WO2023276589A1 - Electrolyte for electrolytic capacitor and electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte - Google Patents

Electrolyte for electrolytic capacitor and electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte Download PDF

Info

Publication number
WO2023276589A1
WO2023276589A1 PCT/JP2022/023046 JP2022023046W WO2023276589A1 WO 2023276589 A1 WO2023276589 A1 WO 2023276589A1 JP 2022023046 W JP2022023046 W JP 2022023046W WO 2023276589 A1 WO2023276589 A1 WO 2023276589A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
acid
electrolytic solution
acid component
weight
Prior art date
Application number
PCT/JP2022/023046
Other languages
French (fr)
Japanese (ja)
Inventor
比祐吾 伊藤
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2023531745A priority Critical patent/JPWO2023276589A1/ja
Priority to CN202280039317.9A priority patent/CN117441219A/en
Publication of WO2023276589A1 publication Critical patent/WO2023276589A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic solution for electrolytic capacitors, an electrolytic capacitor using the electrolytic solution, and a hybrid electrolytic capacitor.
  • electrolytic capacitors and hybrid aluminum electrolytic capacitors that use an electrolyte that uses polyhydric alcohols such as ethylene glycol, which has a high boiling point, as a solvent and has low permeability to the sealing rubber.
  • polyhydric alcohols such as ethylene glycol, which has a high boiling point, as a solvent and has low permeability to the sealing rubber.
  • problems such as a decrease in the conductivity of the electrolytic solution due to an esterification reaction between a polyhydric alcohol and a carboxylic acid as an electrolyte at high temperatures, and deterioration of the conductive polymer due to an increase in pH. .
  • Patent Document 1 a structure in which a linear alkyl group having 3 or more carbon atoms is bonded to one of the carbon atoms of a carboxylic acid and a ketone group, and a branched alkyl group is bonded to the other
  • An electrolytic solution containing a compound having Patent Document 2 proposes an electrolytic solution using a salt of phosphonic acid or phosphinate anion and 1,2,3,4-tetramethylimidazolinium as the electrolyte.
  • the electrolytic solution using the ketone group-containing compound described in Patent Document 1 cannot completely inhibit the esterification, so it is not a sufficient solution.
  • the protection of aluminum oxide, which is the anode foil of the electrolytic capacitor is insufficient. Therefore, there is a problem that aluminum oxide is corroded by the electrolytic solution when stored at high temperature for a long period of time.
  • An object of one aspect of the present invention is to provide an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members.
  • Another aspect of the present invention aims to provide an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution, which have a low initial ESR (equivalent series resistance) and a small change over time.
  • the present inventors arrived at the present invention as a result of conducting studies to achieve the above objectives.
  • one aspect of the present invention is an electrolytic solution for an electrolytic capacitor containing an acid component (A), a base component (B) and an organic solvent (C),
  • the acid component (A) contains an acid component (A1) represented by the following general formula (1) and/or an acid component (A2) represented by the following general formula (2),
  • the total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A)
  • the electrolytic solution for an electrolytic capacitor wherein the basic component (B) contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
  • Another aspect of the present invention is an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution.
  • X represents a hydrocarbon group optionally having a hydroxyl group having 3 to 20 carbon atoms
  • Y represents a hydrogen atom, a hydrocarbon having 1 to 10 carbon atoms optionally having a hydroxyl group, group or a residue obtained by removing one hydrogen atom from the hydroxyl group of polyalkylene glycol.
  • two Zs independently represent a hydrocarbon group having 1 to 6 carbon atoms.
  • an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members.
  • an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution which have a low initial ESR and a small change over time.
  • the acid component (A) contained in the electrolytic solution according to one embodiment of the present invention is the acid component (A1) represented by the general formula (1) and/or the acid component (A2) represented by the general formula (2) )including.
  • X has 3 to 20 carbon atoms, preferably 4 to 8 carbon atoms, and particularly preferably 6 from the viewpoint of electrical conductivity and aluminum corrosiveness.
  • Y is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms which may have a hydroxyl group, or a residue obtained by removing one hydrogen atom from a hydroxyl group of polyalkylene glycol. From the point of view, it is preferably a hydrogen atom.
  • Examples of the acid component (A1) include (n-propyl)phosphonic acid, (iso-propyl)phosphonic acid, (n-butyl)phosphonic acid, (iso-butyl)phosphonic acid, (tert-butyl)phosphonic acid, pentyl Phosphonic acid, hexylphosphonic acid, phenylphosphonic acid, (4-hydroxyphenyl)phosphonic acid, heptylphosphonic acid, octylphosphonic acid (n-octylphosphonic acid, etc.), n-icosanephosphonic acid, dehydration of phenylphosphonic acid and methanol
  • Examples include condensates, dehydrated condensates of phenylphosphonic acid and ethanol, dehydrated condensates of phenylphosphonic acid and ethylene glycol, dehydrated condensates of phenylphosphonic acid and glycerin, and dehydrated condensates of phenylphosphonic acid and polyethylene glycol.
  • polyethylene glycol that undergoes dehydration condensation with phenylphosphonic acid examples include diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, and heptaethylene glycol.
  • the acid component (A1) may be used singly or in combination of two or more.
  • two Z's each independently represent a hydrocarbon group having 1 to 6 carbon atoms.
  • the number of carbon atoms in Z is preferably 2 to 6, particularly preferably 4 to 6, from the viewpoint of electrical conductivity and aluminum corrosiveness.
  • Examples of the acid component (A2) include dimethylphosphinic acid, diethylphosphinic acid, di(n-propyl)phosphinic acid, di(iso-propyl)phosphinic acid, di(n-butyl)phosphinic acid, and di(iso-butyl).
  • phosphinic acid di(tert-butyl)phosphinic acid, dipentylphosphinic acid, dihexylphosphinic acid, diphenylphosphinic acid, methylethylphosphinic acid, methyl (n-propyl)phosphinic acid, methyl (iso-propyl)phosphinic acid, methyl (n -butyl)phosphinic acid, methyl (iso-butyl)phosphinic acid, methyl (tert-butyl)phosphinic acid, methylpentylphosphinic acid, methylhexylphosphinic acid, methylheptylphosphinic acid, methyloctylphosphinic acid, ethyl (n-propyl) phosphinic acid, ethyl (iso-propyl)phosphinic acid, ethyl (n-butyl)phosphinic acid, ethyl (
  • the acid component (A2) may be used singly or in combination of two or more.
  • the acid component (A1) is preferred from the viewpoint of electrical conductivity and aluminum corrosiveness, and more preferably (n-butyl)phosphonic acid, (iso-butyl)phosphonic acid, (tert- butyl)phosphonic acid, pentylphosphonic acid, hexylphosphonic acid, phenylphosphonic acid, (4-hydroxyphenyl)phosphonic acid, (4-hydroxyphenyl)phosphonic acid, one or more selected from the group consisting of heptylphosphonic acid and octylphosphonic acid, particularly preferably phenyl Phosphonic acid.
  • the acid component (A) in one embodiment of the present invention may also contain an acid component (A3) other than the acid components (A1) and (A2).
  • the acid component (A3) include carboxylic acids, phosphonic acids other than the acid component (A1), phosphinic acids, and sulfonic acids.
  • Carboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, 2-methylazeleic acid, sebacic acid, 1,5-octanedicarboxylic acid, 4,5- octanedicarboxylic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and the like. be done.
  • Phosphonic acids and phosphinic acids other than the acid component (A1) include methylphosphonic acid, ethylphosphonic acid, n-henicosanephosphonic acid, hypophosphorous acid, diheptylphosphinic acid, dioctylphosphinic acid, dinonylphosphinic acid and the like. mentioned.
  • Sulfonic acids include alkylsulfonic acid (methylsulfonic acid, ethylsulfonic acid, etc.), benzenesulfonic acid and alkylbenzenesulfonic acid (toluenesulfonic acid, dodecylbenzenesulfonic acid, etc.).
  • the total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A), and preferably 80% by weight or more from the viewpoint of stability over time. , more preferably 95% by weight or more, and particularly preferably 100% by weight.
