形させたマイクロ水路を使用したりしてもよい。 In addition, in order to increase the mixing of the A liquid and the B liquid and obtain finer nanoparticles with good reproducibility by rapid phase separation, a vibrator or an ultrasonic device is attached to the thin film rotary disperser 100, or a mixing channel You may use the micro waterway which deform|transformed more complicatedly.
 本実施の形態に係る免疫賦活剤は、既知の方法で製造され、有効成分として0.000001~99.9重量%、0.00001~99.8重量%、0.0001~99.7重量%、0.001~99.6重量%、0.01~99.5重量%、0.1~99重量%、0.5~60重量%、1~50重量%又は1~20重量%の生体適合性粒子を含む。 The immunostimulant according to the present embodiment is produced by a known method, and contains 0.000001 to 99.9% by weight, 0.00001 to 99.8% by weight, and 0.0001 to 99.7% by weight of the active ingredient. , 0.001-99.6% by weight, 0.01-99.5% by weight, 0.1-99% by weight, 0.5-60% by weight, 1-50% by weight, or 1-20% by weight of living organisms Contains compatible particles.
 本実施の形態に係る免疫賦活剤のヒト及びヒト以外の動物への投与経路は特に限定されない。投与経路としては、特に皮内、皮下又は筋肉内への注射が好ましく、この場合、免疫賦活剤の一態様は、注射剤である。免疫賦活剤は、例えば、薬理的に許容される担体が配合された合剤であってもよい。薬理的に許容される担体は、製剤素材として用いられる各種の有機担体物質又は無機担体物質である。薬理的に許容される担体は、例えば、固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤、又は液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤等として免疫賦活剤に配合される。また、必要に応じて、防腐剤、抗酸化剤、着色剤及び甘味剤等の添加物が配合されてもよい。 The administration route of the immunostimulant according to the present embodiment to humans and animals other than humans is not particularly limited. As an administration route, intradermal, subcutaneous or intramuscular injection is particularly preferable, and in this case, one aspect of the immunostimulant is an injection. The immunostimulant may be, for example, a combination drug containing a pharmacologically acceptable carrier. Pharmaceutically acceptable carriers are various organic or inorganic carrier substances used as pharmaceutical ingredients. Pharmaceutically acceptable carriers are, for example, excipients, lubricants, binders and disintegrants in solid formulations, or solvents, solubilizers, suspending agents, tonicity agents and buffers in liquid formulations. and as an analgesic, etc., in an immunostimulant. Additives such as preservatives, antioxidants, coloring agents and sweeteners may also be added as necessary.
 本実施の形態に係る免疫賦活剤の投与量は、投与対象の年齢、体重及び症状等によって適宜決定される。当該免疫賦活剤は、上記の化合物が有効量となるように投与される。有効量とは、所望の結果を得るために必要な化合物の量であり、治療又は処置する状態の進行の遅延、阻害、予防、逆転又は治癒をもたらすのに必要な量である。 The dosage of the immunostimulant according to the present embodiment is appropriately determined according to the age, body weight, symptoms, etc. of the administration subject. The immunostimulant is administered in an effective amount of the compound. An effective amount is that amount of the compound necessary to produce the desired result, that amount necessary to slow, inhibit, prevent, reverse or cure the condition being treated or treated.
 免疫賦活剤の投与量は、例えば、0.01mg/kg~1000mg/kg、好ましくは0.1mg/kg~200mg/kg、より好ましくは0.2mg/kg~20mg/kgであり、1日に1回、又は複数回投与することができる。また、医薬組成物は、毎日、隔日、1週間に1回、隔週、1ヶ月に1回等の様々な投与頻度で投与してもよい。好ましくは、投与頻度は、医師等により容易に決定される。なお、必要に応じて、上記の範囲外の量を用いることもできる。 The dosage of the immunostimulant is, for example, 0.01 mg/kg to 1000 mg/kg, preferably 0.1 mg/kg to 200 mg/kg, more preferably 0.2 mg/kg to 20 mg/kg, and Single or multiple doses can be administered. The pharmaceutical composition may also be administered at different dosing frequencies, such as daily, every other day, once a week, every other week, once a month, and the like. Preferably, the dosing frequency is easily determined by a physician or the like. Amounts outside the above ranges can also be used, if desired.
 本実施の形態に係る免疫賦活剤は、好ましくはワクチンと併用される。“併用”とは、所定の期間に同一患者に免疫賦活剤とワクチンとを投与することをいう。併用では、免疫賦活剤をワクチンと同時に投与することが好ましいが、一方の効果が残っている間に、他方を投与する等して、時間的に前後してそれぞれ単独で投与してもよい。併用においては、免疫賦活剤及びワクチンの投与経路は同一であってもよいし、異なってもよい。免疫賦活剤は、ワクチンに組み込まれワクチン組成物として投与されてもよい。例えば併用では、免疫賦活剤及びワクチンそれぞれの用量及び用法が規定された1つのレジメンに従って、所定の期間に渡って、免疫賦活剤及びワクチンが投与される。免疫賦活剤はワクチンと併用される場合に、ワクチンに対する抗原特異的免疫応答を加速、延長又は増強する。 The immunostimulant according to this embodiment is preferably used together with a vaccine. "Combination" refers to administering an immunostimulant and a vaccine to the same patient for a given period of time. In combination, the immunostimulant is preferably administered simultaneously with the vaccine, but each may be administered separately in chronological order, such as by administering the other while the effect of one remains. In combination, the route of administration of the immunostimulant and vaccine may be the same or different. Immunostimulatory agents may be incorporated into vaccines and administered as vaccine compositions. For example, in a combination, the adjuvant and vaccine are administered over a defined period of time according to a single regimen that defines the dose and regimen of each adjuvant and vaccine. An immunostimulatory agent, when used in combination with a vaccine, accelerates, prolongs or enhances the antigen-specific immune response to the vaccine.
