WO2023276655A1 - Optical layered body - Google Patents

Optical layered body Download PDF

Info

Publication number
WO2023276655A1
WO2023276655A1 PCT/JP2022/023780 JP2022023780W WO2023276655A1 WO 2023276655 A1 WO2023276655 A1 WO 2023276655A1 JP 2022023780 W JP2022023780 W JP 2022023780W WO 2023276655 A1 WO2023276655 A1 WO 2023276655A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
edge
film
optical
pressure
Prior art date
Application number
PCT/JP2022/023780
Other languages
French (fr)
Japanese (ja)
Inventor
美菜子 野田
大生 三浦
翔 寳田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280046913.XA priority Critical patent/CN117642288A/en
Priority to KR1020237044077A priority patent/KR20240028348A/en
Publication of WO2023276655A1 publication Critical patent/WO2023276655A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical laminate.
  • a display panel has a laminated structure including, for example, a pixel panel, a touch panel, and a surface protective film.
  • An optical film having a predetermined optical function is provided in the laminated structure of the display panel.
  • Examples of optical films include film-like polarizing plates and retardation films.
  • an optical laminate in which an optical film is provided on a pixel panel is produced as an intermediate product.
  • the optical laminate includes a pixel panel, an adhesive layer, an optical film, an adhesive layer, and a release film in order in the thickness direction.
  • an optical laminate having a surface protective film, an adhesive layer, an optical film, an adhesive layer, and a release film in order in the thickness direction is produced as an intermediate product.
  • Such an optical layered body is described, for example, in Patent Document 1 below.
  • FIG. 8 is a schematic cross-sectional view of an optical layered body Z as an example of a conventional optical layered body.
  • the optical laminate Z includes a substrate 91, an adhesive layer 92, an optical film 93, an adhesive layer 94, and a release film 95 in the thickness direction T in this order.
  • the substrate 91 is, for example, a pixel panel.
  • One surface of the optical film 93 in the thickness direction T is bonded to the substrate 91 via the adhesive layer 92 .
  • the adhesive layer 94 is adhered to the other surface of the optical film 93 .
  • the release film 95 is attached to the adhesive layer 94 in a detachable manner.
  • edge 91e of the substrate 91 the edge 92e of the adhesive layer 92, the edge 93e of the optical film 93, the edge 94e of the adhesive layer 94, and the peeling
  • the edge 95e of the film 95 is flush with each other.
  • the peeling film 95 is peeled off from the adhesive layer 94 (peeling step).
  • peeling step first, at the end E′ of the optical layered body Z, a force for peeling up the release film 95 from the adhesive layer 94 is applied to the release film 95 as a load for starting peeling.
  • This load includes the force required to sufficiently deform the release film 95 at the end E′ and the force required to separate the release film 95 from the adhesive layer 94 elastically deforming following the deformation of the release film 95. are included together.
  • the end of the release film 95 is deformed so as to be separated from the edge 94 e of the pressure-sensitive adhesive layer 94 by applying such a load.
  • the end of the release film 95 is pulled away from the edge 94 e so that the separation between the release film 95 and the adhesive layer 94 progresses, and the release film 95 is separated from the adhesive layer 94 . removed.
  • an adherend (not shown) such as a surface protection film and the optical film 93 are bonded through the exposed adhesive layer 94 .
  • Deformation of the edge of the optical film 93 causes cracks at the edge, which is not preferable.
  • the present invention provides an optical laminate suitable for peeling a release film from a thin optical film with an adhesive layer while suppressing edge cracks in the optical film.
  • the present invention [1] is an optical laminate comprising a substrate, a first pressure-sensitive adhesive layer, an optical film, a second pressure-sensitive adhesive layer, and a release film in this order in the thickness direction,
  • the optical film has a thickness of 100 ⁇ m or less, and the edge of the second pressure-sensitive adhesive layer is closer than the edges of the optical film and the release film in the plane direction perpendicular to the thickness direction of the optical film.
  • the edge of the second pressure-sensitive adhesive layer is retreated from the edges of the optical film and the release film in the surface direction of the optical film.
  • the release film has a free portion to which the second pressure-sensitive adhesive layer is not adhered. Therefore, when peeling the release film from the second adhesive layer, the free part of the release film is first turned up and deformed, and then the end of the release film that has already been turned up and deformed. can be pulled to separate the release film from the edge of the second adhesive layer.
  • the force (first force) for sufficiently deforming the end of the release film, and the peeling film from the edge of the second adhesive layer that elastically deforms following the deformation of the release film (In contrast, the above-described optical layered body Z requires the first force and the second force at the same time. the force required for the initiation process is large).
  • Such an optical laminate is suitable for reducing the force required for the peel initiation process. The smaller this force is, the less the deformation of the edge of the thin optical film with a thickness of 100 ⁇ m or less is in the starting process of peeling of the release film, and the less the generation of cracks at the edge of the film.
  • the optical laminate of the present invention is suitable for peeling a release film from a thin optical film with an adhesive layer while suppressing edge cracks in the optical film.
  • the present invention [2] is the above-mentioned [1], wherein, at the side uneven end portion, the retraction length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film is 20 ⁇ m or more in the surface direction.
  • the present invention [3] is the above [ 1] or includes the optical layered body according to [2].
  • the first pressure-sensitive adhesive layer is preferable for suppressing the deformation of the first pressure-sensitive adhesive layer, and therefore it is preferable for suppressing separation of the edge of the first pressure-sensitive adhesive layer from the optical film and the substrate.
  • the present invention [4] is characterized in that, in the side uneven end portion, the distance from the edge of the optical film is less than the retraction length of the edge of the first pressure-sensitive adhesive layer from the edge of the optical film in the plane direction.
  • the first pressure-sensitive adhesive layer is preferable for suppressing the deformation of the first pressure-sensitive adhesive layer, and therefore it is preferable for suppressing separation of the edge of the first pressure-sensitive adhesive layer from the optical film and the substrate.
  • the present invention [5] is the above [1] to [4], wherein the distance between the edge of the first adhesive layer and the edge of the second adhesive layer in the surface direction is 1 ⁇ m or more.
  • the optical laminated body as described in any one is included.
  • Such a configuration is preferable for suppressing the above-described deformation of the first pressure-sensitive adhesive layer in the process of starting peeling of the release film. preferred to suppress.
  • the ratio of the retracted length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film to the thickness of the second pressure-sensitive adhesive layer is 0.4 or more and 8 or less.
  • the present invention [7] is any one of [1] to [6] above, wherein the peel initiation force for starting the peeling of the release film from the second pressure-sensitive adhesive layer is 800 gf / 25 mm or less.
  • the described optical laminate is included.
  • Such a configuration is preferable for reducing the load on the optical film in the process of starting to peel the release film from the second pressure-sensitive adhesive layer.
  • FIG. 2 is a partially enlarged cross-sectional schematic diagram of an example of an uneven side surface end portion of the optical layered body shown in FIG. 1 ;
  • the retraction length (d2) of the edge of the second adhesive layer is shorter than the retraction length (d1) of the edge of the first adhesive layer.
  • 2 is a partially enlarged schematic cross-sectional view of another example of the uneven side surface end portion of the optical layered body shown in FIG. 1.
  • FIG. 5A shows a peeling step of peeling the peeling film
  • FIG. 5B shows a bonding step of bonding the optical film and the adherend via the second pressure-sensitive adhesive layer.
  • FIG. 4 is a schematic diagram for explaining the blade angle of the rotary blades used in the contouring process in Examples and Comparative Examples.
  • An example of the graph obtained by the peeling test which peels the peeling film on an adhesive layer from an adhesive layer is represented. It is a cross-sectional schematic diagram of the conventional optical laminated body.
  • an optical laminate X as an embodiment of the optical laminate of the present invention includes an optical film 10, an adhesive layer 20 (first adhesive layer), and an adhesive layer 30 (second adhesive layer), a substrate 40, and a release film 50.
  • the optical layered body X has a sheet shape with a predetermined thickness and spreads in a direction perpendicular to the thickness direction T (surface direction D).
  • the optical laminate X includes a substrate 40, an adhesive layer 20, an optical film 10, an adhesive layer 30, and a release film 50 in the thickness direction T in this order.
  • the optical film 10 is a functional optical film.
  • Functional optical films include, for example, film-like polarizing plates (polarizing films) and retardation films.
  • the optical film 10 is a film incorporated in the laminated structure of the foldable display panel in this embodiment.
  • a foldable display panel has a laminated structure including, for example, a pixel panel and a touch panel.
  • the optical film 10 has a first surface 11 as one surface in the thickness direction and a second surface 12 opposite to the first surface 11 .
  • the optical film 10 has a thickness of 100 ⁇ m or less.
  • the adhesive layer 20 is adhered to the first surface 11 .
  • the base material 40 is bonded to the first surface 11 via the adhesive layer 20 .
  • Substrates 40 include pixel panels and plastic films for foldable displays.
  • the adhesive layer 30 adheres to the second surface 12 and has an adhesive surface 31 on the side opposite to the optical film 10 .
  • the peel film 50 is arranged on the adhesive surface 31 so as to be peelable.
  • the release film 50 has flexibility.
  • the optical layered body X the optical film 10 has an edge 13, the adhesive layer 20 has an edge 22, and the adhesive layer 30 has an edge 32 as edges that define the outline shape in plan view.
  • the substrate 40 has an edge 42 and the release film 50 has an edge 52 .
  • Such an optical layered body X is a layered body incorporated in the layered structure of the foldable display panel.
  • the optical layered body X has an uneven side edge E on all or part of the outer peripheral edge of the film.
  • the edge 32 of the pressure-sensitive adhesive layer 30 is retreated from the edges 13 and 52 of the optical film 10 and the release film 50 in the surface direction D.
  • 2 to 4 are partially enlarged cross-sectional schematic diagrams of examples of the side uneven end portion E of the optical layered body X, respectively. 2 and 3, the edge 22 of the pressure-sensitive adhesive layer 20 retreats in the plane direction D from the edge 13 of the optical film 10. As shown in FIGS. 4, the edge 22 of the pressure-sensitive adhesive layer 20 and the edge 13 of the optical film 10 are flush with each other.
  • the release film 50 has a free portion 50a to which the adhesive layer 30 is not attached. Therefore, in the uneven side edge portion E, when peeling the release film 50 from the adhesive layer 30, first, the free portion 50a of the release film 50 is turned up and deformed, and then the already deformed release film is turned up.
  • the release film 50 can be separated from the edge 32 of the adhesive layer 30 by pulling the free portion 50a of 50 . That is, in the process of starting peeling of the release film 50, the force (first force) for sufficiently deforming the end of the release film 50 and the pressure-sensitive adhesive layer 30 that elastically deforms following the deformation of the release film 50.
  • a force (second force) for pulling the release film 50 away from the edge 32 is not required at the same time.
  • Such an optical layered body X is suitable for reducing the force required for the peeling start process of the peeling film 50 .
  • the optical laminate X is suitable for peeling the release film 50 from the thin optical film 10 with an adhesive layer while suppressing edge cracks in the optical film 10 .
  • the retraction length of the edge 32 of the adhesive layer 30 from the edge 52 of the release film 50 in the surface direction D is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 60 ⁇ m or more.
  • the free portion 50a of the release film 50 is fully turned up and deformed before the release film 50 is separated from the edge 32 of the adhesive layer 30 in the process of starting the release of the release film 50 described above. Therefore, it is preferable to reduce the force (total force) required to start the peeling of the peeling film 50 .
  • the retraction length is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and even more preferably 300 ⁇ m or less.
  • a method for adjusting the retraction length for example, adjustment of cutting conditions in a cutting step, which will be described later, which is performed using a rotary blade to form the side uneven end portion E, can be mentioned.
  • the cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed.
  • Methods for adjusting the retraction length include, for example, adjusting the thickness and modulus of the adhesive layer 30 .
  • the ratio of the retraction length to the thickness of the adhesive layer 30 is preferably 0.5 or more, more preferably 0.8 or more, and even more preferably 1 or more.
  • the ratio is preferably 8 or less, more preferably 6 or less.
  • the edge 22 of the pressure-sensitive adhesive layer 20 retreats in the plane direction D from the edge 13 of the optical film 10 and the edge 42 of the substrate 40.
  • the pressure-sensitive adhesive It is preferable for suppressing deformation of the layer 20 , and therefore preferable for suppressing separation of the edge 22 of the pressure-sensitive adhesive layer 20 from the optical film 10 and the substrate 40 .
  • the retraction length (retraction length d1) of the edge 22 of the adhesive layer 20 from the edge 13 of the optical film 10 in the plane direction D is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 60 ⁇ m or more. is. Such a configuration is preferable for suppressing deformation of the pressure-sensitive adhesive layer 20 when the second force is applied to the optical layered body X. It is preferable to suppress leaving from.
  • the retraction length d1 is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less.
  • a method for adjusting the retraction length d1 for example, adjustment of cutting conditions in a cutting step performed using a rotary blade to form the side uneven end portion E, which will be described later, is exemplified.
  • the cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed.
  • Methods for adjusting the retraction length d1 include, for example, adjustment of the thickness of the pressure-sensitive adhesive layer 20 and adjustment of the elastic modulus.
  • the retraction length d2 of the edge 32 of the adhesive layer 30 from the edge 13 of the optical film 10 is preferably smaller than the retraction length d1 as shown in FIG. That is, retraction length d1 is preferably greater than retraction length d2.
  • the ratio (d1/d2) of the retraction length d1 to the retraction length d2 is preferably 1.1 or more, more preferably 1.2 or more. These configurations are preferable for suppressing the above-described deformation of the adhesive layer 20 in the process of starting peeling of the release film 50, so that the edge 22 of the adhesive layer 20 is separated from the optical film 10 and the substrate 40. preferred to suppress.
  • the ratio (d1/d2) is, for example, 5 or less.
  • the distance between the edges 22, 32 in the plane direction D (that is, the difference between the retraction length d1 and the retraction length d2) is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • Such a configuration is preferable for suppressing the above-described deformation of the adhesive layer 20 in the above-described separation initiation process of the release film 50. It is preferable to suppress leaving from.
  • the distance between the edges 22 and 32 in the surface direction D is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and even more preferably 220 ⁇ m or less.
  • Such a configuration is preferable for suppressing damage to the edges of the optical film 10, and also increases the durability of the edges of the optical film 10 due to a decrease in the adhesion area between the optical film 10 and the pressure-sensitive adhesive layers 20 and 30. It is preferable for suppressing a decrease in sexuality.
  • the peel initiation force F1 for starting peeling of the release film 50 from the adhesive surface 31 of the adhesive layer 30 is preferably 800 gf/25 mm or less, more preferably 700 gf/25 mm or less, and still more preferably 600 gf/25 mm or less. .
  • Such a configuration is preferable for suppressing separation of the edge 32 of the adhesive layer 30 from the optical film 10 and reducing the load on the optical film 10 in the process of starting peeling of the peeling film 50 .
  • the peel initiation force F1 is preferably 10 gf/25 mm or more, more preferably 20 gf/25 mm or more, and even more preferably 30 gf/25 mm or more.
  • Such a configuration is preferable for suppressing lifting (partial peeling) of the release film 50 from the adhesive layer 30 during transportation and handling of the optical layered body X, for example.
  • the peel initiation force is the force required in the peel initiation process when peeling the release film releasably attached to the adhesive layer from the adhesive layer.
  • a force is applied to the release film so that the release film deforms in a direction away from the pressure-sensitive adhesive layer.
  • the edge of the pressure-sensitive adhesive layer attached to the release film and its vicinity are once elastically deformed so as to follow the deformation of the release film.
  • the release film is pulled with such a large force that the release film is pulled away from the elastically deformed end of the pressure-sensitive adhesive layer, the separation occurs between the edge of the pressure-sensitive adhesive layer and the vicinity thereof and the release film. occurs and peeling starts.
  • the peel initiation force is the force required to separate the release film from the elastically deformed end of the pressure-sensitive adhesive layer and start peeling of the release film from the pressure-sensitive adhesive layer in the peel initiation process.
  • a peel initiation force can be measured by the method described below with respect to the examples below.
  • Methods for adjusting the peel initiation force include, for example, adjusting the thickness of the release film and selecting the type of release treatment agent on the pressure-sensitive adhesive layer side surface of the release film.
  • the peeling force F2 for peeling the peeling film 50 from the adhesive surface 31 of the adhesive layer 30 after the peeling of the peeling film 50 from the adhesive layer 30 is started is preferably 0.1 gf/25 mm or more, more preferably 0.1 gf/25 mm or more. It is 3 gf/25 mm or more, more preferably 0.5 gf/25 mm or more.
  • the peel force F2 is preferably 5 gf/25 mm or less, more preferably 4 gf/25 mm or less, still more preferably 3 gf/25 mm or less.
  • examples of the polarizing film include a polarizing film comprising a polarizer and a transparent protective film attached to one or both sides of the polarizer.
  • Polarizers include, for example, uniaxially stretched hydrophilic polymer films to which a dichroic substance is adsorbed, and oriented polyene films.
  • Hydrophilic polymer films include, for example, polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and partially saponified ethylene-vinyl acetate copolymer films.
  • Dichroic substances include, for example, iodine and dichroic dyes.
  • Examples of oriented polyene films include dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • a thin polarizer with a thickness of 10 ⁇ m or less may be used as the polarizer.
  • Examples of thin polarizers include polarizers described in JP-A-51-069644, JP-A-2000-338329, WO2010/100917, Japanese Patent No. 4691205, and Japanese Patent No. 4751481. .
  • the transparent protective film for the polarizing plate a film that is excellent in transparency, mechanical strength, thermal stability, water barrier properties, and optical isotropy is preferred.
  • Materials for such transparent protective films include, for example, cellulose resins, cyclic polyolefin resins, acrylic resins, phenylmaleimide resins, and polycarbonate resins.
  • the thickness of the polarizing plate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 70 ⁇ m or less.
  • the adhesive layer 20 is a pressure-sensitive adhesive layer formed from the first adhesive composition.
  • the adhesive layer 20 has transparency (visible light transmittance).
  • the first PSA composition contains at least a base polymer.
  • the base polymer is an adhesive component that makes the adhesive layer 20 exhibit adhesiveness.
  • Base polymers include, for example, acrylic polymers, silicone polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyvinyl ether polymers, vinyl acetate/vinyl chloride copolymers, modified polyolefin polymers, epoxy polymers, fluoropolymers, and rubber polymers.
  • the base polymer may be used alone or in combination of two or more. From the viewpoint of ensuring good transparency and adhesiveness in the pressure-sensitive adhesive layer 20, an acrylic polymer is preferably used as the base polymer.
  • the acrylic polymer is a copolymer of monomer components containing 50% by mass or more of (meth)acrylic acid alkyl ester.
  • (Meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • the (meth)acrylic acid alkyl ester a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms is preferably used.
  • the (meth)acrylic acid alkyl ester may have a linear or branched alkyl group, or may have a cyclic alkyl group such as an alicyclic alkyl group.
  • Examples of (meth)acrylic acid alkyl esters having a linear or branched alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • Examples of (meth)acrylic acid alkyl esters having an alicyclic alkyl group include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring, and tricyclic (Meth)acrylic acid esters having the above aliphatic hydrocarbon ring can be mentioned.
  • Cycloalkyl (meth)acrylates include, for example, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, and cyclooctyl (meth)acrylate.
  • Examples of (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring include isobornyl (meth)acrylate.
  • (Meth)acrylic esters having a tricyclic or higher aliphatic hydrocarbon ring include, for example, dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, tricyclopentanyl (meth)acrylate , 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
  • an acrylate alkyl ester having an alkyl group having 3 to 15 carbon atoms is preferably used, and more preferably n-butyl acrylate, 2-ethylhexyl acrylate, and acrylic acid. At least one selected from the group consisting of dodecyl is used.
  • the ratio of the (meth)acrylic acid alkyl ester in the monomer component is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably from the viewpoint of appropriately expressing basic properties such as adhesiveness in the adhesive layer 20. is 70% by mass or more. The same ratio is, for example, 99% by mass or less.
  • the monomer component may contain a copolymerizable monomer that can be copolymerized with the (meth)acrylic acid alkyl ester.
  • copolymerizable monomers include monomers having a polar group.
  • Polar group-containing monomers include, for example, nitrogen atom-containing ring-containing monomers, hydroxy group-containing monomers, and carboxy group-containing monomers.
  • the polar group-containing monomer is useful for modifying the acrylic polymer, such as introducing cross-linking points into the acrylic polymer and securing the cohesive strength of the acrylic polymer.
  • Examples of monomers having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-(meth)acryloyl-2-pyrrolidone, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, N-vinylmorpholine, N-vinyl -3-morpholinone, N-vinyl-2-caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, N-vinylpyrazole, N-vinylisoxazole, N -vinylthiazole,
  • the ratio of the monomer having a nitrogen atom-containing ring in the monomer component is preferably 0.1 mass from the viewpoint of ensuring the cohesive force in the adhesive layer 20 and ensuring the adhesive strength of the adhesive layer 20 to the adherend. % or more, more preferably 0.3 mass % or more, and still more preferably 0.55 mass % or more.
  • the same ratio is preferably 30% by mass from the viewpoint of adjusting the glass transition temperature of the acrylic polymer and adjusting the polarity of the acrylic polymer (related to compatibility between various additive components and the acrylic polymer in the adhesive layer 20). Below, more preferably 20% by mass or less.
  • hydroxy group-containing monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, ( 4-hydroxybutyl meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl)methyl (meth)acrylate.
  • 4-hydroxybutyl (meth)acrylate is preferably used, and 4-hydroxybutyl acrylate is more preferably used.
  • the ratio of the hydroxy group-containing monomer in the monomer component is preferably 0.1% by mass or more, more preferably 0.5, from the viewpoint of introducing a crosslinked structure into the acrylic polymer and ensuring cohesive force in the pressure-sensitive adhesive layer 20. It is at least 0.8% by mass, more preferably at least 0.8% by mass. The same ratio is preferably 20% by mass or less, more preferably 10% by mass or less, from the viewpoint of adjusting the polarity of the acrylic polymer (related to compatibility between various additive components and the acrylic polymer in the pressure-sensitive adhesive layer 20). .
  • Carboxy group-containing monomers include, for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • the ratio of the carboxyl group-containing monomer in the monomer component is preferable from the viewpoint of introducing a crosslinked structure into the acrylic polymer, ensuring cohesive force in the adhesive layer 20, and ensuring adhesion to the adherend in the adhesive layer 20. is 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 0.8% by mass or more.
  • the same ratio is preferably 30% by mass or less, more preferably 20% by mass or less, from the viewpoints of adjusting the glass transition temperature of the acrylic polymer and avoiding the risk of acid corrosion of the adherend.
  • the adhesive layer 20 preferably has a small acid content.
  • the acid content of the adhesive layer 20 is preferably low in order to suppress polyene formation of the polyvinyl alcohol polarizer due to the acid component.
  • the content of organic acid monomers (for example, (meth)acrylic acid and carboxyl group-containing monomers) in such an acid-free pressure-sensitive adhesive layer 20 is preferably 100 ppm or less, more preferably 70 ppm or less, and still more preferably 50 ppm or less. be.
  • the organic acid monomer content of the adhesive layer 20 is obtained by quantifying the acid monomer extracted into water by immersing the adhesive layer 20 in pure water and heating at 100° C. for 45 minutes by ion chromatography. is required by
  • the base polymer in the pressure-sensitive adhesive layer 20 does not substantially contain an organic acid monomer as a monomer component.
  • the ratio of the organic acid monomer in the monomer component is preferably 0.5% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0.05% by mass. is 0% by mass.
  • the monomer component may contain other copolymerizable monomers.
  • Other copolymerizable monomers include, for example, acid anhydride monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, alkoxy group-containing monomers, and aromatic vinyl compounds. be done. These other copolymerizable monomers may be used alone, or two or more of them may be used in combination.
  • the base polymer has a crosslinked structure in this embodiment.
  • the base polymer having a functional group capable of reacting with the crosslinker and the crosslinker are blended in the first adhesive composition, and the base polymer and the crosslinker are added to the adhesive layer 20.
  • a base in which a polyfunctional monomer is included in the monomer components forming the base polymer and a branched structure (crosslinked structure) is introduced into the polymer chain by polymerization of the monomer components.
  • a method of forming a polymer (second method) is included. These methods may be used in combination.
  • cross-linking agent used in the first method examples include compounds that react with functional groups (hydroxy groups, carboxy groups, etc.) contained in the base polymer.
  • Such crosslinkers include, for example, isocyanate crosslinkers, peroxide crosslinkers, epoxy crosslinkers, oxazoline crosslinkers, aziridine crosslinkers, carbodiimide crosslinkers, and metal chelate crosslinkers.
  • the cross-linking agents may be used alone, or two or more of them may be used in combination.
  • an isocyanate cross-linking agent As the cross-linking agent, an isocyanate cross-linking agent, a peroxide cross-linking agent, and an epoxy cross-linking agent are preferably used because they are highly reactive with the hydroxy groups and carboxy groups in the base polymer and facilitate the introduction of a cross-linked structure. be done.
  • isocyanate cross-linking agents examples include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, isocyanates, and polymethylene polyphenyl isocyanates.
  • the isocyanate cross-linking agent also includes derivatives of these isocyanates.
  • isocyanate derivative examples include isocyanurate-modified products and polyol-modified products.
  • Commercially available isocyanate cross-linking agents include, for example, Coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh), Coronate HL (trimethylolpropane adduct of hexamethylene diisocyanate, manufactured by Tosoh), Coronate HX (hexa isocyanurate of methylene diisocyanate, manufactured by Tosoh), and Takenate D110N (trimethylolpropane adduct of xylylene diisocyanate, manufactured by Mitsui Chemicals).
  • Peroxide crosslinking agents include dibenzoyl peroxide, di(2-ethylhexyl)peroxydicarbonate, di(4-t-butylcyclohexyl)peroxydicarbonate, di-sec-butylperoxydicarbonate, t- butyl peroxyneodecanoate, t-hexyl peroxypivalate, and t-butyl peroxypivalate.
  • epoxy cross-linking agents include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether. , diglycidylaniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane.
  • An isocyanate cross-linking agent (especially a bifunctional isocyanate cross-linking agent) and a peroxide cross-linking agent are preferable from the viewpoint of ensuring appropriate flexibility (thus flexibility) of the pressure-sensitive adhesive layer 20 .
  • An isocyanate cross-linking agent (especially a trifunctional isocyanate cross-linking agent) is preferable from the viewpoint of ensuring the durability of the pressure-sensitive adhesive layer 20 .
  • difunctional isocyanate and peroxide crosslinkers form softer two-dimensional crosslinks, while trifunctional isocyanate crosslinkers form stronger three-dimensional crosslinks.
  • a trifunctional isocyanate cross-linking agent together with a peroxide cross-linking agent and/or a bifunctional isocyanate cross-linking agent.
  • the amount of the cross-linking agent is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, and more preferably 100 parts by mass of the base polymer. is 0.07 parts by mass or more.
  • the amount of the cross-linking agent blended with respect to 100 parts by mass of the base polymer is, for example, 10 parts by mass or less, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. is.
  • the monomer components may be polymerized at once or in multiple stages.
  • a monofunctional monomer for forming the base polymer is polymerized (prepolymerization), thereby containing a partially polymerized product (a mixture of a polymerized product with a low degree of polymerization and an unreacted monomer).
  • a prepolymer composition is prepared.
  • the partial polymer and the polyfunctional monomer are polymerized (main polymerization).
  • polyfunctional monomers examples include polyfunctional (meth)acrylates containing two or more ethylenically unsaturated double bonds in one molecule.
  • a polyfunctional acrylate is preferable from the viewpoint that a crosslinked structure can be introduced by active energy ray polymerization (photopolymerization).
  • Polyfunctional (meth)acrylates include bifunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional or higher polyfunctional (meth)acrylates.
  • bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol dimethacrylate, 1,6-hexanediol di (meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, neopentyl glycol di(meth)acrylate, stearic acid-modified pentaerythritol di(meth)acrylate, dicyclopentenyl diacrylate, Examples include di(meth)acryloyl isocyanurate and alkylene oxide-modified bisphenol di(meth)acrylate.
  • trifunctional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and tris(acryloyloxyethyl) isocyanurate.