  • the content of the acid component (A) in one embodiment of the present invention is preferably 1 to 20% by weight, more preferably 3 to 17% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of adjusting the pH of the solution. % by weight.
  • the base component (B) in one embodiment of the present invention contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
  • Examples of the primary amine (B1) include methylamine, ethylamine, propylamine, isopropylamine and cyclohexylamine.
  • Secondary amines (B2) include dimethylamine, diethylamine, methylethylamine, methylpropylamine, methylisopropylamine, morpholine, N-methyl-N-[2-(N'-methylamino)propyl]acetamide, N-methyl -N-[2-(N'-methylamino)-1-methylethyl]acetamide, N-ethyl-N-[2-(N'-methylamino)ethyl]acetamide, N-methyl-N-[2- (N'-methylamino)ethyl]acetamide, N-methyl-N-[2-(N'-ethylamino)propyl]acetamide, N-ethyl-N-[2-(N'-methylamino)-1- methylethyl]acetamide, N-methyl-N-[2-(N'-methylamino)ethyl]propionamide and N-methyl-N-[2-(N'
  • Tertiary amines (B3) include trimethylamine, triethylamine, dimethylethylamine, dimethylpropylamine, dimethylisopropylamine, triethanolamine, pyridine, 4-methylmorpholine, 4-ethylmorpholine, 4-(2-hydroxyethyl)morpholine, 4-(2-hydroxypropyl)morpholine, ethylene oxide adduct of cyclohexylamine, propylene oxide adduct of cyclohexylamine, and the like.
  • the total content of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3) is preferably based on the weight of the electrolytic solution for electrolytic capacitors. It is 0.01 to 15% by weight, more preferably 1 to 10% by weight.
  • the base component (B) may contain a base component (B4) other than ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
  • Examples of the base component (B4) include quaternary ammonium and amidinium.
  • quaternary ammonium examples include tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium and tetraethylammonium.
  • amidinium examples include imidazolinium and cations in which the hydrogen atoms of imidazolinium are substituted with alkyl groups (1,2,3,4-tetramethylimidazolinium, 1,3,4-trimethyl-2-ethylimidazolinium, , 1,3-dimethyl-2,4-diethylimidazolinium and 1,2-dimethyl-3,4-diethylimidazolinium, etc.), imidazolium, and cations in which hydrogen atoms of imidazolium are substituted with alkyl groups (1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium, 1,2,3-trimethylimidazolium, etc.) and the like.
  • the base component (B) may contain two or more of these base components.
  • base components (B) from the viewpoint of thermal stability, preferably one or more selected from the group consisting of secondary amines (B2) and tertiary amines (B3), more preferably tertiary Amine (B3).
  • the content of the base component (B) in one embodiment of the present invention is preferably 0.1 to 15% by weight, more preferably 0.1 to 15% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of adjusting the pH of the electrolytic solution. is 1 to 10% by weight.
  • Organic solvent (C) in one embodiment of the present invention preferably contains at least one component selected from polyhydric alcohols, sulfone compounds, lactone compounds and carbonate compounds.
  • polyhydric alcohols examples include alkylene glycol, glycerin components and sugar alcohols.
  • Alkylene glycol includes ethylene glycol, propylene glycol, and polyalkylene glycol having a repeating structure of alkylene oxide.
  • Alkylene oxides include, for example, ethylene oxide, propylene oxide, trimethylene oxide, and butylene oxide.
  • the polyalkylene glycol may contain one type of alkylene oxide unit, or may contain two or more types of alkylene oxide units. Examples of polyalkylene glycols include polyethylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, etc.).
  • glycerin components include glycerin, alkylene oxide adducts of glycerin, polyglycerin, and alkylene oxide adducts of polyglycerin.
  • Sugar alcohols include tetritol, pentitol, mannitol, sorbitol, heptitol and octitol.
  • Sulfone compounds include sulfolane, dimethylsulfoxide and diethylsulfoxide.
  • Lactone compounds include ⁇ -butyrolactone and ⁇ -valerolactone.
  • carbonate compounds include dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate and fluoroethylene carbonate.
  • the organic solvent (C) may contain two or more of these organic solvents.
  • organic solvents (C) from the viewpoint of preventing dry-up of the electrolytic solution, polyhydric alcohols are preferable, alkylene glycol, glycerin components and sugar alcohols are more preferable, and alkylene glycol and glycerin are particularly preferable. and most preferably ethylene glycol.
  • the content of the polyhydric alcohol is preferably 50% by weight or more, more preferably 50% by weight or more, based on the weight of the organic solvent (C), from the viewpoint of suppressing dry-up of the electrolytic solution. is 90% by weight or more, particularly preferably 100% by weight.
  • the content of the organic solvent (C) in one embodiment of the present invention is preferably 50 to 98% by weight, more preferably 70% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of the viscosity of the electrolytic solution. ⁇ 96% by weight.
  • the electrolytic solution for an electrolytic capacitor according to one embodiment of the present invention may or may not contain water, if necessary.
  • the content of water is preferably 10% by weight or less, more preferably 5% by weight or less, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of preventing swelling of the capacitor. Preferably, it is 0.3% by weight or less.
  • additives commonly used in electrolytic solutions can be added to the electrolytic solution for electrolytic capacitors according to one embodiment of the present invention, if necessary.
  • the additive include boric acid derivatives (for example, boric acid, complex compounds of boric acid and polysaccharides [mannitol, sorbit, etc.], complex compounds of boric acid and polyhydric alcohols [ethylene glycol, glycerin, etc.], etc.). ), nitro compounds (eg, o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, etc.).
  • boric acid derivatives for example, boric acid, complex compounds of boric acid and polysaccharides [mannitol, sorbit, etc.], complex compounds of boric acid and polyhydric alcohols [ethylene glycol, glycerin, etc.], etc.
  • nitro compounds eg, o-nitrobenzoic acid, p-nitrobenzoic acid, m-
  • the amount added is preferably 5% by weight or less, particularly preferably 5% by weight or less, based on the total weight of the acid component (A), the base component (B) and the organic solvent (C). is 2% by weight or less.
  • the electrolytic solution for electrolytic capacitors according to one embodiment of the present invention is suitable for electrolytic capacitors and hybrid electrolytic capacitors.
  • An electrolytic capacitor according to one embodiment of the present invention has a capacitor element, a pair of lead wires, and an exterior body.
  • a pair of lead wires are each connected to a capacitor element.
  • the outer package encloses the capacitor element with the other end of the lead wire led out to the outside.
  • the exterior body is composed of a cylindrical case and a sealing body.
  • a capacitor element impregnated with an electrolytic solution is housed in this case, and a pair of lead wires are inserted through the through-holes of the sealing member, respectively, and compressed by a drawn portion provided on the outer peripheral surface of the case, thereby forming an exterior body. Seal.
  • a capacitor element in one embodiment of the present invention has an anode foil having a dielectric layer on its surface.
  • the anode foil is formed by roughening the surface of an aluminum foil by edging, and then chemically converting the surface of the roughened aluminum foil with an anodic oxide film, which is a dielectric.
  • the capacitor element In addition to the anode foil, the capacitor element also has a cathode foil and a separator.
  • a capacitor element is formed by laminating and winding an anode foil, a cathode foil, and a separator.
  • the electrolytic solution enters the capacitor element formed as described above, and an electrolytic capacitor is produced.
  • a hybrid electrolytic capacitor according to one embodiment of the present invention is formed from a capacitor element having a dielectric layer of anode foil and a layer of solid electrolyte in contact with the dielectric layer.
  • This solid electrolyte is, for example, a conductive polymer such as polythiophene and its derivatives (poly3,4-ethylenedioxythiophene, polypyrrole, etc.).
  • the solid electrolyte is preferably poly-3,4-ethylenedioxythiophene.
  • a dopant is incorporated into this conductive polymer, and the dopant plays a role in developing conductivity.
  • Typical dopants are acids such as p-toluenesulfonic acid, polystyrenesulfonic acid and the like.
  • a hybrid electrolytic capacitor according to one embodiment of the present invention has a capacitor element, a pair of lead wires, and an exterior body.
