WO2023276835A1 - Speaker system - Google Patents

Speaker system Download PDF

Info

Publication number
WO2023276835A1
WO2023276835A1 PCT/JP2022/024978 JP2022024978W WO2023276835A1 WO 2023276835 A1 WO2023276835 A1 WO 2023276835A1 JP 2022024978 W JP2022024978 W JP 2022024978W WO 2023276835 A1 WO2023276835 A1 WO 2023276835A1
Authority
WO
WIPO (PCT)
Prior art keywords
speaker
speaker array
sound
speakers
array
Prior art date
Application number
PCT/JP2022/024978
Other languages
French (fr)
Japanese (ja)
Inventor
勉 貝塚
Original Assignee
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人工学院大学 filed Critical 学校法人工学院大学
Priority to JP2023531872A priority Critical patent/JPWO2023276835A1/ja
Publication of WO2023276835A1 publication Critical patent/WO2023276835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present disclosure relates to a speaker system.
  • Japanese Patent Application Laid-Open No. 2016-136656 discloses a speaker system including a speaker array configured by distributing a plurality of sub-speakers on an array surface and a mechanism for independently controlling the volume and amplitude phase of each sub-speaker. disclosed.
  • attention is focused on the cancellation phenomenon of sound that appears on a rectangular flat plate, and a technique is described for generating a local sound field by simulating the vibration mode of the rectangular flat plate with a speaker array.
  • the present disclosure obtains a speaker system capable of setting a listening point at an arbitrary position in a speaker system capable of generating a local sound field.
  • a speaker system includes a first speaker array configured by arranging a plurality of first speakers along a straight line, and a second speaker array configured by arranging a plurality of second speakers along the straight line. and a first phase setting unit that sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of first speakers constituting the first speaker array. and driving the plurality of second speakers constituting the second speaker array based on the tangential method so that sound beams are output in an arc shape that intersects with the beams output from the first speaker array. and a second phase setting unit that sets the phase of the signal.
  • the first speaker array includes a plurality of first speakers arranged in a straight line.
  • the second speaker array includes a plurality of second speakers arranged in a straight line.
  • the first phase setting unit sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of first speakers.
  • the second phase setting unit sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of second speakers.
  • the second phase setting unit sets the phase of the driving signal so that a sound beam that intersects with the beam output from the first speaker array is output.
  • arc shape is not limited to a perfect circular arc, but is a concept that includes a wide range of convex curve shapes.
  • the beam output from the first speaker array and the beam output from the second speaker array have a symmetrical shape.
  • symmetrical shape is a concept that includes a wide range of horizontally inverted shapes and vertically inverted shapes.
  • a speaker system is the first aspect or the second aspect, wherein the number of the first speakers forming the first speaker array is the same as the number of the second speakers forming the second speaker array. is a number.
  • the circular arcs of the sound beams have the same shape. This facilitates the setting of listening points.
  • the interval between the adjacent first speakers and the interval between the adjacent second speakers are set to be the same.
  • the circular arcs of the sound beams have the same shape. This facilitates the setting of listening points.
  • a speaker system is, in any one aspect of the first to first aspects, wherein the first speaker and the second speaker are arranged at an interval of half or less of the upper limit wavelength in the frequency band of the sound to be output. are placed.
  • spatial aliasing (spatial error and spectral error) can be suppressed.
  • a speaker system in any one of the first to fifth aspects, comprises a moving mechanism for moving the position of at least one of the first speaker array and the second speaker array.
  • the listening point can be changed at any time by moving the first speaker array and the second speaker array with the moving mechanism.
  • a speaker system is any one of the first to sixth aspects, wherein the shape of the beam output from at least one of the first speaker array and the second speaker array is variable.
  • the speaker system by changing the shape of the beam, it is possible to change the position of the listening point without moving the speaker array itself.
  • a method of changing the shape of the beam there is a method of stopping the output of some of the speakers that make up the speaker array, and a method of changing the phase of each speaker so as to correspond to the tangent line of the arc-shaped beam after the change. and various other methods can be employed.
  • the speaker system According to the speaker system according to the present disclosure, it is possible to set a listening point at an arbitrary position in a speaker system capable of generating a local sound field.
  • FIG. 1 is a model diagram schematically showing a beam of sound generated by a speaker system according to an embodiment
  • FIG. 2 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 1, showing the sound pressure distribution in a two-dimensional plane
  • 2 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 1, showing the sound pressure distribution in three-dimensional space
  • 3 is a graph showing the sound pressure distribution corresponding to FIG. 2 when a rigid sphere with a diameter of 0.1 m is placed at the listening point.
  • 3 is a graph showing the sound pressure distribution corresponding to FIG. 2 when a rigid sphere with a diameter of 0.2 m is placed at the listening point.
  • 3 is a graph showing the sound pressure distribution corresponding to FIG.
  • FIG. 11 is a model diagram schematically showing sound beams generated by a speaker system according to a modification
  • 1 is a model diagram schematically showing a sound beam generated by the tangent method
  • FIG. 5 is a model diagram schematically showing a sound beam generated by a method according to a comparative example
  • 12 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 11, showing the distribution in a two-dimensional plane;
  • a speaker system according to an embodiment will be described with reference to the drawings.
  • the speaker system of this embodiment uses the principle of generating sound beams by the tangent method.
  • the principle of the tangent method will be described below with reference to FIG.
  • Equation (2) the relationship between the distance along the x-axis and the phase shift is expressed by Equation (2).
  • Formula (3) is derived from formula (2) above.
  • equation (3) d ⁇ is the phase shift between adjacent point sources, dx is the distance between adjacent point sources, and k is the wavenumber.
  • Equation (4) shows the spatial phase profile of an array of point sources for generating a local sound field along the semicircle C, ie the phase ⁇ of the source at location x. Therefore, when the number of point sound sources of the speaker array is N, it is represented by Equation (5).
  • a method of setting the spatial phase profile of the speaker array by such a method is called a tangent method.
  • speaker system 10 includes first speaker array 12 and second speaker array 14 .
  • the first speaker array 12 is a linear array, and is configured by arranging a plurality of first speakers 16 at equal intervals on a straight line.
  • the size of the first speaker array 12 and the number and spacing of the first speakers 16 are changed according to the position of the listening point and the frequency band of sound to be output, which will be described later.
  • the audio frequency band is set to 300 Hz to 3400 Hz.
  • the interval between the first speakers 16 serving as point sound sources is set to 0.05 m, and the number of the first speakers 16 is 21. As shown in FIG. That is, the interval between adjacent first speakers 16 is set to a value less than half the wavelength of the sound wave of 3400 Hz.
  • the second speaker array 14 is a linear array, and is configured by arranging a plurality of second speakers 18 at equal intervals on a straight line.
  • the size of the second speaker array 14 and the number and spacing of the second speakers 18 are changed according to the position of the listening point and the frequency band of the sound to be output, which will be described later.
  • the second speaker array 14 has the same configuration as the first speaker array 12 . That is, the interval between the adjacent second speakers 18 is set to 0.05 m, and the number of the second speakers 18 is 21 pieces.
  • the first speaker array 12 is electrically connected to the first phase setting section 20
  • the second speaker array 14 is electrically connected to the second phase setting section 22 .
  • the first phase setting section 20 sets the phase of the driving signal for each of the plurality of first speakers 16
  • the second phase setting unit 22 sets the phase of the drive signal for each of the plurality of second speakers 18 .
  • a plurality of wirings extend from the first phase setting section 20 and each wiring is connected to the first speaker 16
  • a plurality of wirings extend from the second phase setting section 22 and each wiring is connected to the second speaker 18 .
  • the first speaker array 12 is arranged in a range AR1 from coordinates (0, 0) to coordinates (a, 0) on the x axis.
  • the length of the first speaker array 12 is set to 1.0 m, so the length from coordinates (0, 0) to coordinates (a, 0) is 1.0 m.
  • the spatial phase profile of the first speaker array 12 set by the first phase setting unit 20 based on the tangent method generates a quadrant arc C1 centered at coordinates (a, 0).
  • the first phase setting unit 20 controls the plurality of first speakers 16 constituting the first speaker array 12 based on the tangential method so that sound beams are output in quadrant arcs. to set the phase of the drive signal.
  • the second speaker array 14 is arranged in a range AR2 from coordinates (b, 0) to coordinates (a+b, 0) on the x-axis.
  • the second speaker array 14 is partially overlapped with the arrangement area of the first speakers 16. set on a straight line.