  • Tetrafunctional or higher polyfunctional (meth)acrylates include, for example, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, and alkyl-modified dipentaerythritol pentaacrylate. , and dipentaerythritol hexa(meth)acrylate.
  • the molecular weight of the polyfunctional monomer is preferably 1500 or less, more preferably 1000 or less.
  • the functional group equivalent (g/eq) of the polyfunctional monomer is preferably 50 or more, more preferably 70 or more, and even more preferably 80 or more.
  • the functional group equivalent weight is preferably 500 or less, more preferably 300 or less, still more preferably 200 or less.
  • the acrylic polymer can be formed by polymerizing the above monomer components.
  • Polymerization methods include, for example, solution polymerization, active energy ray polymerization (eg, UV polymerization), bulk polymerization, and emulsion polymerization.
  • Solution polymerization and UV polymerization are preferred from the viewpoints of transparency, water resistance, and cost of the pressure-sensitive adhesive layer 20 .
  • Ethyl acetate and toluene for example, are used as solvents for solution polymerization.
  • a polymerization initiator for example, a thermal polymerization initiator and a photopolymerization initiator are used as a polymerization initiator.
  • the amount of the polymerization initiator to be used is, for example, 0.05 parts by mass or more and, for example, 1 part by mass or less with respect to 100 parts by mass of the monomer component.
  • Thermal polymerization initiators include, for example, azo polymerization initiators and peroxide polymerization initiators.
  • azo polymerization initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis(2-methylpropionate)dimethyl, 4,4'-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2- imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, and 2,2'-azobis(N,N'-dimethyleneisobutyramidine) dihydrochloride mentioned.
  • Peroxide polymerization initiators include, for example, dibenzoyl peroxide, t-butyl permaleate, and lauroyl peroxid
  • photopolymerization initiators examples include benzoin ether photopolymerization initiators, acetophenone photopolymerization initiators, ⁇ -ketol photopolymerization initiators, aromatic sulfonyl chloride photopolymerization initiators, photoactive oxime photopolymerization initiators, and benzoin photopolymerization initiators.
  • Initiators include benzyl photoinitiators, benzophenone photoinitiators, ketal photoinitiators, thioxanthone photoinitiators, and acylphosphine oxide photoinitiators.
  • a chain transfer agent and/or a polymerization inhibitor may be used for the purpose of molecular weight adjustment.
  • Chain transfer agents include ⁇ -thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and ⁇ -methylstyrene. Dimers are included.
  • the molecular weight of the base polymer can be adjusted by adjusting the type and/or amount of the polymerization initiator.
  • the type and/or amount of the polymerization initiator For example, in radical polymerization, the larger the amount of the polymerization initiator, the higher the radical concentration in the reaction system, the higher the density of reaction initiation points, and the smaller the molecular weight of the base polymer formed.
  • the smaller the amount of the polymerization initiator the lower the density of the reaction initiation points, the easier it is for the polymer chain to extend, and the greater the molecular weight of the base polymer formed.
  • the weight-average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more, from the viewpoint of securing the cohesive force in the pressure-sensitive adhesive layer 20 .
  • the weight-average molecular weight is preferably 5 million or less, more preferably 3 million or less, still more preferably 2 million or less.
  • the weight average molecular weight of the acrylic polymer is calculated by measuring by gel permeation chromatography (GPC) and converting to polystyrene.
  • the glass transition temperature (Tg) of the base polymer is preferably 0°C or lower, more preferably -10°C or lower, and even more preferably -20°C or lower.
  • the glass transition temperature is, for example, ⁇ 80° C. or higher.
  • the glass transition temperature (Tg) of the base polymer the glass transition temperature (theoretical value) obtained based on the following Fox formula can be used.
  • the Fox equation is a relational expression between the glass transition temperature Tg of a polymer and the glass transition temperature Tgi of a homopolymer of monomers constituting the polymer.
  • Tg represents the glass transition temperature (° C.) of the polymer
  • Wi represents the weight fraction of the monomer i constituting the polymer
  • Tgi represents the glass transition of the homopolymer formed from the monomer i.
  • Literature values can be used for the glass transition temperature of homopolymers.
  • glass transition temperature of a homopolymer of a monomer can also be determined by the method specifically described in JP-A-2007-51271.
  • the first adhesive composition may contain one or more oligomers in addition to the base polymer.
  • an acrylic polymer is used as the base polymer, preferably an acrylic oligomer is used as the oligomer.
  • the acrylic oligomer is a copolymer of monomer components containing 50% by mass or more of (meth)acrylic acid alkyl ester, and has a weight average molecular weight of, for example, 1,000 or more and 30,000 or less.
  • the glass transition temperature of the acrylic oligomer is preferably 60°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and particularly preferably 110°C or higher.
  • the glass transition temperature of the acrylic oligomer is, for example, 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower.
  • the combined use of a low-Tg acrylic polymer (base polymer) introduced with a cross-linked structure and a high-Tg acrylic oligomer can increase the adhesive strength of the pressure-sensitive adhesive layer 20, especially at high temperatures.
  • the glass transition temperature of the acrylic oligomer is calculated by the above Fox formula.
  • the acrylic oligomer having a glass transition temperature of 60° C. or higher is preferably a (meth)acrylic acid alkyl ester having a chain alkyl group (chain alkyl (meth)acrylate) and a (meth)acrylic acid having an alicyclic alkyl group. It is a polymer of a monomer component containing an acid alkyl ester (alicyclic alkyl (meth)acrylate). Specific examples of these (meth)acrylic acid alkyl esters include, for example, the (meth)acrylic acid alkyl esters described above as the monomer component of the acrylic polymer.
  • methyl methacrylate is preferable because it has a high glass transition temperature and excellent compatibility with the base polymer.
  • Preferred alicyclic alkyl (meth)acrylates are dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate and cyclohexyl methacrylate. That is, the acrylic oligomer is a monomer component containing methyl methacrylate and at least one selected from the group consisting of dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate. A coalescence is preferred.
  • the proportion of the alicyclic alkyl (meth)acrylate in the monomer component of the acrylic oligomer is preferably 10% by weight or more, more preferably 20% by weight or more, and even more preferably 30% by weight or more.
  • the same ratio is preferably 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
  • the proportion of chain alkyl (meth)acrylate in the monomer component of the acrylic oligomer is preferably 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
  • the ratio is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 30% by weight or more.
  • the weight average molecular weight of the acrylic oligomer is preferably 1,000 or more, more preferably 1,500 or more, and even more preferably 2,000 or more.
  • the molecular weight is preferably 30,000 or less, more preferably 10,000 or less, still more preferably 8,000 or less.
  • Such a molecular weight range of the acrylic oligomer is preferable for ensuring the adhesive strength and adhesive holding power of the pressure-sensitive adhesive layer 20 .
  • the acrylic oligomer is obtained by polymerizing the monomer component of the acrylic oligomer.
  • Polymerization methods include, for example, solution polymerization, active energy ray polymerization (eg, UV polymerization), bulk polymerization, and emulsion polymerization.
  • a polymerization initiator may be used, and a chain transfer agent may be used for the purpose of adjusting the molecular weight.
  • the content of the acrylic oligomer in the pressure-sensitive adhesive layer 20 is preferably 0.5 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the base polymer, in order to sufficiently increase the adhesive strength of the pressure-sensitive adhesive layer 20 . It is 8 parts by mass or more, more preferably 1 part by mass or more.
  • the content of the acrylic oligomer in the adhesive layer 20 is preferably 5 parts by mass or less, more preferably 4 parts by mass with respect to 100 parts by mass of the base polymer. 3 parts by mass or less, more preferably 3 parts by mass or less.
  • the pressure-sensitive adhesive layer 20 when the content of the acrylic oligomer is too large, the haze tends to increase and the transparency tends to decrease due to the decrease in compatibility of the acrylic oligomer.
  • the first adhesive composition may contain a silane coupling agent.
  • the content of the silane coupling agent in the first pressure-sensitive adhesive composition is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, relative to 100 parts by mass of the base polymer.
  • the content is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.
  • the first adhesive composition may contain other components as necessary.
  • Other ingredients include, for example, tackifiers, plasticizers, softeners, antidegradants, fillers, colorants, UV absorbers, antioxidants, surfactants, and antistatic agents.
  • the thickness of the adhesive layer 20 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoint of ensuring sufficient adhesion to the adherend.
  • the thickness of the pressure-sensitive adhesive layer 20 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less, from the viewpoint of handling.
  • the haze of the adhesive layer 20 is preferably 3% or less, more preferably 2% or less, and more preferably 1% or less.
  • the haze of the pressure-sensitive adhesive layer 20 can be measured using a haze meter according to JIS K7136 (2000). Examples of the haze meter include "NDH2000" manufactured by Nippon Denshoku Industries Co., Ltd. and "HM-150 type” manufactured by Murakami Color Research Laboratory.
  • the total light transmittance of the adhesive layer 20 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher.
  • the total light transmittance of the adhesive layer 20 is, for example, 100% or less.
  • the total light transmittance of the adhesive layer 20 can be measured according to JIS K 7375 (2008).
  • the adhesive layer 30 is a pressure-sensitive adhesive layer formed from the second adhesive composition.
  • the adhesive layer 30 has transparency.
  • the second PSA composition contains at least a base polymer. Examples of the base polymer contained in the second pressure-sensitive adhesive composition include the base polymers described above with respect to the first pressure-sensitive adhesive composition. The base polymer in the first PSA composition and the base polymer in the second PSA composition may be the same or different.
  • the second PSA composition may contain components other than the base polymer. Examples of the components contained in the second pressure-sensitive adhesive composition include the components other than the base polymer described above for the first pressure-sensitive adhesive composition.
  • the composition of the first pressure-sensitive adhesive composition and the composition of the second pressure-sensitive adhesive composition may be the same or different.
  • the thickness H of the adhesive layer 30 may be the same as or different from the thickness of the adhesive layer 20.
  • the thickness H of the pressure-sensitive adhesive layer 30 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoint of ensuring sufficient adhesion to the adherend.
  • the thickness of the pressure-sensitive adhesive layer 30 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, even more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less, from the viewpoint of handling.
  • the ratio of the thickness H of the adhesive layer 30 to the thickness of the adhesive layer 20 is, for example, 0.2 or more and 5 or less.
  • the haze of the adhesive layer 30 is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
  • the haze of the adhesive layer 30 can be measured using a haze meter according to JIS K7136 (2000).
  • the total light transmittance of the adhesive layer 30 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher.
  • the total light transmittance of the adhesive layer 30 is, for example, 100% or less.
  • the total light transmittance of the adhesive layer 30 can be measured according to JIS K 7375 (2008).
  • a pixel panel for a foldable display can be used. Pixel panels include organic EL panels and liquid crystal panels.
  • the thickness of the base material 40 is, for example, 10 ⁇ m or more and, for example, 150 ⁇ m or less.
  • the substrate 40 may be, for example, a flexible plastic film.
  • the plastic film for example, a plastic film to be described later regarding the release film 50 can be used.
  • Examples of the release film 50 include a flexible plastic film.
  • Examples of the plastic film include polyethylene terephthalate film, polyethylene film, polypropylene film, and polyester film.
  • the thickness of the release film 50 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the surface of the release film 50 is preferably release-treated. Release treatments include, for example, silicone release treatments and fluorine release treatments.
  • the peel starting force F1 and the peel force F2 for peeling the peel film 50 from the pressure-sensitive adhesive layer 30 can be adjusted by the presence or absence of the peel treatment, selection of the type, and adjustment of the conditions.
  • the optical laminate X can be manufactured, for example, as follows.
  • the optical film 10, the adhesive layer 20 with the first release film, and the adhesive layer 30 with the second release film are prepared (preparation step).
  • the pressure-sensitive adhesive layer 20 with the first release film can be formed by applying the first pressure-sensitive adhesive composition (varnish) on the first release film to form a coating film, and then drying the coating film.
  • the method of applying the first pressure-sensitive adhesive composition include roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, Lip coating and die coating can be mentioned (the same applies to the method of applying the second pressure-sensitive adhesive composition, which will be described later).
  • Another release film may be laminated on the adhesive layer 20 on the first release film. This peeling film is peeled off before bonding the optical film 10 and the pressure-sensitive adhesive layer 20 together.
  • the pressure-sensitive adhesive layer 30 with the second release film can be formed by applying the second pressure-sensitive adhesive composition (varnish) on the second release film to form a coating film, and then drying the coating film.
  • Another release film may be laminated on the adhesive layer 30 on the second release film. This peeling film is peeled off before bonding the optical film 10 and the adhesive layer 30 together.
  • first bonding step the first surface 11 of the optical film 10 and the pressure-sensitive adhesive layer 20 side of the pressure-sensitive adhesive layer 20 with the first release film are bonded together.
  • second surface 12 of the optical film 10 and the pressure-sensitive adhesive layer 30 side of the pressure-sensitive adhesive layer 30 with the second release film are bonded together (second bonding step).
  • first bonding step the second surface 12 of the optical film 10 and the pressure-sensitive adhesive layer 30 side of the pressure-sensitive adhesive layer 30 with the second release film are bonded together.
  • second bonding step a layered body as the optical layered body X with an unprocessed outer peripheral edge is obtained.
  • the first surface 11 and the second surface 12 of the optical film 10 the exposed surface of the first release film-attached pressure-sensitive adhesive layer 20, and the second release film-attached pressure-sensitive adhesive layer 30 are exposed before the bonding.
  • a face is plasma treated.
  • the laminate is held by a jig that sandwiches the laminate in the thickness direction. It is adjusted so that it protrudes from the side end face of , to a predetermined extent (pressurization and holding step).
  • pressurization and holding step By adjusting the applied pressure, the degree of elastic deformation of the pressure-sensitive adhesive layers 20 and 30 can be adjusted, and therefore the length protruding from the side end face of the laminate can be adjusted.
  • the pressure-sensitive adhesive layers 20 and 30 are elastically deformed so as to protrude from the side end face of the laminate, all or part of the outer peripheral end of the laminate is newly formed inside a predetermined length from the side end face of the laminate. (cutting step).
  • the predetermined length is, for example, 0.1 mm or more and, for example, 1 mm or less.
  • the laminate is released from the pressurized state by the jig.
  • the adhesive layers 20 and 30 are elastically restored, and the edges 22 and 32 of the adhesive layers 20 and 30 are separated from the edges 13, 42 and 52 of the optical film 10, the substrate 40 and the release film 50. also retreat inward in the surface direction D. In this way, the uneven side edge E is formed.
  • the length of the adhesive layers 20 and 30 protruding from the side end surfaces of the laminate can be adjusted.
  • Retraction lengths d1 and d2 of the edges 22 and 32 after pressure release can be adjusted.
  • adjustment of the thickness and elastic modulus of the pressure-sensitive adhesive layer 20 can also be exemplified as a method for adjusting the retraction length d1.
  • Methods for adjusting the retraction length d2 include adjusting the thickness and elastic modulus of the pressure-sensitive adhesive layer 30, as described above.
  • the side uneven end portion E is formed.
  • Adjustment of the cutting conditions in the cutting step is carried out using a rotary blade.
  • the cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed.
  • the substrate 40 is bonded to the adhesive layer 20 exposed by the peeling (third bonding step).
  • optical layered body X optical layered body
  • the optical layered body X may be manufactured in the same manner as the above manufacturing method except for the following.
  • the adhesive layer 20 with the first release film instead of the adhesive layer 20 with the first release film, the adhesive layer 20 with the substrate 40 is prepared, and in the first bonding step, the first surface 11 of the optical film 10 and the substrate 40 are attached.
  • the pressure-sensitive adhesive layer 20 side of the pressure-sensitive adhesive layer 20 is bonded together, and the third bonding step is not performed.
  • the optical layered body X can also be manufactured by such a method.
  • 5A and 5B show an example of how the optical laminate X is used.
  • the release film 50 is peeled off from the adhesive layer 30 of the optical laminate X as shown in FIG. 5A.
  • a force is applied to the edge of the release film 50 at the uneven side edge E to release the release film 50 from the adhesive layer 30. do.
  • the adhesive surface 31 of the adhesive layer 30 is exposed.
  • the edge 32 of the adhesive layer 30 is retreated from the edges 13 and 52 of the optical film 10 and the release film 50 in the surface direction D as described above.
  • the release film 50 has a free portion 50a to which the pressure-sensitive adhesive layer 30 is not adhered, as described above with reference to FIG. Therefore, when peeling the release film 50 from the adhesive layer 30, the free portion 50a of the release film 50 is first turned up and deformed as shown by the phantom lines in FIG.
  • the release film 50 can be separated from the edge 32 of the pressure-sensitive adhesive layer 30 by pulling the free portion 50a that has already been turned up and deformed.
  • the force (first force) for sufficiently deforming the free portion 50a of the release film 50 and the edge 32 of the adhesive layer 30 elastically deforming following the deformation of the release film 50 are applied.
  • a force (second force) for pulling the release film 50 away from is not required at the same time.
  • Such an optical layered body X is suitable for reducing the force required for the peel initiation process. The smaller this force is, the more the deformation of the thin optical film 10 with a thickness of 100 ⁇ m or less is suppressed in the process of starting the peeling of the release film 50 , and the crack generation at the edge of the film is suppressed.
  • the optical film 10 and the member M are bonded with the adhesive layer 30 interposed therebetween.
  • the member M is, for example, one element in the laminated structure of the flexible panel. Such elements include, for example, pixel panels, touch panels, and surface protective films.
  • the optical laminate X is used as described above.
  • Example 1 ⁇ Production of first adhesive sheet> A first pressure-sensitive adhesive sheet in Example 1 was produced as follows.
  • 2EHA 2-ethylhexyl acrylate
  • BA n-butyl acrylate
  • lauryl acrylate lauryl acrylate
  • LA 8 parts by mass
  • 4-hydroxybutyl acrylate (4HBA) 1 part by mass
  • N-vinyl-2-pyrrolidone (NVP) 0.6 parts by mass
  • 2,2′- as a thermal polymerization initiator
  • AIBN azobisisobutyronitrile
  • ethyl acetate as a solvent
  • solid concentration 47% by mass
  • first adhesive composition To the first polymer solution, 1.5 parts by mass of acrylic oligomer per 100 parts by mass of the solid content of the polymer solution and 0.5 parts by mass of the first cross-linking agent (product name "Nyper BMT-40SV", dibenzoyl peroxide, manufactured by NOF) were added. 26 parts by mass, a second cross-linking agent (product name "Coronate L”, trimethylolpropane / tolylene diisocyanate trimer adduct, manufactured by Tosoh) 0.02 parts by mass, a silane coupling agent (product name "KBM403", Shin-Etsu Kagaku Kogyo Co., Ltd.) was added and mixed to prepare a first adhesive composition.
  • a second cross-linking agent product name "Coronate L", trimethylolpropane / tolylene diisocyanate trimer adduct, manufactured by Tosoh
  • silane coupling agent product name "KBM403", Shin-Etsu Kag
  • a coating film was formed by applying the first pressure-sensitive adhesive composition onto the release-treated surface of release film L1, one surface of which had been subjected to silicone release treatment.
  • the release film L1 is a polyethylene terephthalate (PET) film (product name “Diafoil MRF50”, thickness 50 ⁇ m, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment.
  • PET polyethylene terephthalate
  • the release-treated surface of the release film L2 one side of which was subjected to silicone release treatment, was attached to the coating film on the release film L1.
  • the release film L2 is a PET film (product name: “DIAFOIL MRV75”, thickness: 75 ⁇ m, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment.
  • the coating film sandwiched between the release film L1 and the release film L2 is dried by heating at 100° C. for 1 minute and then heating at 150° C. for 3 minutes to form a transparent first adhesive having a thickness of 50 ⁇ m.
  • a first pressure-sensitive adhesive sheet consisting of an agent layer was formed. As described above, the first pressure-sensitive adhesive sheets with release films L1 and L2 were produced.
  • a second pressure-sensitive adhesive sheet in Example 1 was produced as follows.
  • ⁇ Preparation of second acrylic base polymer 99 parts by mass of butyl acrylate (BA), 1 part by mass of 4-hydroxybutyl acrylate (4HBA), and thermal polymerization start in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube.
  • a mixture containing 0.3 parts by mass of 2,2′-azobisisobutyronitrile (AIBN) as an agent and ethyl acetate as a solvent was stirred at 60° C. for 4 hours under a nitrogen atmosphere (polymerization reaction ).
  • the weight average molecular weight of the second acrylic base polymer in this polymer solution was 1,650,000.
  • ⁇ Preparation of second adhesive composition> In the second polymer solution, 0.3 parts by mass of the first cross-linking agent (product name "Niper BMT-40SV", dibenzoyl peroxide, manufactured by NOF) per 100 parts by mass of the solid content of the polymer solution, and the third cross-linking agent (product name “Takenate D110N”, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals) 0.1 parts by mass and 0.3 parts by mass of a silane coupling agent (product name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) are added and mixed. Then, a second adhesive composition was prepared.
  • the first cross-linking agent product name "Niper BMT-40SV", dibenzoyl peroxide, manufactured by NOF
  • the third cross-linking agent product name “Takenate D110N”, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals
  • a coating film was formed by applying the second pressure-sensitive adhesive composition onto the release-treated surface of release film L3, one surface of which had been subjected to silicone release treatment.
  • the release film L3 is a polyethylene terephthalate (PET) film (product name: "Diafoil MRF50", thickness: 50 ⁇ m, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment.
  • PET polyethylene terephthalate
  • the release-treated surface of the release film L4 one side of which was subjected to silicone release treatment, was attached to the coating film on the release film L3.
  • the release film L4 is a PET film (product name: "DIAFOIL MRV75", thickness: 75 ⁇ m, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment.
  • the coating film sandwiched between the release film L3 and the release film L4 is dried by heating at 100° C. for 1 minute and then heating at 150° C. for 3 minutes to obtain a transparent second adhesive having a thickness of 50 ⁇ m.
  • a second pressure-sensitive adhesive sheet consisting of an agent layer was formed. As described above, the second adhesive sheets with release films L3 and L4 were produced.
  • the release film L2 was peeled off from the first pressure-sensitive adhesive sheet with a double-sided release film, and the exposed surface thereby exposed was plasma-treated.
  • both surfaces (first surface and second surface) of the polarizing plate having a thickness of 31 ⁇ m were also plasma-treated.
  • a plasma irradiation device product name “AP-TO5”, manufactured by Sekisui Kogyo Co., Ltd.
  • the voltage was 160 V
  • the frequency was 10 kHz
  • the treatment speed was 5000 mm / min (also in the plasma treatment described later similar).
  • the exposed surface of the first adhesive sheet and the first surface of the polarizing plate were bonded together.
  • the first pressure-sensitive adhesive sheet with the release film L1 and the polarizing plate were pressure-bonded by reciprocating a 2-kg roller one time in an environment of 25°C.
  • the release film L3 was peeled off from the second adhesive sheet with the release films L3 and L4, and the exposed surface was plasma-treated. Then, the exposed surface of the second adhesive sheet and the second surface of the polarizing plate were bonded together. In this bonding, the second pressure-sensitive adhesive sheet with the release film L4 and the polarizing plate were pressure-bonded by reciprocating a 2-kg roller one time in an environment of 25°C. As a result, a laminated film having a laminated configuration of a first adhesive sheet with a release film L1 (thickness of 50 ⁇ m), a polarizing plate, and a second adhesive sheet with a release film L4 (thickness of 75 ⁇ m) was obtained.
  • the laminated film was punched into a size of 150 mm x 120 mm (punching process).
  • a laminate was obtained by stacking 50 laminate films punched into the same size. Specifically, in adjacent laminated films, 50 laminated films are laminated so that the release film L1 (first release film) of one laminated film and the release film L4 (second release film) of the other laminated film are in contact. The films were stacked to obtain a laminate.
  • This laminate has one surface in the thickness direction (first surface layer surface) on which the first release film is arranged, and the other surface in the thickness direction (second surface layer surface) on which the second release film is arranged. ) and Next, this laminate was held by jigs that sandwiched in the thickness direction.
  • the protruding blade 70 has a linear knife edge 71 (length 6 mm) that cuts the object 80 at the edge on the front side when the rotary blade rotates.
  • the rotary blades are rotated with respect to the laminate so that each protruding blade 70 cuts into the laminate (cutting target 80) from the second surface side, and the rotation speed of the rotary blade is set to 4500 rpm.
  • the displacement speed of the rotary blade with respect to the laminated body is 1000 mm/min
  • the elevation angle (blade angle ⁇ ) of the knife edge 71 facing the laminated body just before cutting is +5° (blade angle ⁇ ) with respect to the laminated body surface (second surface layer surface) 6A) (when the blade angle ⁇ opens outward in the disk radial direction as shown in FIG. 6A, the blade angle ⁇ is positive, and when the blade angle ⁇ opens inward in the disk radial direction as shown in FIG. 6B, the blade angle ⁇ is negative. is the blade angle ⁇ ).
  • the laminate was released from the pressurized state by the jig.
  • a polyimide film product name “Kapton”, thickness 50 ⁇ m, thickness 50 ⁇ m, Toray DuPont Co. was pasted together.
  • the optical laminate of Example 1 was manufactured as described above.
  • the optical laminate of Example 1 includes a polyimide film (thickness of 50 ⁇ m) as a substrate, a first adhesive layer (thickness of 50 ⁇ m), a polarizing plate (thickness of 31 ⁇ m) as an optical film, and a second adhesive An agent layer (thickness 50 ⁇ m) and a release film L4 (thickness 75 ⁇ m) are provided in order in the thickness direction.
  • the edges of the first and second pressure-sensitive adhesive layers are retreated from the edges of the films in the film surface direction.
  • the edges of the substrate, the optical film, and the release film are substantially at the same position in the in-plane direction of the film. Therefore, the retraction length d2′ of the edge of the second adhesive layer from the edge of the release film is substantially equal to the retraction length d2 of the edge of the second adhesive layer from the edge of the optical film. .
  • Example 2 to 4 Optical laminates of Examples 2 to 4 were produced in the same manner as the optical laminate of Example 1 except for the following.
  • Example 2 the above-described blade angle ⁇ during contour processing was adjusted so that the absolute value was larger on the positive side than in Example 1.
  • Example 3 the above-mentioned blade angle ⁇ during outer shape processing is adjusted to be more negative than in Example 1, and the above-mentioned rotary blade rotation speed during the same processing is adjusted to be lower than in Example 1. I adjusted it to be late.
  • Example 4 the layout of the laminate with respect to the rotary blade was reversed from that of Example 3 in the outer shape processing.
  • Comparative Example 1 An optical layered body of Comparative Example 1 was produced in the same manner as the optical layered body of Example 1, except that the outer shape processing step was not performed.
  • the laminate first adhesive layer/optical film/second adhesive layer/release film
  • the release film was peeled off from the laminate on the glass plate.
  • a predetermined portion selected from the outer peripheral edge of the laminate (first pressure-sensitive adhesive layer/optical film/second pressure-sensitive adhesive layer) on the glass plate was observed with an optical microscope. Specifically, the laminate was observed and photographed in the thickness direction with an optical microscope from the side opposite to the glass plate.
  • a test piece for measurement (approximately 25 mm short side x 150 mm long side) was cut out from the optical layered body. Specifically, a test piece having a length of about 150 mm and a width of 25 mm was cut from the same film from the edge of the uneven side surface of the optical layered body.
  • test piece was fixed to the fixing table of the tensile tester (product name "Autograph", manufactured by Shimadzu Corporation). Specifically, after peeling and removing the substrate from the test piece, the test piece (first adhesive layer / optical film / second adhesive layer / release film) was attached to the fixing table.
  • a gripping tape was attached to the short side of the release film located on the exposed surface side of the test piece, on the side of the uneven end of the side surface.
  • This gripping tape had a strong adhesive surface, and the gripping tape was attached to the release film of the test piece via the strong adhesive surface.
  • Table 1 shows the peel starting force F1 (gf/25 mm) and the peel force F2 (gf/25 mm) determined by the above peel test.
  • the peel starting force F1 is the maximum value of the peel strength within a peel length of 20 mm when the peel film is peeled from the second adhesive layer
  • the peel force F2 is the peel length of 20 to 100 mm (the peel strength is It is the average value of the peel strength when the peel strength is stable after passing through the peel initiation force F1 at the start of peeling.
  • optical layered body of the present invention is used, for example, in the manufacture of foldable display panels.
  • optical film (optical laminate) Y optical film with adhesive layer E side uneven edge T thickness direction 10 optical film 11 first surface 12 second surface 13 edge 20, 30 adhesive layer 21, 31 adhesive surface 22 edge (first edge) 32 edge (second edge) 40 Base material 42 Edge 50 Release film 52 Edge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