  • a pair of lead wires are each connected to a capacitor element.
  • the outer package encloses the capacitor element with the other end of the lead wire led out to the outside.
  • the exterior body is composed of a cylindrical case and a sealing body.
  • a capacitor element impregnated with an electrolytic solution is housed in this case, and a pair of lead wires are inserted through the through-holes of the sealing member, respectively, and compressed by a drawn portion provided on the outer peripheral surface of the case, thereby forming an exterior body. Seal.
  • a hybrid electrolytic capacitor according to one embodiment of the present invention has an anode foil having a dielectric layer on its surface and a solid electrolyte layer in contact with the dielectric layer of the anode foil.
  • the anode foil is formed by roughening the surface of aluminum foil by edging, and then chemically treating the surface with an anodic oxide film, which is a dielectric.
  • the capacitor element In addition to the anode foil, the capacitor element also has a cathode foil and a separator.
  • a capacitor element is formed by laminating and winding an anode foil, a cathode foil, and a separator. Then, a solid electrolyte layer containing a conductive polymer is formed between the anode foil and the cathode foil.
  • Methods for producing the solid electrolyte layer include a method of impregnating the layer with a conductive polymer solution and then drying, and a method of electrolytically polymerizing the conductive polymer.
  • the electrolytic solution enters the gaps of the solid electrolyte formed in the capacitor element formed as described above, and a hybrid electrolytic capacitor is produced.
  • the present invention may include the following configurations.
  • An electrolytic solution for an electrolytic capacitor containing an acid component (A), a base component (B) and an organic solvent (C)
  • the acid component (A) contains an acid component (A1) represented by the following general formula (1) and/or an acid component (A2) represented by the following general formula (2),
  • the total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A)
  • the electrolytic solution for an electrolytic capacitor, wherein the base component (B) contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
  • X represents a hydrocarbon group optionally having a hydroxyl group having 3 to 20 carbon atoms
  • Y represents a hydrogen atom, a hydrocarbon having 1 to 10 carbon atoms optionally having a hydroxyl group, group or a residue obtained by removing one hydrogen atom from the hydroxyl group of polyalkylene glycol.
  • two Zs independently represent a hydrocarbon group having 1 to 6 carbon atoms.
  • the organic solvent (C) contains at least one component selected from the group consisting of polyhydric alcohols, sulfone compounds, lactone compounds and carbonate compounds.
  • ⁇ 3> The electrolytic solution for an electrolytic capacitor according to ⁇ 1> or ⁇ 2>, wherein the organic solvent (C) contains a polyhydric alcohol.
  • the organic solvent (C) contains a polyhydric alcohol.
  • ⁇ 4> Any one of ⁇ 1> to ⁇ 3> that does not contain water, or if water is contained, the content of water is 10% by weight or less based on the weight of the electrolytic solution for electrolytic capacitors.
  • ⁇ 5> The electrolytic solution for electrolytic capacitors according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the acid component (A) is 1 to 20% by weight based on the weight of the electrolytic solution for electrolytic capacitors. .
  • ⁇ 6> The electrolytic solution for an electrolytic capacitor according to any one of ⁇ 1> to ⁇ 5>, wherein the acid component (A) is the acid component (A1).
  • the base component (B) contains one selected from the group consisting of secondary amines (B2) and tertiary amines (B3).
  • the content of the basic component (B) is 0.1 to 15% by weight based on the weight of the electrolytic solution for electrolytic capacitors. Electrolyte.
  • ⁇ 9> The electrolytic solution for electrolytic capacitors according to ⁇ 1> to ⁇ 8>, wherein the content of the organic solvent (C) is 50 to 98% by weight based on the weight of the electrolytic solution for electrolytic capacitors.
  • a hybrid electrolytic capacitor comprising the electrolytic solution for electrolytic capacitors according to any one of ⁇ 1> to ⁇ 9> and a solid electrolyte layer.
  • P2 was defined as the pH of the electrolytic solution after being held at 145°C.
  • a value of P2-P1 was obtained as the amount of pH change.
  • An anode foil, a cathode foil, and a separator each having a dielectric layer of an aluminum oxide film on its surface are cut into a given width and length. Then, connect the lead wires to the anode and cathode by caulking.
  • Capacitor elements were impregnated with the above electrolytic solutions (EL1 to EL22, R1 to R9), stored in a case, and crimped to complete an electrolytic capacitor.
  • the electrolytic capacitor was held for 2000 hours while applying the rated voltage at 145°C. After that, the ESR (ESR after being left at high temperature) was measured in a 20° C. environment in the same procedure as the initial ESR. A ratio of the ESR of the electrolytic capacitor after being held at 145° C. to the initial ESR (ESR after being left at high temperature/initial ESR) was obtained.
  • hybrid electrolytic capacitor ⁇ Examples 45 to 66 (Hybrid Electrolytic Capacitors HA1 to HA22) and Comparative Examples 19 to 27 (Comparative Electrolytic Capacitors HR1 to HR9)> Using the electrolytic solution for electrolytic capacitors described above, a hybrid electrolytic capacitor is produced in the following procedure.
  • An anode foil, a cathode foil, and a separator each having a dielectric layer of an aluminum oxide film on its surface are cut into pieces of constant width and length. Then, connect the lead wires to the anode and cathode by caulking.
  • Capacitor elements were impregnated with the above electrolytic solutions (EL1 to EL22, R1 to R9), stored in a case, and crimped to complete a capacitor.
  • PEDOT was used for the solid electrolyte layer.
  • the hybrid electrolytic capacitor was held for 2000 hours while applying the rated voltage at 145°C. After that, the ESR (ESR after being left at high temperature) was measured in a 20° C. environment in the same procedure as the initial ESR. As the ESR increase rate, the ratio of the ESR of the hybrid electrolytic capacitor after being held at 145° C. to the initial value (ESR after being left at high temperature/initial ESR) was obtained.
  • the electrolytic solutions of Examples 1 to 22 according to one embodiment of the present invention are excellent in high initial conductivity, and corrosion is reduced (no corrosion of the foil, no corrosion of the edge of the foil) Only a slight discoloration was observed in some areas), and the change in pH and conductivity was small even after standing at high temperature.
  • the electrolytic capacitors and hybrid electrolytic capacitors of Examples 23 to 66 according to one embodiment of the present invention are excellent in ESR with low ESR, and there is no change in ESR even after being left at high temperature. small.
  • the electrolytic capacitors of Comparative Examples 10 to 14 and Comparative Examples 17 to 18 and the hybrid electrolytic capacitors of Comparative Examples 19 to 23 and Comparative Examples 26 to 27 show changes in ESR after being left at high temperatures. was big.
  • the electrolytic capacitors of Comparative Examples 15 and 16 and the hybrid electrolytic capacitors of Comparative Examples 24 and 25 had high initial ESR. Thus, none of the electrolytic capacitors and hybrid electrolytic capacitors of the comparative examples achieved a low ESR with little change over time.
  • electrolytic solution By using the electrolytic solution according to one embodiment of the present invention, it is possible to realize an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members. In addition, electrolytic capacitors and hybrid electrolytic capacitors with low initial ESR and little change over time can also be realized. Therefore, the market value of the electrolytic solution of the present invention is very large as the life of the power supply used in the market is becoming longer.
  • the electrolytic solution according to one embodiment of the present invention is particularly useful for electrolytic capacitors and hybrid electrolytic capacitors for power sources for automotive electrical equipment and digital home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided is an electrolyte that has high initial conductivity, little change over time, and causes less corrosion of capacitor members. Also provided are an aluminum electrolytic capacitor and a hybrid electrolytic capacitor that use the electrolyte and have low initial ESR and little change over time. This electrolyte for an electrolytic capacitor includes an acid component (A), a base component (B), and an organic solvent (C). The acid component (A) includes an acid component (A1) and/or an acid component (A2) that are represented by a specified formula. The total acid component (A1) and acid component (A2) content is at least 50% by mass of the mass of the acid component (A). The base component (B) includes at least one type of component selected from the group consisting of ammonium, a primary amine (B1), a secondary amine (B2), and a tertiary amine (B3).