  • the spatial phase profile of the second speaker array 14 set by the second phase setting unit 22 based on the tangent method generates a quadrant arc C2 centered at the coordinates (a+b, a).
  • the arc C2 has a symmetrical shape with respect to the arc C1, and more specifically, has a horizontally inverted shape.
  • the second phase setting unit 22 outputs sound beams to the plurality of second speakers 18 constituting the second speaker array 14 in the shape of a quadrant arc that is horizontally inverted from the arc C1.
  • the y-coordinate of the intersection point LP1 is equal to the distance from the array surfaces of the first speaker array 12 and the second speaker array 14 to the listening point. Therefore, by changing the coordinates a and b in FIG. 1, the distance of the listening point can be adjusted. That is, by changing the arrangement range of the first speaker array 12 and the arrangement range of the second speaker array 14, the shape (size) of the arc of the sound beam changes, so that the listening point changes.
  • the local sound field generated by the speaker system 10 is axially symmetrical with respect to the x axis. Therefore, it is possible to confine the local sound field in a three-dimensional space.
  • the second phase setting unit 22 outputs sound beams in an arc shape (symmetrical shape) that is horizontally inverted from the beams output from the first speaker array 12.
  • Set the phase of the drive signal to Thereby, the sound beam output from the first speaker array 12 and the sound beam output from the second speaker array 14 are symmetrical in plan view, and the sound pressure can be strengthened at the intersection LP1.
  • the listening point can be set at an arbitrary position. That is, a listening point can be set at an arbitrary position in a speaker system capable of generating a local sound field.
  • the configurations of the first speaker array 12 and the second speaker array 14 are the same, so that the arcs C1 and C2 of the sound beams have the same shape. This facilitates setting of the intersection point LP1.
  • spatial aliasing can be suppressed by setting the interval between adjacent first speakers 16 and the interval between adjacent second speakers 18 to half or less of the wavelength.
  • the sound pressure distributions shown in FIGS. 2 and 3 are the sound pressure distributions when the first speaker array 12 and the second speaker array 14 are arranged at the positions shown in FIG. 1 and sound is produced at 2000 Hz. That is, the radius of the curved trajectory of the sound beam is 1.0 m, and the y-coordinate of the listening point LP1 is 0.5 m. In other words, the listening point is set at a position 0.5 m away from the array surface.
  • the sound pressure distribution is based on simulation results using the finite element method and the boundary element method, and darker areas like the roughly triangular area in the lower part of Fig. 2 indicate high sound pressure. . Also, the color is lighter outside the region, indicating that the sound pressure is lower.
  • the streak-like portions extending in the y-direction on the left and right sides of the approximately triangular region are shown in dark colors to distinguish them from other regions. This is a low pressure area.
  • the beams of the first speaker array 12 and the second speaker array 14 overlap with the same amplitude and phase, so it can be confirmed that the sound pressure is improved. Also, the reason why the sound pressure in the area from the listening point to the array surface is high is due to side lobes.
  • the side lobes of the first speaker array 12 and the side lobes of the second speaker array 14 overlap, so the sound pressure is high.
  • the side lobes do not overlap each other, the sound pressure is low.
  • the local sound field is confined in the region from the listening point to the array plane. Note that when only the first speaker array 12 is output, side lobes appear outside the arc C1. Similarly, when only the second speaker array 14 is output, side lobes appear outside the arc C2.
  • FIG. 11 schematically shows a sound beam generated by the principle of delay-and-sum beamformer instead of the tangent method.
  • the shape of the speaker array and the listening point are set in the same manner as in the embodiment.
  • a beam is generated in a straight line from coordinates (a/2, 0), which is the center point of the first speaker array, toward the intersection point LP2, which is the listening point. has a tilt angle of ⁇ 2.
  • the spatial profile of the first speaker array is represented by Equation (8).
  • the spatial phase profile of the second speaker array is horizontally inverted with respect to the first speaker array.
  • the propagation direction of sound waves can be controlled, but the beam length cannot be controlled.
  • Fig. 12 shows the sound pressure distribution according to the principle of the delay-and-sum beamformer. Looking at this sound pressure distribution, it can be seen that the sound field is not confined to the area between the listening point LP2 and the array surface, but is widely diffused. This is presumably because the delay-and-sum beamformer method cannot control the beam length.
  • FIG. 4 shows the sound pressure distribution when a rigid sphere with a diameter of 0.1 m is placed near the listening point.
  • FIG. 5 shows the sound pressure distribution when a rigid sphere with a diameter of 0.2 m is placed near the listening point.
  • 6 and 7 show the sound pressure distribution when a rigid sphere with a diameter of 0.4 m is placed near the listening point.
  • a rigid sphere with a diameter of 0.2 m is about the size of a listener's head and is close to the size of an acoustic wavelength (0.17 m).
  • a rigid sphere with a diameter of 0.1 m is smaller than the acoustic wavelength.
  • the speaker system 10 can be implemented in various ways without departing from the gist of the present disclosure.
  • the spatial phase profile of the first speaker array 12 generates a quadrant arc C1
  • the spatial phase profile of the second speaker array 14 generates a quadrant arc C1.
  • C2 was generated, but is not limited to this. That is, an arc-shaped beam shorter than a quadrant may be generated as in the modification shown in FIG.
  • the first speaker array 12 is arranged in a range AR1 on the x-axis, which is shorter than in FIG.
  • the second speaker array 14 is arranged in a range AR2 on the x-axis, which is shorter than in FIG.
  • An arc-shaped beam is generated by the spatial phase profile of the first speaker array 12 set by the first phase setting unit 20 based on the tangent method.
  • an arc-shaped beam that is slightly longer than the intersection point LP1 is generated, and the position where the tangent line of the arc at the intersection point LP1 intersects the x-axis is one end of the range AR1.
  • the other end of the range AR1 is a point with coordinates (0, 0).
  • An arc-shaped beam is generated by the spatial phase profile of the second speaker array 14 set by the second phase setting unit 22 based on the tangent method.
  • an arc-shaped beam that is slightly longer than the intersection point LP1 is generated, and the position where the tangent line of the arc at the intersection point LP1 intersects the x-axis is one end of the range AR2.
  • the other end of the range AR2 is set at the intersection of the arc and the x-axis.
  • the installation range AR1 of the first speaker array 12 and the installation range AR2 of the second speaker array 14 are arranged so as not to overlap. Even in this case, the local sound field can be confined between the intersection point LP1 and the array surface as in the embodiment.
  • first speaker array 12 and the second speaker array 14 are fixed in the above embodiment, the present invention is not limited to this, and at least one of the first speaker array 12 and the second speaker array 14 may be configured to be movable. good.
  • first speaker array 12 and the second speaker array 14 are supported by a support member (not shown), and driving force such as a motor is used to move the first speaker array 12 and the second speaker array 14 along the x-axis and the y-axis, respectively.
  • driving force such as a motor is used to move the first speaker array 12 and the second speaker array 14 along the x-axis and the y-axis, respectively.
  • a moving mechanism that can move may be provided.
  • the first speaker array 12 and the second speaker array 14 can be moved at any time according to the position of the desired listening point.
  • the interval between the first speaker 16 and the second speaker 18 is set to 0.05 m, and the number of the first speaker 16 and the second speaker 18 is set to 21.
  • the number of the first speakers 16 and the second speakers 18 may be reduced so that the size of the arc becomes smaller. Also, the number of the first speakers 16 and the number of the second speakers 18 may be different.
  • the interval between the first speaker 16 and the second speaker 18 is not limited either.
  • the interval may be set without considering the wavelength of the frequency band of the sound to be output.
  • the intervals between the first speaker 16 and the second speaker 18 may not be equal, but may be arranged at different intervals.
  • the first phase setting section 20 and the second phase setting section 22 have been described as independent setting sections, but the present invention is not limited to this.
  • the beam output from the first speaker array 12 and the beam output from the second speaker array 14 are reversed in the horizontal direction.
  • arc C1 and arc C2 may be designed to have different shapes.
  • vertically inverted sound beams may be output from two speaker arrays.
  • the present invention is not limited to this.
  • a speaker system in which the first speaker array and the second speaker array are integrally formed may be employed.
  • the first phase setting unit 20 is driven based on the tangential method so that the sound beams are output in the quadrant arc C1 to the plurality of speakers constituting the first speaker array.
  • the phase of the signal is set, and the second phase setting unit outputs sound beams in the shape of an arc C2, which is a quadrant horizontally inverted from the arc C1, to the plurality of speakers forming the second speaker array.
  • phase of the driving signal is set based on the tangent line method, the same effect as the above embodiment can be obtained.
  • the functions of the first phase setting section 20 and the second phase setting section may be realized by one phase setting section.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