This optical layered body (X) includes: an optical film (10); a pressure-sensitive adhesive layer (20, 30); a substrate (40); and a release film (50). The optical film (10) has a thickness of 100 μm or less. The optical layered body (X) includes a lateral-surface uneven edge section (E). In the lateral-surface uneven edge section (E), the end edge (32) of the pressure-sensitive adhesive layer (30) is retracted more than the end edges of the optical film (10) and the release film (50), in a surface direction (D) orthogonal to the thickness direction (T) of the optical film (10).

Description

光学積層体optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 ディスプレイパネルは、例えば、画素パネル、タッチパネル、および表面保護フィルムなどを含む積層構造を有する。ディスプレイパネルの積層構造中には、所定の光学機能を有する光学フィルムが設けられる。光学フィルムとしては、例えば、フィルム状の偏光板、および位相差フィルムが挙げられる。ディスプレイパネルの製造過程では、例えば、光学フィルムが画素パネル上に設けられた光学積層体が、中間製造物として作製される。当該光学積層体は、画素パネルと、粘着剤層と、光学フィルムと、粘着剤層と、剥離フィルムとを厚さ方向に順に備える。また、ディスプレイパネルの製造過程では、例えば、表面保護フィルムと、粘着剤層と、光学フィルムと、粘着剤層と、剥離フィルムとを厚さ方向に順に備える光学積層体が、中間製造物として作製される。このような光学積層体については、例えば下記の特許文献1に記載されている。 A display panel has a laminated structure including, for example, a pixel panel, a touch panel, and a surface protective film. An optical film having a predetermined optical function is provided in the laminated structure of the display panel. Examples of optical films include film-like polarizing plates and retardation films. In the process of manufacturing a display panel, for example, an optical laminate in which an optical film is provided on a pixel panel is produced as an intermediate product. The optical laminate includes a pixel panel, an adhesive layer, an optical film, an adhesive layer, and a release film in order in the thickness direction. Further, in the manufacturing process of the display panel, for example, an optical laminate having a surface protective film, an adhesive layer, an optical film, an adhesive layer, and a release film in order in the thickness direction is produced as an intermediate product. be done. Such an optical layered body is described, for example, in Patent Document 1 below.
特開2020-190754号公報JP 2020-190754 A
 図8は、従来の光学積層体の一例としての光学積層体Zの断面模式図である。光学積層体Zは、基材91と、粘着剤層92と、光学フィルム93と、粘着剤層94と、剥離フィルム95とを厚さ方向Tに順に備える。基材91は、例えば画素パネルである。光学フィルム93の厚さ方向Tの一方面は、粘着剤層92を介して基材91に接合されている。粘着剤層94は、光学フィルム93の他方面に貼着している。剥離フィルム95は、粘着剤層94に剥離可能に貼着している。光学積層体Zの端部E’では、基材91の端縁91eと、粘着剤層92の端縁92eと、光学フィルム93の端縁93eと、粘着剤層94の端縁94eと、剥離フィルム95の端縁95eとが、互いに面一である。 FIG. 8 is a schematic cross-sectional view of an optical layered body Z as an example of a conventional optical layered body. The optical laminate Z includes a substrate 91, an adhesive layer 92, an optical film 93, an adhesive layer 94, and a release film 95 in the thickness direction T in this order. The substrate 91 is, for example, a pixel panel. One surface of the optical film 93 in the thickness direction T is bonded to the substrate 91 via the adhesive layer 92 . The adhesive layer 94 is adhered to the other surface of the optical film 93 . The release film 95 is attached to the adhesive layer 94 in a detachable manner. At the edge E′ of the optical layered body Z, the edge 91e of the substrate 91, the edge 92e of the adhesive layer 92, the edge 93e of the optical film 93, the edge 94e of the adhesive layer 94, and the peeling The edge 95e of the film 95 is flush with each other.
 このような光学積層体Zがディスプレイパネルの製造過程で用いられる場合、粘着剤層94から剥離フィルム95が剥離される(剥離工程)。この工程では、まず、光学積層体Zの端部E’において、剥離フィルム95を粘着剤層94からめくり上げるための力が、剥離開始用の負荷として、剥離フィルム95に与えられる。この負荷には、端部E’において剥離フィルム95を充分に変形させるのに要する力と、剥離フィルム95の変形に追随して弾性変形する粘着剤層94から剥離フィルム95を引き離すために要する力とが、共に含まれる。端部E’においては、このような負荷の付与により、剥離フィルム95の端部が、粘着剤層94の端縁94eから引き離されるように変形される。これに続いて、剥離フィルム95と粘着剤層94との間の引き離しが進行するように、剥離フィルム95の端部が端縁94eから離れる方向に引っ張られ、粘着剤層94から剥離フィルム95が外される。この後、露出した粘着剤層94を介して、表面保護フィルムなどの被着体(図示略)と光学フィルム93とが接合される。 When such an optical laminate Z is used in the manufacturing process of a display panel, the peeling film 95 is peeled off from the adhesive layer 94 (peeling step). In this step, first, at the end E′ of the optical layered body Z, a force for peeling up the release film 95 from the adhesive layer 94 is applied to the release film 95 as a load for starting peeling. This load includes the force required to sufficiently deform the release film 95 at the end E′ and the force required to separate the release film 95 from the adhesive layer 94 elastically deforming following the deformation of the release film 95. are included together. At the end E′, the end of the release film 95 is deformed so as to be separated from the edge 94 e of the pressure-sensitive adhesive layer 94 by applying such a load. Subsequently, the end of the release film 95 is pulled away from the edge 94 e so that the separation between the release film 95 and the adhesive layer 94 progresses, and the release film 95 is separated from the adhesive layer 94 . removed. After that, an adherend (not shown) such as a surface protection film and the optical film 93 are bonded through the exposed adhesive layer 94 .
 一方、例えばスマートフォン用およびタブレット端末用に、繰り返し折り曲げ可能(フォルダブル)なディスプレイパネルの開発が進んでいる。フォルダブルなディスプレイパネルでは、積層構造中の各要素が薄くてフレキシブルであることが求められる。 On the other hand, the development of display panels that can be repeatedly folded (foldable) for smartphones and tablet terminals, for example, is progressing. Foldable display panels require that each element in the laminate structure be thin and flexible.
 しかしながら、従来の光学積層体Zでは、光学フィルム93が薄いほど、上述の剥離工程での剥離開始用の負荷が、光学フィルム93の端部の有意な変形を引き起こしやすい。光学フィルム93の端部の変形は、当該端部におけるクラックの原因となり、好ましくない。 However, in the conventional optical laminate Z, the thinner the optical film 93 is, the more likely the load for starting peeling in the peeling process described above causes significant deformation of the end portion of the optical film 93 . Deformation of the edge of the optical film 93 causes cracks at the edge, which is not preferable.
 本発明は、粘着剤層付きの薄い光学フィルムから、当該光学フィルムにおける端部クラックを抑制しつつ剥離フィルムを剥離するのに適した、光学積層体を提供する。 The present invention provides an optical laminate suitable for peeling a release film from a thin optical film with an adhesive layer while suppressing edge cracks in the optical film.
 本発明[1]は、基材と、第1粘着剤層と、光学フィルムと、第2粘着剤層と、剥離フィルムとを厚さ方向にこの順で備える、光学積層体であって、前記光学フィルムが100μm以下の厚さを有し、前記光学フィルムの前記厚さ方向と直交する面方向において、前記光学フィルムおよび前記剥離フィルムの各端縁よりも、前記第2粘着剤層の端縁が退避している、側面凹凸端部を有する、光学積層体を含む。 The present invention [1] is an optical laminate comprising a substrate, a first pressure-sensitive adhesive layer, an optical film, a second pressure-sensitive adhesive layer, and a release film in this order in the thickness direction, The optical film has a thickness of 100 μm or less, and the edge of the second pressure-sensitive adhesive layer is closer than the edges of the optical film and the release film in the plane direction perpendicular to the thickness direction of the optical film. includes an optical stack having a ridged side edge with a retracted .
 本発明の光学積層体の側面凹凸端部では、上記のように、光学フィルムの面方向において、当該光学フィルムおよび剥離フィルムの各端縁よりも、第2粘着剤層の端縁が退避している。このような側面凹凸端部では、剥離フィルムが、第2粘着剤層が貼着していないフリーな部分を有する。そのため、側面凹凸端部では、第2粘着剤層から剥離フィルムを剥離するにあたり、まず、剥離フィルムのフリー部分をめくり上げて変形させ、その後に、既にめくり上げ変形している剥離フィルムの端部を引っ張って、剥離フィルムを第2粘着剤層の端縁から引き離すことができる。すなわち、剥離開始過程において、剥離フィルムの端部を充分に変形させるための力(第1の力)と、剥離フィルムの変形に追随して弾性変形する第2粘着剤層の端縁から剥離フィルムを引き離すための力(第2の力)とが、同時には必要ない(これに対し、上述の光学積層体Zでは、第1の力と第2の力とが同時に必要であり、従って、剥離開始過程に要する力が大きい)。このような光学積層体は、剥離開始過程に要する力を低減するのに適する。この力が小さいほど、剥離フィルムの剥離開始過程において、厚さ100μm以下と薄い光学フィルムの端部の変形が抑制され、同フィルムの端部において、クラックの発生が抑制される。このように、本発明の光学積層体は、粘着剤層付きの薄い光学フィルムから、当該光学フィルムにおける端部クラックを抑制しつつ剥離フィルムを剥離するのに適する。 As described above, at the uneven side edge of the optical laminate of the present invention, the edge of the second pressure-sensitive adhesive layer is retreated from the edges of the optical film and the release film in the surface direction of the optical film. there is At such a side uneven end portion, the release film has a free portion to which the second pressure-sensitive adhesive layer is not adhered. Therefore, when peeling the release film from the second adhesive layer, the free part of the release film is first turned up and deformed, and then the end of the release film that has already been turned up and deformed. can be pulled to separate the release film from the edge of the second adhesive layer. That is, in the peeling initiation process, the force (first force) for sufficiently deforming the end of the release film, and the peeling film from the edge of the second adhesive layer that elastically deforms following the deformation of the release film (In contrast, the above-described optical layered body Z requires the first force and the second force at the same time. the force required for the initiation process is large). Such an optical laminate is suitable for reducing the force required for the peel initiation process. The smaller this force is, the less the deformation of the edge of the thin optical film with a thickness of 100 μm or less is in the starting process of peeling of the release film, and the less the generation of cracks at the edge of the film. Thus, the optical laminate of the present invention is suitable for peeling a release film from a thin optical film with an adhesive layer while suppressing edge cracks in the optical film.
 本発明[2]は、前記側面凹凸端部では、前記面方向において、前記剥離フィルムの端縁からの前記第2粘着剤層の端縁の退避長さが20μm以上である、上記[1]に記載の光学積層体を含む。 The present invention [2] is the above-mentioned [1], wherein, at the side uneven end portion, the retraction length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film is 20 μm or more in the surface direction. The optical laminate described in .
 このような構成は、剥離フィルムの剥離開始過程において、第2粘着剤層の端縁からの剥離フィルムの引き離しの前に、剥離フィルムの端部(上記フリー部分)を充分にめくり上げて変形させるのに好ましく、従って、剥離フィルムの剥離開始に要する力を低減するのに好ましい。 In such a configuration, in the process of starting peeling of the release film, before the release film is separated from the edge of the second pressure-sensitive adhesive layer, the end of the release film (the free portion) is sufficiently turned up and deformed. and therefore to reduce the force required to initiate peeling of the release film.
 本発明[3]は、前記側面凹凸端部では、前記面方向において、前記光学フィルムおよび前記基材の各端縁よりも、前記第1粘着剤層の端縁が退避している、上記[1]または[2]に記載の光学積層体を含む。 The present invention [3] is the above [ 1] or includes the optical layered body according to [2].
 このような構成は、剥離フィルムの剥離開始過程において、第2粘着剤層の端縁から剥離フィルムを引き離すための上記第2の力が光学積層体に対して作用する時に、第1粘着剤層の変形を抑制するのに好ましく、従って、第1粘着剤層の端縁が光学フィルムおよび基材から離れることを抑制するのに好ましい。 With such a configuration, when the second force for separating the release film from the edge of the second pressure-sensitive adhesive layer acts on the optical layered body in the process of starting peeling of the release film, the first pressure-sensitive adhesive layer is preferable for suppressing the deformation of the first pressure-sensitive adhesive layer, and therefore it is preferable for suppressing separation of the edge of the first pressure-sensitive adhesive layer from the optical film and the substrate.
 本発明[4]は、前記側面凹凸端部では、前記面方向において、前記光学フィルムの端縁からの前記第1粘着剤層の端縁の退避長さより、前記光学フィルムの端縁からの前記第2粘着剤層の端縁の退避長さが小さい、上記[3]に記載の光学積層体を含む。 The present invention [4] is characterized in that, in the side uneven end portion, the distance from the edge of the optical film is less than the retraction length of the edge of the first pressure-sensitive adhesive layer from the edge of the optical film in the plane direction. The optical layered product according to [3] above, in which the edge of the second pressure-sensitive adhesive layer has a small withdrawal length.
 このような構成は、剥離フィルムの剥離開始過程において、第2粘着剤層の端縁から剥離フィルムを引き離すための上記第2の力が光学積層体に対して作用する時に、第1粘着剤層の変形を抑制するのに好ましく、従って、第1粘着剤層の端縁が光学フィルムおよび基材から離れることを抑制するのに好ましい。 With such a configuration, when the second force for separating the release film from the edge of the second pressure-sensitive adhesive layer acts on the optical layered body in the process of starting peeling of the release film, the first pressure-sensitive adhesive layer is preferable for suppressing the deformation of the first pressure-sensitive adhesive layer, and therefore it is preferable for suppressing separation of the edge of the first pressure-sensitive adhesive layer from the optical film and the substrate.
 本発明[5]は、前記面方向における前記第1粘着剤層の端縁と前記第2粘着剤層の端縁との間の距離が1μm以上である、上記[1]から[4]のいずれか一つに記載の光学積層体を含む。 The present invention [5] is the above [1] to [4], wherein the distance between the edge of the first adhesive layer and the edge of the second adhesive layer in the surface direction is 1 μm or more. The optical laminated body as described in any one is included.
 このような構成は、剥離フィルムの剥離開始過程において、第1粘着剤層の上述の変形を抑制するのに好ましく、従って、第1粘着剤層の端縁が光学フィルムおよび基材から離れることを抑制するのに好ましい。 Such a configuration is preferable for suppressing the above-described deformation of the first pressure-sensitive adhesive layer in the process of starting peeling of the release film. preferred to suppress.
 本発明[6]は、前記第2粘着剤層の厚さに対する、前記剥離フィルムの端縁からの前記第2粘着剤層の端縁の退避長さの比率が、0.4以上8以下である、上記[1]から[5]のいずれか一つに記載の光学積層体を含む。 In the present invention [6], the ratio of the retracted length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film to the thickness of the second pressure-sensitive adhesive layer is 0.4 or more and 8 or less. The optical laminate according to any one of [1] to [5] above is included.
 このような構成は、剥離フィルムの剥離開始過程において、第2粘着剤層の端縁からの剥離フィルムの引き離しの前に、剥離フィルムの端部(上記フリー部分)を充分にめくり上げて変形させるのに好ましく、従って、剥離フィルムの剥離開始に要する力(総力)を低減するのに好ましい。 In such a configuration, in the process of starting peeling of the release film, before the release film is separated from the edge of the second pressure-sensitive adhesive layer, the end of the release film (the free portion) is sufficiently turned up and deformed. Therefore, it is preferable to reduce the force (total force) required to initiate peeling of the release film.
 本発明[7]は、前記第2粘着剤層からの前記剥離フィルムの剥離を開始するための剥離開始力が800gf/25mm以下である、上記[1]から[6]のいずれか一つに記載の光学積層体を含む。 The present invention [7] is any one of [1] to [6] above, wherein the peel initiation force for starting the peeling of the release film from the second pressure-sensitive adhesive layer is 800 gf / 25 mm or less. The described optical laminate is included.
 このような構成は、第2粘着剤層からの剥離フィルムの剥離開始過程において、光学フィルムへの負荷を低減するのに好ましい。 Such a configuration is preferable for reducing the load on the optical film in the process of starting to peel the release film from the second pressure-sensitive adhesive layer.
本発明の光学積層体の一実施形態の断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram of one Embodiment of the optical laminated body of this invention. 図1に示す光学積層体の側面凹凸端部の一例の部分拡大断面模式図である。この例では、第2粘着剤層の端縁の退避長さ(d2)は、第1粘着剤層の端縁の退避長さ(d1)より短い。FIG. 2 is a partially enlarged cross-sectional schematic diagram of an example of an uneven side surface end portion of the optical layered body shown in FIG. 1 ; In this example, the retraction length (d2) of the edge of the second adhesive layer is shorter than the retraction length (d1) of the edge of the first adhesive layer. 図1に示す光学積層体の側面凹凸端部の他の例の部分拡大断面模式図である。この例では、第2粘着剤層の端縁の退避長さ(d2)は、第1粘着剤層の端縁の退避長さ(d1)より長い。2 is a partially enlarged schematic cross-sectional view of another example of the uneven side surface end portion of the optical layered body shown in FIG. 1. FIG. In this example, the retraction length (d2) of the edge of the second adhesive layer is longer than the retraction length (d1) of the edge of the first adhesive layer. 図1に示す光学積層体の側面凹凸端部の他の例の部分拡大断面模式図である。この例では、第1粘着剤層の端縁は、光学フィルムの端縁から面方向に退避していない。2 is a partially enlarged schematic cross-sectional view of another example of the uneven side surface end portion of the optical layered body shown in FIG. 1. FIG. In this example, the edge of the first pressure-sensitive adhesive layer is not retracted in the plane direction from the edge of the optical film. 本発明の光学積層体の使用方法の一例を表す。図5Aは、剥離フィルムを剥離する剥離工程を表し、図5Bは、第2粘着剤層を介して光学フィルムと被着体とを接合する接合工程を表す。An example of how to use the optical layered body of the present invention is shown. FIG. 5A shows a peeling step of peeling the peeling film, and FIG. 5B shows a bonding step of bonding the optical film and the adherend via the second pressure-sensitive adhesive layer. 実施例および比較例における外形加工工程で使用した回転刃における刃角度を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the blade angle of the rotary blades used in the contouring process in Examples and Comparative Examples. 粘着剤層上の剥離フィルムを粘着剤層から剥離する剥離試験によって得られるグラフの一例を表す。An example of the graph obtained by the peeling test which peels the peeling film on an adhesive layer from an adhesive layer is represented. 従来の光学積層体の断面模式図である。It is a cross-sectional schematic diagram of the conventional optical laminated body.
 本発明の光学積層体の一実施形態としての光学積層体Xは、図1に示すように、光学フィルム10と、粘着剤層20(第1粘着剤層)と、粘着剤層30(第2粘着剤層)と、基材40と、剥離フィルム50とを備える。光学積層体Xは、所定の厚さのシート形状を有し、厚さ方向Tと直交する方向(面方向D)に広がる。光学積層体Xは、具体的には、基材40と、粘着剤層20と、光学フィルム10と、粘着剤層30と、剥離フィルム50とを、厚さ方向Tに順に備える。 As shown in FIG. 1, an optical laminate X as an embodiment of the optical laminate of the present invention includes an optical film 10, an adhesive layer 20 (first adhesive layer), and an adhesive layer 30 (second adhesive layer), a substrate 40, and a release film 50. The optical layered body X has a sheet shape with a predetermined thickness and spreads in a direction perpendicular to the thickness direction T (surface direction D). Specifically, the optical laminate X includes a substrate 40, an adhesive layer 20, an optical film 10, an adhesive layer 30, and a release film 50 in the thickness direction T in this order.
 光学フィルム10は、機能性光学フィルムである。機能性光学フィルムとしては、例えば、フィルム状の偏光板(偏光フィルム)および位相差フィルムが挙げられる。光学フィルム10は、本実施形態では、フォルダブルディスプレイパネルの積層構造中に組み込まれるフィルムである。フォルダブルディスプレイパネルは、例えば、画素パネル、およびタッチパネルなどを含む積層構造を有する。光学フィルム10は、厚さ方向一方面としての第1面11と、当該第1面11とは反対側の第2面12とを有する。光学フィルム10は、100μm以下の厚さを有する。粘着剤層20は、第1面11に貼着している。基材40は、粘着剤層20を介して第1面11に接合されている。基材40としては、フォルダブルディスプレイ用の、画素パネルおよびプラスチックフィルムが挙げられる。粘着剤層30は、第2面12に貼着し、且つ、光学フィルム10とは反対側に粘着面31を有する。剥離フィルム50は、粘着面31上に剥離可能に配置されている。剥離フィルム50は、可撓性を有する。また、光学積層体Xにおいて、平面視外郭形状を規定する端縁として、光学フィルム10は端縁13を有し、粘着剤層20は端縁22を有し、粘着剤層30は端縁32を有し、基材40は端縁42を有し、剥離フィルム50は端縁52を有する。このような光学積層体Xは、フォルダブルディスプレイパネルの積層構造中に組み込まれる積層体である。 The optical film 10 is a functional optical film. Functional optical films include, for example, film-like polarizing plates (polarizing films) and retardation films. The optical film 10 is a film incorporated in the laminated structure of the foldable display panel in this embodiment. A foldable display panel has a laminated structure including, for example, a pixel panel and a touch panel. The optical film 10 has a first surface 11 as one surface in the thickness direction and a second surface 12 opposite to the first surface 11 . The optical film 10 has a thickness of 100 μm or less. The adhesive layer 20 is adhered to the first surface 11 . The base material 40 is bonded to the first surface 11 via the adhesive layer 20 . Substrates 40 include pixel panels and plastic films for foldable displays. The adhesive layer 30 adheres to the second surface 12 and has an adhesive surface 31 on the side opposite to the optical film 10 . The peel film 50 is arranged on the adhesive surface 31 so as to be peelable. The release film 50 has flexibility. In the optical layered body X, the optical film 10 has an edge 13, the adhesive layer 20 has an edge 22, and the adhesive layer 30 has an edge 32 as edges that define the outline shape in plan view. , the substrate 40 has an edge 42 and the release film 50 has an edge 52 . Such an optical layered body X is a layered body incorporated in the layered structure of the foldable display panel.
 光学積層体Xは、同フィルムの外周端の全部または一部に、側面凹凸端部Eを有する。側面凹凸端部Eでは、面方向Dにおいて、光学フィルム10および剥離フィルム50の端縁13,52よりも、粘着剤層30の端縁32は退避している。図2から図4は、それぞれ、光学積層体Xの側面凹凸端部Eの一例の部分拡大断面模式図である。図2および図3に示す側面凹凸端部Eでは、粘着剤層20の端縁22は、光学フィルム10の端縁13よりも面方向Dに退避している。図4に示す側面凹凸端部Eでは、粘着剤層20の端縁22は、光学フィルム10の端縁13と面一である。 The optical layered body X has an uneven side edge E on all or part of the outer peripheral edge of the film. At the uneven side edge E, the edge 32 of the pressure-sensitive adhesive layer 30 is retreated from the edges 13 and 52 of the optical film 10 and the release film 50 in the surface direction D. 2 to 4 are partially enlarged cross-sectional schematic diagrams of examples of the side uneven end portion E of the optical layered body X, respectively. 2 and 3, the edge 22 of the pressure-sensitive adhesive layer 20 retreats in the plane direction D from the edge 13 of the optical film 10. As shown in FIGS. 4, the edge 22 of the pressure-sensitive adhesive layer 20 and the edge 13 of the optical film 10 are flush with each other.
 このような側面凹凸端部Eでは、剥離フィルム50が、粘着剤層30が貼着していないフリー部分50aを有する。そのため、側面凹凸端部Eでは、粘着剤層30から剥離フィルム50を剥離するにあたり、まず、剥離フィルム50のフリー部分50aをめくり上げて変形させ、その後に、既にめくり上げ変形している剥離フィルム50のフリー部分50aを引っ張って、剥離フィルム50を粘着剤層30の端縁32から引き離すことができる。すなわち、剥離フィルム50の剥離開始過程において、剥離フィルム50の端部を充分に変形させるための力(第1の力)と、剥離フィルム50の変形に追随して弾性変形する粘着剤層30の端縁32から剥離フィルム50を引き離すための力(第2の力)とが、同時には必要ない。このような光学積層体Xは、剥離フィルム50の剥離開始過程に要する力を低減するのに適する。この力が小さいほど、剥離フィルム50の剥離開始過程において、厚さ100μm以下と薄い光学フィルム10の端部の変形が抑制され、同フィルムの端部において、クラックの発生が抑制される。 At such an uneven side edge E, the release film 50 has a free portion 50a to which the adhesive layer 30 is not attached. Therefore, in the uneven side edge portion E, when peeling the release film 50 from the adhesive layer 30, first, the free portion 50a of the release film 50 is turned up and deformed, and then the already deformed release film is turned up. The release film 50 can be separated from the edge 32 of the adhesive layer 30 by pulling the free portion 50a of 50 . That is, in the process of starting peeling of the release film 50, the force (first force) for sufficiently deforming the end of the release film 50 and the pressure-sensitive adhesive layer 30 that elastically deforms following the deformation of the release film 50. A force (second force) for pulling the release film 50 away from the edge 32 is not required at the same time. Such an optical layered body X is suitable for reducing the force required for the peeling start process of the peeling film 50 . The smaller this force is, the more the deformation of the thin optical film 10 with a thickness of 100 μm or less is suppressed in the process of starting the peeling of the release film 50 , and the crack generation at the edge of the film is suppressed.
 以上のように、光学積層体Xは、粘着剤層付きの薄い光学フィルム10から、光学フィルム10における端部クラックを抑制しつつ剥離フィルム50を剥離するのに適する。 As described above, the optical laminate X is suitable for peeling the release film 50 from the thin optical film 10 with an adhesive layer while suppressing edge cracks in the optical film 10 .
 面方向Dにおける、剥離フィルム50の端縁52からの粘着剤層30の端縁32の退避長さは、好ましくは20μm以上、より好ましくは40μm以上、更に好ましくは60μm以上である。このような構成は、剥離フィルム50の上述の剥離開始過程において、粘着剤層30の端縁32からの剥離フィルム50の引き離しの前に、剥離フィルム50のフリー部分50aを充分にめくり上げて変形させるのに好ましく、従って、剥離フィルム50の剥離開始に要する力(総力)を低減するのに好ましい。同退避長さは、好ましくは500μm以下、より好ましくは400μm以下、更に好ましくは300μm以下である。同退避長さの調整方法としては、例えば、側面凹凸端部Eを形成するために回転刃を用いて実施される後述の切断工程における切断条件の調整が、挙げられる。当該切断条件としては、例えば、回転刃の刃先のテーパ角度、回転刃の回転数、後述する光学フィルム積層体の表面に対する回転刃の入射方向、および、光学フィルム積層体を切削する回転刃の変位速度が挙げられる。同退避長さの調整方法としては、例えば、粘着剤層30の厚さの調整および弾性率の調整も挙げられる。 The retraction length of the edge 32 of the adhesive layer 30 from the edge 52 of the release film 50 in the surface direction D is preferably 20 μm or more, more preferably 40 μm or more, and even more preferably 60 μm or more. In such a configuration, the free portion 50a of the release film 50 is fully turned up and deformed before the release film 50 is separated from the edge 32 of the adhesive layer 30 in the process of starting the release of the release film 50 described above. Therefore, it is preferable to reduce the force (total force) required to start the peeling of the peeling film 50 . The retraction length is preferably 500 μm or less, more preferably 400 μm or less, and even more preferably 300 μm or less. As a method for adjusting the retraction length, for example, adjustment of cutting conditions in a cutting step, which will be described later, which is performed using a rotary blade to form the side uneven end portion E, can be mentioned. The cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed. Methods for adjusting the retraction length include, for example, adjusting the thickness and modulus of the adhesive layer 30 .