Description

電解コンデンサ用電解液、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサElectrolyte for electrolytic capacitor, electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte
 本発明は電解コンデンサ用電解液、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサに関する。 The present invention relates to an electrolytic solution for electrolytic capacitors, an electrolytic capacitor using the electrolytic solution, and a hybrid electrolytic capacitor.
 電解液のドライアップ防止の観点から、封口ゴム透過性が低く、高沸点溶媒であるエチレングリコール等の多価アルコールを溶媒とした電解液が使用された、電解コンデンサやハイブリッドアルミ電解コンデンサが存在する。このような電解コンデンサでは、高温下での多価アルコールと電解質であるカルボン酸とエステル化反応による、電解液の電導度低下や、pH上昇に伴う導電性高分子の劣化が問題となっている。 From the viewpoint of preventing the electrolyte from drying up, there are electrolytic capacitors and hybrid aluminum electrolytic capacitors that use an electrolyte that uses polyhydric alcohols such as ethylene glycol, which has a high boiling point, as a solvent and has low permeability to the sealing rubber. . In such electrolytic capacitors, there are problems such as a decrease in the conductivity of the electrolytic solution due to an esterification reaction between a polyhydric alcohol and a carboxylic acid as an electrolyte at high temperatures, and deterioration of the conductive polymer due to an increase in pH. .
 そこで、この問題を解決するため、特許文献1では、カルボン酸と、ケトン基の炭素原子の一方に炭素数3以上の直鎖のアルキル基が結合し、他方に分岐したアルキル基が結合した構造を有する化合物を含有する電解液が提案されている。特許文献2では、電解質としてホスホン酸もしくはホスフィン酸アニオンと1,2,3,4-テトラメチルイミダゾリニウムの塩を使用する電解液が提案されている。 Therefore, in order to solve this problem, in Patent Document 1, a structure in which a linear alkyl group having 3 or more carbon atoms is bonded to one of the carbon atoms of a carboxylic acid and a ketone group, and a branched alkyl group is bonded to the other An electrolytic solution containing a compound having Patent Document 2 proposes an electrolytic solution using a salt of phosphonic acid or phosphinate anion and 1,2,3,4-tetramethylimidazolinium as the electrolyte.
特開2017-224646号公報JP 2017-224646 A 特開2016-15365号公報JP 2016-15365 A
 しかしながら、特許文献1に記載のケトン基含有化合物を使用する電解液では、完全にエステル化を阻害できないため、解決策として十分ではない。また特許文献2に記載のホスホン酸もしくはホスフィン酸アニオンと1,2,3,4-テトラメチルイミダゾリニウム塩を使用する電解液では、電解コンデンサの陽極箔である酸化アルミニウムの保護が不十分のため、高温下で長期間保管すると、電解液により酸化アルミニウムが腐食してしまう課題がある。 However, the electrolytic solution using the ketone group-containing compound described in Patent Document 1 cannot completely inhibit the esterification, so it is not a sufficient solution. In addition, in the electrolytic solution using phosphonic acid or phosphinate anion and 1,2,3,4-tetramethylimidazolinium salt described in Patent Document 2, the protection of aluminum oxide, which is the anode foil of the electrolytic capacitor, is insufficient. Therefore, there is a problem that aluminum oxide is corroded by the electrolytic solution when stored at high temperature for a long period of time.
 本発明の一態様は、初期電導度が高く、経時変化が小さく、かつコンデンサ部材の腐食が低減された電解液を提供することを目的とする。本発明の他の態様は、初期ESR(等価直列抵抗)が低く、経時変化が小さい、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサを提供することを目的とする。 An object of one aspect of the present invention is to provide an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members. Another aspect of the present invention aims to provide an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution, which have a low initial ESR (equivalent series resistance) and a small change over time.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。 The present inventors arrived at the present invention as a result of conducting studies to achieve the above objectives.
 すなわち、本発明の一態様は、酸成分(A)、塩基成分(B)及び有機溶媒(C)を含む電解コンデンサ用電解液であって、
 前記酸成分(A)が、下記一般式(1)で示される酸成分(A1)及び/又は下記一般式(2)で示される酸成分(A2)を含み、
 前記酸成分(A1)の含有量及び酸成分(A2)の含有量の合計が、前記酸成分(A)の重量に基づいて50重量%以上であり、
 前記塩基成分(B)が、アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)からなる群から選ばれる少なくとも1種の成分を含む電解コンデンサ用電解液である。本発明の他の態様は、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサである。
Figure JPOXMLDOC01-appb-C000003
 [式(1)中、Xは炭素数3~20の水酸基を有していてもよい炭化水素基を表し、Yは水素原子、水酸基を有していてもよい炭素数1~10の炭化水素基又はポリアルキレングリコールの水酸基から水素原子を1つ除いた残基を表す。]
Figure JPOXMLDOC01-appb-C000004
 [式(2)中、2つあるZはそれぞれ独立に炭素数1~6の炭化水素基を表す。]
That is, one aspect of the present invention is an electrolytic solution for an electrolytic capacitor containing an acid component (A), a base component (B) and an organic solvent (C),
The acid component (A) contains an acid component (A1) represented by the following general formula (1) and/or an acid component (A2) represented by the following general formula (2),
The total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A),
The electrolytic solution for an electrolytic capacitor, wherein the basic component (B) contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3). . Another aspect of the present invention is an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution.
Figure JPOXMLDOC01-appb-C000003
[In the formula (1), X represents a hydrocarbon group optionally having a hydroxyl group having 3 to 20 carbon atoms, Y represents a hydrogen atom, a hydrocarbon having 1 to 10 carbon atoms optionally having a hydroxyl group, group or a residue obtained by removing one hydrogen atom from the hydroxyl group of polyalkylene glycol. ]
Figure JPOXMLDOC01-appb-C000004
[In formula (2), two Zs independently represent a hydrocarbon group having 1 to 6 carbon atoms. ]
 本発明の一態様によれば、初期電導度が高く、経時変化が小さく、かつコンデンサ部材の腐食が低減された電解液を提供できる。本発明の他の態様によれば、初期ESRが低く、経時変化が小さい、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサを提供できる。 According to one aspect of the present invention, it is possible to provide an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members. According to another aspect of the present invention, it is possible to provide an electrolytic capacitor and a hybrid electrolytic capacitor using the electrolytic solution, which have a low initial ESR and a small change over time.
 <酸成分>
 本発明の一実施形態に係る電解液に含有される酸成分(A)は前記一般式(1)で示される酸成分(A1)及び/又は前記一般式(2)で示される酸成分(A2)を含む。
<Acid component>
The acid component (A) contained in the electrolytic solution according to one embodiment of the present invention is the acid component (A1) represented by the general formula (1) and/or the acid component (A2) represented by the general formula (2) )including.
 前記酸成分(A1)において、Xの炭素数は3~20であり、電導度とアルミ腐食性の観点から、好ましくは4~8であり、特に好ましくは6である。またYは、水素原子、水酸基を有していてもよい炭素数1~10の炭化水素基又はポリアルキレングリコールの水酸基から水素原子を1つ除いた残基であり、電導度とアルミ腐食性の観点から、好ましくは水素原子である。 In the acid component (A1), X has 3 to 20 carbon atoms, preferably 4 to 8 carbon atoms, and particularly preferably 6 from the viewpoint of electrical conductivity and aluminum corrosiveness. Y is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms which may have a hydroxyl group, or a residue obtained by removing one hydrogen atom from a hydroxyl group of polyalkylene glycol. From the point of view, it is preferably a hydrogen atom.
