WO2023276741A1 - Hydrogenated conjugated diene graft polymer, method for producing same, polymer composition, molded article, and crosslinked product - Google Patents

Hydrogenated conjugated diene graft polymer, method for producing same, polymer composition, molded article, and crosslinked product Download PDF

Info

Publication number
WO2023276741A1
WO2023276741A1 PCT/JP2022/024457 JP2022024457W WO2023276741A1 WO 2023276741 A1 WO2023276741 A1 WO 2023276741A1 JP 2022024457 W JP2022024457 W JP 2022024457W WO 2023276741 A1 WO2023276741 A1 WO 2023276741A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
graft polymer
hydrogenated
main chain
Prior art date
Application number
PCT/JP2022/024457
Other languages
French (fr)
Japanese (ja)
Inventor
順矢 高井
敦 稲富
淳裕 中原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023531809A priority Critical patent/JPWO2023276741A1/ja
Publication of WO2023276741A1 publication Critical patent/WO2023276741A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability, and a method for producing the same.
  • branched polymers have higher fluidity than linear polymers of the same molecular weight, and have an excellent balance between workability and mechanical properties.
  • the main chain is lithiated by reacting a preliminarily synthesized polymer constituting the main chain with an organic alkali metal compound in the presence of tetramethylethylenediamine, and then the monomers that form the structural units of the side chains are polymerized.
  • a method of forming a conjugated diene-based graft polymer is known (see Patent Document 1).
  • the conjugated diene-based graft polymer described in Patent Document 1 does not have hydroxyl groups that have affinity with polar materials, so there is room for improvement in affinity with polar materials.
  • the conjugated diene-based graft polymer described in Patent Document 2 has excellent affinity with polar materials because it has hydroxyl groups in its main chain, but there is room for improvement in the thermal stability of the polymer.
  • the present invention has been made in view of the above circumstances, and provides a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability, and the hydrogenated conjugated diene-based graft polymer. It aims at providing the manufacturing method of.
  • a hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated The side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a), A hydrogenated conjugated diene-based graft polymer having a hydroxyl group bonded to the main chain (a).
  • the atom bonded to the side chain (b) contained in the monomer unit serving as the branched portion is not a heteroatom, any of [1] to [4], wherein the linking portion containing an atom that binds to the side chain (b) contained in the monomer unit that becomes the branching portion is not an aromatic group derived from an aromatic vinyl compound;
  • (A-1) The anion active site contained in the polymer (M) is lithiated by reacting the polymer (M) containing a conjugated diene unit with an organolithium compound in the presence of a polar compound.
  • a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability and a method for producing the same are provided.
  • the hydrogenated conjugated diene-based graft polymer of the present invention comprises a main chain (a) made of a polymer containing a structural unit derived from a conjugated diene (hereinafter also referred to as a conjugated diene unit), a conjugated diene unit and an aromatic vinyl A polymer containing a structural unit (hereinafter also referred to as a monomer unit) derived from at least one monomer selected from the group consisting of a structural unit derived from a compound (hereinafter also referred to as an aromatic vinyl compound unit) comprising a side chain (b) consisting of A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
  • the side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a), A hydroxyl group is bonded to the main chain (a)
  • the term "graft polymer” refers to a polymer having a backbone composed of a polymer chain and side chains composed of a polymer chain as branches.
  • the body unit and the monomer unit that constitutes the side chain polymer chain may be the same or different.
  • the hydrogenated conjugated diene-based graft polymer is a graft polymer containing conjugated diene units, and at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated. It is a graft polymer with
  • the hydrogenated conjugated diene-based graft polymer of the present invention has a main chain (a) composed of a polymer containing conjugated diene units.
  • the main chain contained in the hydrogenated conjugated diene-based graft polymer of the present invention refers to the entire structural unit portion derived from all monomers including the conjugated diene constituting the main chain. For example, a method of lithiating the main chain by reacting a pre-synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, and then polymerizing a monomer that becomes the structural unit of the side chain.
  • conjugated diene-based polymer portion synthesized in advance.
  • the conjugated diene-based polymer synthesized in advance contains a structural unit (butadiene unit) derived from butadiene with a vinyl bond, it is bonded to a carbon atom in the polymer skeleton (-(C-C) n -).
  • the main chain (a) contains a conjugated diene unit as a monomer unit constituting the polymer.
  • conjugated dienes include butadiene, isoprene, farnesene, myrcene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1 ,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, and chloroprene.
  • conjugated diene butadiene, isoprene, farnesene and myrcene are preferred, butadiene and isoprene are more preferred, and butadiene is even more preferred.
  • the conjugated diene to be the conjugated diene unit may be used alone or in combination of two or more.
  • the main chain (a) is preferably composed of conjugated diene units in an amount of 40% by mass or more among all the monomer units constituting the polymer.
  • the total content of conjugated diene units is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, based on the total monomer units of the main chain (a).
  • the main chain (a) comprises at least one monomer selected from the group consisting of butadiene units and isoprene-derived structural units (isoprene units) in at least 40% by mass of the total monomer units constituting the polymer. In one embodiment, it is preferably a body unit.
  • the total content of butadiene units and isoprene units is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, based on the total monomer units constituting the main chain (a).
  • Examples of monomer units other than butadiene units and isoprene units contained in the main chain (a) include conjugated diene units other than the above-mentioned butadiene units and isoprene units, aromatic vinyl compound units, and the like.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2- Examples include vinylnaphthalene, vinylanthracene, N,N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, and divinylbenzene.
  • aromatic vinyl compounds styrene, 4-methylstyrene and ⁇ -methylstyrene are preferred, and styrene and ⁇ -methylstyrene are more preferred.
  • the aromatic vinyl compound to be the aromatic vinyl compound unit may be used alone or in combination of two or more.
  • the content of monomer units other than butadiene units and isoprene units in the main chain (a) is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less.
  • the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
  • the number average molecular weight (Mn) of the main chain (a) is preferably 1,000 or more and 1,000,000 or less, more preferably 2,000 or more and 500,000 or less, and 2,000 or more and 100 ,000 or less is more preferable.
  • Mn of the main chain (a) is, for example, a side chain after lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine.
  • Mn is the number average molecular weight in terms of standard polystyrene obtained from measurement by gel permeation chromatography (GPC).
  • the vinyl content of the main chain (a) is preferably 90 mol% or less, more preferably 70 mol% or less, and even more preferably 60 mol% or less.
  • the vinyl content of the main chain (a) is preferably 0.5 mol % or more, more preferably 1 mol % or more.
  • the “vinyl content” means 1,2-bonds, 3,4-bonds (other than farnesene) in the total 100 mol% of conjugated diene units contained in the conjugated diene-based graft polymer before hydrogenation.
  • Vinyl content is derived from conjugated diene units linked by 1,2-linkages, 3,4-linkages (for non-farnesene), and 3,13-linkages (for farnesene) using 1 H-NMR. is calculated from the area ratio of the peak derived from the 1,4-bond (other than farnesene) and 1,13-bond (for farnesene) conjugated diene units.
  • the vinyl content of the hydrogenated conjugated diene-based graft polymer is defined as the vinyl content of the polymer obtained from the bonding form of the conjugated diene units contained in the polymer before hydrogenation.
  • the vinyl content of the main chain (a) can be designed according to the purpose.
  • the resulting hydrogenated conjugated diene graft polymer tends to be excellent in fluidity and low-temperature properties.
  • the obtained conjugated diene-based graft polymer tends to be excellent in heat resistance.
  • the vinyl content should be 25 mol % or more in order to prevent performance deterioration due to crystallization after hydrogenation. is preferred.
  • the vinyl content of the main chain (a) can be determined, for example, by reacting a previously synthesized conjugated diene polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, followed by In the case of production by a method of polymerizing a monomer that becomes the structural unit of, the type of solvent used in producing the pre-synthesized conjugated diene polymer that will be the constituent of the main chain (a), if necessary A desired value can be obtained by controlling the polar compound used, the polymerization temperature, and the like.
  • the glass transition temperature (Tg) of the main chain (a) depends on the vinyl content of the conjugated diene unit in the polymer chain that becomes the main chain (a), the type of the conjugated diene unit, and the content of monomer units other than the conjugated diene unit. Although it may vary depending on the content and the like, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from increasing, which facilitates handling. In the present invention, Tg is the peak top value of DDSC obtained by differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • the hydrogenated conjugated diene-based graft polymer of the present invention has a side chain (b) comprising a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units.
  • the side chain (b) contains at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units as monomer units constituting the polymer.
  • conjugated diene that can constitute the monomer unit of the side chain (b) are the same as the specific examples of the conjugated diene that constitutes the monomer unit of the main chain (a).
  • conjugated dienes that become the conjugated diene units contained in the side chain (b) butadiene, isoprene, farnesene and myrcene are preferred, and butadiene and isoprene are more preferred.
  • the conjugated diene to be the conjugated diene unit may be used alone or in combination of two or more.
  • aromatic vinyl compound that can constitute the monomer units of the side chain (b) are the same as the specific examples of the aromatic vinyl compound that can constitute the monomer units of the main chain (a).
  • aromatic vinyl compounds styrene and ⁇ -methylstyrene are preferred.
  • the aromatic vinyl compound to be the aromatic vinyl compound unit may be used alone or in combination of two or more.
  • the side chain (b) is two or more selected from the group consisting of homopolymers, conjugated dienes, and aromatic vinyl compounds, in which the skeleton of the polymer chain consists of only one type of conjugated diene unit or one type of aromatic vinyl compound unit. or a structural unit derived from one or more monomers selected from the group consisting of conjugated dienes and aromatic vinyl compounds, and one other than conjugated dienes and aromatic vinyl compounds It may be a copolymer composed of structural units derived from at least one kind of vinyl monomer. Moreover, the polymer constituting the side chain (b) may be of one type alone, or may be of two or more types having different structures.
  • the content of the conjugated diene unit contained in the polymer constituting the side chain (b) is preferably 50% by mass or more, and 70% by mass or more, based on the total monomer units of the side chain (b). More preferably, it is particularly preferably 80% by mass or more, and may be 100% by mass.
  • the content of the conjugated diene units is 50% by mass or more, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
  • the said content means content in the side chain (b) before hydrogenation.
  • the conjugated diene that can constitute the side chain (b) preferably contains at least one selected from the group consisting of butadiene and isoprene.
  • the total content of butadiene units and isoprene units contained in the polymer constituting the side chain (b) is preferably 50% by mass or more, preferably 70% by mass, of the total monomer units constituting the polymer. % or more, particularly preferably 80 mass % or more, and may be 100 mass %.
  • the mass ratio of butadiene units and isoprene units (butadiene units/isoprene units) contained in the side chain (b) is preferably in the range of 0/100 to 50/50, more preferably in the range of 0/100 to 30/70.
  • a range of 0/100 to 20/80 is particularly preferred.
  • the total content of butadiene units and isoprene units and the mass ratio of butadiene units to isoprene units in the side chain (b) are within the above ranges, the resulting hydrogenated conjugated diene-based graft polymer has improved processability. There is a tendency.
  • the said content and mass ratio mean the content and mass ratio in the side chain (b) before hydrogenation.
  • the content of the aromatic vinyl compound unit contained in the polymer constituting the side chain (b) is preferably 50% by mass or less, preferably 30% by mass, of the total monomer units constituting the polymer. It is more preferably 20% by mass or less, particularly preferably 20% by mass or less, and may be 0% by mass.
  • the content of the aromatic vinyl compound unit is 50% by mass or less, the resulting hydrogenated conjugated diene graft polymer tends to be improved in processability.
  • the said content means content in the side chain (b) before hydrogenation.
  • the number average molecular weight (Mn) of the side chain (b) is preferably 500 or more and 300,000 or less, more preferably 1,000 or more and 200,000 or less, and 1,000 or more and 150,000 or less. is more preferred.
  • the Mn of the side chain (b) is, for example, a conjugated diene-based polymer synthesized in advance described later, which is lithiated by reacting the main chain with an organic alkali metal compound in the presence of tetramethylethylenediamine.
  • the organic alkali metal compound used in the lithiation reaction and the monomer that becomes the structural unit of the side chain is the Mn in the state before hydrogenation calculated from the charge ratio of .
  • Mn of the side chain (b) is within the above range, there is a tendency that the process passability during production is excellent and the economy is favorable.
  • the vinyl content of the side chain (b) is preferably 99 mol% or less, more preferably 90 mol% or less, and even more preferably 85 mol% or less.
  • the vinyl content of the side chain (b) is preferably 0.5 mol % or more, more preferably 1 mol % or more.
  • the vinyl content of the side chain (b) can be determined, for example, by reacting a conjugated diene-based polymer synthesized in advance, which will be described later, with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, and then determining the structure of the side chain.
  • the vinyl content of the conjugated diene-based graft polymer before hydrogenation calculated from the 1 H-NMR spectrum and the vinyl content of the above-mentioned main chain (a) , and from the feed ratio of the monomers that are the raw materials of the monomer units that constitute the main chain and the side chain.
  • the vinyl content of the side chain (b) is within the above range, the resulting hydrogenated conjugated diene graft polymer tends to have an excellent balance between low-temperature properties and heat resistance.
  • the vinyl content of the side chain (b) is set to 25 in order to prevent performance deterioration due to crystallization after hydrogenation. mol % or more is preferable.
  • the vinyl content of the side chain (b) can be determined, for example, by reacting a conjugated diene-based polymer synthesized in advance, which will be described later, with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, followed by
  • the polymerization temperature A desired value can be obtained by controlling such as.
  • the glass transition temperature (Tg) of the side chain (b) is determined by the vinyl content of the conjugated diene unit in the polymer chain that becomes the side chain (b), the type of conjugated diene, the content of monomer units other than the conjugated diene unit, and the like. Although it may vary depending on the temperature, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from increasing, which facilitates handling.
  • the side chain (b) is a block copolymer described later and has two or more Tg, the lowest Tg is preferably within the above range.
  • the side chain (b) may be a block copolymer chain containing a polymer block (b1) containing an aromatic vinyl compound unit and a polymer block (b2) containing a conjugated diene unit.
  • the polymer block (b1) contains aromatic vinyl compound units. Specific examples and preferred examples of the aromatic vinyl compound unit are the same as specific examples and preferred examples of the aromatic vinyl compound unit constituting the monomer unit of the side chain (b).
  • the content of the aromatic vinyl compound unit is preferably more than 70 mol%, more preferably more than It is 80 mol % or more, more preferably 90 mol % or more, still more preferably 95 mol % or more, and particularly preferably substantially 100 mol %.
  • the polymer block (b1) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter referred to as "another unsaturated monomer unit") as long as it does not interfere with the object and effect of the present invention. may be contained in the polymer block (b1) in a proportion of 30 mol% or less, preferably less than 20 mol%, more preferably less than 15 mol%, still more preferably less than 10 mol% , more preferably less than 5 mol %, particularly preferably 0 mol %.
  • Examples of other unsaturated monomers include butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, myrcene, farnesene, isobutylene, methyl methacrylate, methyl vinyl ether, ⁇ - At least one selected from the group consisting of pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like.
  • the bonding form is not particularly limited, and may be random or tapered.
  • the Mn of the polymer block (b1) is not particularly limited, but the Mn of the polymer block (b1) is preferably 500 to 300,000, More preferably from 1,000 to 200,000, still more preferably from 1,000 to 50,000.
  • the chain (b) of the conjugated diene graft polymer has a polymer block (b1) having Mn within the above range, the properties such as shear stability of the oil composition containing the conjugated diene graft polymer are improved. tend to improve.
  • the content of the polymer block (b1) in the conjugated diene-based graft polymer is preferably 70% by mass or less, more preferably 60% by mass or less, even more preferably 50% by mass or less, 40% by mass or less is particularly preferred.
  • the content of the polymer block (b1) is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more.
  • the content of the polymer block (b1) is at least the above lower limit, the production of the conjugated diene-based graft polymer tends to be easy.
  • the content of the polymer block (b1) in the conjugated diene graft polymer can be determined by 1 H-NMR measurement.
  • polymer blocks (b1) When the side chain (b) is the block copolymer chain, it should contain at least one polymer block (b1).
  • the block copolymer chain contains two or more polymer blocks (b1), the polymer blocks (b1) may be the same or different.
  • the polymer blocks (b1) contained in these two or more copolymer chains may be the same or different. good.
  • “polymer blocks are different” means the monomer units constituting the polymer blocks, Mw, stereoregularity, and, in the case of having a plurality of monomer units, the ratio of each monomer unit and the form of copolymerization. It means that at least one of (random, gradient, block) is different.
  • the contained polymer block (b2) contains a conjugated diene compound unit.
  • the content of the conjugated diene unit in the polymer block (b2) is preferably 50 mol% or more, more preferably 70 mol% or more, from the viewpoint of improving the properties of the oil composition containing the conjugated diene-based graft polymer to be obtained. , more preferably 90 mol % or more, and particularly preferably substantially 100 mol %.
  • the specific examples and preferred examples of the conjugated diene and the content and preferred ratio of each monomer are the specific examples and preferred examples of the conjugated diene constituting the monomer unit of the side chain (b) and each monomer. is the same as the content and preferred ratio of Examples of compounds include butadiene, isoprene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, myrcene, farnesene and the like.
  • One of these conjugated diene compounds may be used alone, or two or more thereof may be used.
  • the polymer blocks (b2) may be the same or different. may be Further, when the different chains (b) are also the block copolymer chains, the polymer blocks (b2) contained in these two or more copolymer chains may be the same or different. .
  • the vinyl content of the conjugated diene units of the polymer block (b2) is preferably 1 to 60 mol%, more preferably 2 to 40 mol%, even more preferably 3 to 30 mol%, and particularly preferably 4 to 20 mol%. be.
  • the vinyl content of the polymer block or polymer chain is determined by the type of solvent used, the polar compound used as necessary, A desired value can be obtained by controlling the polymerization temperature and the like.
  • the polymer block (b2) may contain structural units derived from monomers other than the conjugated diene compound as long as the objects and effects of the present invention are not hindered.
  • the content of structural units derived from monomers other than the conjugated diene compound is preferably less than 50 mol%, more preferably less than 30 mol%, still more preferably 20 It is less than mol %, even more preferably less than 10 mol %, and particularly preferably 0 mol %.
  • Examples of other monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, and N-vinylcarbazole.
  • aromatic vinyl compounds such as vinylnaphthalene and vinylanthracene, and methyl methacrylate, methyl vinyl ether, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3-cyclopentadiene, At least one compound selected from the group consisting of 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like is preferably included.
  • the Mn of the polymer block (b2) is the polymer
  • the Mn of block (b2) is preferably from 500 to 300,000, more preferably from 1,000 to 200,000, even more preferably from 1,000 to 50,000.
  • the side chain (b) is the block copolymer chain, it should have at least one polymer block (b2).
  • the polymer blocks (b2) may be the same or different.
  • the polymer blocks (b2) contained in these two or more copolymer chains may be the same or different.
  • the block copolymer chain may include polymer blocks other than the above polymer blocks (b1) and (b2) as long as the object and effect of the present invention are not hindered. may contain polymer blocks composed of other monomers.
  • the side chain (b) contains the block copolymer chain
  • the total content of the polymer block (b1) and the polymer block (b2) with respect to the entire side chain (b) is 90% by mass. It is preferably at least 95% by mass, more preferably at least 95% by mass, and particularly preferably substantially 100% by mass. If it is 90% by mass or more, the physical properties of the obtained conjugated diene-based graft polymer tend to be improved.
  • the form of bonding is limited as long as the block copolymer chain contains the polymer block (b1) and the polymer block (b2). may be linear, branched, radial, or a combination of two or more of these. Further, these polymer blocks may be directly bonded to each other, or may be indirectly bonded via another polymer block. Among these, the form of bonding between the polymer block (b1) and the polymer block (b2) is preferably such that these polymer blocks are directly bonded to form a straight chain. As an example of such a bond type, the polymer block (b1) is represented by b1 and the polymer block (b2) by b2.
  • Examples include copolymer chains, pentablock copolymer chains represented by b2-b1-b2-b1-b2 or b1-b2-b1-b2-b1.
  • the hydrogenated conjugated diene-based graft polymer of the present invention comprises a main chain (a) composed of a polymer containing a conjugated diene unit, and a structural unit derived from a conjugated diene unit and an aromatic vinyl compound (hereinafter referred to as an aromatic vinyl compound unit)
  • a side chain (b) made of a polymer containing a structural unit (hereinafter also referred to as a monomer unit) derived from at least one monomer selected from the group consisting of A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
  • the side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a), A hydroxyl group is bonded to the main chain (a).
  • the main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention contains a monomer unit serving as a branched portion.
  • a side chain (b) is bonded to an atom included in the branched portion of the main chain (a).
  • the atom attached to the side chain (b) contained in this branched portion is not a heteroatom.
  • the atom bonded to the side chain (b) is not a heteroatom means that the atom is not an atom other than a carbon atom and a hydrogen atom, that is, the atom is a carbon atom or a hydrogen atom (
  • the atom to which the side chain (b) is attached is actually a carbon atom since it is a branch point).
  • the branch point to which the side chain (b) is bonded is the heteroatom itself, it is not preferable because shear stability and thermal stability tend to deteriorate.
  • the atom contained in the monomer unit that becomes the branched portion and the bond with the side chain (b) refers to the atom that constitutes the monomer unit that becomes the branched portion in the main chain (typically a carbon atom ) and the atom constituting the side chain (b) are bound.
  • the method for bonding the atoms contained in the monomer units forming the branched portion with the side chain (b) will be described in detail below as an example of the method for producing a hydrogenated conjugated diene-based graft polymer.
  • a site containing a carbon atom having anionic activity (hereinafter, a site containing a carbon atom having anionic activity is also referred to as an anion active site) contained in a monomer unit serving as a branched portion of the polymer that becomes the chain (a) A method (MI method) of forming a side chain (b) by addition polymerization of a monomer starting from the lithiated site having anion activity (MI method), A method (coupling method (CP method)) of reacting an epoxy group contained in a monomer unit that becomes a branched part of coalescence with an active terminal of a polymer obtained by polymerizing a monomer that becomes a structural unit of a side chain, etc. is mentioned.
  • the atoms bonded to the side chain (b) contained in the monomer units forming the branched portion are not heteroatoms.
  • the branch point itself at which the main chain and the side chain are bonded is a hetero atom, the shear stability and thermal stability tend to deteriorate, which is not preferable.
  • the graft polymer described in Japanese Patent No. 5089007 is prepared by preparing a mixture of a polymer having two active terminals constituting the main chain and a polymer having one active terminal constituting the side chain. Then, a coupling agent containing a silicon atom having 3 or more reactive sites is added to the mixture and reacted. A heteroatom such as a silicon atom derived from the coupling agent serves as a branching point connecting the main chain and the side chain.
  • the applicant of the present application modifies a polymer that is a component of the main chain synthesized in advance with a compound containing a silicon atom to obtain a functional group-modified polymer, and the functional group-modified polymer and
  • An application has been filed for a technique relating to a method for synthesizing a graft polymer by a method of reacting an active terminal of a polymer obtained by polymerizing a monomer that constitutes a structural unit of a side chain.
  • a heteroatom such as a silicon atom derived from this functional group-modified polymer serves as a branching point that connects the main chain and the side chain.
  • the branch point contained in the main chain (a) is an atom (typically a carbon atom) that is not a hetero atom, and a side chain (b ). Therefore, in the hydrogenated conjugated diene-based graft polymer of the present invention, unlike the polymer described above, the partial branch point (connection point) where the main chain and the side chain are bonded is not a heteroatom.
  • the linking portion containing the atom that binds to the side chain (b) contained in the monomer unit serving as the branched portion contained in the main chain (a) is an aromatic vinyl In one preferred embodiment, it is not an aromatic group derived from a compound.
  • the aromatic group is an aromatic ring other than CH 2 ⁇ CR (R is hydrogen, an optionally substituted alkyl group, or an optionally substituted aryl group) possessed by the aromatic vinyl compound.
  • the linking portion containing the atom that bonds to the side chain (b) is not an aromatic group derived from an aromatic vinyl compound
  • the monomer unit itself that becomes the branched portion contained in the main chain is a structural unit derived from a monomer other than an aromatic vinyl compound (e.g., a conjugated diene), or the unit that becomes the branched portion contained in the main chain Even if the monomer unit itself is an aromatic vinyl compound unit, it means that the side chain (b) is not bound to an atom in the aromatic group of the aromatic vinyl compound. A specific example will be described below.
  • a site containing a carbon atom having an anionic activity contained in a monomer unit that becomes a branched portion of a polymer that becomes the main chain (a) described later is lithiated, and the lithiated site having an anionic activity is used as a starting point
  • the aromatic vinyl compound contained in the polymer that becomes the main chain (a) has, for example, high anionic activity
  • 4-methylstyrene having a substituent group highly reactive with organolithium compounds
  • the methyl group portion derived from 4-methylstyrene has high reactivity, and a side chain (b) is attached to the carbon atom of this methyl group.
  • the side chain (b) is not bonded to the carbon atom of the styrene-derived benzene ring, and the linking including the atom that bonds to the side chain (b) in the branched portion contained in the main chain (a)
  • the moiety will not be an aromatic group derived from an aromatic vinyl compound.
  • the linking portion containing the atom that binds to the side chain (b) included in the monomer unit serving as the branched portion included in the main chain (a) is an aromatic It is preferably not an aromatic group derived from a group vinyl compound.
  • the linking portion is the above aromatic group, the shear stability and thermal stability are deteriorated.
  • the graft polymer described in Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45, 3513 or Japanese Patent No. 5508066 is a macromonomer (a polymer obtained by polymerizing a monomer that becomes a structural unit of a side chain).
  • a macromonomer obtained by directly reacting an aromatic vinyl compound having a polymerizable functional group other than CH 2 ⁇ C— bonded to an aromatic group at the active end of the coalescence
  • a monomer that forms the structural unit of the main chain synthesized by the method of polymerizing Derived from this macromonomer, the linking portion that binds to the side chain (b) contained in the branched portion in the main chain (a) becomes an aromatic group.
  • the side chain (b) contained in the branched portion in the main chain (a) is bonded.
  • a linking moiety is not an aromatic group.
  • the average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer is preferably 2 or more, more preferably 4 or more, and even more preferably 5 or more.
  • the average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer can be obtained, for example, by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine.
  • the organic alkali metal used in the lithiation reaction and the conjugated diene polymer that forms the structural unit of the main chain are used.
  • the side chain density of the side chain (b) is preferably 1.0 mol % or more, more preferably 2.0 mol % or more. 0 mol % or more is more preferable, and 4.0 mol % or more is even more preferable. If the side chain density of the conjugated diene-based graft polymer is less than 1.0 mol%, the flowability of the obtained hydrogenated conjugated diene-based graft polymer is lowered, and the balance between workability and mechanical properties tends to be poor. .
  • the side chain density of the side chain (b) refers to the average number of side chains (b) per molecule of the hydrogenated conjugated diene graft polymer and the number average molecular weight of the main chain (a) in terms of standard polystyrene. (Mn) is obtained from the following formula (1).
  • the above side chain density is the number of side chains (b) per molecule of the conjugated diene graft polymer with respect to the total number of monomer units, assuming that the main chain polymer is all styrene units. Means the ratio of the average number of threads.
  • (Side chain density) (average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit)] ⁇ 100 (1)
  • the Mn of the main chain (a) is obtained by, for example, lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, followed by lithiation of the side chain.
  • Mn in terms of standard polystyrene before hydrogenation of a pre-synthesized conjugated diene polymer to be a constituent element of the main chain.
  • hydroxyl groups are bonded to the main chain (a).
  • the hydroxyl group is bonded to the main chain (a) directly or through a linking chain.
  • “bonded directly to the main chain (a)” means that a hydroxyl group is directly bonded to a monomer unit constituting the polymer that forms the main chain. Bonding to the main chain (a) through the linking chain means that one end of the linking chain is bonded to a monomer unit constituting the polymer that is the main chain, and a hydroxyl group is attached to the other end of the linking chain. It means that they are directly connected.
  • the case represented by the following formula (I-1) is the case where the hydroxyl group is directly bonded to the main chain
  • the following formula (I- 2) is a case where a hydroxyl group is bonded to the main chain through a linking chain (the following formula (I-1) and the following formula (I-2) show the structure when butadiene is hydrogenated. ing).
  • R 1 is a linking chain.
  • R 1 is a divalent organic group and is an alkylene group having no heteroatom.
  • the connecting chain contains a heteroatom, particularly when a hydroxyl group is directly bonded to the heteroatom, the shear stability and thermal stability of the conjugated diene-based graft polymer deteriorate.
  • the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. preferable.
  • the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer is the hydroxyl value of the hydrogenated conjugated diene graft polymer calculated according to JIS K1557-1:2007 ( mgKOH/g) and the standard polystyrene-equivalent number average molecular weight (Mn) of the hydrogenated conjugated diene-based graft polymer are used to obtain the molecular weight (Mn) according to the following formula (2).
  • the concentration of hydroxyl groups bonded to the main chain (a) is preferably 3.0 mol % or more. 0.5 mol % or more is more preferable, and 4.0 mol % or more is even more preferable.
  • the concentration of hydroxyl groups bonded to the main chain (a) is 3.0 mol % or more, the affinity with polar materials tends to be excellent.
  • the concentration of hydroxyl groups bonded to the main chain (a) is preferably 100 mol % or less, more preferably 80 mol % or less, and even more preferably 60 mol % or less.
  • the concentration of hydroxyl groups bonded to the main chain (a) is 100 mol % or less, the affinity with non-polar materials and the solubility in organic solvents tend to be excellent.
  • the affinity with a polar material is evaluated, for example, by the degree of mixing between the organic phase and the aqueous phase when a solution of a conjugated diene-based graft polymer dissolved in an organic solvent and water (polar material) are mixed and shaken. be able to.
  • polar material a conjugated diene-based graft polymer dissolved in an organic solvent and water
  • the affinity with polar material is high, the presence of the conjugated diene-based graft polymer at the interface between the organic phase and the aqueous phase increases the miscibility of the organic phase and the aqueous phase, making separation more difficult. Therefore, the affinity with polar materials can be evaluated by the separability of the organic phase and the aqueous phase.
  • the concentration of hydroxyl groups bonded to the main chain (a) is defined as the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer and the standard polystyrene of the main chain (a). Calculated from the following formula (3) using the converted number average molecular weight (Mn). Note that the above hydroxyl group concentration is the number of all monomer units when it is assumed that the main chain polymer is all styrene units.
  • the Mn of the main chain (a) is obtained by, for example, lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, followed by lithiation of the side chain.
  • Mn in terms of standard polystyrene before hydrogenation of a pre-synthesized conjugated diene polymer to be a constituent of the main chain.
  • the combination of the polymer serving as the main chain (a) and the polymer serving as the side chain (b) contained in the hydrogenated conjugated diene-based graft polymer is not particularly limited, and may be the same or different, depending on the purpose. It is possible to design The fact that the polymer forming the main chain (a) and the polymer forming the side chain (b) are different means that at least one selected from the group consisting of (i) to (iv) below is different. (i) The molecular weight of the polymer that forms the main chain (a) is different from the molecular weight of the polymer that forms the side chain (b).
  • the type or combination of types of monomer units in the polymer that forms the main chain (a) is different from the type or combination of types of monomer units in the polymer that forms the side chain (b).
  • the monomer unit composition ratio of the polymer that becomes the main chain (a) It differs from the monomer unit composition ratio of the polymer that forms the chain (b).
  • the vinyl content of the conjugated diene unit of the polymer that becomes the main chain (a) is the same as that of the side chain (b). different from the vinyl content of the conjugated diene units of the polymer.
  • 50% by mass or more of the total monomer units constituting the polymer is at least one monomer unit selected from the group consisting of butadiene units and isoprene units. It is one aspect that is preferable.
  • the total content of butadiene units and isoprene units is more preferably 60 to 100% by mass, more preferably 70 to 100% by mass, based on the total monomer units of the conjugated diene graft polymer.
  • the content of monomer units other than butadiene units and isoprene units in the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass. % by mass or less is more preferable.
  • the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
  • the hydrogenated conjugated diene-based graft polymer of the present invention at least part of the carbon-carbon double bonds contained in the conjugated diene units of the polymer are hydrogenated.
  • the carbon-carbon double bond contained in the unit in the conjugated diene in the conjugated diene-based graft polymer before hydrogenation is 50 It is preferable that 60 mol % or more is hydrogenated, and more preferably 70 mol % or more is hydrogenated.
  • the hydrogenation rate is usually 100 mol % or less.
  • the hydrogenation rate (hydrogenation rate) may be substantially 100 mol % (that is, substantially complete hydrogenation).
  • the hydrogenated conjugated diene-based graft polymer tends to have excellent heat resistance.
  • the degree of hydrogenation is obtained by calculating the content of carbon-carbon double bonds contained in the conjugated diene units in the polymer before and after hydrogenation using 1 H-NMR, and then obtaining these contents. value.
  • the weight average molecular weight (Mw) of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably from 5,000 to 2,000,000, and from 10,000 to 1,500,000. It is preferably 15,000 or more and 1,000,000 or less.
  • Mw of the hydrogenated conjugated diene-based graft polymer is within the above range, there is a tendency that the processability during production is excellent and the economy is favorable.
  • the processability of the polymer composition containing the hydrogenated conjugated diene-based graft polymer tends to be improved.
  • the molecular weight distribution (Mw/Mn) of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 1.0 to 20.0, more preferably 1.0 to 10.0, and further 1.0 to 5.0. Preferably, 1.0 to 2.0 is particularly preferred. When Mw/Mn is within the above range, variation in viscosity of the hydrogenated conjugated diene-based graft polymer is small, which is more preferable.
  • Mn means number average molecular weight
  • Mn is the number average molecular weight in terms of standard polystyrene obtained from GPC measurement.
  • the molecular weight distribution (Mw/Mn) means the ratio (Mw/Mn) of the weight average molecular weight (Mw) converted to standard polystyrene and the number average molecular weight (Mn) obtained by GPC measurement.
  • the vinyl content of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 99 mol % or less, more preferably 90 mol % or less, and even more preferably 85 mol % or less.
  • the vinyl content of the conjugated diene-based graft polymer is preferably 0.5 mol % or more, more preferably 1 mol % or more.
  • the vinyl content is preferably 25 mol % or more in order to prevent deterioration in performance due to crystallization after hydrogenation.
  • the vinyl content of the hydrogenated conjugated diene-based graft polymer of the present invention is calculated in the same manner as for the main chain (a) from the 1 H-NMR spectrum of the conjugated diene-based graft polymer before hydrogenation.
  • the glass transition temperature (Tg) of the hydrogenated conjugated diene-based graft polymer is determined by the vinyl content of the conjugated diene unit contained in the graft polymer, the type of conjugated diene unit, and the content of monomer units other than the conjugated diene unit. Although it may vary depending on the temperature, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from becoming high, which facilitates handling.
  • the mass ratio of the main chain to the side chain in the hydrogenated conjugated diene-based graft polymer of the present invention is preferably in the range of 1/99 to 90/10, more preferably in the range of 3/97 to 80/20, and 5/95. A range of ⁇ 70/30 is more preferred. When the mass ratio of the main chain to the side chain is within the above range, the processability of the hydrogenated conjugated diene graft polymer tends to be improved.
  • the total amount of catalyst residues derived from the polymerization catalyst, hydrogenation catalyst (hydrogenation catalyst), etc. used for its production is in the range of 0 to 500 ppm in terms of metal. is preferred.
  • an organic alkali metal such as an organic lithium compound as described later
  • an alkali metal such as lithium is included.
  • nickel and aluminum are included.
  • the total amount of catalyst residue in the hydrogenated conjugated diene-based graft polymer is more preferably 0 to 300 ppm, more preferably 0 to 200 ppm in terms of metal.
  • the catalyst residue amount can be measured by using, for example, an inductively coupled plasma mass spectrometer (ICP-MS) or a polarized Zeeman atomic absorption spectrophotometer.
  • Examples of methods for adjusting the catalyst residue amount of the hydrogenated conjugated diene-based graft polymer to such a specific amount include a method of purifying the hydrogenated conjugated diene-based graft polymer and sufficiently removing the catalyst residue.
  • a purification method washing with water or hot water, an acidic aqueous solution, or an organic solvent typified by methanol, acetone, etc., or washing with a supercritical fluid carbon dioxide is preferable. Cleaning efficiency can be further enhanced by using an acidic aqueous solution for cleaning.
  • Acids used include, for example, monovalent or polyvalent strong acids such as hydrochloric acid, nitric acid, and sulfuric acid; monovalent or polyvalent carboxylic acids such as acetic acid, propionic acid, succinic acid, and citric acid; Or polyvalent weak acids are preferred.
  • the number of washings is preferably from 1 to 20 times, more preferably from 1 to 10 times, from an economical point of view.
  • the washing temperature is preferably 20 to 100°C, more preferably 40 to 90°C.
  • the necessary amount of the polymerization catalyst can be reduced.
  • the catalyst residue amount can be reduced.
  • a previously synthesized conjugated diene-based polymer is prepared in the presence of tetramethylethylenediamine. After the main chain is lithiated by reacting with an organic alkali metal compound, a functionalizing agent is added to add hydroxyl groups to some of the lithiation sites, and then the monomers that become the structural units of the side chains are added.
  • a method of polymerizing (hereinafter referred to as a macroinitiator method (MI method) in this specification), or an epoxy contained in a monomer unit that becomes a branched portion of a functional group-modified polymer that becomes the main chain (a)
  • MI method macroinitiator method
  • CP method coupling method
  • MI method Micro initiator method
  • a macro comprising the following steps (A-1), (A-2), (B), (C), and (D)
  • a preferred embodiment is a production method by an initiator method (MI method).
  • Step (A-1) The method for producing the polymer (M) containing a conjugated diene unit that is a constituent of the main chain in the step (A-1) is preferably, for example, an emulsion polymerization method or a solution polymerization method. From the point of view, the solution polymerization method is more preferable.
  • the polymer (M) containing conjugated diene units forms the main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention.
  • conjugated diene which is a monomer unit constituting the polymer (M) containing a conjugated diene unit, and description of the preferred content thereof are given in the main chain (a ).
  • Examples of monomers other than conjugated dienes that are monomer units constituting the polymer (M) containing conjugated diene units include aromatic vinyl compounds.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, N,N- Diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like.
  • aromatic vinyl compounds examples include styrene, ⁇ -methyl
  • the content of monomer units other than butadiene units and isoprene units in the polymer (M) containing a conjugated diene unit is preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass. % or less is more preferable.
  • the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
  • the emulsion polymerization method which is an example of the method for producing the polymer (M) containing conjugated diene units
  • a known method or a method based on a known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerized with a radical polymerization initiator.
  • emulsifiers include salts of long-chain fatty acids with 10 or more carbon atoms and rosinates.
  • long-chain fatty acid salts include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • the dispersion medium may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
  • radical polymerization initiators include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide.
  • a chain transfer agent may be used to adjust the molecular weight of the resulting polymer (M) containing conjugated diene units.
  • chain transfer agents include mercaptans such as t-dodecylmercaptan and n-dodecylmercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature for emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator to be used, but it is usually in the range of 0 to 100°C, preferably 0 to 60°C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization terminator.
  • the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an anti-aging agent may be added as necessary.
  • unreacted monomers are removed from the obtained latex if necessary, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and if necessary nitric acid, sulfuric acid and the like are added.
  • the polymer (M) containing the conjugated diene unit is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, the polymer is recovered by separating the dispersion medium. Then, the polymer (M) containing the conjugated diene unit is obtained by washing with water, dehydration, and drying.
  • the latex and an extender oil made into an emulsified dispersion may be mixed in advance, and the polymer (M) containing an oil-extended conjugated diene unit may be recovered.
  • the solution polymerization method which is an example of the method for producing the polymer (M) containing conjugated diene units
  • a known method or a method based on the known method can be applied.
  • a known method or a method based on the known method can be applied.
  • a known method or a method based on the known method can be applied in a solvent, using a Ziegler-based catalyst, a metallocene-based catalyst, or an anionically polymerizable active metal or active metal compound as an initiator, optionally in the presence of a polar compound, a monomer containing a conjugated diene Polymerize the body.
  • solvents examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; Aromatic hydrocarbons such as toluene and xylene; ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether;
  • the initiator is preferably an anionically polymerizable active metal or an active metal compound, more preferably an anionically polymerizable active metal compound.
  • anionically polymerizable active metals examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium. . Among these, alkali metals and alkaline earth metals are preferred, and alkali metals are more preferred.
  • organic alkali metal compound is preferable as the anionically polymerizable active metal compound.
  • organic alkali metal compounds include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; , 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; and sodium naphthalene, potassium naphthalene and the like.
  • organic lithium compounds are preferred, and organic monolithium compounds are more preferred.
  • the amount of the initiator to be used can be appropriately set according to the melt viscosity, molecular weight, etc. of the polymer (M) containing the conjugated diene unit. It is used in an amount of 01 to 3 parts by weight.
  • the organic alkali metal compound can be used as an organic alkali metal amide by reacting it with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine. .
  • Polar compounds are usually used in anionic polymerizations to adjust the microstructure (vinyl content) of the conjugated diene units without inactivating the reaction.
  • polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the polar compound is generally used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
  • the temperature of solution polymerization is usually in the range of -80 to 150°C, preferably in the range of 0 to 100°C, more preferably in the range of 10 to 90°C.
  • the mode of polymerization may be either a batchwise system or a continuous system.
  • the polymerization reaction of the above solution polymerization can be terminated by adding a polymerization terminator.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate a polymer (M) containing a conjugated diene unit, or the polymerization reaction solution is washed with water, separated, and dried to obtain the conjugated diene.
  • a polymer (M) containing units can be isolated.
  • the polymerization reaction solution after termination of the polymerization may be directly used for the lithiation reaction as long as it does not affect the lithiation reaction.
  • the solvent may be partly removed, or the solvent may be added to dilute the polymerization reaction solution.
  • the polymer (M) containing conjugated diene units thus obtained may be used as it is for the lithiation reaction, but the carbon-carbon double bond contained in the conjugated diene unit in the conjugated diene polymer may be modified after at least a part of is hydrogenated by the hydrogenation method described below.
  • the anion active site contained in the polymer (M) containing the conjugated diene unit obtained as described above is lithiated by reacting it with an organolithium compound in the presence of a polar compound. do. Lithiation under such conditions lithiates the anion active sites, especially the carbon-carbon double bond portion contained in the vinyl bond type conjugated diene unit contained in the polymer (M).
  • the skeleton of the main chain (a) of the aromatic vinyl compound unit for example, the styrene unit, which does not have a substituent in the aromatic group having high reactivity with respect to the anion contained in the polymer (M)
  • the linking portion containing the atom that bonds to the side chain (b) contained in the monomer unit that becomes the branch portion is not an aromatic group derived from the aromatic vinyl compound. .
  • the aromatic vinyl compound unit has an anionic activity. It is desirable that the aromatic group does not contain a functional group with a high D (a functional group highly reactive with the organolithium compound). Styrenes having aromatic groups containing such functional groups include 4-methylstyrene, 4-propylstyrene, and the like.
  • Examples of the organic lithium compound used for lithiation of the polymer (M) in the step (A-1) include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, organic monolithium compounds such as phenyllithium and stilbenelithium; lithium compounds; Among these organic lithium compounds, organic monolithium compounds are preferred, n-butyllithium and sec-butyllithium are more preferred, and sec-butyllithium is particularly preferred.
  • the side chain density is obtained from the following formula (1).
  • (Side chain density) (average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit)] ⁇ 100 (1) That is, the amount of the organolithium compound used is determined so that the desired side chain density and hydroxyl group concentration are obtained by adjusting the number average molecular weight Mn of the main chain (a) and the side chain per molecule of the hydrogenated conjugated diene graft polymer. It can be naturally determined by designing the average number of (b) and the average number of hydroxyl groups bonded to the main chain (a).
  • the polar compound used in the lithiation of the polymer (M) in step (A-1) above is used to promote the lithiation reaction.
  • polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • tertiary amines are preferred, and tetramethylethylenediamine is particularly preferred.
  • the amount of the polar compound used is preferably 0.01 mol or more, more preferably 0.05 mol or more, and particularly preferably 0.1 mol or more, relative to 1 mol of the organic alkali metal compound.
  • the amount of the polar compound used is preferably 100 mol or less, more preferably 50 mol or less, and particularly preferably 10 mol or less, per 1 mol of the organic alkali metal compound.
  • the amount of the polar compound used is less than 0.01 mol per 1 mol of the organic alkali metal compound, the reaction rate tends to be poor, and when it exceeds 100 mol, the economy tends to be poor.
  • the lithiation in the above step (A-1) is usually carried out with the polymer (M) dissolved in a solvent.
  • the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; and benzene. , toluene, and xylene; and ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether.
  • the reaction temperature for the lithiation in step (A-1) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher. Also, the temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the temperature is less than 0°C, the reaction rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
  • the reaction time of the lithiation in the step (A-1) can be appropriately set according to the progress of the reaction, preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours, and 0.2 to 20 hours. Time is particularly preferred.
  • Step (A-2) In the method for producing a conjugated diene-based graft polymer by the MI method, in order to form hydroxyl groups bonded to the main chain (a), after step (A-1), (A-2) adding a functionalizing agent to functionalize a portion of the lithiated anion active sites; including.
  • step (A-2) the finally obtained hydrogenated conjugated diene-based graft is reacted with a functionalizing agent with part of the lithiated anionic active sites obtained in step (A-1). Forms a hydroxyl group that bonds to the main chain (a) of the polymer.
  • a hydroxyl group is formed by this synthesis method, the hydroxyl group is bonded to the main chain (a) through a linking chain.
  • Examples of the functionalizing agent used in the functionalization reaction of the anion active site lithiated in the above step (A-2) include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde, and isovaleraldehyde. , n-octylaldehyde, 2-ethylhexylaldehyde, decylaldehyde, dodecylaldehyde, benzaldehyde; and epoxides such as ethylene oxide and propylene oxide.
  • aldehydes such as n-butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde, n-octylaldehyde, 2-ethylhexylaldehyde, decylaldehyde, dodecylaldehyde, benzaldehyde are preferred, and 2-ethylhexylaldehyde, Benzaldehyde is particularly preferred.
  • the hydroxyl group concentration is obtained from the following formula (3).
  • (Hydroxy group concentration) (average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight of main chain (a) Mn)/(number of styrene units molecular weight)] ⁇ 100 (3) That is, the amount of the functionalizing agent used is such that the number average molecular weight Mn of the main chain (a) and the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer are adjusted so as to achieve the desired hydroxyl group concentration. By designing the average number of bonded hydroxyl groups, it can be determined naturally.
  • the solvent that can be used in the step (A-2) above is the same as the preferred examples of the solvent in the step (A-1) above. If necessary, a solvent may be further added at any timing after step (A-1).
  • the reaction temperature for the functionalization in step (A-2) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher. Moreover, the reaction temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the temperature is less than 0°C, the reaction rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
  • the reaction time of the functionalization in the above step (A-2) can be appropriately set according to the progress of the reaction, preferably 0.01 to 100 hours, more preferably 0.05 to 50 hours, and 0.1 to 20 hours. Time is particularly preferred.
  • Step (A-3) In the method for producing a hydrogenated conjugated diene-based graft polymer by the MI method, in order to adjust the vinyl content of the side chain (b) to the desired range, after step (A-1) or step (A-2) , (A-3) adding a Lewis acid; It is a preferred embodiment to include
  • the Lewis acid is added to reduce the action of the polar compound added to promote the lithiation reaction and to adjust the vinyl content of the side chain in the step (B) described below to the desired range.
  • the Lewis acid is preferably an alkyl metal compound that does not deactivate the lithiation point generated in the above step (A-1), such as trimethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutyl.
  • Alkylaluminum compounds such as aluminum, tri-n-hexylaluminum, and trioctylaluminum; alkylmagnesium compounds such as butylethylmagnesium, di-n-butylmagnesium, and di-n-hexylmagnesium; dimethyl zinc, Alkyl zinc compounds such as diethyl zinc, di-n-propyl zinc, diisobutyl zinc, and di-n-butyl zinc are included.
  • alkylaluminum compounds or alkylzinc compounds are preferred, alkylaluminum compounds are more preferred, and triisobutylaluminum is particularly preferred.
  • the amount of the Lewis acid to be used can be appropriately adjusted depending on the vinyl content of the desired side chain (b). is preferred, 0.05 mol or more is more preferred, and 0.1 mol or more is particularly preferred.
  • the amount of the Lewis acid used is preferably 10 mol or less, more preferably 5 mol or less, and particularly preferably 1 mol or less, per 1 mol of the organic alkali metal compound. If the amount of the Lewis acid used relative to 1 mol of the organic alkali metal compound is less than 0.01 mol, the effect of the addition of the Lewis acid is poor and it is difficult to adjust the desired degree of vinylation. The rate of chain polymerization tends to decrease, and the economy tends to be poor.
  • the amount of the Lewis acid used is preferably 0.02 mol or more, more preferably 0.1 mol or more, and 0.2 mol or more, relative to 1 mol of the polar compound used in the step (A-1). Especially preferred.
  • the amount of the Lewis acid to be used is preferably 20 mol or less, more preferably 10 mol or less, and particularly preferably 2 mol or less, relative to 1 mol of the polar compound. If the amount of the Lewis acid used relative to 1 mol of the polar compound is less than 0.02 mol, the effect of adding the Lewis acid is poor and it is difficult to adjust the degree of vinylation to the desired degree. The polymerization rate tends to decrease, and the economy tends to be poor.
  • the timing of adding the Lewis acid may be after step (A-1), before step (B) described later, or at any timing during step (B). Well, it can be arbitrarily selected depending on the vinyl content of the desired side chain (b).
  • Step (B) A method for producing a hydrogenated conjugated diene-based graft polymer by the MI method, (B) adding at least one monomer selected from the group consisting of a conjugated diene and an aromatic vinyl compound to polymerize from the remaining lithiated anionic active sites in the polymer (M) to obtain a main chain A step of forming a side chain on the polymer (M) to produce a conjugated diene-based graft polymer; including.
  • the monomer polymerized in the step (B) becomes the side chain (b) of the hydrogenated conjugated diene graft polymer of the present invention.
  • conjugated diene which is a monomer unit constituting the polymer polymerized in the step (B), preferred content thereof, and other monomers other than the conjugated diene (aromatic vinyl compound etc.) are the same as those for the side chain (b) of the hydrogenated conjugated diene graft polymer.
  • the description of the weight average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the polymer polymerized in the step (B) is the same as the description of the side chain (b) of the hydrogenated conjugated diene graft polymer. is.
  • a polar compound may be further added in order to adjust the vinyl content of the side chain (b) to the desired range.
  • a Lewis acid may also be added as described above to adjust the vinyl content to the desired range.
  • Solvents that can be used in the step (B) are the same as the preferred examples of the solvent in the step (A-1). If necessary, a solvent may be further added at any timing after step (A-1).
  • the polymerization temperature in the step (B) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher.
  • the polymerization temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the polymerization temperature is less than 0°C, the polymerization rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
  • the polymerization time in the step (B) can be appropriately set according to the progress of the reaction, but is preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours, and particularly preferably 0.2 to 20 hours. .
  • the polymerization reaction in the above step (B) can be terminated by adding a polymerization terminator.
  • a polymerization terminator examples include alcohols such as methanol and isopropanol.
  • Step (C) In the method for producing a hydrogenated conjugated diene-based graft polymer of the present invention by the MI method, before the step (D), (C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the unhydrogenated conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; including.
  • a hydrogenated conjugated diene graft polymer can be obtained by subjecting the unhydrogenated conjugated diene graft polymer obtained by the above method to a step of hydrogenating.
  • the hydrogenation method is not particularly limited, and for example, a known method can be used.
  • the above step (B) and hydrogenation may be carried out successively, or the unhydrogenated conjugated diene-based graft polymer may be isolated once and then hydrogenated.
  • the method for isolating the unhydrogenated conjugated diene-based graft polymer is the same as the recovery step (D) described below.
  • a catalyst that can hydrogenate carbon-carbon double bonds contained in olefin compounds and the like can be used.
  • Such catalysts generally include heterogeneous catalysts, homogeneous catalysts, and the like.
  • the heterogeneous catalyst is not particularly limited, but specific examples include sponge metal catalysts such as sponge nickel, sponge cobalt, and sponge copper; nickel silica, nickel alumina, nickel zeolite, nickel diatomaceous earth, palladium silica, palladium alumina, palladium Zeolite, palladium diatomaceous earth, palladium carbon, palladium calcium carbonate, platinum silica, platinum alumina, platinum zeolite, platinum diatomaceous earth, platinum carbon, platinum calcium carbonate, ruthenium silica, ruthenium alumina, ruthenium zeolite, ruthenium diatomaceous earth, ruthenium carbon, ruthenium calcium carbonate, supported metal catalysts such as iridium silica, iridium alumina, iridium zeolite, iridium diatomaceous earth, iridium carbon, iridium calcium carbonate, cobalt silica, cobalt alumina, cobalt zeolite
  • the homogeneous catalyst is not particularly limited, but specific examples thereof include Ziegler catalysts composed of a transition metal compound and alkylaluminum or alkyllithium; metallocene catalysts.
  • transition metal compounds used in Ziegler-based catalysts include nickel salts such as nickel acetate, nickel octylate and nickel acetylacetonate; cobalt salts such as cobalt acetate, cobalt octylate and cobalt acetylacetonate; titanocene dichloride and zirconocene. dichlorides.
  • alkylaluminums used in Ziegler catalysts include trimethylaluminum, triethylaluminum, triisobutylaluminum, and trioctylaluminum.
  • alkyllithium used in Ziegler catalysts include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium and t-butyllithium. These homogeneous catalysts may be used singly or in combination of two or more. Moreover, the homogeneous catalyst may be used in combination with the heterogeneous catalyst.
  • step (C) since the polymer is hydrogenated, the reaction activity for low-molecular-weight compounds is generally low. Therefore, in many cases, relatively high temperature and high pressure conditions are preferable as the reaction conditions, and it is preferable to use a heterogeneous catalyst with high thermal stability. From the aspect of hydrogenation activity, it is preferable to use nickel or palladium as the metal having hydrogenation activity. Moreover, in order to suppress undesirable side reactions during the hydrogenation reaction, it is preferable to use calcium carbonate or a carbon support as the support, and it is more preferable to use a carbon support.
  • the hydrogenation reaction is usually carried out in an organic solvent.
  • an organic solvent is not particularly limited, and for example, the solvents exemplified in the above step (B) or step (E) described later can be used.
  • the above hydrogenation reaction may be carried out, for example, in a state in which the unhydrogenated conjugated diene-based graft polymer is present in the solvent used in the above step (B), without particularly treating the organic solvent.
  • the reaction may be carried out in the remaining solvent, or after dilution with an organic solvent, the reaction may be carried out in the solvent.
  • the unhydrogenated conjugated diene-based graft polymer is temporarily taken out, and the unhydrogenated conjugated diene-based graft polymer is put into an organic solvent to carry out a hydrogenation reaction in the solvent.
  • the amount of the organic solvent used should be such that the concentration of the unhydrogenated conjugated diene-based graft polymer in the reaction solution is 1% by mass or more and 30% by mass or less. is preferred. If the concentration is less than 1% by mass, the productivity may be significantly reduced, and if it exceeds 30% by mass, the viscosity may be significantly increased and the mixing efficiency may be reduced.
  • the reaction pressure of the hydrogenation reaction may be appropriately set according to the catalyst used, etc., but the total pressure is usually 0.1 MPa to 20 MPa, preferably 0.5 MPa to 15 MPa, more preferably 0.5 MPa to 5 MPa. be.
  • the hydrogenation reaction is carried out in the presence of hydrogen gas, but it may be carried out in the presence of a gas mixed with a gas other than hydrogen gas that is inert to the hydrogenation reaction.
  • gases inert to the hydrogenation reaction include nitrogen, helium, argon, and carbon dioxide.
  • the solvent used in the reaction may have a significant partial pressure as a gas component, but such a situation is usually not a problem as long as the hydrogenation reaction proceeds.
  • the reaction temperature for the hydrogenation reaction may be appropriately set according to the catalyst used, but is usually 20°C to 250°C, preferably 50°C to 180°C, more preferably 70°C to 180°C. In general, it may be desirable for heterogeneous catalysts to react at higher temperatures than homogeneous catalysts.
  • the reaction time for the hydrogenation reaction may be appropriately set according to the type of catalyst used, the amount of catalyst and the reaction temperature, and is usually 0.1 to 100 hours, preferably 1 to 50 hours. If the reaction time is too short, the desired hydrogenation rate may not be obtained. On the other hand, if the reaction time is too long, undesired side reactions may proceed remarkably, and a hydrogenated conjugated diene-based graft polymer having desired physical properties may not be obtained.
  • the reaction form of the hydrogenation reaction is not particularly limited, and may be appropriately set according to the type of catalyst used in the reaction.
  • the reaction format include a batch reaction format, a semi-continuous reaction format (semi-batch reaction format), and a continuous reaction format.
  • Suitable continuous reaction formats include plug flow format (PFR), continuous flow stirred format (CSTR), and the like.
  • PFR plug flow format
  • CSTR continuous flow stirred format
  • the hydrogenation reaction can be carried out using a fixed bed reactor.
  • the mixing method includes a mixing method by stirring and a mixing method in which the reaction solution is circulated in a loop.
  • the reaction When a heterogeneous catalyst is used under mixed conditions, the reaction is by a suspended bed and becomes a gas-liquid-solid reaction field. Further, when a homogeneous catalyst is used under mixed conditions, the reaction field becomes a gas-liquid two-phase system. Hydrogen in a reaction format in which the hydrogenation reaction in the reaction vessel is once terminated, the reaction liquid is withdrawn, and at least part of the withdrawn reaction liquid is charged into the same or different reaction vessel to further perform the hydrogenation reaction. An addition reaction may be performed. By carrying out the hydrogenation reaction in such a reaction format, if it is possible to avoid localization of the heat generation accompanying the hydrogenation reaction, the hydrogenation rate may be improved.
  • the hydrogenation reaction may be carried out in a single reaction format, or in combination of two or more reaction formats that are the same or different.
  • it may be desirable to use a fixed-bed reactor and use a hydrogenation reaction step that includes a plug-flow reaction step.
  • the amount of catalyst used in the hydrogenation reaction may be appropriately set according to the type of catalyst used, the concentration of the unhydrogenated conjugated diene-based graft polymer, and the reaction mode.
  • the amount of the catalyst used per 100 parts by mass of the reaction liquid containing the unhydrogenated conjugated diene graft polymer is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, More preferably, it is 0.1 to 10 parts by mass. If the amount of catalyst used is too small, the hydrogenation reaction may require a long time, and if the amount of catalyst used is too large, more power may be required to mix the heterogeneous catalyst.
  • the concentration in the reaction solution containing the unhydrogenated conjugated diene graft polymer of the transition metal compound is usually 0.001 mmol/liter to 100 mmol/liter. , preferably 0.01 mmol/liter to 10 mmol/liter.
  • the catalyst used in the hydrogenation reaction may be separated from the liquid containing the hydrogenated conjugated diene-based graft polymer, if necessary, after the completion of the hydrogenation reaction.
  • the separation method is not particularly limited as long as the catalyst can be separated. If a heterogeneous catalyst is used, the catalyst can be separated by, for example, continuous or batch filtration, centrifugation, settling by settling and decantation. When a homogeneous catalyst is used, the catalyst can be separated by, for example, coagulation sedimentation, adsorption, washing and aqueous phase extraction. Even if the used catalyst is separated by these separation methods, trace amounts of metal components derived from the catalyst may remain in the liquid containing the hydrogenated conjugated diene graft polymer.
  • the remaining metal component can be separated by a separation method such as coagulation sedimentation, adsorption, washing, and aqueous phase extraction, as described above.
  • the catalyst recovered by separation can be used again for the hydrogenation reaction after removing part of it or adding a new catalyst, if necessary.
  • Step (D) A method for producing a hydrogenated conjugated diene-based graft polymer by the MI method, (D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer; including.
  • step (D) the obtained hydrogenated conjugated diene-based graft polymer of the present invention is recovered.
  • the method for recovering the hydrogenated conjugated diene-based graft polymer is not particularly limited. A solution containing a conjugated diene-based graft polymer is poured into a poor solvent such as methanol to precipitate a hydrogenated conjugated diene-based graft polymer, or a polymerization reaction solution is poured into hot water together with steam to azeotrop the solvent.
  • step (D) may be performed by the method as described above.
  • An antioxidant may be added to the conjugated diene-based graft polymer of the present invention in any of the steps described above, if necessary. For example, it may be added after step (B), after step (C) or at each step during step (D), or after step (D) or at each step during step (D).
  • Preferred anti-aging agents used at this time include, for example, 2,6-di-t-butyl-4-methylphenol (BHT), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4,4 '-thiobis(3-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol) (AO-40), 3,9-bis[1,1-dimethyl- 2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane (AO-80), 2,4-bis[(octylthio)methyl]-6-methylphenol (Irganox 1520L), 2,4-bis[(dodecylthio)methyl]-6-methylphenol (Irganox 1726), 2-[1-(2-hydroxy- 3,5-di-t-pentylphen
  • CP method ⁇ Coupling method (CP method)>
  • CP method a production method by a coupling method (CP method) including the following steps (E), (C) and (D) is a preferred embodiment.
  • P represents a polymer chain containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit, and X represents an anionic polymerization active terminal. ); and (C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units contained in the conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; and (D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer
  • the active terminal polymer (I) used in the above step (E) can be produced using a known polymerization method. For example, in a solvent inert to the polymerization terminal, using an anionically polymerizable active metal or active metal compound as an initiator, optionally in the presence of a polar compound, by anionically polymerizing a monomer, the active terminal is polymerized. Coalescence (I) can be obtained. The P of this active terminal polymer (I) becomes the side chain (b) of the hydrogenated conjugated diene graft polymer obtained in the present invention.
  • an organic alkali metal compound is preferred, and an organic lithium compound is more preferred.
  • the organic lithium compound include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; and benzene. , toluene, and xylene; and ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • benzene toluene, and xylene
  • ether compounds
  • a polar compound may be added during the anionic polymerization.
  • Polar compounds are commonly used in anionic polymerizations to control the microstructure (vinyl content) of the conjugated diene units without quenching the reaction.
  • Examples of polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the polar compound is generally used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
  • the temperature of the anionic polymerization is usually in the range of -80 to 150°C, preferably in the range of 0 to 100°C, more preferably in the range of 10 to 90°C.
  • the mode of polymerization may be either a batchwise system or a continuous system.
  • the P of the above active terminal polymer (I) finally becomes the side chain (b) of the hydrogenated conjugated diene-based graft polymer of the present invention.
  • the description of the preferred embodiments of the number average molecular weight (Mn) of P, vinyl content, and Tg of the active terminal polymer (I) relates to the side chain (b) of the hydrogenated conjugated diene-based graft polymer of the present invention. It is the same.
  • the functional group-modified conjugated diene-based polymer (F) is obtained, for example, by modifying the unmodified conjugated diene-based polymer (F') with a functional group in the modification step described below.
  • the method for producing the unmodified conjugated diene-based polymer (F′) is not particularly limited, and can be applied in the same manner as the method for producing the polymer (M) containing conjugated diene units described above.
  • the portion of the functional group-modified conjugated diene-based polymer (F) other than the functional group-modified conjugated diene-based polymer becomes the main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention.
  • conjugated diene which is a monomer unit constituting the unmodified conjugated diene-based polymer (F'), preferred content thereof, and other monomers other than the conjugated diene (aromatic vinyl compound, etc.) are the same as those for the main chain (a) of the hydrogenated conjugated diene-based graft polymer.
  • the description of the number average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the unmodified conjugated diene-based polymer (F′) is the description of the main chain (a) of the hydrogenated conjugated diene-based graft polymer. It is the same.
  • the method for producing the functional group-modified conjugated diene polymer (F) having an epoxy group by modifying the unmodified conjugated diene polymer (F') with a functional group is not particularly limited, and conventionally known methods can be used. It can be according to the method. For example, by epoxidizing the unmodified conjugated diene-based polymer (F′) using an epoxidizing agent such as hydroperoxides and organic peracids, a functional group-modified conjugated diene-based polymer (F ) can be manufactured. Hydroperoxides include hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide and the like.
  • organic peracids include performic acid, peracetic acid, perbenzoic acid, trifluoroperacetic acid, m-chloroperbenzoic acid and the like.
  • the organic peracid may be an equilibrium peracid using hydrogen peroxide and an organic acid.
  • a catalyst may be used in the epoxidation reaction.
  • Combinations of the epoxidizing agent and the catalyst include, for example, when the epoxidizing agent is a hydroperoxide, a combination of hydrogen peroxide and a mixture of tungstic acid and caustic soda, a combination of hydrogen peroxide and an organic acid, t- Examples include a combination of butyl hydroperoxide and molybdenum hexacarbonyl.
  • the epoxidizing agent is an organic peracid, a combination of an organic peracid and an alkali such as sodium carbonate or an acid such as sulfuric acid may be used.
  • phase-transfer heteropolyacids prepared from heteropolyacids containing tungsten or molybdenum (especially 12-tungstophosphoric acid) and surfactants (especially halogenated quaternary ammonium salts).
  • a method of epoxidation with hydrogen peroxide in a two-phase system of an aqueous phase and an organic phase in the presence of an acid is also included.
  • the amount of the epoxidizing agent and the catalyst used is not particularly limited, and can be appropriately set according to the type of polymer to be epoxidized, the type of epoxidizing agent, the degree of epoxidation of the polymer to be epoxidized, and the like. .
  • the epoxidation reaction can be carried out in the absence of a solvent, but it may also be carried out in the presence of a solvent that is inert to the epoxidizing agent.
  • Solvents that can be used for the epoxidation reaction include aliphatic hydrocarbons such as hexane and heptane, esters such as ethyl acetate, aromatic hydrocarbons such as benzene and xylene, and halogenated hydrocarbons such as chloroform and carbon tetrachloride. Hydrogen is mentioned.
  • the reaction temperature of the above epoxidation reaction is usually in the range of 0 to 140°C, preferably 0 to 80°C, more preferably 10 to 40°C, from the viewpoints of reaction rate, reaction selectivity, safety, and the like. If the reaction temperature is too low, the reaction rate tends to decrease. From the viewpoint of safety, the reaction is preferably carried out under an inert gas atmosphere such as nitrogen or argon.
  • the reaction time can be appropriately set according to the desired epoxidation rate, and is, for example, 1 to 48 hours, preferably 4 to 36 hours, more preferably 8 to 36 hours.
  • the average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is preferably 2 to 150, more preferably 3 to 90, and even more preferably 4 to 70.
  • the average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is determined by the epoxy equivalent (g/eq) contained in the functional group-modified conjugated diene polymer (F) and the functional group-modified conjugated diene system. It is obtained from the following formula (4) using the number average molecular weight (Mn) of the polymer (F) in terms of standard polystyrene.
  • the epoxy equivalent of the epoxy group contained in the functional group-modified conjugated diene-based polymer (F) is the conjugated diene bonded per epoxy group and other monomers other than the conjugated diene optionally contained. means body mass.
  • the epoxy equivalent is calculated from the area ratio of the peak derived from the epoxy group and the peak derived from the main chain of the polymer using 1 H-NMR.
  • the description of the number average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the functional group-modified conjugated diene-based polymer (F) is the same as that of the unmodified conjugated diene-based polymer (F').
  • the melt viscosity of the functional group-modified conjugated diene polymer (F) measured at 38° C. is preferably 0.01 to 2,000 Pa s, more preferably 0.05 to 1500 Pa s, and 0.1 to 1000 Pa. • s is more preferred.
  • the melt viscosity of the functional group-modified conjugated diene-based polymer (F) is within the above range, it tends to be excellent in the ability to pass the process during production and to be economically efficient.
  • step (E) by reacting the active terminal polymer (I) with the functional group-modified conjugated diene polymer (F), the epoxy groups in the functional group-modified conjugated diene polymer (F) and the active
  • the terminal polymer (I) reacts to form a conjugated diene-based graft polymer in which the active terminal polymer (I) as a side chain is bound to the main chain (a) (hereinafter, this reaction is referred to as a coupling reaction (referred to as An example of the coupling reaction when epoxy-modified polybutadiene is used as the functional group-modified conjugated diene polymer (F) is shown in the following formula (II).
  • P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units.
  • the ring-opening of the epoxy group in the functional group-modified conjugated diene polymer (F) results in the main chain of the hydrogenated conjugated diene graft polymer ( A hydroxyl group is formed that bonds to a).
  • a hydroxyl group is formed that bonds to a.
  • the hydroxyl group is directly bonded to atoms (typically carbon atoms) constituting the main chain (a) other than the atoms bonded to the side chain (b).
  • the average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) can be appropriately set according to the average number of hydroxyl groups bonded to the main chain (a) described above.
  • the average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is 4, hydroxyl groups bonded to the main chain (a) per molecule of the finally obtained conjugated diene graft polymer can be designed to have an average number of four.
  • the average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer is the amount of charged active terminal polymer (I) and functional group-modified conjugated diene-based polymer (F) in the above coupling reaction.
  • the upper limit of the average number of side chains (b) is the number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F).
  • the molar ratio of (charged amount of active terminal polymer (I))/(charged amount of functional group-modified conjugated diene polymer (F)) is the side chain per molecule of hydrogenated conjugated diene graft polymer (b ) may be appropriately set so as to obtain a desired value. If the molar ratio of (charged amount of active terminal polymer (I))/(charged amount of functional group-modified conjugated diene-based polymer (F)) is less than 2, the number of side chains that can be introduced is less than 200. If it is too large, the coupling rate, which will be described later, tends to decrease.
  • the above coupling reaction is usually carried out at a temperature of 0 to 100° C. for 0.5 to 50 hours.
  • the functional group-modified conjugated diene-based polymer (F) may be diluted before use, and the solvent for dilution is not particularly limited as long as it is inert to the active terminal and does not adversely affect the reaction. Examples include hexane and cyclohexane. , heptane, octane, decane, toluene, benzene, xylene and other saturated aliphatic or aromatic hydrocarbons. Also, a Lewis base may be added as an additive during the coupling reaction.
  • Lewis bases include, for example, ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N,N,N',N'-tetramethylethylenediamine, N-methylmorpholine; amines such as These Lewis bases may be used singly or in combination of two or more.
  • the functional group-modified conjugated diene polymer (F) may be added to the reaction system in which the active terminal polymer (I) was synthesized, or conversely, the functional group-modified conjugated diene
  • the active terminal polymer (I) may be added to the system containing the system polymer (F).
  • both the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) may be used after being diluted with a solvent, if necessary.
  • the active terminal polymer (I) may be used alone or in combination of two or more.
  • the functional group-modified conjugated diene polymer (F) may also be used alone. may be used in combination of two or more.
  • the coupling rate in the above coupling reaction is preferably 40% or higher, more preferably 50% or higher, even more preferably 60% or higher. If the coupling rate is less than 40%, the obtained hydrogenated conjugated diene graft polymer will have poor mechanical properties, which is not preferable.
  • the coupling rate can be adjusted by increasing the amount of the functional group-modified conjugated diene polymer (F) added to the active terminal polymer (I), by increasing the amount of the Lewis base added to the active terminal polymer (I), or by adjusting the reaction It can be increased by raising the temperature or lengthening the reaction time.
  • the coupling reaction can be carried out until the coupling rate reaches the desired range. After that, the coupling reaction can be stopped by adding a polymerization terminator such as methanol or isopropanol.
  • a conjugated diene-based graft polymer obtained by a production method including steps (E) and (D) without including step (C), which will be described in detail below, is an unhydrogenated conjugated diene-based graft polymer.
  • Step (C) In the method for producing a hydrogenated conjugated diene-based graft polymer of the present invention, before step (D), (C) a step of hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the (unhydrogenated) conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; ; including.
  • a hydrogenated conjugated diene graft polymer can be obtained by subjecting the unhydrogenated conjugated diene graft polymer obtained by the above method to a step of hydrogenating.
  • the method of hydrogenating the unhydrogenated conjugated diene-based graft polymer is not particularly limited, and is the same as the method of hydrogenating the unhydrogenated conjugated diene-based graft polymer described as the step (C) of the MI method described above. method can be applied.
  • the method for producing the hydrogenated conjugated diene-based graft polymer used in the present invention comprises: (D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer; including.
  • step (D) the obtained hydrogenated conjugated diene-based graft polymer is recovered.
  • the method for recovering the hydrogenated conjugated diene-based graft polymer is not particularly limited, and the same method as the method for recovering the conjugated diene-based graft polymer described as the step (D) of the MI method described above can be applied.
  • An antioxidant may be added to the conjugated diene-based graft polymer of the present invention in any of the steps described above, if necessary. For example, it may be added after step (E), after step (C) or at each step during step (D), or after step (D) or at each step during step (D).
  • Preferred anti-aging agents used at this time are the same anti-aging agents exemplified in the step of the MI method described above.
  • the polymer composition of the present invention contains the hydrogenated conjugated diene graft polymer of the present invention (hereinafter also referred to as hydrogenated conjugated diene graft polymer ( ⁇ )).
  • the polymer composition may further contain a polymer ( ⁇ ) other than the hydrogenated conjugated diene graft polymer ( ⁇ ).
  • the other polymer ( ⁇ ) may be a thermoplastic polymer ( ⁇ 1) or a curable polymer ( ⁇ 2).
  • thermoplastic polymer ( ⁇ 1) examples include acrylic resins such as polymethyl methacrylate and (meth)acrylic acid ester polymers or copolymers; polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polybutene- 1, poly-4-methylpentene-1, olefin resins such as polynorbornene; ethylene ionomer; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, Styrene resins such as ACS resin and MBS resin; Styrene-methyl methacrylate copolymer; Styrene-methyl methacrylate-maleic anhydride copolymer; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polylactic acid; Nylon 6, Polyamides such as nylon 66, polyamide elastomer; Polycarbonate; Polyvinyl
  • curable polymer ( ⁇ 2) examples include epoxy resins, unsaturated polyester resins, epoxy (meth)acrylate resins, ester (meth)acrylate resins, phenol resins, urea resins, melamine resins, thermosetting urethane resins, silicon Resins, imide resins, furan resins, alkyd resins, allyl resins, diallyl phthalate resins.
  • epoxy resins, unsaturated polyesters Resins and epoxy (meth)acrylate resins are preferred, among which epoxy resins and unsaturated polyester resins are more preferred, and epoxy resins are even more preferred.
  • the curable polymer ( ⁇ 2) may be used singly or in combination of two or more.
  • the polymer composition contains the hydrogenated conjugated diene graft polymer ( ⁇ ) and another polymer ( ⁇ ), the hydrogenated conjugated diene graft polymer ( ⁇ ) and the other polymer ( ⁇ )
  • the mass ratio ( ⁇ )/( ⁇ ) with is preferably 1/99 to 99/1.
  • additives may be added to the polymer composition of the present invention to the extent that the effects of the present invention are not impaired.
  • the other polymer ( ⁇ ) is a thermoplastic polymer ( ⁇ 1)
  • such additives include reinforcing agents or fillers such as calcium carbonate, silica, carbon black, glass fiber, clay, process oil, , polyethylene glycol, glycerin, phthalates, and other plasticizers can be used as additives.
  • Other additives include, for example, heat stabilizers, antioxidants, ultraviolet absorbers, colorants, pigments, lubricants, and surfactants.
  • the additive includes a foaming agent, and a foam can be produced from a polymer composition containing the foaming agent and the thermoplastic polymer ( ⁇ 1).
  • such additives include curing agents, curing accelerators, known rubbers, thermoplastic elastomers, impact modifiers such as core-shell particles, etc. agents, fillers (silica, talc, calcium carbonate, inorganic particles such as aluminum hydroxide, etc.), flame retardants, antifoaming agents, pigments, dyes, antioxidants, weathering agents, lubricants, release agents, and the like.
  • the polymer composition of the present invention can be prepared by a conventional method for mixing polymeric substances depending on the composition ratio of each component such as the hydrogenated conjugated diene graft polymer ( ⁇ ) and the other polymer ( ⁇ ). .
  • the polymer composition can be produced using a mixing device such as an extruder, mixing roll, Banbury mixer, kneader, or the like.
  • a method of melt-kneading using these mixing apparatuses is a preferred embodiment.
  • the other polymer ( ⁇ ) is a curable polymer ( ⁇ 2)
  • the polymer composition is obtained by thoroughly mixing with a mixer, melt-kneading with a mixing roll, an extruder, or the like, then cooling and pulverizing. can be made.
  • the polymer composition of the present invention may be a crosslinkable polymer composition containing the hydrogenated conjugated diene graft polymer ( ⁇ ).
  • Such polymer compositions additionally contain a cross-linking agent.
  • cross-linking agents include sulfur, sulfur compounds, hydrogen peroxide, peroxides such as organic peroxides, phenolic resins, amino resins, quinones and quinonedioxime derivatives, halogen compounds, aldehyde compounds, alcohol compounds, epoxy compounds, metals. Halides, organometallic halides, silane compounds, and the like.
  • a vulcanization accelerator or a vulcanization aid may also be contained.
  • the crosslinkable polymer composition includes solid rubbers such as natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene copolymer rubber (excluding conjugated diene graft polymer ( ⁇ )), carbon black, Fillers such as silica, cross-linking aids, softeners such as oils, tackifying resins, anti-aging agents, antioxidants, light stabilizers, anti-scorch agents, compounds containing functional groups, waxes, lubricants, plasticizers, processing aids , pigments, pigments, dyes, other coloring agents, flame retardants, antistatic agents, matting agents, antiblocking agents, UV absorbers, release agents, foaming agents, antibacterial agents, antifungal agents, fragrances, dispersants, solvents It may contain additives such as
  • the polymer composition of the present invention can be molded into articles by various conventionally known molding methods.
  • the other polymer ( ⁇ ) is a thermoplastic polymer ( ⁇ 1)
  • the polymer composition is molded by, for example, extrusion molding, injection molding, blow molding, compression molding, vacuum molding, calender molding, etc. products can be produced. Molded articles, sheets, films and the like of various shapes can be obtained by these methods. In addition, non-woven fabrics and fibrous molded articles can also be produced by methods such as melt blowing and spunbonding.
  • a molded article can be produced by thermally curing the polymer composition, for example, by a transfer molding method.
  • Other molding methods when the polymer composition contains the curable polymer ( ⁇ 2) include, for example, injection molding and compression molding.
  • the polymer composition of the present invention when it is a crosslinkable polymer composition, it can be used as a crosslinked product by crosslinking.
  • the cross-linking conditions for the cross-linkable polymer composition can be appropriately set according to the application and the cross-linking agent to be used.
  • the cross-linking agent is a peroxide
  • a cross-linked product can be produced by performing a cross-linking reaction at a temperature of 130° C. to 250° C. for 10 minutes to 60 minutes.
  • the cross-linking agent is sulfur or a sulfur compound
  • a vulcanization mold can be used at a vulcanization temperature of 120 to 200° C. and a vulcanization pressure of 0.5 to 20 MPa.
  • the uses of molded articles obtained from the polymer composition include, for example, automobile interior and exterior parts such as bumpers and instrument panels, televisions, stereos, and cleaners. Housing materials for home appliances such as machines, electrical and electronic parts such as connectors, materials for electric cables, meat and fish trays, fruit and vegetable packs, frozen food containers and other food packaging materials or food containers, industrial materials and other packaging materials, sports Sporting goods such as shoe materials, fabric or leather products, toys, sandals and other daily goods, various films, sheets, laminated materials for molded products, adhesives and adhesives, elastic materials used for paper diapers, hoses, tubes, belts and various rubber products, medical supplies, and the like.
  • automobile interior and exterior parts such as bumpers and instrument panels, televisions, stereos, and cleaners.
  • Housing materials for home appliances such as machines, electrical and electronic parts such as connectors, materials for electric cables, meat and fish trays, fruit and vegetable packs, frozen food containers and other food packaging materials or food containers, industrial materials and other packaging materials, sports Sporting goods such as shoe materials, fabric or
  • applications of the polymer composition, its cured product or molded article include, for example, adhesives for fiber-reinforced composite materials (fiber-reinforced composite materials for concrete Adhesives for fiber reinforced composite materials for transportation equipment such as automobiles, railway vehicles and aircraft, adhesives for fiber reinforced composite materials for various sporting goods, etc.), adhesives for assembly (transportation such as automobiles, railway vehicles and aircraft Adhesives for assembling parts in transportation equipment, etc.); various paints such as anti-corrosion and waterproof paints for water supply and sewage, anti-corrosion paints for metals; Various coating primers such as coating primers; Various lining materials such as metal lining materials, concrete lining materials, and tank lining materials; Various repair materials such as concrete crack repair materials; Printed wiring boards, insulating boards, semiconductor sealing Examples include various electric and electronic parts such as sealing materials and packaging materials.
  • crosslinkable polymer composition or crosslinked product of the polymer composition is suitably used, for example, as a part of a tire.
  • tire parts where the polymer composition and the crosslinked product of the polymer composition can be used include the tread (cap tread, undertread), sidewall, rubber reinforcing layer for run-flat tires (liner, etc.), and rim.
  • Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw/Mn) By gel permeation chromatography (GPC), the hydrogenated conjugated diene-based graft polymer and the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) of the polymer at each stage of its production ) was calculated in terms of standard polystyrene.
  • Eluent Tetrahydrofuran Eluent flow rate: 0.35 mL/min
  • Vinyl content, styrene unit (structural unit derived from styrene) content, hydrogenation rate 1 H-NMR, conjugated diene graft polymer, vinyl content of polymer at each stage of its production, and styrene A unit content and a hydrogenation rate were calculated.
  • the vinyl content was calculated from the area ratio of the peak of the double bond of the vinylated conjugated diene unit in the obtained spectrum and the peak of the double bond derived from the non-vinylated conjugated diene unit, and the vinyl content was derived from the styrene unit.
  • the styrene unit content was calculated from the area ratio of the peak of the aromatic ring and the peak of the double bond derived from the conjugated diene unit.
  • the vinyl content and styrene unit content were obtained by using 1 H-NMR of the conjugated diene graft polymer before hydrogenation.
  • the hydrogenation rate was calculated from the peak ratio of the double bond derived from the conjugated diene unit of the conjugated diene graft polymer before hydrogenation and the hydrogenated conjugated diene graft polymer after hydrogenation.
  • Apparatus Nuclear magnetic resonance apparatus "JNM-ECX400" manufactured by JEOL Ltd.
  • Solvent Heavy chloroform Measurement temperature: 50°C Accumulated times: 1024 times
  • the active terminal of the polymer obtained by polymerizing the epoxy group contained in the monomer unit that will be the branch portion of the functional group-modified polymer that will be the main chain (a) described later and the monomer that will be the structural unit of the side chain In the case of production by a method of reacting with , it was calculated from the charging ratio of the active terminal polymer and the functional group-modified conjugated diene polymer, which are the constituents of the side chain (b) in the coupling reaction.
  • Average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer Average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer.
  • the number is the hydroxyl value (mgKOH/g) of the hydrogenated conjugated diene graft polymer calculated according to JIS K1557-1: 2007 and the number of standard polystyrene equivalents of the hydrogenated conjugated diene graft polymer. Obtained from the following formula (2) using the average molecular weight (Mn).
  • Affinity with polar materials The affinity of the hydrogenated conjugated diene-based graft polymer with polar materials was evaluated by the separability of a mixed liquid of toluene/water.
  • a hydrogenated conjugated diene-based graft polymer was dissolved in toluene so that the solid content concentration was 10% by mass, and a toluene solution of the polymer and water were mixed at a weight ratio of 1:1 and shaken at room temperature for 5 minutes. It was allowed to stand, and the affinity with the polar material was evaluated according to the following indices.
  • A It takes 1 minute or more for the organic phase and the aqueous phase to separate, or an intermediate phase in which the organic phase and the aqueous phase are mixed exists at a volume ratio of 10% or more.
  • B The organic phase and the aqueous phase separate in less than 1 minute.
  • Example 1 (Step (1)) A sufficiently dried 5 L autoclave was purged with nitrogen, charged with 1130 g of cyclohexane, 519 g of sec-butyllithium (10.5% by mass cyclohexane solution) and 15 g of tetrahydrofuran, heated to 50° C. and then heated to 50° C. under stirring conditions. 1,350 g of butadiene was added successively while controlling the temperature to be 0° C., and polymerization was carried out for 1 hour. After that, 31 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. The unmodified conjugated diene polymer (F'-1) was obtained by vacuum-drying the polymer solution after washing at 70° C. for 24 hours.
  • Step (2) Subsequently, 200 g of the unmodified conjugated diene polymer (F'-1) obtained in step (1), 3800 g of chloroform, 12-tungstophosphate hydrate (H 3 PW 12 60 g of O 40 .30H 2 O), 60 g of hexadecylpyridinium chloride and 400 g of 35% by weight hydrogen peroxide were charged and stirred at room temperature for 15 hours under nitrogen atmosphere. After the reaction, water was added and stirred, the aqueous phase was removed, and the mixture was washed with a 10% by weight aqueous solution of sodium hydrogen sulfite.
  • the resulting functional group-modified conjugated diene polymer (F-1) had a number average molecular weight of 3,000, a vinyl content of 50 mol%, and an epoxy per molecule of the functional group-modified conjugated diene polymer (F-1). The average number of groups was ten. 720 g of toluene was added to 180 g of the obtained functional group-modified conjugated diene polymer (F-1) to dilute it to a concentration of 20% by mass, and the functional group-modified conjugated diene polymer (F-1) used in the coupling reaction described later was obtained. A diluted solution of 1) was obtained.
  • Step (3) A sufficiently dried 5 L autoclave is purged with nitrogen, charged with 2230 g of toluene and 75 g of sec-butyllithium (10.5% by mass cyclohexane solution), heated to 50°C, and then brought to a polymerization temperature of 50°C under stirring conditions. While controlling as above, 580 g of isoprene was successively added and polymerized for 1 hour to obtain an active terminal polymer (I-1). By sampling and analyzing the polymer solution in step (3), the number average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the hydrogenated conjugated diene graft polymer (G-1) described later. can be asked for.
  • the obtained active terminal polymer (I-1) had a number average molecular weight of 7,000, a vinyl content of 10 mol % and a styrene unit content of 0 mass %.
  • Step (4) Subsequently, 120 g of a diluted solution of the functional group-modified conjugated diene polymer (F-1) obtained in step (2) is added to the solution containing the active terminal polymer (I-1) obtained in step (3). and the coupling reaction was carried out at 50° C. for 2 hours. After that, 8.2 g of methanol was added to terminate the reaction to obtain a polymer solution.
  • Step (5) 450 mL of a Ziegler hydrogenation catalyst (0.095 mmol/L cyclohexane solution) formed from nickel octylate and trimethylaluminum was added to the resulting polymer solution, and the reaction was allowed to proceed for 10 hours under conditions of a hydrogen pressure of 1 MPa and 80°C. to obtain a solution containing the hydrogenated conjugated diene graft polymer (G-1).
  • a Ziegler hydrogenation catalyst 0.095 mmol/L cyclohexane solution formed from nickel octylate and trimethylaluminum
  • Step (6) Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to recover a hydrogenated conjugated diene-based graft polymer (G-1).
  • the resulting hydrogenated conjugated diene-based graft polymer (G-1) had a weight average molecular weight of 59,000, an Mw/Mn of 1.5, a structural unit content derived from styrene of 0% by mass, and a hydrogenation rate of 85 mol%, the average number of hydroxyl groups bonded to the main chain per polymer molecule is 10, the hydroxyl group concentration is 34.7 mol%, the average number of side chains (b) per polymer molecule is 8, The side chain density was 27.8 mol%. Moreover, the monomer unit that becomes the branched portion has no heteroatom, and the linking portion that bonds to the side chain (b) is not an aromatic group derived from an aromatic vinyl compound. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-1).
  • Example 2 A hydrogenated conjugated diene-based graft polymer (G -2) was obtained.
  • Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-2).
  • Step (1) A sufficiently dried 5 L autoclave is purged with nitrogen, charged with 1470 g of cyclohexane and 177 g of sec-butyllithium (10.5% by mass cyclohexane solution), heated to 50°C, and then brought to a polymerization temperature of 50°C under stirring conditions. While controlling as above, 1350 g of isoprene was added successively and polymerized for 1 hour. After that, 10 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water.
  • conjugated diene polymer (M-1) After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to obtain a conjugated diene polymer (M-1). Analysis of the obtained conjugated diene-based polymer (M-1) can determine the number average molecular weight and vinyl content of the main chain (a) of the hydrogenated conjugated diene-based graft polymer (G-3) described later. . The resulting conjugated diene polymer (M-1) had a number average molecular weight of 7,000 and a vinyl content of 10 mol %.
  • Step (2) Subsequently, 111 g of the conjugated diene polymer (M-1) obtained in step (1) was charged into a sufficiently dried 5 L autoclave, and the polymer was degassed with nitrogen while stirring at 60° C. for 3 hours. And the inside of the autoclave was replaced with nitrogen. After charging 1230 g of cyclohexane and raising the temperature to 40° C., 87 g of sec-butyllithium (10.5% by mass cyclohexane solution) and 9.2 g of N,N,N',N'-tetramethylethylenediamine were sequentially added, The lithiation reaction was carried out at 40°C for 1 hour.
  • Step (3) Subsequently, 1370 g of cyclohexane was added to dilute the reaction solution, and the temperature was raised to 40° C. again. Then, 9.3 g of 2-ethylhexylaldehyde was added and stirred at 40° C. for 1 hour to functionalize some of the lithiated anion active sites.
  • Step (4) While controlling the polymerization temperature to 40° C., 190 g of butadiene was successively added and polymerized for 2 hours. After that, 7.0 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution.
  • the number average molecular weight of the side chain (b) of the hydrogenated conjugated diene graft polymer (G-3) described later vinyl content and styrene unit content can be determined.
  • the side chain (b) of the hydrogenated conjugated diene graft polymer (G-3) had a number average molecular weight of 5,000, a vinyl content of 75 mol %, and a styrene unit content of 0 mass %.
  • Step (5) 450 mL of a Ziegler hydrogenation catalyst (0.095 mmol/L cyclohexane solution) formed from nickel octylate and trimethylaluminum was added to the resulting polymer solution, and the reaction was allowed to proceed for 10 hours under conditions of a hydrogen pressure of 1 MPa and 80°C. to obtain a solution containing a hydrogenated conjugated diene-based graft polymer (G-3).
  • a Ziegler hydrogenation catalyst 0.095 mmol/L cyclohexane solution formed from nickel octylate and trimethylaluminum
  • Step (6) Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to recover a hydrogenated conjugated diene-based graft polymer (G-3).
  • the obtained hydrogenated conjugated diene graft polymer (G-3) had a weight average molecular weight of 22,000, an Mw/Mn of 1.5, a structural unit content derived from styrene of 0% by mass, and a hydrogenation rate of 85 mol%, the average number of hydroxyl groups bonded to the main chain per polymer molecule is 3, the hydroxyl group concentration is 4.5 mol%, the average number of side chains (b) per polymer molecule is 3, The side chain density was 4.5 mol%.
  • the atom bonded to the side chain (b) contained in the monomer unit that becomes the branched portion is not a hetero atom, and the linking portion containing the atom bonded to the side chain (b) is an aromatic vinyl compound-derived aromatic not a tribe.
  • Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-3).
  • Example 4-6 A conjugated diene-based graft polymer (G-4 ), (G-11) and (G-12) were obtained.
  • TMEDA polar compound used in step (1) was added immediately before adding butadiene after charging cyclohexane and sec-butyllithium into a 5 L autoclave.
  • Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymers (G-4), (G-11) and (G-12).
  • Tables 1 and 2 The types and amounts of each reagent used in steps (1) to (5) in Examples 1 to 6 and Comparative Examples 1 to 7 are shown in Tables 1 and 2 below, Examples 1 to 6, and Comparative Example 1.
  • Table 3 shows the molecular specifications and physical properties of the polymers (hydrogenated conjugated diene graft polymer, non-hydrogenated conjugated diene graft polymer) obtained in steps to 7.
  • Table 3 shows that the hydrogenated conjugated diene-based graft polymers of Examples 1 to 6 have excellent affinity with polar materials and high thermal stability.
  • the (unhydrogenated) conjugated diene-based graft polymers of Comparative Examples 1 to 4 are inferior in heat resistance.
  • the hydrogenated conjugated diene-based graft polymers of Comparative Examples 5 to 7 are inferior in affinity with polar materials.
  • the hydrogenated conjugated diene-based graft polymer of the present invention has excellent affinity with polar materials and high thermal stability. Therefore, the hydrogenated conjugated diene-based graft polymer of the present invention can be used for automobile interior and exterior parts, electrical and electronic parts, packaging materials, sporting goods, daily miscellaneous goods, laminated materials, elastic materials, various rubber products, medical supplies, and various other products. It can be effectively used in a wide range of fields such as adhesives and various coating primers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are a hydrogenated conjugated diene graft polymer having exceptional affinity for polar materials as well as high thermal stability, and a method for producing the hydrogenated conjugated diene graft polymer. The hydrogenated conjugated diene graft polymer includes a main chain (a) composed of a polymer including a conjugated diene unit, and a side chain (b) composed of a polymer including at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, at least some of the carbon-carbon double bonds included in the conjugated diene units being hydrogenated, wherein the side chain (b) is bonded to an atom included in a monomer unit that forms a branched portion in the main chain (a), and a hydroxyl group is bonded to the main chain (a).