A speaker system (10) comprises: a first speaker array (12) configured by arranging a plurality of first speakers (16) on a straight line; and a second speaker array (14) configured by arranging a plurality of second speakers (18) on a straight line. A first phase setting unit (20) sets, for the plurality of first speakers (16), a phase of a drive signal on the basis of a tangent method so as to output a sound beam in the shape of a circular arc C1. A second phase setting unit (22) sets, for the plurality of second speakers (18), the phase of the drive signal on the basis of the tangent method so as to output a sound beam in the shape of a circular arc C2. Thus, a listening point is set at the point of intersection LP1 between the two circular arcs C1 and C2.

Description

スピーカシステムspeaker system
 本開示は、スピーカシステムに関する。 The present disclosure relates to a speaker system.
 スピーカから出力した音を特定のエリア内でのみ聞こえるようにする、所謂、局所音場の生成に関する技術が研究されている。特開2016-136656号公報には、アレイ面に複数のサブスピーカを分散配置して構成されたスピーカアレイと、各サブスピーカの音量と振幅の位相を独立制御する機構とを備えたスピーカシステムが開示されている。このスピーカシステムでは、矩形平板に発現する音のキャンセレーション現象に着目し、矩形平板の振動モードをスピーカアレイで模擬することによって局所音場を生成する技術について記載されている。また、接線法(停留位相法ともいう)の原理を用いて円弧状に音のビームを生成する技術について知られている(Zhao, et al., J. Acoust. Soc. Am. 137(2), 1036-1039, 2015 、Zhao, et al., ICSV22, Florence, Italy, 12-16 July 2015)  Technologies related to the generation of a so-called local sound field are being researched so that the sound output from the speaker can be heard only within a specific area. Japanese Patent Application Laid-Open No. 2016-136656 discloses a speaker system including a speaker array configured by distributing a plurality of sub-speakers on an array surface and a mechanism for independently controlling the volume and amplitude phase of each sub-speaker. disclosed. In this speaker system, attention is focused on the cancellation phenomenon of sound that appears on a rectangular flat plate, and a technique is described for generating a local sound field by simulating the vibration mode of the rectangular flat plate with a speaker array. Also known is a technique for generating an arc-shaped sound beam using the principle of the tangent method (also called the stationary phase method) (Zhao, et al., J. Acoust. Soc. Am. 137(2) , 1036-1039, 2015, Zhao, et al., ICSV22, Florence, Italy, 12-16 July 2015)
 上記の技術は、何れも局所音場の生成に関するものであるが、聴取点を任意の位置に設定可能とするには改善の余地がある。 All of the above technologies relate to the generation of a local sound field, but there is room for improvement in making it possible to set the listening point at any position.
 本開示は、局所音場を生成可能なスピーカシステムにおいて、任意の位置に聴取点を設定可能なスピーカシステムを得る。 The present disclosure obtains a speaker system capable of setting a listening point at an arbitrary position in a speaker system capable of generating a local sound field.
 第1態様に係るスピーカシステムは、直線上に複数の第1スピーカを配置して構成された第1スピーカアレイと、前記直線上に複数の第2スピーカを配置して構成された第2スピーカアレイと、前記第1スピーカアレイを構成する複数の前記第1スピーカに対して、円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する第1位相設定部と、前記第2スピーカアレイを構成する複数の前記第2スピーカに対して、前記第1スピーカアレイから出力された前記ビームと交わる円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する第2位相設定部と、を有する。 A speaker system according to a first aspect includes a first speaker array configured by arranging a plurality of first speakers along a straight line, and a second speaker array configured by arranging a plurality of second speakers along the straight line. and a first phase setting unit that sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of first speakers constituting the first speaker array. and driving the plurality of second speakers constituting the second speaker array based on the tangential method so that sound beams are output in an arc shape that intersects with the beams output from the first speaker array. and a second phase setting unit that sets the phase of the signal.
 第1態様に係るスピーカシステムでは、第1スピーカアレイは、直線上に配置された複数の第1スピーカを備えている。また、第2スピーカアレイは、直線上に配置された複数の第2スピーカを備えている。 In the speaker system according to the first aspect, the first speaker array includes a plurality of first speakers arranged in a straight line. Also, the second speaker array includes a plurality of second speakers arranged in a straight line.
 第1位相設定部は、複数の第1スピーカに対して、円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する。また、第2位相設定部は、複数の第2スピーカに対して、円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する。ここで、第2位相設定部は、第1スピーカアレイから出力されたビームと交わる音のビームが出力されるように駆動信号の位相を設定する。これにより、第1スピーカアレイから出力された音のビームと、第2スピーカアレイから出力された音のビームの振幅及び位相をそれぞれ調整することにより、ビームの交点で音圧を略2倍まで強めることができる。この結果、音のビームの交点を聴取点とした局所音場を生成することができる。また、音のビームの大きさ又は位置を変更すれば、交点が変化するため、任意の位置に聴取点を設定することができる。なお、ここでいう円弧状とは、真円の円弧に限定されるものではなく、凸状の曲線形状を広く含む概念である。 The first phase setting unit sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of first speakers. The second phase setting unit sets the phase of the drive signal based on the tangent method so that the sound beams are output in an arc shape to the plurality of second speakers. Here, the second phase setting unit sets the phase of the driving signal so that a sound beam that intersects with the beam output from the first speaker array is output. By adjusting the amplitude and phase of the beam of sound output from the first speaker array and the beam of sound output from the second speaker array, the sound pressure at the intersection of the beams is increased to approximately double. be able to. As a result, it is possible to generate a local sound field with the intersection of the sound beams as the listening point. Also, if the size or position of the sound beam is changed, the intersection will change, so the listening point can be set at any position. The term "arc shape" as used herein is not limited to a perfect circular arc, but is a concept that includes a wide range of convex curve shapes.
 第2態様に係るスピーカシステムは、第1態様において、前記第1スピーカアレイから出力された前記ビームと、前記第2スピーカアレイから出力された前記ビームとが対称な形状となっている。 In the speaker system according to the second aspect, in the first aspect, the beam output from the first speaker array and the beam output from the second speaker array have a symmetrical shape.
 第2態様に係るスピーカシステムでは、第1スピーカアレイと第2スピーカアレイとで対称な形状の音のビームが出力されるため、交点となる聴取点の設定が容易となる。なお、ここでいう「対称な形状」とは、水平方向に反転した形状、及び鉛直方向に反転した形状を広く含む概念である。 In the speaker system according to the second aspect, since the first speaker array and the second speaker array output symmetrical sound beams, it is easy to set the listening point that is the intersection point. The term "symmetrical shape" as used herein is a concept that includes a wide range of horizontally inverted shapes and vertically inverted shapes.
 第3態様に係るスピーカシステムは、第1態様又は第2態様において、前記第1スピーカアレイを構成する前記第1スピーカの数と、前記第2スピーカアレイを構成する前記第2スピーカの数が同じ数である。 A speaker system according to a third aspect is the first aspect or the second aspect, wherein the number of the first speakers forming the first speaker array is the same as the number of the second speakers forming the second speaker array. is a number.
 第3態様に係るスピーカシステムでは、第1スピーカアレイと第2スピーカアレイの数を同じ数とすることにより、音のビームの円弧が同様の形状となる。これにより、聴取点の設定が容易となる。 In the speaker system according to the third aspect, by setting the number of the first speaker arrays and the number of the second speaker arrays to be the same, the circular arcs of the sound beams have the same shape. This facilitates the setting of listening points.
 第4態様に係るスピーカシステムは、第1態様~第3態様の何れか1態様において、隣り合う前記第1スピーカの間隔と隣り合う前記第2スピーカの間隔が同じ間隔に設定されている。 In the speaker system according to the fourth aspect, in any one of the first to third aspects, the interval between the adjacent first speakers and the interval between the adjacent second speakers are set to be the same.
 第4態様に係るスピーカシステムでは、第1スピーカアレイと第2スピーカアレイの数を同じ数とすることにより、音のビームの円弧が同様の形状となる。これにより、聴取点の設定が容易となる。 In the speaker system according to the fourth aspect, by setting the number of the first speaker arrays and the number of the second speaker arrays to be the same, the circular arcs of the sound beams have the same shape. This facilitates the setting of listening points.
 第5態様に係るスピーカシステムは、第1態様~第1態様の何れか1態様において、前記第1スピーカ及び前記第2スピーカは、出力する音の周波数帯域における上限の波長の半分以下の間隔で配置されている。 A speaker system according to a fifth aspect is, in any one aspect of the first to first aspects, wherein the first speaker and the second speaker are arranged at an interval of half or less of the upper limit wavelength in the frequency band of the sound to be output. are placed.
 第5態様に係るスピーカシステムでは、隣り合う第1スピーカの間隔、及び隣り合う第2スピーカの間隔をそれぞれ波長の半分以下とすることで、空間エイリアジング(音場に生じる空間的な誤差やスペクトル上の誤差)を抑制することができる。 In the speaker system according to the fifth aspect, spatial aliasing (spatial error and spectral error) can be suppressed.
 第6態様に係るスピーカシステムは、第1態様~第5態様の何れか1態様において、前記第1スピーカアレイ及び前記第2スピーカアレイの少なくとも一方の位置を移動させる移動機構を備えている。 A speaker system according to a sixth aspect, in any one of the first to fifth aspects, comprises a moving mechanism for moving the position of at least one of the first speaker array and the second speaker array.
 第6態様に係るスピーカシステムでは、移動機構によって第1スピーカアレイ及び第2スピーカアレイを移動させることで、聴取点を随時変更することが可能となる。 In the speaker system according to the sixth aspect, the listening point can be changed at any time by moving the first speaker array and the second speaker array with the moving mechanism.
 第7態様に係るスピーカシステムは、第1態様~第6態様の何れか1態様において、前記第1スピーカアレイ及び前記第2スピーカアレイの少なくとも一方から出力する前記ビームの形状が変化可能となっている。 A speaker system according to a seventh aspect is any one of the first to sixth aspects, wherein the shape of the beam output from at least one of the first speaker array and the second speaker array is variable. there is
 第7態様に係るスピーカシステムでは、ビームの形状を変化させることで、スピーカアレイ自体を移動させることなく聴取点の位置を変更することができる。なお、ビームの形状を変化させる方法として、スピーカアレイを構成するスピーカの一部の出力を停止させる方法や、変更後の円弧状のビームの接線に対応するように各スピーカの位相を変化させる方法など種々の方法を採用し得る。 In the speaker system according to the seventh aspect, by changing the shape of the beam, it is possible to change the position of the listening point without moving the speaker array itself. As a method of changing the shape of the beam, there is a method of stopping the output of some of the speakers that make up the speaker array, and a method of changing the phase of each speaker so as to correspond to the tangent line of the arc-shaped beam after the change. and various other methods can be employed.
 以上説明したように、本開示に係るスピーカシステムによれば、局所音場を生成可能なスピーカシステムにおいて、任意の位置に聴取点を設定することができる。 As described above, according to the speaker system according to the present disclosure, it is possible to set a listening point at an arbitrary position in a speaker system capable of generating a local sound field.
実施形態に係るスピーカシステムによって生成される音のビームを概略的に示すモデル図である。1 is a model diagram schematically showing a beam of sound generated by a speaker system according to an embodiment; FIG. 図1に示す音のビームによって生成された音圧分布を示すグラフであり、二次元平面における音圧分布が示されている。2 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 1, showing the sound pressure distribution in a two-dimensional plane; 図1に示す音のビームによって生成された音圧分布を示すグラフであり、三次元空間における音圧分布が示されている。2 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 1, showing the sound pressure distribution in three-dimensional space; 聴取点に直系0.1mの剛球を配置した際における、図2に対応する音圧分布を示すグラフである。3 is a graph showing the sound pressure distribution corresponding to FIG. 2 when a rigid sphere with a diameter of 0.1 m is placed at the listening point. 聴取点に直系0.2mの剛球を配置した際における、図2に対応する音圧分布を示すグラフである。3 is a graph showing the sound pressure distribution corresponding to FIG. 2 when a rigid sphere with a diameter of 0.2 m is placed at the listening point. 聴取点に直系0.4mの剛球を配置した際における、図2に対応する音圧分布を示すグラフである。3 is a graph showing the sound pressure distribution corresponding to FIG. 2 when a rigid sphere with a diameter of 0.4 m is placed at the listening point. 聴取点に直系0.4mの剛球を配置した際における、図3に対応する音圧分布を示すグラフである。4 is a graph showing the sound pressure distribution corresponding to FIG. 3 when a rigid sphere with a diameter of 0.4 m is placed at the listening point. 実施形態における第1スピーカアレイ及び第2スピーカアレイを模式的に示す模式図である。3 is a schematic diagram schematically showing a first speaker array and a second speaker array in the embodiment; FIG. 変形例に係るスピーカシステムによって生成される音のビームを概略的に示すモデル図である。FIG. 11 is a model diagram schematically showing sound beams generated by a speaker system according to a modification; 接線法で生成された音のビームを概略的に示すモデル図である。1 is a model diagram schematically showing a sound beam generated by the tangent method; FIG. 比較例に係る方法で生成された音のビームを概略的に示すモデル図である。FIG. 5 is a model diagram schematically showing a sound beam generated by a method according to a comparative example; 図11に示す音のビームによって生成された音圧分布を示すグラフであり、二次元平面における分布が示されている。12 is a graph showing the sound pressure distribution generated by the sound beam shown in FIG. 11, showing the distribution in a two-dimensional plane;
 実施形態に係るスピーカシステムについて、図面を参照して説明する。本実施形態のスピーカシステムでは、接線法によって音のビームを生成する原理を用いる。以下、図10を参照して接線法の原理を説明する。 A speaker system according to an embodiment will be described with reference to the drawings. The speaker system of this embodiment uses the principle of generating sound beams by the tangent method. The principle of the tangent method will be described below with reference to FIG.
(接線法)
 図10に示されるように、接線法によって生成される音のビームの曲線軌道は、座標(0,a)を中心とする半円Cとみなす。半円C上の一点の接線Lについて考える。接線Lとy軸との角度をθとし、接線Lとx軸との交点をxとすると、式(1)の関係式が求められる。
(tangent method)
As shown in FIG. 10, the curved trajectory of the sound beam generated by the tangent method is regarded as a semicircle C centered at coordinates (0, a). Consider a tangent line L to a point on a semicircle C. Assuming that the angle between the tangent line L and the y-axis is θ, and the intersection of the tangent line L and the x-axis is x, the relational expression (1) is obtained.
Figure JPOXMLDOC01-appb-M000001