 粘着剤層30の厚さに対する上述の退避長さの比率は、好ましくは0.5以上、より好ましくは0.8以上、更に好ましくは1以上である。同比率は、好ましくは8以下、より好ましくは6以下である。これら構成は、剥離フィルム50の剥離開始過程において、粘着剤層30の端縁32からの剥離フィルム50の引き離しの前に、剥離フィルム50のフリー部分50aを充分にめくり上げて変形させるのに好ましく、従って、剥離フィルム50の剥離開始に要する力を低減するのに好ましい。 The ratio of the retraction length to the thickness of the adhesive layer 30 is preferably 0.5 or more, more preferably 0.8 or more, and even more preferably 1 or more. The ratio is preferably 8 or less, more preferably 6 or less. These configurations are preferable for sufficiently turning up and deforming the free portion 50a of the release film 50 before the release film 50 is separated from the edge 32 of the adhesive layer 30 in the process of starting the release of the release film 50. Therefore, it is preferable to reduce the force required to start the peeling of the peeling film 50 .
 側面凹凸端部Eでは、図2および図3に示すように、光学フィルム10の端縁13および基材40の端縁42よりも、粘着剤層20の端縁22が面方向Dに退避しているのが好ましい。このような構成は、剥離フィルム50の剥離開始過程において、粘着剤層30の端縁32から剥離フィルム50を引き離すための上記第2の力が光学積層体Xに対して作用する時に、粘着剤層20の変形を抑制するのに好ましく、従って、粘着剤層20の端縁22が光学フィルム10および基材40から離れることを抑制するのに好ましい。 2 and 3, the edge 22 of the pressure-sensitive adhesive layer 20 retreats in the plane direction D from the edge 13 of the optical film 10 and the edge 42 of the substrate 40. preferably With such a configuration, when the second force for separating the release film 50 from the edge 32 of the adhesive layer 30 acts on the optical layered body X in the process of starting peeling of the release film 50, the pressure-sensitive adhesive It is preferable for suppressing deformation of the layer 20 , and therefore preferable for suppressing separation of the edge 22 of the pressure-sensitive adhesive layer 20 from the optical film 10 and the substrate 40 .
 面方向Dにおける、光学フィルム10の端縁13からの粘着剤層20の端縁22の退避長さ(退避長さd1)は、好ましくは20μm以上、より好ましくは40μm以上、更に好ましくは60μm以上である。このような構成は、光学積層体Xに対する上記第2の力作用時に、粘着剤層20の変形を抑制するのに好ましく、従って、粘着剤層20の端縁22が光学フィルム10および基材40から離れることを抑制するのに好ましい。退避長さd1は、好ましくは500μm以下、より好ましくは400μm以下、更に好ましくは300μm以下である。退避長さd1の調整方法としては、例えば、側面凹凸端部Eを形成するために回転刃を用いて実施される後述の切断工程における切断条件の調整が、挙げられる。当該切断条件としては、例えば、回転刃の刃先のテーパ角度、回転刃の回転数、後述する光学フィルム積層体の表面に対する回転刃の入射方向、および、光学フィルム積層体を切削する回転刃の変位速度が挙げられる。退避長さd1の調整方法としては、例えば、粘着剤層20の厚さの調整および弾性率の調整も挙げられる。 The retraction length (retraction length d1) of the edge 22 of the adhesive layer 20 from the edge 13 of the optical film 10 in the plane direction D is preferably 20 μm or more, more preferably 40 μm or more, and even more preferably 60 μm or more. is. Such a configuration is preferable for suppressing deformation of the pressure-sensitive adhesive layer 20 when the second force is applied to the optical layered body X. It is preferable to suppress leaving from. The retraction length d1 is preferably 500 μm or less, more preferably 400 μm or less, still more preferably 300 μm or less. As a method for adjusting the retraction length d1, for example, adjustment of cutting conditions in a cutting step performed using a rotary blade to form the side uneven end portion E, which will be described later, is exemplified. The cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed. Methods for adjusting the retraction length d1 include, for example, adjustment of the thickness of the pressure-sensitive adhesive layer 20 and adjustment of the elastic modulus.
 側面凹凸端部Eでは、光学フィルム10の端縁13からの粘着剤層30の端縁32の退避長さd2は、好ましくは、図2に示すように退避長さd1より小さい。すなわち、退避長さd1は、好ましくは、退避長さd2より大きい。また、退避長さd2に対する退避長さd1の比率(d1/d2)は、好ましくは1.1以上、より好ましくは1.2以上である。これら構成は、剥離フィルム50の剥離開始過程において、粘着剤層20の上述の変形を抑制するのに好ましく、従って、粘着剤層20の端縁22が光学フィルム10および基材40から離れることを抑制するのに好ましい。比率(d1/d2)は、例えば5以下である。 At the uneven side edge E, the retraction length d2 of the edge 32 of the adhesive layer 30 from the edge 13 of the optical film 10 is preferably smaller than the retraction length d1 as shown in FIG. That is, retraction length d1 is preferably greater than retraction length d2. Also, the ratio (d1/d2) of the retraction length d1 to the retraction length d2 is preferably 1.1 or more, more preferably 1.2 or more. These configurations are preferable for suppressing the above-described deformation of the adhesive layer 20 in the process of starting peeling of the release film 50, so that the edge 22 of the adhesive layer 20 is separated from the optical film 10 and the substrate 40. preferred to suppress. The ratio (d1/d2) is, for example, 5 or less.
 面方向Dの端縁22,32間の距離(即ち、退避長さd1と退避長さd2との差)は、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。このような構成は、剥離フィルム50の上述の剥離開始過程において、粘着剤層20の上述の変形を抑制するのに好ましく、従って、粘着剤層20の端縁22が光学フィルム10および基材40から離れることを抑制するのに好ましい。また、面方向Dの端縁22,32間の距離は、好ましくは300μm以下、より好ましくは250μm以下、更に好ましくは220μm以下である。このような構成は、光学フィルム10の端部の損傷を抑制するのに好ましく、また、光学フィルム10と粘着剤層20,30との間の接着面積の低下による光学フィルム10の端部の耐久性低下を、抑制するのに好ましい。 The distance between the edges 22, 32 in the plane direction D (that is, the difference between the retraction length d1 and the retraction length d2) is preferably 1 µm or more, more preferably 5 µm or more, and even more preferably 10 µm or more. Such a configuration is preferable for suppressing the above-described deformation of the adhesive layer 20 in the above-described separation initiation process of the release film 50. It is preferable to suppress leaving from. Also, the distance between the edges 22 and 32 in the surface direction D is preferably 300 μm or less, more preferably 250 μm or less, and even more preferably 220 μm or less. Such a configuration is preferable for suppressing damage to the edges of the optical film 10, and also increases the durability of the edges of the optical film 10 due to a decrease in the adhesion area between the optical film 10 and the pressure-sensitive adhesive layers 20 and 30. It is preferable for suppressing a decrease in sexuality.
 粘着剤層30の粘着面31からの剥離フィルム50の剥離を開始するための剥離開始力F1は、好ましくは800gf/25mm以下、より好ましくは700gf/25mm以下、更に好ましくは600gf/25mm以下である。このような構成は、剥離フィルム50の剥離開始過程において、粘着剤層30の端縁32が光学フィルム10から離れることを抑制するとともに、光学フィルム10への負荷を低減するのに好ましい。また、剥離開始力F1は、好ましくは10gf/25mm以上、より好ましくは20gf/25mm以上、更に好ましくは30gf/25mm以上である。このような構成は、光学積層体Xの例えば輸送中およびハンドリング時において、粘着剤層30からの剥離フィルム50の浮き(部分的剥離)を抑制するのに好ましい。 The peel initiation force F1 for starting peeling of the release film 50 from the adhesive surface 31 of the adhesive layer 30 is preferably 800 gf/25 mm or less, more preferably 700 gf/25 mm or less, and still more preferably 600 gf/25 mm or less. . Such a configuration is preferable for suppressing separation of the edge 32 of the adhesive layer 30 from the optical film 10 and reducing the load on the optical film 10 in the process of starting peeling of the peeling film 50 . Also, the peel initiation force F1 is preferably 10 gf/25 mm or more, more preferably 20 gf/25 mm or more, and even more preferably 30 gf/25 mm or more. Such a configuration is preferable for suppressing lifting (partial peeling) of the release film 50 from the adhesive layer 30 during transportation and handling of the optical layered body X, for example.
 剥離開始力とは、本実施形態においては、粘着剤層に剥離可能に貼着している剥離フィルムを当該粘着剤層から剥離するときの剥離開始過程で要する力である。剥離開始過程では、粘着剤層から離れる方向に剥離フィルムが変形するように、当該剥離フィルムに力が作用される。これにより、当該剥離フィルムに貼着している粘着剤層の端縁およびその近傍が、剥離フィルムの変形に追随するように、一旦、弾性変形する。そして、このように弾性変形した粘着剤層端部から剥離フィルムが引き離される程度に大きな力で剥離フィルムが引っ張られた場合に、粘着剤層の端縁およびその近傍と剥離フィルムとの間に開裂が生じ、剥離が開始する。すなわち、剥離開始力とは、剥離開始過程において、弾性変形した粘着剤層端部から剥離フィルムを引き離して粘着剤層からの剥離フィルムの剥離を開始させるのに要する力である。このような剥離開始力は、後記の実施例に関して後述する方法によって測定できる。このような剥離開始力の調整方法としては、例えば、剥離フィルムの厚さの調整、および、剥離フィルムの粘着剤層側表面における剥離処理剤の種類の選択が、挙げられる。 In the present embodiment, the peel initiation force is the force required in the peel initiation process when peeling the release film releasably attached to the adhesive layer from the adhesive layer. In the peel initiation process, a force is applied to the release film so that the release film deforms in a direction away from the pressure-sensitive adhesive layer. As a result, the edge of the pressure-sensitive adhesive layer attached to the release film and its vicinity are once elastically deformed so as to follow the deformation of the release film. Then, when the release film is pulled with such a large force that the release film is pulled away from the elastically deformed end of the pressure-sensitive adhesive layer, the separation occurs between the edge of the pressure-sensitive adhesive layer and the vicinity thereof and the release film. occurs and peeling starts. That is, the peel initiation force is the force required to separate the release film from the elastically deformed end of the pressure-sensitive adhesive layer and start peeling of the release film from the pressure-sensitive adhesive layer in the peel initiation process. Such a peel initiation force can be measured by the method described below with respect to the examples below. Methods for adjusting the peel initiation force include, for example, adjusting the thickness of the release film and selecting the type of release treatment agent on the pressure-sensitive adhesive layer side surface of the release film.
 剥離フィルム50の粘着剤層30からの剥離開始後に当該剥離フィルム50を粘着剤層30の粘着面31から剥離するための剥離力F2は、好ましくは0.1gf/25mm以上、より好ましくは0.3gf/25mm以上、更に好ましくは0.5gf/25mm以上である。剥離力F2は、好ましくは5gf/25mm以下、より好ましくは4gf/25mm以下、更に好ましくは3gf/25mm以下である。 The peeling force F2 for peeling the peeling film 50 from the adhesive surface 31 of the adhesive layer 30 after the peeling of the peeling film 50 from the adhesive layer 30 is started is preferably 0.1 gf/25 mm or more, more preferably 0.1 gf/25 mm or more. It is 3 gf/25 mm or more, more preferably 0.5 gf/25 mm or more. The peel force F2 is preferably 5 gf/25 mm or less, more preferably 4 gf/25 mm or less, still more preferably 3 gf/25 mm or less.
 光学フィルム10がフィルム状の偏光板(偏光フィルム)である場合、当該偏光フィルムは、例えば、偏光子と、当該偏光子の片面または両面に貼り合わされた透明保護フィルムとを備える偏光フィルムが挙げられる。偏光子としては、例えば、二色性物質を吸着させた一軸延伸の親水性高分子フィルム、および、ポリエン配向フィルムが挙げられる。親水性高分子フィルムとしては、例えば、ポリビニルアルコールフィルム、部分ホルマール化ポリビニルアルコールフィルム、および、エチレン・酢酸ビニル共重合体部分ケン化フィルムが挙げられる。二色性物質としては、例えば、ヨウ素および二色性染料が挙げられる。ポリエン配向フィルムとしては、例えば、ポリビニルアルコールの脱水処理物、および、ポリ塩化ビニルの脱塩酸処理物が挙げられる。 When the optical film 10 is a film-shaped polarizing plate (polarizing film), examples of the polarizing film include a polarizing film comprising a polarizer and a transparent protective film attached to one or both sides of the polarizer. . Polarizers include, for example, uniaxially stretched hydrophilic polymer films to which a dichroic substance is adsorbed, and oriented polyene films. Hydrophilic polymer films include, for example, polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and partially saponified ethylene-vinyl acetate copolymer films. Dichroic substances include, for example, iodine and dichroic dyes. Examples of oriented polyene films include dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
 偏光子としては、厚さ10μm以下の薄型偏光子を用いてもよい。薄型偏光子としては、例えば、特開昭51-069644号公報、特開2000-338329号公報、WO2010/100917号、特許第4691205号、および特許第4751481号に記載されている偏光子が挙げられる。 A thin polarizer with a thickness of 10 μm or less may be used as the polarizer. Examples of thin polarizers include polarizers described in JP-A-51-069644, JP-A-2000-338329, WO2010/100917, Japanese Patent No. 4691205, and Japanese Patent No. 4751481. .
 偏光板における透明保護フィルムとしては、透明性、機械強度、熱安定性、水分遮断性、および光学等方性に優れるフィルムが好ましい。そのような透明保護フィルムの材料としては、例えば、セルロース樹脂、環状ポリオレフィン樹脂、アクリル樹脂、フェニルマレイミド樹脂、およびポリカーボネート樹脂が挙げられる。 As the transparent protective film for the polarizing plate, a film that is excellent in transparency, mechanical strength, thermal stability, water barrier properties, and optical isotropy is preferred. Materials for such transparent protective films include, for example, cellulose resins, cyclic polyolefin resins, acrylic resins, phenylmaleimide resins, and polycarbonate resins.
 偏光板の厚さは、フレキシブル性の観点から、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは70μm以下である。 From the viewpoint of flexibility, the thickness of the polarizing plate is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 70 μm or less.
 粘着剤層20は、第1粘着剤組成物から形成された感圧接着剤層である。粘着剤層20は、透明性(可視光透過性)を有する。第1粘着剤組成物は、少なくともベースポリマーを含有する。 The adhesive layer 20 is a pressure-sensitive adhesive layer formed from the first adhesive composition. The adhesive layer 20 has transparency (visible light transmittance). The first PSA composition contains at least a base polymer.
 ベースポリマーは、粘着剤層20において粘着性を発現させる粘着成分である。ベースポリマーとしては、例えば、アクリルポリマー、シリコーンポリマー、ポリエステルポリマー、ポリウレタンポリマー、ポリアミドポリマー、ポリビニルエーテルポリマー、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィンポリマー、エポキシポリマー、フッ素ポリマー、およびゴムポリマーが挙げられる。ベースポリマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。粘着剤層20における良好な透明性および粘着性を確保する観点から、ベースポリマーとしては、好ましくはアクリルポリマーが用いられる。 The base polymer is an adhesive component that makes the adhesive layer 20 exhibit adhesiveness. Base polymers include, for example, acrylic polymers, silicone polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyvinyl ether polymers, vinyl acetate/vinyl chloride copolymers, modified polyolefin polymers, epoxy polymers, fluoropolymers, and rubber polymers. The base polymer may be used alone or in combination of two or more. From the viewpoint of ensuring good transparency and adhesiveness in the pressure-sensitive adhesive layer 20, an acrylic polymer is preferably used as the base polymer.
 アクリルポリマーは、(メタ)アクリル酸アルキルエステルを50質量%以上の割合で含むモノマー成分の共重合体である。「(メタ)アクリル酸」は、アクリル酸および/またはメタクリル酸を意味する。 The acrylic polymer is a copolymer of monomer components containing 50% by mass or more of (meth)acrylic acid alkyl ester. "(Meth)acrylic acid" means acrylic acid and/or methacrylic acid.
 (メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが、好適に用いられる。(メタ)アクリル酸アルキルエステルは、直鎖状または分岐状のアルキル基を有してもよく、脂環式アルキル基など環状のアルキル基を有してもよい。 As the (meth)acrylic acid alkyl ester, a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms is preferably used. The (meth)acrylic acid alkyl ester may have a linear or branched alkyl group, or may have a cyclic alkyl group such as an alicyclic alkyl group.
 直鎖状または分岐状のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル(即ちラウリルアクリレート)、(メタ)アクリル酸イソトリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸セチル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソオクタデシル、および(メタ)アクリル酸ノナデシルが挙げられる。 Examples of (meth)acrylic acid alkyl esters having a linear or branched alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and isobutyl (meth)acrylate. , s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylate Heptyl acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, (meth) ) isodecyl acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate (that is, lauryl acrylate), isotridecyl (meth) acrylate, tetradecyl (meth) acrylate, isotetradecyl (meth) acrylate, (meth) Pentadecyl acrylate, cetyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, isooctadecyl (meth)acrylate, and nonadecyl (meth)acrylate.
 脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸シクロアルキルエステル、二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステル、および、三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルが挙げられる。(メタ)アクリル酸シクロアルキルエステルとしては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチル、および(メタ)アクリル酸シクロオクチルが挙げられる。二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸イソボルニルが挙げられる。三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルとしては、例えば、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロペンタニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、および、2-エチル-2-アダマンチル(メタ)アクリレートが挙げられる。 Examples of (meth)acrylic acid alkyl esters having an alicyclic alkyl group include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring, and tricyclic (Meth)acrylic acid esters having the above aliphatic hydrocarbon ring can be mentioned. Cycloalkyl (meth)acrylates include, for example, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, and cyclooctyl (meth)acrylate. Examples of (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring include isobornyl (meth)acrylate. (Meth)acrylic esters having a tricyclic or higher aliphatic hydrocarbon ring include, for example, dicyclopentanyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, tricyclopentanyl (meth)acrylate , 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
 (メタ)アクリル酸アルキルエステルとしては、好ましくは、炭素数3~15のアルキル基を有するアクリル酸アルキルエステルが用いられ、より好ましくは、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、およびアクリル酸ドデシルからなる群より選択される少なくとも一つが用いられる。 As the (meth)acrylic acid alkyl ester, an acrylate alkyl ester having an alkyl group having 3 to 15 carbon atoms is preferably used, and more preferably n-butyl acrylate, 2-ethylhexyl acrylate, and acrylic acid. At least one selected from the group consisting of dodecyl is used.
 モノマー成分における(メタ)アクリル酸アルキルエステルの割合は、粘着剤層20において粘着性等の基本特性を適切に発現させる観点から、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上である。同割合は、例えば99質量%以下である。 The ratio of the (meth)acrylic acid alkyl ester in the monomer component is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably from the viewpoint of appropriately expressing basic properties such as adhesiveness in the adhesive layer 20. is 70% by mass or more. The same ratio is, for example, 99% by mass or less.
 モノマー成分は、(メタ)アクリル酸アルキルエステルと共重合可能な共重合性モノマーを含んでもよい。共重合性モノマーとしては、例えば、極性基を有するモノマーが挙げられる。極性基含有モノマーとしては、例えば、窒素原子含有環を有するモノマー、ヒドロキシ基含有モノマー、およびカルボキシ基含有モノマーが挙げられる。極性基含有モノマーは、アクリルポリマーへの架橋点の導入、アクリルポリマーの凝集力の確保など、アクリルポリマーの改質に役立つ。 The monomer component may contain a copolymerizable monomer that can be copolymerized with the (meth)acrylic acid alkyl ester. Examples of copolymerizable monomers include monomers having a polar group. Polar group-containing monomers include, for example, nitrogen atom-containing ring-containing monomers, hydroxy group-containing monomers, and carboxy group-containing monomers. The polar group-containing monomer is useful for modifying the acrylic polymer, such as introducing cross-linking points into the acrylic polymer and securing the cohesive strength of the acrylic polymer.
 窒素原子含有環を有するモノマーとしては、例えば、N-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-(メタ)アクリロイル-2-ピロリドン、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン、N-ビニルモルホリン、N-ビニル-3-モルホリノン、N-ビニル-2-カプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン、N-ビニルピラゾール、N-ビニルイソオキサゾール、N-ビニルチアゾール、およびN-ビニルイソチアゾールが挙げられる。窒素原子含有環を有するモノマーとしては、好ましくはN-ビニル-2-ピロリドンが用いられる。 Examples of monomers having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-(meth)acryloyl-2-pyrrolidone, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, N-vinylmorpholine, N-vinyl -3-morpholinone, N-vinyl-2-caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, N-vinylpyrazole, N-vinylisoxazole, N -vinylthiazole, and N-vinylisothiazole. N-vinyl-2-pyrrolidone is preferably used as the monomer having a nitrogen atom-containing ring.
 モノマー成分における、窒素原子含有環を有するモノマーの割合は、粘着剤層20における凝集力の確保、および、粘着剤層20における対被着体密着力の確保の観点から、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.55質量%以上である。同割合は、アクリルポリマーのガラス転移温度の調整、および、アクリルポリマーの極性(粘着剤層20における各種添加剤成分とアクリルポリマーとの相溶性に関わる)の調整の観点から、好ましくは30質量%以下、より好ましくは20質量%以下である。 The ratio of the monomer having a nitrogen atom-containing ring in the monomer component is preferably 0.1 mass from the viewpoint of ensuring the cohesive force in the adhesive layer 20 and ensuring the adhesive strength of the adhesive layer 20 to the adherend. % or more, more preferably 0.3 mass % or more, and still more preferably 0.55 mass % or more. The same ratio is preferably 30% by mass from the viewpoint of adjusting the glass transition temperature of the acrylic polymer and adjusting the polarity of the acrylic polymer (related to compatibility between various additive components and the acrylic polymer in the adhesive layer 20). Below, more preferably 20% by mass or less.
 ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレートが挙げられる。ヒドロキシ基含有モノマーとしては、好ましくは(メタ)アクリル酸4-ヒドロキシブチルが用いられ、より好ましくはアクリル酸4-ヒドロキシブチルが用いられる。 Examples of hydroxy group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, ( 4-hydroxybutyl meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl)methyl (meth)acrylate. As the hydroxy group-containing monomer, 4-hydroxybutyl (meth)acrylate is preferably used, and 4-hydroxybutyl acrylate is more preferably used.
 モノマー成分におけるヒドロキシ基含有モノマーの割合は、アクリルポリマーへの架橋構造の導入、および、粘着剤層20における凝集力の確保の観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上である。同割合は、アクリルポリマーの極性(粘着剤層20における各種添加剤成分とアクリルポリマーとの相溶性に関わる)の調整の観点から、好ましくは20質量%以下、より好ましくは10質量%以下である。 The ratio of the hydroxy group-containing monomer in the monomer component is preferably 0.1% by mass or more, more preferably 0.5, from the viewpoint of introducing a crosslinked structure into the acrylic polymer and ensuring cohesive force in the pressure-sensitive adhesive layer 20. It is at least 0.8% by mass, more preferably at least 0.8% by mass. The same ratio is preferably 20% by mass or less, more preferably 10% by mass or less, from the viewpoint of adjusting the polarity of the acrylic polymer (related to compatibility between various additive components and the acrylic polymer in the pressure-sensitive adhesive layer 20). .
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、およびイソクロトン酸が挙げられる。 Carboxy group-containing monomers include, for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 モノマー成分におけるカルボキシ基含有モノマーの割合は、アクリルポリマーへの架橋構造の導入、粘着剤層20における凝集力の確保、および、粘着剤層20における対被着体密着力の確保の観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上である。同割合は、アクリルポリマーのガラス転移温度の調整、および、酸による被着体の腐食リスクの回避の観点から、好ましくは30質量%以下、より好ましくは20質量%以下である。 The ratio of the carboxyl group-containing monomer in the monomer component is preferable from the viewpoint of introducing a crosslinked structure into the acrylic polymer, ensuring cohesive force in the adhesive layer 20, and ensuring adhesion to the adherend in the adhesive layer 20. is 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 0.8% by mass or more. The same ratio is preferably 30% by mass or less, more preferably 20% by mass or less, from the viewpoints of adjusting the glass transition temperature of the acrylic polymer and avoiding the risk of acid corrosion of the adherend.
 フォルダブルディスプレイパネルにおける電極など金属要素が酸成分によって腐食することを防止するには、粘着剤層20は、酸の含有量が小さいことが好ましい。また、粘着剤層20が偏光板の接着に用いられる場合、酸成分によるポリビニルアルコール偏光子のポリエン化を抑制するために、粘着剤層20は、酸の含有量が小さいことが好ましい。このような酸フリーの粘着剤層20における有機酸モノマー(例えば、(メタ)アクリル酸およびカルボキシル基含有モノマー)の含有量は、好ましくは100ppm以下、より好ましくは70ppm以下、更に好ましくは50ppm以下である。粘着剤層20の有機酸モノマー含有量は、粘着剤層20を純水中に浸漬して100℃で45分加温することによって水中に抽出された酸モノマーを、イオンクロマトグラフで定量することにより、求められる。 In order to prevent metal elements such as electrodes in a foldable display panel from being corroded by acid components, the adhesive layer 20 preferably has a small acid content. Moreover, when the adhesive layer 20 is used for bonding polarizing plates, the acid content of the adhesive layer 20 is preferably low in order to suppress polyene formation of the polyvinyl alcohol polarizer due to the acid component. The content of organic acid monomers (for example, (meth)acrylic acid and carboxyl group-containing monomers) in such an acid-free pressure-sensitive adhesive layer 20 is preferably 100 ppm or less, more preferably 70 ppm or less, and still more preferably 50 ppm or less. be. The organic acid monomer content of the adhesive layer 20 is obtained by quantifying the acid monomer extracted into water by immersing the adhesive layer 20 in pure water and heating at 100° C. for 45 minutes by ion chromatography. is required by