 前記酸成分(A1)としては、(n-プロピル)ホスホン酸、(iso-プロピル)ホスホン酸、(n-ブチル)ホスホン酸、(iso-ブチル)ホスホン酸、(tert-ブチル)ホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、フェニルホスホン酸、(4-ヒドロキシフェニル)ホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸(n-オクチルホスホン酸等)、n-イコサンホスホン酸、フェニルホスホン酸とメタノールの脱水縮合物、フェニルホスホン酸とエタノールの脱水縮合物、フェニルホスホン酸とエチレングリコールの脱水縮合物、フェニルホスホン酸とグリセリンの脱水縮合物、フェニルホスホン酸とポリエチレングリコールの脱水縮合物等が挙げられる。フェニルホスホン酸と脱水縮合するポリエチレングリコールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール等が挙げられる。 Examples of the acid component (A1) include (n-propyl)phosphonic acid, (iso-propyl)phosphonic acid, (n-butyl)phosphonic acid, (iso-butyl)phosphonic acid, (tert-butyl)phosphonic acid, pentyl Phosphonic acid, hexylphosphonic acid, phenylphosphonic acid, (4-hydroxyphenyl)phosphonic acid, heptylphosphonic acid, octylphosphonic acid (n-octylphosphonic acid, etc.), n-icosanephosphonic acid, dehydration of phenylphosphonic acid and methanol Examples include condensates, dehydrated condensates of phenylphosphonic acid and ethanol, dehydrated condensates of phenylphosphonic acid and ethylene glycol, dehydrated condensates of phenylphosphonic acid and glycerin, and dehydrated condensates of phenylphosphonic acid and polyethylene glycol. Examples of polyethylene glycol that undergoes dehydration condensation with phenylphosphonic acid include diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, and heptaethylene glycol.
 酸成分(A1)は、1種又は2種以上を併用してもよい。 The acid component (A1) may be used singly or in combination of two or more.
 前記酸成分(A2)において、2つあるZはそれぞれ独立に炭素数1~6の炭化水素基を表す。Zの炭素数は、電導度とアルミ腐食性の観点から、好ましくは2~6であり、特に好ましくは4~6である。 In the acid component (A2), two Z's each independently represent a hydrocarbon group having 1 to 6 carbon atoms. The number of carbon atoms in Z is preferably 2 to 6, particularly preferably 4 to 6, from the viewpoint of electrical conductivity and aluminum corrosiveness.
 前記酸成分(A2)としては、ジメチルホスフィン酸、ジエチルホスフィン酸、ジ(n-プロピル)ホスフィン酸、ジ(iso-プロピル)ホスフィン酸、ジ(n-ブチル)ホスフィン酸、ジ(iso-ブチル)ホスフィン酸、ジ(tert-ブチル)ホスフィン酸、ジペンチルホスフィン酸、ジヘキシルホスフィン酸、ジフェニルホスフィン酸、メチルエチルホスフィン酸、メチル(n-プロピル)ホスフィン酸、メチル(iso-プロピル)ホスフィン酸、メチル(n-ブチル)ホスフィン酸、メチル(iso-ブチル)ホスフィン酸、メチル(tert-ブチル)ホスフィン酸、メチルペンチルホスフィン酸、メチルヘキシルホスフィン酸、メチルヘプチルホスフィン酸、メチルオクチルホスフィン酸、エチル(n-プロピル)ホスフィン酸、エチル(iso-プロピル)ホスフィン酸、エチル(n-ブチル)ホスフィン酸、エチル(iso-ブチル)ホスフィン酸、エチル(tert-ブチル)ホスフィン酸、エチルペンチルホスフィン酸アニオン、エチルヘキシルホスフィン酸等が挙げられる。 Examples of the acid component (A2) include dimethylphosphinic acid, diethylphosphinic acid, di(n-propyl)phosphinic acid, di(iso-propyl)phosphinic acid, di(n-butyl)phosphinic acid, and di(iso-butyl). phosphinic acid, di(tert-butyl)phosphinic acid, dipentylphosphinic acid, dihexylphosphinic acid, diphenylphosphinic acid, methylethylphosphinic acid, methyl (n-propyl)phosphinic acid, methyl (iso-propyl)phosphinic acid, methyl (n -butyl)phosphinic acid, methyl (iso-butyl)phosphinic acid, methyl (tert-butyl)phosphinic acid, methylpentylphosphinic acid, methylhexylphosphinic acid, methylheptylphosphinic acid, methyloctylphosphinic acid, ethyl (n-propyl) phosphinic acid, ethyl (iso-propyl)phosphinic acid, ethyl (n-butyl)phosphinic acid, ethyl (iso-butyl)phosphinic acid, ethyl (tert-butyl)phosphinic acid, ethylpentylphosphinate anion, ethylhexylphosphinic acid, etc. mentioned.
 酸成分(A2)は、1種又は2種以上を併用してもよい。 The acid component (A2) may be used singly or in combination of two or more.
 酸成分(A)のうち、電導度とアルミ腐食性の観点から、好ましくは酸成分(A1)であり、更に好ましくは(n-ブチル)ホスホン酸、(iso-ブチル)ホスホン酸、(tert-ブチル)ホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、フェニルホスホン酸、(4-ヒドロキシフェニル)ホスホン酸、ヘプチルホスホン酸及びオクチルホスホン酸からなる群より選択される1種以上であり、特に好ましくはフェニルホスホン酸である。 Of the acid components (A), the acid component (A1) is preferred from the viewpoint of electrical conductivity and aluminum corrosiveness, and more preferably (n-butyl)phosphonic acid, (iso-butyl)phosphonic acid, (tert- butyl)phosphonic acid, pentylphosphonic acid, hexylphosphonic acid, phenylphosphonic acid, (4-hydroxyphenyl)phosphonic acid, (4-hydroxyphenyl)phosphonic acid, one or more selected from the group consisting of heptylphosphonic acid and octylphosphonic acid, particularly preferably phenyl Phosphonic acid.
 本発明の一実施形態における酸成分(A)は酸成分(A1)及び(A2)以外の酸成分(A3)も含んでよい。酸成分(A3)としては例えば、カルボン酸、酸成分(A1)以外のホスホン酸及びホスフィン酸、スルホン酸等が挙げられる。 The acid component (A) in one embodiment of the present invention may also contain an acid component (A3) other than the acid components (A1) and (A2). Examples of the acid component (A3) include carboxylic acids, phosphonic acids other than the acid component (A1), phosphinic acids, and sulfonic acids.
 カルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、2-メチルアゼライン酸、セバシン酸、1,5-オクタンジカルボン酸、4,5-オクタンジカルボン酸、1,9-ノナンジカルボン酸、1,10-デカンジカルボン酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸、安息香酸、フタル酸、イソフタル酸及びテレフタル酸等が挙げられる。 Carboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, 2-methylazeleic acid, sebacic acid, 1,5-octanedicarboxylic acid, 4,5- octanedicarboxylic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, and the like. be done.
 酸成分(A1)以外のホスホン酸及びホスフィン酸としては、メチルホスホン酸、エチルホスホン酸、n-ヘンイコサンホスホン酸、次亜リン酸、ジヘプチルホスフィン酸、ジオクチルホスフィン酸、ジノニルホスフィン酸等が挙げられる。 Phosphonic acids and phosphinic acids other than the acid component (A1) include methylphosphonic acid, ethylphosphonic acid, n-henicosanephosphonic acid, hypophosphorous acid, diheptylphosphinic acid, dioctylphosphinic acid, dinonylphosphinic acid and the like. mentioned.
 スルホン酸としては、アルキルスルホン酸(メチルスルホン酸及びエチルスルホン酸等)、ベンゼンスルホン酸及びアルキルベンゼンスルホン酸(トルエンスルホン酸及びドデシルベンゼンスルホン酸等)等が挙げられる。 Sulfonic acids include alkylsulfonic acid (methylsulfonic acid, ethylsulfonic acid, etc.), benzenesulfonic acid and alkylbenzenesulfonic acid (toluenesulfonic acid, dodecylbenzenesulfonic acid, etc.).
 酸成分(A1)及び酸成分(A2)の含有量の合計は、酸成分(A)の重量に基づいて50重量%以上であり、経時安定性の観点から、好ましくは80重量%以上であり、更に好ましくは95重量%以上であり、特に好ましくは100重量%である。 The total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A), and preferably 80% by weight or more from the viewpoint of stability over time. , more preferably 95% by weight or more, and particularly preferably 100% by weight.