・・・・(1)
Figure JPOXMLDOC01-appb-M000001

(1)
 また、座標(x,0)における点音源の位相をφ(x)とした場合、x軸に沿った距離と位相シフトとの関係は式(2)であらわされる。 Also, when the phase of the point sound source at the coordinates (x, 0) is φ(x), the relationship between the distance along the x-axis and the phase shift is expressed by Equation (2).
Figure JPOXMLDOC01-appb-M000002

・・・・(2)
Figure JPOXMLDOC01-appb-M000002

... (2)
 上記式(2)から式(3)が導かれる。 Formula (3) is derived from formula (2) above.
Figure JPOXMLDOC01-appb-M000003

・・・・(3)
Figure JPOXMLDOC01-appb-M000003

... (3)
 上記式(3)において、dφは隣接する点音源間の位相シフトであり、dxは隣接する点音源間の距離であり、kは波数である。ここで、式(3)に式(1)を代入して積分すると、式(4)が求められる。 In the above equation (3), dφ is the phase shift between adjacent point sources, dx is the distance between adjacent point sources, and k is the wavenumber. Here, by substituting equation (1) into equation (3) and integrating, equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004

・・・・(4)
Figure JPOXMLDOC01-appb-M000004

... (4)
 上記の式(4)は、半円Cに沿って局所音場を生成するための点音源のアレイの空間位相プロファイル、すなわち、場所xにおける音源の位相φを示す。このため、スピーカアレイの点音源がN点である場合は、式(5)のように表される。 Equation (4) above shows the spatial phase profile of an array of point sources for generating a local sound field along the semicircle C, ie the phase φ of the source at location x. Therefore, when the number of point sound sources of the speaker array is N, it is represented by Equation (5).
Figure JPOXMLDOC01-appb-M000005