 酸フリーの観点からは、粘着剤層20中のベースポリマーがモノマー成分として有機酸モノマーを実質的に含有しないことが好ましい。酸フリーの観点からは、モノマー成分における有機酸モノマーの割合は、好ましくは0.5質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.05質量%であり、理想的には0質量%である。 From the standpoint of acid-free, it is preferable that the base polymer in the pressure-sensitive adhesive layer 20 does not substantially contain an organic acid monomer as a monomer component. From the viewpoint of acid-free, the ratio of the organic acid monomer in the monomer component is preferably 0.5% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0.05% by mass. is 0% by mass.
 モノマー成分は、他の共重合性モノマーを含んでいてもよい。他の共重合性モノマーとしては、例えば、酸無水物モノマー、スルホン酸基含有モノマー、リン酸基含有モノマー、エポキシ基含有モノマー、シアノ基含有モノマー、アルコキシ基含有モノマー、および芳香族ビニル化合物が挙げられる。これら他の共重合性モノマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。 The monomer component may contain other copolymerizable monomers. Other copolymerizable monomers include, for example, acid anhydride monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, alkoxy group-containing monomers, and aromatic vinyl compounds. be done. These other copolymerizable monomers may be used alone, or two or more of them may be used in combination.
 ベースポリマーは、本実施形態では、架橋構造を有する。ベースポリマーへの架橋構造の導入方法としては、架橋剤と反応可能な官能基を有するベースポリマーと架橋剤とを第1粘着剤組成物に配合し、ベースポリマーと架橋剤とを粘着剤層20中で反応させる方法(第1の方法)、および、ベースポリマーを形成するモノマー成分に多官能モノマーを含め、当該モノマー成分の重合により、ポリマー鎖に分枝構造(架橋構造)が導入されたベースポリマーを形成する方法(第2の方法)が、挙げられる。これら方法は、併用されてもよい。 The base polymer has a crosslinked structure in this embodiment. As a method for introducing a crosslinked structure into the base polymer, the base polymer having a functional group capable of reacting with the crosslinker and the crosslinker are blended in the first adhesive composition, and the base polymer and the crosslinker are added to the adhesive layer 20. A base in which a polyfunctional monomer is included in the monomer components forming the base polymer and a branched structure (crosslinked structure) is introduced into the polymer chain by polymerization of the monomer components. A method of forming a polymer (second method) is included. These methods may be used in combination.
 上記第1の方法で用いられる架橋剤としては、例えば、ベースポリマーに含まれる官能基(ヒドロキシ基およびカルボキシ基など)と反応する化合物が挙げられる。そのような架橋剤としては、例えば、イソシアネート架橋剤、過酸化物架橋剤、エポキシ架橋剤、オキサゾリン架橋剤、アジリジン架橋剤、カルボジイミド架橋剤、および金属キレート架橋剤が挙げられる。架橋剤は、単独で用いられてもよいし、二種類以上が併用されてもよい。架橋剤としては、ベースポリマーにおけるヒドロキシ基およびカルボキシ基との反応性が高くて架橋構造の導入が容易であることから、好ましくは、イソシアネート架橋剤、過酸化物架橋剤、およびエポキシ架橋剤が用いられる。 Examples of the cross-linking agent used in the first method include compounds that react with functional groups (hydroxy groups, carboxy groups, etc.) contained in the base polymer. Such crosslinkers include, for example, isocyanate crosslinkers, peroxide crosslinkers, epoxy crosslinkers, oxazoline crosslinkers, aziridine crosslinkers, carbodiimide crosslinkers, and metal chelate crosslinkers. The cross-linking agents may be used alone, or two or more of them may be used in combination. As the cross-linking agent, an isocyanate cross-linking agent, a peroxide cross-linking agent, and an epoxy cross-linking agent are preferably used because they are highly reactive with the hydroxy groups and carboxy groups in the base polymer and facilitate the introduction of a cross-linked structure. be done.
 イソシアネート架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、およびポリメチレンポリフェニルイソシアネートが挙げられる。また、イソシアネート架橋剤としては、これらイソシアネートの誘導体も挙げられる。当該イソシアネート誘導体としては、例えば、イソシアヌレート変性体およびポリオール変性体が挙げられる。イソシアネート架橋剤の市販品としては、例えば、コロネートL(トリレンジイソシアネートのトリメチロールプロパンアダクト体,東ソー製)、コロネートHL(へキサメチレンジイソシアネートのトリメチロールプロパンアダクト体,東ソー製)、コロネートHX(ヘキサメチレンジイソシアネートのイソシアヌレート体,東ソー製)、およびタケネートD110N(キシリレンジイソシアネートのトリメチロールプロパンアダクト体,三井化学製)が挙げられる。 Examples of isocyanate cross-linking agents include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, isocyanates, and polymethylene polyphenyl isocyanates. The isocyanate cross-linking agent also includes derivatives of these isocyanates. Examples of the isocyanate derivative include isocyanurate-modified products and polyol-modified products. Commercially available isocyanate cross-linking agents include, for example, Coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh), Coronate HL (trimethylolpropane adduct of hexamethylene diisocyanate, manufactured by Tosoh), Coronate HX (hexa isocyanurate of methylene diisocyanate, manufactured by Tosoh), and Takenate D110N (trimethylolpropane adduct of xylylene diisocyanate, manufactured by Mitsui Chemicals).
 過酸化物架橋剤としては、ジベンゾイルパーオキシド、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、およびt-ブチルパーオキシピバレートが挙げられる。 Peroxide crosslinking agents include dibenzoyl peroxide, di(2-ethylhexyl)peroxydicarbonate, di(4-t-butylcyclohexyl)peroxydicarbonate, di-sec-butylperoxydicarbonate, t- butyl peroxyneodecanoate, t-hexyl peroxypivalate, and t-butyl peroxypivalate.
 エポキシ架橋剤としては、ビスフェノールA、エピクロルヒドリン型のエポキシ樹脂、エチレングリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジアミングリシジルアミン、N,N,N',N'-テトラグリシジル-m-キシリレンジアミン、および1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが挙げられる。 Examples of epoxy cross-linking agents include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether. , diglycidylaniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane.
 イソシアネート架橋剤(特に、二官能のイソシアネート架橋剤)および過酸化物架橋剤は、粘着剤層20の適度な柔軟性(従って屈曲性)の確保の観点から好ましい。イソシアネート架橋剤(特に、三官能のイソシアネート架橋剤)は、粘着剤層20の耐久性確保の観点から好ましい。ベースポリマーにおいて、二官能イソシアネート架橋剤および過酸化物架橋剤は、より柔軟な二次元架橋を形成するのに対し、三官能イソシアネート架橋剤は、より強固な三次元架橋を形成する。粘着剤層20の耐久性と柔軟性との両立の観点からは、三官能イソシアネート架橋剤と、過酸化物架橋剤および/または二官能イソシアネート架橋剤との併用が、好ましい。 An isocyanate cross-linking agent (especially a bifunctional isocyanate cross-linking agent) and a peroxide cross-linking agent are preferable from the viewpoint of ensuring appropriate flexibility (thus flexibility) of the pressure-sensitive adhesive layer 20 . An isocyanate cross-linking agent (especially a trifunctional isocyanate cross-linking agent) is preferable from the viewpoint of ensuring the durability of the pressure-sensitive adhesive layer 20 . In the base polymer, difunctional isocyanate and peroxide crosslinkers form softer two-dimensional crosslinks, while trifunctional isocyanate crosslinkers form stronger three-dimensional crosslinks. From the viewpoint of achieving both durability and flexibility of the pressure-sensitive adhesive layer 20, it is preferable to use a trifunctional isocyanate cross-linking agent together with a peroxide cross-linking agent and/or a bifunctional isocyanate cross-linking agent.
 架橋剤の配合量は、粘着剤層20の凝集力を確保する観点から、ベースポリマー100質量部に対して、例えば0.01質量部以上であり、好ましくは0.05質量部以上、より好ましくは0.07質量部以上である。粘着剤層20において良好なタック性を確保する観点から、ベースポリマー100質量部に対する架橋剤の配合量は、例えば10質量部以下であり、好ましくは5質量部以下、より好ましくは3質量部以下である。 From the viewpoint of ensuring the cohesive strength of the pressure-sensitive adhesive layer 20, the amount of the cross-linking agent is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, and more preferably 100 parts by mass of the base polymer. is 0.07 parts by mass or more. From the viewpoint of ensuring good tackiness in the pressure-sensitive adhesive layer 20, the amount of the cross-linking agent blended with respect to 100 parts by mass of the base polymer is, for example, 10 parts by mass or less, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less. is.
 上記第2の方法では、モノマー成分(架橋構造を導入するための多官能モノマーと他のモノマーとを含む)は、一度で重合させてもよいし、多段階で重合させてもよい。多段階重合の方法では、まず、ベースポリマーを形成するための単官能モノマーを重合させ(予備重合)、これによって部分重合物(低重合度の重合物と未反応のモノマーとの混合物)を含有するプレポリマー組成物を調製する。次に、プレポリマー組成物に多官能モノマーを添加した後、部分重合物と多官能モノマーとを重合させる(本重合)。 In the second method, the monomer components (including the polyfunctional monomer for introducing the crosslinked structure and other monomers) may be polymerized at once or in multiple stages. In the multi-stage polymerization method, first, a monofunctional monomer for forming the base polymer is polymerized (prepolymerization), thereby containing a partially polymerized product (a mixture of a polymerized product with a low degree of polymerization and an unreacted monomer). A prepolymer composition is prepared. Next, after adding a polyfunctional monomer to the prepolymer composition, the partial polymer and the polyfunctional monomer are polymerized (main polymerization).
 多官能モノマーとしては、例えば、エチレン性不飽和二重結合を1分子中に2個以上含有する多官能(メタ)アクリレートが挙げられる。多官能モノマーとしては、活性エネルギー線重合(光重合)によって架橋構造を導入可能な観点から、多官能アクリレートが好ましい。 Examples of polyfunctional monomers include polyfunctional (meth)acrylates containing two or more ethylenically unsaturated double bonds in one molecule. As the polyfunctional monomer, a polyfunctional acrylate is preferable from the viewpoint that a crosslinked structure can be introduced by active energy ray polymerization (photopolymerization).
 多官能(メタ)アクリレートとしては、二官能(メタ)アクリレート、三官能(メタ)アクリレート、および、四官能以上の多官能(メタ)アクリレートが挙げられる。 Polyfunctional (meth)acrylates include bifunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional or higher polyfunctional (meth)acrylates.
 二官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチエレングルコールジメタクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ジシクロペンテニルジアクリレート、ジ(メタ)アクリロイルイソシアヌレート、およびアルキレンオキサイド変性ビスフェノールジ(メタ)アクリレートが挙げられる。 Examples of bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol dimethacrylate, 1,6-hexanediol di (meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, neopentyl glycol di(meth)acrylate, stearic acid-modified pentaerythritol di(meth)acrylate, dicyclopentenyl diacrylate, Examples include di(meth)acryloyl isocyanurate and alkylene oxide-modified bisphenol di(meth)acrylate.
 三官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、およびトリス(アクリロイルオキシエチル)イソシアヌレートが挙げられる。 Examples of trifunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and tris(acryloyloxyethyl) isocyanurate.
 四官能以上の多官能(メタ)アクリレートとしては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、およびジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。 Tetrafunctional or higher polyfunctional (meth)acrylates include, for example, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, and alkyl-modified dipentaerythritol pentaacrylate. , and dipentaerythritol hexa(meth)acrylate.
 多官能モノマーの分子量は、好ましくは1500以下、より好ましくは1000以下である。また、多官能モノマーの官能基当量(g/eq)は、好ましくは50以上、より好ましくは70以上、更に好ましくは80以上である。同官能基当量は、好ましくは500以下、より好ましくは300以下、更に好ましくは200以下である。これら構成は、ベースポリマーにおいて架橋構造の導入により粘弾性(例えば、貯蔵弾性率G’および損失正接tanδ)を適切に調整する観点から好ましい。 The molecular weight of the polyfunctional monomer is preferably 1500 or less, more preferably 1000 or less. Also, the functional group equivalent (g/eq) of the polyfunctional monomer is preferably 50 or more, more preferably 70 or more, and even more preferably 80 or more. The functional group equivalent weight is preferably 500 or less, more preferably 300 or less, still more preferably 200 or less. These configurations are preferable from the viewpoint of appropriately adjusting viscoelasticity (for example, storage elastic modulus G' and loss tangent tan ?) by introducing a crosslinked structure in the base polymer.
 アクリルポリマーは、上述のモノマー成分を重合させることによって形成できる。重合方法としては、例えば、溶液重合、活性エネルギー線重合(例えばUV重合)、塊状重合、および乳化重合が挙げられる。粘着剤層20の透明性、耐水性、およびコストの観点から、溶液重合およびUV重合が好ましい。溶液重合の溶媒としては、例えば、酢酸エチルおよびトルエンが用いられる。また、重合の開始剤としては、例えば、熱重合開始剤および光重合開始剤が用いられる。重合開始剤の使用量は、モノマー成分100質量部に対して、例えば0.05質量部以上であり、また、例えば1質量部以下である。 The acrylic polymer can be formed by polymerizing the above monomer components. Polymerization methods include, for example, solution polymerization, active energy ray polymerization (eg, UV polymerization), bulk polymerization, and emulsion polymerization. Solution polymerization and UV polymerization are preferred from the viewpoints of transparency, water resistance, and cost of the pressure-sensitive adhesive layer 20 . Ethyl acetate and toluene, for example, are used as solvents for solution polymerization. Moreover, as a polymerization initiator, for example, a thermal polymerization initiator and a photopolymerization initiator are used. The amount of the polymerization initiator to be used is, for example, 0.05 parts by mass or more and, for example, 1 part by mass or less with respect to 100 parts by mass of the monomer component.
 熱重合開始剤としては、例えば、アゾ重合開始剤および過酸化物重合開始剤が挙げられる。アゾ重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス-2-メチルブチロニトリル、2,2'-アゾビス(2-メチルプロピオン酸)ジメチル、4,4'-アゾビス-4-シアノバレリアン酸、アゾビスイソバレロニトリル、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2'-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2'-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、および、2,2'-アゾビス(N,N'-ジメチレンイソブチルアミジン)ジヒドロクロライドが挙げられる。過酸化物重合開始剤としては、例えば、ジベンゾイルペルオキシド、t-ブチルペルマレエ-ト、および過酸化ラウロイルが挙げられる。 Thermal polymerization initiators include, for example, azo polymerization initiators and peroxide polymerization initiators. Examples of azo polymerization initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis(2-methylpropionate)dimethyl, 4,4'-azobis-4-cyanovaleric acid, azobisisovaleronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2- imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, and 2,2'-azobis(N,N'-dimethyleneisobutyramidine) dihydrochloride mentioned. Peroxide polymerization initiators include, for example, dibenzoyl peroxide, t-butyl permaleate, and lauroyl peroxide.
 光重合開始剤としては、例えば、ベンゾインエーテル光重合開始剤、アセトフェノン光重合開始剤、α-ケトール光重合開始剤、芳香族スルホニルクロリド光重合開始剤、光活性オキシム光重合開始剤、ベンゾイン光重合開始剤、ベンジル光重合開始剤、ベンゾフェノン光重合開始剤、ケタール光重合開始剤、チオキサントン光重合開始剤、およびアシルフォスフィンオキサイド光重合開始剤が挙げられる。 Examples of photopolymerization initiators include benzoin ether photopolymerization initiators, acetophenone photopolymerization initiators, α-ketol photopolymerization initiators, aromatic sulfonyl chloride photopolymerization initiators, photoactive oxime photopolymerization initiators, and benzoin photopolymerization initiators. Initiators include benzyl photoinitiators, benzophenone photoinitiators, ketal photoinitiators, thioxanthone photoinitiators, and acylphosphine oxide photoinitiators.
 重合においては、分子量調整等を目的として、連鎖移動剤および/または重合禁止剤(重合遅延剤)を用いてもよい。連鎖移動剤としては、α-チオグリセロール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、チオグリコール酸、チオグルコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール、およびα-メチルスチレン二量体が挙げられる。 In polymerization, a chain transfer agent and/or a polymerization inhibitor (polymerization retarder) may be used for the purpose of molecular weight adjustment. Chain transfer agents include α-thioglycerol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and α-methylstyrene. Dimers are included.
 重合開始剤の種類および/または量の調整により、ベースポリマーの分子量を調整できる。例えば、ラジカル重合では、重合開始剤の量が多いほど、反応系のラジカル濃度が高いため、反応開始点の密度が高く、形成されるベースポリマーの分子量が小さくなる傾向がある。これに対し、重合開始剤の量が少ないほど、反応開始点の密度が低いためにポリマー鎖が伸長しやすく、形成されるベースポリマー分子量が大きくなる傾向がある。 The molecular weight of the base polymer can be adjusted by adjusting the type and/or amount of the polymerization initiator. For example, in radical polymerization, the larger the amount of the polymerization initiator, the higher the radical concentration in the reaction system, the higher the density of reaction initiation points, and the smaller the molecular weight of the base polymer formed. On the other hand, the smaller the amount of the polymerization initiator, the lower the density of the reaction initiation points, the easier it is for the polymer chain to extend, and the greater the molecular weight of the base polymer formed.
 アクリルポリマーの重量平均分子量は、粘着剤層20における凝集力の確保の観点から、好ましくは10万以上、より好ましくは30万以上、更に好ましくは50万以上である。同重量平均分子量は、好ましくは500万以下、より好ましくは300万以下、更に好ましくは200万以下である。アクリルポリマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフ(GPC)によって測定してポリスチレン換算により算出される。 The weight-average molecular weight of the acrylic polymer is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more, from the viewpoint of securing the cohesive force in the pressure-sensitive adhesive layer 20 . The weight-average molecular weight is preferably 5 million or less, more preferably 3 million or less, still more preferably 2 million or less. The weight average molecular weight of the acrylic polymer is calculated by measuring by gel permeation chromatography (GPC) and converting to polystyrene.
 ベースポリマーのガラス転移温度(Tg)は、好ましくは0℃以下、より好ましくは-10℃以下、更に好ましくは-20℃以下である。同ガラス転移温度は、例えば-80℃以上である。 The glass transition temperature (Tg) of the base polymer is preferably 0°C or lower, more preferably -10°C or lower, and even more preferably -20°C or lower. The glass transition temperature is, for example, −80° C. or higher.
 ベースポリマーのガラス転移温度(Tg)については、下記のFoxの式に基づき求められるガラス転移温度(理論値)を用いることができる。Foxの式は、ポリマーのガラス転移温度Tgと、当該ポリマーを構成するモノマーのホモポリマーのガラス転移温度Tgiとの関係式である。下記のFoxの式において、Tgはポリマーのガラス転移温度(℃)を表し、Wiは当該ポリマーを構成するモノマーiの重量分率を表し、Tgiは、モノマーiから形成されるホモポリマーのガラス転移温度(℃)を示す。ホモポリマーのガラス転移温度については文献値を用いることができる。例えば、「Polymer Handbook」(第4版,John Wiley & Sons, Inc., 1999年)および「新高分子文庫7 塗料用合成樹脂入門」(北岡協三著,高分子刊行会,1995年)には、各種のホモポリマーのガラス転移温度が挙げられている。一方、モノマーのホモポリマーのガラス転移温度については、特開2007-51271号公報に具体的に記載されている方法によって求めることも可能である。 For the glass transition temperature (Tg) of the base polymer, the glass transition temperature (theoretical value) obtained based on the following Fox formula can be used. The Fox equation is a relational expression between the glass transition temperature Tg of a polymer and the glass transition temperature Tgi of a homopolymer of monomers constituting the polymer. In the Fox formula below, Tg represents the glass transition temperature (° C.) of the polymer, Wi represents the weight fraction of the monomer i constituting the polymer, and Tgi represents the glass transition of the homopolymer formed from the monomer i. Indicates temperature (°C). Literature values can be used for the glass transition temperature of homopolymers. For example, "Polymer Handbook" (4th edition, John Wiley & Sons, Inc., 1999) and "New Polymer Bunko 7 Introduction to Synthetic Resins for Paints" (Kyozo Kitaoka, Kobunshi Publications, 1995) , which lists the glass transition temperatures of various homopolymers. On the other hand, the glass transition temperature of a homopolymer of a monomer can also be determined by the method specifically described in JP-A-2007-51271.
Foxの式  1/(273+Tg)=Σ[Wi/(273+Tgi)] Fox's formula 1/(273+Tg)=Σ[Wi/(273+Tgi)]
 第1粘着剤組成物は、ベースポリマーに加えて、一種類または二種類以上のオリゴマーを含んでいてもよい。ベースポリマーとしてアクリルポリマーが用いられる場合、好ましくは、オリゴマーとしてアクリルオリゴマーが用いられる。アクリルオリゴマーは、(メタ)アクリル酸アルキルエステルを50質量%以上の割合で含むモノマー成分の共重合体であり、重量平均分子量が例えば1000以上30000以下である。 The first adhesive composition may contain one or more oligomers in addition to the base polymer. When an acrylic polymer is used as the base polymer, preferably an acrylic oligomer is used as the oligomer. The acrylic oligomer is a copolymer of monomer components containing 50% by mass or more of (meth)acrylic acid alkyl ester, and has a weight average molecular weight of, for example, 1,000 or more and 30,000 or less.
 アクリルオリゴマーのガラス転移温度は、好ましくは60℃以上、より好ましくは80℃以上、更に好ましくは100℃以上、特に好ましくは110℃以上である。アクリルオリゴマーのガラス転移温度は、例えば200℃以下であり、好ましくは180℃以下、より好ましくは160℃以下である。架橋構造が導入された低Tgのアクリルポリマー(ベースポリマー)と高Tgのアクリルオリゴマーとの併用により、粘着剤層20の接着力、特に高温での接着力を高められる。アクリルオリゴマーのガラス転移温度は、上記のFoxの式により算出される。 The glass transition temperature of the acrylic oligomer is preferably 60°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and particularly preferably 110°C or higher. The glass transition temperature of the acrylic oligomer is, for example, 200° C. or lower, preferably 180° C. or lower, more preferably 160° C. or lower. The combined use of a low-Tg acrylic polymer (base polymer) introduced with a cross-linked structure and a high-Tg acrylic oligomer can increase the adhesive strength of the pressure-sensitive adhesive layer 20, especially at high temperatures. The glass transition temperature of the acrylic oligomer is calculated by the above Fox formula.
 ガラス転移温度が60℃以上のアクリルオリゴマーは、好ましくは、鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル(鎖状アルキル(メタ)アクリレート)と、脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル(脂環式アルキル(メタ)アクリレート)とを含むモノマー成分の重合体である。これら(メタ)アクリル酸アルキルエステルの具体例としては、例えば、アクリルポリマーのモノマー成分として上記した(メタ)アクリル酸アルキルエステルが挙げられる。 The acrylic oligomer having a glass transition temperature of 60° C. or higher is preferably a (meth)acrylic acid alkyl ester having a chain alkyl group (chain alkyl (meth)acrylate) and a (meth)acrylic acid having an alicyclic alkyl group. It is a polymer of a monomer component containing an acid alkyl ester (alicyclic alkyl (meth)acrylate). Specific examples of these (meth)acrylic acid alkyl esters include, for example, the (meth)acrylic acid alkyl esters described above as the monomer component of the acrylic polymer.
 鎖状アルキル(メタ)アクリレートとしては、ガラス転移温度が高く、ベースポリマーとの相溶性に優れることから、メタクリル酸メチルが好ましい。脂環式アルキル(メタ)アクリレートとしては、アクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンタニル、アクリル酸シクロヘキシル、およびメタクリル酸シクロヘキシルが好ましい。すなわち、アクリルオリゴマーは、アクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンタニル、アクリル酸シクロヘキシル、およびメタクリル酸シクロヘキシルからなる群より選択される1種以上と、メタクリル酸メチルとを含むモノマー成分の重合体であるのが好ましい。 As the chain alkyl (meth)acrylate, methyl methacrylate is preferable because it has a high glass transition temperature and excellent compatibility with the base polymer. Preferred alicyclic alkyl (meth)acrylates are dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate and cyclohexyl methacrylate. That is, the acrylic oligomer is a monomer component containing methyl methacrylate and at least one selected from the group consisting of dicyclopentanyl acrylate, dicyclopentanyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate. A coalescence is preferred.
 アクリルオリゴマーのモノマー成分における脂環式アルキル(メタ)アクリレートの割合は、好ましくは10重量%以上、より好ましくは20重量%以上、更に好ましくは30重量%以上である。同割合は、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下である。アクリルオリゴマーのモノマー成分における鎖状アルキル(メタ)アクリレートの割合は、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下である。同割合は、好ましくは10重量%以上、より好ましくは20重量%以上、更に好ましくは30重量%以上である。 The proportion of the alicyclic alkyl (meth)acrylate in the monomer component of the acrylic oligomer is preferably 10% by weight or more, more preferably 20% by weight or more, and even more preferably 30% by weight or more. The same ratio is preferably 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less. The proportion of chain alkyl (meth)acrylate in the monomer component of the acrylic oligomer is preferably 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less. The ratio is preferably 10% by weight or more, more preferably 20% by weight or more, and still more preferably 30% by weight or more.
 アクリルオリゴマーの重量平均分子量は、好ましくは1000以上、より好ましくは1500以上、更に好ましくは2000以上である。同分子量は、好ましくは30000以下、より好ましくは10000以下、更に好ましくは8000以下である。このようなアクリルオリゴマーの分子量範囲は、粘着剤層20の接着力および接着保持力を確保するのに好ましい。 The weight average molecular weight of the acrylic oligomer is preferably 1,000 or more, more preferably 1,500 or more, and even more preferably 2,000 or more. The molecular weight is preferably 30,000 or less, more preferably 10,000 or less, still more preferably 8,000 or less. Such a molecular weight range of the acrylic oligomer is preferable for ensuring the adhesive strength and adhesive holding power of the pressure-sensitive adhesive layer 20 .
 アクリルオリゴマーは、当該アクリルオリゴマーのモノマー成分を重合することによって得られる。重合方法としては、例えば、溶液重合、活性エネルギー線重合(例えばUV重合)、塊状重合、および乳化重合が挙げられる。アクリルオリゴマーの重合においては、重合開始剤を用いてもよく、分子量の調整を目的として連鎖移動剤を用いてもよい。 The acrylic oligomer is obtained by polymerizing the monomer component of the acrylic oligomer. Polymerization methods include, for example, solution polymerization, active energy ray polymerization (eg, UV polymerization), bulk polymerization, and emulsion polymerization. In the polymerization of the acrylic oligomer, a polymerization initiator may be used, and a chain transfer agent may be used for the purpose of adjusting the molecular weight.