Description

水添共役ジエン系グラフト重合体、その製造方法、重合体組成物、成形品及び架橋物Hydrogenated conjugated diene-based graft polymer, method for producing the same, polymer composition, molded product and crosslinked product
 本発明は、極性材料との親和性に優れるとともに高い熱安定性を有する水添共役ジエン系グラフト重合体、及びその製造方法に関する。 The present invention relates to a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability, and a method for producing the same.
 従来から、分岐を有するポリマーは同じ分子量の線状ポリマーに比べて流動性が高く、加工性と力学特性のバランスに優れることが知られている。例えば、テトラメチルエチレンジアミン存在下であらかじめ合成した主鎖を構成する重合体と有機アルカリ金属化合物とを反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合することで、共役ジエン系グラフト重合体を形成させる方法が知られている(特許文献1参照)。グラフト重合体を合成する他の方法として、エポキシ基を有する官能基変性重合体と側鎖の構造単位となる単量体を重合した重合体の活性末端とを反応させる方法が知られている(特許文献2参照)。 Conventionally, it has been known that branched polymers have higher fluidity than linear polymers of the same molecular weight, and have an excellent balance between workability and mechanical properties. For example, the main chain is lithiated by reacting a preliminarily synthesized polymer constituting the main chain with an organic alkali metal compound in the presence of tetramethylethylenediamine, and then the monomers that form the structural units of the side chains are polymerized. Thus, a method of forming a conjugated diene-based graft polymer is known (see Patent Document 1). As another method for synthesizing a graft polymer, a method is known in which a functional group-modified polymer having an epoxy group is reacted with an active terminal of a polymer obtained by polymerizing a monomer to be a structural unit of a side chain ( See Patent Document 2).
米国特許第8623980号U.S. Pat. No. 8,623,980 特公昭49-36957号公報Japanese Patent Publication No. 49-36957
 しかしながら、特許文献1に記載の共役ジエン系グラフト重合体は、極性材料との親和性を有する水酸基を有さないため、極性材料との親和性に改善の余地があった。また、特許文献2に記載の共役ジエン系グラフト重合体は、主鎖に水酸基を有することから極性材料との親和性優れるものの、重合体の熱安定性に改善の余地があった。 However, the conjugated diene-based graft polymer described in Patent Document 1 does not have hydroxyl groups that have affinity with polar materials, so there is room for improvement in affinity with polar materials. Further, the conjugated diene-based graft polymer described in Patent Document 2 has excellent affinity with polar materials because it has hydroxyl groups in its main chain, but there is room for improvement in the thermal stability of the polymer.
 本発明は、上記の実情に鑑みてなされたものであり、極性材料との親和性に優れるとともに高い熱安定性を有する水添共役ジエン系グラフト重合体、及び該水添共役ジエン系グラフト重合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability, and the hydrogenated conjugated diene-based graft polymer. It aims at providing the manufacturing method of.
 本発明者らが鋭意検討を行った結果、共役ジエン単位を含む重合体からなる主鎖(a)に、共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)が結合し、そのグラフト重合体に含まれる共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている、水添共役ジエン系グラフト重合体であって、前記主鎖(a)に水酸基が結合している水添共役ジエン系グラフト重合体が、極性材料との親和性に優れるとともに高い熱安定性を有することを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventors, it was found that at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit is added to the main chain (a) made of a polymer containing a conjugated diene unit. and wherein at least a portion of the carbon-carbon double bonds contained in the conjugated diene units contained in the graft polymer are hydrogenated, to which side chains (b) comprising a polymer comprising The present inventors have found that a hydrogenated conjugated diene-based graft polymer in which a hydroxyl group is bonded to the main chain (a), which is a graft polymer, has excellent affinity with polar materials and high thermal stability. I have perfected my invention.
 すなわち、本発明は以下の[1]~[11]を提供するものである。
[1] 共役ジエン単位を含む重合体からなる主鎖(a)、及び共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)を含み、
 前記共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている、水添共役ジエン系グラフト重合体であり、
 前記側鎖(b)は、前記主鎖(a)に含まれる分岐部分となる単量体単位に含まれる原子と結合し、
 前記主鎖(a)に水酸基が結合している、水添共役ジエン系グラフト重合体。
[2] 前記主鎖(a)に結合する水酸基が3.0モル%以上である、[1]に記載の水添共役ジエン系グラフト重合体。
[3] 前記水添共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の50モル%以上が水素添加されている、[1]又は[2]に記載の水添共役ジエン系グラフト重合体。
[4] 前記共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数が2以上である、[1]~[3]のいずれかに記載の水添共役ジエン系グラフト重合体。
[5] 前記分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子がヘテロ原子ではなく、
 前記分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物に由来する芳香族基ではない、[1]~[4]のいずれかに記載の水添共役ジエン系グラフト重合体。
[6] (A-1)極性化合物の存在下、共役ジエン単位を含む重合体(M)と有機リチウム化合物を反応させることにより、前記重合体(M)に含まれるアニオン活性部位をリチオ化する工程;
 (A-2)官能化剤を添加して、リチオ化されたアニオン活性部位の一部を官能化する工程;
 (B)共役ジエン及び芳香族ビニル化合物からなる群より選ばれる少なくとも1つの単量体を添加して、重合体(M)中の残存するリチオ化されたアニオン活性部位から重合して、主鎖となる重合体(M)に対し側鎖を形成し、共役ジエン系グラフト重合体を作製する工程;及び
 (C)上記共役ジエン系グラフト重合体に含まれる共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加し水添共役ジエン系グラフト重合体を形成する工程;及び
 (D)得られた共役ジエン系グラフト重合体を回収する工程;
を含む、[1]~[5]のいずれかに記載の水添共役ジエン系グラフト重合体の製造方法。
[7] さらに、工程(A-2)の後に、
 (A-3)ルイス酸を添加する工程;
を含む、[6]に記載の水添共役ジエン系グラフト重合体の製造方法。
[8] (E)下記式(I)で表される活性末端重合体と
P-X  (I)
(式(I)中、Pは共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す。)、
エポキシ基を有する官能基変性共役ジエン系重合体とを反応させて共役ジエン系グラフト重合体を作製する工程;
 (C)上記共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;及び
 (D)得られた水添共役ジエン系グラフト重合体を回収する工程;
を含む、[1]~[5]のいずれかに記載の水添共役ジエン系グラフト重合体の製造方法。
[9] [1]~[5]のいずれかに記載の水添共役ジエン系グラフト重合体を含有する、重合体組成物。
[10] [9]に記載の重合体組成物を成形してなる成形品。
[11] [9]に記載の重合体組成物を架橋してなる架橋物。
That is, the present invention provides the following [1] to [11].
[1] A main chain (a) made of a polymer containing a conjugated diene unit, and a side chain made of a polymer containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit ( b)
A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
The side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a),
A hydrogenated conjugated diene-based graft polymer having a hydroxyl group bonded to the main chain (a).
[2] The hydrogenated conjugated diene graft polymer according to [1], wherein 3.0 mol% or more of hydroxyl groups are bonded to the main chain (a).
[3] The hydrogenation according to [1] or [2], wherein 50 mol% or more of the carbon-carbon double bonds contained in the conjugated diene units in the hydrogenated conjugated diene-based graft polymer are hydrogenated. Conjugated diene graft polymer.
[4] The hydrogenated conjugated diene graft polymer according to any one of [1] to [3], wherein the average number of side chains (b) per molecule of the conjugated diene graft polymer is 2 or more.
[5] the atom bonded to the side chain (b) contained in the monomer unit serving as the branched portion is not a heteroatom,
any of [1] to [4], wherein the linking portion containing an atom that binds to the side chain (b) contained in the monomer unit that becomes the branching portion is not an aromatic group derived from an aromatic vinyl compound; The hydrogenated conjugated diene-based graft polymer described above.
[6] (A-1) The anion active site contained in the polymer (M) is lithiated by reacting the polymer (M) containing a conjugated diene unit with an organolithium compound in the presence of a polar compound. process;
(A-2) adding a functionalizing agent to functionalize a portion of the lithiated anion active sites;
(B) adding at least one monomer selected from the group consisting of a conjugated diene and an aromatic vinyl compound to polymerize from the remaining lithiated anionic active sites in the polymer (M) to obtain a main chain (C) a step of forming a side chain on the polymer (M) to produce a conjugated diene-based graft polymer; (D) recovering the obtained conjugated diene graft polymer;
The method for producing a hydrogenated conjugated diene-based graft polymer according to any one of [1] to [5].
[7] Furthermore, after step (A-2),
(A-3) adding a Lewis acid;
The method for producing a hydrogenated conjugated diene-based graft polymer according to [6].
[8] (E) an active terminal polymer represented by the following formula (I) and PX (I)
(In formula (I), P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents an anionic polymerization active terminal.) ,
A step of reacting with a functional group-modified conjugated diene polymer having an epoxy group to prepare a conjugated diene graft polymer;
(C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; and (D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer;
The method for producing a hydrogenated conjugated diene-based graft polymer according to any one of [1] to [5].
[9] A polymer composition containing the hydrogenated conjugated diene graft polymer according to any one of [1] to [5].
[10] A molded article obtained by molding the polymer composition according to [9].
[11] A crosslinked product obtained by crosslinking the polymer composition according to [9].
 本発明によれば、極性材料との親和性に優れるとともに高い熱安定性を有する水添共役ジエン系グラフト重合体、及びその製造方法が提供される。 According to the present invention, a hydrogenated conjugated diene-based graft polymer having excellent affinity with polar materials and high thermal stability, and a method for producing the same are provided.
 以下、本発明を詳細に説明する。
 本発明の水添共役ジエン系グラフト重合体は、共役ジエンに由来する構造単位(以下、共役ジエン単位とも呼称する)を含む重合体からなる主鎖(a)、及び共役ジエン単位及び芳香族ビニル化合物に由来する構造単位(以下、芳香族ビニル化合物単位とも呼称する)からなる群より選ばれる少なくとも1つの単量体に由来する構造単位(以下、単量体単位とも呼称する)を含む重合体からなる側鎖(b)を含み、
 前記共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている、水添共役ジエン系グラフト重合体であり、
 前記側鎖(b)は、前記主鎖(a)に含まれる分岐部分となる単量体単位に含まれる原子と結合し、
 前記主鎖(a)に水酸基が結合している。
 なお、本発明でグラフト重合体とは、高分子鎖からなる主鎖を幹、高分子鎖からなる側鎖を枝、として有する重合体をいい、主鎖となる高分子鎖を構成する単量体単位と、側鎖となる高分子鎖を構成する単量体単位とは、同一でも異なっていてもよい。また、本発明で水添共役ジエン系グラフト重合体とは、共役ジエン単位を含んでいるグラフト重合体であり、その共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されているグラフト重合体である。
The present invention will be described in detail below.
The hydrogenated conjugated diene-based graft polymer of the present invention comprises a main chain (a) made of a polymer containing a structural unit derived from a conjugated diene (hereinafter also referred to as a conjugated diene unit), a conjugated diene unit and an aromatic vinyl A polymer containing a structural unit (hereinafter also referred to as a monomer unit) derived from at least one monomer selected from the group consisting of a structural unit derived from a compound (hereinafter also referred to as an aromatic vinyl compound unit) comprising a side chain (b) consisting of
A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
The side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a),
A hydroxyl group is bonded to the main chain (a).
In the present invention, the term "graft polymer" refers to a polymer having a backbone composed of a polymer chain and side chains composed of a polymer chain as branches. The body unit and the monomer unit that constitutes the side chain polymer chain may be the same or different. In the present invention, the hydrogenated conjugated diene-based graft polymer is a graft polymer containing conjugated diene units, and at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated. It is a graft polymer with
 <主鎖(a)>
 本発明の水添共役ジエン系グラフト重合体は、共役ジエン単位を含む重合体からなる主鎖(a)を有する。なお、本発明の水添共役ジエン系グラフト重合体に含まれる主鎖とは、主鎖を構成する共役ジエンを含む全単量体に由来する構造単位部分全体を指す。例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、前記あらかじめ合成した共役ジエン系重合体部分全体を指す。例えば、そのあらかじめ合成した共役ジエン系重合体にビニル結合をしたブタジエンに由来する構造単位(ブタジエン単位)が含まれる場合、重合体骨格(-(C-C)n-)中の炭素原子に接合する-CH=CH2部分までを含めて主鎖という。
<Main chain (a)>
The hydrogenated conjugated diene-based graft polymer of the present invention has a main chain (a) composed of a polymer containing conjugated diene units. The main chain contained in the hydrogenated conjugated diene-based graft polymer of the present invention refers to the entire structural unit portion derived from all monomers including the conjugated diene constituting the main chain. For example, a method of lithiating the main chain by reacting a pre-synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, and then polymerizing a monomer that becomes the structural unit of the side chain. In the case of manufacturing with, it refers to the entire conjugated diene-based polymer portion synthesized in advance. For example, when the conjugated diene-based polymer synthesized in advance contains a structural unit (butadiene unit) derived from butadiene with a vinyl bond, it is bonded to a carbon atom in the polymer skeleton (-(C-C) n -). The term "main chain" includes up to the -CH= CH2 portion.
 主鎖(a)は、その重合体を構成する単量体単位として共役ジエン単位を含む。共役ジエンとしては、例えば、ブタジエン、イソプレン、ファルネセン、ミルセン、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、及びクロロプレンが挙げられる。これら共役ジエンの中でも、ブタジエン、イソプレン、ファルネセン及びミルセンが好ましく、ブタジエン及びイソプレンがより好ましく、ブタジエンがさらに好ましい。上記共役ジエン単位となる共役ジエンは1種単独で用いられても、2種以上併用されてもよい。 The main chain (a) contains a conjugated diene unit as a monomer unit constituting the polymer. Examples of conjugated dienes include butadiene, isoprene, farnesene, myrcene, 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1 ,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, and chloroprene. Among these conjugated dienes, butadiene, isoprene, farnesene and myrcene are preferred, butadiene and isoprene are more preferred, and butadiene is even more preferred. The conjugated diene to be the conjugated diene unit may be used alone or in combination of two or more.
 主鎖(a)は、その重合体を構成する全単量体単位のうち、40質量%以上が共役ジエン単位であることが好ましい一態様である。共役ジエン単位の合計含有量は、主鎖(a)の全単量体単位に対して50~100質量%であることが好ましく、60~100質量%であることがより好ましい。 In one embodiment, the main chain (a) is preferably composed of conjugated diene units in an amount of 40% by mass or more among all the monomer units constituting the polymer. The total content of conjugated diene units is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, based on the total monomer units of the main chain (a).
 主鎖(a)は、その重合体を構成する全単量体単位のうち、40質量%以上がブタジエン単位及びイソプレンに由来する構造単位(イソプレン単位)からなる群より選ばれる少なくとも1つの単量体単位であることが好ましい一態様である。ブタジエン単位及びイソプレン単位の合計含有量は、主鎖(a)を構成する全単量体単位に対して50~100質量%であることが好ましく、60~100質量%であることがより好ましい。 The main chain (a) comprises at least one monomer selected from the group consisting of butadiene units and isoprene-derived structural units (isoprene units) in at least 40% by mass of the total monomer units constituting the polymer. In one embodiment, it is preferably a body unit. The total content of butadiene units and isoprene units is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, based on the total monomer units constituting the main chain (a).
 主鎖(a)に含まれるブタジエン単位及びイソプレン単位以外の他の単量体単位としては、前述したブタジエン単位及びイソプレン単位以外の共役ジエン単位、芳香族ビニル化合物単位などが挙げられる。 Examples of monomer units other than butadiene units and isoprene units contained in the main chain (a) include conjugated diene units other than the above-mentioned butadiene units and isoprene units, aromatic vinyl compound units, and the like.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中でも、スチレン、4-メチルスチレン、及びα-メチルスチレンが好ましく、スチレン、及びα-メチルスチレンがより好ましい。上記芳香族ビニル化合物単位となる芳香族ビニル化合物は1種単独で用いられても、2種以上併用されてもよい。 Examples of aromatic vinyl compounds include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2- Examples include vinylnaphthalene, vinylanthracene, N,N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, and divinylbenzene. Among these aromatic vinyl compounds, styrene, 4-methylstyrene and α-methylstyrene are preferred, and styrene and α-methylstyrene are more preferred. The aromatic vinyl compound to be the aromatic vinyl compound unit may be used alone or in combination of two or more.
 主鎖(a)における、ブタジエン単位及びイソプレン単位以外の他の単量体単位の含有量は、60質量%以下であることが好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。例えば、芳香族ビニル化合物単位が上記範囲以下であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The content of monomer units other than butadiene units and isoprene units in the main chain (a) is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less. . For example, when the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
 主鎖(a)の数平均分子量(Mn)は1,000以上1,000,000以下であることが好ましい一態様であり、2,000以上500,000以下がより好ましく、2,000以上100,000以下がさらに好ましい。本発明において主鎖(a)のMnは、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、主鎖の構成要素となるあらかじめ合成した共役ジエン系重合体の水素添加前の状態のMnである。上記主鎖(a)のMnが前記範囲内であると、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、製造時の工程通過性に優れ、経済性が良好となる傾向にある。なお、本発明において、特に断りがない限り、Mnは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めた標準ポリスチレン換算の数平均分子量である。 In one embodiment, the number average molecular weight (Mn) of the main chain (a) is preferably 1,000 or more and 1,000,000 or less, more preferably 2,000 or more and 500,000 or less, and 2,000 or more and 100 ,000 or less is more preferable. In the present invention, Mn of the main chain (a) is, for example, a side chain after lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine. In the case of production by a method of polymerizing a monomer to be a structural unit of, it is Mn in a state before hydrogenation of a conjugated diene polymer synthesized in advance to be a constituent of the main chain. When the Mn of the main chain (a) is within the above range, when the conjugated diene-based graft polymer is produced by the production method of the present invention, the processability during production is excellent and the economy is favorable. There is a tendency. In the present invention, unless otherwise specified, Mn is the number average molecular weight in terms of standard polystyrene obtained from measurement by gel permeation chromatography (GPC).
 主鎖(a)のビニル含量は、90モル%以下であることが好ましい一態様であり、70モル%以下がより好ましく、60モル%以下がさらに好ましい。主鎖(a)のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。本発明において、「ビニル含量」とは、水素添加前の共役ジエン系グラフト重合体に含まれる、共役ジエン単位の合計100モル%中、1,2-結合、3,4-結合(ファルネセン以外の場合)、及び3,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位(1,4-結合(ファルネセン以外の場合)及び1,13-結合(ファルネセンの場合)以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含量は、1H-NMRを用いて1,2-結合、3,4-結合(ファルネセン以外の場合)、及び3,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位由来のピークと1,4-結合(ファルネセン以外の場合)及び1,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位に由来するピークの面積比から算出する。本発明において、水添共役ジエン系グラフト重合体のビニル含量は、水素添加前の重合体に含まれる共役ジエン単位での結合形態から求められるビニル含量を、その重合体のビニル含量と定義する。 In one embodiment, the vinyl content of the main chain (a) is preferably 90 mol% or less, more preferably 70 mol% or less, and even more preferably 60 mol% or less. The vinyl content of the main chain (a) is preferably 0.5 mol % or more, more preferably 1 mol % or more. In the present invention, the “vinyl content” means 1,2-bonds, 3,4-bonds (other than farnesene) in the total 100 mol% of conjugated diene units contained in the conjugated diene-based graft polymer before hydrogenation. case), and 3,13-bonds (in the case of farnesene), and conjugated diene units (with bonds other than 1,4-bonds (other than farnesene) and conjugated diene units). Vinyl content is derived from conjugated diene units linked by 1,2-linkages, 3,4-linkages (for non-farnesene), and 3,13-linkages (for farnesene) using 1 H-NMR. is calculated from the area ratio of the peak derived from the 1,4-bond (other than farnesene) and 1,13-bond (for farnesene) conjugated diene units. In the present invention, the vinyl content of the hydrogenated conjugated diene-based graft polymer is defined as the vinyl content of the polymer obtained from the bonding form of the conjugated diene units contained in the polymer before hydrogenation.
 主鎖(a)のビニル含量は目的に応じて設計することが可能であり、例えば、ビニル含量が50モル%未満であると、後述する主鎖(a)のガラス転移温度(Tg)が低くなり、得られる水添共役ジエン系グラフト重合体の流動性や低温特性が優れる傾向がある。また、50モル%以上であると、得られる共役ジエン系グラフト重合体の耐熱性に優れる傾向にある。また、主鎖(a)となる水添前の重合体鎖がブタジエン単位のみから構成される場合は、水素添加後の結晶化による性能低下を防ぐために、ビニル含量を25モル%以上にするのが好ましい。 The vinyl content of the main chain (a) can be designed according to the purpose. As a result, the resulting hydrogenated conjugated diene graft polymer tends to be excellent in fluidity and low-temperature properties. Moreover, when it is 50 mol % or more, the obtained conjugated diene-based graft polymer tends to be excellent in heat resistance. In addition, when the polymer chain before hydrogenation, which is the main chain (a), is composed only of butadiene units, the vinyl content should be 25 mol % or more in order to prevent performance deterioration due to crystallization after hydrogenation. is preferred.
 なお、主鎖(a)のビニル含量は、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、主鎖(a)の構成要素となるあらかじめ合成した共役ジエン系重合体を製造する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。 The vinyl content of the main chain (a) can be determined, for example, by reacting a previously synthesized conjugated diene polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, followed by In the case of production by a method of polymerizing a monomer that becomes the structural unit of, the type of solvent used in producing the pre-synthesized conjugated diene polymer that will be the constituent of the main chain (a), if necessary A desired value can be obtained by controlling the polar compound used, the polymerization temperature, and the like.
 主鎖(a)のガラス転移温度(Tg)は、主鎖(a)となる重合体鎖における共役ジエン単位のビニル含量、共役ジエン単位の種類、共役ジエン単位以外の他の単量体単位の含量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ取り扱いが容易になる。なお、本発明において、Tgは示差走査熱量測定(DSC)測定により求めた、DDSCのピークトップの値である。 The glass transition temperature (Tg) of the main chain (a) depends on the vinyl content of the conjugated diene unit in the polymer chain that becomes the main chain (a), the type of the conjugated diene unit, and the content of monomer units other than the conjugated diene unit. Although it may vary depending on the content and the like, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from increasing, which facilitates handling. In the present invention, Tg is the peak top value of DDSC obtained by differential scanning calorimetry (DSC) measurement.
 <側鎖(b)>
 本発明の水添共役ジエン系グラフト重合体は、共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)を有する。
<Side chain (b)>
The hydrogenated conjugated diene-based graft polymer of the present invention has a side chain (b) comprising a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units.
 側鎖(b)は、その重合体を構成する単量体単位として共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。 The side chain (b) contains at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units as monomer units constituting the polymer.
 側鎖(b)の単量体単位を構成し得る共役ジエンの具体例は、主鎖(a)の単量体単位を構成する共役ジエンの具体例と同一である。側鎖(b)に含まれる共役ジエン単位となる共役ジエンの中では、ブタジエン、イソプレン、ファルネセン及びミルセンが好ましく、ブタジエン及びイソプレンがさらに好ましい。上記共役ジエン単位となる共役ジエンは1種単独で用いられても、2種以上併用されてもよい。 Specific examples of the conjugated diene that can constitute the monomer unit of the side chain (b) are the same as the specific examples of the conjugated diene that constitutes the monomer unit of the main chain (a). Among the conjugated dienes that become the conjugated diene units contained in the side chain (b), butadiene, isoprene, farnesene and myrcene are preferred, and butadiene and isoprene are more preferred. The conjugated diene to be the conjugated diene unit may be used alone or in combination of two or more.
 側鎖(b)の単量体単位を構成し得る芳香族ビニル化合物の具体例は、主鎖(a)の単量体単位を構成し得る芳香族ビニル化合物の具体例と同一である。これら芳香族ビニル化合物の中でも、スチレン、及びα-メチルスチレンが好ましい。上記芳香族ビニル化合物単位となる芳香族ビニル化合物は1種単独で用いられても、2種以上併用されてもよい。 Specific examples of the aromatic vinyl compound that can constitute the monomer units of the side chain (b) are the same as the specific examples of the aromatic vinyl compound that can constitute the monomer units of the main chain (a). Among these aromatic vinyl compounds, styrene and α-methylstyrene are preferred. The aromatic vinyl compound to be the aromatic vinyl compound unit may be used alone or in combination of two or more.
 側鎖(b)はその重合体鎖の骨格が、共役ジエン単位1種若しくは芳香族ビニル化合物単位1種のみからなる単独重合体、共役ジエン及び芳香族ビニル化合物からなる群より選ばれる2種以上の単量体単位からなる共重合体、又は、共役ジエン及び芳香族ビニル化合物からなる群より選ばれる1種以上の単量体に由来する構造単位、及び共役ジエン及び芳香族ビニル化合物以外の1種以上のビニル単量体に由来する構造単位からなる共重合体であってもよい。また、側鎖(b)を構成する重合体は1種単独でもよく、異なる構造を有する2種以上であってもよい。 The side chain (b) is two or more selected from the group consisting of homopolymers, conjugated dienes, and aromatic vinyl compounds, in which the skeleton of the polymer chain consists of only one type of conjugated diene unit or one type of aromatic vinyl compound unit. or a structural unit derived from one or more monomers selected from the group consisting of conjugated dienes and aromatic vinyl compounds, and one other than conjugated dienes and aromatic vinyl compounds It may be a copolymer composed of structural units derived from at least one kind of vinyl monomer. Moreover, the polymer constituting the side chain (b) may be of one type alone, or may be of two or more types having different structures.
 側鎖(b)を構成する重合体に含まれる共役ジエン単位の含有量は、側鎖(b)の全単量体単位に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが特に好ましく、100質量%であってもよい。共役ジエン単位の含有量が50質量%以上であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。なお上記含有量は、水添前の側鎖(b)における含有量を意味する。 The content of the conjugated diene unit contained in the polymer constituting the side chain (b) is preferably 50% by mass or more, and 70% by mass or more, based on the total monomer units of the side chain (b). More preferably, it is particularly preferably 80% by mass or more, and may be 100% by mass. When the content of the conjugated diene units is 50% by mass or more, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved. In addition, the said content means content in the side chain (b) before hydrogenation.
 上記側鎖(b)を構成し得る共役ジエンとしては、ブタジエン及びイソプレンからなる群より選ばれる少なくとも1種が含まれることが好ましい。側鎖(b)を構成する重合体に含まれるブタジエン単位及びイソプレン単位の合計含有量は、その重合体を構成する全単量体単位のうち、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが特に好ましく、100質量%であってもよい。また、側鎖(b)に含まれるブタジエン単位とイソプレン単位の質量比(ブタジエン単位/イソプレン単位)は、0/100~50/50の範囲が好ましく、0/100~30/70の範囲がより好ましく、0/100~20/80の範囲が特に好ましい。側鎖(b)中の、ブタジエン単位及びイソプレン単位の合計含有量、及びブタジエン単位とイソプレン単位の質量比が上記範囲であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。なお上記含有量及び質量比は、水添前の側鎖(b)における含有量及び質量比を意味する。 The conjugated diene that can constitute the side chain (b) preferably contains at least one selected from the group consisting of butadiene and isoprene. The total content of butadiene units and isoprene units contained in the polymer constituting the side chain (b) is preferably 50% by mass or more, preferably 70% by mass, of the total monomer units constituting the polymer. % or more, particularly preferably 80 mass % or more, and may be 100 mass %. The mass ratio of butadiene units and isoprene units (butadiene units/isoprene units) contained in the side chain (b) is preferably in the range of 0/100 to 50/50, more preferably in the range of 0/100 to 30/70. A range of 0/100 to 20/80 is particularly preferred. When the total content of butadiene units and isoprene units and the mass ratio of butadiene units to isoprene units in the side chain (b) are within the above ranges, the resulting hydrogenated conjugated diene-based graft polymer has improved processability. There is a tendency. In addition, the said content and mass ratio mean the content and mass ratio in the side chain (b) before hydrogenation.
 側鎖(b)を構成する重合体に含まれる芳香族ビニル化合物単位の含有量は、その重合体を構成する全単量体単位のうち、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが特に好ましく、0質量%であってもよい。芳香族ビニル化合物単位の含有量が50質量%以下であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。なお上記含有量は、水添前の側鎖(b)における含有量を意味する。 The content of the aromatic vinyl compound unit contained in the polymer constituting the side chain (b) is preferably 50% by mass or less, preferably 30% by mass, of the total monomer units constituting the polymer. It is more preferably 20% by mass or less, particularly preferably 20% by mass or less, and may be 0% by mass. When the content of the aromatic vinyl compound unit is 50% by mass or less, the resulting hydrogenated conjugated diene graft polymer tends to be improved in processability. In addition, the said content means content in the side chain (b) before hydrogenation.
 側鎖(b)の数平均分子量(Mn)は、500以上300,000以下であることが好ましい一態様であり、1,000以上200,000以下がより好ましく、1,000以上150,000以下がさらに好ましい。本発明において側鎖(b)のMnは、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法(マクロイニシエーター法(MI法))で製造する場合には、リチオ化反応に使用する有機アルカリ金属化合物と側鎖の構造単位となる単量体の仕込み比より算出される水素添加前の状態のMnである。上記側鎖(b)のMnが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。 In one embodiment, the number average molecular weight (Mn) of the side chain (b) is preferably 500 or more and 300,000 or less, more preferably 1,000 or more and 200,000 or less, and 1,000 or more and 150,000 or less. is more preferred. In the present invention, the Mn of the side chain (b) is, for example, a conjugated diene-based polymer synthesized in advance described later, which is lithiated by reacting the main chain with an organic alkali metal compound in the presence of tetramethylethylenediamine. In the case of production by a method of polymerizing a monomer that becomes the structural unit of (macroinitiator method (MI method)), the organic alkali metal compound used in the lithiation reaction and the monomer that becomes the structural unit of the side chain is the Mn in the state before hydrogenation calculated from the charge ratio of . When the Mn of the side chain (b) is within the above range, there is a tendency that the process passability during production is excellent and the economy is favorable.
 側鎖(b)のビニル含量は、99モル%以下であることが好ましい一態様であり、90モル%以下がより好ましく、85モル%以下がさらに好ましい。側鎖(b)のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。側鎖(b)のビニル含量は、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、1H-NMRスペクトルにより算出した水素添加前の共役ジエン系グラフト重合体のビニル含量と、上述した主鎖(a)のビニル含量、及び主鎖、側鎖を構成する単量体単位の原料となる単量体の仕込み比より算出できる。側鎖(b)のビニル含量が前記範囲内であると、得られる水添共役ジエン系グラフト重合体の低温特性と耐熱性のバランスに優れる傾向がある。また、側鎖(b)となる水添前の重合体鎖がブタジエン単位のみから構成される場合は、水素添加後の結晶化による性能低下を防ぐために、側鎖(b)のビニル含量を25モル%以上にするのが好ましい。 In one aspect, the vinyl content of the side chain (b) is preferably 99 mol% or less, more preferably 90 mol% or less, and even more preferably 85 mol% or less. The vinyl content of the side chain (b) is preferably 0.5 mol % or more, more preferably 1 mol % or more. The vinyl content of the side chain (b) can be determined, for example, by reacting a conjugated diene-based polymer synthesized in advance, which will be described later, with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, and then determining the structure of the side chain. In the case of production by a method of polymerizing a monomer to be a unit, the vinyl content of the conjugated diene-based graft polymer before hydrogenation calculated from the 1 H-NMR spectrum and the vinyl content of the above-mentioned main chain (a) , and from the feed ratio of the monomers that are the raw materials of the monomer units that constitute the main chain and the side chain. When the vinyl content of the side chain (b) is within the above range, the resulting hydrogenated conjugated diene graft polymer tends to have an excellent balance between low-temperature properties and heat resistance. In addition, when the polymer chain before hydrogenation, which is the side chain (b), is composed only of butadiene units, the vinyl content of the side chain (b) is set to 25 in order to prevent performance deterioration due to crystallization after hydrogenation. mol % or more is preferable.
 なお、側鎖(b)のビニル含量は、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、側鎖(b)を重合する際に使用する溶媒の種類、必要に応じて使用される極性化合物やルイス酸、重合温度などを制御することにより所望の値とすることができる。 Incidentally, the vinyl content of the side chain (b) can be determined, for example, by reacting a conjugated diene-based polymer synthesized in advance, which will be described later, with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain, followed by In the case of production by a method of polymerizing a monomer that becomes a structural unit of, the type of solvent used when polymerizing the side chain (b), the polar compound or Lewis acid used as necessary, the polymerization temperature A desired value can be obtained by controlling such as.
 側鎖(b)のガラス転移温度(Tg)は、側鎖(b)となる重合体鎖における共役ジエン単位のビニル含量、共役ジエンの種類、共役ジエン単位以外の単量体単位の含有量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ取り扱いが容易になる。ここで、側鎖(b)が後述するブロック共重合体であり、Tgを2つ以上有する場合、最も低いTgが上記範囲であることが好ましい。 The glass transition temperature (Tg) of the side chain (b) is determined by the vinyl content of the conjugated diene unit in the polymer chain that becomes the side chain (b), the type of conjugated diene, the content of monomer units other than the conjugated diene unit, and the like. Although it may vary depending on the temperature, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from increasing, which facilitates handling. Here, when the side chain (b) is a block copolymer described later and has two or more Tg, the lowest Tg is preferably within the above range.
 上記側鎖(b)は、芳香族ビニル化合物単位を含む重合体ブロック(b1)及び共役ジエン単位を含む重合体ブロック(b2)が含有されるブロック共重合体鎖であってもよい。 The side chain (b) may be a block copolymer chain containing a polymer block (b1) containing an aromatic vinyl compound unit and a polymer block (b2) containing a conjugated diene unit.
 前記重合体ブロック(b1)は、芳香族ビニル化合物単位を含有する。上記芳香族ビニル化合物単位の具体例、及び好適例は、側鎖(b)の単量体単位を構成する芳香族ビニル化合物単位の具体例、及び好適例と同一である。重合体ブロック(b1)中、芳香族ビニル化合物単位の含有量は、得られる共役ジエン系グラフト重合体を含む油組成物の物性向上の観点から、好ましくは70モル%超であり、より好ましくは80モル%以上、さらに好ましくは90モル%以上、よりさらに好ましくは95モル%以上であり、実質的に100モル%であることが特に好ましい。 The polymer block (b1) contains aromatic vinyl compound units. Specific examples and preferred examples of the aromatic vinyl compound unit are the same as specific examples and preferred examples of the aromatic vinyl compound unit constituting the monomer unit of the side chain (b). In the polymer block (b1), the content of the aromatic vinyl compound unit is preferably more than 70 mol%, more preferably more than It is 80 mol % or more, more preferably 90 mol % or more, still more preferably 95 mol % or more, and particularly preferably substantially 100 mol %.
 本発明の目的及び効果の妨げにならない限り、重合体ブロック(b1)は芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」とも呼称する)を、重合体ブロック(b1)中30モル%以下の割合で含有していてもよいが、好ましくは20モル%未満、より好ましくは15モル%未満、さらに好ましくは10モル%未満、よりさらに好ましくは5モル%未満、特に好ましくは0モル%である。 The polymer block (b1) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter referred to as "another unsaturated monomer unit") as long as it does not interfere with the object and effect of the present invention. may be contained in the polymer block (b1) in a proportion of 30 mol% or less, preferably less than 20 mol%, more preferably less than 15 mol%, still more preferably less than 10 mol% , more preferably less than 5 mol %, particularly preferably 0 mol %.
 該他の不飽和単量体としては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、ミルセン、ファルネセン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン等からなる群から選択される少なくとも1種が挙げられる。重合体ブロック(b1)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。 Examples of other unsaturated monomers include butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, myrcene, farnesene, isobutylene, methyl methacrylate, methyl vinyl ether, β- At least one selected from the group consisting of pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like. When the polymer block (b1) contains the other unsaturated monomer units, the bonding form is not particularly limited, and may be random or tapered.
 側鎖(b)が前記ブロック共重合体鎖である場合、その重合体ブロック(b1)のMnは特に制限はないが、重合体ブロック(b1)のMnは、好ましくは500~300,000、より好ましくは1,000~200,000であり、さらに好ましくは1,000~50,000である。共役ジエン系グラフト重合体の鎖(b)が、上記範囲内のMnである重合体ブロック(b1)を有することにより、共役ジエン系グラフト重合体を含む油組成物のせん断安定性等の特性がより向上する傾向にある。 When the side chain (b) is the block copolymer chain, the Mn of the polymer block (b1) is not particularly limited, but the Mn of the polymer block (b1) is preferably 500 to 300,000, More preferably from 1,000 to 200,000, still more preferably from 1,000 to 50,000. When the chain (b) of the conjugated diene graft polymer has a polymer block (b1) having Mn within the above range, the properties such as shear stability of the oil composition containing the conjugated diene graft polymer are improved. tend to improve.
 共役ジエン系グラフト重合体における重合体ブロック(b1)の含有量は、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、40質量%以下であることが特に好ましい。重合体ブロック(b1)の含有量が前記上限値以下であれば、得られる共役ジエン系グラフト重合体を含む油組成物のせん断安定性等の特性がより向上する傾向にある。また、上記重合体ブロック(b1)の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。重合体ブロック(b1)の含有量が前記下限値以上であれば、共役ジエン系グラフト重合体の製造が容易な傾向にある。なお、共役ジエン系グラフト重合体における重合体ブロック(b1)の含有量は、1H-NMR測定により求めることができる。 The content of the polymer block (b1) in the conjugated diene-based graft polymer is preferably 70% by mass or less, more preferably 60% by mass or less, even more preferably 50% by mass or less, 40% by mass or less is particularly preferred. When the content of the polymer block (b1) is equal to or less than the above upper limit, properties such as shear stability of the obtained oil composition containing the conjugated diene-based graft polymer tend to be further improved. The content of the polymer block (b1) is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more. If the content of the polymer block (b1) is at least the above lower limit, the production of the conjugated diene-based graft polymer tends to be easy. The content of the polymer block (b1) in the conjugated diene graft polymer can be determined by 1 H-NMR measurement.
 側鎖(b)が前記ブロック共重合体鎖である場合には、前記重合体ブロック(b1)を少なくとも1つ含有されていればよい。上記ブロック共重合体鎖に重合体ブロック(b1)が2つ以上含有されている場合には、それら重合体ブロック(b1)は、同一であっても異なっていてもよい。また、異なる側鎖(b)も前記ブロック共重合体鎖である場合には、これら2以上の共重合体鎖に含有される重合体ブロック(b1)は、同一であっても異なっていてもよい。なお、本発明において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、Mw、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なることを意味する。 When the side chain (b) is the block copolymer chain, it should contain at least one polymer block (b1). When the block copolymer chain contains two or more polymer blocks (b1), the polymer blocks (b1) may be the same or different. Further, when the different side chains (b) are also the block copolymer chains, the polymer blocks (b1) contained in these two or more copolymer chains may be the same or different. good. In the present invention, "polymer blocks are different" means the monomer units constituting the polymer blocks, Mw, stereoregularity, and, in the case of having a plurality of monomer units, the ratio of each monomer unit and the form of copolymerization. It means that at least one of (random, gradient, block) is different.
 側鎖(b)が前記ブロック共重合体鎖である場合に、含有される重合体ブロック(b2)は、共役ジエン化合物単位を含有する。重合体ブロック(b2)中、共役ジエン単位の含有量は、得られる共役ジエン系グラフト重合体を含む油組成物の特性向上の観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、実質的に100モル%であることが特に好ましい。 When the side chain (b) is the block copolymer chain, the contained polymer block (b2) contains a conjugated diene compound unit. The content of the conjugated diene unit in the polymer block (b2) is preferably 50 mol% or more, more preferably 70 mol% or more, from the viewpoint of improving the properties of the oil composition containing the conjugated diene-based graft polymer to be obtained. , more preferably 90 mol % or more, and particularly preferably substantially 100 mol %.
 上記共役ジエンの具体例、好適例、及び各単量体の含有量、好適比率は、側鎖(b)の単量体単位を構成する共役ジエンの具体例、好適例、及び各単量体の含有量、好適比率と同一である。
 化合物としては、例えば、ブタジエン、イソプレン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ミルセン、ファルネセンなどが挙げられる。これら共役ジエン化合物は1種単独で用いてもよく、2種以上用いてもよい。
The specific examples and preferred examples of the conjugated diene and the content and preferred ratio of each monomer are the specific examples and preferred examples of the conjugated diene constituting the monomer unit of the side chain (b) and each monomer. is the same as the content and preferred ratio of
Examples of compounds include butadiene, isoprene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, myrcene, farnesene and the like. One of these conjugated diene compounds may be used alone, or two or more thereof may be used.
 側鎖(b)が前記ブロック共重合体鎖である場合に、重合体ブロック(b2)が2つ以上含有されている場合には、それら重合体ブロック(b2)は、同一であっても異なっていてもよい。また、異なる鎖(b)も前記ブロック共重合体鎖である場合には、これら2以上の共重合体鎖に含有される重合体ブロック(b2)は、同一であっても異なっていてもよい。 When the side chain (b) is the block copolymer chain and two or more polymer blocks (b2) are contained, the polymer blocks (b2) may be the same or different. may be Further, when the different chains (b) are also the block copolymer chains, the polymer blocks (b2) contained in these two or more copolymer chains may be the same or different. .
 重合体ブロック(b2)の共役ジエン単位のビニル含量は、好ましくは1~60モル%、より好ましくは2~40モル%、さらに好ましくは3~30モル%、特に好ましくは4~20モル%である。なお、重合体ブロック又は重合体鎖などのビニル含量は、後述するアニオン重合により、共役ジエン系グラフト重合体を製造する場合には、使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。 The vinyl content of the conjugated diene units of the polymer block (b2) is preferably 1 to 60 mol%, more preferably 2 to 40 mol%, even more preferably 3 to 30 mol%, and particularly preferably 4 to 20 mol%. be. When the conjugated diene-based graft polymer is produced by the anionic polymerization described later, the vinyl content of the polymer block or polymer chain is determined by the type of solvent used, the polar compound used as necessary, A desired value can be obtained by controlling the polymerization temperature and the like.
 重合体ブロック(b2)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(b2)において、共役ジエン化合物以外の他の単量体に由来する構造単位の含有量は、好ましくは50モル%未満、より好ましくは30モル%未満、さらに好ましくは20モル%未満、よりさらに好ましくは10モル%未満、特に好ましくは0モル%である。 The polymer block (b2) may contain structural units derived from monomers other than the conjugated diene compound as long as the objects and effects of the present invention are not hindered. In this case, in the polymer block (b2), the content of structural units derived from monomers other than the conjugated diene compound is preferably less than 50 mol%, more preferably less than 30 mol%, still more preferably 20 It is less than mol %, even more preferably less than 10 mol %, and particularly preferably 0 mol %.