・・・・(5)
Figure JPOXMLDOC01-appb-M000005

(5)
 ここで、x=ndは、n番目の点音源の位置を示しており、n=0,1,2・・・dは、隣接する点音源間の距離を示している。そして、このような方法によってスピーカアレイの空間位相プロファイルを設定する方法が接線法といわれている。 Here, xn =nd indicates the position of the n-th point sound source, and n=0, 1, 2, . . . d indicates the distance between adjacent point sound sources. A method of setting the spatial phase profile of the speaker array by such a method is called a tangent method.
 接線法では、円上の単一の点から延在させた接線上の点音源のみが接点の音圧に影響する。すなわち、図10において、半円C上の単一点と接する接線Lを考えた際に、この接線Lとx軸が交わる点に配置された点音源のみが単一点の音圧に寄与する。一方、接線Lとx軸が交わる点から離れた位置に配置された点音源は互いにキャンセルされる。この結果、接線法では、図10における半円C上でのみ音圧が維持されることとなり、円弧状の音のビームが生成される。 In the tangent method, only point sound sources on the tangent line extending from a single point on the circle affect the sound pressure at the contact. That is, in FIG. 10, when considering a tangent line L tangent to a single point on the semicircle C, only the point sound source arranged at the point where the tangent line L and the x-axis intersect contributes to the sound pressure at the single point. On the other hand, point sound sources arranged at positions distant from the point where the tangent line L and the x-axis intersect cancel each other. As a result, in the tangent method, the sound pressure is maintained only on the semicircle C in FIG. 10, and an arc-shaped sound beam is generated.
(スピーカシステム10の構成)
 次に、接線法を応用した本実施形態に係るスピーカシステム10について説明する。図8に示されるように、スピーカシステム10は、第1スピーカアレイ12と第2スピーカアレイ14とを含んで構成されている。
(Structure of speaker system 10)
Next, the speaker system 10 according to this embodiment to which the tangent method is applied will be described. As shown in FIG. 8, speaker system 10 includes first speaker array 12 and second speaker array 14 .
 第1スピーカアレイ12は、直線状のアレイであり、直線上に等間隔で複数の第1スピーカ16を配置して構成されている。第1スピーカアレイ12のサイズ、第1スピーカ16の数及び間隔は、後述する聴取点の位置及び出力したい音声の周波数帯域に応じて変更される。 The first speaker array 12 is a linear array, and is configured by arranging a plurality of first speakers 16 at equal intervals on a straight line. The size of the first speaker array 12 and the number and spacing of the first speakers 16 are changed according to the position of the listening point and the frequency band of sound to be output, which will be described later.
 本実施形態では一例として、音声の周波数帯域を300Hz~3400Hzに設定する。そして、点音源となる第1スピーカ16の間隔は、0.05mに設定されており、第1スピーカ16の数は21個となっている。すなわち、隣り合う第1スピーカ16の間隔は、3400Hzの音波の波長の半分以下の値に設定されている。 In this embodiment, as an example, the audio frequency band is set to 300 Hz to 3400 Hz. The interval between the first speakers 16 serving as point sound sources is set to 0.05 m, and the number of the first speakers 16 is 21. As shown in FIG. That is, the interval between adjacent first speakers 16 is set to a value less than half the wavelength of the sound wave of 3400 Hz.
 第2スピーカアレイ14は、直線状のアレイであり、直線上に等間隔で複数の第2スピーカ18を配置して構成されている。第2スピーカアレイ14のサイズ、第2スピーカ18の数及び間隔は、後述する聴取点の位置及び出力したい音声の周波数帯域に応じて変更される。本実施形態では一例として、第2スピーカアレイ14を第1スピーカアレイ12と同様の構成としている。すなわち、隣り合う第2スピーカ18の間隔は、0.05mに設定されており、第2スピーカ18の数は21個となっている。 The second speaker array 14 is a linear array, and is configured by arranging a plurality of second speakers 18 at equal intervals on a straight line. The size of the second speaker array 14 and the number and spacing of the second speakers 18 are changed according to the position of the listening point and the frequency band of the sound to be output, which will be described later. In this embodiment, as an example, the second speaker array 14 has the same configuration as the first speaker array 12 . That is, the interval between the adjacent second speakers 18 is set to 0.05 m, and the number of the second speakers 18 is 21 pieces.
 第1スピーカアレイ12は、第1位相設定部20と電気的に接続されており、第2スピーカアレイ14は、第2位相設定部22と電気的に接続されている。第1位相設定部20は、複数の第1スピーカ16のそれぞれに対して駆動信号の位相を設定する。また、第2位相設定部22は、複数の第2スピーカ18のそれぞれに対して駆動信号の位相を設定する。なお、図示を省略するが、第1位相設定部20から複数の配線が延びており、それぞれの配線が第1スピーカ16に接続される。同様に、第2位相設定部22から複数の配線が延びており、それぞれの配線が第2スピーカ18に接続される。 The first speaker array 12 is electrically connected to the first phase setting section 20 , and the second speaker array 14 is electrically connected to the second phase setting section 22 . The first phase setting section 20 sets the phase of the driving signal for each of the plurality of first speakers 16 . Also, the second phase setting unit 22 sets the phase of the drive signal for each of the plurality of second speakers 18 . Although illustration is omitted, a plurality of wirings extend from the first phase setting section 20 and each wiring is connected to the first speaker 16 . Similarly, a plurality of wirings extend from the second phase setting section 22 and each wiring is connected to the second speaker 18 .
 図1を参照して第1スピーカアレイ12及び第2スピーカアレイ14の配置について説明する。図1に示されたxy座標系に対して、第1スピーカアレイ12は、x軸上における座標(0,0)から座標(a,0)の範囲AR1に配置されている。本実施形態では一例として、第1スピーカアレイ12の長さを1.0mに設定しているため、座標(0,0)から座標(a,0)までの長さは1.0mとなっている。 The arrangement of the first speaker array 12 and the second speaker array 14 will be described with reference to FIG. With respect to the xy coordinate system shown in FIG. 1, the first speaker array 12 is arranged in a range AR1 from coordinates (0, 0) to coordinates (a, 0) on the x axis. In this embodiment, as an example, the length of the first speaker array 12 is set to 1.0 m, so the length from coordinates (0, 0) to coordinates (a, 0) is 1.0 m. there is
 接線法に基づいて第1位相設定部20によって設定された第1スピーカアレイ12の空間位相プロファイルによって、座標(a,0)を中心とする四分円の円弧C1が生成される。換言すれば、第1位相設定部20は、第1スピーカアレイ12を構成する複数の第1スピーカ16に対して、四分円の円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する。 The spatial phase profile of the first speaker array 12 set by the first phase setting unit 20 based on the tangent method generates a quadrant arc C1 centered at coordinates (a, 0). In other words, the first phase setting unit 20 controls the plurality of first speakers 16 constituting the first speaker array 12 based on the tangential method so that sound beams are output in quadrant arcs. to set the phase of the drive signal.
 一方、第2スピーカアレイ14は、x軸上における座標(b,0)から座標(a+b,0)の範囲AR2に配置されている。ここで、座標(b,0)は、座標(a,0)よりも原点(0,0)に近いため、第2スピーカアレイ14は、一部が第1スピーカ16の配置領域と重なるように直線上に設定されている。 On the other hand, the second speaker array 14 is arranged in a range AR2 from coordinates (b, 0) to coordinates (a+b, 0) on the x-axis. Here, since the coordinates (b, 0) are closer to the origin (0, 0) than the coordinates (a, 0), the second speaker array 14 is partially overlapped with the arrangement area of the first speakers 16. set on a straight line.
 また、接線法に基づいて第2位相設定部22によって設定された第2スピーカアレイ14の空間位相プロファイルによって、座標(a+b,a)を中心とする四分円の円弧C2が生成される。ここで、円弧C2は、円弧C1に対して対称の形状となっており、具体的には、水平方向に反転した形状となっている。このため、第2位相設定部22は、第2スピーカアレイ14を構成する複数の第2スピーカ18に対して、円弧C1とは水平方向に反転した四分円の円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する。 Also, the spatial phase profile of the second speaker array 14 set by the second phase setting unit 22 based on the tangent method generates a quadrant arc C2 centered at the coordinates (a+b, a). Here, the arc C2 has a symmetrical shape with respect to the arc C1, and more specifically, has a horizontally inverted shape. For this reason, the second phase setting unit 22 outputs sound beams to the plurality of second speakers 18 constituting the second speaker array 14 in the shape of a quadrant arc that is horizontally inverted from the arc C1. Set the phase of the drive signal based on the tangent method so that
 以上のように円弧C1及び円弧C2が生成されると、この円弧C1と円弧C2の交点LP1において音圧が高くなる。すなわち、交点LPが聴取点となる。交点LP1のx座標は、式(6)で表される。 When the arc C1 and the arc C2 are generated as described above, the sound pressure increases at the intersection point LP1 of the arc C1 and the arc C2. That is, the intersection point LP becomes the listening point. The x-coordinate of the intersection point LP1 is represented by Equation (6).
Figure JPOXMLDOC01-appb-M000006

・・・・(6)
Figure JPOXMLDOC01-appb-M000006

... (6)
 また、交点LP1のy座標は、円弧C1の式y=a-(a-x-1に式(6)を代入することで式(7)のように求められる。 Also, the y-coordinate of the intersection point LP1 is obtained by the formula (7) by substituting the formula (6) into the formula y=a−(a 2 −x 2 ) −1 of the arc C1.
Figure JPOXMLDOC01-appb-M000007