 粘着剤層20におけるアクリルオリゴマーの含有量は、粘着剤層20の接着力を充分に高めるためには、ベースポリマー100質量部に対して、好ましくは0.5質量部以上、より好ましくは0.8質量部以上、更に好ましくは1質量部以上である。一方、粘着剤層20の透明性の確保の観点からは、粘着剤層20におけるアクリルオリゴマーの含有量は、ベースポリマー100質量部に対して、好ましくは5質量部以下、より好ましくは4質量部以下、更に好ましくは3質量部以下である。粘着剤層20においては、アクリルオリゴマーの含有量が大きすぎる場合、当該アクリルオリゴマーの相溶性の低下に起因して、ヘイズが上昇して透明性が低下する傾向がある。 The content of the acrylic oligomer in the pressure-sensitive adhesive layer 20 is preferably 0.5 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the base polymer, in order to sufficiently increase the adhesive strength of the pressure-sensitive adhesive layer 20 . It is 8 parts by mass or more, more preferably 1 part by mass or more. On the other hand, from the viewpoint of ensuring the transparency of the adhesive layer 20, the content of the acrylic oligomer in the adhesive layer 20 is preferably 5 parts by mass or less, more preferably 4 parts by mass with respect to 100 parts by mass of the base polymer. 3 parts by mass or less, more preferably 3 parts by mass or less. In the pressure-sensitive adhesive layer 20, when the content of the acrylic oligomer is too large, the haze tends to increase and the transparency tends to decrease due to the decrease in compatibility of the acrylic oligomer.
 第1粘着剤組成物は、シランカップリング剤を含有してもよい。第1粘着剤組成物におけるシランカップリング剤の含有量は、ベースポリマー100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。同含有量は、好ましくは5質量部以下、より好ましくは3質量部以下である。 The first adhesive composition may contain a silane coupling agent. The content of the silane coupling agent in the first pressure-sensitive adhesive composition is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, relative to 100 parts by mass of the base polymer. The content is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.
 第1粘着剤組成物は、必要に応じて他の成分を含有してもよい。他の成分としては、例えば、粘着付与剤、可塑剤、軟化剤、劣化防止剤、充填剤、着色剤、紫外線吸収剤、酸化防止剤、界面活性剤、および帯電防止剤が挙げられる。 The first adhesive composition may contain other components as necessary. Other ingredients include, for example, tackifiers, plasticizers, softeners, antidegradants, fillers, colorants, UV absorbers, antioxidants, surfactants, and antistatic agents.
 粘着剤層20の厚さは、被着体に対する充分な粘着性を確保する観点から、好ましくは10μm以上、より好ましくは15μm以上である。粘着剤層20の厚さは、ハンドリング性の観点から、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは100μm以下、特に好ましくは50μm以下である。 The thickness of the adhesive layer 20 is preferably 10 μm or more, more preferably 15 μm or more, from the viewpoint of ensuring sufficient adhesion to the adherend. The thickness of the pressure-sensitive adhesive layer 20 is preferably 300 μm or less, more preferably 200 μm or less, still more preferably 100 μm or less, and particularly preferably 50 μm or less, from the viewpoint of handling.
 粘着剤層20のヘイズは、好ましくは3%以下、より好ましくは2%以下、より好ましくは1%以下である。粘着剤層20のヘイズは、JIS K7136(2000年)に準拠して、ヘイズメーターを使用して測定できる。ヘイズメーターとしては、例えば、日本電色工業社製の「NDH2000」、および、村上色彩技術研究所社製の「HM-150型」が挙げられる。 The haze of the adhesive layer 20 is preferably 3% or less, more preferably 2% or less, and more preferably 1% or less. The haze of the pressure-sensitive adhesive layer 20 can be measured using a haze meter according to JIS K7136 (2000). Examples of the haze meter include "NDH2000" manufactured by Nippon Denshoku Industries Co., Ltd. and "HM-150 type" manufactured by Murakami Color Research Laboratory.
 粘着剤層20の全光線透過率は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。粘着剤層20の全光線透過率は、例えば100%以下である。粘着剤層20の全光線透過率は、JIS K 7375(2008年)に準拠して、測定できる。 The total light transmittance of the adhesive layer 20 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher. The total light transmittance of the adhesive layer 20 is, for example, 100% or less. The total light transmittance of the adhesive layer 20 can be measured according to JIS K 7375 (2008).
 粘着剤層30は、第2粘着剤組成物から形成された感圧接着剤層である。粘着剤層30は、透明性を有する。第2粘着剤組成物は、少なくともベースポリマーを含有する。第2粘着剤組成物に含有されるベースポリマーとしては、例えば、第1粘着剤組成物に関して上記したベースポリマーが挙げられる。第1粘着剤組成物中のベースポリマーと、第2粘着剤組成物中のベースポリマーとは、同じであってもよいし、異なってもよい。第2粘着剤組成物は、ベースポリマー以外の成分を含有してもよい。第2粘着剤組成物に含有される同成分としては、例えば、第1粘着剤組成物に関して上記した、ベースポリマー以外の成分が挙げられる。第1粘着剤組成物の組成と第2粘着剤組成物の組成は、同じであってもよいし、異なってもよい。 The adhesive layer 30 is a pressure-sensitive adhesive layer formed from the second adhesive composition. The adhesive layer 30 has transparency. The second PSA composition contains at least a base polymer. Examples of the base polymer contained in the second pressure-sensitive adhesive composition include the base polymers described above with respect to the first pressure-sensitive adhesive composition. The base polymer in the first PSA composition and the base polymer in the second PSA composition may be the same or different. The second PSA composition may contain components other than the base polymer. Examples of the components contained in the second pressure-sensitive adhesive composition include the components other than the base polymer described above for the first pressure-sensitive adhesive composition. The composition of the first pressure-sensitive adhesive composition and the composition of the second pressure-sensitive adhesive composition may be the same or different.
 粘着剤層30の厚さHは、粘着剤層20の厚さと同じであってもよいし、異なってもよい。粘着剤層30の厚さHは、被着体に対する充分な粘着性を確保する観点から、好ましくは10μm以上、より好ましくは15μm以上である。粘着剤層30の厚さは、ハンドリング性の観点から、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは100μm以下、特に好ましくは50μm以下である。また、粘着剤層20の厚さに対する粘着剤層30の厚さHの比率は、例えば0.2以上であり、また、例えば5以下である。 The thickness H of the adhesive layer 30 may be the same as or different from the thickness of the adhesive layer 20. The thickness H of the pressure-sensitive adhesive layer 30 is preferably 10 μm or more, more preferably 15 μm or more, from the viewpoint of ensuring sufficient adhesion to the adherend. The thickness of the pressure-sensitive adhesive layer 30 is preferably 300 μm or less, more preferably 200 μm or less, even more preferably 100 μm or less, and particularly preferably 50 μm or less, from the viewpoint of handling. Also, the ratio of the thickness H of the adhesive layer 30 to the thickness of the adhesive layer 20 is, for example, 0.2 or more and 5 or less.
 粘着剤層30のヘイズは、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下である。粘着剤層30のヘイズは、JIS K7136(2000年)に準拠して、ヘイズメーターを使用して測定できる。 The haze of the adhesive layer 30 is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less. The haze of the adhesive layer 30 can be measured using a haze meter according to JIS K7136 (2000).
 粘着剤層30の全光線透過率は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。粘着剤層30の全光線透過率は、例えば100%以下である。粘着剤層30の全光線透過率は、JIS K 7375(2008年)に準拠して、測定できる。 The total light transmittance of the adhesive layer 30 is preferably 60% or higher, more preferably 80% or higher, and even more preferably 85% or higher. The total light transmittance of the adhesive layer 30 is, for example, 100% or less. The total light transmittance of the adhesive layer 30 can be measured according to JIS K 7375 (2008).
 基材40としては、本実施形態では、フォルダブルディスプレイ用の画素パネルが挙げられる。画素パネルとしては、有機ELパネルおよび液晶パネルが挙げられる。基材40が画素パネルである場合、当該基材40の厚さは、例えば10μm以上であり、また、例えば150μm以下である。基材40としては、例えば、可撓性を有するプラスチックフィルムであってもよい。当該プラスチックフィルムとしては、例えば、剥離フィルム50に関して後述するプラスチックフィルムが挙げられる。 As the substrate 40, in this embodiment, a pixel panel for a foldable display can be used. Pixel panels include organic EL panels and liquid crystal panels. When the base material 40 is a pixel panel, the thickness of the base material 40 is, for example, 10 μm or more and, for example, 150 μm or less. The substrate 40 may be, for example, a flexible plastic film. As the plastic film, for example, a plastic film to be described later regarding the release film 50 can be used.
 剥離フィルム50としては、例えば、可撓性を有するプラスチックフィルムが挙げられる。当該プラスチックフィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、およびポリエステルフィルムが挙げられる。剥離フィルム50の厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、また、好ましくは200μm以下、より好ましくは150μm以下である。剥離フィルム50の表面は、好ましくは剥離処理されている。剥離処理としては、例えば、シリコーン剥離処理およびフッ素剥離処理が挙げられる。剥離処理の有無、種類の選択、および条件の調整により、粘着剤層30からの剥離フィルム50の剥離に関する上述の剥離開始力F1および剥離力F2を、調整できる。 Examples of the release film 50 include a flexible plastic film. Examples of the plastic film include polyethylene terephthalate film, polyethylene film, polypropylene film, and polyester film. The thickness of the release film 50 is preferably 5 μm or more, more preferably 10 μm or more, and preferably 200 μm or less, more preferably 150 μm or less. The surface of the release film 50 is preferably release-treated. Release treatments include, for example, silicone release treatments and fluorine release treatments. The peel starting force F1 and the peel force F2 for peeling the peel film 50 from the pressure-sensitive adhesive layer 30 can be adjusted by the presence or absence of the peel treatment, selection of the type, and adjustment of the conditions.
 光学積層体Xは、例えば、次のようにして製造できる。 The optical laminate X can be manufactured, for example, as follows.
 まず、光学フィルム10と、第1剥離フィルム付き粘着剤層20と、第2剥離フィルム付きの粘着剤層30とを用意する(用意工程)。 First, the optical film 10, the adhesive layer 20 with the first release film, and the adhesive layer 30 with the second release film are prepared (preparation step).
 第1剥離フィルム付き粘着剤層20は、第1剥離フィルム上に第1粘着剤組成物(ワニス)を塗布して塗膜を形成した後、当該塗膜を乾燥することによって形成できる。第1粘着剤組成物の塗布方法としては、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、およびダイコートが挙げられる(第2粘着剤組成物の後記の塗布の方法についても同様である)。第1剥離フィルム上の粘着剤層20の上に更に別の剥離フィルムを積層してもよい。この剥離フィルムは、光学フィルム10と粘着剤層20との貼り合わせの前に剥離される。 The pressure-sensitive adhesive layer 20 with the first release film can be formed by applying the first pressure-sensitive adhesive composition (varnish) on the first release film to form a coating film, and then drying the coating film. Examples of the method of applying the first pressure-sensitive adhesive composition include roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, Lip coating and die coating can be mentioned (the same applies to the method of applying the second pressure-sensitive adhesive composition, which will be described later). Another release film may be laminated on the adhesive layer 20 on the first release film. This peeling film is peeled off before bonding the optical film 10 and the pressure-sensitive adhesive layer 20 together.
 第2剥離フィルム付き粘着剤層30は、第2剥離フィルム上に第2粘着剤組成物(ワニス)を塗布して塗膜を形成した後、当該塗膜を乾燥することによって形成できる。第2剥離フィルム上の粘着剤層30の上に更に別の剥離フィルムを積層してもよい。この剥離フィルムは、光学フィルム10と粘着剤層30との貼り合わせの前に剥離される。 The pressure-sensitive adhesive layer 30 with the second release film can be formed by applying the second pressure-sensitive adhesive composition (varnish) on the second release film to form a coating film, and then drying the coating film. Another release film may be laminated on the adhesive layer 30 on the second release film. This peeling film is peeled off before bonding the optical film 10 and the adhesive layer 30 together.
 次に、光学フィルム10の第1面11と、第1剥離フィルム付き粘着剤層20の粘着剤層20側とを、貼り合わせる(第1貼合せ工程)。次に、光学フィルム10の第2面12と、第2剥離フィルム付き粘着剤層30の粘着剤層30側とを、貼り合わせる(第2貼合せ工程)。これにより、外周端が未加工の光学積層体Xとしての積層体が得られる。好ましくは、これら貼り合わせの前に、光学フィルム10の第1面11および第2面12と、第1剥離フィルム付き粘着剤層20の露出面と、第2剥離フィルム付き粘着剤層30の露出面とは、プラズマ処理される。 Next, the first surface 11 of the optical film 10 and the pressure-sensitive adhesive layer 20 side of the pressure-sensitive adhesive layer 20 with the first release film are bonded together (first bonding step). Next, the second surface 12 of the optical film 10 and the pressure-sensitive adhesive layer 30 side of the pressure-sensitive adhesive layer 30 with the second release film are bonded together (second bonding step). As a result, a layered body as the optical layered body X with an unprocessed outer peripheral edge is obtained. Preferably, the first surface 11 and the second surface 12 of the optical film 10, the exposed surface of the first release film-attached pressure-sensitive adhesive layer 20, and the second release film-attached pressure-sensitive adhesive layer 30 are exposed before the bonding. A face is plasma treated.
 次に、積層体を厚さ方向に挟む治具によって保持し、治具によって積層体に対して厚さ方向に付与される加圧力を、各粘着剤層20,30が弾性変形して積層体の側端面から所定程度にはみ出るように、調整する(加圧保持工程)。加圧力の調整により、粘着剤層20,30の弾性変形の程度を調整でき、従って、積層体側端面からはみ出る長さを調整できる。 Next, the laminate is held by a jig that sandwiches the laminate in the thickness direction. It is adjusted so that it protrudes from the side end face of , to a predetermined extent (pressurization and holding step). By adjusting the applied pressure, the degree of elastic deformation of the pressure-sensitive adhesive layers 20 and 30 can be adjusted, and therefore the length protruding from the side end face of the laminate can be adjusted.
 次に、粘着剤層20,30が積層体側端面からはみ出るように弾性変形している状態で、積層体側端面から所定長さ内側を、当該積層体の外周端の全部または一部が新たに形成されるように、回転刃によって厚さ方向に切断する(切断工程)。前記所定長さは、例えば0.1mm以上であり、また、例えば1mm以下である。その後、治具による積層体の加圧状態を解放する。これにより、粘着剤層20,30が弾性復帰して、粘着剤層20,30の端縁22,32が、光学フィルム10、基材40、および剥離フィルム50の端縁13,42,52よりも、面方向Dにおいて内方に退避する。このようにして側面凹凸端部Eが形成される。 Next, while the pressure-sensitive adhesive layers 20 and 30 are elastically deformed so as to protrude from the side end face of the laminate, all or part of the outer peripheral end of the laminate is newly formed inside a predetermined length from the side end face of the laminate. (cutting step). The predetermined length is, for example, 0.1 mm or more and, for example, 1 mm or less. After that, the laminate is released from the pressurized state by the jig. As a result, the adhesive layers 20 and 30 are elastically restored, and the edges 22 and 32 of the adhesive layers 20 and 30 are separated from the edges 13, 42 and 52 of the optical film 10, the substrate 40 and the release film 50. also retreat inward in the surface direction D. In this way, the uneven side edge E is formed.
 このような切断工程では、積層体に対して厚さ方向に付与される上述の加圧力を調整することにより、積層体の側端面から粘着剤層20,30がはみ出る長さを調整でき、加圧状態解放後の端縁22,32の退避長さd1,d2を調整できる。また、退避長さd1の調整方法としては、上述のように、粘着剤層20の厚さの調整および弾性率の調整も挙げられる。退避長さd2の調整方法としては、上述のように、粘着剤層30の厚さの調整および弾性率の調整も挙げられる。また、面方向Dにおける端縁22,32間の距離(即ち、退避長さd1と退避長さd2との差)の調整方法としては、上述のように、側面凹凸端部Eを形成するために回転刃を用いて実施される後述の切断工程における切断条件の調整が、挙げられる。当該切断条件としては、例えば、回転刃の刃先のテーパ角度、回転刃の回転数、後述する光学フィルム積層体の表面に対する回転刃の入射方向、および、光学フィルム積層体を切削する回転刃の変位速度が挙げられる。 In such a cutting step, by adjusting the pressure applied to the laminate in the thickness direction, the length of the adhesive layers 20 and 30 protruding from the side end surfaces of the laminate can be adjusted. Retraction lengths d1 and d2 of the edges 22 and 32 after pressure release can be adjusted. As described above, adjustment of the thickness and elastic modulus of the pressure-sensitive adhesive layer 20 can also be exemplified as a method for adjusting the retraction length d1. Methods for adjusting the retraction length d2 include adjusting the thickness and elastic modulus of the pressure-sensitive adhesive layer 30, as described above. In addition, as a method for adjusting the distance between the edges 22 and 32 in the surface direction D (that is, the difference between the retraction length d1 and the retraction length d2), as described above, the side uneven end portion E is formed. Adjustment of the cutting conditions in the cutting step, which will be described later, is carried out using a rotary blade. The cutting conditions include, for example, the taper angle of the cutting edge of the rotary blade, the number of rotations of the rotary blade, the incident direction of the rotary blade with respect to the surface of the optical film laminate described later, and the displacement of the rotary blade for cutting the optical film laminate. speed.
 次に、光学フィルム積層体の粘着剤層20から第1剥離フィルムを剥離した後、当該剥離によって露出した粘着剤層20に基材40を貼り合わせる(第3貼合せ工程)。 Next, after peeling the first release film from the adhesive layer 20 of the optical film laminate, the substrate 40 is bonded to the adhesive layer 20 exposed by the peeling (third bonding step).
 以上のようにして、上述の光学積層体X(光学積層体)を製造できる。 As described above, the optical layered body X (optical layered body) described above can be manufactured.
 光学積層体Xは、次のこと以外は以上の製造方法と同様にして製造してもよい。用意工程において、第1剥離フィルム付き粘着剤層20の代わりに、基材40付き粘着剤層20を用意し、第1貼合せ工程において、光学フィルム10の第1面11と、基材40付き粘着剤層20の粘着剤層20側とを貼り合わせ、第3貼合せ工程を実施しない。このような方法によっても、光学積層体Xを製造できる。 The optical layered body X may be manufactured in the same manner as the above manufacturing method except for the following. In the preparation step, instead of the adhesive layer 20 with the first release film, the adhesive layer 20 with the substrate 40 is prepared, and in the first bonding step, the first surface 11 of the optical film 10 and the substrate 40 are attached. The pressure-sensitive adhesive layer 20 side of the pressure-sensitive adhesive layer 20 is bonded together, and the third bonding step is not performed. The optical layered body X can also be manufactured by such a method.
 図5Aおよび図5Bは、光学積層体Xの使用方法の一例を表す。 5A and 5B show an example of how the optical laminate X is used.
 本方法では、まず、図5Aに示すように、光学積層体Xの粘着剤層30から剥離フィルム50を剥離する。例えば、光学積層体Xの基材40側をワークテーブル上に固定した状態で、側面凹凸端部Eにおける剥離フィルム50の端部に力を作用させて、粘着剤層30から剥離フィルム50を剥離する。これにより、粘着剤層30の粘着面31が露出する。 In this method, first, the release film 50 is peeled off from the adhesive layer 30 of the optical laminate X as shown in FIG. 5A. For example, with the substrate 40 side of the optical layered body X fixed on a worktable, a force is applied to the edge of the release film 50 at the uneven side edge E to release the release film 50 from the adhesive layer 30. do. Thereby, the adhesive surface 31 of the adhesive layer 30 is exposed.
 側面凹凸端部Eでは、上述のように、面方向Dにおいて、光学フィルム10および剥離フィルム50の端縁13,52よりも、粘着剤層30の端縁32が退避している。このような側面凹凸端部Eでは、図2を参照して上述したように、剥離フィルム50が、粘着剤層30が貼着していないフリー部分50aを有する。そのため、側面凹凸端部Eでは、粘着剤層30から剥離フィルム50を剥離するにあたり、まず、剥離フィルム50のフリー部分50aを、図2において仮想線で示すように、めくり上げて変形させ、その後に、既にめくり上げ変形しているフリー部分50aを引っ張って、剥離フィルム50を粘着剤層30の端縁32から引き離すことができる。すなわち、剥離開始過程において、剥離フィルム50のフリー部分50aを充分に変形させるための力(第1の力)と、剥離フィルム50の変形に追随して弾性変形する粘着剤層30の端縁32から剥離フィルム50を引き離すための力(第2の力)とが、同時には必要ない。このような光学積層体Xは、剥離開始過程に要する力を低減するのに適する。この力が小さいほど、剥離フィルム50の剥離開始過程において、厚さ100μm以下と薄い光学フィルム10の端部の変形が抑制され、同フィルムの端部において、クラックの発生が抑制される。 At the uneven side edge E, the edge 32 of the adhesive layer 30 is retreated from the edges 13 and 52 of the optical film 10 and the release film 50 in the surface direction D as described above. At such a side uneven end portion E, the release film 50 has a free portion 50a to which the pressure-sensitive adhesive layer 30 is not adhered, as described above with reference to FIG. Therefore, when peeling the release film 50 from the adhesive layer 30, the free portion 50a of the release film 50 is first turned up and deformed as shown by the phantom lines in FIG. In addition, the release film 50 can be separated from the edge 32 of the pressure-sensitive adhesive layer 30 by pulling the free portion 50a that has already been turned up and deformed. That is, in the peeling start process, the force (first force) for sufficiently deforming the free portion 50a of the release film 50 and the edge 32 of the adhesive layer 30 elastically deforming following the deformation of the release film 50 are applied. A force (second force) for pulling the release film 50 away from is not required at the same time. Such an optical layered body X is suitable for reducing the force required for the peel initiation process. The smaller this force is, the more the deformation of the thin optical film 10 with a thickness of 100 μm or less is suppressed in the process of starting the peeling of the release film 50 , and the crack generation at the edge of the film is suppressed.
 次に、図5Bに示すように、粘着剤層30を介して光学フィルム10と部材M(被着体)とを接合する。部材Mは、例えば、フレキシブルパネルが有する積層構造中の一要素である。当該要素としては、例えば、画素パネル、タッチパネル、および表面保護フィルムが挙げられる。 Next, as shown in FIG. 5B, the optical film 10 and the member M (adherend) are bonded with the adhesive layer 30 interposed therebetween. The member M is, for example, one element in the laminated structure of the flexible panel. Such elements include, for example, pixel panels, touch panels, and surface protective films.
 例えばフレキシブルパネルの製造過程において、光学積層体Xは以上のように使用される。 For example, in the manufacturing process of flexible panels, the optical laminate X is used as described above.
 本発明について、以下に実施例を示して具体的に説明する。本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。 The present invention will be specifically described below with reference to examples. The invention is not limited to the examples. In addition, the specific numerical values such as the compounding amount (content), physical property values, parameters, etc. described below are the corresponding compounding amounts ( content), physical properties, parameters, etc., upper limits (values defined as “less than” or “less than”) or lower limits (values defined as “greater than” or “greater than”).
〔実施例1〕
 <第1粘着シートの作製>
 以下のようにして、実施例1における第1粘着シートを作製した。
[Example 1]
<Production of first adhesive sheet>
A first pressure-sensitive adhesive sheet in Example 1 was produced as follows.
〈アクリルオリゴマーの調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、メタクリル酸シクロヘキシル(CHMA)95質量部と、アクリル酸(AA)5質量部と、連鎖移動剤としてのα-メチルスチレンダイマー 10質量部と、溶媒としてのトルエン120質量部とを含む混合物を、室温で1時間、窒素雰囲気下にて撹拌した。その後、混合物に、熱重合開始剤としての2,2'-アゾビスイソブチロニトリル(AIBN)10質量部を加えて反応溶液を調製し、窒素雰囲気下において、85℃で5時間、反応させた(アクリルオリゴマーの形成)。これにより、アクリルオリゴマーを含有するオリゴマー溶液(固形分濃度50質量%)得た。アクリルオリゴマーの重量平均分子量は4300であった。また、アクリルオリゴマーのガラス転移温度(Tg)は84℃であった。
<Preparation of acrylic oligomer>
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 95 parts by mass of cyclohexyl methacrylate (CHMA), 5 parts by mass of acrylic acid (AA), and α- A mixture containing 10 parts by mass of methylstyrene dimer and 120 parts by mass of toluene as a solvent was stirred at room temperature for 1 hour under a nitrogen atmosphere. After that, 10 parts by mass of 2,2′-azobisisobutyronitrile (AIBN) as a thermal polymerization initiator is added to the mixture to prepare a reaction solution, which is reacted at 85° C. for 5 hours under a nitrogen atmosphere. (formation of acrylic oligomers). As a result, an oligomer solution containing an acrylic oligomer (solid concentration: 50% by mass) was obtained. The acrylic oligomer had a weight average molecular weight of 4,300. Moreover, the glass transition temperature (Tg) of the acrylic oligomer was 84°C.
〈第1アクリルベースポリマーの調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、アクリル酸2-エチルヘキシル(2EHA)70質量部と、アクリル酸n-ブチル(BA)20質量部と、ラウリルアクリレート(LA)8質量部と、アクリル酸4-ヒドロキシブチル(4HBA)1質量部と、N-ビニル-2-ピロリドン(NVP)0.6質量部と、熱重合開始剤としての2,2'-アゾビスイソブチロニトリル(AIBN)0.1質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度47質量%)を、56℃で6時間、窒素雰囲気下で撹拌した(重合反応)。これにより、第1アクリルベースポリマーを含有する第1ポリマー溶液を得た。このポリマー溶液中の第1アクリルベースポリマーの重量平均分子量は約200万であった。
<Preparation of first acrylic base polymer>
70 parts by mass of 2-ethylhexyl acrylate (2EHA), 20 parts by mass of n-butyl acrylate (BA), and lauryl acrylate were placed in a reaction vessel equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube. (LA) 8 parts by mass, 4-hydroxybutyl acrylate (4HBA) 1 part by mass, N-vinyl-2-pyrrolidone (NVP) 0.6 parts by mass, and 2,2′- as a thermal polymerization initiator A mixture containing 0.1 part by mass of azobisisobutyronitrile (AIBN) and ethyl acetate as a solvent (solid concentration: 47% by mass) was stirred under a nitrogen atmosphere at 56°C for 6 hours (polymerization reaction ). This gave a first polymer solution containing the first acrylic base polymer. The weight average molecular weight of the first acrylic base polymer in this polymer solution was about 2 million.
〈第1粘着剤組成物の調製〉
 第1ポリマー溶液に、当該ポリマー溶液の固形分100質量部あたり、アクリルオリゴマー 1.5質量部と、第1架橋剤(品名「ナイパーBMT-40SV」,ジベンゾイルパーオキシド,日本油脂製)0.26質量部と、第2架橋剤(品名「コロネートL」,トリメチロールプロパン/トリレンジイソシアネート3量体付加物,東ソー製)0.02質量部と、シランカップリング剤(品名「KBM403」,信越化学工業製)0.3質量部とを加えて混合し、第1粘着剤組成物を調製した。
<Preparation of first adhesive composition>
To the first polymer solution, 1.5 parts by mass of acrylic oligomer per 100 parts by mass of the solid content of the polymer solution and 0.5 parts by mass of the first cross-linking agent (product name "Nyper BMT-40SV", dibenzoyl peroxide, manufactured by NOF) were added. 26 parts by mass, a second cross-linking agent (product name "Coronate L", trimethylolpropane / tolylene diisocyanate trimer adduct, manufactured by Tosoh) 0.02 parts by mass, a silane coupling agent (product name "KBM403", Shin-Etsu Kagaku Kogyo Co., Ltd.) was added and mixed to prepare a first adhesive composition.