 該他の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、N-ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。 Examples of other monomers include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, and N-vinylcarbazole. , aromatic vinyl compounds such as vinylnaphthalene and vinylanthracene, and methyl methacrylate, methyl vinyl ether, β-pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3-cyclopentadiene, At least one compound selected from the group consisting of 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like is preferably included.
 側鎖(b)が前記ブロック共重合体鎖である場合、その重合体ブロック(b2)のMnは、得られる共役ジエン系グラフト重合体を含む油組成物の物性向上等の観点から、重合体ブロック(b2)のMnは、好ましくは500~300,000であり、より好ましくは1,000~200,000であり、さらに好ましくは1,000~50,000である。 When the side chain (b) is the above block copolymer chain, the Mn of the polymer block (b2) is the polymer The Mn of block (b2) is preferably from 500 to 300,000, more preferably from 1,000 to 200,000, even more preferably from 1,000 to 50,000.
 側鎖(b)が前記ブロック共重合体鎖である場合には、上記重合体ブロック(b2)を少なくとも1つ有していればよい。前記ブロック共重合体鎖が重合体ブロック(b2)を2つ以上有する場合には、それら重合体ブロック(b2)は、同一であっても異なっていてもよい。また、異なる鎖(b)も前記ブロック共重合体鎖である場合には、これら2以上の共重合体鎖に含有される重合体ブロック(b2)は、同一であっても異なっていてもよい。 When the side chain (b) is the block copolymer chain, it should have at least one polymer block (b2). When the block copolymer chain has two or more polymer blocks (b2), the polymer blocks (b2) may be the same or different. Further, when the different chains (b) are also the block copolymer chains, the polymer blocks (b2) contained in these two or more copolymer chains may be the same or different. .
 側鎖(b)が前記ブロック共重合体鎖である場合には、本発明の目的及び効果の妨げにならない限り、そのブロック共重合体鎖には、前記重合ブロック(b1)及び(b2)以外の他の単量体で構成される重合ブロックを含有していてもよい。側鎖(b)が前記ブロック共重合体鎖を含有する場合、その側鎖(b)全体に対する、前記重合体ブロック(b1)及び前記重合体ブロック(b2)の合計含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、実質的に100質量%であることが特に好ましい。90質量%以上であれば、得られる共役ジエン系グラフト重合体の物性が向上する傾向にある。 When the side chain (b) is the above-mentioned block copolymer chain, the block copolymer chain may include polymer blocks other than the above polymer blocks (b1) and (b2) as long as the object and effect of the present invention are not hindered. may contain polymer blocks composed of other monomers. When the side chain (b) contains the block copolymer chain, the total content of the polymer block (b1) and the polymer block (b2) with respect to the entire side chain (b) is 90% by mass. It is preferably at least 95% by mass, more preferably at least 95% by mass, and particularly preferably substantially 100% by mass. If it is 90% by mass or more, the physical properties of the obtained conjugated diene-based graft polymer tend to be improved.
 側鎖(b)が前記ブロック共重合体鎖である場合には、そのブロック共重合体鎖に重合体ブロック(b1)と重合体ブロック(b2)とが含有されている限りその結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。また、これら重合ブロック同士が直接結合していても、他の重合ブロックを介して間接的に結合していてもよい。これらの中でも、重合体ブロック(b1)と重合体ブロック(b2)の結合形式は、これら重合体ブロックが直接結合し、直鎖状であることが好ましい。このような結合形式の例としては、重合体ブロック(b1)をb1、重合体ブロック(b2)をb2と表し、分岐部分に近い順から各重合体ブロックを表したときに、b2-b1で示されるジブロック共重合体鎖、b2-b1-b2又はb1-b2-b1で示されるトリブロック共重合体鎖、b2-b1-b2-b1又はb1-b2-b1-b2で示されるテトラブロック共重合体鎖、b2-b1-b2-b1-b2又はb1-b2-b1-b2-b1で示されるペンタブロック共重合体鎖などが挙げられる。 When the side chain (b) is the block copolymer chain, the form of bonding is limited as long as the block copolymer chain contains the polymer block (b1) and the polymer block (b2). may be linear, branched, radial, or a combination of two or more of these. Further, these polymer blocks may be directly bonded to each other, or may be indirectly bonded via another polymer block. Among these, the form of bonding between the polymer block (b1) and the polymer block (b2) is preferably such that these polymer blocks are directly bonded to form a straight chain. As an example of such a bond type, the polymer block (b1) is represented by b1 and the polymer block (b2) by b2. a diblock copolymer chain denoted by b2-b1-b2 or b1-b2-b1, a triblock copolymer chain denoted by b2-b1-b2-b1 or b1-b2-b1-b2 Examples include copolymer chains, pentablock copolymer chains represented by b2-b1-b2-b1-b2 or b1-b2-b1-b2-b1.
 これらの中でも、得られる共役ジエン系グラフト重合体の物性がより向上しやすいこと、製造が容易なことなどから、分岐部分に近い順から各重合体ブロックを表したときに、b2-b1で示されるジブロック共重合体鎖が好ましい。 Among these, the physical properties of the obtained conjugated diene-based graft polymer are likely to be improved and the production is easy. A diblock copolymer chain that is
 <水添共役ジエン系グラフト重合体>
 本発明の水添共役ジエン系グラフト重合体は、共役ジエン単位を含む重合体からなる主鎖(a)、及び共役ジエン単位及び芳香族ビニル化合物に由来する構造単位(以下、芳香族ビニル化合物単位とも呼称する)からなる群より選ばれる少なくとも1つの単量体に由来する構造単位(以下、単量体単位とも呼称する)を含む重合体からなる側鎖(b)を含み、
 前記共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている、水添共役ジエン系グラフト重合体であり、
 前記側鎖(b)は、前記主鎖(a)に含まれる分岐部分となる単量体単位に含まれる原子と結合し、
 前記主鎖(a)に水酸基が結合している。
<Hydrogenated conjugated diene-based graft polymer>
The hydrogenated conjugated diene-based graft polymer of the present invention comprises a main chain (a) composed of a polymer containing a conjugated diene unit, and a structural unit derived from a conjugated diene unit and an aromatic vinyl compound (hereinafter referred to as an aromatic vinyl compound unit A side chain (b) made of a polymer containing a structural unit (hereinafter also referred to as a monomer unit) derived from at least one monomer selected from the group consisting of
A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
The side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a),
A hydroxyl group is bonded to the main chain (a).
 本発明の水添共役ジエン系グラフト重合体の主鎖(a)中には、分岐部分となる単量体単位が含まれる。この主鎖(a)の分岐部分に含まれる原子に、側鎖(b)が結合している。この分岐部分に含まれる側鎖(b)に結合する原子は、ヘテロ原子ではない。ここで側鎖(b)と結合する原子がヘテロ原子ではないとは、その原子が、炭素原子および水素原子以外の原子ではないこと、すなわち、その原子は、炭素原子または水素原子であること(側鎖(b)が結合する原子は分岐点であるため、実際には炭素原子であること)、を意味する。側鎖(b)が結合する分岐点がヘテロ原子そのものである場合、せん断安定性や熱安定性が悪化する傾向にあることから好ましくない。
 なお、上記分岐部分となる単量体単位に含まれる原子が側鎖(b)と結合とは、上記主鎖中に分岐部分となる単量体単位を構成する原子(典型的には炭素原子)の1つと、側鎖(b)を構成する原子が、結合することを意味する。分岐部分となる単量体単位に含まれる原子と側鎖(b)とを結合させる方法としては、以下水添共役ジエン系グラフト重合体の製造方法の一例として詳細に説明するが、例えば、主鎖(a)となる重合体の分岐部分となる単量体単位に含まれるアニオン活性を有する炭素原子を含む部位(以下、アニオン活性を有する炭素原子を含む部位をアニオン活性部位とも呼称する)をリチオ化し、そのリチオ化されたアニオン活性を有する部位を起点として、単量体を付加重合させ側鎖(b)を形成する方法(MI法)や、主鎖(a)となる官能基変性重合体の分岐部分となる単量体単位に含まれるエポキシ基と、側鎖の構造単位となる単量体を重合した重合体の活性末端とを反応させる方法(カップリング法(CP法))などが挙げられる。
The main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention contains a monomer unit serving as a branched portion. A side chain (b) is bonded to an atom included in the branched portion of the main chain (a). The atom attached to the side chain (b) contained in this branched portion is not a heteroatom. Here, the atom bonded to the side chain (b) is not a heteroatom means that the atom is not an atom other than a carbon atom and a hydrogen atom, that is, the atom is a carbon atom or a hydrogen atom ( The atom to which the side chain (b) is attached is actually a carbon atom since it is a branch point). If the branch point to which the side chain (b) is bonded is the heteroatom itself, it is not preferable because shear stability and thermal stability tend to deteriorate.
In addition, the atom contained in the monomer unit that becomes the branched portion and the bond with the side chain (b) refers to the atom that constitutes the monomer unit that becomes the branched portion in the main chain (typically a carbon atom ) and the atom constituting the side chain (b) are bound. The method for bonding the atoms contained in the monomer units forming the branched portion with the side chain (b) will be described in detail below as an example of the method for producing a hydrogenated conjugated diene-based graft polymer. A site containing a carbon atom having anionic activity (hereinafter, a site containing a carbon atom having anionic activity is also referred to as an anion active site) contained in a monomer unit serving as a branched portion of the polymer that becomes the chain (a) A method (MI method) of forming a side chain (b) by addition polymerization of a monomer starting from the lithiated site having anion activity (MI method), A method (coupling method (CP method)) of reacting an epoxy group contained in a monomer unit that becomes a branched part of coalescence with an active terminal of a polymer obtained by polymerizing a monomer that becomes a structural unit of a side chain, etc. is mentioned.
 本発明の水添共役ジエン系グラフト重合体は、分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子はヘテロ原子ではない。水添共役ジエン系グラフト重合体において、主鎖と側鎖とが結合する分岐点そのものがヘテロ原子である場合、せん断安定性や熱安定性が悪化する傾向にあることから好ましくない。 In the hydrogenated conjugated diene-based graft polymer of the present invention, the atoms bonded to the side chain (b) contained in the monomer units forming the branched portion are not heteroatoms. In the hydrogenated conjugated diene-based graft polymer, if the branch point itself at which the main chain and the side chain are bonded is a hetero atom, the shear stability and thermal stability tend to deteriorate, which is not preferable.
 例えば、特許第5089007号公報に記載のグラフト重合体は、主鎖の構成要素となる2つの活性末端を有する重合体と側鎖の構成要素となる1つの活性末端を有する重合体の混合物を調製し、この混合物に3以上の反応性部位を有するケイ素原子を含むカップリング剤を加えて反応させる方法により合成される。このカップリング剤に由来するケイ素原子等のヘテロ原子が主鎖と側鎖を結ぶ分岐点そのものになっている。また、本願出願人は、本出願の前に、あらかじめ合成した主鎖の構成要素となる重合体を、ケイ素原子を含む化合物で変性して官能基変性重合体とし、該官能基変性重合体と側鎖の構造単位となる単量体を重合した重合体の活性末端とを反応させる方法により、グラフト重合体を合成する方法に関する技術を出願している。この官能基変性重合体に由来するケイ素原子等のヘテロ原子が、主鎖と側鎖を結ぶ分岐点そのものになっている。
 後述する本発明の水添共役ジエン系グラフト重合体では、主鎖(a)に含まれる分岐点はヘテロ原子ではない原子(典型的には炭素原子)であり、この原子に、側鎖(b)に直接結合している。したがって、本発明の水添共役ジエン系グラフト重合体は、上述した重合体のように、主鎖と側鎖とが結合している部分分岐点(連結点)にはヘテロ原子ではない。
For example, the graft polymer described in Japanese Patent No. 5089007 is prepared by preparing a mixture of a polymer having two active terminals constituting the main chain and a polymer having one active terminal constituting the side chain. Then, a coupling agent containing a silicon atom having 3 or more reactive sites is added to the mixture and reacted. A heteroatom such as a silicon atom derived from the coupling agent serves as a branching point connecting the main chain and the side chain. In addition, before filing the present application, the applicant of the present application modifies a polymer that is a component of the main chain synthesized in advance with a compound containing a silicon atom to obtain a functional group-modified polymer, and the functional group-modified polymer and An application has been filed for a technique relating to a method for synthesizing a graft polymer by a method of reacting an active terminal of a polymer obtained by polymerizing a monomer that constitutes a structural unit of a side chain. A heteroatom such as a silicon atom derived from this functional group-modified polymer serves as a branching point that connects the main chain and the side chain.
In the hydrogenated conjugated diene-based graft polymer of the present invention, which will be described later, the branch point contained in the main chain (a) is an atom (typically a carbon atom) that is not a hetero atom, and a side chain (b ). Therefore, in the hydrogenated conjugated diene-based graft polymer of the present invention, unlike the polymer described above, the partial branch point (connection point) where the main chain and the side chain are bonded is not a heteroatom.
 本発明の水添共役ジエン系グラフト重合体では、主鎖(a)に含まれる、分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物に由来する芳香族基ではないことが好ましい一態様である。ここでいう、芳香族基とは、芳香族ビニル化合物が有する、CH2=CR(Rは、水素、置換されていてもよいアルキル基、又は置換されていてもよいアリール基)以外の芳香環を含む基を意味する。
 ここで「側鎖(b)と結合する原子を含む連結部分が、芳香族ビニル化合物に由来する芳香族基ではない」とは、
主鎖に含まれる分岐部分となる単量体単位自体が、芳香族ビニル化合物以外の単量体(例えば共役ジエン)に由来する構造単位であること、あるいは
主鎖に含まれる分岐部分となる単量体単位自体が、芳香族ビニル化合物単位であっても、その芳香族ビニル化合物が有する芳香族基中の原子に、側鎖(b)が結合していないこと、を意味する。
 以下、具体例で説明をする。後述する主鎖(a)となる重合体の分岐部分となる単量体単位に含まれるアニオン活性を有する炭素原子を含む部位をリチオ化し、そのリチオ化されたアニオン活性を有する部位を起点として、単量体を付加重合させ側鎖(b)を形成する方法にてグラフト重合体を合成する場合、主鎖(a)となる重合体に含まれる芳香族ビニル化合物が、例えばアニオン活性が高い(有機リチウム化合物との反応性が高い)置換基を有する4-メチルスチレンの場合は、4-メチルスチレン由来のメチル基の部分の反応性が高く、このメチル基の炭素原子に側鎖(b)が結合してしまう。
 一方、アニオン活性が高い置換基を芳香族基中には有さない芳香族ビニル化合物、例えばスチレンの場合は、主鎖(a)の骨格となる、スチレン単位の(-CH2-CH-)部分に含まれる、ベンゼン環が結合するCHに隣接するCH2の部分に側鎖(b)が結合する。この場合、スチレン由来のベンゼン環の炭素原子には、側鎖(b)が結合しておらず、主鎖(a)に含まれる分岐部分中の側鎖(b)と結合する原子を含む連結部分が、芳香族ビニル化合物に由来する芳香族基ではないことになる。
In the hydrogenated conjugated diene-based graft polymer of the present invention, the linking portion containing the atom that binds to the side chain (b) contained in the monomer unit serving as the branched portion contained in the main chain (a) is an aromatic vinyl In one preferred embodiment, it is not an aromatic group derived from a compound. Here, the aromatic group is an aromatic ring other than CH 2 ═CR (R is hydrogen, an optionally substituted alkyl group, or an optionally substituted aryl group) possessed by the aromatic vinyl compound. means a group containing
Here, "the linking portion containing the atom that bonds to the side chain (b) is not an aromatic group derived from an aromatic vinyl compound"
The monomer unit itself that becomes the branched portion contained in the main chain is a structural unit derived from a monomer other than an aromatic vinyl compound (e.g., a conjugated diene), or the unit that becomes the branched portion contained in the main chain Even if the monomer unit itself is an aromatic vinyl compound unit, it means that the side chain (b) is not bound to an atom in the aromatic group of the aromatic vinyl compound.
A specific example will be described below. A site containing a carbon atom having an anionic activity contained in a monomer unit that becomes a branched portion of a polymer that becomes the main chain (a) described later is lithiated, and the lithiated site having an anionic activity is used as a starting point, When a graft polymer is synthesized by a method of addition-polymerizing a monomer to form a side chain (b), the aromatic vinyl compound contained in the polymer that becomes the main chain (a) has, for example, high anionic activity ( In the case of 4-methylstyrene having a substituent group (highly reactive with organolithium compounds), the methyl group portion derived from 4-methylstyrene has high reactivity, and a side chain (b) is attached to the carbon atom of this methyl group. will combine.
On the other hand, in the case of an aromatic vinyl compound that does not have a substituent with high anionic activity in the aromatic group, such as styrene, ( --CH.sub.2--CH--) of the styrene unit that forms the skeleton of the main chain (a) The side chain (b) is attached to the portion of CH 2 included in the moiety adjacent to the CH to which the benzene ring is attached. In this case, the side chain (b) is not bonded to the carbon atom of the styrene-derived benzene ring, and the linking including the atom that bonds to the side chain (b) in the branched portion contained in the main chain (a) The moiety will not be an aromatic group derived from an aromatic vinyl compound.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の共役ジエン系グラフト重合体では、上述の通り、主鎖(a)に含まれる、分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物に由来する芳香族基ではないことが好ましい。連結部分が前記芳香族基である場合には、せん断安定性や熱安定性が悪化する。 In the conjugated diene-based graft polymer of the present invention, as described above, the linking portion containing the atom that binds to the side chain (b) included in the monomer unit serving as the branched portion included in the main chain (a) is an aromatic It is preferably not an aromatic group derived from a group vinyl compound. When the linking portion is the above aromatic group, the shear stability and thermal stability are deteriorated.
 例えば、Journal of Polymer Science:Part A:Polymer Chemistry,2007,45,3513、又は特許第5508066号公報に記載のグラフト重合体は、マクロモノマー(側鎖の構造単位となる単量体を重合した重合体の活性末端に、芳香族基に結合したCH2=C-以外の重合性官能基を有する芳香族ビニル化合物を、直接反応させて得られるマクロモノマー)と主鎖の構造単位となる単量体とを重合する方法により合成される。このマクロモノマーに由来して、主鎖(a)中の分岐部分に含まれる側鎖(b)と結合する連結部分は、芳香族基となる。そして、本発明のグラフト重合体では、例えば以下詳述するそのグラフト重合体の製造方法の一例でも明らかなように、主鎖(a)中の分岐部分に含まれる側鎖(b)と結合する連結部分は、芳香族基ではない。 For example, the graft polymer described in Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45, 3513 or Japanese Patent No. 5508066 is a macromonomer (a polymer obtained by polymerizing a monomer that becomes a structural unit of a side chain). A macromonomer (obtained by directly reacting an aromatic vinyl compound having a polymerizable functional group other than CH 2 ═C— bonded to an aromatic group at the active end of the coalescence) and a monomer that forms the structural unit of the main chain. Synthesized by the method of polymerizing Derived from this macromonomer, the linking portion that binds to the side chain (b) contained in the branched portion in the main chain (a) becomes an aromatic group. Then, in the graft polymer of the present invention, as is clear from, for example, one example of the method for producing the graft polymer described in detail below, the side chain (b) contained in the branched portion in the main chain (a) is bonded. A linking moiety is not an aromatic group.
 水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数は、2以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましい。水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数は、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、リチオ化反応に使用する有機アルカリ金属と主鎖の構造単位となる共役ジエン系重合体、及び官能化剤の仕込み比(モル比)より算出される。水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数が2未満であると、得られる水添共役ジエン系グラフト重合体の流動性が低下し、加工性と力学特性のバランスに劣る傾向がある。 The average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer is preferably 2 or more, more preferably 4 or more, and even more preferably 5 or more. The average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer can be obtained, for example, by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine. When the main chain is lithiated and then polymerized to form the structural unit of the side chain, the organic alkali metal used in the lithiation reaction and the conjugated diene polymer that forms the structural unit of the main chain are used. It is calculated from the charging ratio (molar ratio) of coalescence and functionalizing agent. If the average number of side chains (b) per molecule of the hydrogenated conjugated diene graft polymer is less than 2, the flowability of the obtained hydrogenated conjugated diene graft polymer is reduced, resulting in poor workability and mechanical properties. It tends to be out of balance.
 本発明の水添共役ジエン系グラフト重合体は、側鎖(b)の側鎖密度が1.0モル%以上であることが好ましい一態様であり、2.0モル%以上がより好ましく、3.0モル%以上がさらに好ましく、4.0モル%以上がよりさらに好ましい。共役ジエン系グラフト重合体の側鎖密度が1.0モル%未満であると、得られる水添共役ジエン系グラフト重合体の流動性が低下し、加工性と力学特性のバランスに劣る傾向がある。 In one aspect of the hydrogenated conjugated diene graft polymer of the present invention, the side chain density of the side chain (b) is preferably 1.0 mol % or more, more preferably 2.0 mol % or more. 0 mol % or more is more preferable, and 4.0 mol % or more is even more preferable. If the side chain density of the conjugated diene-based graft polymer is less than 1.0 mol%, the flowability of the obtained hydrogenated conjugated diene-based graft polymer is lowered, and the balance between workability and mechanical properties tends to be poor. .
 本明細書において、側鎖(b)の側鎖密度は、水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数と主鎖(a)の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(1)より求める。なお上記側鎖密度は、主鎖となる重合体がすべてスチレン単位であると仮定した場合の、全単量体単位の個数に対する、共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数の割合を意味する。
(側鎖密度)=(水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (1)
 なお、主鎖(a)のMnは、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、主鎖の構成要素となるあらかじめ合成した共役ジエン系重合体水素添加前の状態の標準ポリスチレン換算のMnである。
In this specification, the side chain density of the side chain (b) refers to the average number of side chains (b) per molecule of the hydrogenated conjugated diene graft polymer and the number average molecular weight of the main chain (a) in terms of standard polystyrene. (Mn) is obtained from the following formula (1). The above side chain density is the number of side chains (b) per molecule of the conjugated diene graft polymer with respect to the total number of monomer units, assuming that the main chain polymer is all styrene units. Means the ratio of the average number of threads.
(Side chain density) = (average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit)] ×100 (1)
The Mn of the main chain (a) is obtained by, for example, lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, followed by lithiation of the side chain. In the case of production by a method of polymerizing a monomer to be a structural unit, it is Mn in terms of standard polystyrene before hydrogenation of a pre-synthesized conjugated diene polymer to be a constituent element of the main chain.
 本発明の水添共役ジエン系グラフト重合体は、主鎖(a)に水酸基が結合している。前記水酸基は、直接又は連結鎖を通じて主鎖(a)に結合する。ここで直接主鎖(a)に結合とは、主鎖となる重合体を構成する単量体単位に、水酸基が直接結合していることを意味する。連結鎖を通じて主鎖(a)に結合とは、主鎖となる重合体を構成する単量体単位に、連結鎖となる一方の末端が結合し、その連結鎖の他方の末端に、水酸基が直接結合していることを意味する。例えば、1,2-結合をしたブタジエン単位に水酸基が結合する場合、下記式(I-1)で示される場合が、主鎖に直接水酸基が結合している場合であり、下記式(I-2)で示される場合が、主鎖に連結鎖を通じて水酸基が結合している場合である(下記式(I-1)、下記式(I-2)はブタジエンを水素添加した場合の構造を示している)。 In the hydrogenated conjugated diene-based graft polymer of the present invention, hydroxyl groups are bonded to the main chain (a). The hydroxyl group is bonded to the main chain (a) directly or through a linking chain. Here, "bonded directly to the main chain (a)" means that a hydroxyl group is directly bonded to a monomer unit constituting the polymer that forms the main chain. Bonding to the main chain (a) through the linking chain means that one end of the linking chain is bonded to a monomer unit constituting the polymer that is the main chain, and a hydroxyl group is attached to the other end of the linking chain. It means that they are directly connected. For example, when a hydroxyl group is bonded to a 1,2-bonded butadiene unit, the case represented by the following formula (I-1) is the case where the hydroxyl group is directly bonded to the main chain, and the following formula (I- 2) is a case where a hydroxyl group is bonded to the main chain through a linking chain (the following formula (I-1) and the following formula (I-2) show the structure when butadiene is hydrogenated. ing).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(I-2)中、R1は連結鎖である。R1は2価の有機基であり、ヘテロ原子を有さないアルキレン基である。連結鎖にヘテロ原子を含む場合、特に、ヘテロ原子に直接水酸基が結合している場合、共役ジエン系グラフト重合体のせん断安定性や熱安定性が悪化する。 In formula (I-2) above, R 1 is a linking chain. R 1 is a divalent organic group and is an alkylene group having no heteroatom. When the connecting chain contains a heteroatom, particularly when a hydroxyl group is directly bonded to the heteroatom, the shear stability and thermal stability of the conjugated diene-based graft polymer deteriorate.
 水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数は、1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数は、JIS K1557-1:2007に準拠して算出した水添共役ジエン系グラフト重合体の水酸基価(mgKOH/g)と水添共役ジエン系グラフト重合体の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(2)より求める。
(水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数)={(水添共役ジエン系グラフト重合体の水酸基価)/[(水酸化カリウムの分子量)×1000]}×(水添共役ジエン系グラフト重合体の数平均分子量Mn)×[(水添共役ジエン系グラフト重合体中に含まれる単量体単位の平均分子量)/(スチレン単位の分子量)]  (2)
 水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数が1以上であると、極性材料との親和性に優れる傾向がある。
The average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer is preferably 1 or more, more preferably 2 or more, and further preferably 3 or more. preferable. The average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer is the hydroxyl value of the hydrogenated conjugated diene graft polymer calculated according to JIS K1557-1:2007 ( mgKOH/g) and the standard polystyrene-equivalent number average molecular weight (Mn) of the hydrogenated conjugated diene-based graft polymer are used to obtain the molecular weight (Mn) according to the following formula (2).
(Average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer) = {(hydroxyl value of the hydrogenated conjugated diene graft polymer) / [(molecular weight of potassium hydroxide) × 1000]} × (number average molecular weight Mn of hydrogenated conjugated diene graft polymer) × [(average molecular weight of monomer units contained in hydrogenated conjugated diene graft polymer)/(molecular weight of styrene unit) ] (2)
When the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene-based graft polymer is 1 or more, the affinity with polar materials tends to be excellent.
 水添共役ジエン系グラフト重合体の主鎖(a)に水酸基が結合する場合、主鎖(a)に結合する水酸基濃度は、3.0モル%以上であることが好ましい一態様であり、3.5モル%以上がより好ましく、4.0モル%以上がさらに好ましい。主鎖(a)に結合する水酸基濃度が3.0モル%以上であると、極性材料との親和性に優れる傾向がある。また、主鎖(a)に結合する水酸基濃度は、100モル%以下であることが好ましい一態様であり、80モル%以下がより好ましく、60モル%以下がさらに好ましい。主鎖(a)に結合する水酸基濃度が100モル%以下であると、非極性材料との親和性や、有機溶媒への溶解性に優れる傾向にある。 When hydroxyl groups are bonded to the main chain (a) of the hydrogenated conjugated diene-based graft polymer, the concentration of hydroxyl groups bonded to the main chain (a) is preferably 3.0 mol % or more. 0.5 mol % or more is more preferable, and 4.0 mol % or more is even more preferable. When the concentration of hydroxyl groups bonded to the main chain (a) is 3.0 mol % or more, the affinity with polar materials tends to be excellent. In one embodiment, the concentration of hydroxyl groups bonded to the main chain (a) is preferably 100 mol % or less, more preferably 80 mol % or less, and even more preferably 60 mol % or less. When the concentration of hydroxyl groups bonded to the main chain (a) is 100 mol % or less, the affinity with non-polar materials and the solubility in organic solvents tend to be excellent.
 極性材料との親和性は、例えば、共役ジエン系グラフト重合体を有機溶媒に溶解した溶液と水(極性材料)を混合して振盪した際の、有機相と水相の混和の程度で評価することができる。極性材料との親和性が高い場合には、有機相と水相の界面に共役ジエン系グラフト重合体が存在することで、有機相と水相の混和性が高まり、より分離しにくくなる。そのため、有機相と水相の分離性により極性材料との親和性を評価することができる。 The affinity with a polar material is evaluated, for example, by the degree of mixing between the organic phase and the aqueous phase when a solution of a conjugated diene-based graft polymer dissolved in an organic solvent and water (polar material) are mixed and shaken. be able to. When the affinity with the polar material is high, the presence of the conjugated diene-based graft polymer at the interface between the organic phase and the aqueous phase increases the miscibility of the organic phase and the aqueous phase, making separation more difficult. Therefore, the affinity with polar materials can be evaluated by the separability of the organic phase and the aqueous phase.
 本明細書において、主鎖(a)に結合する水酸基濃度は、水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数と主鎖(a)の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(3)より求める。なお上記水酸基濃度は、主鎖となる重合体がすべてスチレン単位であると仮定した場合の、全単量体単位の個数に対する、共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数の割合を意味する。
(水酸基濃度)=(共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (3)
 なお、主鎖(a)のMnは、例えば、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、主鎖の構成要素となるあらかじめ合成した共役ジエン系重合体の水素添加前の状態の標準ポリスチレン換算のMnである。
In this specification, the concentration of hydroxyl groups bonded to the main chain (a) is defined as the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer and the standard polystyrene of the main chain (a). Calculated from the following formula (3) using the converted number average molecular weight (Mn). Note that the above hydroxyl group concentration is the number of all monomer units when it is assumed that the main chain polymer is all styrene units. means the ratio of the average number of hydroxyl groups to
(Hydroxy group concentration) = (average number of hydroxyl groups bonded to main chain (a) per molecule of conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit) ]×100 (3)
The Mn of the main chain (a) is obtained by, for example, lithiating the main chain by reacting a previously synthesized conjugated diene-based polymer described later with an organic alkali metal compound in the presence of tetramethylethylenediamine, followed by lithiation of the side chain. In the case of production by a method of polymerizing a monomer to be a structural unit, it is Mn in terms of standard polystyrene before hydrogenation of a pre-synthesized conjugated diene polymer to be a constituent of the main chain.
 水添共役ジエン系グラフト重合体に含まれる主鎖(a)となる重合体と側鎖(b)となる重合体の組合せは特に制限されず、同一でも異なっていてもよく、目的に応じて設計することが可能である。主鎖(a)となる重合体と側鎖(b)となる重合体が異なるとは、以下(i)~(iv)からなる群より選ばれる少なくとも1つが異なることを意味する。
(i)主鎖(a)となる重合体の分子量が、側鎖(b)となる重合体の分子量と異なる。
(ii)主鎖(a)となる重合体の単量体単位の種類又は種類の組み合わせが、側鎖(b)となる重合体の単量体単位の種類又は種類の組み合わせと異なる。
(iii)主鎖(a)及び側鎖(b)が、それぞれ複数の同一種の単量体単位を含んでいる場合、主鎖(a)となる重合体の単量体単位組成比が側鎖(b)となる重合体の単量体単位組成比と異なる。
(iv)主鎖(a)及び側鎖(b)が、それぞれ共役ジエン単位を含んでいる場合、主鎖(a)となる重合体の共役ジエン単位のビニル含量が、側鎖(b)となる重合体の共役ジエン単位のビニル含量と異なる。
The combination of the polymer serving as the main chain (a) and the polymer serving as the side chain (b) contained in the hydrogenated conjugated diene-based graft polymer is not particularly limited, and may be the same or different, depending on the purpose. It is possible to design The fact that the polymer forming the main chain (a) and the polymer forming the side chain (b) are different means that at least one selected from the group consisting of (i) to (iv) below is different.
(i) The molecular weight of the polymer that forms the main chain (a) is different from the molecular weight of the polymer that forms the side chain (b).
(ii) The type or combination of types of monomer units in the polymer that forms the main chain (a) is different from the type or combination of types of monomer units in the polymer that forms the side chain (b).
(iii) When the main chain (a) and the side chain (b) each contain a plurality of monomer units of the same type, the monomer unit composition ratio of the polymer that becomes the main chain (a) It differs from the monomer unit composition ratio of the polymer that forms the chain (b).
(iv) When the main chain (a) and the side chain (b) each contain a conjugated diene unit, the vinyl content of the conjugated diene unit of the polymer that becomes the main chain (a) is the same as that of the side chain (b). different from the vinyl content of the conjugated diene units of the polymer.
 本発明の水添共役ジエン系グラフト重合体は、その重合体を構成する全単量体単位のうち、50質量%以上がブタジエン単位及びイソプレン単位からなる群より選ばれる少なくとも1つの単量体単位であることが好ましい一態様である。ブタジエン単位及びイソプレン単位の合計含有量は、共役ジエン系グラフト重合体の全単量体単位に対して60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましい。 In the hydrogenated conjugated diene-based graft polymer of the present invention, 50% by mass or more of the total monomer units constituting the polymer is at least one monomer unit selected from the group consisting of butadiene units and isoprene units. It is one aspect that is preferable. The total content of butadiene units and isoprene units is more preferably 60 to 100% by mass, more preferably 70 to 100% by mass, based on the total monomer units of the conjugated diene graft polymer.
 本発明の水添共役ジエン系グラフト重合体における、ブタジエン単位及びイソプレン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。例えば、芳香族ビニル化合物単位が上記範囲以下であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The content of monomer units other than butadiene units and isoprene units in the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass. % by mass or less is more preferable. For example, when the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
 本発明の水添共役ジエン系グラフト重合体は、その重合体が有する共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている。本発明の水添共役ジエン系グラフト重合体は、耐熱性及び耐候性の観点から、水素添加前の共役ジエン系グラフト重合体中の共役ジエンに単位に含まれる炭素-炭素二重結合は、50モル%以上が水素添加されていることが好ましく、60モル%以上が水素添加されていることがより好ましく、70モル%以上が水素添加されていることがさらに好ましい。また水素添加率は通常100モル%以下である。さらに、水素添加率(水添率)は実質100モル%(すなわち実質完全水添)であってもよい。水素添加率が50モル%以上であると、水添共役ジエン系グラフト重合体の耐熱性に優れる傾向にある。なお、水素添加率は、1H-NMRを用いて、重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の含有量を、水素添加の前後それぞれにおいて算出し、これら含有量から求めた値である。 In the hydrogenated conjugated diene-based graft polymer of the present invention, at least part of the carbon-carbon double bonds contained in the conjugated diene units of the polymer are hydrogenated. In the hydrogenated conjugated diene-based graft polymer of the present invention, from the viewpoint of heat resistance and weather resistance, the carbon-carbon double bond contained in the unit in the conjugated diene in the conjugated diene-based graft polymer before hydrogenation is 50 It is preferable that 60 mol % or more is hydrogenated, and more preferably 70 mol % or more is hydrogenated. Also, the hydrogenation rate is usually 100 mol % or less. Furthermore, the hydrogenation rate (hydrogenation rate) may be substantially 100 mol % (that is, substantially complete hydrogenation). When the hydrogenation rate is 50 mol % or more, the hydrogenated conjugated diene-based graft polymer tends to have excellent heat resistance. The degree of hydrogenation is obtained by calculating the content of carbon-carbon double bonds contained in the conjugated diene units in the polymer before and after hydrogenation using 1 H-NMR, and then obtaining these contents. value.
 本発明の水添共役ジエン系グラフト重合体の重量平均分子量(Mw)は5,000以上2,000,000以下であることが好ましい一態様であり、10,000以上1,500,000以下が好ましく、15,000以上1,000,000以下がより好ましい。水添共役ジエン系グラフト重合体のMwが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。また、水添共役ジエン系グラフト重合体を含む重合体組成物の加工性が向上する傾向にある。 In one embodiment, the weight average molecular weight (Mw) of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably from 5,000 to 2,000,000, and from 10,000 to 1,500,000. It is preferably 15,000 or more and 1,000,000 or less. When the Mw of the hydrogenated conjugated diene-based graft polymer is within the above range, there is a tendency that the processability during production is excellent and the economy is favorable. In addition, the processability of the polymer composition containing the hydrogenated conjugated diene-based graft polymer tends to be improved.
 本発明の水添共役ジエン系グラフト重合体の分子量分布(Mw/Mn)は1.0~20.0が好ましく、1.0~10.0がより好ましく、1.0~5.0がさらに好ましく、1.0~2.0が特に好ましい。Mw/Mnが前記範囲内であると、水添共役ジエン系グラフト重合体の粘度のばらつきが小さく、より好ましい。なお、本発明において、Mnは数平均分子量を意味し、MnはGPCの測定から求めた標準ポリスチレン換算の数平均分子量である。また、分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を意味する。 The molecular weight distribution (Mw/Mn) of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 1.0 to 20.0, more preferably 1.0 to 10.0, and further 1.0 to 5.0. Preferably, 1.0 to 2.0 is particularly preferred. When Mw/Mn is within the above range, variation in viscosity of the hydrogenated conjugated diene-based graft polymer is small, which is more preferable. In the present invention, Mn means number average molecular weight, and Mn is the number average molecular weight in terms of standard polystyrene obtained from GPC measurement. Further, the molecular weight distribution (Mw/Mn) means the ratio (Mw/Mn) of the weight average molecular weight (Mw) converted to standard polystyrene and the number average molecular weight (Mn) obtained by GPC measurement.
 本発明の水添共役ジエン系グラフト重合体のビニル含量は、99モル%以下であることが好ましい一態様であり、90モル%以下がより好ましく、85モル%以下がさらに好ましい。共役ジエン系グラフト重合体のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。水添共役ジエン系グラフト重合体のビニル含量が前記範囲内であると、得られる水添共役ジエン系グラフト重合体の低温特性と耐熱性のバランスに優れる傾向がある。また、水添前の共役ジエン系グラフト重合体がブタジエン単位のみから構成される場合は、水素添加後の結晶化による性能低下を防ぐために、ビニル含量を25モル%以上にするのが好ましい。本発明の水添共役ジエン系グラフト重合体のビニル含量は、水素添加前の共役ジエン系グラフト重合体の1H-NMRスペクトルにより、主鎖(a)の場合と同様にして算出する。 In one aspect, the vinyl content of the hydrogenated conjugated diene-based graft polymer of the present invention is preferably 99 mol % or less, more preferably 90 mol % or less, and even more preferably 85 mol % or less. The vinyl content of the conjugated diene-based graft polymer is preferably 0.5 mol % or more, more preferably 1 mol % or more. When the vinyl content of the hydrogenated conjugated diene-based graft polymer is within the above range, the resulting hydrogenated conjugated diene-based graft polymer tends to have an excellent balance between low-temperature properties and heat resistance. When the conjugated diene-based graft polymer before hydrogenation is composed only of butadiene units, the vinyl content is preferably 25 mol % or more in order to prevent deterioration in performance due to crystallization after hydrogenation. The vinyl content of the hydrogenated conjugated diene-based graft polymer of the present invention is calculated in the same manner as for the main chain (a) from the 1 H-NMR spectrum of the conjugated diene-based graft polymer before hydrogenation.
 水添共役ジエン系グラフト重合体のガラス転移温度(Tg)は、そのグラフト重合体に含まれる共役ジエン単位のビニル含量、共役ジエン単位の種類、共役ジエン単位以外の他の単量体単位の含量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ、取り扱いが容易になる。 The glass transition temperature (Tg) of the hydrogenated conjugated diene-based graft polymer is determined by the vinyl content of the conjugated diene unit contained in the graft polymer, the type of conjugated diene unit, and the content of monomer units other than the conjugated diene unit. Although it may vary depending on the temperature, -150 to 50°C is preferred, -130 to 50°C is more preferred, and -130 to 30°C is even more preferred. When the Tg is within the above range, for example, it is possible to prevent the viscosity from becoming high, which facilitates handling.
 本発明の水添共役ジエン系グラフト重合体における主鎖と側鎖の質量比は、1/99~90/10の範囲が好ましく、3/97~80/20の範囲がより好ましく、5/95~70/30の範囲がさらに好ましい。主鎖と側鎖の質量比が上記範囲であると、水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The mass ratio of the main chain to the side chain in the hydrogenated conjugated diene-based graft polymer of the present invention is preferably in the range of 1/99 to 90/10, more preferably in the range of 3/97 to 80/20, and 5/95. A range of ~70/30 is more preferred. When the mass ratio of the main chain to the side chain is within the above range, the processability of the hydrogenated conjugated diene graft polymer tends to be improved.
 本発明で用いる水添共役ジエン系グラフト重合体は、その製造に用いる重合触媒、水素添加触媒(水添触媒)などに由来する触媒残渣の総量が、金属換算で0~500ppmの範囲にあることが好ましい。例えば、水添共役ジエン系グラフト重合体を製造するための重合触媒として、後述するような有機リチウム化合物等の有機アルカリ金属を用いた場合には、リチウム等のアルカリ金属が含まれる。また、後述する(未水添)共役ジエン系グラフト重合体の水素添加において、水添触媒としてチーグラー系触媒を用いた場合には、ニッケルやアルミニウムが含まれる。触媒残渣量が上記範囲にあることにより、加工等する際にタックが低下せず、また本発明で用いる水添共役ジエン系グラフト重合体の耐熱性が向上する。水添共役ジエン系グラフト重合体の触媒残渣量の総量は、金属換算で、より好ましくは合計0~300ppm、さらに好ましくは0~200ppmである。なお、触媒残渣量は、例えば誘導結合プラズマ質量分析装置(ICP-MS)や偏光ゼーマン原子吸光分光光度計を用いることにより測定できる。 In the hydrogenated conjugated diene-based graft polymer used in the present invention, the total amount of catalyst residues derived from the polymerization catalyst, hydrogenation catalyst (hydrogenation catalyst), etc. used for its production is in the range of 0 to 500 ppm in terms of metal. is preferred. For example, when an organic alkali metal such as an organic lithium compound as described later is used as a polymerization catalyst for producing a hydrogenated conjugated diene-based graft polymer, an alkali metal such as lithium is included. Further, when a Ziegler catalyst is used as the hydrogenation catalyst in the hydrogenation of the (unhydrogenated) conjugated diene-based graft polymer described later, nickel and aluminum are included. When the amount of the catalyst residue is within the above range, the tack does not decrease during processing, etc., and the heat resistance of the hydrogenated conjugated diene-based graft polymer used in the present invention is improved. The total amount of catalyst residue in the hydrogenated conjugated diene-based graft polymer is more preferably 0 to 300 ppm, more preferably 0 to 200 ppm in terms of metal. The catalyst residue amount can be measured by using, for example, an inductively coupled plasma mass spectrometer (ICP-MS) or a polarized Zeeman atomic absorption spectrophotometer.
 水添共役ジエン系グラフト重合体の触媒残渣量をこのような特定の量とする方法としては、水添共役ジエン系グラフト重合体を精製し、触媒残渣を十分に除去する方法などが挙げられる。精製する方法としては、水若しくは温水、酸性水溶液、又はメタノール、アセトンなどに代表される有機溶媒による洗浄、又は超臨界流体二酸化炭素による洗浄が好ましい。洗浄に酸性水溶液を用いることでさらに洗浄効率を高めることができる。用いる酸としては、例えば、塩酸、硝酸、硫酸等の一価又は多価の強酸;酢酸、プロピオン酸、コハク酸、クエン酸等の一価又は多価カルボン酸;炭酸、リン酸等の一価又は多価の弱酸が好ましい。洗浄回数としては、経済的な観点から1~20回が好ましく、1~10回がより好ましい。また、洗浄温度としては、20~100℃が好ましく、40~90℃がより好ましい。また重合反応前に、重合の阻害を行うような不純物を蒸留や吸着剤により除去し、単量体の純度を高めた後に重合を行うことによっても、必要な重合触媒量が少なくてすむため、触媒残渣量を低減することができる。 Examples of methods for adjusting the catalyst residue amount of the hydrogenated conjugated diene-based graft polymer to such a specific amount include a method of purifying the hydrogenated conjugated diene-based graft polymer and sufficiently removing the catalyst residue. As a purification method, washing with water or hot water, an acidic aqueous solution, or an organic solvent typified by methanol, acetone, etc., or washing with a supercritical fluid carbon dioxide is preferable. Cleaning efficiency can be further enhanced by using an acidic aqueous solution for cleaning. Acids used include, for example, monovalent or polyvalent strong acids such as hydrochloric acid, nitric acid, and sulfuric acid; monovalent or polyvalent carboxylic acids such as acetic acid, propionic acid, succinic acid, and citric acid; Or polyvalent weak acids are preferred. The number of washings is preferably from 1 to 20 times, more preferably from 1 to 10 times, from an economical point of view. The washing temperature is preferably 20 to 100°C, more preferably 40 to 90°C. In addition, by removing impurities that inhibit polymerization by distillation or an adsorbent before the polymerization reaction and increasing the purity of the monomers, the necessary amount of the polymerization catalyst can be reduced. The catalyst residue amount can be reduced.