 ワクチンは、種々の疾患、特には病原体によって引き起こされる感染症、並びにがん及び他の疾患を予防又は処置するのに使用することができるものであれば特に限定されない。好ましくは、ワクチンは、新型コロナウイルス感染症(COVID-19)を引き起こす新型コロナウイルス(SARS-CoV-2)に対するワクチンである。 Vaccines are not particularly limited as long as they can be used to prevent or treat various diseases, especially infectious diseases caused by pathogens, cancer and other diseases. Preferably, the vaccine is against the novel coronavirus (SARS-CoV-2) that causes novel coronavirus disease (COVID-19).
 本実施の形態に係る免疫賦活剤は、下記実施例に示すように、上記化合物によって誘導される免疫応答を増強し、抗原特異的なIgG抗体の産生を増大させることができる。 As shown in the examples below, the immunostimulant according to the present embodiment can enhance the immune response induced by the above compounds and increase the production of antigen-specific IgG antibodies.
 別の実施の形態では、免疫賦活剤の製造のための上記化合物の使用が提供される。他の実施の形態では、上記化合物によって誘導される免疫応答を増強、補強、促進、加速又は延長する方法が提供される。また、他の実施の形態では、感染症又はがんの予防又は治療における使用のための上記化合物が提供される。 In another embodiment, use of the above compounds for the manufacture of an immunostimulant is provided. In other embodiments, methods are provided for enhancing, reinforcing, promoting, accelerating or prolonging the immune response induced by the compounds. Also provided in another embodiment is a compound as described above for use in the prevention or treatment of an infectious disease or cancer.
 なお、上記化合物には、不斉又はキラル中心が存在することがある。不斉又はキラル中心を、キラル原子における置換基の三次元空間配置に応じて(R)又は(S)と命名することができる。化合物のジアステレオマー、エナンチオマー及びエピマーの形を含むすべての立体化学的異性体、d-異性体、l-異性体、並びに立体化学的異性体のエナンチオマーが濃縮された混合物及びジアステレオマーが濃縮された混合物を含む、これらの混合物が上記化合物に包含される。 The above compounds may have an asymmetric or chiral center. Asymmetric or chiral centers can be designated as (R) or (S), depending on the three-dimensional arrangement of the substituents on the chiral atom. All stereochemically isomeric, d-isomers, l-isomers, including diastereomeric, enantiomeric and epimeric forms of a compound, as well as enantiomerically enriched mixtures and diastereomerically enriched stereochemical isomers These mixtures are included in the above compounds, including mixtures of the above compounds.
 なお、個々のエナンチオマーは、市販のエナンチオピュアな出発物質から合成により調製することができる。また、エナンチオマーはエナンチオマー混合物を調製し、混合物を個々のエナンチオマーに分割することによって調製することができる。分割は、エナンチオマー混合物からジアステレオマーの混合物への変換、及び例えば再結晶又はクロマトグラフィー、並びに公知の他の適切な方法によるジアステレオマーの分離を含む。 It should be noted that individual enantiomers can be synthetically prepared from commercially available enantiopure starting materials. Enantiomers can also be prepared by preparing an enantiomeric mixture and resolving the mixture into the individual enantiomers. Resolution includes conversion of a mixture of enantiomers to a mixture of diastereomers and separation of diastereomers by, for example, recrystallization or chromatography, and other suitable methods known in the art.
 上記の化合物は、cis、trans、syn、anti、entgegen(E)及びzusammen(Z)異性体を含めて、配座又は幾何立体異性体としても存在することがある。そのような立体異性体及びそれらの任意の混合物はすべて上記化合物に包含される。上記化合物の任意の互変異性体又はそれらの混合物も上記化合物に包含される。 The above compounds may also exist as conformational or geometric stereoisomers, including cis, trans, syn, anti, entgegen (E) and zusammen (Z) isomers. All such stereoisomers and any mixtures thereof are included in the above compounds. Any tautomers of the above compounds or mixtures thereof are also included in the above compounds.
 上記の化合物は、化合物中の1個又は複数の原子が異なる同位体で置き換えられているアイソトポログ及びアイソトポマーとしても存在することがある。好適な同位体には、例えばH、H(D)、H(T)、12C、13C、14C、16O及び18Oが含まれる。アイソトポログ及びアイソトポマーも上記化合物に包含される。 The above compounds may also exist as isotopologues and isotopomers, wherein one or more atoms in the compound are replaced with different isotopes. Suitable isotopes include, for example, 1H, 2H ( D), 3H (T), 12C , 13C , 14C , 16O and 18O . Isotopologues and isotopomers are also included in the above compounds.