〈第1粘着シートの形成〉
 片面がシリコーン剥離処理された剥離フィルムL1の剥離処理面上に、第1粘着剤組成物を塗布して塗膜を形成した。剥離フィルムL1は、片面がシリコーン剥離処理されたポリエチレンテレフタレート(PET)フィルム(品名「ダイアホイル MRF50」,厚さ50μm,三菱ケミカル製)である。次に、剥離フィルムL1上の塗膜に、片面がシリコーン剥離処理された剥離フィルムL2の剥離処理面を貼り合わせた。剥離フィルムL2は、片面がシリコーン剥離処理されたPETフィルム(品名「ダイアホイル MRV75」,厚さ75μm,三菱ケミカル製)である。次に、剥離フィルムL1と剥離フィルムL2とに挟まれた塗膜を、100℃で1分間の加熱とその後の150℃で3分間の加熱とによって乾燥し、厚さ50μmの透明な第1粘着剤層よりなる第1粘着シートを形成した。以上のようにして、剥離フィルムL1,L2付きの第1粘着シートを作製した。
<Formation of first adhesive sheet>
A coating film was formed by applying the first pressure-sensitive adhesive composition onto the release-treated surface of release film L1, one surface of which had been subjected to silicone release treatment. The release film L1 is a polyethylene terephthalate (PET) film (product name “Diafoil MRF50”, thickness 50 μm, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment. Next, the release-treated surface of the release film L2, one side of which was subjected to silicone release treatment, was attached to the coating film on the release film L1. The release film L2 is a PET film (product name: “DIAFOIL MRV75”, thickness: 75 μm, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment. Next, the coating film sandwiched between the release film L1 and the release film L2 is dried by heating at 100° C. for 1 minute and then heating at 150° C. for 3 minutes to form a transparent first adhesive having a thickness of 50 μm. A first pressure-sensitive adhesive sheet consisting of an agent layer was formed. As described above, the first pressure-sensitive adhesive sheets with release films L1 and L2 were produced.
<第2粘着シートの作製>
 以下のようにして、実施例1における第2粘着シートを作製した。
<Production of second adhesive sheet>
A second pressure-sensitive adhesive sheet in Example 1 was produced as follows.
〈第2アクリルベースポリマーの調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、アクリル酸ブチル(BA)99質量部と、アクリル酸4-ヒドロキシブチル(4HBA)1質量部と、熱重合開始剤としての2,2'-アゾビスイソブチロニトリル(AIBN)0.3質量部と、溶媒としての酢酸エチルとを含む混合物を、60℃で4時間、窒素雰囲気下で撹拌した(重合反応)。これにより、第2アクリルベースポリマーを含有する第2ポリマー溶液を得た。このポリマー溶液中の第2アクリルベースポリマーの重量平均分子量は165万であった。
<Preparation of second acrylic base polymer>
99 parts by mass of butyl acrylate (BA), 1 part by mass of 4-hydroxybutyl acrylate (4HBA), and thermal polymerization start in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube. A mixture containing 0.3 parts by mass of 2,2′-azobisisobutyronitrile (AIBN) as an agent and ethyl acetate as a solvent was stirred at 60° C. for 4 hours under a nitrogen atmosphere (polymerization reaction ). This gave a second polymer solution containing a second acrylic base polymer. The weight average molecular weight of the second acrylic base polymer in this polymer solution was 1,650,000.
〈第2粘着剤組成物の調製〉
 第2ポリマー溶液に、当該ポリマー溶液の固形分100質量部あたり、第1架橋剤(品名「ナイパーBMT-40SV」,ジベンゾイルパーオキシド,日本油脂製)0.3質量部と、第3架橋剤(品名「タケネートD110N」,トリメチロールプロパンキシリレンジイソシアネート,三井化学製)0.1質量部と、シランカップリング剤(品名「KBM403」,信越化学工業製)0.3質量部とを加えて混合し、第2粘着剤組成物を調製した。
<Preparation of second adhesive composition>
In the second polymer solution, 0.3 parts by mass of the first cross-linking agent (product name "Niper BMT-40SV", dibenzoyl peroxide, manufactured by NOF) per 100 parts by mass of the solid content of the polymer solution, and the third cross-linking agent (product name “Takenate D110N”, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals) 0.1 parts by mass and 0.3 parts by mass of a silane coupling agent (product name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) are added and mixed. Then, a second adhesive composition was prepared.
〈第2粘着シートの形成〉
 片面がシリコーン剥離処理された剥離フィルムL3の剥離処理面上に、第2粘着剤組成物を塗布して塗膜を形成した。剥離フィルムL3は、片面がシリコーン剥離処理されたポリエチレンテレフタレート(PET)フィルム(品名「ダイアホイル MRF50」,厚さ50μm,三菱ケミカル製)である。次に、剥離フィルムL3上の塗膜に、片面がシリコーン剥離処理された剥離フィルムL4の剥離処理面を貼り合わせた。剥離フィルムL4は、片面がシリコーン剥離処理されたPETフィルム(品名「ダイアホイル MRV75」,厚さ75μm,三菱ケミカル製)である。次に、剥離フィルムL3と剥離フィルムL4とに挟まれた塗膜を、100℃で1分間の加熱とその後の150℃で3分間の加熱とによって乾燥し、厚さ50μmの透明な第2粘着剤層よりなる第2粘着シートを形成した。以上のようにして、剥離フィルムL3,L4付きの第2粘着シートを作製した。
<Formation of second adhesive sheet>
A coating film was formed by applying the second pressure-sensitive adhesive composition onto the release-treated surface of release film L3, one surface of which had been subjected to silicone release treatment. The release film L3 is a polyethylene terephthalate (PET) film (product name: "Diafoil MRF50", thickness: 50 µm, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment. Next, the release-treated surface of the release film L4, one side of which was subjected to silicone release treatment, was attached to the coating film on the release film L3. The release film L4 is a PET film (product name: "DIAFOIL MRV75", thickness: 75 µm, manufactured by Mitsubishi Chemical Co., Ltd.) one side of which is subjected to silicone release treatment. Next, the coating film sandwiched between the release film L3 and the release film L4 is dried by heating at 100° C. for 1 minute and then heating at 150° C. for 3 minutes to obtain a transparent second adhesive having a thickness of 50 μm. A second pressure-sensitive adhesive sheet consisting of an agent layer was formed. As described above, the second adhesive sheets with release films L3 and L4 were produced.
<光学積層体の作製>
 まず、両面剥離フィルム付き第1粘着シートから剥離フィルムL2を剥離し、これによって露出した露出面をプラズマ処理した。一方、厚さ31μmの偏光板の両面(第1面,第2面)も、プラズマ処理した。各プラズマ処理では、プラズマ照射装置(品名「AP-TO5」,積水工業社製)を使用し、電圧を160Vとし、周波数を10kHzとし、処理速度を5000mm/分とした(後記のプラズマ処理においても同様である)。そして、第1粘着シートの上記露出面と、偏光板の第1面とを、貼り合わせた。この貼り合わせでは、25℃の環境下において、2kgのローラーを1往復させる作業により、剥離フィルムL1付き第1粘着シートと偏光板とを圧着させた。
<Preparation of optical laminate>
First, the release film L2 was peeled off from the first pressure-sensitive adhesive sheet with a double-sided release film, and the exposed surface thereby exposed was plasma-treated. On the other hand, both surfaces (first surface and second surface) of the polarizing plate having a thickness of 31 μm were also plasma-treated. In each plasma treatment, a plasma irradiation device (product name “AP-TO5”, manufactured by Sekisui Kogyo Co., Ltd.) was used, the voltage was 160 V, the frequency was 10 kHz, and the treatment speed was 5000 mm / min (also in the plasma treatment described later similar). Then, the exposed surface of the first adhesive sheet and the first surface of the polarizing plate were bonded together. In this bonding, the first pressure-sensitive adhesive sheet with the release film L1 and the polarizing plate were pressure-bonded by reciprocating a 2-kg roller one time in an environment of 25°C.
 次に、剥離フィルムL3,L4付き第2粘着シートから剥離フィルムL3を剥離し、これによって露出した露出面をプラズマ処理した。そして、第2粘着シートの露出面と、偏光板の第2面とを、貼り合わせた。この貼り合わせでは、25℃の環境下において、2kgのローラーを1往復させる作業により、剥離フィルムL4付き第2粘着シートと偏光板とを圧着させた。これにより、剥離フィルムL1(厚さ50μm)付き第1粘着シートと、偏光板と、剥離フィルムL4(厚さ75μm)付き第2粘着シートとの積層構成の積層フィルムを得た。 Next, the release film L3 was peeled off from the second adhesive sheet with the release films L3 and L4, and the exposed surface was plasma-treated. Then, the exposed surface of the second adhesive sheet and the second surface of the polarizing plate were bonded together. In this bonding, the second pressure-sensitive adhesive sheet with the release film L4 and the polarizing plate were pressure-bonded by reciprocating a 2-kg roller one time in an environment of 25°C. As a result, a laminated film having a laminated configuration of a first adhesive sheet with a release film L1 (thickness of 50 μm), a polarizing plate, and a second adhesive sheet with a release film L4 (thickness of 75 μm) was obtained.
 次に、打抜き加工機およびトムソン刃を使用して、積層フィルムを150mm×120mmのサイズに打ち抜いた(打抜き加工工程)。 Next, using a punching machine and a Thomson blade, the laminated film was punched into a size of 150 mm x 120 mm (punching process).
 次に、以下のようにして外形加工を実施した(外形加工工程)。まず、同一サイズに打ち抜かれた50枚の積層フィルムを積み重ねて積層体を得た。具体的には、隣り合う積層フィルムにおいては一方の積層フィルムの剥離フィルムL1(第1剥離フィルム)と他方の積層フィルムの剥離フィルムL4(第2剥離フィルム)とが接するように、50枚の積層フィルムを積み重ねて積層体を得た。この積層体は、表面に第1剥離フィルムが配置されている厚さ方向一方面(第1表層面)と、表面に第2剥離フィルムが配置されている厚さ方向他方面(第2表層面)とを有する。次に、この積層体を厚さ方向に挟む治具によって保持した。次に、治具によって積層体に対して厚さ方向に付与される加圧力を、積層体の端面から各粘着剤層が所定程度にはみ出るように、調整した。この状態で、積層体の端面から0.5mm内側を、当該積層体の外周端が新たに形成されるように、厚さ方向に切断した。切断には、所定の切断加工機と、当該加工機に取り付けられた第1の回転刃を使用した。この回転刃は、ディスク部と、当該ディスク部の周端からディスク径方向に突出する複数の突出刃を有する。図6Aおよび図6Bに示すように、突出刃70は、回転刃回転時における前方側の縁端に、切断対象物80の切断を担う直線状のナイフエッジ71(長さ6mm)を有する。外形加工工程では、各突出刃70が積層体(切断対象物80)に対してその第2表層面側から切り込むように積層体に対して回転刃を回転させ、回転刃の回転速度を4500rpmとし、積層体に対する回転刃の変位速度を1000mm/分とし、積層体に対して切断直前に対向するナイフエッジ71の、積層体表面(第2表層面)に対する仰角(刃角度θ)を+5°(図6A)とした(刃角度θが図6Aに示すようにディスク径方向外側に開く場合を正の刃角度θとし、刃角度θが図6Bに示すようにディスク径方向内側に開く場合を負の刃角度θとする)。そして、外形加工後に、治具による積層体の加圧状態を解放した。 Next, the outer shape was processed as follows (outer shape processing process). First, a laminate was obtained by stacking 50 laminate films punched into the same size. Specifically, in adjacent laminated films, 50 laminated films are laminated so that the release film L1 (first release film) of one laminated film and the release film L4 (second release film) of the other laminated film are in contact. The films were stacked to obtain a laminate. This laminate has one surface in the thickness direction (first surface layer surface) on which the first release film is arranged, and the other surface in the thickness direction (second surface layer surface) on which the second release film is arranged. ) and Next, this laminate was held by jigs that sandwiched in the thickness direction. Next, the pressure applied to the laminate in the thickness direction by the jig was adjusted so that each pressure-sensitive adhesive layer protrudes from the end face of the laminate to a predetermined extent. In this state, 0.5 mm inside from the end face of the laminate was cut in the thickness direction so that the outer peripheral edge of the laminate was newly formed. For cutting, a predetermined cutting machine and a first rotary blade attached to the machine were used. This rotary blade has a disk portion and a plurality of projecting blades projecting in the disk radial direction from the peripheral edge of the disk portion. As shown in FIGS. 6A and 6B, the protruding blade 70 has a linear knife edge 71 (length 6 mm) that cuts the object 80 at the edge on the front side when the rotary blade rotates. In the outer shape processing step, the rotary blades are rotated with respect to the laminate so that each protruding blade 70 cuts into the laminate (cutting target 80) from the second surface side, and the rotation speed of the rotary blade is set to 4500 rpm. , the displacement speed of the rotary blade with respect to the laminated body is 1000 mm/min, and the elevation angle (blade angle θ) of the knife edge 71 facing the laminated body just before cutting is +5° (blade angle θ) with respect to the laminated body surface (second surface layer surface) 6A) (when the blade angle θ opens outward in the disk radial direction as shown in FIG. 6A, the blade angle θ is positive, and when the blade angle θ opens inward in the disk radial direction as shown in FIG. 6B, the blade angle θ is negative. is the blade angle θ). After the outer shape processing, the laminate was released from the pressurized state by the jig.
 次に、光学フィルム積層体の第1粘着剤層から剥離フィルムL1を剥離した後、当該剥離によって露出した第1粘着剤層に、基材としてのポリイミドフィルム(品名「カプトン」,厚さ50μm,東レ・デュポン社製)を貼り合わせた。 Next, after peeling off the release film L1 from the first pressure-sensitive adhesive layer of the optical film laminate, a polyimide film (product name “Kapton”, thickness 50 μm, thickness 50 μm, Toray DuPont Co.) was pasted together.
 以上のようにして、実施例1の光学積層体を製造した。実施例1の光学積層体は、基材としてのポリイミドフィルム(厚さ50μm)と、第1粘着剤層(厚さ50μm)と、光学フィルムとしての偏光板(厚さ31μm)と、第2粘着剤層(厚さ50μm)と、剥離フィルムL4(厚さ75μm)とを厚さ方向に順に備え、外周端の全体にわたって側面凹凸端部を有する。この側面凹凸端部では、フィルム面方向において、各フィルムの端縁よりも第1および第2粘着剤層の各端縁が退避している。また、このように作製された光学フィルム積層体では、フィルム面内方向において、基材、光学フィルム、および剥離フィルムの各端縁は、実質的に同じ位置にある。そのため、剥離フィルムの端縁からの第2粘着剤層の端縁の退避長さd2’は、光学フィルムの端縁からの第2粘着剤層の端縁の退避長さd2と実質的に等しい。 The optical laminate of Example 1 was manufactured as described above. The optical laminate of Example 1 includes a polyimide film (thickness of 50 μm) as a substrate, a first adhesive layer (thickness of 50 μm), a polarizing plate (thickness of 31 μm) as an optical film, and a second adhesive An agent layer (thickness 50 μm) and a release film L4 (thickness 75 μm) are provided in order in the thickness direction. At the uneven side edges, the edges of the first and second pressure-sensitive adhesive layers are retreated from the edges of the films in the film surface direction. In the optical film laminate thus produced, the edges of the substrate, the optical film, and the release film are substantially at the same position in the in-plane direction of the film. Therefore, the retraction length d2′ of the edge of the second adhesive layer from the edge of the release film is substantially equal to the retraction length d2 of the edge of the second adhesive layer from the edge of the optical film. .
〔実施例2~4〕
 以下のこと以外は、実施例1の光学積層体と同様にして、実施例2~4の各光学積層体を作製した。
[Examples 2 to 4]
Optical laminates of Examples 2 to 4 were produced in the same manner as the optical laminate of Example 1 except for the following.
 実施例2では、外形加工時の上述の刃角度θについて、実施例1よりもプラス側に絶対値が大きくなるように調整した。実施例3では、外形加工時の上述の刃角度θを、実施例1よりもマイナス側に変化するように調整し、且つ、同加工時の上述の回転刃回転速度を、実施例1よりも遅くなるように調整した。実施例4では、外形加工において、回転刃に対する積層体の配置態様を実施例3とは表裏反対とした。 In Example 2, the above-described blade angle θ during contour processing was adjusted so that the absolute value was larger on the positive side than in Example 1. In Example 3, the above-mentioned blade angle θ during outer shape processing is adjusted to be more negative than in Example 1, and the above-mentioned rotary blade rotation speed during the same processing is adjusted to be lower than in Example 1. I adjusted it to be late. In Example 4, the layout of the laminate with respect to the rotary blade was reversed from that of Example 3 in the outer shape processing.
〔比較例1〕
 外形加工工程を実施しなかったこと以外は、実施例1の光学積層体と同様にして、比較例1の光学積層体を作製した。
[Comparative Example 1]
An optical layered body of Comparative Example 1 was produced in the same manner as the optical layered body of Example 1, except that the outer shape processing step was not performed.
〈退避長さ〉
 実施例1~4および比較例1における各光学積層体について、側面凹凸端部における第1粘着剤層の端縁の退避長さd1(面方向における光学フィルム端縁からの距離)と、第2粘着剤層の端縁の退避長さd2(面方向における光学フィルム端縁からの距離)とを、次のようにして調べた。
<Retraction length>
For each optical layered body in Examples 1 to 4 and Comparative Example 1, the retraction length d1 (distance from the edge of the optical film in the surface direction) of the edge of the first adhesive layer at the side uneven edge The withdrawal length d2 of the edge of the pressure-sensitive adhesive layer (the distance from the edge of the optical film in the surface direction) was examined as follows.
 まず、光学積層体から基材を剥離した後、当該剥離によって露出した第1粘着剤層を介して、積層体(第1粘着剤層/光学フィルム/第2粘着剤層/剥離フィルム)をガラスプレートに貼り付けた。次に、ガラスプレート上の積層体から剥離フィルムを剥離した。ガラスプレート上の積層体(第1粘着剤層/光学フィルム/第2粘着剤層)の外周端から選択した所定箇所を、光学顕微鏡によって観察した。具体的には、上記積層体を、ガラスプレートとは反対の側から、光学顕微鏡によって厚さ方向に観察し、撮影した。そして、撮影された画像において、光学フィルムの端縁からの第1粘着剤層の端縁の退避長さd1と、光学フィルムの同端縁からの第2粘着剤層の端縁の退避長さd2とを測定した。測定結果を表1に示す。 First, after peeling the base material from the optical laminate, the laminate (first adhesive layer/optical film/second adhesive layer/release film) is removed from the glass via the first adhesive layer exposed by the peeling. pasted on the plate. Next, the release film was peeled off from the laminate on the glass plate. A predetermined portion selected from the outer peripheral edge of the laminate (first pressure-sensitive adhesive layer/optical film/second pressure-sensitive adhesive layer) on the glass plate was observed with an optical microscope. Specifically, the laminate was observed and photographed in the thickness direction with an optical microscope from the side opposite to the glass plate. Then, in the photographed image, the retraction length d1 of the edge of the first adhesive layer from the edge of the optical film and the retraction length of the edge of the second adhesive layer from the same edge of the optical film d2 was measured. Table 1 shows the measurement results.
〈剥離開始力と剥離力〉
 実施例1~4および比較例1における各光学積層体について、剥離フィルムの剥離に要する力(剥離開始力とその後の剥離力)を、調べた。
<Peeling initiation force and peeling force>
For each of the optical laminates in Examples 1 to 4 and Comparative Example 1, the force required for peeling the release film (the peel initiation force and the subsequent peel force) was examined.
 まず、光学積層体から、測定用の試験片(短辺25mm×長辺150mm程度)を切り出した。具体的には、光学積層体の側面凹凸端部から150mm程度の長さを有し且つ25mmの幅を有する試験片を、同フィルムから切り出した。 First, a test piece for measurement (approximately 25 mm short side x 150 mm long side) was cut out from the optical layered body. Specifically, a test piece having a length of about 150 mm and a width of 25 mm was cut from the same film from the edge of the uneven side surface of the optical layered body.
 次に、引張試験機(品名「オートグラフ」,島津製作所製)の固定用テーブルに試験片を固定した。具体的には、試験片から基材を剥離して外した後、当該剥離によって露出した第1粘着剤層を介して、当該試験片(第1粘着剤層/光学フィルム/第2粘着剤層/剥離フィルム)を固定用テーブルに貼り付けた。 Next, the test piece was fixed to the fixing table of the tensile tester (product name "Autograph", manufactured by Shimadzu Corporation). Specifically, after peeling and removing the substrate from the test piece, the test piece (first adhesive layer / optical film / second adhesive layer / release film) was attached to the fixing table.
 次に、試験片の露出面側に位置する剥離フィルムにおける側面凹凸端部側の短辺に、把持用テープを貼り付けた。この把持用テープは強粘着面を有し、当該強粘着面を介して把持用テープを試験片の剥離フィルムに貼り付けた。 Next, a gripping tape was attached to the short side of the release film located on the exposed surface side of the test piece, on the side of the uneven end of the side surface. This gripping tape had a strong adhesive surface, and the gripping tape was attached to the release film of the test piece via the strong adhesive surface.
 次に、引張試験機により、試験片における第2粘着剤層上の剥離フィルムを当該粘着剤層から剥離する剥離試験を実施し、剥離に要する力を剥離強度として測定した。本測定では、測定温度を25℃とし、把持用テープを引っ張ることによって剥離フィルムを剥離し、剥離角度を180°とし、引張速度を300mm/分とし、剥離長さを100mmとした。このような剥離試験によって得られるグラフの一例を図7に示す。図7のグラフにおいて、横軸は剥離長さ(mm)を表し、縦軸は剥離強度(gf)を表し、Fmは、剥離強度の最大値を表す。 Next, using a tensile tester, a peel test was conducted in which the release film on the second adhesive layer of the test piece was peeled off from the adhesive layer, and the force required for peeling was measured as the peel strength. In this measurement, the measurement temperature was 25° C., the peeling film was peeled off by pulling the gripping tape, the peeling angle was 180°, the pulling speed was 300 mm/min, and the peeling length was 100 mm. An example of a graph obtained by such a peeling test is shown in FIG. In the graph of FIG. 7, the horizontal axis represents the peel length (mm), the vertical axis represents the peel strength (gf), and Fm represents the maximum value of the peel strength.
 以上のような剥離試験によって求められた剥離開始力F1(gf/25mm)および剥離力F2(gf/25mm)を表1に示す。剥離開始力F1は、剥離フィルムを第2粘着剤層から剥離したときの、剥離長さ20mm以内における剥離強度の最大値であり、剥離力F2は、剥離長さ20~100mm(剥離強度が、剥離開始時の剥離開始力F1を経た後に安定している)における剥離強度の平均値である。また、剥離開始力の抑制について、剥離開始力F1が600gf/25mm以下である場合を“優”と評価し、剥離開始力F1が600gf/25mmを超え且つ800gf/25mm以下である場合を“良”と評価し、剥離開始力F1が800gf/25mmを超える場合を“不良”と評価した。その評価結果も表1に示す。 Table 1 shows the peel starting force F1 (gf/25 mm) and the peel force F2 (gf/25 mm) determined by the above peel test. The peel starting force F1 is the maximum value of the peel strength within a peel length of 20 mm when the peel film is peeled from the second adhesive layer, and the peel force F2 is the peel length of 20 to 100 mm (the peel strength is It is the average value of the peel strength when the peel strength is stable after passing through the peel initiation force F1 at the start of peeling. In addition, regarding the suppression of the peel initiation force, the case where the peel initiation force F1 is 600 gf / 25 mm or less is evaluated as "excellent", and the case where the peel initiation force F1 exceeds 600 gf / 25 mm and is 800 gf / 25 mm or less is evaluated as "good". ", and the case where the peel initiation force F1 exceeded 800 gf/25 mm was evaluated as "poor". The evaluation results are also shown in Table 1.
〈光学フィルムの端部クラックの抑制〉
 実施例1~4および比較例1における各光学積層体について、剥離フィルムを剥離する時の、光学フィルム端部でのクラックの発生のしにくさを調べた。具体的には、まず、光学積層体ごとに評価サンプルを作製した。次に、評価サンプルの剥離フィルムを、手作業によって剥離した。次に、光学フィルムの外周部(端縁から1mmの領域)を光学顕微鏡によって観察した。そして、剥離フィルムの剥離後に光学フィルムの前記外周部に長さ100μm以上のクラックが発生していない場合を“優”と評価し、長さ100μm以上200μm未満のクラックが発生している場合を“良”と評価し、長さ200μm以上のクラックが発生している場合を“不良”と評価した。その評価結果を表1に示す。
<Suppression of edge cracks in optical film>
For each of the optical laminates in Examples 1 to 4 and Comparative Example 1, the resistance to crack generation at the edge of the optical film when the release film was peeled off was examined. Specifically, first, an evaluation sample was produced for each optical layered body. Next, the release film of the evaluation sample was manually peeled off. Next, the outer peripheral portion of the optical film (1 mm region from the edge) was observed with an optical microscope. A case where no crack with a length of 100 μm or more occurred in the outer peripheral portion of the optical film after peeling of the release film was evaluated as “excellent”, and a case where a crack with a length of 100 μm or more and less than 200 μm occurred was evaluated as “ It was evaluated as "good", and a case where a crack with a length of 200 μm or more was generated was evaluated as "bad". Table 1 shows the evaluation results.
〈端部のブロッキング〉
 実施例1~4および比較例1における各光学積層体について、端部のブロッキングのしにくさを調べた。具体的には、まず、光学積層体ごとに10枚の評価サンプルを作製し、10枚の評価サンプルを積み重ねてフィルムパイルを形成した(第1工程)。次に、フィルムパイルにおいて一番上に位置する光学積層体に対し、先端に粘着面を有する円柱のロッド(直径10mm)の先端粘着面を上方から押し付けた後、当該ロッドを上方に引き上げて、ロッドに伴って持ち上がった光学積層体の枚数を数えた(第2工程)。第1工程とその後の第2工程とからなる試行を、光学積層体ごとに10回行った。10回の試行において、ロッドに伴って持ち上がった光学積層体が1枚のみであった試行の数が10である場合を“優”と評価し、6~9である場合を“良”と評価し、5以下である場合を“不良”と評価した。その評価結果を表1に示す。
<Blocking at the edge>
For each optical layered body in Examples 1 to 4 and Comparative Example 1, the difficulty of blocking at the ends was examined. Specifically, first, 10 evaluation samples were produced for each optical layered body, and the 10 evaluation samples were stacked to form a film pile (first step). Next, the adhesive surface at the tip of a cylindrical rod (10 mm in diameter) having an adhesive surface at the tip is pressed from above against the optical layered body positioned at the top of the film pile, and then the rod is pulled upward, The number of optical laminates lifted by the rod was counted (second step). A trial consisting of the first step and the subsequent second step was performed 10 times for each optical layered body. In 10 trials, the number of trials in which only one optical layered body was lifted with the rod was evaluated as "excellent" when the number of trials was 10, and when the number was 6 to 9, it was evaluated as "good". A score of 5 or less was evaluated as "poor". Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。 The above-described embodiments are examples of the present invention, and the present invention should not be construed to be limited by the embodiments. Variations of the invention that are obvious to those skilled in the art are included in the following claims.
 本発明の光学積層体は、例えば、フォルダブルディスプレイパネルの製造に用いられる。 The optical layered body of the present invention is used, for example, in the manufacture of foldable display panels.
X     光学フィルム(光学積層体)
Y     粘着剤層付き光学フィルム
E     側面凹凸端部
T     厚さ方向
10    光学フィルム
11    第1面
12    第2面
13    端縁
20,30 粘着剤層
21,31 粘着面
22    端縁(第1端縁)
32    端縁(第2端縁)
40    基材
42    端縁
50    剥離フィルム
52    端縁
X optical film (optical laminate)
Y: optical film with adhesive layer E side uneven edge T thickness direction 10 optical film 11 first surface 12 second surface 13 edge 20, 30 adhesive layer 21, 31 adhesive surface 22 edge (first edge)
32 edge (second edge)
40 Base material 42 Edge 50 Release film 52 Edge