 <水添共役ジエン系グラフト重合体の製造方法>
 本発明の水添共役ジエン系グラフト重合体の製造方法は、好適な構造の水添共役ジエン系グラフト重合体を合成する観点からは、あらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、官能化剤を添加して、リチオ化点の一部に水酸基を付加し、その後、側鎖の構造単位となる単量体を重合する方法(本明細書において、以降マクロイニシエーター法(MI法)と呼称する)、又は、主鎖(a)となる官能基変性重合体の分岐部分となる単量体単位に含まれるエポキシ基と、側鎖の構造単位となる単量体を重合した重合体の活性末端とを反応させる方法(本明細書において、以降カップリング法(CP法)と呼称する)が好ましい。
<Method for producing hydrogenated conjugated diene-based graft polymer>
In the method for producing a hydrogenated conjugated diene-based graft polymer of the present invention, from the viewpoint of synthesizing a hydrogenated conjugated diene-based graft polymer having a suitable structure, a previously synthesized conjugated diene-based polymer is prepared in the presence of tetramethylethylenediamine. After the main chain is lithiated by reacting with an organic alkali metal compound, a functionalizing agent is added to add hydroxyl groups to some of the lithiation sites, and then the monomers that become the structural units of the side chains are added. A method of polymerizing (hereinafter referred to as a macroinitiator method (MI method) in this specification), or an epoxy contained in a monomer unit that becomes a branched portion of a functional group-modified polymer that becomes the main chain (a) A method of reacting a group with an active terminal of a polymer obtained by polymerizing a monomer constituting a structural unit of a side chain (hereinafter referred to as a coupling method (CP method)) is preferred.
 <マクロイニシエーター法(MI法)>
 本発明の水添共役ジエン系グラフト重合体の製造方法としては、下記工程(A-1)、工程(A-2)、工程(B)、工程(C)、及び工程(D)を含むマクロイニシエーター法(MI法)による製造方法が好ましい一態様である。
<Macro initiator method (MI method)>
As a method for producing a hydrogenated conjugated diene-based graft polymer of the present invention, a macro comprising the following steps (A-1), (A-2), (B), (C), and (D) A preferred embodiment is a production method by an initiator method (MI method).
 (A-1)極性化合物の存在下で共役ジエン単位を含む重合体(M)を有機リチウム化合物と反応させることにより、重合体(M)に含まれるアニオン活性部位をリチオ化する工程;及び
 (A-2)官能化剤を添加して、リチオ化されたアニオン活性部位の一部を官能化する工程;及び
 (B)共役ジエン及び芳香族ビニル化合物からなる群より選ばれる少なくとも1つの単量体を添加して、上記重合体(M)中の残存するリチオ化されたアニオン活性を有する部位から重合して、主鎖となる共役ジエン単位を含む重合体(M)に対し側鎖を形成し、共役ジエン系グラフト重合体を作製する工程;及び
 (C)上記共役ジエン系グラフト重合体に含まれる共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;及び
 (D)得られた水添共役ジエン系グラフト重合体を回収する工程
(A-1) A step of lithiating anion active sites contained in the polymer (M) by reacting the polymer (M) containing a conjugated diene unit with an organolithium compound in the presence of a polar compound; A-2) adding a functionalizing agent to functionalize a portion of the lithiated anionic active sites; and (B) at least one monomer selected from the group consisting of conjugated dienes and aromatic vinyl compounds. is added to polymerize from the remaining lithiated anion-active sites in the polymer (M) to form side chains with respect to the polymer (M) containing the conjugated diene unit serving as the main chain. and (C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units contained in the conjugated diene graft polymer to produce a conjugated diene graft polymer. forming a conjugated diene-based graft polymer; and (D) recovering the obtained hydrogenated conjugated diene-based graft polymer.
 [工程(A-1)]
 上記工程(A-1)における主鎖の構成要素となる共役ジエン単位を含む重合体(M)の製造方法は、例えば、乳化重合法、溶液重合法が好ましく、得られる重合体の分子量分布の観点から、溶液重合法がより好ましい。共役ジエン単位を含む重合体(M)が本発明の水添共役ジエン系グラフト重合体の主鎖(a)となる。
[Step (A-1)]
The method for producing the polymer (M) containing a conjugated diene unit that is a constituent of the main chain in the step (A-1) is preferably, for example, an emulsion polymerization method or a solution polymerization method. From the point of view, the solution polymerization method is more preferable. The polymer (M) containing conjugated diene units forms the main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention.
 共役ジエン単位を含む重合体(M)を構成する単量体単位となる共役ジエンの具体例、好適例、及びその好適含有量の説明は、水添共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。 Specific examples and preferred examples of the conjugated diene, which is a monomer unit constituting the polymer (M) containing a conjugated diene unit, and description of the preferred content thereof are given in the main chain (a ).
 共役ジエン単位を含む重合体(M)を構成する単量体単位となる共役ジエン以外の他の単量体としては、芳香族ビニル化合物などが挙げられる。 Examples of monomers other than conjugated dienes that are monomer units constituting the polymer (M) containing conjugated diene units include aromatic vinyl compounds.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中でも、スチレン、及びα-メチルスチレンが好ましい。上記芳香族ビニル化合物単位となる芳香族ビニル化合物は1種単独で用いられても、2種以上併用されてもよい。 Examples of aromatic vinyl compounds include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, vinylanthracene, N,N- Diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like. Among these aromatic vinyl compounds, styrene and α-methylstyrene are preferred. The aromatic vinyl compound to be the aromatic vinyl compound unit may be used alone or in combination of two or more.
 共役ジエン単位を含む重合体(M)における、ブタジエン単位及びイソプレン単位以外の他の単量体単位の含有量は、60質量%以下であることが好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。例えば、芳香族ビニル化合物単位が上記範囲以下であると、得られる水添共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The content of monomer units other than butadiene units and isoprene units in the polymer (M) containing a conjugated diene unit is preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass. % or less is more preferable. For example, when the aromatic vinyl compound unit is not more than the above range, the processability of the obtained hydrogenated conjugated diene graft polymer tends to be improved.
 共役ジエン単位を含む重合体(M)の数平均分子量(Mn)、ビニル含量、Tgの好適態様等の説明は、水添共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。 Descriptions of the number average molecular weight (Mn), vinyl content, suitable aspects of Tg, etc. of the polymer (M) containing conjugated diene units are the same as those for the main chain (a) of the hydrogenated conjugated diene graft polymer. .
 共役ジエン単位を含む重合体(M)の製造方法の一例である上記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に分散媒中に乳化分散し、ラジカル重合開始剤により乳化重合する。 As the emulsion polymerization method, which is an example of the method for producing the polymer (M) containing conjugated diene units, a known method or a method based on a known method can be applied. For example, a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerized with a radical polymerization initiator.
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩及びロジン酸塩などが挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩などが挙げられる。 Examples of emulsifiers include salts of long-chain fatty acids with 10 or more carbon atoms and rosinates. Examples of long-chain fatty acid salts include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
 分散媒としては通常、水が使用される。重合時の安定性が阻害されない範囲で、分散媒はメタノール、エタノールなどの水溶性有機溶媒を含んでいてもよい。 Water is usually used as the dispersion medium. The dispersion medium may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。 Examples of radical polymerization initiators include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide.
 得られる共役ジエン単位を含む重合体(M)の分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマーなどが挙げられる。 A chain transfer agent may be used to adjust the molecular weight of the resulting polymer (M) containing conjugated diene units. Examples of chain transfer agents include mercaptans such as t-dodecylmercaptan and n-dodecylmercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, γ-terpinene, α-methylstyrene dimer and the like.
 乳化重合の温度は、使用するラジカル重合開始剤の種類などにより適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。 The temperature for emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator to be used, but it is usually in the range of 0 to 100°C, preferably 0 to 60°C. The polymerization mode may be either continuous polymerization or batch polymerization.
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。 The polymerization reaction can be stopped by adding a polymerization terminator. Examples of the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、上記共役ジエン単位を含む重合体(M)を凝固させた後、分散媒を分離することによって重合体を回収する。次いで水洗、及び脱水後、乾燥することで、上記共役ジエン単位を含む重合体(M)が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した共役ジエン単位を含む重合体(M)として回収してもよい。 After stopping the polymerization reaction, an anti-aging agent may be added as necessary. After stopping the polymerization reaction, unreacted monomers are removed from the obtained latex if necessary, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and if necessary nitric acid, sulfuric acid and the like are added. After the polymer (M) containing the conjugated diene unit is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, the polymer is recovered by separating the dispersion medium. Then, the polymer (M) containing the conjugated diene unit is obtained by washing with water, dehydration, and drying. At the time of coagulation, if necessary, the latex and an extender oil made into an emulsified dispersion may be mixed in advance, and the polymer (M) containing an oil-extended conjugated diene unit may be recovered.
 共役ジエン単位を含む重合体(M)の製造方法の一例である上記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、又はアニオン重合可能な活性金属若しくは活性金属化合物を開始剤として使用して、必要に応じて極性化合物の存在下で、共役ジエンを含む単量体を重合する。 As the solution polymerization method, which is an example of the method for producing the polymer (M) containing conjugated diene units, a known method or a method based on the known method can be applied. For example, in a solvent, using a Ziegler-based catalyst, a metallocene-based catalyst, or an anionically polymerizable active metal or active metal compound as an initiator, optionally in the presence of a polar compound, a monomer containing a conjugated diene Polymerize the body.
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物などが挙げられる。 Examples of solvents include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; Aromatic hydrocarbons such as toluene and xylene; ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether;
 上記開始剤としては、アニオン重合可能な活性金属又は活性金属化合物が好ましく、アニオン重合可能な活性金属化合物がより好ましい。 The initiator is preferably an anionically polymerizable active metal or an active metal compound, more preferably an anionically polymerizable active metal compound.
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これらの中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。 Examples of anionically polymerizable active metals include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium. . Among these, alkali metals and alkaline earth metals are preferred, and alkali metals are more preferred.
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。 An organic alkali metal compound is preferable as the anionically polymerizable active metal compound. Examples of organic alkali metal compounds include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; , 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; and sodium naphthalene, potassium naphthalene and the like. Among these organic alkali metal compounds, organic lithium compounds are preferred, and organic monolithium compounds are more preferred.
 上記開始剤の使用量は、共役ジエン単位を含む重合体(M)の溶融粘度、分子量などに応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。 The amount of the initiator to be used can be appropriately set according to the melt viscosity, molecular weight, etc. of the polymer (M) containing the conjugated diene unit. It is used in an amount of 01 to 3 parts by weight.
 有機アルカリ金属化合物を開始剤として用いる場合には、上記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。 When an organic alkali metal compound is used as an initiator, the organic alkali metal compound can be used as an organic alkali metal amide by reacting it with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine. .
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン単位のミクロ構造(ビニル含量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。 Polar compounds are usually used in anionic polymerizations to adjust the microstructure (vinyl content) of the conjugated diene units without inactivating the reaction. Examples of polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. The polar compound is generally used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。 The temperature of solution polymerization is usually in the range of -80 to 150°C, preferably in the range of 0 to 100°C, more preferably in the range of 10 to 90°C. The mode of polymerization may be either a batchwise system or a continuous system.
 上記溶液重合の重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、共役ジエン単位を含む重合体(M)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記共役ジエン単位を含む重合体(M)を単離できる。なお、リチオ化反応に影響を及ぼさない範囲において、重合停止後の重合反応液をそのままリチオ化反応に用いてもよい。また、必要に応じて、溶媒を一部除去したり、溶媒を追加して重合反応液を希釈してもよい。 The polymerization reaction of the above solution polymerization can be terminated by adding a polymerization terminator. Examples of the polymerization terminator include alcohols such as methanol and isopropanol. The obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate a polymer (M) containing a conjugated diene unit, or the polymerization reaction solution is washed with water, separated, and dried to obtain the conjugated diene. A polymer (M) containing units can be isolated. In addition, the polymerization reaction solution after termination of the polymerization may be directly used for the lithiation reaction as long as it does not affect the lithiation reaction. Moreover, if necessary, the solvent may be partly removed, or the solvent may be added to dilute the polymerization reaction solution.
 このようにして得られた共役ジエン単位を含む重合体(M)は、そのままリチオ化反応に用いてもよいが、その共役ジエン系重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を、後述する水素添加方法により水素添加した後に、変性が行われてもよい。 The polymer (M) containing conjugated diene units thus obtained may be used as it is for the lithiation reaction, but the carbon-carbon double bond contained in the conjugated diene unit in the conjugated diene polymer may be modified after at least a part of is hydrogenated by the hydrogenation method described below.
 工程(A-1)では、上述のようにして得られた共役ジエン単位を含む重合体(M)に含まれるアニオン活性部位を、極性化合物の存在下、有機リチウム化合物と反応させることによりリチオ化する。
 このような条件でのリチオ化により、アニオン活性部位、特に重合体(M)に含まれるビニル結合タイプの共役ジエン単位に含まれる炭素-炭素二重結合部分がリチオ化される。また、特に上記重合体(M)に含まれるアニオンに対して高い反応性を有する置換基を芳香族基中には有さない芳香族ビニル化合物単位、例えばスチレン単位の主鎖(a)の骨格となる(-CH2-CH-)部分に含まれる、ベンゼン環が結合するCHに隣接するCH2部分がリチオ化される。
 この製造方法により得られるグラフト重合体では、そのため、分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物に由来する芳香族基ではない。なお、より確実にアニオン活性を有する部位を含む共役ジエン単位をリチオ化するためには、重合体(M)に芳香族ビニル化合物単位が含まれる場合には、その芳香族ビニル化合物単位にアニオン活性が高い官能基(有機リチウム化合物と反応性の高い官能基)を芳香族基中に含まないことが望ましい。かかる官能基を含む芳香族基を有するスチレンとしては、4-メチルスチレン、4-プロピルスチレンなどが挙げられる。
In the step (A-1), the anion active site contained in the polymer (M) containing the conjugated diene unit obtained as described above is lithiated by reacting it with an organolithium compound in the presence of a polar compound. do.
Lithiation under such conditions lithiates the anion active sites, especially the carbon-carbon double bond portion contained in the vinyl bond type conjugated diene unit contained in the polymer (M). In particular, the skeleton of the main chain (a) of the aromatic vinyl compound unit, for example, the styrene unit, which does not have a substituent in the aromatic group having high reactivity with respect to the anion contained in the polymer (M) The CH 2 moiety adjacent to the CH to which the benzene ring is attached, included in the (--CH 2 --CH--) moiety, is lithiated.
In the graft polymer obtained by this production method, therefore, the linking portion containing the atom that bonds to the side chain (b) contained in the monomer unit that becomes the branch portion is not an aromatic group derived from the aromatic vinyl compound. . In order to more reliably lithiate a conjugated diene unit containing a site having anionic activity, when the polymer (M) contains an aromatic vinyl compound unit, the aromatic vinyl compound unit has an anionic activity. It is desirable that the aromatic group does not contain a functional group with a high D (a functional group highly reactive with the organolithium compound). Styrenes having aromatic groups containing such functional groups include 4-methylstyrene, 4-propylstyrene, and the like.
 上記工程(A-1)で重合体(M)のリチオ化に用いる有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;が挙げられる。これら有機リチウム化合物の中でも有機モノリチウム化合物が好ましく、n-ブチルリチウム、sec-ブチルリチウムがより好ましく、sec-ブチルリチウムが特に好ましい。 Examples of the organic lithium compound used for lithiation of the polymer (M) in the step (A-1) include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, organic monolithium compounds such as phenyllithium and stilbenelithium; lithium compounds; Among these organic lithium compounds, organic monolithium compounds are preferred, n-butyllithium and sec-butyllithium are more preferred, and sec-butyllithium is particularly preferred.
 上記有機リチウム化合物の使用量は、上述した水添共役ジエン系グラフト重合体の側鎖(b)の平均本数、及び主鎖(a)に結合する水酸基の平均個数に応じて適宜設定できる。例えば、(有機リチウム化合物の仕込み量(モル数))/(官能化反応に使用する官能化剤の仕込み量(モル数))/(共役ジエン単位を含む重合体(M)の仕込み量(モル数))=10/4/1の場合、側鎖(b)の平均本数は6となる。また、水酸基の平均個数は4となるように設計できる。 The amount of the organolithium compound used can be appropriately set according to the average number of side chains (b) of the hydrogenated conjugated diene graft polymer and the average number of hydroxyl groups bonded to the main chain (a). For example, (amount of organolithium compound charged (number of moles))/(amount of functionalizing agent used in the functionalization reaction (number of moles))/(amount of polymer (M) containing conjugated diene units charged (moles number))=10/4/1, the average number of side chains (b) is six. Also, the average number of hydroxyl groups can be designed to be four.
 上述の通り、側鎖密度は下記式(1)より求める。
(側鎖密度)=(水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (1)
 すなわち、上記有機リチウム化合物の使用量は、目的とする側鎖密度、水酸基濃度となるように、主鎖(a)の数平均分子量Mnと水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数、主鎖(a)に結合する水酸基の平均個数を設計することで、自ずと決めることができる。
As described above, the side chain density is obtained from the following formula (1).
(Side chain density) = (average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit)] ×100 (1)
That is, the amount of the organolithium compound used is determined so that the desired side chain density and hydroxyl group concentration are obtained by adjusting the number average molecular weight Mn of the main chain (a) and the side chain per molecule of the hydrogenated conjugated diene graft polymer. It can be naturally determined by designing the average number of (b) and the average number of hydroxyl groups bonded to the main chain (a).
 上記工程(A-1)で重合体(M)のリチオ化の際に用いる極性化合物は、リチオ化反応を促進するために用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。これら極性化合物の中でも、3級アミンが好ましく、テトラメチルエチレンジアミンが特に好ましい。極性化合物の使用量は、有機アルカリ金属化合物1モルに対して、0.01モル以上が好ましく、0.05モル以上がより好ましく、0.1モル以上が特に好ましい。また、極性化合物の使用量は、有機アルカリ金属化合物1モルに対して、100モル以下が好ましく、50モル以下がより好ましく、10モル以下が特に好ましい。極性化合物の使用量が、有機アルカリ金属化合物1モルに対して0.01モル未満の場合は反応速度に劣る傾向にあり、100モル超の場合は経済性に劣る傾向にある。 The polar compound used in the lithiation of the polymer (M) in step (A-1) above is used to promote the lithiation reaction. Examples of polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. Among these polar compounds, tertiary amines are preferred, and tetramethylethylenediamine is particularly preferred. The amount of the polar compound used is preferably 0.01 mol or more, more preferably 0.05 mol or more, and particularly preferably 0.1 mol or more, relative to 1 mol of the organic alkali metal compound. The amount of the polar compound used is preferably 100 mol or less, more preferably 50 mol or less, and particularly preferably 10 mol or less, per 1 mol of the organic alkali metal compound. When the amount of the polar compound used is less than 0.01 mol per 1 mol of the organic alkali metal compound, the reaction rate tends to be poor, and when it exceeds 100 mol, the economy tends to be poor.
 上記工程(A-1)のリチオ化は、通常、重合体(M)を溶媒に溶解した状態で行う。その溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物などが挙げられる。 The lithiation in the above step (A-1) is usually carried out with the polymer (M) dissolved in a solvent. Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; and benzene. , toluene, and xylene; and ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether.
 上記工程(A-1)のリチオ化の反応温度は、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が特に好ましい。また、100℃以下が好ましく、80℃以下がより好ましく、60℃以下が特に好ましい。0℃未満では反応速度に劣る傾向にあり、100℃超の場合は分解等の副反応が増加する傾向にある。 The reaction temperature for the lithiation in step (A-1) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher. Also, the temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the temperature is less than 0°C, the reaction rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
 上記工程(A-1)のリチオ化の反応時間は、反応の進行に応じて適宜設定できるが、0.01~100時間が好ましく、0.1~50時間がより好ましく、0.2~20時間が特に好ましい。 The reaction time of the lithiation in the step (A-1) can be appropriately set according to the progress of the reaction, preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours, and 0.2 to 20 hours. Time is particularly preferred.
 工程(A-1)におけるリチオ化後の重合体(M)の1H-NMR測定において、4.0~5.7ppmの範囲のピーク面積を100とした場合に、5.7~6.4ppmの範囲のピーク面積が、0.1~10の範囲であることが好ましく、0.3~5の範囲であることがより好ましく、0.5~4の範囲であることが特に好ましい。ピーク面積がこの範囲にあることにより、リチオ化反応が適正に進行していると言え、得られる水添共役ジエン系グラフト重合体の側鎖(b)の平均本数が適正な範囲となる。 In the 1 H-NMR measurement of the polymer (M) after lithiation in step (A-1), when the peak area in the range of 4.0 to 5.7 ppm is taken as 100, 5.7 to 6.4 ppm is preferably in the range of 0.1 to 10, more preferably in the range of 0.3 to 5, and particularly preferably in the range of 0.5 to 4. When the peak area is within this range, it can be said that the lithiation reaction is progressing properly, and the average number of side chains (b) in the obtained hydrogenated conjugated diene graft polymer is within the proper range.
 [工程(A-2)]
 MI法による共役ジエン系グラフト重合体の製造方法は、主鎖(a)に結合する水酸基を形成するために、工程(A-1)の後に、
 (A-2)官能化剤を添加して、リチオ化されたアニオン活性部位の一部を官能化する工程;
を含む。
[Step (A-2)]
In the method for producing a conjugated diene-based graft polymer by the MI method, in order to form hydroxyl groups bonded to the main chain (a), after step (A-1),
(A-2) adding a functionalizing agent to functionalize a portion of the lithiated anion active sites;
including.
 工程(A-2)では、上記工程(A-1)で得られたリチオ化されたアニオン活性部位の一部と官能化剤を反応させることで、最終的に得られる水添共役ジエン系グラフト重合体の主鎖(a)に結合する水酸基を形成する。本合成法で水酸基を形成した場合、水酸基は連結鎖を通じて主鎖(a)に結合する。 In step (A-2), the finally obtained hydrogenated conjugated diene-based graft is reacted with a functionalizing agent with part of the lithiated anionic active sites obtained in step (A-1). Forms a hydroxyl group that bonds to the main chain (a) of the polymer. When a hydroxyl group is formed by this synthesis method, the hydroxyl group is bonded to the main chain (a) through a linking chain.
 上記工程(A-2)でリチオ化されたアニオン活性部位の官能化反応に用いる官能化剤としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、n-オクチルアルデヒド、2-エチルヘキシルアルデヒド、デシルアルデヒド、ドデシルアルデヒド、ベンズアルデヒド等のアルデヒド;エチレンオキシド、プロピレンオキシド等のエポキシドなどが挙げられる。これら官能化剤の中でも、n-ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、n-オクチルアルデヒド、2-エチルヘキシルアルデヒド、デシルアルデヒド、ドデシルアルデヒド、ベンズアルデヒド等のアルデヒドが好ましく、2-エチルヘキシルアルデヒド、ベンズアルデヒドが特に好ましい。 Examples of the functionalizing agent used in the functionalization reaction of the anion active site lithiated in the above step (A-2) include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde, and isovaleraldehyde. , n-octylaldehyde, 2-ethylhexylaldehyde, decylaldehyde, dodecylaldehyde, benzaldehyde; and epoxides such as ethylene oxide and propylene oxide. Among these functionalizing agents, aldehydes such as n-butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde, n-octylaldehyde, 2-ethylhexylaldehyde, decylaldehyde, dodecylaldehyde, benzaldehyde are preferred, and 2-ethylhexylaldehyde, Benzaldehyde is particularly preferred.
 上記官能化剤の使用量は、上述した主鎖(a)に結合する水酸基の平均個数に応じて適宜設定できる。例えば、(有機リチウム化合物の仕込み量(モル数))/(官能化反応に使用する官能化剤の仕込み量(モル数))/(共役ジエン単位を含む重合体(M)の仕込み量(モル数))=10/4/1の場合、側鎖(b)の平均本数は6となる。また、水酸基の平均個数は4となるように設計できる。 The amount of the functionalizing agent used can be appropriately set according to the average number of hydroxyl groups bonded to the main chain (a) described above. For example, (amount of organolithium compound charged (number of moles))/(amount of functionalizing agent used in the functionalization reaction (number of moles))/(amount of polymer (M) containing conjugated diene units charged (moles number))=10/4/1, the average number of side chains (b) is six. Also, the average number of hydroxyl groups can be designed to be four.
 上述の通り、水酸基濃度は下記式(3)より求める。
(水酸基濃度)=(水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (3)
 すなわち、上記官能化剤の使用量は、目的とする水酸基濃度となるように、主鎖(a)の数平均分子量Mnと水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数を設計することで、自ずと決めることができる。
As described above, the hydroxyl group concentration is obtained from the following formula (3).
(Hydroxy group concentration) = (average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight of main chain (a) Mn)/(number of styrene units molecular weight)] × 100 (3)
That is, the amount of the functionalizing agent used is such that the number average molecular weight Mn of the main chain (a) and the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer are adjusted so as to achieve the desired hydroxyl group concentration. By designing the average number of bonded hydroxyl groups, it can be determined naturally.
 上記工程(A-2)において使用可能な溶媒は、上記工程(A-1)における溶媒の好適例と同様である。必要に応じて、工程(A-1)の後の任意のタイミングで、溶媒をさらに添加してもよい。 The solvent that can be used in the step (A-2) above is the same as the preferred examples of the solvent in the step (A-1) above. If necessary, a solvent may be further added at any timing after step (A-1).
 上記工程(A-2)の官能化の反応温度は、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が特に好ましい。また、上記反応温度は、100℃以下が好ましく、80℃以下がより好ましく、60℃以下が特に好ましい。0℃未満では反応速度に劣る傾向にあり、100℃超の場合は分解等の副反応が増加する傾向にある。 The reaction temperature for the functionalization in step (A-2) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher. Moreover, the reaction temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the temperature is less than 0°C, the reaction rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
 上記工程(A-2)の官能化の反応時間は、反応の進行に応じて適宜設定できるが、0.01~100時間が好ましく、0.05~50時間がより好ましく、0.1~20時間が特に好ましい。 The reaction time of the functionalization in the above step (A-2) can be appropriately set according to the progress of the reaction, preferably 0.01 to 100 hours, more preferably 0.05 to 50 hours, and 0.1 to 20 hours. Time is particularly preferred.
 [工程(A-3)]
 MI法による水添共役ジエン系グラフト重合体の製造方法は、側鎖(b)のビニル含量を所望の範囲に調整するために、工程(A-1)、もしくは工程(A-2)の後に、
(A-3)ルイス酸を添加する工程;
を含むことが好ましい一態様である。
[Step (A-3)]
In the method for producing a hydrogenated conjugated diene-based graft polymer by the MI method, in order to adjust the vinyl content of the side chain (b) to the desired range, after step (A-1) or step (A-2) ,
(A-3) adding a Lewis acid;
It is a preferred embodiment to include
 上記ルイス酸は、リチオ化反応を促進するために添加した上記極性化合物の作用を減らし、後述する工程(B)における側鎖のビニル含量を所望の範囲に調整するために添加する。ルイス酸としては、上記工程(A-1)にて生成したリチオ化点を失活させないアルキル金属化合物が好ましく、例えば、トリメチルアルミニウム、トリ-n-プロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-n-へキシルアルミニウム、及び、トリオクチルアルミニウム等のアルキルアルミニウム化合物;ブチルエチルマグネシウム、ジ-n-ブチルマグネシウム、及び、ジ-n-へキシルマグネシウム等のアルキルマグネシウム化合物;ジメチル亜鉛、ジエチル亜鉛、ジ-n-プロピル亜鉛、ジイソブチル亜鉛、及び、ジ-n-ブチル亜鉛等のアルキル亜鉛化合物が挙げられる。これらアルキル金属化合物の中でも、アルキルアルミニウム化合物、若しくはアルキル亜鉛化合物が好ましく、アルキルアルミニウム化合物がより好ましく、トリイソブチルアルミニウムが特に好ましい。 The Lewis acid is added to reduce the action of the polar compound added to promote the lithiation reaction and to adjust the vinyl content of the side chain in the step (B) described below to the desired range. The Lewis acid is preferably an alkyl metal compound that does not deactivate the lithiation point generated in the above step (A-1), such as trimethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutyl. Alkylaluminum compounds such as aluminum, tri-n-hexylaluminum, and trioctylaluminum; alkylmagnesium compounds such as butylethylmagnesium, di-n-butylmagnesium, and di-n-hexylmagnesium; dimethyl zinc, Alkyl zinc compounds such as diethyl zinc, di-n-propyl zinc, diisobutyl zinc, and di-n-butyl zinc are included. Among these alkyl metal compounds, alkylaluminum compounds or alkylzinc compounds are preferred, alkylaluminum compounds are more preferred, and triisobutylaluminum is particularly preferred.
 上記ルイス酸の使用量は、所望の側鎖(b)のビニル含量によって適宜調整できるが、例えば、上記工程(A-1)に用いる有機アルカリ金属化合物1モルに対して、0.01モル以上が好ましく、0.05モル以上がより好ましく、0.1モル以上が特に好ましい。また、上記ルイス酸の使用量は、有機アルカリ金属化合物1モルに対して、10モル以下が好ましく、5モル以下がより好ましく、1モル以下が特に好ましい。有機アルカリ金属化合物1モルに対するルイス酸の使用量が、0.01モル未満の場合はルイス酸の添加効果に乏しく所望のビニル化度に調整することが困難であり、10モル超の場合は側鎖重合の重合速度が低下する傾向があり、また、経済性に劣る傾向にある。また、上記ルイス酸の使用量は、上記工程(A-1)に用いる極性化合物1モルに対して、0.02モル以上が好ましく、0.1モル以上がより好ましく、0.2モル以上が特に好ましい。また、上記ルイス酸の使用量は、極性化合物1モルに対して、20モル以下が好ましく、10モル以下がより好ましく、2モル以下が特に好ましい。極性化合物1モルに対するルイス酸の使用量が、0.02モル未満の場合はルイス酸の添加効果に乏しく所望のビニル化度に調整することが困難であり、20モル超の場合は側鎖重合の重合速度が低下する傾向があり、また、経済性に劣る傾向にある。 The amount of the Lewis acid to be used can be appropriately adjusted depending on the vinyl content of the desired side chain (b). is preferred, 0.05 mol or more is more preferred, and 0.1 mol or more is particularly preferred. The amount of the Lewis acid used is preferably 10 mol or less, more preferably 5 mol or less, and particularly preferably 1 mol or less, per 1 mol of the organic alkali metal compound. If the amount of the Lewis acid used relative to 1 mol of the organic alkali metal compound is less than 0.01 mol, the effect of the addition of the Lewis acid is poor and it is difficult to adjust the desired degree of vinylation. The rate of chain polymerization tends to decrease, and the economy tends to be poor. The amount of the Lewis acid used is preferably 0.02 mol or more, more preferably 0.1 mol or more, and 0.2 mol or more, relative to 1 mol of the polar compound used in the step (A-1). Especially preferred. The amount of the Lewis acid to be used is preferably 20 mol or less, more preferably 10 mol or less, and particularly preferably 2 mol or less, relative to 1 mol of the polar compound. If the amount of the Lewis acid used relative to 1 mol of the polar compound is less than 0.02 mol, the effect of adding the Lewis acid is poor and it is difficult to adjust the degree of vinylation to the desired degree. The polymerization rate tends to decrease, and the economy tends to be poor.
 上記ルイス酸を添加するタイミングは、工程(A-1)の後であれば、後述する工程(B)の前であっても、また、工程(B)の途中の任意のタイミングであってもよく、所望の側鎖(b)のビニル含量によって任意に選択できる。 The timing of adding the Lewis acid may be after step (A-1), before step (B) described later, or at any timing during step (B). Well, it can be arbitrarily selected depending on the vinyl content of the desired side chain (b).
 [工程(B)]
 MI法による水添共役ジエン系グラフト重合体の製造方法は、
(B)共役ジエン及び芳香族ビニル化合物からなる群より選ばれる少なくとも1つの単量体を添加して、重合体(M)中の残存するリチオ化されたアニオン活性部位から重合して、主鎖となる上記重合体(M)に対し側鎖を形成し、共役ジエン系グラフト重合体を作製する工程;
を含む。上記工程(B)において重合した単量体が本発明の水添共役ジエン系グラフト重合体の側鎖(b)となる。工程(B)において重合される重合体を構成する単量体単位となる共役ジエンの具体例、好適例、及びその好適含有量、並びに、共役ジエン以外の他の単量体(芳香族ビニル化合物等)の具体例、好適例、好適含有量等の説明は、水添共役ジエン系グラフト重合体の側鎖(b)に関する説明と同様である。また、工程(B)において重合される重合体の重量平均分子量(Mn)、ビニル含量、Tgの好適態様等の説明は、水添共役ジエン系グラフト重合体の側鎖(b)に関する説明と同様である。
[Step (B)]
A method for producing a hydrogenated conjugated diene-based graft polymer by the MI method,
(B) adding at least one monomer selected from the group consisting of a conjugated diene and an aromatic vinyl compound to polymerize from the remaining lithiated anionic active sites in the polymer (M) to obtain a main chain A step of forming a side chain on the polymer (M) to produce a conjugated diene-based graft polymer;
including. The monomer polymerized in the step (B) becomes the side chain (b) of the hydrogenated conjugated diene graft polymer of the present invention. Specific examples and preferred examples of the conjugated diene, which is a monomer unit constituting the polymer polymerized in the step (B), preferred content thereof, and other monomers other than the conjugated diene (aromatic vinyl compound etc.) are the same as those for the side chain (b) of the hydrogenated conjugated diene graft polymer. In addition, the description of the weight average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the polymer polymerized in the step (B) is the same as the description of the side chain (b) of the hydrogenated conjugated diene graft polymer. is.
 上記工程(B)において、側鎖(b)のビニル含量を所望の範囲に調整するために、極性化合物をさらに添加してもよい。また、ビニル含量を所望の範囲に調整するために、上述の通りルイス酸を添加してもよい。 In the above step (B), a polar compound may be further added in order to adjust the vinyl content of the side chain (b) to the desired range. A Lewis acid may also be added as described above to adjust the vinyl content to the desired range.
 上記工程(B)において使用可能な溶媒は、上記工程(A-1)における溶媒の好適例と同様である。必要に応じて、工程(A-1)の後の任意のタイミングで、溶媒をさらに添加してもよい。 Solvents that can be used in the step (B) are the same as the preferred examples of the solvent in the step (A-1). If necessary, a solvent may be further added at any timing after step (A-1).
 上記工程(B)の重合温度としては、0℃以上が好ましく、10℃以上がより好ましく、20℃以上が特に好ましい。また、上記重合温度としては、100℃以下が好ましく、80℃以下がより好ましく、60℃以下が特に好ましい。重合温度が0℃未満では重合速度に劣る傾向にあり、100℃超の場合は分解等の副反応が増加する傾向にある。 The polymerization temperature in the step (B) is preferably 0°C or higher, more preferably 10°C or higher, and particularly preferably 20°C or higher. The polymerization temperature is preferably 100° C. or lower, more preferably 80° C. or lower, and particularly preferably 60° C. or lower. If the polymerization temperature is less than 0°C, the polymerization rate tends to be poor, and if it exceeds 100°C, side reactions such as decomposition tend to increase.
 上記工程(B)の重合時間としては、反応の進行に応じて適宜設定できるが、0.01~100時間が好ましく、0.1~50時間がより好ましく、0.2~20時間が特に好ましい。 The polymerization time in the step (B) can be appropriately set according to the progress of the reaction, but is preferably 0.01 to 100 hours, more preferably 0.1 to 50 hours, and particularly preferably 0.2 to 20 hours. .
 上記工程(B)における重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。 The polymerization reaction in the above step (B) can be terminated by adding a polymerization terminator. Examples of the polymerization terminator include alcohols such as methanol and isopropanol.
 [工程(C)]
 MI法による本発明の水添共役ジエン系グラフト重合体の製造方法は、工程(D)の前に、
(C)上記未水添共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;
を含む。
[Step (C)]
In the method for producing a hydrogenated conjugated diene-based graft polymer of the present invention by the MI method, before the step (D),
(C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the unhydrogenated conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer;
including.
 前記方法により得られた未水添共役ジエン系グラフト重合体を水素添加する工程に付すことにより、水添共役ジエン系グラフト重合体を得ることができる。水素添加する方法には特に制限は無く、例えば公知の方法を用いることができる。上記工程(B)と水素添加は引き続いて行ってもよいし、未水添共役ジエン系グラフト重合体を一旦単離してから水素添加してもよい。未水添共役ジエン系グラフト重合体を単離する方法は、後述する回収工程(D)と同様である。 A hydrogenated conjugated diene graft polymer can be obtained by subjecting the unhydrogenated conjugated diene graft polymer obtained by the above method to a step of hydrogenating. The hydrogenation method is not particularly limited, and for example, a known method can be used. The above step (B) and hydrogenation may be carried out successively, or the unhydrogenated conjugated diene-based graft polymer may be isolated once and then hydrogenated. The method for isolating the unhydrogenated conjugated diene-based graft polymer is the same as the recovery step (D) described below.
 工程(C)の水素添加反応に用いる触媒としては、オレフィン化合物などに含まれる炭素-炭素二重結合が水素添加され得る触媒が使用可能である。このような触媒としては、通常、不均一系触媒、均一系触媒などが挙げられる。 As the catalyst used for the hydrogenation reaction in step (C), a catalyst that can hydrogenate carbon-carbon double bonds contained in olefin compounds and the like can be used. Such catalysts generally include heterogeneous catalysts, homogeneous catalysts, and the like.
 上記不均一系触媒は特に限定されないが、その具体例としては、スポンジニッケル、スポンジコバルト、スポンジ銅などのスポンジメタル触媒;ニッケルシリカ、ニッケルアルミナ、ニッケルゼオライト、ニッケル珪藻土、パラジウムシリカ、パラジウムアルミナ、パラジウムゼオライト、パラジウム珪藻土、パラジウムカーボン、パラジウム炭酸カルシウム、白金シリカ、白金アルミナ、白金ゼオライト、白金珪藻土、白金カーボン、白金炭酸カルシウム、ルテニウムシリカ、ルテニウムアルミナ、ルテニウムゼオライト、ルテニウム珪藻土、ルテニウムカーボン、ルテニウム炭酸カルシウム、イリジウムシリカ、イリジウムアルミナ、イリジウムゼオライト、イリジウム珪藻土、イリジウムカーボン、イリジウム炭酸カルシウム、コバルトシリカ、コバルトアルミナ、コバルトゼオライト、コバルト珪藻土、コバルトカーボン、コバルト炭酸カルシウムなどの担持金属触媒が挙げられる。
 これら不均一系触媒は、活性向上、選択性向上、安定性を目的に、鉄、モリブデン、マグネシウムなどで変性されていてもよい。また、これら不均一系触媒は1種単独で用いられても、2種以上混合して用いられてもよい。
The heterogeneous catalyst is not particularly limited, but specific examples include sponge metal catalysts such as sponge nickel, sponge cobalt, and sponge copper; nickel silica, nickel alumina, nickel zeolite, nickel diatomaceous earth, palladium silica, palladium alumina, palladium Zeolite, palladium diatomaceous earth, palladium carbon, palladium calcium carbonate, platinum silica, platinum alumina, platinum zeolite, platinum diatomaceous earth, platinum carbon, platinum calcium carbonate, ruthenium silica, ruthenium alumina, ruthenium zeolite, ruthenium diatomaceous earth, ruthenium carbon, ruthenium calcium carbonate, supported metal catalysts such as iridium silica, iridium alumina, iridium zeolite, iridium diatomaceous earth, iridium carbon, iridium calcium carbonate, cobalt silica, cobalt alumina, cobalt zeolite, cobalt diatomaceous earth, cobalt carbon, and cobalt calcium carbonate;
These heterogeneous catalysts may be modified with iron, molybdenum, magnesium or the like for the purpose of improving activity, improving selectivity and stability. These heterogeneous catalysts may be used singly or in combination of two or more.
 上記均一系触媒は特に限定されないが、その具体例としては、遷移金属化合物と、アルキルアルミニウム又はアルキルリチウムからなる、チーグラー系触媒;メタロセン系触媒が挙げられる。
 チーグラー系触媒に用いる遷移金属化合物の具体例としては、酢酸ニッケル、オクチル酸ニッケル、ニッケルアセチルアセトナートなどのニッケル塩;酢酸コバルト、オクチル酸コバルト、コバルトアセチルアセトナートなどのコバルト塩;チタノセンジクロライド、ジルコノセンジクロライドが挙げられる。
 チーグラー系触媒に用いるアルキルアルミニウムの具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウムが挙げられる。
 チーグラー系触媒に用いるアルキルリチウムの具体例としては、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムが挙げられる。
 これら均一系触媒は1種単独で用いられても、2種以上混合して用いられてもよい。また、均一系触媒は、不均一系触媒と混合して用いても構わない。
The homogeneous catalyst is not particularly limited, but specific examples thereof include Ziegler catalysts composed of a transition metal compound and alkylaluminum or alkyllithium; metallocene catalysts.
Specific examples of transition metal compounds used in Ziegler-based catalysts include nickel salts such as nickel acetate, nickel octylate and nickel acetylacetonate; cobalt salts such as cobalt acetate, cobalt octylate and cobalt acetylacetonate; titanocene dichloride and zirconocene. dichlorides.
Specific examples of alkylaluminums used in Ziegler catalysts include trimethylaluminum, triethylaluminum, triisobutylaluminum, and trioctylaluminum.
Specific examples of alkyllithium used in Ziegler catalysts include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium and t-butyllithium.
These homogeneous catalysts may be used singly or in combination of two or more. Moreover, the homogeneous catalyst may be used in combination with the heterogeneous catalyst.
 工程(C)の水素添加反応では、重合体を水素添加するため、低分子化合物に対して反応活性が一般的に低くなる。そのため、反応条件として比較的高温、高圧条件が好ましい場合が多く、熱安定性の高い不均一系触媒で行うことが好ましい。水素化活性の面から、水素化活性をもつ金属としてニッケル又はパラジウムを用いることが好ましい。また、水素添加反応中の望ましくない副反応を抑制するために、担体として、炭酸カルシウム、カーボン担体を用いることが好ましく、カーボン担体を用いることがさらに好ましい。 In the hydrogenation reaction of step (C), since the polymer is hydrogenated, the reaction activity for low-molecular-weight compounds is generally low. Therefore, in many cases, relatively high temperature and high pressure conditions are preferable as the reaction conditions, and it is preferable to use a heterogeneous catalyst with high thermal stability. From the aspect of hydrogenation activity, it is preferable to use nickel or palladium as the metal having hydrogenation activity. Moreover, in order to suppress undesirable side reactions during the hydrogenation reaction, it is preferable to use calcium carbonate or a carbon support as the support, and it is more preferable to use a carbon support.
 水素添加反応は、通常、有機溶媒中で行われる。かかる有機溶媒は、特に限定されるものではなく、例えば上記工程(B)、もしくは後述する工程(E)において例示した溶媒を用いることができる。 The hydrogenation reaction is usually carried out in an organic solvent. Such an organic solvent is not particularly limited, and for example, the solvents exemplified in the above step (B) or step (E) described later can be used.
 上記水素添加反応は、例えば、上記工程(B)の際に使用した溶媒中に未水添共役ジエン系グラフト重合体が存在する状態のまま、特に有機溶媒に処理を施すことなく、行ってもよいし、その溶媒の一部を蒸留などの方法により除去した後、残存する溶媒中で行ってもよく、また別途有機溶媒で希釈した後、その溶媒中で行ってもよい。また、上記工程(B)終了後、一旦未水添共役ジエン系グラフト重合体を取り出し、この未水添共役ジエン系グラフト重合体を有機溶媒中に投入し、その溶媒中で水素添加反応を行ってもよい。 The above hydrogenation reaction may be carried out, for example, in a state in which the unhydrogenated conjugated diene-based graft polymer is present in the solvent used in the above step (B), without particularly treating the organic solvent. Alternatively, after part of the solvent is removed by a method such as distillation, the reaction may be carried out in the remaining solvent, or after dilution with an organic solvent, the reaction may be carried out in the solvent. After the step (B) is completed, the unhydrogenated conjugated diene-based graft polymer is temporarily taken out, and the unhydrogenated conjugated diene-based graft polymer is put into an organic solvent to carry out a hydrogenation reaction in the solvent. may