 本発明の一実施形態における酸成分(A)の含有量は、液のpH調整の観点から電解コンデンサ用電解液の重量に基づいて好ましくは1~20重量%であり、更に好ましくは3~17重量%である。 The content of the acid component (A) in one embodiment of the present invention is preferably 1 to 20% by weight, more preferably 3 to 17% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of adjusting the pH of the solution. % by weight.
 本発明の一実施形態における塩基成分(B)は、アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)からなる群から選ばれる少なくとも1種の成分を含む。 The base component (B) in one embodiment of the present invention contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
 1級アミン(B1)としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン及びシクロヘキシルアミン等が挙げられる。 Examples of the primary amine (B1) include methylamine, ethylamine, propylamine, isopropylamine and cyclohexylamine.
 2級アミン(B2)としては、ジメチルアミン、ジエチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルイソプロピルアミン、モルホリン、N-メチル-N-[2-(N’-メチルアミノ)プロピル]アセトアミド、N-メチル-N-[2-(N’-メチルアミノ)-1-メチルエチル]アセトアミド、N-エチル-N-[2-(N’-メチルアミノ)エチル]アセトアミド、N-メチル-N-[2-(N’-メチルアミノ)エチル]アセトアミド、N-メチル-N-[2-(N’-エチルアミノ)プロピル]アセトアミド、N-エチル-N-[2-(N’-メチルアミノ)-1-メチルエチル]アセトアミド、N-メチル-N-[2-(N’-メチルアミノ)エチル]プロピオンアミド及びN-メチル-N-[2-(N’-メチルアミノ)エチル]プロピオンアミド等が挙げられる。 Secondary amines (B2) include dimethylamine, diethylamine, methylethylamine, methylpropylamine, methylisopropylamine, morpholine, N-methyl-N-[2-(N'-methylamino)propyl]acetamide, N-methyl -N-[2-(N'-methylamino)-1-methylethyl]acetamide, N-ethyl-N-[2-(N'-methylamino)ethyl]acetamide, N-methyl-N-[2- (N'-methylamino)ethyl]acetamide, N-methyl-N-[2-(N'-ethylamino)propyl]acetamide, N-ethyl-N-[2-(N'-methylamino)-1- methylethyl]acetamide, N-methyl-N-[2-(N'-methylamino)ethyl]propionamide and N-methyl-N-[2-(N'-methylamino)ethyl]propionamide and the like. .
 3級アミン(B3)としては、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルイソプロピルアミン、トリエタノールアミン、ピリジン、4-メチルモルホリン、4-エチルモルホリン、4-(2-ヒドロキシエチル)モルホリン、4-(2-ヒドロキシプロピル)モルホリン、シクロヘキシルアミンのエチレンオキシド付加物及びシクロヘキシルアミンのプロピレンオキシド付加物等が挙げられる。 Tertiary amines (B3) include trimethylamine, triethylamine, dimethylethylamine, dimethylpropylamine, dimethylisopropylamine, triethanolamine, pyridine, 4-methylmorpholine, 4-ethylmorpholine, 4-(2-hydroxyethyl)morpholine, 4-(2-hydroxypropyl)morpholine, ethylene oxide adduct of cyclohexylamine, propylene oxide adduct of cyclohexylamine, and the like.
 アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)の含有量の合計は、アルミニウム箔の腐食防止の観点から、電解コンデンサ用電解液の重量に基づいて好ましくは0.01~15重量%であり、更に好ましくは1~10重量%である。 From the viewpoint of preventing corrosion of aluminum foil, the total content of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3) is preferably based on the weight of the electrolytic solution for electrolytic capacitors. It is 0.01 to 15% by weight, more preferably 1 to 10% by weight.
 塩基成分(B)は、アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)以外の塩基成分(B4)を含んでいてもよい。塩基成分(B4)としては4級アンモニウム及びアミジニウム等が挙げられる。 The base component (B) may contain a base component (B4) other than ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3). Examples of the base component (B4) include quaternary ammonium and amidinium.
 4級アンモニウムとしては、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム及びテトラエチルアンモニウム等が挙げられる。 Examples of quaternary ammonium include tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium and tetraethylammonium.
 アミジニウムとしては、イミダゾリニウム、イミダゾリニウムが有する水素原子をアルキル基で置換したカチオン(1,2,3,4-テトラメチルイミダゾリニウム、1,3,4-トリメチル-2-エチルイミダゾリニウム、1,3-ジメチル-2,4-ジエチルイミダゾリニウム及び1,2-ジメチル-3,4-ジエチルイミダゾリニウム等)、イミダゾリウム及びイミダゾリウムが有する水素原子をアルキル基で置換したカチオン(1,3-ジメチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム及び1,2,3-トリメチルイミダゾリウム等)等が挙げられる。 Examples of amidinium include imidazolinium and cations in which the hydrogen atoms of imidazolinium are substituted with alkyl groups (1,2,3,4-tetramethylimidazolinium, 1,3,4-trimethyl-2-ethylimidazolinium, , 1,3-dimethyl-2,4-diethylimidazolinium and 1,2-dimethyl-3,4-diethylimidazolinium, etc.), imidazolium, and cations in which hydrogen atoms of imidazolium are substituted with alkyl groups (1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium, 1,2,3-trimethylimidazolium, etc.) and the like.
 塩基成分(B)は、これら塩基成分を2種以上含んでもよい。 The base component (B) may contain two or more of these base components.
 これらの塩基成分(B)のうち、熱安定性の観点から、好ましくは2級アミン(B2)及び3級アミン(B3)からなる群より選択される1種以上であり、更に好ましくは3級アミン(B3)である。 Among these base components (B), from the viewpoint of thermal stability, preferably one or more selected from the group consisting of secondary amines (B2) and tertiary amines (B3), more preferably tertiary Amine (B3).
 本発明の一実施形態における塩基成分(B)の含有量は、電解液のpH調整の観点から、電解コンデンサ用電解液の重量に基づいて好ましくは0.1~15重量%であり、更に好ましくは1~10重量%である。 The content of the base component (B) in one embodiment of the present invention is preferably 0.1 to 15% by weight, more preferably 0.1 to 15% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of adjusting the pH of the electrolytic solution. is 1 to 10% by weight.
 <有機溶媒>
 本発明の一実施形態における有機溶媒(C)としては、多価アルコール、スルホン化合物、ラクトン化合物及びカーボネート化合物から選ばれる少なくとも1種の成分を含むことが好ましい。
<Organic solvent>
The organic solvent (C) in one embodiment of the present invention preferably contains at least one component selected from polyhydric alcohols, sulfone compounds, lactone compounds and carbonate compounds.
 多価アルコールとしては、アルキレングリコール、グリセリン成分及び糖アルコール等が挙げられる。 Examples of polyhydric alcohols include alkylene glycol, glycerin components and sugar alcohols.
 アルキレングリコールとしては、エチレングリコール、プロピレングリコール、及びアルキレンオキサイドの繰り返し構造を有するポリアルキレングリコールが挙げられる。アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、トリメチレンオキサイド、ブチレンオキサイド等が挙げられる。ポリアルキレングリコールは、1種のアルキレンオキサイド単位を含むものであってもよく、2種以上のアルキレンオキサイド単位を含むものであってもよい。ポリアルキレングリコールの例としては、ポリエチレングリコール(ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール等)が挙げられる。 Alkylene glycol includes ethylene glycol, propylene glycol, and polyalkylene glycol having a repeating structure of alkylene oxide. Alkylene oxides include, for example, ethylene oxide, propylene oxide, trimethylene oxide, and butylene oxide. The polyalkylene glycol may contain one type of alkylene oxide unit, or may contain two or more types of alkylene oxide units. Examples of polyalkylene glycols include polyethylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, etc.).
 グリセリン成分としては、グリセリン、グリセリンのアルキレンオキシド付加物、ポリグリセリン及びポリグリセリンのアルキレンオキシド付加物等が挙げられる。 Examples of glycerin components include glycerin, alkylene oxide adducts of glycerin, polyglycerin, and alkylene oxide adducts of polyglycerin.