Claims (7)

  1.  基材と、第1粘着剤層と、光学フィルムと、第2粘着剤層と、剥離フィルムとを厚さ方向にこの順で備える、光学積層体であって、
     前記光学フィルムが100μm以下の厚さを有し、
     前記光学フィルムの前記厚さ方向と直交する面方向において、前記光学フィルムおよび前記剥離フィルムの各端縁よりも、前記第2粘着剤層の端縁が退避している、側面凹凸端部を有する、光学積層体。
    An optical laminate comprising a substrate, a first pressure-sensitive adhesive layer, an optical film, a second pressure-sensitive adhesive layer, and a release film in this order in the thickness direction,
    The optical film has a thickness of 100 μm or less,
    In the surface direction perpendicular to the thickness direction of the optical film, the edge of the second pressure-sensitive adhesive layer is retreated from the edges of the optical film and the release film, and has a side uneven edge. , an optical laminate.
  2.  前記側面凹凸端部では、前記面方向において、前記剥離フィルムの端縁からの前記第2粘着剤層の端縁の退避長さが20μm以上である、請求項1に記載の光学積層体。 2. The optical layered body according to claim 1, wherein at the uneven side surface edge portion, the retraction length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film in the surface direction is 20 μm or more.
  3.  前記側面凹凸端部では、前記面方向において、前記光学フィルムおよび前記基材の各端縁よりも、前記第1粘着剤層の端縁が退避している、請求項1に記載の光学積層体。 2. The optical layered body according to claim 1, wherein at the uneven side edge portion, the edge of the first pressure-sensitive adhesive layer is receded from the edge of each of the optical film and the substrate in the planar direction. .
  4.  前記側面凹凸端部では、前記面方向において、前記光学フィルムの端縁からの前記第1粘着剤層の端縁の退避長さより、前記光学フィルムの端縁からの前記第2粘着剤層の端縁の退避長さが小さい、請求項3に記載の光学積層体。 In the uneven end portion of the side surface, in the surface direction, the edge of the second adhesive layer from the edge of the optical film is less than the retracted length of the edge of the first adhesive layer from the edge of the optical film. 4. The optical stack of claim 3, wherein the edges have a small retraction length.
  5.  前記面方向における前記第1粘着剤層の端縁と前記第2粘着剤層の端縁との間の距離が1μm以上である、請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein the distance between the edge of the first pressure-sensitive adhesive layer and the edge of the second pressure-sensitive adhesive layer in the planar direction is 1 μm or more.
  6.  前記第2粘着剤層の厚さに対する、前記剥離フィルムの端縁からの前記第2粘着剤層の端縁の退避長さの比率が、0.4以上8以下である、請求項1に記載の光学積層体。 2. The method according to claim 1, wherein the ratio of the retracted length of the edge of the second pressure-sensitive adhesive layer from the edge of the release film to the thickness of the second pressure-sensitive adhesive layer is 0.4 or more and 8 or less. optical laminate.
  7.  前記第2粘着剤層からの前記剥離フィルムの剥離を開始するための剥離開始力が800gf/25mm以下である、請求項1に記載の光学積層体。 The optical layered body according to claim 1, wherein a peel initiation force for starting peeling of the release film from the second pressure-sensitive adhesive layer is 800 gf/25 mm or less.
PCT/JP2022/023780 2021-06-30 2022-06-14 Optical layered body WO2023276655A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280046913.XA CN117642288A (en) 2021-06-30 2022-06-14 Optical laminate
KR1020237044077A KR20240028348A (en) 2021-06-30 2022-06-14 optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109361 2021-06-30
JP2021109361A JP2023006652A (en) 2021-06-30 2021-06-30 optical laminate

Publications (1)

Publication Number Publication Date
WO2023276655A1 true WO2023276655A1 (en) 2023-01-05

Family

ID=84692293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023780 WO2023276655A1 (en) 2021-06-30 2022-06-14 Optical layered body

Country Status (5)

Country Link
JP (1) JP2023006652A (en)
KR (1) KR20240028348A (en)
CN (1) CN117642288A (en)
TW (1) TW202311027A (en)
WO (1) WO2023276655A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193264A (en) * 2011-03-16 2012-10-11 Daio Paper Corp Adhesive sheet, and peeling method of the same
JP2013227427A (en) * 2012-04-25 2013-11-07 Daicel Corp Adhesive sheet and peeling method
JP2014115468A (en) * 2012-12-10 2014-06-26 Nitto Denko Corp Optical film having adhesive agent on both sides, and manufacturing method of image display unit using the same
JP2019032415A (en) * 2017-08-07 2019-02-28 日東電工株式会社 Method of manufacturing optical film with pressure-sensitive adhesive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190754A (en) 2020-08-18 2020-11-26 日東電工株式会社 Optical film, removal method and manufacturing method of optical display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193264A (en) * 2011-03-16 2012-10-11 Daio Paper Corp Adhesive sheet, and peeling method of the same
JP2013227427A (en) * 2012-04-25 2013-11-07 Daicel Corp Adhesive sheet and peeling method
JP2014115468A (en) * 2012-12-10 2014-06-26 Nitto Denko Corp Optical film having adhesive agent on both sides, and manufacturing method of image display unit using the same
JP2019032415A (en) * 2017-08-07 2019-02-28 日東電工株式会社 Method of manufacturing optical film with pressure-sensitive adhesive

Also Published As

Publication number Publication date
CN117642288A (en) 2024-03-01
KR20240028348A (en) 2024-03-05
TW202311027A (en) 2023-03-16
JP2023006652A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP5518436B2 (en) Optical adhesive sheet
KR20140110750A (en) Pressure-sensitive adhesive sheet
WO2022163638A1 (en) Optical adhesive sheet for foldable device
WO2023276655A1 (en) Optical layered body
WO2023276653A1 (en) Optical film with release film
WO2023276654A1 (en) Optical film with cover film
WO2022163637A1 (en) Optical adhesive sheet for foldable device
WO2023047917A1 (en) Optical pressure-sensitive adhesive sheet
WO2024195836A1 (en) Optical adhesive sheet
WO2024195838A1 (en) Optical pressure-sensitive adhesive sheet
JP2023095056A (en) Optical laminate and covered optical film
JP2023095055A (en) Optical film with cover film
KR20230098040A (en) Optical adhesive sheet
KR20230098038A (en) Optical adhesive sheet
KR20230098039A (en) Optical adhesive sheet
JP2023006451A (en) Optical adhesive layer and optical film having optical adhesive layer
KR20230096891A (en) Optical laminate
JP2023006450A (en) Optical adhesive layer
JP2023069651A (en) Optical adhesive sheet having release liners
JP2023095804A (en) Optical pressure sensitive adhesive sheet
JP2023137398A (en) Optically clear adhesive sheet
KR20230098043A (en) Optical adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280046913.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832810

Country of ref document: EP

Kind code of ref document: A1