 水素添加反応を有機溶媒中で行う場合、有機溶媒の使用量は、反応液中の未水添共役ジエン系グラフト重合体の濃度として、1質量%以上、30質量%以下となる量であることが好ましい。上記濃度として、1質量%未満でおこなうと、生産性が著しく低下する場合があり、30質量%超の場合、粘度が著しく高まり、混合効率が低下してしまう場合がある。 When the hydrogenation reaction is carried out in an organic solvent, the amount of the organic solvent used should be such that the concentration of the unhydrogenated conjugated diene-based graft polymer in the reaction solution is 1% by mass or more and 30% by mass or less. is preferred. If the concentration is less than 1% by mass, the productivity may be significantly reduced, and if it exceeds 30% by mass, the viscosity may be significantly increased and the mixing efficiency may be reduced.
 水素添加反応の反応圧力は、使用する触媒などに応じて適宜設定すればよいが、全圧として、通常0.1MPa~20MPa、好ましくは0.5MPa~15MPa、より好ましくは0.5MPa~5MPaである。 The reaction pressure of the hydrogenation reaction may be appropriately set according to the catalyst used, etc., but the total pressure is usually 0.1 MPa to 20 MPa, preferably 0.5 MPa to 15 MPa, more preferably 0.5 MPa to 5 MPa. be.
 水素添加反応は、水素ガス存在下で実施するが、水素ガス以外の水素添加反応に不活性なガスと混合したガスの存在下で実施してもよい。水素添加反応に不活性なガスの具体例としては、窒素、ヘリウム、アルゴン、二酸化炭素が挙げられる。また、反応条件によっては、反応に使用する溶媒がガス成分として有意な割合で分圧を有する場合があるが、水素添加反応が進行する限り、そのような状況は、通常問題はない。 The hydrogenation reaction is carried out in the presence of hydrogen gas, but it may be carried out in the presence of a gas mixed with a gas other than hydrogen gas that is inert to the hydrogenation reaction. Specific examples of gases inert to the hydrogenation reaction include nitrogen, helium, argon, and carbon dioxide. Also, depending on the reaction conditions, the solvent used in the reaction may have a significant partial pressure as a gas component, but such a situation is usually not a problem as long as the hydrogenation reaction proceeds.
 水素添加反応の反応温度は、使用する触媒に応じて適宜設定すればよいが、通常20℃~250℃、好ましくは50℃~180℃、より好ましくは70℃~180℃である。一般的に不均一系触媒は均一系に比べて、より高い温度で反応することが望ましい場合がある。
 水素添加反応の反応時間は、使用する触媒種、触媒量、反応温度に応じて適宜設定すればよいが、通常0.1~100時間、好ましくは1~50時間である。反応時間が短すぎる場合、所望する水素添加率を得ることができない場合がある。また、反応時間が長すぎる場合、望まない副反応の進行が顕著になり、所望する物性の水素添加された共役ジエン系グラフト重合体が得られない場合がある。
The reaction temperature for the hydrogenation reaction may be appropriately set according to the catalyst used, but is usually 20°C to 250°C, preferably 50°C to 180°C, more preferably 70°C to 180°C. In general, it may be desirable for heterogeneous catalysts to react at higher temperatures than homogeneous catalysts.
The reaction time for the hydrogenation reaction may be appropriately set according to the type of catalyst used, the amount of catalyst and the reaction temperature, and is usually 0.1 to 100 hours, preferably 1 to 50 hours. If the reaction time is too short, the desired hydrogenation rate may not be obtained. On the other hand, if the reaction time is too long, undesired side reactions may proceed remarkably, and a hydrogenated conjugated diene-based graft polymer having desired physical properties may not be obtained.
 水素添加反応の反応形式は特に制限はなく、反応に使用する触媒の種類などに応じて適宜設定すればよい。その反応形式としては、例えば、バッチ反応形式、セミ連続反応形式(セミバッチ反応形式)、連続反応形式が挙げられる。好適な連続反応形式としては、プラグフロー形式(PFR)、連続流通撹拌形式(CSTR)などが挙げられる。
 不均一系触媒を用いる場合、固定床反応槽を用いて水素添加反応できる。
 積極的な混合条件下で水素添加反応を行う場合、その混合方法としては、撹拌による混合方法、ループ形式により反応液を循環させる混合方法が挙げられる。
 混合条件下で不均一系触媒を用いる場合、懸濁床による反応となり、気-液-固の反応場となる。また、混合条件下で均一系触媒を用いる場合、気-液2相系反応場となる。
 反応槽中での水素添加反応を一旦終了し、反応液を抜き取り、その抜き取った反応液の少なくとも一部を、同一又は異なる反応槽に投入して、水素添加反応をさらに行う、反応形式で水素添加反応を行ってもよい。このような反応形式で水素添加反応を行うことにより、水素添加反応に伴う発熱の局所化の回避が可能となる場合、水素添加率が向上する場合がある。
 水素添加反応は、1種単独の反応形式で行ってもよく、同一又は異なる2以上の反応形式を組み合わせて、行ってもよい。
 より高い水素添加率を目指す場合、固定床反応槽を用い、プラグフロー形式で反応させる工程を含む水素添加反応工程であることが望ましい場合がある。
The reaction form of the hydrogenation reaction is not particularly limited, and may be appropriately set according to the type of catalyst used in the reaction. Examples of the reaction format include a batch reaction format, a semi-continuous reaction format (semi-batch reaction format), and a continuous reaction format. Suitable continuous reaction formats include plug flow format (PFR), continuous flow stirred format (CSTR), and the like.
When using a heterogeneous catalyst, the hydrogenation reaction can be carried out using a fixed bed reactor.
When the hydrogenation reaction is carried out under positive mixing conditions, the mixing method includes a mixing method by stirring and a mixing method in which the reaction solution is circulated in a loop.
When a heterogeneous catalyst is used under mixed conditions, the reaction is by a suspended bed and becomes a gas-liquid-solid reaction field. Further, when a homogeneous catalyst is used under mixed conditions, the reaction field becomes a gas-liquid two-phase system.
Hydrogen in a reaction format in which the hydrogenation reaction in the reaction vessel is once terminated, the reaction liquid is withdrawn, and at least part of the withdrawn reaction liquid is charged into the same or different reaction vessel to further perform the hydrogenation reaction. An addition reaction may be performed. By carrying out the hydrogenation reaction in such a reaction format, if it is possible to avoid localization of the heat generation accompanying the hydrogenation reaction, the hydrogenation rate may be improved.
The hydrogenation reaction may be carried out in a single reaction format, or in combination of two or more reaction formats that are the same or different.
When aiming for a higher hydrogenation rate, it may be desirable to use a fixed-bed reactor and use a hydrogenation reaction step that includes a plug-flow reaction step.
 水素添加反応の触媒使用量は、使用する触媒の種類、未水添共役ジエン系グラフト重合体の濃度、反応形式などに応じて適宜設定すればよいが、不均一系触媒を用い懸濁床により水素添加反応を行う場合、未水添共役ジエン系グラフト重合体を含む反応液100質量部あたりの触媒使用量は、通常0.01~20質量部、好ましくは、0.05~15質量部、より好ましくは0.1~10質量部である。触媒使用量が少なすぎる場合、水素添加反応に長時間必要となる場合があり、また、触媒使用量が多すぎる場合、不均一系触媒を混合する動力がより多く必要となる場合がある。また、固定床で水素添加反応を行う場合、未水添共役ジエン系グラフト重合体を含む反応液あたりの触媒使用量を規定することが困難であり、使用する反応槽の種類などに応じて適宜設定すればよい。
 均一系触媒としてチーグラー系触媒;メタロセン系触媒を用いる場合は、遷移金属化合物の未水添共役ジエン系グラフト重合体を含む反応液中の濃度として、通常0.001ミリモル/リットル~100ミリモル/リットル、好ましくは0.01ミリモル/リットル~10ミリモル/リットルである。
The amount of catalyst used in the hydrogenation reaction may be appropriately set according to the type of catalyst used, the concentration of the unhydrogenated conjugated diene-based graft polymer, and the reaction mode. When carrying out a hydrogenation reaction, the amount of the catalyst used per 100 parts by mass of the reaction liquid containing the unhydrogenated conjugated diene graft polymer is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, More preferably, it is 0.1 to 10 parts by mass. If the amount of catalyst used is too small, the hydrogenation reaction may require a long time, and if the amount of catalyst used is too large, more power may be required to mix the heterogeneous catalyst. In addition, when the hydrogenation reaction is carried out in a fixed bed, it is difficult to specify the amount of catalyst used per reaction liquid containing the unhydrogenated conjugated diene graft polymer. You can set it.
Ziegler catalyst as a homogeneous catalyst; when using a metallocene catalyst, the concentration in the reaction solution containing the unhydrogenated conjugated diene graft polymer of the transition metal compound is usually 0.001 mmol/liter to 100 mmol/liter. , preferably 0.01 mmol/liter to 10 mmol/liter.
 水素添加反応に使用した触媒は、水素添加反応終了後に、必要に応じ、水添共役ジエン系グラフト重合体を含む液から分離すればよい。分離する方法は触媒を分離できる限り特に制限はない。不均一系触媒を使用した場合は、例えば、連続式又はバッチ式濾過、遠心分離、静置による沈降及びデカンテーションにより前記触媒が分離できる。均一系触媒を用いた場合は、例えば、凝集沈澱、吸着、洗浄及び水相抽出により前記触媒が分離できる。
 これらの分離する方法により、使用後の触媒を分離したとしても、触媒に由来する微量の金属成分が水添共役ジエン系グラフト重合体を含む液に残留していることがある。この場合も、金属成分がその液に残存していることとなるため、前述の通り、凝集沈澱、吸着、洗浄及び水相抽出などの分離する方法により残留する金属成分を分離できる。
 分離により回収された触媒は、必要に応じて、その一部を除去する、あるいは新規触媒を追加するなどした後に、再び水素添加反応に使用できる。
The catalyst used in the hydrogenation reaction may be separated from the liquid containing the hydrogenated conjugated diene-based graft polymer, if necessary, after the completion of the hydrogenation reaction. The separation method is not particularly limited as long as the catalyst can be separated. If a heterogeneous catalyst is used, the catalyst can be separated by, for example, continuous or batch filtration, centrifugation, settling by settling and decantation. When a homogeneous catalyst is used, the catalyst can be separated by, for example, coagulation sedimentation, adsorption, washing and aqueous phase extraction.
Even if the used catalyst is separated by these separation methods, trace amounts of metal components derived from the catalyst may remain in the liquid containing the hydrogenated conjugated diene graft polymer. Also in this case, since the metal component remains in the liquid, the remaining metal component can be separated by a separation method such as coagulation sedimentation, adsorption, washing, and aqueous phase extraction, as described above.
The catalyst recovered by separation can be used again for the hydrogenation reaction after removing part of it or adding a new catalyst, if necessary.
 [工程(D)]
 MI法による水添共役ジエン系グラフト重合体の製造方法は、
(D)得られた水添共役ジエン系グラフト重合体を回収する工程;
を含む。
[Step (D)]
A method for producing a hydrogenated conjugated diene-based graft polymer by the MI method,
(D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer;
including.
 工程(D)では、得られた本発明の水添共役ジエン系グラフト重合体を回収する。水添共役ジエン系グラフト重合体の回収方法は特に制限はないが、例えば、工程(D)を行う前に水添共役ジエン系グラフト重合体をその重合体を含む溶液となるようにし、水添共役ジエン系グラフト重合体を含む溶液を、メタノール等の貧溶媒に注いで、水添共役ジエン系グラフト重合体を析出させるか、又は重合反応液をスチームと共に熱水中に注いで溶媒を共沸によって除去(スチームストリッピング)した後、乾燥させるか、又は重合反応液を水で洗浄し、分離後、乾燥することにより上記水添共役ジエン系グラフト重合体を単離することにより回収できる。なお、工程(D)を行う前にすでに水添共役ジエン系グラフト重合体を含む溶液として水添共役ジエン系グラフト重合体が得られている場合には、そのままの状態で、あるいはその溶液を濃縮又は希釈した後に、上述したような方法により工程(D)を行ってもよい。 In step (D), the obtained hydrogenated conjugated diene-based graft polymer of the present invention is recovered. The method for recovering the hydrogenated conjugated diene-based graft polymer is not particularly limited. A solution containing a conjugated diene-based graft polymer is poured into a poor solvent such as methanol to precipitate a hydrogenated conjugated diene-based graft polymer, or a polymerization reaction solution is poured into hot water together with steam to azeotrop the solvent. (steam stripping) and then dried, or the hydrogenated conjugated diene-based graft polymer can be recovered by isolating the above-mentioned hydrogenated conjugated diene-based graft polymer by washing the polymerization reaction solution with water, separating it, and drying it. In addition, when the hydrogenated conjugated diene graft polymer is already obtained as a solution containing the hydrogenated conjugated diene graft polymer before performing the step (D), the solution is concentrated as it is or the solution is concentrated. Alternatively, after diluting, step (D) may be performed by the method as described above.
 本発明の共役ジエン系グラフト重合体には、上述した工程のいずれかにおいて、必要に応じて老化防止剤を添加してもよい。例えば、工程(B)の後に添加してもよいし、もしくは、工程(C)の後や途中の各段階、もしくは工程(D)の後や途中の各段階において添加してもよい。
 この時に用いる好ましい老化防止剤としては、例えば、2,6-ジt-ブチル-4-メチルフェノール(BHT)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(Irganox1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox1726)、2-[1-(2-ヒドロキシ-3,5-ジt-ペンチルフェニル)エチル]-4,6-ジt-ペンチルフェニルアクリレート(SumilizerGS)、2-tブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(SumilizerGM)、6-t-ブチル-4-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-2-メチルフェノール(SumilizerGP)、亜リン酸トリス(2,4-ジt-ブチルフェニル)(Irgafos168)、ジオクタデシル3,3'-ジチオビスプロピオネート、ヒドロキノン、p-メトキシフェノール、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y)、N,N-ジオクタデシルヒドロキシルアミン(IrgastabFS042)、ビス(4-t-オクチルフェニル)アミン(Irganox5057)などが挙げられる。上記老化防止剤は、1種単独で用いられても、2種以上併用されてもよい。
An antioxidant may be added to the conjugated diene-based graft polymer of the present invention in any of the steps described above, if necessary. For example, it may be added after step (B), after step (C) or at each step during step (D), or after step (D) or at each step during step (D).
Preferred anti-aging agents used at this time include, for example, 2,6-di-t-butyl-4-methylphenol (BHT), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4,4 '-thiobis(3-methyl-6-t-butylphenol), 4,4'-butylidenebis(3-methyl-6-t-butylphenol) (AO-40), 3,9-bis[1,1-dimethyl- 2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane (AO-80), 2,4-bis[(octylthio)methyl]-6-methylphenol (Irganox 1520L), 2,4-bis[(dodecylthio)methyl]-6-methylphenol (Irganox 1726), 2-[1-(2-hydroxy- 3,5-di-t-pentylphenyl)ethyl]-4,6-di-t-pentylphenyl acrylate (SumilizerGS), 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (Sumilizer GM), 6-t-butyl-4-[3-(2,4,8,10-tetra-t-butyldibenzo[d,f][1,3,2]dioxa Phosphepin-6-yloxy)propyl]-2-methylphenol (SumilizerGP), Tris(2,4-di-t-butylphenyl)phosphite (Irgafos168), Dioctadecyl 3,3'-dithiobispropionate , hydroquinone, p-methoxyphenol, N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (Nocrac 6C), bis(2,2,6,6-tetramethyl-4-piperidyl) Sebacate (LA-77Y), N,N-dioctadecylhydroxylamine (IrgastabFS042), bis(4-t-octylphenyl)amine (Irganox5057) and the like. The anti-aging agents may be used singly or in combination of two or more.
 <カップリング法(CP法)>
 本発明の水添共役ジエン系グラフト重合体の製造方法としては、下記工程(E)、工程(C)及び工程(D)を含むカップリング法(CP法)による製造方法が好ましい一態様である。
<Coupling method (CP method)>
As a method for producing the hydrogenated conjugated diene-based graft polymer of the present invention, a production method by a coupling method (CP method) including the following steps (E), (C) and (D) is a preferred embodiment. .
 (E)下記式(I)で表される活性末端重合体とエポキシ基を有する官能基変性共役ジエン系重合体(以下、この重合体を官能基変性共役ジエン系重合体(F)とも呼称する)とを反応させて共役ジエン系グラフト重合体を作製する工程 (E) a functional group-modified conjugated diene-based polymer having an active terminal polymer represented by the following formula (I) and an epoxy group (hereinafter, this polymer is also referred to as a functional group-modified conjugated diene-based polymer (F) ) to prepare a conjugated diene-based graft polymer
P-X  (I)
(式(I)中、Pは共役ジエン単位及び芳香族ビニル化合単位物からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す。);及び
 (C)上記共役ジエン系グラフト重合体に含まれる共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;及び
 (D)得られた水添共役ジエン系グラフト重合体を回収する工程
PX (I)
(In formula (I), P represents a polymer chain containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit, and X represents an anionic polymerization active terminal. ); and (C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units contained in the conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; and (D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer
 [工程(E)]
 上記工程(E)で使用する、活性末端重合体(I)は、公知の重合方法を用いて製造することができる。例えば、重合末端に不活性な溶媒中、アニオン重合可能な活性金属又は活性金属化合物を開始剤として、必要に応じて極性化合物の存在下で、単量体をアニオン重合させることにより、活性末端重合体(I)を得ることができる。この活性末端重合体(I)のPが本発明で得られる水添共役ジエン系グラフト重合体の側鎖(b)となる。
[Step (E)]
The active terminal polymer (I) used in the above step (E) can be produced using a known polymerization method. For example, in a solvent inert to the polymerization terminal, using an anionically polymerizable active metal or active metal compound as an initiator, optionally in the presence of a polar compound, by anionically polymerizing a monomer, the active terminal is polymerized. Coalescence (I) can be obtained. The P of this active terminal polymer (I) becomes the side chain (b) of the hydrogenated conjugated diene graft polymer obtained in the present invention.
 活性末端重合体(I)を構成する単量体単位となる単量体の具体例、好適態様等の説明、及び活性末端重合体(I)に含まれる単量体単位の具体例及び好適態様の説明は、水添共役ジエン系グラフト重合体の側鎖(b)に関する説明と同様である。 Description of specific examples of monomers to be monomer units constituting the active terminal polymer (I), preferred embodiments, etc., and specific examples and preferred embodiments of the monomer units contained in the active terminal polymer (I) is the same as the side chain (b) of the hydrogenated conjugated diene graft polymer.
 アニオン重合可能な活性金属又は活性金属化合物としては、有機アルカリ金属化合物が好ましく、有機リチウム化合物がより好ましい。上記有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウムなどが挙げられる。 As the anionically polymerizable active metal or active metal compound, an organic alkali metal compound is preferred, and an organic lithium compound is more preferred. Examples of the organic lithium compound include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
 上記溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物などが挙げられる。 Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; and benzene. , toluene, and xylene; and ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether.
 上記アニオン重合の際には、極性化合物を添加してもよい。極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン単位のミクロ構造(ビニル含量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。 A polar compound may be added during the anionic polymerization. Polar compounds are commonly used in anionic polymerizations to control the microstructure (vinyl content) of the conjugated diene units without quenching the reaction. Examples of polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. The polar compound is generally used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
 上記アニオン重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。 The temperature of the anionic polymerization is usually in the range of -80 to 150°C, preferably in the range of 0 to 100°C, more preferably in the range of 10 to 90°C. The mode of polymerization may be either a batchwise system or a continuous system.
 上記活性末端重合体(I)のPは、最終的に、本発明の水添共役ジエン系グラフト重合体の側鎖(b)となる。上記活性末端重合体(I)のPの数平均分子量(Mn)、ビニル含量、Tgの好適態様等の説明は、本発明の水添共役ジエン系グラフト重合体の側鎖(b)に関するものと同様である。 The P of the above active terminal polymer (I) finally becomes the side chain (b) of the hydrogenated conjugated diene-based graft polymer of the present invention. The description of the preferred embodiments of the number average molecular weight (Mn) of P, vinyl content, and Tg of the active terminal polymer (I) relates to the side chain (b) of the hydrogenated conjugated diene-based graft polymer of the present invention. It is the same.
 上記工程(E)において、官能基変性共役ジエン系重合体(F)は、例えば、未変性共役ジエン系重合体(F')を後述する変性工程において官能基により変性することで得られる。前記未変性共役ジエン系重合体(F')の製造方法は特に制限されず、上述した共役ジエン単位を含む重合体(M)の製造方法の同様に適用できる。官能基変性共役ジエン系重合体(F)の官能基変性されている以外の部分が本発明の水添共役ジエン系グラフト重合体の主鎖(a)となる。 In the above step (E), the functional group-modified conjugated diene-based polymer (F) is obtained, for example, by modifying the unmodified conjugated diene-based polymer (F') with a functional group in the modification step described below. The method for producing the unmodified conjugated diene-based polymer (F′) is not particularly limited, and can be applied in the same manner as the method for producing the polymer (M) containing conjugated diene units described above. The portion of the functional group-modified conjugated diene-based polymer (F) other than the functional group-modified conjugated diene-based polymer becomes the main chain (a) of the hydrogenated conjugated diene-based graft polymer of the present invention.
 未変性共役ジエン系重合体(F')を構成する単量体単位となる共役ジエンの具体例、好適例、及びその好適含有量、並びに、共役ジエン以外の他の単量体(芳香族ビニル化合物等)の具体例、好適例、好適含有量等の説明は、水添共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。また、未変性共役ジエン系重合体(F')の数平均分子量(Mn)、ビニル含量、Tgの好適態様等の説明は、水添共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。なお、CP法で主鎖(a)となる官能基変性共役ジエン系重合体(F)を製造する場合、その重合体に含まれる芳香族ビニル化合物単位として4-メチルスチレン単位は含まれていてもよい。CP法で共役ジエン系グラフト重合体を作製する場合には、4-メチルスチレン単位に含まれる芳香族基に側鎖(b)が結合することにならないためである。 Specific examples and preferred examples of the conjugated diene, which is a monomer unit constituting the unmodified conjugated diene-based polymer (F'), preferred content thereof, and other monomers other than the conjugated diene (aromatic vinyl compound, etc.) are the same as those for the main chain (a) of the hydrogenated conjugated diene-based graft polymer. In addition, the description of the number average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the unmodified conjugated diene-based polymer (F′) is the description of the main chain (a) of the hydrogenated conjugated diene-based graft polymer. It is the same. When the functional group-modified conjugated diene-based polymer (F) to be the main chain (a) is produced by the CP method, 4-methylstyrene units are included as aromatic vinyl compound units contained in the polymer. good too. This is because the side chain (b) is not bound to the aromatic group contained in the 4-methylstyrene unit when the conjugated diene-based graft polymer is produced by the CP method.
 上記未変性共役ジエン系重合体(F')を官能基により変性することで、エポキシ基を有する官能基変性共役ジエン系重合体(F)を製造する方法としては特に制限されず、従来公知の方法によることができる。例えば、ハイドロパーオキサイド類、有機過酸等のエポキシ化剤を用いて未変性共役ジエン系重合体(F')をエポキシ化することで、エポキシ基を有する官能基変性共役ジエン系重合体(F)を製造できる。ハイドロパーオキサイド類としては、過酸化水素、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイドなどが挙げられる。有機過酸としては、例えば、過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸、m-クロロ過安息香酸などが挙げられる。有機過酸は、過酸化水素と有機酸を用いた平衡過酸であってもよい。 The method for producing the functional group-modified conjugated diene polymer (F) having an epoxy group by modifying the unmodified conjugated diene polymer (F') with a functional group is not particularly limited, and conventionally known methods can be used. It can be according to the method. For example, by epoxidizing the unmodified conjugated diene-based polymer (F′) using an epoxidizing agent such as hydroperoxides and organic peracids, a functional group-modified conjugated diene-based polymer (F ) can be manufactured. Hydroperoxides include hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide and the like. Examples of organic peracids include performic acid, peracetic acid, perbenzoic acid, trifluoroperacetic acid, m-chloroperbenzoic acid and the like. The organic peracid may be an equilibrium peracid using hydrogen peroxide and an organic acid.
 上記エポキシ化反応の際には、必要に応じて触媒を用いてもよい。エポキシ化剤と触媒との組み合わせとしては、例えば、エポキシ化剤がハイドロパーオキサイド類の場合、過酸化水素とタングステン酸及び苛性ソーダの混合物との組み合わせ、過酸化水素と有機酸との組み合わせ、t-ブチルハイドロパーオキサイドとモリブデンヘキサカルボニルとの組み合わせ等が挙げられる。また、エポキシ化剤が有機過酸の場合は、有機過酸と炭酸ソーダ等のアルカリ又は硫酸等の酸との組み合わせ等が挙げられる。
 また、その他のエポキシ化反応としては、タングステン又はモリブデンを含むへテロポリ酸(特に、12タングストリン酸)と界面活性剤(特に、ハロゲン化四級アンモニウム塩)とから調製された相間移動型へテロポリ酸の存在下、水相及び有機相の二相系で過酸化水素によりエポキシ化する方法も挙げられる。
 エポキシ化剤、及び触媒の使用量は、特に限定されるものではなく、エポキシ化される重合体の種類、エポキシ化剤の種類、エポキシ化される重合体のエポキシ化度等に応じ適宜設定できる。
If necessary, a catalyst may be used in the epoxidation reaction. Combinations of the epoxidizing agent and the catalyst include, for example, when the epoxidizing agent is a hydroperoxide, a combination of hydrogen peroxide and a mixture of tungstic acid and caustic soda, a combination of hydrogen peroxide and an organic acid, t- Examples include a combination of butyl hydroperoxide and molybdenum hexacarbonyl. Further, when the epoxidizing agent is an organic peracid, a combination of an organic peracid and an alkali such as sodium carbonate or an acid such as sulfuric acid may be used.
Other epoxidation reactions include phase-transfer heteropolyacids prepared from heteropolyacids containing tungsten or molybdenum (especially 12-tungstophosphoric acid) and surfactants (especially halogenated quaternary ammonium salts). A method of epoxidation with hydrogen peroxide in a two-phase system of an aqueous phase and an organic phase in the presence of an acid is also included.
The amount of the epoxidizing agent and the catalyst used is not particularly limited, and can be appropriately set according to the type of polymer to be epoxidized, the type of epoxidizing agent, the degree of epoxidation of the polymer to be epoxidized, and the like. .
 上記エポキシ化反応は、溶媒の不存在下に行うこともできるが、エポキシ化剤などに不活性な溶媒の存在下で行ってもよい。エポキシ化反応を行う際に使用できる溶媒としては、ヘキサン、ヘプタンなどの脂肪族炭化水素、酢酸エチルなどのエステル類、ベンゼン、キシレンなどの芳香族炭化水素、クロロホルム、四塩化炭素などのハロゲン化炭化水素が挙げられる。 The epoxidation reaction can be carried out in the absence of a solvent, but it may also be carried out in the presence of a solvent that is inert to the epoxidizing agent. Solvents that can be used for the epoxidation reaction include aliphatic hydrocarbons such as hexane and heptane, esters such as ethyl acetate, aromatic hydrocarbons such as benzene and xylene, and halogenated hydrocarbons such as chloroform and carbon tetrachloride. Hydrogen is mentioned.
 上記エポキシ化反応の反応温度は、反応速度、反応の選択性、安全性等の観点から、通常0~140℃、好ましくは0~80℃、さらに好ましくは10~40℃の範囲である。反応温度が低すぎると反応速度が低下しやすくなり、逆に高すぎるとエポキシ基の開環反応等の副反応が起きやすくなる。反応は、安全性の点から、窒素、アルゴンなどの不活性ガス雰囲気下で行うのが好ましい。反応時間は、所望するエポキシ化率に応じて適宜設定でき、例えば1~48時間、好ましくは4~36時間、さらに好ましくは8~36時間である。 The reaction temperature of the above epoxidation reaction is usually in the range of 0 to 140°C, preferably 0 to 80°C, more preferably 10 to 40°C, from the viewpoints of reaction rate, reaction selectivity, safety, and the like. If the reaction temperature is too low, the reaction rate tends to decrease. From the viewpoint of safety, the reaction is preferably carried out under an inert gas atmosphere such as nitrogen or argon. The reaction time can be appropriately set according to the desired epoxidation rate, and is, for example, 1 to 48 hours, preferably 4 to 36 hours, more preferably 8 to 36 hours.
 官能基変性共役ジエン系重合体(F)1分子あたりのエポキシ基の平均個数は、2~150個が好ましく、3~90個がより好ましく、4~70個がさらに好ましい。 The average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is preferably 2 to 150, more preferably 3 to 90, and even more preferably 4 to 70.
 官能基変性共役ジエン系重合体(F)1分子あたりのエポキシ基の平均個数は、官能基変性共役ジエン系重合体(F)に含まれるエポキシ当量(g/eq)と官能基変性共役ジエン系重合体(F)の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(4)より求める。
(官能基変性共役ジエン系重合体(F)1分子あたりのエポキシ基の平均個数)=[(官能基変性共役ジエン系重合体(F)の数平均分子量Mn)/(スチレン単位の分子量)×(官能基変性共役ジエン系重合体(F)中に含まれる共役ジエン単位及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(エポキシ当量)  (4)
The average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is determined by the epoxy equivalent (g/eq) contained in the functional group-modified conjugated diene polymer (F) and the functional group-modified conjugated diene system. It is obtained from the following formula (4) using the number average molecular weight (Mn) of the polymer (F) in terms of standard polystyrene.
(Average number of epoxy groups per molecule of functional group-modified conjugated diene polymer (F)) = [(number average molecular weight Mn of functional group-modified conjugated diene polymer (F))/(molecular weight of styrene unit) × (Average molecular weight of conjugated diene units contained in functional group-modified conjugated diene-based polymer (F) and optionally other monomeric units other than conjugated dienes)]/(epoxy equivalent) (4)
 なお、官能基変性共役ジエン系重合体(F)に含まれるエポキシ基のエポキシ当量は、エポキシ基1個あたりに結合している共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。エポキシ当量は、1H-NMRを用いてエポキシ基由来のピークと重合体主鎖に由来するピークの面積比から算出する。 The epoxy equivalent of the epoxy group contained in the functional group-modified conjugated diene-based polymer (F) is the conjugated diene bonded per epoxy group and other monomers other than the conjugated diene optionally contained. means body mass. The epoxy equivalent is calculated from the area ratio of the peak derived from the epoxy group and the peak derived from the main chain of the polymer using 1 H-NMR.
 官能基変性共役ジエン系重合体(F)の数平均分子量(Mn)、ビニル含量、Tgの好適態様等の説明は、未変性共役ジエン系重合体(F')に関する説明と同様である。 The description of the number average molecular weight (Mn), vinyl content, preferred aspects of Tg, etc. of the functional group-modified conjugated diene-based polymer (F) is the same as that of the unmodified conjugated diene-based polymer (F').
 上記官能基変性共役ジエン系重合体(F)の38℃で測定した溶融粘度は、0.01~2,000Pa・sが好ましく、0.05~1500Pa・sがより好ましく、0.1~1000Pa・sがさらに好ましい。官能基変性共役ジエン系重合体(F)の溶融粘度が前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。 The melt viscosity of the functional group-modified conjugated diene polymer (F) measured at 38° C. is preferably 0.01 to 2,000 Pa s, more preferably 0.05 to 1500 Pa s, and 0.1 to 1000 Pa. • s is more preferred. When the melt viscosity of the functional group-modified conjugated diene-based polymer (F) is within the above range, it tends to be excellent in the ability to pass the process during production and to be economically efficient.
 工程(E)において、活性末端重合体(I)と上記官能基変性共役ジエン系重合体(F)を反応させることで、官能基変性共役ジエン系重合体(F)中のエポキシ基と前記活性末端重合体(I)が反応し、主鎖(a)に側鎖となる前記活性末端重合体(I)が結合した共役ジエン系グラフト重合体が形成される(以下、本反応をカップリング反応と称する)。
 官能基変性共役ジエン系重合体(F)として、エポキシ変性ポリブタジエンを用いた場合のカップリング反応の一例を下記式(II)に示す。
In step (E), by reacting the active terminal polymer (I) with the functional group-modified conjugated diene polymer (F), the epoxy groups in the functional group-modified conjugated diene polymer (F) and the active The terminal polymer (I) reacts to form a conjugated diene-based graft polymer in which the active terminal polymer (I) as a side chain is bound to the main chain (a) (hereinafter, this reaction is referred to as a coupling reaction (referred to as
An example of the coupling reaction when epoxy-modified polybutadiene is used as the functional group-modified conjugated diene polymer (F) is shown in the following formula (II).
Figure JPOXMLDOC01-appb-C000003
(式(II)中、Pは共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示す。)
Figure JPOXMLDOC01-appb-C000003
(In formula (II), P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units.)
 該カップリング反応、又は後述する水添又は洗浄の工程において、官能基変性共役ジエン系重合体(F)中のエポキシ基が開環することで、水添共役ジエン系グラフト重合体の主鎖(a)に結合する水酸基が形成される。本合成法で水酸基を形成した場合、水酸基は側鎖(b)と結合する原子以外の主鎖(a)を構成する原子(典型的には炭素原子)に直接結合する。 In the coupling reaction or the step of hydrogenation or washing described later, the ring-opening of the epoxy group in the functional group-modified conjugated diene polymer (F) results in the main chain of the hydrogenated conjugated diene graft polymer ( A hydroxyl group is formed that bonds to a). When a hydroxyl group is formed by this synthesis method, the hydroxyl group is directly bonded to atoms (typically carbon atoms) constituting the main chain (a) other than the atoms bonded to the side chain (b).
 上記官能基変性共役ジエン系重合体(F)1分子あたりのエポキシ基の平均個数は、上述した主鎖(a)に結合する水酸基の平均個数に応じて適宜設定できる。例えば、官能基変性共役ジエン系重合体(F)1分子あたりのエポキシ基の平均個数が4の場合最終的に得られる共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数は4となるように設計できる。 The average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) can be appropriately set according to the average number of hydroxyl groups bonded to the main chain (a) described above. For example, when the average number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F) is 4, hydroxyl groups bonded to the main chain (a) per molecule of the finally obtained conjugated diene graft polymer can be designed to have an average number of four.
 水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数は、上記カップリング反応における活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量の比により、所望の範囲に調整することができる。例えば、(活性末端重合体(I)の仕込み量(モル数))/(官能基変性共役ジエン系重合体(F)の仕込み量(モル数))=4/1の場合、側鎖(b)の平均本数は4となる。ただし、側鎖(b)の平均本数の上限は、官能基変性共役ジエン系重合体(F)1分子あたりが有するエポキシ基の個数である。 The average number of side chains (b) per molecule of the hydrogenated conjugated diene-based graft polymer is the amount of charged active terminal polymer (I) and functional group-modified conjugated diene-based polymer (F) in the above coupling reaction. The ratio can be adjusted to the desired range. For example, (amount (number of moles) charged of active terminal polymer (I))/(amount (number of moles) charged of functional group-modified conjugated diene polymer (F)) = 4/1, the side chain (b ) is 4 on average. However, the upper limit of the average number of side chains (b) is the number of epoxy groups per molecule of the functional group-modified conjugated diene polymer (F).
 (活性末端重合体(I)の仕込み量)/(官能基変性共役ジエン系重合体(F)の仕込み量)のモル比は、水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数が所望の値となるように適宜設定すればよいが、例えば、2~200であることが好ましく、4~100であることがより好ましく、5~50であることがさらに好ましい。(活性末端重合体(I)の仕込み量)/(官能基変性共役ジエン系重合体(F)の仕込み量)のモル比が2より小さいと、導入できる側鎖の本数が少なくなり、200より大きいと、後述するカップリング率が低下する傾向にある。 The molar ratio of (charged amount of active terminal polymer (I))/(charged amount of functional group-modified conjugated diene polymer (F)) is the side chain per molecule of hydrogenated conjugated diene graft polymer (b ) may be appropriately set so as to obtain a desired value. If the molar ratio of (charged amount of active terminal polymer (I))/(charged amount of functional group-modified conjugated diene-based polymer (F)) is less than 2, the number of side chains that can be introduced is less than 200. If it is too large, the coupling rate, which will be described later, tends to decrease.
 上記カップリング反応は、通常、0~100℃の温度範囲で、0.5~50時間行う。官能基変性共役ジエン系重合体(F)は希釈して用いてもよく、希釈溶媒としては、活性末端に対して不活性で反応に悪影響を及ぼさなければ特に制限はなく、例えば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、トルエン、ベンゼン、キシレン等の飽和脂肪族炭化水素又は芳香族炭化水素が挙げられる。
 また、カップリング反応の際に添加剤としてルイス塩基を加えてもよい。ルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N',N'-テトラメチルエチレンジアミン、N-メチルモルホリン等のアミン類などが挙げられる。これらルイス塩基は、1種単独で用いても、2種以上を併用してもよい。
The above coupling reaction is usually carried out at a temperature of 0 to 100° C. for 0.5 to 50 hours. The functional group-modified conjugated diene-based polymer (F) may be diluted before use, and the solvent for dilution is not particularly limited as long as it is inert to the active terminal and does not adversely affect the reaction. Examples include hexane and cyclohexane. , heptane, octane, decane, toluene, benzene, xylene and other saturated aliphatic or aromatic hydrocarbons.
Also, a Lewis base may be added as an additive during the coupling reaction. Lewis bases include, for example, ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N,N,N',N'-tetramethylethylenediamine, N-methylmorpholine; amines such as These Lewis bases may be used singly or in combination of two or more.
 上記カップリング反応においては、上記活性末端重合体(I)を合成した反応系内に上記官能基変性共役ジエン系重合体(F)を添加してもよいし、逆に上記官能基変性共役ジエン系重合体(F)を含む系内に、上記活性末端重合体(I)を添加してもよい。また、上述のように、上記活性末端重合体(I)、上記官能基変性共役ジエン系重合体(F)のいずれも、必要に応じて溶媒で希釈して用いてもよい。また、上記活性末端重合体(I)は1種単独で用いられても、2種以上併用されてもよく、上記官能基変性共役ジエン系重合体(F)も、1種単独で用いられても、2種以上併用されてもよい。 In the coupling reaction, the functional group-modified conjugated diene polymer (F) may be added to the reaction system in which the active terminal polymer (I) was synthesized, or conversely, the functional group-modified conjugated diene The active terminal polymer (I) may be added to the system containing the system polymer (F). Moreover, as described above, both the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) may be used after being diluted with a solvent, if necessary. The active terminal polymer (I) may be used alone or in combination of two or more. The functional group-modified conjugated diene polymer (F) may also be used alone. may be used in combination of two or more.
 上記カップリング反応におけるカップリング率は40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましい。上記カップリング率が40%未満では、得られる水添共役ジエン系グラフト重合体の力学特性が低下するため好ましくない。カップリング率は、GPC測定で得られたカップリング未反応の上記活性末端重合体(I)に由来する成分のピーク面積と全てのピーク面積の総和を用いて下記式(5)より求める。
(カップリング率(%))=[{(全てのピーク面積の総和)-(活性末端重合体(I)に由来する成分のピーク面積)}/(全てのピーク面積の総和)]×100  (5)
The coupling rate in the above coupling reaction is preferably 40% or higher, more preferably 50% or higher, even more preferably 60% or higher. If the coupling rate is less than 40%, the obtained hydrogenated conjugated diene graft polymer will have poor mechanical properties, which is not preferable. The coupling ratio is determined by the following formula (5) using the peak area of the component derived from the unreacted active terminal polymer (I) obtained by GPC measurement and the total sum of all peak areas.
(Coupling rate (%)) = [{(sum of all peak areas) - (peak area of component derived from active terminal polymer (I))}/(sum of all peak areas)] x 100 ( 5)
 カップリング率は活性末端重合体(I)に対する官能基変性共役ジエン系重合体(F)の添加量を多くしたり、活性末端重合体(I)に対するルイス塩基の添加量を多くしたり、反応温度を高くしたり、反応時間を長くしたりすることによって高めることができる。カップリング反応は、カップリング率が所望の範囲になるまで行うことができる。その後、メタノール、イソプロパノール等の重合停止剤を添加することで、カップリング反応を停止できる。 The coupling rate can be adjusted by increasing the amount of the functional group-modified conjugated diene polymer (F) added to the active terminal polymer (I), by increasing the amount of the Lewis base added to the active terminal polymer (I), or by adjusting the reaction It can be increased by raising the temperature or lengthening the reaction time. The coupling reaction can be carried out until the coupling rate reaches the desired range. After that, the coupling reaction can be stopped by adding a polymerization terminator such as methanol or isopropanol.
 なお、以下詳述する工程(C)を含まず、工程(E)、及び工程(D)を含む製造方法により得られる共役ジエン系グラフト重合体は未水添共役ジエン系グラフト重合体である。 A conjugated diene-based graft polymer obtained by a production method including steps (E) and (D) without including step (C), which will be described in detail below, is an unhydrogenated conjugated diene-based graft polymer.
 [工程(C)]
 本発明の水添共役ジエン系グラフト重合体の製造方法は、工程(D)の前に、
(C)上記(未水添)共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;
を含む。
[Step (C)]
In the method for producing a hydrogenated conjugated diene-based graft polymer of the present invention, before step (D),
(C) a step of hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the (unhydrogenated) conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer; ;
including.
 前記方法により得られた未水添共役ジエン系グラフト重合体を水素添加する工程に付すことにより、水添共役ジエン系グラフト重合体を得ることができる。未水添共役ジエン系グラフト重合体を水素添加する方法には特に制限は無く、上述したMI法の工程(C)として記載される未水添共役ジエン系グラフト重合体を水素添加する方法と同様の方法を適用できる。 A hydrogenated conjugated diene graft polymer can be obtained by subjecting the unhydrogenated conjugated diene graft polymer obtained by the above method to a step of hydrogenating. The method of hydrogenating the unhydrogenated conjugated diene-based graft polymer is not particularly limited, and is the same as the method of hydrogenating the unhydrogenated conjugated diene-based graft polymer described as the step (C) of the MI method described above. method can be applied.
 [工程(D)]
 本発明で用いる水添共役ジエン系グラフト重合体の製造方法は、
(D)得られた水添共役ジエン系グラフト重合体を回収する工程;
を含む。
[Step (D)]
The method for producing the hydrogenated conjugated diene-based graft polymer used in the present invention comprises:
(D) a step of recovering the obtained hydrogenated conjugated diene-based graft polymer;
including.
 工程(D)では、得られた水添共役ジエン系グラフト重合体を回収する。水添共役ジエン系グラフト重合体の回収方法は特に制限はなく、上述したMI法の工程(D)として記載される共役ジエン系グラフト重合体の回収方法と同様の方法を適用できる。 In step (D), the obtained hydrogenated conjugated diene-based graft polymer is recovered. The method for recovering the hydrogenated conjugated diene-based graft polymer is not particularly limited, and the same method as the method for recovering the conjugated diene-based graft polymer described as the step (D) of the MI method described above can be applied.
 本発明の共役ジエン系グラフト重合体には、上述した工程のいずれかにおいて、必要に応じて老化防止剤を添加してもよい。例えば、工程(E)の後に添加してもよいし、もしくは、工程(C)の後や途中の各段階、もしくは工程(D)の後や途中の各段階において添加してもよい。
 この時に用いる好ましい老化防止剤としては、上述のMI法の工程にて例示した老化防止剤と同様である。
An antioxidant may be added to the conjugated diene-based graft polymer of the present invention in any of the steps described above, if necessary. For example, it may be added after step (E), after step (C) or at each step during step (D), or after step (D) or at each step during step (D).
Preferred anti-aging agents used at this time are the same anti-aging agents exemplified in the step of the MI method described above.
 [重合体組成物]
 本発明の重合体組成物は、本発明の水添共役ジエン系グラフト重合体(以下水添共役ジエン系グラフト重合体(α)とも称する。)を含む。また上記重合体組成物は、さらに水添共役ジエン系グラフト重合体(α)以外の他の重合体(β)を含んでもよい。他の重合体(β)は、熱可塑性重合体(β1)であっても、硬化性重合体(β2)であってもよい。
[Polymer composition]
The polymer composition of the present invention contains the hydrogenated conjugated diene graft polymer of the present invention (hereinafter also referred to as hydrogenated conjugated diene graft polymer (α)). The polymer composition may further contain a polymer (β) other than the hydrogenated conjugated diene graft polymer (α). The other polymer (β) may be a thermoplastic polymer (β1) or a curable polymer (β2).
 上記熱可塑性重合体(β1)としては、例えば、ポリメタクリル酸メチル及び(メタ)アクリル酸エステル重合体又は共重合体などのアクリル系樹脂;ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネン等のオレフィン系樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂等のスチレン系樹脂;スチレン-メタクリル酸メチル共重合体;スチレン-メタクリル酸メチル-無水マレイン酸共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマー等のポリアミド;ポリカーボネート;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリビニルアルコール;エチレン-ビニルアルコール共重合体;ポリアセタール;ポリフッ化ビニリデン;ポリウレタン;変性ポリフェニレンエーテル;ポリフェニレンスルフィド;シリコーンゴム変性樹脂;アクリル系ゴム;シリコーン系ゴム;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー(本発明の共役ジエン系グラフト重合体は除く);IR、EPR、EPDM等のオレフィン系ゴムなどが挙げられる。 Examples of the thermoplastic polymer (β1) include acrylic resins such as polymethyl methacrylate and (meth)acrylic acid ester polymers or copolymers; polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polybutene- 1, poly-4-methylpentene-1, olefin resins such as polynorbornene; ethylene ionomer; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, Styrene resins such as ACS resin and MBS resin; Styrene-methyl methacrylate copolymer; Styrene-methyl methacrylate-maleic anhydride copolymer; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polylactic acid; Nylon 6, Polyamides such as nylon 66, polyamide elastomer; Polycarbonate; Polyvinyl chloride; Polyvinylidene chloride; Polyvinyl alcohol; Ethylene-vinyl alcohol copolymer; Polyacetal; acrylic rubbers; silicone rubbers; styrene thermoplastic elastomers such as SEPS, SEBS and SIS (excluding the conjugated diene graft polymer of the present invention); olefin rubbers such as IR, EPR and EPDM.