・・・・(7)
Figure JPOXMLDOC01-appb-M000007

(7)
ここで、交点LP1のy座標は、第1スピーカアレイ12及び第2スピーカアレイ14のアレイ面から聴取点までの距離と等しい。このため、図1におけるa及びbの座標を変更することで、聴取点の距離を調節することができる。すなわち、第1スピーカアレイ12の配置範囲、及び第2スピーカアレイ14の配置範囲を変更することで、音のビームの円弧の形状(大きさ)が変化するため、聴取点が変化する。 Here, the y-coordinate of the intersection point LP1 is equal to the distance from the array surfaces of the first speaker array 12 and the second speaker array 14 to the listening point. Therefore, by changing the coordinates a and b in FIG. 1, the distance of the listening point can be adjusted. That is, by changing the arrangement range of the first speaker array 12 and the arrangement range of the second speaker array 14, the shape (size) of the arc of the sound beam changes, so that the listening point changes.
 また、図1ではxy座標系で説明したが、スピーカシステム10によって生成された局所音場はx軸に対して軸対称となっている。このため、局所音場を三次元空間に閉じ込めることが可能となる。 In addition, although the xy coordinate system has been described in FIG. 1, the local sound field generated by the speaker system 10 is axially symmetrical with respect to the x axis. Therefore, it is possible to confine the local sound field in a three-dimensional space.
(作用)
 次に、本実施形態の作用について説明する。
(action)
Next, the operation of this embodiment will be described.
 本実施形態のスピーカシステム10では、第2位相設定部22は、第1スピーカアレイ12から出力されたビームとは水平方向に反転した円弧状(対称な形状)に音のビームが出力されるように駆動信号の位相を設定する。これにより、第1スピーカアレイ12から出力された音のビームと、第2スピーカアレイ14から出力された音のビームとが平面視で左右対称となり、交点LP1で音圧を強めることができる。この結果、音のビームの交点LP1を聴取点とした局所音場を生成することができる。 In the speaker system 10 of the present embodiment, the second phase setting unit 22 outputs sound beams in an arc shape (symmetrical shape) that is horizontally inverted from the beams output from the first speaker array 12. Set the phase of the drive signal to Thereby, the sound beam output from the first speaker array 12 and the sound beam output from the second speaker array 14 are symmetrical in plan view, and the sound pressure can be strengthened at the intersection LP1. As a result, it is possible to generate a local sound field with the sound beam intersection point LP1 as the listening point.
 また、第1スピーカアレイ12及び第2スピーカアレイ14の配置範囲を変更すれば音のビームの位置が変更されて交点LP1が変化するため、任意の位置に聴取点を設定することができる。すなわち、局所音場を生成可能なスピーカシステムにおいて、任意の位置に聴取点を設定することができる。 Also, if the arrangement range of the first speaker array 12 and the second speaker array 14 is changed, the position of the sound beam is changed and the intersection point LP1 is changed, so the listening point can be set at an arbitrary position. That is, a listening point can be set at an arbitrary position in a speaker system capable of generating a local sound field.
 さらに、本実施形態では第1スピーカアレイ12と第2スピーカアレイ14の構成を同一とすることにより、音のビームの円弧C1及び円弧C2が同様の形状となる。これにより、交点LP1の設定が容易となる。 Furthermore, in the present embodiment, the configurations of the first speaker array 12 and the second speaker array 14 are the same, so that the arcs C1 and C2 of the sound beams have the same shape. This facilitates setting of the intersection point LP1.
 さらにまた、本実施形態では、隣り合う第1スピーカ16の間隔、及び隣り合う第2スピーカ18の間隔をそれぞれ波長の半分以下とすることで、空間エイリアジングを抑制することができる。 Furthermore, in this embodiment, spatial aliasing can be suppressed by setting the interval between adjacent first speakers 16 and the interval between adjacent second speakers 18 to half or less of the wavelength.
 上記の作用について、音圧分布を参照して説明する。 The above action will be explained with reference to the sound pressure distribution.
(音圧分布)
 図2及び図3に示す音圧分布は、図1の位置に第1スピーカアレイ12及び第2スピーカアレイ14を配置した場合において、2000Hzで音を鳴らした際の音圧分布である。すなわち、音のビームの曲線軌道の半径は1.0mであり、聴取点LP1のy座標は、0.5mとなっている。換言すれば、聴取点は、アレイ面から0.5m離れた位置に設定されている。音圧分布は、有限要素法及び境界要素法を用いたシミュレーション結果に基づいており、図2の下部で略三角形状の領域のように色が濃い部分は、音圧が高いことを示している。また、上記領域の外部では、色が薄くなっており、音圧が低いことを示している。なお、略三角形状の領域の左右でy方向に延在されている筋状部分は、他領域との差別化を図るために濃い色で図示されているが、図中薄色部分よりも音圧が低い領域となっている。
(sound pressure distribution)
The sound pressure distributions shown in FIGS. 2 and 3 are the sound pressure distributions when the first speaker array 12 and the second speaker array 14 are arranged at the positions shown in FIG. 1 and sound is produced at 2000 Hz. That is, the radius of the curved trajectory of the sound beam is 1.0 m, and the y-coordinate of the listening point LP1 is 0.5 m. In other words, the listening point is set at a position 0.5 m away from the array surface. The sound pressure distribution is based on simulation results using the finite element method and the boundary element method, and darker areas like the roughly triangular area in the lower part of Fig. 2 indicate high sound pressure. . Also, the color is lighter outside the region, indicating that the sound pressure is lower. The streak-like portions extending in the y-direction on the left and right sides of the approximately triangular region are shown in dark colors to distinguish them from other regions. This is a low pressure area.
 図2に示されるように、交点(聴取点)LP1では、第1スピーカアレイ12と第2スピーカアレイ14のビームが同じ振幅と位相で重なるため、音圧が向上していることが確認できる。また、聴取点からアレイ面までの領域の音圧が高くなっているのは、サイドローブが原因である。 As shown in FIG. 2, at the intersection point (listening point) LP1, the beams of the first speaker array 12 and the second speaker array 14 overlap with the same amplitude and phase, so it can be confirmed that the sound pressure is improved. Also, the reason why the sound pressure in the area from the listening point to the array surface is high is due to side lobes.
 すなわち、聴取点からアレイ面までの領域では、第1スピーカアレイ12によるサイドローブと、第2スピーカアレイ14によるサイドローブとが重なり合うため、音圧が高くなっている。これに対して、他の領域では、サイドローブ同士が重なり合わないため、音圧が低くなる。この結果、聴取点からアレイ面までの領域で局所音場が閉じ込められる。なお、第1スピーカアレイ12のみを出力した場合、円弧C1の外側にサイドローブが出現する。同様に、第2スピーカアレイ14のみを出力した場合、円弧C2の外側にサイドローブが出現する。 That is, in the area from the listening point to the array surface, the side lobes of the first speaker array 12 and the side lobes of the second speaker array 14 overlap, so the sound pressure is high. On the other hand, in other regions, since the side lobes do not overlap each other, the sound pressure is low. As a result, the local sound field is confined in the region from the listening point to the array plane. Note that when only the first speaker array 12 is output, side lobes appear outside the arc C1. Similarly, when only the second speaker array 14 is output, side lobes appear outside the arc C2.
 また、図3に示される音圧分布を見ると、図2と同様に聴取点とアレイ面との間の領域で局所音場が閉じ込められていることが確認できる。 Also, looking at the sound pressure distribution shown in FIG. 3, it can be confirmed that the local sound field is confined in the region between the listening point and the array plane, as in FIG.
(比較例)
 ここで、比較例のスピーカシステムによる音圧分布について図示して説明する。図11に示されるモデル図は、接線法に代えて遅延和ビームフォーマの原理によって生成される音のビームを模式的に示したものである。なお、スピーカアレイの形状と聴取点は実施形態と同じように設定されている。
(Comparative example)
Here, the sound pressure distribution by the speaker system of the comparative example will be illustrated and explained. The model diagram shown in FIG. 11 schematically shows a sound beam generated by the principle of delay-and-sum beamformer instead of the tangent method. The shape of the speaker array and the listening point are set in the same manner as in the embodiment.
 図11に示されるように、比較例では、第1スピーカアレイの中心点である座標(a/2,0)から聴取点である交点LP2に向かって直線状にビームが生成されており、直線の傾斜角度はθ2となっている。そして、第1スピーカアレイの空間プロファイルは、式(8)のように表される。 As shown in FIG. 11, in the comparative example, a beam is generated in a straight line from coordinates (a/2, 0), which is the center point of the first speaker array, toward the intersection point LP2, which is the listening point. has a tilt angle of θ2. Then, the spatial profile of the first speaker array is represented by Equation (8).
Figure JPOXMLDOC01-appb-M000008