 上記化合物の薬理学的に許容される塩が生体適合性粒子に含有されてもよい。塩には、塩基性窒素含有基の酸付加塩、塩基付加塩、及び第四級塩が含まれる。酸付加塩は、化合物を遊離塩基の形で、無機又は有機酸と反応させることによって調製することができる。無機酸の例としては、塩酸、臭化水素酸、硝酸、硫酸、及びリン酸が挙げられるが、これらに限定されない。有機酸の例としては、酢酸、トリフルオロ酢酸、プロピオン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、マレイン酸、フマル酸、ピルビン酸、アスパラギン酸、グルタミン酸、ステアリン酸、サリチル酸、メタンスルホン酸、ベンゼンスルホン酸、イセチオン酸、スルファニル酸、アジピン酸、酪酸、及びピバル酸が挙げられるが、これらに限定されない。塩基付加塩は、化合物を遊離酸の形で、無機又は有機塩基と反応させることによって調製することができる。無機塩基付加塩の例としては、アルカリ金属塩、アルカリ土類金属塩、及び他の生理学的に許容される金属塩、例えばアルミニウム、カルシウム、リチウム、マグネシウム、カリウム、ナトリウム、又は亜鉛塩が挙げられる。有機塩基付加塩の例としては、アミン塩、例えばトリメチルアミン、ジエチルアミン、エタノールアミン、ジエタノールアミン及びエチレンジアミンの塩が挙げられる。化合物中の塩基性窒素含有基の第四級塩は、例えば、化合物を、メチル、エチル、プロピル、ブチルクロリド、ブロミド及びヨージド等のハロゲン化アルキル、硫酸ジメチル、ジエチル、ジブチル及びジアミル等の硫酸ジアルキル等と反応させることによって調製することができる。 A pharmacologically acceptable salt of the above compound may be contained in the biocompatible particles. Salts include acid addition, base addition, and quaternary salts of basic nitrogen-containing groups. Acid addition salts can be prepared by reacting a compound in its free base form with an inorganic or organic acid. Examples of inorganic acids include, but are not limited to, hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and phosphoric acid. Examples of organic acids include acetic acid, trifluoroacetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, fumaric acid, pyruvic acid, aspartic acid, glutamic acid, stearic acid. Acids include, but are not limited to, salicylic acid, methanesulfonic acid, benzenesulfonic acid, isethionic acid, sulfanilic acid, adipic acid, butyric acid, and pivalic acid. Base addition salts can be prepared by reacting the compound in the free acid form with an inorganic or organic base. Examples of inorganic base addition salts include alkali metal salts, alkaline earth metal salts, and other physiologically acceptable metal salts such as aluminum, calcium, lithium, magnesium, potassium, sodium, or zinc salts. . Examples of organic base addition salts include amine salts such as salts of trimethylamine, diethylamine, ethanolamine, diethanolamine and ethylenediamine. A quaternary salt of a basic nitrogen-containing group in a compound is, for example, converting the compound to alkyl halides such as methyl, ethyl, propyl, butyl chloride, bromide and iodide, dialkyl sulfates such as dimethyl sulfate, diethyl, dibutyl and diamyl sulfate. and the like.
 化合物は上記化合物のN-オキシドも包含する。上記の化合物は、様々な溶媒と溶媒和物を形成し、様々な溶媒との溶媒和物として存在することができる。化合物の溶媒和の形態及び非溶媒和の形態はすべて上記化合物に包含される。 The compounds also include N-oxides of the above compounds. The compounds described above form solvates with various solvents and can exist as solvates with various solvents. All solvated and unsolvated forms of the compounds are included in the above compounds.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。なお、以下では“%”は特に言及のない限り“質量%”を意味する。 The present invention will be explained more specifically by the following examples, but the present invention is not limited by the examples. In addition, hereinafter, "%" means "% by mass" unless otherwise specified.
 実施例1:免疫賦活剤の調製
 [C18Brarの合成]
 下記のスキーム3に従って免疫賦活剤(C18Brar)を調製した。
Example 1: Preparation of Immunostimulant [Synthesis of C18Brar]
An immunostimulant (C18Brar) was prepared according to Scheme 3 below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 まず、D-トレハロース(化合物11)から3段階の反応a)、b)及びc)を経て部分保護トレハロース(化合物12)を得た。反応a)では、D-トレハロース、塩化トリフェニルメチル(PhCCl)及びピリジンを混合し、室温で16時間反応させた。反応b)では、反応aの生成物に、臭化ベンジル(BnBr)、水素化ナトリウム(NaH)及びN,N-ジメチルホルムアミド(DMF)を混合し、室温で16時間反応させた(収率85%)。反応b)では、トリフルオロ酢酸(TFA)存在下で、反応b)の生成物と、トリエチルシラン(EtSiH)及びジクロロメタン(CHCl)とを室温で30分間反応させた(収率80%)。 First, partially protected trehalose (compound 12) was obtained from D-trehalose (compound 11) through three steps of reactions a), b) and c). In reaction a), D-trehalose, triphenylmethyl chloride (Ph 3 CCl) and pyridine were mixed and allowed to react at room temperature for 16 hours. In reaction b), the product of reaction a was mixed with benzyl bromide (BnBr), sodium hydride (NaH) and N,N-dimethylformamide (DMF) and allowed to react at room temperature for 16 hours (yield 85 %). In reaction b), the product of reaction b) was reacted with triethylsilane (Et 3 SiH) and dichloromethane (CH 2 Cl 2 ) in the presence of trifluoroacetic acid (TFA) at room temperature for 30 minutes (yield 80%).
 化合物12(55mg、0.062mmol)及び2-(ベンジルオキシ)-4-(オクタデシルオキシ)安息香酸(化合物13、136mg、0.274mmol)をトルエン(2mL)と共蒸発させ、乾燥トルエンに溶解した。1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDCI、64mg、0.33mmol)及び4-ジメチルアミノピリジン(DMAP、11mg、0.090mmol)を添加し、反応混合物を60℃で撹拌した。18時間後に化合物13の一部(21mg、0.042mmol)を追加で添加し、終夜撹拌した。得られた残渣をグラジエントシリカゲルフラッシュカラムクロマトグラフィー(石油エーテル:酢酸エチル(EtOAc)、19:1-9:1(v:v))により精製して、2,2’,3,3’,4,4’-ヘキサ-O-ベンジル-6,6’-ジ-O-(2-ベンジルオキシ-4-オクタデシルオキシベンゾイル)-α,α’-D-トレハロース(化合物14)を無色油(75mg、0.041mmol、収率66%)として得た。 Compound 12 (55 mg, 0.062 mmol) and 2-(benzyloxy)-4-(octadecyloxy)benzoic acid (compound 13, 136 mg, 0.274 mmol) were co-evaporated with toluene (2 mL) and dissolved in dry toluene. . 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI, 64 mg, 0.33 mmol) and 4-dimethylaminopyridine (DMAP, 11 mg, 0.090 mmol) were added and the reaction mixture was stirred at 60°C. . After 18 hours an additional portion of compound 13 (21 mg, 0.042 mmol) was added and stirred overnight. The resulting residue was purified by gradient silica gel flash column chromatography (petroleum ether:ethyl acetate (EtOAc), 19:1-9:1 (v:v)) to give 2,2′,3,3′,4 ,4′-Hexa-O-benzyl-6,6′-di-O-(2-benzyloxy-4-octadecyloxybenzoyl)-α,α′-D-trehalose (compound 14) was converted to a colorless oil (75 mg, 0.041 mmol, 66% yield).