 糖アルコールとしては、テトリトール、ペンチトール、マンニトール、ソルビトール、ヘプチトール及びオクチトール等が挙げられる。 Sugar alcohols include tetritol, pentitol, mannitol, sorbitol, heptitol and octitol.
 スルホン化合物としては、スルホラン、ジメチルスルホキシド及びジエチルスルホキシド等が挙げられる。 Sulfone compounds include sulfolane, dimethylsulfoxide and diethylsulfoxide.
 ラクトン化合物としては、γ-ブチロラクトン及びγ-バレロラクトン等が挙げられる。 Lactone compounds include γ-butyrolactone and γ-valerolactone.
 カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート及びフルオロエチレンカーボネート等が挙げられる。 Examples of carbonate compounds include dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate and fluoroethylene carbonate.
 有機溶媒(C)は、これら有機溶媒を2種以上含んでもよい。 The organic solvent (C) may contain two or more of these organic solvents.
 これらの有機溶媒(C)のうち、電解液のドライアップ防止の観点から、好ましくは多価アルコールであり、更に好ましくはアルキレングリコール、グリセリン成分及び糖アルコールであり、特に好ましくはアルキレングリコール及びグリセリンであり、最も好ましくはエチレングリコールである。 Among these organic solvents (C), from the viewpoint of preventing dry-up of the electrolytic solution, polyhydric alcohols are preferable, alkylene glycol, glycerin components and sugar alcohols are more preferable, and alkylene glycol and glycerin are particularly preferable. and most preferably ethylene glycol.
 有機溶媒(C)が多価アルコールを含む場合、多価アルコールの含有量は、電解液のドライアップ抑制の観点から、有機溶媒(C)の重量に基づき、好ましくは50重量%以上、更に好ましくは90重量%以上であり、特に好ましくは100重量%である。 When the organic solvent (C) contains a polyhydric alcohol, the content of the polyhydric alcohol is preferably 50% by weight or more, more preferably 50% by weight or more, based on the weight of the organic solvent (C), from the viewpoint of suppressing dry-up of the electrolytic solution. is 90% by weight or more, particularly preferably 100% by weight.
 本発明の一実施形態における有機溶媒(C)の含有量は、電解液の粘度の観点から、電解コンデンサ用電解液の重量に基づいて、好ましくは50~98重量%であり、更に好ましくは70~96重量%である。 The content of the organic solvent (C) in one embodiment of the present invention is preferably 50 to 98% by weight, more preferably 70% by weight, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of the viscosity of the electrolytic solution. ~96% by weight.
 <水分>
 本発明の一実施形態に係る電解コンデンサ用電解液は必要により、水を含んでいても、水を含まなくてもよい。水を含む場合の水の含有量は、コンデンサの膨れ防止の観点から、電解コンデンサ用電解液の重量に基づいて、好ましくは10重量%以下であり、更に好ましくは5重量%以下であり、特に好ましくは0.3重量%以下である。
<moisture content>
The electrolytic solution for an electrolytic capacitor according to one embodiment of the present invention may or may not contain water, if necessary. When water is contained, the content of water is preferably 10% by weight or less, more preferably 5% by weight or less, based on the weight of the electrolytic solution for electrolytic capacitors, from the viewpoint of preventing swelling of the capacitor. Preferably, it is 0.3% by weight or less.
 本発明の一実施形態に係る電解コンデンサ用電解液には必要により、電解液に一般に用いられる種々の添加剤を添加することができる。該添加剤としては、ホウ酸誘導体(例えば、ホウ酸、ホウ酸と多糖類〔マンニット、ソルビットなど〕との錯化合物、ホウ酸と多価アルコール〔エチレングリコール、グリセリンなど〕との錯化合物など)、ニトロ化合物(例えば、o-ニトロ安息香酸、p-ニトロ安息香酸、m-ニトロ安息香酸、o-ニトロフェノール、p-ニトロフェノールなど)などを挙げることができる。その添加量は、電導度と電解液への溶解度の観点から、酸成分(A)、塩基成分(B)及び有機溶媒(C)の合計重量に基づいて、好ましくは5重量%以下、特に好ましくは2重量%以下である。 Various additives commonly used in electrolytic solutions can be added to the electrolytic solution for electrolytic capacitors according to one embodiment of the present invention, if necessary. Examples of the additive include boric acid derivatives (for example, boric acid, complex compounds of boric acid and polysaccharides [mannitol, sorbit, etc.], complex compounds of boric acid and polyhydric alcohols [ethylene glycol, glycerin, etc.], etc.). ), nitro compounds (eg, o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol, etc.). From the viewpoint of conductivity and solubility in the electrolytic solution, the amount added is preferably 5% by weight or less, particularly preferably 5% by weight or less, based on the total weight of the acid component (A), the base component (B) and the organic solvent (C). is 2% by weight or less.
 本発明の一実施形態に係る電解コンデンサ用電解液は、電解コンデンサ及びハイブリッド型電解コンデンサ用として好適である。 The electrolytic solution for electrolytic capacitors according to one embodiment of the present invention is suitable for electrolytic capacitors and hybrid electrolytic capacitors.
 本発明の一実施形態に係る電解コンデンサは、コンデンサ素子と一対のリード線と外装体とを有する。一対のリード線はそれぞれ、コンデンサ素子に接続されている。外装体はリード線を他方の端部を外部に導出するようにして、コンデンサ素子を封入している。 An electrolytic capacitor according to one embodiment of the present invention has a capacitor element, a pair of lead wires, and an exterior body. A pair of lead wires are each connected to a capacitor element. The outer package encloses the capacitor element with the other end of the lead wire led out to the outside.
 外装体は、筒状のケースと、封口体とで構成されている。このケースには電解液を含浸したコンデンサ素子を収納し、封口体の貫通孔には一対のリード線をそれぞれ挿通し、ケースの外周面に設けた絞り加工部において圧縮することによって、外装体を封止する。 The exterior body is composed of a cylindrical case and a sealing body. A capacitor element impregnated with an electrolytic solution is housed in this case, and a pair of lead wires are inserted through the through-holes of the sealing member, respectively, and compressed by a drawn portion provided on the outer peripheral surface of the case, thereby forming an exterior body. Seal.
 本発明の一実施形態におけるコンデンサ素子は、表面に誘電体層を有する陽極箔を有する。陽極箔はアルミニウム箔をエッジング処理により粗面化し、更にその表面に誘電体である陽極酸化皮膜を化成処理することにより形成される。 A capacitor element in one embodiment of the present invention has an anode foil having a dielectric layer on its surface. The anode foil is formed by roughening the surface of an aluminum foil by edging, and then chemically converting the surface of the roughened aluminum foil with an anodic oxide film, which is a dielectric.
 コンデンサ素子は陽極箔以外に更に、陰極箔とセパレータも有する。陽極箔と陰極箔とセパレータを積層して巻回することでコンデンサ素子が形成される。 In addition to the anode foil, the capacitor element also has a cathode foil and a separator. A capacitor element is formed by laminating and winding an anode foil, a cathode foil, and a separator.
 以上のように形成されたコンデンサ素子内に電解液が入り込み、電解コンデンサが作製される。 The electrolytic solution enters the capacitor element formed as described above, and an electrolytic capacitor is produced.
 本発明の一実施形態に係るハイブリッド型電解コンデンサは、陽極箔の誘電体層とその誘電体層に接触した固体電解質の層とを有するコンデンサ素子から形成される。この固体電解質は、例えば、ポリチオフェン及びその誘導体(ポリ3,4-エチレンジオキシチオフェン及びポリピロールなど)などの導電性高分子である。 A hybrid electrolytic capacitor according to one embodiment of the present invention is formed from a capacitor element having a dielectric layer of anode foil and a layer of solid electrolyte in contact with the dielectric layer. This solid electrolyte is, for example, a conductive polymer such as polythiophene and its derivatives (poly3,4-ethylenedioxythiophene, polypyrrole, etc.).
 高温下におけるESRを低下させる観点から、固体電解質は、好ましくはポリ3,4-エチレンジオキシチオフェンである。 From the viewpoint of reducing ESR at high temperatures, the solid electrolyte is preferably poly-3,4-ethylenedioxythiophene.