 硬化性重合体(β2)としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、エステル(メタ)アクリレート樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、熱硬化性ウレタン樹脂、ケイ素樹脂、イミド樹脂、フラン樹脂、アルキド樹脂、アリル樹脂、ジアリルフタレート樹脂が挙げられる。これらの中でも、入手性及び硬化物の基本物性の観点や、また、気泡の抜け性、得られる硬化物の靱性により一層優れる重合体組成物が得られるなどの観点から、エポキシ樹脂、不飽和ポリエステル樹脂及びエポキシ(メタ)アクリレート樹脂が好ましく、中でも、エポキシ樹脂及び不飽和ポリエステル樹脂がより好ましく、エポキシ樹脂であることがさらに好ましい。硬化性重合体(β2)は、1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of the curable polymer (β2) include epoxy resins, unsaturated polyester resins, epoxy (meth)acrylate resins, ester (meth)acrylate resins, phenol resins, urea resins, melamine resins, thermosetting urethane resins, silicon Resins, imide resins, furan resins, alkyd resins, allyl resins, diallyl phthalate resins. Among these, from the viewpoint of availability and basic physical properties of the cured product, and from the viewpoint of obtaining a polymer composition that is more excellent due to the ability to remove air bubbles and the toughness of the cured product obtained, epoxy resins, unsaturated polyesters Resins and epoxy (meth)acrylate resins are preferred, among which epoxy resins and unsaturated polyester resins are more preferred, and epoxy resins are even more preferred. The curable polymer (β2) may be used singly or in combination of two or more.
 上記重合体組成物に、水添共役ジエン系グラフト重合体(α)と他の重合体(β)が含まれる場合、水添共役ジエン系グラフト重合体(α)と他の重合体(β)との質量比(α)/(β)が、1/99~99/1であることが好ましい。 When the polymer composition contains the hydrogenated conjugated diene graft polymer (α) and another polymer (β), the hydrogenated conjugated diene graft polymer (α) and the other polymer (β) The mass ratio (α)/(β) with is preferably 1/99 to 99/1.
 また、本発明の重合体組成物には、本発明の効果を損なわない程度に、種々の添加剤を添加してもよい。例えば、他の重合体(β)が熱可塑性重合体(β1)の場合、かかる添加剤としては、例えば、炭酸カルシウム、シリカ、カーボンブラック、ガラス繊維、クレーなどの補強剤又は充填剤、プロセスオイル、ポリエチレングリコール、グリセリン、フタル酸エステルなどの可塑剤を添加剤として用いることができる。また、その他の添加剤として、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、着色剤、顔料、滑剤、界面活性剤などが挙げられる。さらに、該添加剤として発泡剤が挙げられ、発泡剤と熱可塑性重合体(β1)を含む重合体組成物からは発泡体を作製することが可能である。
 例えば、他の重合体(β)が硬化性重合体(β2)の場合、かかる添加剤としては、硬化剤、硬化促進剤、公知のゴム、熱可塑性エラストマー、コア-シェル粒子等の衝撃改質剤、充填剤(シリカ、タルク、炭酸カルシウム、水酸化アルミニウム等の無機粒子など)、難燃剤、消泡剤、顔料、染料、酸化防止剤、耐候剤、滑剤、離型剤などが挙げられる。
Moreover, various additives may be added to the polymer composition of the present invention to the extent that the effects of the present invention are not impaired. For example, when the other polymer (β) is a thermoplastic polymer (β1), such additives include reinforcing agents or fillers such as calcium carbonate, silica, carbon black, glass fiber, clay, process oil, , polyethylene glycol, glycerin, phthalates, and other plasticizers can be used as additives. Other additives include, for example, heat stabilizers, antioxidants, ultraviolet absorbers, colorants, pigments, lubricants, and surfactants. Furthermore, the additive includes a foaming agent, and a foam can be produced from a polymer composition containing the foaming agent and the thermoplastic polymer (β1).
For example, when the other polymer (β) is a curable polymer (β2), such additives include curing agents, curing accelerators, known rubbers, thermoplastic elastomers, impact modifiers such as core-shell particles, etc. agents, fillers (silica, talc, calcium carbonate, inorganic particles such as aluminum hydroxide, etc.), flame retardants, antifoaming agents, pigments, dyes, antioxidants, weathering agents, lubricants, release agents, and the like.
 本発明の重合体組成物は、水添共役ジエン系グラフト重合体(α)と他の重合体(β)などの各成分の組成比等に応じ、通常の高分子物質の混合方法により調製できる。 The polymer composition of the present invention can be prepared by a conventional method for mixing polymeric substances depending on the composition ratio of each component such as the hydrogenated conjugated diene graft polymer (α) and the other polymer (β). .
 他の重合体(β)が熱可塑性重合体(β1)の場合、例えば、押出機、ミキシングロール、バンバリーミキサー、ニーダー等の混合装置により重合体組成物が作製できる。特に本発明においては、これら混合装置を用いて、溶融混練する方法が好ましい一態様である。 When the other polymer (β) is a thermoplastic polymer (β1), the polymer composition can be produced using a mixing device such as an extruder, mixing roll, Banbury mixer, kneader, or the like. In particular, in the present invention, a method of melt-kneading using these mixing apparatuses is a preferred embodiment.
 他の重合体(β)が硬化性重合体(β2)の場合、例えばミキサーなどで十分混合し、次いでミキシングロール、押出し機等によって溶融混練したあと、冷却、粉砕する方法により重合体組成物は作製できる。 When the other polymer (β) is a curable polymer (β2), for example, the polymer composition is obtained by thoroughly mixing with a mixer, melt-kneading with a mixing roll, an extruder, or the like, then cooling and pulverizing. can be made.
 本発明の重合体組成物は、水添共役ジエン系グラフト重合体(α)を含む架橋性の重合体組成物であってもよい。かかる重合体組成物の場合、さらに、架橋剤を含んでいる。
 架橋剤としては、硫黄、硫黄化合物、過酸化水素、有機過酸化物等の過酸化物、フェノール樹脂、アミノ樹脂、キノン及びキノンジオキシム誘導体、ハロゲン化合物、アルデヒド化合物、アルコール化合物、エポキシ化合物、金属ハロゲン化物及び有機金属ハロゲン化物、シラン化合物などが挙げられる。
 架橋剤として、硫黄、硫黄化合物等が含まれている場合には、さらに加硫促進剤、加硫助剤を含んでいてもよい。
 また、上記架橋性の重合体組成物には、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエン共重合体ゴム等の固形ゴム(共役ジエン系グラフト重合体(α)を除く)、カーボンブラック、シリカ等のフィラー、架橋助剤、オイル等の軟化剤、粘着付与樹脂、老化防止剤、酸化防止剤、光安定剤、スコーチ防止剤、官能基含有化合物、ワックス、滑剤、可塑剤、加工助剤、顔料、色素、染料、その他着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料、分散剤、溶剤等の添加剤を含んでいてもよい。
The polymer composition of the present invention may be a crosslinkable polymer composition containing the hydrogenated conjugated diene graft polymer (α). Such polymer compositions additionally contain a cross-linking agent.
Examples of cross-linking agents include sulfur, sulfur compounds, hydrogen peroxide, peroxides such as organic peroxides, phenolic resins, amino resins, quinones and quinonedioxime derivatives, halogen compounds, aldehyde compounds, alcohol compounds, epoxy compounds, metals. Halides, organometallic halides, silane compounds, and the like.
When sulfur, a sulfur compound, or the like is contained as a cross-linking agent, a vulcanization accelerator or a vulcanization aid may also be contained.
The crosslinkable polymer composition includes solid rubbers such as natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene copolymer rubber (excluding conjugated diene graft polymer (α)), carbon black, Fillers such as silica, cross-linking aids, softeners such as oils, tackifying resins, anti-aging agents, antioxidants, light stabilizers, anti-scorch agents, compounds containing functional groups, waxes, lubricants, plasticizers, processing aids , pigments, pigments, dyes, other coloring agents, flame retardants, antistatic agents, matting agents, antiblocking agents, UV absorbers, release agents, foaming agents, antibacterial agents, antifungal agents, fragrances, dispersants, solvents It may contain additives such as
 本発明の重合体組成物は、従来から知られている各種の成形法により、成形品とすることが可能である。 The polymer composition of the present invention can be molded into articles by various conventionally known molding methods.
 他の重合体(β)が熱可塑性重合体(β1)の場合、重合体組成物を、例えば押出成形、射出成形、中空成形、圧縮成形、真空成形、カレンダー成形等により成形することにより、成形品が作製できる。これら方法によって各種形状の成形品、シート、フィルムなどが得られる。また、メルトブロー法、スパンボンド法等の方法により、不織布、繊維状物となった成形品を作製することもできる。 When the other polymer (β) is a thermoplastic polymer (β1), the polymer composition is molded by, for example, extrusion molding, injection molding, blow molding, compression molding, vacuum molding, calender molding, etc. products can be produced. Molded articles, sheets, films and the like of various shapes can be obtained by these methods. In addition, non-woven fabrics and fibrous molded articles can also be produced by methods such as melt blowing and spunbonding.
 他の重合体(β)が硬化性重合体(β2)の場合、重合体組成物を、例えば、トランスファー成形法により、熱により硬化した成形品が作製できる。硬化性重合体(β2)を重合体組成物が含む場合のその他の成形方法としては、例えば、インジェクション成形法、圧縮成形法が挙げられる。 When the other polymer (β) is the curable polymer (β2), a molded article can be produced by thermally curing the polymer composition, for example, by a transfer molding method. Other molding methods when the polymer composition contains the curable polymer (β2) include, for example, injection molding and compression molding.
 また本発明の重合体組成物が架橋性の重合体組成物である場合は、架橋することにより架橋物として用いることができる。架橋性の重合体組成物の架橋条件は、その用途、使用する架橋剤に応じて適宜設定できる。例えば架橋剤が過酸化物の場合、130℃~250℃の温度範囲で、10分~60分間架橋反応を行うことにより、架橋物を作製することができる。例えば、架橋剤が硫黄又は硫黄化合物である場合は、加硫金型を用いて加硫温度120~200℃及び加硫圧力0.5~20MPaの条件で行うことができる。 Further, when the polymer composition of the present invention is a crosslinkable polymer composition, it can be used as a crosslinked product by crosslinking. The cross-linking conditions for the cross-linkable polymer composition can be appropriately set according to the application and the cross-linking agent to be used. For example, when the cross-linking agent is a peroxide, a cross-linked product can be produced by performing a cross-linking reaction at a temperature of 130° C. to 250° C. for 10 minutes to 60 minutes. For example, when the cross-linking agent is sulfur or a sulfur compound, a vulcanization mold can be used at a vulcanization temperature of 120 to 200° C. and a vulcanization pressure of 0.5 to 20 MPa.
 他の重合体(β)が熱可塑性重合体(β1)の場合、重合体組成物から得られる成形品の用途としては、例えば、バンパー、インパネなどの自動車用内外装品、テレビ、ステレオ、掃除機等の家電用のハウジング材、コネクターなどの電気・電子部品、電線ケーブル用素材、食肉鮮魚用トレー、青果物パック、冷凍食品容器等の食品包装材若しくは食品容器、工業資材等の包装材料、スポーツシューズ素材などのスポーツ用品、布帛若しくは皮革製品、玩具、サンダルなどの日用雑貨、各種フィルム、シート、成形品のラミネート材、粘・接着剤、紙おむつなどに用いられる伸縮材料、ホース、チューブ、ベルト等の各種ゴム製品、医療用品などが挙げられる。 When the other polymer (β) is a thermoplastic polymer (β1), the uses of molded articles obtained from the polymer composition include, for example, automobile interior and exterior parts such as bumpers and instrument panels, televisions, stereos, and cleaners. Housing materials for home appliances such as machines, electrical and electronic parts such as connectors, materials for electric cables, meat and fish trays, fruit and vegetable packs, frozen food containers and other food packaging materials or food containers, industrial materials and other packaging materials, sports Sporting goods such as shoe materials, fabric or leather products, toys, sandals and other daily goods, various films, sheets, laminated materials for molded products, adhesives and adhesives, elastic materials used for paper diapers, hoses, tubes, belts and various rubber products, medical supplies, and the like.
 他の重合体(β)が硬化性重合体(β2)の場合、重合体組成物、その硬化物又は成形品の用途としては、例えば、繊維補強複合材用接着剤(コンクリート用繊維補強複合材料用接着剤、自動車・鉄道車両・航空機といった運輸運送装置用繊維補強複合材料用接着剤、各種スポーツ用品用繊維補強複合材料用接着剤等)、組み立て用接着剤(自動車・鉄道車両・航空機といった運輸運送装置における部品組み立て用接着剤等)などの各種接着剤;上下水道用防食・防水塗料、金属用防食塗料などの各種塗料;建築土木用塗装プライマー、自動車・鉄道車両・航空機といった運輸運送装置用の塗装プライマーなどの各種塗装プライマー;金属用ライニング材、コンクリート用ライニング材、タンク類用ライニング材などの各種ライニング材;コンクリート用亀裂補修材などの各種補修材;プリント配線基板、絶縁ボード、半導体封止材、パッケージ材などの各種電気電子部品などが挙げられる。 When the other polymer (β) is a curable polymer (β2), applications of the polymer composition, its cured product or molded article include, for example, adhesives for fiber-reinforced composite materials (fiber-reinforced composite materials for concrete Adhesives for fiber reinforced composite materials for transportation equipment such as automobiles, railway vehicles and aircraft, adhesives for fiber reinforced composite materials for various sporting goods, etc.), adhesives for assembly (transportation such as automobiles, railway vehicles and aircraft Adhesives for assembling parts in transportation equipment, etc.); various paints such as anti-corrosion and waterproof paints for water supply and sewage, anti-corrosion paints for metals; Various coating primers such as coating primers; Various lining materials such as metal lining materials, concrete lining materials, and tank lining materials; Various repair materials such as concrete crack repair materials; Printed wiring boards, insulating boards, semiconductor sealing Examples include various electric and electronic parts such as sealing materials and packaging materials.
 上記架橋性の重合体組成物及び該重合体組成物の架橋物を使用できる用途としては、タイヤ、ベルト、防振ゴム、電線被覆ゴム、ロール、靴、シーリング剤、粘接着剤、グリース、刷版材、OCR、OCA、塗料、防舷材、コーティング剤、ガスケット、ホース、ブレーキパッドなどが挙げられる。 Applications in which the crosslinkable polymer composition and the crosslinked product of the polymer composition can be used include tires, belts, anti-vibration rubber, wire coating rubber, rolls, shoes, sealants, adhesives, greases, Examples include printing plate materials, OCR, OCA, paints, fenders, coating agents, gaskets, hoses, and brake pads.
 上記架橋性の重合体組成物又は該重合体組成物の架橋物は、例えばタイヤの一部として好適に用いられる。
 上記重合体組成物及び該重合体組成物の架橋物を使用できるタイヤの部位としては、例えば、トレッド(キャップトレッド、アンダートレッド)、サイドウォール、ランフラットタイヤ用ゴム補強層(ライナーなど)、リムクッション、ビードフィラー、ビードインシュレーション、ビードエイペックス、クリンチエイペックス、ベルト、ベルトクッション、ブレーカー、ブレーカークッション、チェーファー、チェーファーパッド、ストリップエイペックスなどが挙げられる。
The above-mentioned crosslinkable polymer composition or crosslinked product of the polymer composition is suitably used, for example, as a part of a tire.
Examples of tire parts where the polymer composition and the crosslinked product of the polymer composition can be used include the tread (cap tread, undertread), sidewall, rubber reinforcing layer for run-flat tires (liner, etc.), and rim. Cushions, bead fillers, bead insulation, bead apex, clinch apex, belts, belt cushions, breakers, breaker cushions, chafers, chafer pads, strip apex and the like.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例及び比較例において水添共役ジエン系グラフト重合体の物性は次の方法により評価した。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the following examples and comparative examples, physical properties of hydrogenated conjugated diene-based graft polymers were evaluated by the following methods.
 (1)重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー(GPC)によって、水添共役ジエン系グラフト重合体、及びその製造の各段階における重合体の重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)を標準ポリスチレン換算で求めた。
装置:東ソー株式会社製 GPC装置「HLC-8220」
分離カラム:東ソー株式会社製 「TSKgel SuperMultiporeHZ-M(カラム径=4.6mm、カラム長=15cm)」(2本を直列に繋いで使用)
溶離液:テトラヒドロフラン
溶離液流量:0.35mL/分
カラム温度:40℃
検出方法:示差屈折率(RI)
注入量:10μl
濃度:1mg/1cc(水添共役ジエン系グラフト重合体/THF)
(1) Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw/Mn)
By gel permeation chromatography (GPC), the hydrogenated conjugated diene-based graft polymer and the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) of the polymer at each stage of its production ) was calculated in terms of standard polystyrene.
Apparatus: GPC apparatus "HLC-8220" manufactured by Tosoh Corporation
Separation column: Tosoh Corporation "TSKgel SuperMultiporeHZ-M (column diameter = 4.6 mm, column length = 15 cm)" (used by connecting two in series)
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 mL/min Column temperature: 40°C
Detection method: Differential refractive index (RI)
Injection volume: 10 μl
Concentration: 1 mg/1 cc (hydrogenated conjugated diene-based graft polymer/THF)
 (2)ビニル含量、スチレン単位(スチレンに由来する構造単位)含有量、水素添加率
 1H-NMRによって、共役ジエン系グラフト重合体、及びその製造の各段階における重合体のビニル含量、及びスチレン単位含有量、水素添加率を算出した。得られたスペクトルのビニル化された共役ジエン単位の二重結合のピークと、ビニル化されていない共役ジエン単位由来の二重結合のピークとの面積比からビニル含量を算出し、スチレン単位に由来する芳香環のピークと、共役ジエン単位由来の二重結合のピークとの面積比からスチレン単位含有量を算出した。なお、ビニル含量、スチレン単位含有量については、水素添加前の共役ジエン系グラフト重合体の1H-NMRを用いて求めた。また、水素添加率については、水素添加前の共役ジエン系グラフト重合体と水素添加後の水添共役ジエン系グラフト重合体の共役ジエン単位由来の二重結合のピークの比から算出した。
装置:日本電子株式会社製核磁気共鳴装置 「JNM-ECX400」
溶媒:重クロロホルム
測定温度:50℃
積算回数:1024回
(2) Vinyl content, styrene unit (structural unit derived from styrene) content, hydrogenation rate 1 H-NMR, conjugated diene graft polymer, vinyl content of polymer at each stage of its production, and styrene A unit content and a hydrogenation rate were calculated. The vinyl content was calculated from the area ratio of the peak of the double bond of the vinylated conjugated diene unit in the obtained spectrum and the peak of the double bond derived from the non-vinylated conjugated diene unit, and the vinyl content was derived from the styrene unit. The styrene unit content was calculated from the area ratio of the peak of the aromatic ring and the peak of the double bond derived from the conjugated diene unit. The vinyl content and styrene unit content were obtained by using 1 H-NMR of the conjugated diene graft polymer before hydrogenation. The hydrogenation rate was calculated from the peak ratio of the double bond derived from the conjugated diene unit of the conjugated diene graft polymer before hydrogenation and the hydrogenated conjugated diene graft polymer after hydrogenation.
Apparatus: Nuclear magnetic resonance apparatus "JNM-ECX400" manufactured by JEOL Ltd.
Solvent: Heavy chloroform Measurement temperature: 50°C
Accumulated times: 1024 times
 (3)水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数
 水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数は、後述するあらかじめ合成した共役ジエン系重合体をテトラメチルエチレンジアミン存在下で有機アルカリ金属化合物と反応させることで主鎖をリチオ化した後に、側鎖の構造単位となる単量体を重合する方法で製造する場合には、リチオ化反応に使用する有機アルカリ金属と主鎖の構造単位となる共役ジエン系重合体、及び必要に応じて添加する官能化剤の仕込み比より算出した。また、後述する主鎖(a)となる官能基変性重合体の分岐部分となる単量体単位に含まれるエポキシ基と、側鎖の構造単位となる単量体を重合した重合体の活性末端とを反応させる方法で製造する場合には、カップリング反応における側鎖(b)の構成要素となる活性末端重合体と官能基変性共役ジエン系重合体の仕込み比より算出した。
(3) Average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer When the conjugated diene polymer is reacted with an organic alkali metal compound in the presence of tetramethylethylenediamine to lithiate the main chain and then polymerize the monomers that form the structural units of the side chains, It was calculated from the feed ratio of the organic alkali metal used in the lithiation reaction, the conjugated diene polymer as the structural unit of the main chain, and the functionalizing agent added as necessary. In addition, the active terminal of the polymer obtained by polymerizing the epoxy group contained in the monomer unit that will be the branch portion of the functional group-modified polymer that will be the main chain (a) described later and the monomer that will be the structural unit of the side chain In the case of production by a method of reacting with , it was calculated from the charging ratio of the active terminal polymer and the functional group-modified conjugated diene polymer, which are the constituents of the side chain (b) in the coupling reaction.
 (4)側鎖(b)の側鎖密度
 側鎖(b)の側鎖密度は、水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数と主鎖(a)の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(1)より算出した。
(側鎖密度)=(水添共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (1)
(4) Side chain density of side chain (b) It was calculated from the following formula (1) using the number average molecular weight (Mn) in terms of standard polystyrene.
(Side chain density) = (average number of side chains (b) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight Mn of main chain (a))/(molecular weight of styrene unit)] ×100 (1)
 (5)水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数
 水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数は、上述の通り、JIS K1557-1:2007に準拠して算出した水添共役ジエン系グラフト重合体の水酸基価(mgKOH/g)と水添共役ジエン系グラフト重合体の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(2)より求める。
(水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数)={(水添共役ジエン系グラフト重合体の水酸基価)/[(水酸化カリウムの分子量)×1000]}×(水添共役ジエン系グラフト重合体の数平均分子量Mn)×[(水添共役ジエン系グラフト重合体中に含まれる単量体単位の平均分子量)/(スチレン単位の分子量)]  (2)
(5) Average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer Average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer As described above, the number is the hydroxyl value (mgKOH/g) of the hydrogenated conjugated diene graft polymer calculated according to JIS K1557-1: 2007 and the number of standard polystyrene equivalents of the hydrogenated conjugated diene graft polymer. Obtained from the following formula (2) using the average molecular weight (Mn).
(Average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer) = {(hydroxyl value of the hydrogenated conjugated diene graft polymer) / [(molecular weight of potassium hydroxide) × 1000]} × (number average molecular weight Mn of hydrogenated conjugated diene graft polymer) × [(average molecular weight of monomer units contained in hydrogenated conjugated diene graft polymer)/(molecular weight of styrene unit) ] (2)
 (6)水酸基濃度
 主鎖(a)に結合する水酸基濃度は、水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数と主鎖(a)の標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(3)より求める。
(水酸基濃度)=(水添共役ジエン系グラフト重合体1分子あたりの主鎖(a)に結合する水酸基の平均個数)/[(主鎖(a)の数平均分子量Mn)/(スチレン単位の分子量)]×100  (3)
(6) Concentration of hydroxyl groups The concentration of hydroxyl groups bonded to the main chain (a) is determined by the average number of hydroxyl groups bonded to the main chain (a) per molecule of the hydrogenated conjugated diene graft polymer and the standard polystyrene of the main chain (a). Calculated from the following formula (3) using the converted number average molecular weight (Mn).
(Hydroxy group concentration) = (average number of hydroxyl groups bonded to main chain (a) per molecule of hydrogenated conjugated diene graft polymer)/[(number average molecular weight of main chain (a) Mn)/(number of styrene units molecular weight)] × 100 (3)
 (7)極性材料との親和性
 水添共役ジエン系グラフト重合体の極性材料との親和性は、トルエン/水の混合液の分離性により評価した。水添共役ジエン系グラフト重合体を固形分濃度が10質量%となるようにトルエンに溶解し、該重合体のトルエン溶液と水を重量比1:1で混合して室温で5分間振盪した後に静置し、以下の指標で極性材料との親和性を評価した。
 A:有機相と水相が分離するまでに1分以上かかる、もしくは有機相と水相が混和した中間相が体積比率で10%以上存在する
 B:1分未満で有機相と水相が分離する
(7) Affinity with polar materials The affinity of the hydrogenated conjugated diene-based graft polymer with polar materials was evaluated by the separability of a mixed liquid of toluene/water. A hydrogenated conjugated diene-based graft polymer was dissolved in toluene so that the solid content concentration was 10% by mass, and a toluene solution of the polymer and water were mixed at a weight ratio of 1:1 and shaken at room temperature for 5 minutes. It was allowed to stand, and the affinity with the polar material was evaluated according to the following indices.
A: It takes 1 minute or more for the organic phase and the aqueous phase to separate, or an intermediate phase in which the organic phase and the aqueous phase are mixed exists at a volume ratio of 10% or more. B: The organic phase and the aqueous phase separate in less than 1 minute. do
 (8)耐熱性
 水添共役ジエン系グラフト重合体の耐熱性は、加熱後のゲル分率で評価した。水添共役ジエン系グラフト重合体を大気下において150℃で12h加熱した後、20倍量のシクロヘキサンを加えて室温で12h振盪した後に、ろ過により不溶分を回収して乾燥した。仕込みの重合体の質量をM1、ろ過、乾燥後の不溶分の質量をM2として、不溶分の比率(ゲル分率)を下式より算出し、以下の指標で耐熱性を評価した。
(ゲル分率(%))=(M2/M1)×100
 A:乾燥後のゲル分率が50質量%未満
 B:乾燥後のゲル分率が50質量%以上
(8) Heat resistance The heat resistance of the hydrogenated conjugated diene-based graft polymer was evaluated by the gel fraction after heating. After heating the hydrogenated conjugated diene-based graft polymer at 150° C. for 12 hours in the air, 20 times the amount of cyclohexane was added and the mixture was shaken at room temperature for 12 hours. The mass of the charged polymer was M1, and the mass of the insoluble matter after filtration and drying was M2.
(Gel fraction (%)) = (M2/M1) x 100
A: Gel fraction after drying is less than 50% by mass B: Gel fraction after drying is 50% by mass or more
 [実施例1]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1130g、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)519g及びテトラヒドロフラン15gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1350gを逐次添加して、1時間重合した。その後メタノール31gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-1)を得た。
[Example 1]
(Step (1))
A sufficiently dried 5 L autoclave was purged with nitrogen, charged with 1130 g of cyclohexane, 519 g of sec-butyllithium (10.5% by mass cyclohexane solution) and 15 g of tetrahydrofuran, heated to 50° C. and then heated to 50° C. under stirring conditions. 1,350 g of butadiene was added successively while controlling the temperature to be 0° C., and polymerization was carried out for 1 hour. After that, 31 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. The unmodified conjugated diene polymer (F'-1) was obtained by vacuum-drying the polymer solution after washing at 70° C. for 24 hours.
 (工程(2))
 続いて、5Lの4つ口反応器に工程(1)で得られた未変性共役ジエン系重合体(F'-1)200g、クロロホルム3800g、12タングストリン酸の水和物(H3PW1240・30H2O)60g、ヘキサデシルピリジニウムクロリド60g及び35重量%過酸化水素400gを仕込み、窒素雰囲気下、室温で15時間撹拌した。反応後は水を添加して攪拌し、水相を取り除いた後に、亜硫酸水素ナトリウム10重量%水溶液で洗浄した。分離した有機相にシリカゲル(和光純薬工業社製、商品名「C-200」)を添加し、1時間撹拌した後、濾過した。濾液を70℃で24時間真空乾燥することにより、官能基変性共役ジエン系重合体(F-1)を得た。得られた官能基変性共役ジエン系重合体(F-1)の分析により、後述する水添共役ジエン系グラフト重合体(G-1)の主鎖(a)の数平均分子量、ビニル含量を求めることができる。得られた官能基変性共役ジエン系重合体(F-1)の数平均分子量は3,000、ビニル含量は50モル%、官能基変性共役ジエン系重合体(F-1)1分子あたりのエポキシ基の平均個数は10個であった。得られた官能基変性共役ジエン系重合体(F-1)180gにトルエン720gを加えて濃度20質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-1)の希釈溶液を得た。
(Step (2))
Subsequently, 200 g of the unmodified conjugated diene polymer (F'-1) obtained in step (1), 3800 g of chloroform, 12-tungstophosphate hydrate (H 3 PW 12 60 g of O 40 .30H 2 O), 60 g of hexadecylpyridinium chloride and 400 g of 35% by weight hydrogen peroxide were charged and stirred at room temperature for 15 hours under nitrogen atmosphere. After the reaction, water was added and stirred, the aqueous phase was removed, and the mixture was washed with a 10% by weight aqueous solution of sodium hydrogen sulfite. Silica gel (manufactured by Wako Pure Chemical Industries, Ltd., trade name “C-200”) was added to the separated organic phase, stirred for 1 hour, and then filtered. The filtrate was vacuum-dried at 70° C. for 24 hours to obtain a functional group-modified conjugated diene polymer (F-1). By analyzing the obtained functional group-modified conjugated diene polymer (F-1), the number average molecular weight and vinyl content of the main chain (a) of the hydrogenated conjugated diene graft polymer (G-1) described later are determined. be able to. The resulting functional group-modified conjugated diene polymer (F-1) had a number average molecular weight of 3,000, a vinyl content of 50 mol%, and an epoxy per molecule of the functional group-modified conjugated diene polymer (F-1). The average number of groups was ten. 720 g of toluene was added to 180 g of the obtained functional group-modified conjugated diene polymer (F-1) to dilute it to a concentration of 20% by mass, and the functional group-modified conjugated diene polymer (F-1) used in the coupling reaction described later was obtained. A diluted solution of 1) was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、トルエン2230g及びsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)75gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、イソプレン580gを逐次添加して、1時間重合し活性末端重合体(I-1)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する水添共役ジエン系グラフト重合体(G-1)の側鎖(b)の数平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-1)の数平均分子量は7,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is purged with nitrogen, charged with 2230 g of toluene and 75 g of sec-butyllithium (10.5% by mass cyclohexane solution), heated to 50°C, and then brought to a polymerization temperature of 50°C under stirring conditions. While controlling as above, 580 g of isoprene was successively added and polymerized for 1 hour to obtain an active terminal polymer (I-1). By sampling and analyzing the polymer solution in step (3), the number average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the hydrogenated conjugated diene graft polymer (G-1) described later. can be asked for. The obtained active terminal polymer (I-1) had a number average molecular weight of 7,000, a vinyl content of 10 mol % and a styrene unit content of 0 mass %.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-1)を含む溶液に、工程(2)で得た官能基変性共役ジエン系重合体(F-1)の希釈溶液120gを添加し50℃で2時間カップリング反応をさせた。その後、メタノール8.2gを添加して反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 120 g of a diluted solution of the functional group-modified conjugated diene polymer (F-1) obtained in step (2) is added to the solution containing the active terminal polymer (I-1) obtained in step (3). and the coupling reaction was carried out at 50° C. for 2 hours. After that, 8.2 g of methanol was added to terminate the reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒(0.095mmol/Lシクロヘキサン溶液)を450mL添加し、水素圧力1MPa、80℃の条件で10時間反応させて、水添共役ジエン系グラフト重合体(G-1)を含む溶液を得た。
(Step (5))
450 mL of a Ziegler hydrogenation catalyst (0.095 mmol/L cyclohexane solution) formed from nickel octylate and trimethylaluminum was added to the resulting polymer solution, and the reaction was allowed to proceed for 10 hours under conditions of a hydrogen pressure of 1 MPa and 80°C. to obtain a solution containing the hydrogenated conjugated diene graft polymer (G-1).
 (工程(6))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、水添共役ジエン系グラフト重合体(G-1)を回収した。得られた水添共役ジエン系グラフト重合体(G-1)の重量平均分子量は59,000、Mw/Mnは1.5、スチレンに由来する構造単位含有量は0質量%、水素添加率は85モル%、重合体1分子あたりの主鎖に結合する水酸基の平均個数は10個、水酸基濃度は34.7モル%、重合体1分子あたりの側鎖(b)の平均本数は8本、側鎖密度は27.8モル%であった。また、分岐部分となる単量体単位にはヘテロ原子は無く、側鎖(b)と結合する連結部分は芳香族ビニル化合物由来の芳香族基ではない。得られた水添共役ジエン系グラフト重合体(G-1)の分子仕様、物性を表3に示す。
(Step (6))
Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to recover a hydrogenated conjugated diene-based graft polymer (G-1). The resulting hydrogenated conjugated diene-based graft polymer (G-1) had a weight average molecular weight of 59,000, an Mw/Mn of 1.5, a structural unit content derived from styrene of 0% by mass, and a hydrogenation rate of 85 mol%, the average number of hydroxyl groups bonded to the main chain per polymer molecule is 10, the hydroxyl group concentration is 34.7 mol%, the average number of side chains (b) per polymer molecule is 8, The side chain density was 27.8 mol%. Moreover, the monomer unit that becomes the branched portion has no heteroatom, and the linking portion that bonds to the side chain (b) is not an aromatic group derived from an aromatic vinyl compound. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-1).
 [実施例2]
 工程(1)~(5)で使用する各試薬の種類、量を表1に記載されるように変更したこと以外は、実施例1と同じ方法によって、水添共役ジエン系グラフト重合体(G-2)を得た。得られた水添共役ジエン系グラフト重合体(G-2)の分子仕様、物性を表3に示す。
[Example 2]
A hydrogenated conjugated diene-based graft polymer (G -2) was obtained. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-2).
 [実施例3]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1470g及びsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)177gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、イソプレン1350gを逐次添加して、1時間重合した。その後メタノール10gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、共役ジエン系重合体(M-1)を得た。得られた共役ジエン系重合体(M-1)の分析により、後述する水添共役ジエン系グラフト重合体(G-3)の主鎖(a)の数平均分子量、ビニル含量を求めることができる。得られた共役ジエン系重合体(M-1)の数平均分子量は7,000、ビニル含量は10モル%であった。
[Example 3]
(Step (1))
A sufficiently dried 5 L autoclave is purged with nitrogen, charged with 1470 g of cyclohexane and 177 g of sec-butyllithium (10.5% by mass cyclohexane solution), heated to 50°C, and then brought to a polymerization temperature of 50°C under stirring conditions. While controlling as above, 1350 g of isoprene was added successively and polymerized for 1 hour. After that, 10 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to obtain a conjugated diene polymer (M-1). Analysis of the obtained conjugated diene-based polymer (M-1) can determine the number average molecular weight and vinyl content of the main chain (a) of the hydrogenated conjugated diene-based graft polymer (G-3) described later. . The resulting conjugated diene polymer (M-1) had a number average molecular weight of 7,000 and a vinyl content of 10 mol %.
 (工程(2))
 続いて、十分に乾燥した5Lオートクレーブ中に、工程(1)で得られた共役ジエン系重合体(M-1)111gを仕込み、60℃で3時間撹拌をしながら重合体の窒素脱気、及びオートクレーブ内の窒素置換を行った。シクロヘキサン1230gを仕込み、40℃に昇温した後、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)87g、N,N,N',N'-テトラメチルエチレンジアミン9.2gを逐次添加して、40℃で1時間リチオ化反応を実施した。
(Step (2))
Subsequently, 111 g of the conjugated diene polymer (M-1) obtained in step (1) was charged into a sufficiently dried 5 L autoclave, and the polymer was degassed with nitrogen while stirring at 60° C. for 3 hours. And the inside of the autoclave was replaced with nitrogen. After charging 1230 g of cyclohexane and raising the temperature to 40° C., 87 g of sec-butyllithium (10.5% by mass cyclohexane solution) and 9.2 g of N,N,N',N'-tetramethylethylenediamine were sequentially added, The lithiation reaction was carried out at 40°C for 1 hour.
 (工程(3))
 続いて、シクロヘキサン1370gを添加して反応液を希釈し、再度40℃まで昇温した。その後、2-エチルヘキシルアルデヒド9.3gを添加して40℃で1時間撹拌することで、リチオ化されたアニオン活性部位の一部を官能化させた。
(Step (3))
Subsequently, 1370 g of cyclohexane was added to dilute the reaction solution, and the temperature was raised to 40° C. again. Then, 9.3 g of 2-ethylhexylaldehyde was added and stirred at 40° C. for 1 hour to functionalize some of the lithiated anion active sites.
 (工程(4))
 重合温度を40℃となるように制御しながら、ブタジエン190gを逐次添加して、2時間重合した。その後メタノール7.0gを添加して重合反応を停止させ、重合体溶液を得た。工程(3)における試薬の仕込み量、及び工程(3)における重合体溶液の分析により、後述する水添共役ジエン系グラフト重合体(G-3)の側鎖(b)の数平均分子量、ビニル含量、スチレン単位含有量を求めることができる。水添共役ジエン系グラフト重合体(G-3)の側鎖(b)の数平均分子量は5,000、ビニル含量は75モル%、スチレン単位含有量は0質量%であった。
(Step (4))
While controlling the polymerization temperature to 40° C., 190 g of butadiene was successively added and polymerized for 2 hours. After that, 7.0 g of methanol was added to terminate the polymerization reaction to obtain a polymer solution. By analyzing the amount of the reagent charged in step (3) and the polymer solution in step (3), the number average molecular weight of the side chain (b) of the hydrogenated conjugated diene graft polymer (G-3) described later, vinyl content and styrene unit content can be determined. The side chain (b) of the hydrogenated conjugated diene graft polymer (G-3) had a number average molecular weight of 5,000, a vinyl content of 75 mol %, and a styrene unit content of 0 mass %.
 (工程(5))
 得られた重合体溶液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒(0.095mmol/Lシクロヘキサン溶液)を450mL添加し、水素圧力1MPa、80℃の条件で10時間反応させて、水添共役ジエン系グラフト重合体(G-3)を含む溶液を得た。
(Step (5))
450 mL of a Ziegler hydrogenation catalyst (0.095 mmol/L cyclohexane solution) formed from nickel octylate and trimethylaluminum was added to the resulting polymer solution, and the reaction was allowed to proceed for 10 hours under conditions of a hydrogen pressure of 1 MPa and 80°C. to obtain a solution containing a hydrogenated conjugated diene-based graft polymer (G-3).
 (工程(6))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、水添共役ジエン系グラフト重合体(G-3)を回収した。得られた水添共役ジエン系グラフト重合体(G-3)の重量平均分子量は22,000、Mw/Mnは1.5、スチレンに由来する構造単位含有量は0質量%、水素添加率は85モル%、重合体1分子あたりの主鎖に結合する水酸基の平均個数は3個、水酸基濃度は4.5モル%、重合体1分子あたりの側鎖(b)の平均本数は3本、側鎖密度は4.5モル%であった。また、分岐部分となる単量体単位に含まれる側鎖(b)に結合する原子はヘテロ原子はではなく、側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物由来の芳香族基ではない。得られた水添共役ジエン系グラフト重合体(G-3)の分子仕様、物性を表3に示す。
(Step (6))
Water was added to the obtained polymer solution and stirred, and the polymer solution was washed with water. After finishing the stirring and confirming that the polymer solution phase and the water phase were separated, the water was separated. After washing, the polymer solution was vacuum-dried at 70° C. for 24 hours to recover a hydrogenated conjugated diene-based graft polymer (G-3). The obtained hydrogenated conjugated diene graft polymer (G-3) had a weight average molecular weight of 22,000, an Mw/Mn of 1.5, a structural unit content derived from styrene of 0% by mass, and a hydrogenation rate of 85 mol%, the average number of hydroxyl groups bonded to the main chain per polymer molecule is 3, the hydroxyl group concentration is 4.5 mol%, the average number of side chains (b) per polymer molecule is 3, The side chain density was 4.5 mol%. In addition, the atom bonded to the side chain (b) contained in the monomer unit that becomes the branched portion is not a hetero atom, and the linking portion containing the atom bonded to the side chain (b) is an aromatic vinyl compound-derived aromatic not a tribe. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymer (G-3).
 [実施例4~6]
 工程(1)~(5)で使用する各試薬の種類、量を表2に記載されるように変更したこと以外は、実施例3と同じ方法によって、共役ジエン系グラフト重合体(G-4)、(G-11)、(G-12)を得た。なお、実施例5~6において、工程(1)で用いられるTMEDA(極性化合物)は、シクロヘキサン及びsec-ブチルリチウムを5Lオートクレーブに仕込んだ後、ブタジエンを添加する直前に添加した。得られた水添共役ジエン系グラフト重合体(G-4)、(G-11)、(G-12)の分子仕様、物性を表3に示す。
[Examples 4-6]
A conjugated diene-based graft polymer (G-4 ), (G-11) and (G-12) were obtained. In Examples 5 and 6, TMEDA (polar compound) used in step (1) was added immediately before adding butadiene after charging cyclohexane and sec-butyllithium into a 5 L autoclave. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymers (G-4), (G-11) and (G-12).
 [比較例1、2]
 工程(1)~(4)で使用する各試薬の種類、量を表1に記載されるように変更し、工程(5)の水素添加反応を行わない以外は、実施例1と同じ方法によって、(未水添)共役ジエン系グラフト重合体(G-5)、(G-6)を得た。得られた(未水添)共役ジエン系グラフト重合体(G-5)、(G-6)の分子仕様、物性を表3に示す。
[Comparative Examples 1 and 2]
By the same method as in Example 1 except that the type and amount of each reagent used in steps (1) to (4) are changed as shown in Table 1 and the hydrogenation reaction in step (5) is not performed. , (unhydrogenated) conjugated diene-based graft polymers (G-5) and (G-6) were obtained. Table 3 shows the molecular specifications and physical properties of the obtained (unhydrogenated) conjugated diene graft polymers (G-5) and (G-6).
 [比較例3、4]
 工程(1)~(4)で使用する各試薬の種類、量を表2に記載されるように変更し、工程(5)の水素添加反応を行わない以外は、実施例3と同じ方法によって、(未水添)共役ジエン系グラフト重合体(G-7)、(G-8)を得た。得られた(未水添)共役ジエン系グラフト重合体(G-7)、(G-8)の分子仕様、物性を表3に示す。
[Comparative Examples 3 and 4]
By the same method as in Example 3 except that the type and amount of each reagent used in steps (1) to (4) are changed as shown in Table 2 and the hydrogenation reaction in step (5) is not performed. , (unhydrogenated) conjugated diene-based graft polymers (G-7) and (G-8) were obtained. Table 3 shows the molecular specifications and physical properties of the obtained (unhydrogenated) conjugated diene-based graft polymers (G-7) and (G-8).
 [比較例5~7]
 工程(1)、(2)、(4)、及び(5)で使用する各試薬の種類、量を表2に記載されるように変更し、工程(3)の官能化反応を行わないこと以外は、実施例3と同じ方法によって、主鎖に水酸基が結合していない水添共役ジエン系グラフト重合体(G-9)、(G-10)、(G-13)を得た。なお、比較例7において、工程(1)で用いられるTMEDA(極性化合物)は、シクロヘキサン及びsec-ブチルリチウムを5Lオートクレーブに仕込んだ後、ブタジエンを添加する直前に添加した。得られた水添共役ジエン系グラフト重合体(G-9)、(G-10)、(G-13)の分子仕様、物性を表3に示す。
[Comparative Examples 5-7]
Change the type and amount of each reagent used in steps (1), (2), (4), and (5) as described in Table 2, and do not perform the functionalization reaction of step (3). Hydrogenated conjugated diene-based graft polymers (G-9), (G-10), and (G-13) having no hydroxyl group bonded to the main chain were obtained in the same manner as in Example 3, except for the above. In Comparative Example 7, TMEDA (polar compound) used in step (1) was added immediately before adding butadiene after charging cyclohexane and sec-butyllithium into a 5 L autoclave. Table 3 shows the molecular specifications and physical properties of the obtained hydrogenated conjugated diene graft polymers (G-9), (G-10) and (G-13).
 実施例1~6、及び比較例1~7における工程(1)~(5)で使用した各試薬の種類、量を以下の表1及び表2に、実施例1~6、及び比較例1~7で得られた重合体(水添共役ジエン系グラフト重合体、未水添共役ジエン系グラフト重合体)の分子仕様、物性を表3に示す。 The types and amounts of each reagent used in steps (1) to (5) in Examples 1 to 6 and Comparative Examples 1 to 7 are shown in Tables 1 and 2 below, Examples 1 to 6, and Comparative Example 1. Table 3 shows the molecular specifications and physical properties of the polymers (hydrogenated conjugated diene graft polymer, non-hydrogenated conjugated diene graft polymer) obtained in steps to 7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中、略称はそれぞれ下記の意味である。
SBL:sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)
THF:テトラヒドロフラン
HPC:ヘキサデシルピリジニウムクロリド
Bd:ブタジエン
Ip:イソプレン
In Table 1, abbreviations have the following meanings.
SBL: sec-butyllithium (10.5 wt% cyclohexane solution)
THF: tetrahydrofuran HPC: hexadecylpyridinium chloride Bd: butadiene Ip: isoprene
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2中、略称はそれぞれ下記の意味である。
SBL:sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)
TMEDA:N,N,N',N'-テトラメチルエチレンジアミン
2-EHA:2-エチルヘキシルアルデヒド
BzA:ベンズアルデヒド
Bd:ブタジエン
Ip:イソプレン
Abbreviations in Table 2 have the following meanings.
SBL: sec-butyllithium (10.5 wt% cyclohexane solution)
TMEDA: N,N,N',N'-tetramethylethylenediamine 2-EHA: 2-ethylhexylaldehyde BzA: benzaldehyde Bd: butadiene Ip: isoprene
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3より、実施例1~6の水添共役ジエン系グラフト重合体は、極性材料との親和性に優れるとともに高い熱安定性を有することがわかる。一方で、比較例1~4の(未水添)共役ジエン系グラフト重合体は耐熱性に劣る。また、比較例5~7の水添共役ジエン系グラフト重合体は、極性材料との親和性に劣る。 Table 3 shows that the hydrogenated conjugated diene-based graft polymers of Examples 1 to 6 have excellent affinity with polar materials and high thermal stability. On the other hand, the (unhydrogenated) conjugated diene-based graft polymers of Comparative Examples 1 to 4 are inferior in heat resistance. Also, the hydrogenated conjugated diene-based graft polymers of Comparative Examples 5 to 7 are inferior in affinity with polar materials.
 本発明の水添共役ジエン系グラフト重合体は、極性材料との親和性に優れるとともに高い熱安定性を有する。そのため、本発明の水添共役ジエン系グラフト重合体は、自動車用内外装品、電気・電子部品、包装材料、スポーツ用品、日用雑貨、ラミネート材、伸縮材料、各種ゴム製品、医療用品、各種接着剤、各種塗装プライマーなど幅広い分野に有効に使用することができる。 The hydrogenated conjugated diene-based graft polymer of the present invention has excellent affinity with polar materials and high thermal stability. Therefore, the hydrogenated conjugated diene-based graft polymer of the present invention can be used for automobile interior and exterior parts, electrical and electronic parts, packaging materials, sporting goods, daily miscellaneous goods, laminated materials, elastic materials, various rubber products, medical supplies, and various other products. It can be effectively used in a wide range of fields such as adhesives and various coating primers.