 化合物14(140mg、0.076mmol)をMeOH:CHCl(5mL、1:1(v:v))に溶解した溶液に、Pearlman触媒(Pd(OH)/C)を添加した。反応混合物にHガスを終夜通気した。得られた残渣を、グラジエントシリカゲルフラッシュカラムクロマトグラフィー(EtOAc:メタノール(MeOH)、1:0-9:1(v:v))及び親油性セファデックス(CHCl:MeOH、1:1(v:v))を使用して精製し、6,6’-ジ-O-(2-ヒドロキシ-4-オクタベンジルオキシベンゾイル)-α,α’-D-トレハロース(C18Brar)をアモルファス白色固体(58mg、0.052mmol、68%)として得た。 To a solution of compound 14 (140 mg, 0.076 mmol) in MeOH:CH2Cl2 ( 5 mL, 1:1 (v:v)) was added Pearlman's catalyst (Pd(OH) 2 /C). H2 gas was bubbled through the reaction mixture overnight. The resulting residue was subjected to gradient silica gel flash column chromatography (EtOAc:methanol (MeOH), 1:0-9:1 (v:v)) and lipophilic Sephadex (CH 2 Cl 2 :MeOH, 1:1 ( v:v)) to convert 6,6′-di-O-(2-hydroxy-4-octabenzyloxybenzoyl)-α,α′-D-trehalose (C18Brar) to an amorphous white solid ( 58 mg, 0.052 mmol, 68%).
 [C18Brarナノ粒子化]
 ULREA SS-11(エム・テクニック社製)を使用して、以下のようにC18Brarナノ粒子(C18Brar-NP)を作製した。まず、A液をA液タンクに充填し、A液を40mL/分、10℃で送液し、次いでB液を10mL/分、50℃で送液した。A液はPVA(ゴーセノールEG-05P)を0.1mg/mlの濃度で含む水溶液である。B液は、PLGA7520(1.25mg/ml)とC18Brar(0.25mg/ml)とを含むアセトン:エタノール=2:1(v:v)の溶液である。50分間反応させた後、吐出液2500mLを回収し、エバポレーター(40℃、50hPa)で吐出液から有機溶媒を留去した。溶媒留去した吐出液2000mLについて限外ろ過(ビバフロー200 Hydrosart 30K、ザルトリウス社製)を行い300mLに濃縮した。その後、マンニトール400mgを添加した。得られたC18Brar-NP濃縮液を凍結乾燥し、1.2gのC18Brar-NPを得た。得られたC18Brar-NPを1mg/mlとなるようにミリQ水に分散させ、粒度分布をEX150(MicrotracBEL社製)で測定した。
[C18Brar nanoparticulation]
Using ULREA SS-11 (manufactured by M Technic), C18Brar nanoparticles (C18Brar-NP) were prepared as follows. First, the A liquid tank was filled with the A liquid, and the A liquid was fed at 40 mL/min at 10°C, and then the B liquid was fed at 10 mL/min at 50°C. Liquid A is an aqueous solution containing PVA (Gosenol EG-05P) at a concentration of 0.1 mg/ml. Liquid B is a solution of acetone:ethanol=2:1 (v:v) containing PLGA7520 (1.25 mg/ml) and C18Brar (0.25 mg/ml). After reacting for 50 minutes, 2500 mL of the discharged liquid was recovered, and the organic solvent was distilled off from the discharged liquid by an evaporator (40° C., 50 hPa). Ultrafiltration (Vivaflow 200 Hydrosart 30K, manufactured by Sartorius) was performed on 2000 mL of the discharged liquid after the solvent was distilled off, and the liquid was concentrated to 300 mL. Then 400 mg of mannitol was added. The obtained C18Brar-NP concentrate was lyophilized to obtain 1.2 g of C18Brar-NP. The obtained C18Brar-NP was dispersed in milli-Q water so as to be 1 mg/ml, and the particle size distribution was measured with EX150 (manufactured by MicrotracBEL).
 ULREA SS-11(エム・テクニック社製)を使用して、以下のようにC18Brarを含まないナノ粒子(Empty-NP)を作製した。まず、A液をA液タンクに充填し、A液を40mL/分、10℃で送液し、次いでB液を10mL/分、50℃で送液した。A液はPVA(ゴーセノールEG-05P)を0.1mg/mlの濃度で含む水溶液である。B液は、PLGA7520(1.25mg/ml)、を含む、アセトン:エタノール=2:1(v:v)の溶液である。50分間反応させた後、吐出液2500mLを回収し、エバポレーター(40℃、50hPa)で吐出液から有機溶媒を留去した。溶媒留去した吐出液2000mLについて限外ろ過(ビバフロー200 Hydrosart 30K、ザルトリウス社製)を行い300mLに濃縮した。その後、マンニトール400mgを添加した。得られたEmpty-NP濃縮液を凍結乾燥し、1.1gのEmpty-NPを得た。得られたEmpty-NPを1mg/mlとなるようにミリQ水に分散させ、粒度分布をEX150(MicrotracBEL社製)で測定した。 Using ULREA SS-11 (manufactured by M Technic), nanoparticles (Empty-NP) not containing C18Brar were produced as follows. First, the A liquid tank was filled with the A liquid, and the A liquid was fed at 40 mL/min at 10°C, and then the B liquid was fed at 10 mL/min at 50°C. Liquid A is an aqueous solution containing PVA (Gosenol EG-05P) at a concentration of 0.1 mg/ml. Liquid B is a solution of acetone:ethanol=2:1 (v:v) containing PLGA7520 (1.25 mg/ml). After reacting for 50 minutes, 2500 mL of the discharged liquid was recovered, and the organic solvent was distilled off from the discharged liquid by an evaporator (40° C., 50 hPa). Ultrafiltration (Vivaflow 200 Hydrosart 30K, manufactured by Sartorius) was performed on 2000 mL of the discharged liquid after the solvent was distilled off, and the liquid was concentrated to 300 mL. Then 400 mg of mannitol was added. The resulting Empty-NP concentrate was freeze-dried to obtain 1.1 g of Empty-NP. The obtained Empty-NP was dispersed in milli-Q water so as to be 1 mg/ml, and the particle size distribution was measured with EX150 (manufactured by MicrotracBEL).