・・・・(8)
Figure JPOXMLDOC01-appb-M000008

(8)
 第2スピーカアレイの空間位相プロファイルは、第1スピーカアレイに対して水平方向に反転される。ここで、遅延和ビームフォーマの原理では、音波の伝播方向を制御することができる反面、ビームの長さを制御することはできない。 The spatial phase profile of the second speaker array is horizontally inverted with respect to the first speaker array. Here, according to the principle of the delay-and-sum beamformer, the propagation direction of sound waves can be controlled, but the beam length cannot be controlled.
 図12は、遅延和ビームフォーマの原理による音圧分布である。この音圧分布を見ると、音場は聴取点であるLP2とアレイ面との間の領域に閉じ込められておらず、広く拡散されていることが分かる。これは、遅延和ビームフォーマの方法では、ビームの長さを制御することができないためと推察される。  Fig. 12 shows the sound pressure distribution according to the principle of the delay-and-sum beamformer. Looking at this sound pressure distribution, it can be seen that the sound field is not confined to the area between the listening point LP2 and the array surface, but is widely diffused. This is presumably because the delay-and-sum beamformer method cannot control the beam length.
(ロバスト性の評価)
 次に、本実施形態に係るスピーカシステム10のロバスト性の評価結果について説明する。ここでは、聴取者の頭部を想定し、聴取点の近傍に障害物である剛球を配置した際の音圧分布について図面を参照して説明する。
(Evaluation of robustness)
Next, evaluation results of robustness of the speaker system 10 according to this embodiment will be described. Here, assuming a listener's head, the sound pressure distribution when a rigid sphere as an obstacle is placed near the listening point will be described with reference to the drawings.
 図4には、聴取点の近傍に直径が0.1mの剛球を配置した場合の音圧分布が図示されている。図5には、聴取点の近傍に直径が0.2mの剛球を配置した場合の音圧分布が図示されている。図6及び図7には、聴取点の近傍に直径が0.4mの剛球を配置した場合の音圧分布が図示されている。直径が0.2mの剛球は、聴取者の頭部の大きさと同程度であり、音響波長のサイズ(0.17m)と近い。また、直径が0.1mの剛球は、音響波長よりも小さい。 FIG. 4 shows the sound pressure distribution when a rigid sphere with a diameter of 0.1 m is placed near the listening point. FIG. 5 shows the sound pressure distribution when a rigid sphere with a diameter of 0.2 m is placed near the listening point. 6 and 7 show the sound pressure distribution when a rigid sphere with a diameter of 0.4 m is placed near the listening point. A rigid sphere with a diameter of 0.2 m is about the size of a listener's head and is close to the size of an acoustic wavelength (0.17 m). Also, a rigid sphere with a diameter of 0.1 m is smaller than the acoustic wavelength.
 図4、5、6に示されるように、剛球が大きくなるほど、背後の音圧が低下していることが分かる。ただし、図6に示されるように、剛球の直径を聴取者の頭部のサイズの2倍程度まで大きくした場合であっても、局所音場が聴取点とアレイ面との間で正常に閉じ込められていることが確認できる。また、図7に示されるように、3次元空間の音圧分布においても、局所音場が正常に閉じ込められていることが確認できる。このように、本実施形態に係るスピーカシステム10のロバスト性が確認された。  As shown in Figures 4, 5, and 6, the larger the rigid sphere, the lower the sound pressure behind it. However, as shown in Fig. 6, even when the diameter of the rigid sphere is increased to about twice the size of the listener's head, the local sound field is successfully confined between the listening point and the array plane. It can be confirmed that Also, as shown in FIG. 7, it can be confirmed that the local sound field is normally confined even in the sound pressure distribution in the three-dimensional space. Thus, the robustness of the speaker system 10 according to this embodiment was confirmed.
 以上、実施形態に係るスピーカシステム10について説明したが、本開示の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。例えば、上記実施形態では、図1に示されるように、第1スピーカアレイ12の空間位相プロファイルによって四分円の円弧C1が生成し、第2スピーカアレイ14の空間位相プロファイルによって四分円の円弧C2が生成したが、これに限定されない。すなわち、図9に示される変形例ように四分円よりも短い円弧状のビームを生成してもよい。 Although the speaker system 10 according to the embodiment has been described above, it is needless to say that the speaker system 10 can be implemented in various ways without departing from the gist of the present disclosure. For example, in the above embodiment, as shown in FIG. 1, the spatial phase profile of the first speaker array 12 generates a quadrant arc C1, and the spatial phase profile of the second speaker array 14 generates a quadrant arc C1. C2 was generated, but is not limited to this. That is, an arc-shaped beam shorter than a quadrant may be generated as in the modification shown in FIG.
(変形例)
 図9に示されるように、本変形例では、第1スピーカアレイ12がx軸上における範囲AR1に配置されており、図1よりも短い範囲に配置されている。また、第2スピーカアレイ14は、x軸上における範囲AR2に配置されており、図1よりも短い範囲に配置されている。
(Modification)
As shown in FIG. 9, in this modification, the first speaker array 12 is arranged in a range AR1 on the x-axis, which is shorter than in FIG. Also, the second speaker array 14 is arranged in a range AR2 on the x-axis, which is shorter than in FIG.
 接線法に基づいて第1位相設定部20によって設定された第1スピーカアレイ12の空間位相プロファイルによって、円弧状のビームが生成される。なお、図9では、交点LP1よりも若干長い円弧状のビームが生成されており、交点LP1における円弧の接線とx軸とが交わる位置が範囲AR1の一端となっている。範囲AR1の他端は、座標(0,0)の点とされている。 An arc-shaped beam is generated by the spatial phase profile of the first speaker array 12 set by the first phase setting unit 20 based on the tangent method. In FIG. 9, an arc-shaped beam that is slightly longer than the intersection point LP1 is generated, and the position where the tangent line of the arc at the intersection point LP1 intersects the x-axis is one end of the range AR1. The other end of the range AR1 is a point with coordinates (0, 0).
 接線法に基づいて第2位相設定部22によって設定された第2スピーカアレイ14の空間位相プロファイルによって、円弧状のビームが生成される。なお、図9では、交点LP1よりも若干長い円弧状のビームが生成されており、交点LP1における円弧の接線とx軸とが交わる位置が範囲AR2の一端となっている。範囲AR2の他端は、円弧とx軸とが交わる点に設定されている。 An arc-shaped beam is generated by the spatial phase profile of the second speaker array 14 set by the second phase setting unit 22 based on the tangent method. In FIG. 9, an arc-shaped beam that is slightly longer than the intersection point LP1 is generated, and the position where the tangent line of the arc at the intersection point LP1 intersects the x-axis is one end of the range AR2. The other end of the range AR2 is set at the intersection of the arc and the x-axis.
 以上のように、変形例では、第1スピーカアレイ12の設置範囲AR1と第2スピーカアレイ14の設置範囲AR2とが重ならないように配置されている。この場合であっても、実施形態と同様に交点LP1とアレイ面との間に局所音場を閉じ込めることができる。 As described above, in the modified example, the installation range AR1 of the first speaker array 12 and the installation range AR2 of the second speaker array 14 are arranged so as not to overlap. Even in this case, the local sound field can be confined between the intersection point LP1 and the array surface as in the embodiment.
 また、上記実施形態では、第1スピーカアレイ12及び第2スピーカアレイ14を固定したが、これに限定れず、第1スピーカアレイ12及び第2スピーカアレイ14の少なくとも一方を移動可能に構成してもよい。 In addition, although the first speaker array 12 and the second speaker array 14 are fixed in the above embodiment, the present invention is not limited to this, and at least one of the first speaker array 12 and the second speaker array 14 may be configured to be movable. good.
 例えば、第1スピーカアレイ12及び第2スピーカアレイ14を図示しない支持部材によって支持させ、モータなどの駆動力を利用して第1スピーカアレイ12及び第2スピーカアレイ14をそれぞれx軸及びy軸に移動できる移動機構を設けてもよい。この場合、設定したい聴取点の位置に応じて随時第1スピーカアレイ12及び第2スピーカアレイ14を移動させることができる。 For example, the first speaker array 12 and the second speaker array 14 are supported by a support member (not shown), and driving force such as a motor is used to move the first speaker array 12 and the second speaker array 14 along the x-axis and the y-axis, respectively. A moving mechanism that can move may be provided. In this case, the first speaker array 12 and the second speaker array 14 can be moved at any time according to the position of the desired listening point.
 また、上記実施形態では、一例として、第1スピーカ16及び第2スピーカ18の間隔を0.05mに設定し、第1スピーカ16及び第2スピーカ18の数を21個に設定したが、これに限定されない。例えば、聴取点をさらにアレイ面に近づける場合、第1スピーカ16及び第2スピーカ18の数を減らして円弧の大きさが小さくなるようにしてもよい。また、第1スピーカ16の数と第2スピーカ18の数を異なる数にしてもよい。 Further, in the above embodiment, as an example, the interval between the first speaker 16 and the second speaker 18 is set to 0.05 m, and the number of the first speaker 16 and the second speaker 18 is set to 21. Not limited. For example, when the listening point is brought closer to the array plane, the number of the first speakers 16 and the second speakers 18 may be reduced so that the size of the arc becomes smaller. Also, the number of the first speakers 16 and the number of the second speakers 18 may be different.
 さらに、第1スピーカ16及び第2スピーカ18の間隔についても限定されない。例えば、出力する音の周波数帯域の波長を考慮せずに間隔を設定してもよい。また、第1スピーカ16及び第2スピーカ18の間隔をそれぞれ等間隔にせず、バラバラの間隔で配置してもよい。 Furthermore, the interval between the first speaker 16 and the second speaker 18 is not limited either. For example, the interval may be set without considering the wavelength of the frequency band of the sound to be output. Further, the intervals between the first speaker 16 and the second speaker 18 may not be equal, but may be arranged at different intervals.
 さらにまた、上記実施形態では、第1位相設定部20と第2位相設定部22とを独立した設定部として説明したが、これに限定されない。例えば、第1スピーカ16の位相を設定する第1位相設定部に対応する機能と、第2スピーカ18の位相を設定する第2位相設定部に対応する機能とを1つの制御部によって行う構成としてもよい。 Furthermore, in the above embodiment, the first phase setting section 20 and the second phase setting section 22 have been described as independent setting sections, but the present invention is not limited to this. For example, a configuration in which a function corresponding to the first phase setting unit for setting the phase of the first speaker 16 and a function corresponding to the second phase setting unit for setting the phase of the second speaker 18 are performed by one control unit. good too.
 また、上記実施形態では、図1に示されるように、第1スピーカアレイ12から出力されたビームと、第2スピーカアレイ14から出力されたビームとを水平方向に反転させたが、これに限定されない。例えば、図1において、円弧C1と円弧C2とを異なる形状に設計してもよい。また、2つのスピーカアレイからそれぞれ鉛直方向に反転した音のビームを出力してもよい。 In the above embodiment, as shown in FIG. 1, the beam output from the first speaker array 12 and the beam output from the second speaker array 14 are reversed in the horizontal direction. not. For example, in FIG. 1, arc C1 and arc C2 may be designed to have different shapes. Alternatively, vertically inverted sound beams may be output from two speaker arrays.
 さらに、上記実施形態では、図8に示されるように、第1スピーカアレイ12と第2スピーカアレイ14とを物理的に分離した構造について説明したが、これに限定されない。例えば、第1スピーカアレイと第2スピーカアレイとが一体的に形成されたスピーカシステムを採用してもよい。この場合であっても、第1位相設定部20が第1スピーカアレイを構成する複数のスピーカに対して四分円の円弧C1状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定し、第2位相設定部が第2スピーカアレイを構成する複数のスピーカに対して、円弧C1とは水平方向に反転した四分円の円弧C2状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定すれば、上記実施形態と同様の作用を奏し得る。また、第1位相設定部20及び第2位相設定部の機能を1つの位相設定部によって実現してもよい。
 日本国特許出願2021-106882号の開示はその全体が参照により本明細書中に取り込まれる。
 本明細書中に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
Furthermore, in the above embodiment, as shown in FIG. 8, the structure in which the first speaker array 12 and the second speaker array 14 are physically separated has been described, but the present invention is not limited to this. For example, a speaker system in which the first speaker array and the second speaker array are integrally formed may be employed. Even in this case, the first phase setting unit 20 is driven based on the tangential method so that the sound beams are output in the quadrant arc C1 to the plurality of speakers constituting the first speaker array. The phase of the signal is set, and the second phase setting unit outputs sound beams in the shape of an arc C2, which is a quadrant horizontally inverted from the arc C1, to the plurality of speakers forming the second speaker array. If the phase of the driving signal is set based on the tangent line method, the same effect as the above embodiment can be obtained. Also, the functions of the first phase setting section 20 and the second phase setting section may be realized by one phase setting section.
The disclosure of Japanese Patent Application No. 2021-106882 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, or technical standard was specifically and individually indicated to be incorporated by reference. , incorporated herein by reference.