Claims (11)

  1.  共役ジエン単位を含む重合体からなる主鎖(a)、及び共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)を含み、
     前記共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部が水素添加されている、水添共役ジエン系グラフト重合体であり、
     前記側鎖(b)は、前記主鎖(a)に含まれる分岐部分となる単量体単位に含まれる原子と結合し、
     前記主鎖(a)に水酸基が結合している、水添共役ジエン系グラフト重合体。
    A main chain (a) made of a polymer containing a conjugated diene unit and a side chain (b) made of a polymer containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit including
    A hydrogenated conjugated diene-based graft polymer in which at least part of the carbon-carbon double bonds contained in the conjugated diene units are hydrogenated,
    The side chain (b) binds to an atom contained in a monomer unit that becomes a branched portion contained in the main chain (a),
    A hydrogenated conjugated diene-based graft polymer having a hydroxyl group bonded to the main chain (a).
  2.  前記主鎖(a)に結合する水酸基が3.0モル%以上である、請求項1に記載の水添共役ジエン系グラフト重合体。 The hydrogenated conjugated diene-based graft polymer according to claim 1, wherein the hydroxyl groups bonded to the main chain (a) are 3.0 mol% or more.
  3.  前記水添共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の50モル%以上が水素添加されている、請求項1又は2に記載の水添共役ジエン系グラフト重合体。 The hydrogenated conjugated diene graft polymer according to claim 1 or 2, wherein 50 mol% or more of the carbon-carbon double bonds contained in the conjugated diene units in the hydrogenated conjugated diene graft polymer are hydrogenated. Combined.
  4.  前記共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数が2以上である、請求項1~3のいずれか1項に記載の水添共役ジエン系グラフト重合体。 The hydrogenated conjugated diene graft polymer according to any one of claims 1 to 3, wherein the average number of side chains (b) per molecule of the conjugated diene graft polymer is 2 or more.
  5.  前記分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子がヘテロ原子ではなく、
     前記分岐部分となる単量体単位に含まれる側鎖(b)と結合する原子を含む連結部分は芳香族ビニル化合物に由来する芳香族基ではない、請求項1~4のいずれか1項に記載の水添共役ジエン系グラフト重合体。
    the atom bonded to the side chain (b) contained in the monomer unit serving as the branched portion is not a heteroatom,
    5. The connecting portion containing an atom that binds to the side chain (b) contained in the monomer unit that becomes the branch portion is not an aromatic group derived from an aromatic vinyl compound, according to any one of claims 1 to 4 The hydrogenated conjugated diene-based graft polymer described above.
  6.  (A-1)極性化合物の存在下、共役ジエン単位を含む重合体(M)と有機リチウム化合物を反応させることにより、前記重合体(M)に含まれるアニオン活性部位をリチオ化する工程;
     (A-2)官能化剤を添加して、リチオ化されたアニオン活性部位の一部を官能化する工程;
     (B)共役ジエン及び芳香族ビニル化合物からなる群より選ばれる少なくとも1つの単量体を添加して、重合体(M)中の残存するリチオ化されたアニオン活性部位から重合して、主鎖となる重合体(M)に対し側鎖を形成し、共役ジエン系グラフト重合体を作製する工程;及び
     (C)上記共役ジエン系グラフト重合体に含まれる共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加し水添共役ジエン系グラフト重合体を形成する工程;及び
     (D)得られた共役ジエン系グラフト重合体を回収する工程;
    を含む、請求項1~5のいずれか1項に記載の水添共役ジエン系グラフト重合体の製造方法。
    (A-1) A step of lithiating anion active sites contained in the polymer (M) by reacting the polymer (M) containing a conjugated diene unit with an organolithium compound in the presence of a polar compound;
    (A-2) adding a functionalizing agent to functionalize a portion of the lithiated anion active sites;
    (B) adding at least one monomer selected from the group consisting of a conjugated diene and an aromatic vinyl compound to polymerize from the remaining lithiated anionic active sites in the polymer (M) to obtain a main chain (C) a step of forming a side chain on the polymer (M) to produce a conjugated diene-based graft polymer; (D) recovering the obtained conjugated diene graft polymer;
    The method for producing a hydrogenated conjugated diene-based graft polymer according to any one of claims 1 to 5.
  7.  さらに、工程(A-2)の後に、
     (A-3)ルイス酸を添加する工程;
    を含む、請求項6に記載の水添共役ジエン系グラフト重合体の製造方法。
    Furthermore, after step (A-2),
    (A-3) adding a Lewis acid;
    The method for producing a hydrogenated conjugated diene-based graft polymer according to claim 6.
  8.  (E)下記式(I)で表される活性末端重合体と
    P-X  (I)
    (式(I)中、Pは共役ジエン単位及び芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す。)、
    エポキシ基を有する官能基変性共役ジエン系重合体とを反応させて共役ジエン系グラフト重合体を作製する工程;
     (C)上記共役ジエン系グラフト重合体中の共役ジエン単位に含まれる炭素-炭素二重結合の少なくとも一部を水素添加して水添共役ジエン系グラフト重合体を形成する工程;
    及び
     (D)得られた水添共役ジエン系グラフト重合体を回収する工程;
    を含む、請求項1~5のいずれか1項に記載の水添共役ジエン系グラフト重合体の製造方法。
    (E) an active terminal polymer represented by the following formula (I) and PX (I)
    (In formula (I), P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents an anionic polymerization active terminal.) ,
    A step of reacting with a functional group-modified conjugated diene polymer having an epoxy group to prepare a conjugated diene graft polymer;
    (C) hydrogenating at least part of the carbon-carbon double bonds contained in the conjugated diene units in the conjugated diene graft polymer to form a hydrogenated conjugated diene graft polymer;
    and (D) recovering the resulting hydrogenated conjugated diene graft polymer;
    The method for producing a hydrogenated conjugated diene-based graft polymer according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1項に記載の水添共役ジエン系グラフト重合体を含有する、重合体組成物。 A polymer composition containing the hydrogenated conjugated diene-based graft polymer according to any one of claims 1 to 5.
  10.  請求項9に記載の重合体組成物を成形してなる成形品。 A molded article obtained by molding the polymer composition according to claim 9.
  11.  請求項9に記載の重合体組成物を架橋してなる架橋物。 A crosslinked product obtained by crosslinking the polymer composition according to claim 9.
PCT/JP2022/024457 2021-06-30 2022-06-20 Hydrogenated conjugated diene graft polymer, method for producing same, polymer composition, molded article, and crosslinked product WO2023276741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531809A JPWO2023276741A1 (en) 2021-06-30 2022-06-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108556 2021-06-30
JP2021108556 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276741A1 true WO2023276741A1 (en) 2023-01-05