 図2は、C18Brar-NPの粒度分布を示す。C18Brar-NPのD50は125nmで、スパン値は2.0であった。Empty-NPのD50は147nmで、スパン値は0.9であった。 FIG. 2 shows the particle size distribution of C18Brar-NP. The D50 of C18Brar-NP was 125 nm with a span value of 2.0. Empty-NP had a D 50 of 147 nm and a span value of 0.9.
 試験例1:Mincleレポーター細胞による活性に基づくC18Brar含量評価
 Mincleとアダプター分子のFcRgを発現したレポーター細胞(Mincleレポーター細胞)を使用した。NFAT(nuclear factor of activated T-cell)-GFPを発現する2B4細胞株を親株として、レトロウイルスベクターでMincle及びFcRγのCDS配列をトランスフェクションすることでMincleレポーター細胞を作製した。
Test Example 1: Evaluation of C18Brar Content Based on Activity by Mincle Reporter Cells Mincle and reporter cells expressing FcRg as an adapter molecule (Mincle reporter cells) were used. Using a 2B4 cell line expressing NFAT (nuclear factor of activated T-cell)-GFP as a parent strain, Mincle reporter cells were produced by transfecting the Mincle and FcRγ CDS sequences with a retroviral vector.
 クロロホルム:メタノール(2:1)を溶媒とするC18Brar原体溶液を2-プロパノールにより段階希釈し、96ウェルプレートに加えた。溶媒を乾燥させ、C18Brarをプレートにコートした。C18Brar-NP又はEmpty-NPを培地(10%FCS含有RPMI)に懸濁し、段階的に各濃度に希釈し、100μl/ウェルでプレートに加えた。C18Brar原体に関しては、容量と終濃度を合わせるために、C18Brarをコートしたウェルに100μl/ウェルで培地を加えた。Mincleレポーター細胞懸濁液(6×10細胞/ml)を各プレートに100μl/ウェルで加え(終濃度3×10細胞/ウェル)、刺激した。37℃で20時間、COインキュベーターで細胞を培養した。 C18Brar stock solution in chloroform:methanol (2:1) was serially diluted with 2-propanol and added to 96-well plates. The solvent was dried and the plates were coated with C18Brar. C18Brar-NP or Empty-NP was suspended in medium (RPMI containing 10% FCS), serially diluted to each concentration, and added to the plate at 100 μl/well. For C18Brar drug substance, medium was added to C18Brar-coated wells at 100 μl/well to match volume and final concentration. A Mincle reporter cell suspension (6×10 5 cells/ml) was added to each plate at 100 μl/well (final concentration 3×10 4 cells/well) for stimulation. Cells were cultured in a CO2 incubator at 37°C for 20 hours.
 なお、Mincleレポーター細胞はT細胞ハイブリドーマでCD3を発現している。当該アッセイ系のポジティブコントロールとして、T細胞受容体複合体に含まれるCD3eに対するモノクローナル抗体(2C11、MBL社製)で刺激することでGFPが発現することを確認した。また、Mincleを介したシグナルによってGFPが発現することを確認するために、結核菌の細胞壁を構成する糖脂質であるトレハロース-6,6’-ジミコレート(TDM)を2-プロパノールで1.5μg/mlに希釈し、20μl/ウェルに加え、C18Brar原体群と同様の方法で刺激した。 In addition, Mincle reporter cells express CD3 in T cell hybridomas. As a positive control for the assay system, it was confirmed that GFP was expressed by stimulation with a monoclonal antibody (2C11, manufactured by MBL) against CD3e contained in the T cell receptor complex. In addition, in order to confirm that GFP is expressed by signals mediated by Mincle, trehalose-6,6'-dimycolate (TDM), a glycolipid that constitutes the cell wall of Mycobacterium tuberculosis, was treated with 2-propanol at 1.5 μg/ It was diluted to ml, added to 20 μl/well, and stimulated in the same manner as the C18Brar drug substance group.
 フローサイトメーターでMincleレポーター細胞のGFP発現を評価した。C18Brar原体におけるGFP陽性率をスタンダードとして検量線を作製し、C18Brar-NPでの刺激によるGFP陽性率からC18Brar含量を定量した。  The GFP expression of the Mincle reporter cells was evaluated with a flow cytometer. A calibration curve was prepared using the GFP positive rate in the C18Brar raw material as a standard, and the C18Brar content was quantified from the GFP positive rate by stimulation with C18Brar-NP.
 (結果)
 図3はGFP陽性率を示す。C18Brar原体0.131μg/ウェルに相当するC18Brar-NPの量は20μg/ウェルであった。
(result)
FIG. 3 shows the GFP positive rate. The amount of C18Brar-NP corresponding to 0.131 μg/well of C18Brar drug substance was 20 μg/well.