Claims (7)

  1.  直線上に複数の第1スピーカを配置して構成された第1スピーカアレイと、
     前記直線上に複数の第2スピーカを配置して構成された第2スピーカアレイと、
     前記第1スピーカアレイを構成する複数の前記第1スピーカに対して、円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する第1位相設定部と、
     前記第2スピーカアレイを構成する複数の前記第2スピーカに対して、前記第1スピーカアレイから出力された前記ビームと交わる円弧状に音のビームが出力されるように接線法に基づいて駆動信号の位相を設定する第2位相設定部と、
     を有するスピーカシステム。
    a first speaker array configured by arranging a plurality of first speakers on a straight line;
    a second speaker array configured by arranging a plurality of second speakers on the straight line;
    a first phase setting unit for setting a phase of a drive signal based on a tangential method so as to output an arc-shaped sound beam to the plurality of first speakers constituting the first speaker array;
    A driving signal based on a tangential method is output to the plurality of second speakers constituting the second speaker array so that sound beams are output in an arc shape that intersects the beams output from the first speaker array. a second phase setting unit that sets the phase of
    a speaker system.
  2.  前記第1スピーカアレイから出力された前記ビームと、前記第2スピーカアレイから出力された前記ビームとが対称な形状となっている請求項1に記載のスピーカシステム。 The speaker system according to claim 1, wherein the beam output from the first speaker array and the beam output from the second speaker array have a symmetrical shape.
  3.  前記第1スピーカアレイを構成する前記第1スピーカの数と、前記第2スピーカアレイを構成する前記第2スピーカの数が同じ数である請求項1又は2に記載のスピーカシステム。 The speaker system according to claim 1 or 2, wherein the number of said first speakers constituting said first speaker array and the number of said second speakers constituting said second speaker array are the same.
  4.  隣り合う前記第1スピーカの間隔と隣り合う前記第2スピーカの間隔が同じ間隔に設定されている請求項1~3の何れか1項に記載のスピーカシステム。 The speaker system according to any one of claims 1 to 3, wherein the interval between the adjacent first speakers and the interval between the adjacent second speakers are set to be the same.
  5.  前記第1スピーカ及び前記第2スピーカは、出力する音の周波数帯域における上限の波長の半分以下の間隔で配置されている請求項1~4の何れか1項に記載のスピーカシステム。 The speaker system according to any one of claims 1 to 4, wherein the first speaker and the second speaker are arranged at an interval equal to or less than half the upper limit wavelength in the frequency band of the sound to be output.
  6.  前記第1スピーカアレイ及び前記第2スピーカアレイの少なくとも一方の位置を移動させる移動機構を備えた請求項1~5の何れか1項に記載のスピーカシステム。 The speaker system according to any one of claims 1 to 5, comprising a moving mechanism for moving the position of at least one of the first speaker array and the second speaker array.
  7.  前記第1スピーカアレイ及び前記第2スピーカアレイの少なくとも一方から出力する前記ビームの形状を変化可能な請求項1~6の何れか1項に記載のスピーカシステム。 The speaker system according to any one of claims 1 to 6, wherein the shape of the beam output from at least one of the first speaker array and the second speaker array can be changed.
PCT/JP2022/024978 2021-06-28 2022-06-22 Speaker system WO2023276835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531872A JPWO2023276835A1 (en) 2021-06-28 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106882 2021-06-28
JP2021-106882 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276835A1 true WO2023276835A1 (en) 2023-01-05

Family

ID=84691290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024978 WO2023276835A1 (en) 2021-06-28 2022-06-22 Speaker system

Country Status (2)

Country Link
JP (1) JPWO2023276835A1 (en)
WO (1) WO2023276835A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081096A (en) * 2011-10-04 2013-05-02 Toa Corp Loudspeaker system
WO2017208822A1 (en) * 2016-05-30 2017-12-07 ソニー株式会社 Local attenuated sound field formation device, local attenuated sound field formation method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081096A (en) * 2011-10-04 2013-05-02 Toa Corp Loudspeaker system
WO2017208822A1 (en) * 2016-05-30 2017-12-07 ソニー株式会社 Local attenuated sound field formation device, local attenuated sound field formation method, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAIZUKA TSUTOMU: "Controlling a distance from linear loudspeaker arrays to a listening point by using tangent line method ", JASA EXPRESS LETTERS, vol. 1, 14 July 2021 (2021-07-14), pages 72801, XP093017853, DOI: 10.1121/10.0005602 *
SIPEI ZHAO, HU YUXIANG, LU JING, QIU XIAOJUN, CHENG JIANCHUN, BURNETT IAN: "Delivering Sound Energy along an Arbitrary Convex Trajectory", SCIENTIFIC REPORTS, vol. 4, no. 6628, pages 1 - 6, XP055301054, DOI: 10.1038/srep06628 *

Also Published As

Publication number Publication date
JPWO2023276835A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9571923B2 (en) Acoustic waveguide
EP1631118B1 (en) Array speaker system
KR101298487B1 (en) Directional sound generating apparatus and method
JP3826423B2 (en) Speaker device
US20050217927A1 (en) Single and multiple reflection wave guide
JP2005519549A (en) Speaker with shaped sound field
WO2009022278A1 (en) An audio reproduction system comprising narrow and wide directivity loudspeakers
US20170251296A1 (en) Loudspeaker with narrow dispersion
EP1890520A1 (en) Array speaker device
US9843864B2 (en) Method for operating an arrangement of sound transducers according to the wave field synthesis principle
US20070165876A1 (en) Sound device provided with a geometric and electronic radiation control
US8861774B2 (en) Sound reproduction device
WO2023276835A1 (en) Speaker system
CN116235512A (en) Systems and methods for multi-beam constant beamwidth transducer arrays
JP7354419B2 (en) line array speaker
JP5685524B2 (en) Direct the sound field of the actuator
CN103139687A (en) Sound frequency special effect editor based on acoustic parametric array acoustic beam reflection
JP2004297752A (en) Loudspeaker system
EP3420738B1 (en) Planar loudspeaker manifold for improved sound dispersion
CN101754085A (en) Retransmission device for realizing surround sound by utilizing multiple beam
CN112911462B (en) Annular loudspeaker array directivity sound radiation design method
CN116744195B (en) Parametric array loudspeaker and directional deflection method thereof
JP6949402B2 (en) Ultrasonic speaker
JP4984825B2 (en) Sound generation apparatus and sound generation system
JP2013021448A (en) Super-directivity speaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832982

Country of ref document: EP

Kind code of ref document: A1