Family

ID=84691693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024457 WO2023276741A1 (en) 2021-06-30 2022-06-20 Hydrogenated conjugated diene graft polymer, method for producing same, polymer composition, molded article, and crosslinked product

Country Status (3)

Country Link
JP (1) JPWO2023276741A1 (en)
TW (1) TW202313717A (en)
WO (1) WO2023276741A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125194A (en) * 1991-02-02 1993-05-21 Mitsubishi Petrochem Co Ltd Method for producing copolymer
JP2000273240A (en) * 1999-03-29 2000-10-03 Idemitsu Atochem Kk Rubber composition for tire tread
JP2001064328A (en) * 1999-09-01 2001-03-13 Kuraray Co Ltd Manufacture of alpha, omega-dilithio polymer or polymer derived therefrom
JP2006124707A (en) * 2004-10-25 2006-05-18 Polimeri Europa Spa Method for producing polybutadiene having low content of branch
JP2008115356A (en) * 2006-10-13 2008-05-22 Idemitsu Kosan Co Ltd Low hardness and thermally conductive resin composition and sheet-like heat radiating member using the same
JP2011219700A (en) * 2010-04-14 2011-11-04 Asahi Kasei Chemicals Corp Method for producing anionic polymerization initiator
WO2013058219A1 (en) * 2011-10-17 2013-04-25 住友ゴム工業株式会社 Rubber composition for tires, and pneumatic tire
JP2015521683A (en) * 2012-06-29 2015-07-30 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Polybutadiene having epoxy groups
WO2021054429A1 (en) * 2019-09-20 2021-03-25 株式会社クラレ Rubber composition, tire rubber composition, and shoe sole rubber composition
WO2021054428A1 (en) * 2019-09-20 2021-03-25 株式会社クラレ Conjugated diene-based graft polymer, and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125194A (en) * 1991-02-02 1993-05-21 Mitsubishi Petrochem Co Ltd Method for producing copolymer
JP2000273240A (en) * 1999-03-29 2000-10-03 Idemitsu Atochem Kk Rubber composition for tire tread
JP2001064328A (en) * 1999-09-01 2001-03-13 Kuraray Co Ltd Manufacture of alpha, omega-dilithio polymer or polymer derived therefrom
JP2006124707A (en) * 2004-10-25 2006-05-18 Polimeri Europa Spa Method for producing polybutadiene having low content of branch
JP2008115356A (en) * 2006-10-13 2008-05-22 Idemitsu Kosan Co Ltd Low hardness and thermally conductive resin composition and sheet-like heat radiating member using the same
JP2011219700A (en) * 2010-04-14 2011-11-04 Asahi Kasei Chemicals Corp Method for producing anionic polymerization initiator
WO2013058219A1 (en) * 2011-10-17 2013-04-25 住友ゴム工業株式会社 Rubber composition for tires, and pneumatic tire
JP2015521683A (en) * 2012-06-29 2015-07-30 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Polybutadiene having epoxy groups
WO2021054429A1 (en) * 2019-09-20 2021-03-25 株式会社クラレ Rubber composition, tire rubber composition, and shoe sole rubber composition
WO2021054428A1 (en) * 2019-09-20 2021-03-25 株式会社クラレ Conjugated diene-based graft polymer, and method for producing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO QING, YANSHAI WANG, YINGYING REN, YANG LI: "Novel Dual-Grafted Copolymer Bearing Classy Polystyrene and Crystalline Poly(Ethylene Oxide) as Side Chains", PART A: PURE AND APPLIED CHEMISTRY, MARCEL DEKKER INC, US, vol. 50, 20 September 2013 (2013-09-20), US , pages 1157 - 1165, XP093018412, ISSN: 1060-1325, DOI: 10.1080/10601325.2013.830015 *
HEMPENIUS M. A., MICELBERGER W., MOELLER M.: "ARBORESCENT GRAFT POLYBUTADIENES.", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 30., no. 19., 22 September 1997 (1997-09-22), US , pages 5602 - 5605., XP000702233, ISSN: 0024-9297, DOI: 10.1021/ma970280b *

Also Published As

Publication number Publication date
JPWO2023276741A1 (en) 2023-01-05
TW202313717A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US5792824A (en) Cyclic conjugated diene polymer and method of producing same
JP3653663B2 (en) Method for producing solution-polymerized styrene-butadiene rubber or butadiene rubber
JP2006257260A (en) Modified diene-based polymer rubber and method for producing the same
WO1995021202A1 (en) Novel modified polymer containing cyclic molecular structure unit
JP2003292529A (en) Modified diene-based polymer rubber, method for producing the same and rubber composition
JP7273982B2 (en) Conjugated diene-based graft polymer and method for producing the same
JP2000169519A (en) Coupled polymer and its reparation
US20010005739A1 (en) Glycidyl ether aliphatic polyalcohols as coupling agents in anionic polymerization
TW201920298A (en) Star-branched diene rubber
WO2023276741A1 (en) Hydrogenated conjugated diene graft polymer, method for producing same, polymer composition, molded article, and crosslinked product
JP7329622B2 (en) Hydrogenated conjugated diene-based graft polymer and method for producing the same
JP7240787B2 (en) Conjugated diene-based graft polymer and method for producing the same
JP7458204B2 (en) Method for producing macromonomers, macromonomers, methods for producing graft copolymers using the same, polymer compositions, and molded articles
JP2794223B2 (en) A polymer containing a novel modified cyclic molecular structural unit
EP0738738B1 (en) Polymer containing saturated cyclic molecular structure units
EP0700938B1 (en) Cyclic conjugated diene polymer
EP2803683B1 (en) Functionalized elastomer and method of making such an elastomer
JP2022051052A (en) Conjugated diene-based graft polymer, and method of producing the same
WO2022172925A1 (en) Hydrogenated polymer composition containing hydrogenated conjugated-diene modified polymer having boron-containing functional group, and method for producing same
JP2022051051A (en) Conjugated diene-based graft polymer, polymer composition, molded article, and cross-liked matter
JP2023006131A (en) Viscosity index improver comprising conjugated diene-based graft polymer and oil composition
WO2023276742A1 (en) Conjugated diene graft polymer, method for producing same, lubricating oil additive, viscosity index improver, friction-suppressing agent and oil composition
JPH08225614A (en) Improved cyclic conjugated diene-based polymer and its production
KR100235083B1 (en) Novel polymerization catalyst
JPH08225616A (en) Cyclic conjugated diene-based block copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531809

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832891

Country of ref document: EP

Kind code of ref document: A1