 試験例2:免疫試験
 SARS-CoV-2 spikeタンパク質(全長、3量体、以下“スパイクタンパク質”ともいう)を次のように調製した。foldon配列に続き9×Hisタグ及びStrepタグをC末端に有するSタンパク質の細胞外ドメインを、発現ベクターpCMVにクローニングした。Sタンパク質の多塩基性切断部位(Polybasic cleavage site;RRAR)をアラニンに置換し、K986P及びV987Pの置換を導入して構造を安定化させた。Expi293F細胞(Gibco社製)に発現ベクターを導入してから4日後に、TALON metal affinity resin(Clontech社製)及びAmicon Ultra 10K filter device(Millipore社製)を用いて、分泌したタンパク質を培地上清から精製した。
Test Example 2: Immunity test A SARS-CoV-2 spike protein (full length, trimer, hereinafter also referred to as "spike protein") was prepared as follows. The extracellular domain of the S protein with a foldon sequence followed by a 9×His tag and a Strep tag at the C-terminus was cloned into the expression vector pCMV. The polybasic cleavage site (RRAR) of the S protein was replaced with alanine and K986P and V987P substitutions were introduced to stabilize the structure. Four days after the introduction of the expression vector into Expi293F cells (manufactured by Gibco), TALON metal affinity resin (manufactured by Clontech) and Amicon Ultra 10K filter device (manufactured by Millipore) were used to extract the secreted protein from the medium supernatant. purified from
 実施例1で調製したEmpty-NP、C18Brar-NP及び上記スパイクタンパク質をPBSで希釈又はPBSに懸濁し、所定の濃度に調製した。C18Brar-oil-in-water(C18Brar-o/w)の調製にあたっては、C18BrarのPBS溶液に0.5%のTween-80.5%のミネラルオイルを添加して作製した(94.5%はPBS)。スパイクタンパク質10μgのみ又はスパイクタンパク質10μgと各サンプルとをマウスの皮下に投与した(尾基底、100μl/side)。Empty-NP、C18Brar-NP及びC18Brar-o/wのマウス1匹あたりの投与量はそれぞれ7.65mg、7.65mg及び50μgとした。免疫から0週(免疫直前)から1週間ごとにマウス頬から採血し、血清を採取した。また、マウスの体重を1週間ごとに測定した。 The Empty-NP, C18Brar-NP and the spike protein prepared in Example 1 were diluted with PBS or suspended in PBS to prepare a predetermined concentration. C18Brar-oil-in-water (C18Brar-o/w) was prepared by adding 0.5% Tween-80.5% mineral oil to a PBS solution of C18Brar (94.5% PBS). Mice were administered 10 μg of spike protein alone or 10 μg of spike protein and each sample subcutaneously (base of tail, 100 μl/side). The doses per mouse of Empty-NP, C18Brar-NP and C18Brar-o/w were 7.65 mg, 7.65 mg and 50 μg, respectively. Blood was collected from the cheeks of the mice every week from week 0 (immediately before immunization) after immunization, and serum was collected. Also, the body weight of the mice was measured every week.
 12週の最初に、スパイクタンパク質10μgを含むPBSを1回目と同部位に再度投与することでブーストを行った。ブースト後は隔週で採血し、血清を回収した。体重の測定も同様に行った。 At the beginning of week 12, a boost was given by administering PBS containing 10 μg of spike protein again to the same site as the first. After the boost, blood was drawn every other week and serum was collected. Body weight was also measured in the same manner.
 血清中のスパイクタンパク質特異的な抗体量をELISA法で測定した。市販されている、スパイクタンパク質に対するモノクローナル抗体1A9(GENETEX社製)を標準として使用し、血清中のスパイクタンパク質特異的抗体量を定量した。血清は10%BSA/PBSで適宜100倍から10000倍に希釈して測定に用いた。 The amount of spike protein-specific antibody in serum was measured by ELISA. Using a commercially available monoclonal antibody 1A9 (manufactured by GENETEX) against the spike protein as a standard, the spike protein-specific antibody level in the serum was quantified. Serum was diluted with 10% BSA/PBS from 100-fold to 10000-fold and used for measurement.
 詳細には、表面にニッケルがコートされた96ウェルプレート(Themo Fisher Scientific社製)に、Hisタグが付加されたスパイクタンパク質(R&D社製)をコートした。希釈した血清、HRP標識抗マウスIgG(SouthernBiotech社製)及びTMB発色キット(住友ベークライト社製)を順に反応させ、OD450を測定した。1A9により得られた検量線で血清中の抗体量を数値化した。 Specifically, a 96-well plate (manufactured by Themo Fisher Scientific) whose surface was coated with nickel was coated with a His-tagged spike protein (manufactured by R&D). The diluted serum, HRP-labeled anti-mouse IgG (SouthernBiotech) and TMB coloring kit (Sumitomo Bakelite) were allowed to react in order, and OD450 was measured. The amount of antibody in the serum was quantified using the calibration curve obtained by 1A9.
 (結果)
 図4(A)、(B)、(C)及び(D)はそれぞれスパイクタンパク質のみ、Empty-NP、C18Brar-NP及びC18Brar-o/wを投与した各マウスの体重を示す。図5は、各サンプルを投与したマウスの平均体重を示す。いずれのサンプルでも体重の減少は見られなかった。
(result)
Figures 4 (A), (B), (C) and (D) show the body weight of mice administered spike protein alone, Empty-NP, C18Brar-NP and C18Brar-o/w, respectively. FIG. 5 shows the average body weight of mice administered each sample. No body weight loss was observed in any of the samples.
 図6(A)、(B)、(C)及び(D)はそれぞれスパイクタンパク質のみ、Empty-NP、C18Brar-NP及びC18Brar-o/wを投与した各マウスのIgGの量を示す。図7(A)はスパイクタンパク質特異的なIgGの量の平均値を示す。ブーストの後、C18Brar-NP投与群におけるIgGの量が顕著に増加した。図7(A)に示された0~7週のIgGの量の平均値を示す図7(B)によれば、ブーストの前でもC18Brar-NP投与群におけるIgGの量は増加していた。 Figures 6 (A), (B), (C) and (D) show the amount of IgG in each mouse administered spike protein alone, Empty-NP, C18Brar-NP and C18Brar-o/w, respectively. FIG. 7(A) shows the average amount of spike protein-specific IgG. After boosting, the amount of IgG in the C18Brar-NP administration group increased significantly. According to FIG. 7(B), which shows the average IgG amount from 0 to 7 weeks shown in FIG. 7(A), the amount of IgG in the C18Brar-NP administration group increased even before the boost.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等な発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of equivalent inventions are considered to be within the scope of the present invention.
 本出願は、2021年6月30日に出願された、日本国特許出願2021-108679号に基づく。本明細書中に日本国特許出願2021-108679号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2021-108679 filed on June 30, 2021. The entire specification, claims, and drawings of Japanese Patent Application No. 2021-108679 are incorporated herein by reference.
 本発明は、医薬品、特にワクチンの効果を増強させる免疫賦活剤に好適である。 The present invention is suitable for pharmaceuticals, especially immunostimulants that enhance the effects of vaccines.
  1、2 処理用面
  10、20 ホルダ
  11、21 処理部
  22 接面圧付与部
  30、50 導入部
  40 流体圧付与部
  60 流体供給部
  70 ケース
  100 薄膜回転式分散機
Reference Signs List 1, 2 processing surface 10, 20 holder 11, 21 processing unit 22 contact surface pressure applying unit 30, 50 introduction unit 40 fluid pressure applying unit 60 fluid supply unit 70 case 100 thin film rotary disperser

Claims (10)

  1.  式1の化合物
    Figure JPOXMLDOC01-appb-C000001
    [式1中、X及びXはそれぞれ独立してO又はNHから選択され、
     Y及びYはそれぞれ独立して-I、-Br、-Cl、-F、-OH、-R及びORを含む群から選択され、Rは炭素数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルから選択され、炭素数1~6のアルキル、炭素数2~6のアルケニル及び炭素数2~6のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよく、
     n及びmはそれぞれ独立して0~4であり、Z及びZはそれぞれ独立してR、-OR -NHR、-NHC(O)-R及びS-Rから選択され、Rは炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルから選択され、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されていてもよく、
     r及びsはそれぞれ独立して1~3であり、
     alk及びalkはそれぞれ独立して、炭素数1~4のアルキレン、炭素数2~4のアルケニレン及び炭素数2~4のアルキニレンから選択され、又はalk及びalkはそれぞれ存在せずにアリール環がC=Oの炭素に直接結合してもよく、
     n+r=1~5であり、m+s=1~5である。]
     を含有する生体適合性粒子を含む、免疫賦活剤。
    Compounds of Formula 1
    Figure JPOXMLDOC01-appb-C000001
    [wherein X a and X b are each independently selected from O or NH;
    Y a and Y b are each independently selected from the group comprising —I, —Br, —Cl, —F, —OH, —R 1 and OR 1 , wherein R 1 is alkyl having 1 to 6 carbon atoms, carbon selected from alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms, wherein alkyl having 1 to 6 carbon atoms, alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms are each —OH or 1 carbon atom; optionally substituted with ~6 alkoxy,
    n and m are each independently 0 to 4, and Z a and Z b are each independently selected from R 2 , —OR 2 , —NHR 2 , —NHC(O)—R 2 and SR 2 and R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms, and alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and each alkynyl of 5 to 26 may be substituted with -OH or alkoxy having 1 to 6 carbon atoms,
    r and s are each independently 1 to 3;
    alk a and alk b are each independently selected from alkylene of 1 to 4 carbon atoms, alkenylene of 2 to 4 carbon atoms and alkynylene of 2 to 4 carbon atoms, or alk a and alk b are each absent; the aryl ring may be directly attached to the carbon of C=O,
    n+r=1-5 and m+s=1-5. ]
    An immunostimulatory agent comprising a biocompatible particle containing
  2.  X及びXがOである、
     請求項1に記載の免疫賦活剤。
    X a and X b are O;
    The immunostimulant according to claim 1.
  3.  alk及びalkがそれぞれ存在せずにアリール環がC=Oの炭素に直接結合している、
     請求項1に記載の免疫賦活剤。
    the aryl ring is attached directly to the carbon of C═O in the absence of alk a and alk b respectively;
    The immunostimulant according to claim 1.
  4.  n及びmが1であり、
     Y及びYが、-OHである、
     請求項1から3のいずれか一項に記載の免疫賦活剤。
    n and m are 1;
    Y a and Y b are —OH;
    4. The immunostimulant according to any one of claims 1-3.
  5.  Z及びZが-ORであって、
     Rは、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルから選択され、炭素数5~26のアルキル、炭素数5~26のアルケニル及び炭素数5~26のアルキニルはそれぞれ、-OH又は炭素数1~6のアルコキシで置換されてもよい、
     請求項1から4のいずれか一項に記載の免疫賦活剤。
    Z a and Z b are —OR 2 ,
    R 2 is selected from alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and alkynyl having 5 to 26 carbon atoms, and alkyl having 5 to 26 carbon atoms, alkenyl having 5 to 26 carbon atoms and 5 carbon atoms. each alkynyl of ~26 may be substituted with -OH or alkoxy having 1 to 6 carbon atoms,
    5. The immunostimulant according to any one of claims 1-4.
  6.  Z及びZが-ORであって、
     Rが、炭素数18のアルキルであって、
     r及びsが1である、
     請求項1から5のいずれか一項に記載の免疫賦活剤。
    Z a and Z b are —OR 2 ,
    R 2 is alkyl having 18 carbon atoms,
    r and s are 1;
    6. The immunostimulant according to any one of claims 1-5.
  7.  前記生体適合性粒子は、乳酸・グリコール酸共重合体粒子である、
     請求項1から6のいずれか一項に記載の免疫賦活剤。
    The biocompatible particles are lactic acid/glycolic acid copolymer particles,
    7. The immunostimulant according to any one of claims 1-6.
  8.  前記生体適合性粒子の50%径は、
     200nm以下である、
     請求項1から7のいずれか一項に記載の免疫賦活剤。
    The 50% diameter of the biocompatible particles is
    is 200 nm or less,
    8. The immunostimulant according to any one of claims 1-7.
  9.  ワクチンと併用される、
     請求項1から8のいずれか一項に記載の免疫賦活剤。
    used in combination with vaccines
    9. The immunostimulant according to any one of claims 1-8.
  10.  前記ワクチンは、
     SARS-CoV-2に対するワクチンである、
     請求項9に記載の免疫賦活剤。
    The vaccine is
    is a vaccine against SARS-CoV-2,
    The immunostimulant according to claim 9.
PCT/JP2022/025905 2021-06-30 2022-06-29 Adjuvant WO2023277051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532008A JPWO2023277051A1 (en) 2021-06-30 2022-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108679 2021-06-30
JP2021-108679 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277051A1 true WO2023277051A1 (en) 2023-01-05

Family

ID=84690236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025905 WO2023277051A1 (en) 2021-06-30 2022-06-29 Adjuvant

Country Status (2)

Country Link
JP (1) JPWO2023277051A1 (en)
WO (1) WO2023277051A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504026A (en) * 1993-10-22 1997-04-22 ジェネンテク、インコーポレイテッド Process for producing microspheres comprising fluidized bed drying step
JP2013518058A (en) * 2010-01-24 2013-05-20 ノバルティス アーゲー Irradiated biodegradable microparticles
JP2016516048A (en) * 2013-03-14 2016-06-02 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Nanoparticle-based compositions
WO2019165114A1 (en) * 2018-02-21 2019-08-29 The University Of Montana Diaryl trehalose compounds and uses thereof
JP2021501791A (en) * 2017-11-02 2021-01-21 ヴィクトリア リンク リミテッド Blarte sewing analog

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504026A (en) * 1993-10-22 1997-04-22 ジェネンテク、インコーポレイテッド Process for producing microspheres comprising fluidized bed drying step
JP2013518058A (en) * 2010-01-24 2013-05-20 ノバルティス アーゲー Irradiated biodegradable microparticles
JP2016516048A (en) * 2013-03-14 2016-06-02 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Nanoparticle-based compositions
JP2021501791A (en) * 2017-11-02 2021-01-21 ヴィクトリア リンク リミテッド Blarte sewing analog
WO2019165114A1 (en) * 2018-02-21 2019-08-29 The University Of Montana Diaryl trehalose compounds and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAGAR LISA E.; SALAHUDEEN AMEEN; CONSTANTZ CHRISTIAN M.; WENDEL BEN S.; LYONS MICHAEL M.; MALLAJOSYULA VAMSEE; JATT LAUREN P.; ADA: "Modeling human adaptive immune responses with tonsil organoids", NATURE MEDICINE, NATURE PUBLISHING GROUP US, NEW YORK, vol. 27, no. 1, 1 January 2021 (2021-01-01), New York, pages 125 - 135, XP037335173, ISSN: 1078-8956, DOI: 10.1038/s41591-020-01145-0 *

Also Published As

Publication number Publication date
JPWO2023277051A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6548579B2 (en) Conjugate compound
US9920063B2 (en) Melampomagnolide B derivatives
US9908892B2 (en) Melampomagnolide B derivatives
US10188738B2 (en) Formulations useful in the treatment of proliferative diseases affecting the respiratory tract
EP2271661A2 (en) Compounds derived from muramyldipeptide
US20210332062A1 (en) Hetero-substituted cyclic lactone analogues and uses thereof
US10118935B2 (en) Melampomagnolide B dimers
Madge et al. Structure–activity analysis of cyclic multicomponent lipopeptide self-adjuvanting vaccine candidates presenting Group A Streptococcus antigens
WO2023277051A1 (en) Adjuvant
WO2019122050A1 (en) Methods of immunization
CN114206378A (en) TLR receptor ligand-based vaccine adjuvants
KR101912757B1 (en) mannose-decorated PLGA nanoparticles and composition for maturation of antigen-presenting cell comprising the same
WO2020009946A1 (en) Therapeutic compounds and methods of use thereof
CN117545479A (en) PI3K inhibitor, nano preparation and application thereof
JP7023460B2 (en) TLR ligand-immobilized nanoparticles
KR20170009590A (en) mannose-decorated PLGA nanoparticles and composition for maturation of antigen-presenting cell comprising the same
CN114340680A (en) Trans-cyclooctene bioorthogonal agents and uses in cancer and immunotherapy
Wang et al. Synthesis and immunological evaluation of Mincle ligands-based antitumor vaccines
US20160176839A1 (en) Dehydroleucodine derivatives and uses thereof
KR20230034175A (en) Composition for enhancing immune activity comprising tpp-pcl-tpp nanoparticles
KR20180099651A (en) Glycolipids and their use in the treatment of tumors
Meng et al. Strategic development of a self-adjuvanting SARS-CoV-2 RBD vaccine: From adjuvant screening to enhanced immunogenicity with a modified TLR7 agonist
EA046871B1 (en) VACCINE ADJUVANTS BASED ON TLR RECEPTOR LIGANDS
WO2023141693A1 (en) Synthetic glycolipids and glycoliposome compositions suitable for cargo delivery to the central nervous system
TW202432101A (en) Sting agonists

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532008

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833197

Country of ref document: EP

Kind code of ref document: A1