 この導電性高分子はドーパントが組み込まれており、ドーパントは導電性を発現する役割を担っている。代表的な、ドーパントはp-トルエンスルホン酸、ポリスチレンスルホン酸などの酸である。 A dopant is incorporated into this conductive polymer, and the dopant plays a role in developing conductivity. Typical dopants are acids such as p-toluenesulfonic acid, polystyrenesulfonic acid and the like.
 本発明の一実施形態のハイブリッド型電解コンデンサは、コンデンサ素子と一対のリード線と外装体とを有する。一対のリード線はそれぞれ、コンデンサ素子に接続されている。外装体はリード線を他方の端部を外部に導出するようにして、コンデンサ素子を封入している。 A hybrid electrolytic capacitor according to one embodiment of the present invention has a capacitor element, a pair of lead wires, and an exterior body. A pair of lead wires are each connected to a capacitor element. The outer package encloses the capacitor element with the other end of the lead wire led out to the outside.
 外装体は、筒状のケースと、封口体とで構成されている。このケースには電解液を含浸したコンデンサ素子を収納し、封口体の貫通孔には一対のリード線をそれぞれ挿通し、ケースの外周面に設けた絞り加工部において圧縮することによって、外装体を封止する。 The exterior body is composed of a cylindrical case and a sealing body. A capacitor element impregnated with an electrolytic solution is housed in this case, and a pair of lead wires are inserted through the through-holes of the sealing member, respectively, and compressed by a drawn portion provided on the outer peripheral surface of the case, thereby forming an exterior body. Seal.
 本発明の一実施形態に係るハイブリッド型電解コンデンサは、表面に誘電体層を有する陽極箔と、この陽極箔の誘電体層に接触した固体電解質の層とを有する。 A hybrid electrolytic capacitor according to one embodiment of the present invention has an anode foil having a dielectric layer on its surface and a solid electrolyte layer in contact with the dielectric layer of the anode foil.
 陽極箔はアルミニウム箔をエッジング処理により粗面化し、更にその表面に誘電体である陽極酸化皮膜を化成処理することにより形成される。 The anode foil is formed by roughening the surface of aluminum foil by edging, and then chemically treating the surface with an anodic oxide film, which is a dielectric.
 コンデンサ素子は陽極箔以外に更に、陰極箔とセパレータも有する。陽極箔と陰極箔とセパレータを積層して巻回することでコンデンサ素子が形成される。そして、陽極箔と陰極箔との間に導電性高分子を含む固体電解質の層を作製する。固体電解質の層の作製方法としては、導電性高分子溶液に含浸させ、その後乾燥させる方法や、導電性高分子を電解重合させるなどの方法がある。 In addition to the anode foil, the capacitor element also has a cathode foil and a separator. A capacitor element is formed by laminating and winding an anode foil, a cathode foil, and a separator. Then, a solid electrolyte layer containing a conductive polymer is formed between the anode foil and the cathode foil. Methods for producing the solid electrolyte layer include a method of impregnating the layer with a conductive polymer solution and then drying, and a method of electrolytically polymerizing the conductive polymer.
 以上のように形成されたコンデンサ素子内に形成された固体電解質の隙間に電解液が入り込み、ハイブリッド型電解コンデンサが作製される。 The electrolytic solution enters the gaps of the solid electrolyte formed in the capacitor element formed as described above, and a hybrid electrolytic capacitor is produced.
 <その他>
 本発明は、以下の構成を含んでもよい。
<1>酸成分(A)、塩基成分(B)及び有機溶媒(C)を含む電解コンデンサ用電解液であって、
 前記酸成分(A)が、下記一般式(1)で示される酸成分(A1)及び/又は下記一般式(2)で示される酸成分(A2)を含み、
 前記酸成分(A1)及び酸成分(A2)の含有量の合計が、前記酸成分(A)の重量に基づいて50重量%以上であり、
 前記塩基成分(B)が、アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)からなる群から選ばれる少なくとも1種の成分を含む電解コンデンサ用電解液。
Figure JPOXMLDOC01-appb-C000005
 [式(1)中、Xは炭素数3~20の水酸基を有していてもよい炭化水素基を表し、Yは水素原子、水酸基を有していてもよい炭素数1~10の炭化水素基又はポリアルキレングリコールの水酸基から水素原子を1つ除いた残基を表す。]
Figure JPOXMLDOC01-appb-C000006
 [式(2)中、2つあるZはそれぞれ独立に炭素数1~6の炭化水素基を表す。]
<2>前記有機溶媒(C)が、多価アルコール、スルホン化合物、ラクトン化合物及びカーボネート化合物からなる群から選ばれる少なくとも1種の成分を含む、<1>に記載の電解コンデンサ用電解液。
<3>前記有機溶媒(C)が多価アルコールを含む<1>又は<2>に記載の電解コンデンサ用電解液。
<4>水を含まないか、又は、水を含む場合の水の含有量が、電解コンデンサ用電解液の重量に基づいて、10重量%以下である<1>~<3>のいずれかに記載の電解コンデンサ用電解液。
<5>前記酸成分(A)の含有量が、電解コンデンサ用電解液の重量に基づいて1~20重量%である、<1>~<4>のいずれかに記載の電解コンデンサ用電解液。
<6>前記酸成分(A)が、酸成分(A1)である、<1>~<5>のいずれかに記載の電解コンデンサ用電解液。
<7>前記塩基成分(B)が、2級アミン(B2)及び3級アミン(B3)からなる群より選択される1種を含む、<1>~<6>のいずれかに記載の電解コンデンサ用電解液。
<8>前記塩基成分(B)の含有量が、電解コンデンサ用電解液の重量に基づいて0.1~15重量%である、<1>~<7>のいずれかに記載の電解コンデンサ用電解液。
<9>前記有機溶媒(C)の含有量が、電解コンデンサ用電解液の重量に基づいて50~98重量%である、<1>~<8>に記載の電解コンデンサ用電解液。
<10><1>~<9>のいずれかに記載の電解コンデンサ用電解液を含む電解コンデンサ。
<11><1>~<9>のいずれかに記載の電解コンデンサ用電解液及び固体電解質層を含むハイブリッド型電解コンデンサ。
<Others>
The present invention may include the following configurations.
<1> An electrolytic solution for an electrolytic capacitor containing an acid component (A), a base component (B) and an organic solvent (C),
The acid component (A) contains an acid component (A1) represented by the following general formula (1) and/or an acid component (A2) represented by the following general formula (2),
The total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A),
The electrolytic solution for an electrolytic capacitor, wherein the base component (B) contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
Figure JPOXMLDOC01-appb-C000005
[In the formula (1), X represents a hydrocarbon group optionally having a hydroxyl group having 3 to 20 carbon atoms, Y represents a hydrogen atom, a hydrocarbon having 1 to 10 carbon atoms optionally having a hydroxyl group, group or a residue obtained by removing one hydrogen atom from the hydroxyl group of polyalkylene glycol. ]
Figure JPOXMLDOC01-appb-C000006
[In formula (2), two Zs independently represent a hydrocarbon group having 1 to 6 carbon atoms. ]
<2> The electrolytic solution for an electrolytic capacitor according to <1>, wherein the organic solvent (C) contains at least one component selected from the group consisting of polyhydric alcohols, sulfone compounds, lactone compounds and carbonate compounds.
<3> The electrolytic solution for an electrolytic capacitor according to <1> or <2>, wherein the organic solvent (C) contains a polyhydric alcohol.
<4> Any one of <1> to <3> that does not contain water, or if water is contained, the content of water is 10% by weight or less based on the weight of the electrolytic solution for electrolytic capacitors. Electrolyte for electrolytic capacitors as described.
<5> The electrolytic solution for electrolytic capacitors according to any one of <1> to <4>, wherein the content of the acid component (A) is 1 to 20% by weight based on the weight of the electrolytic solution for electrolytic capacitors. .
<6> The electrolytic solution for an electrolytic capacitor according to any one of <1> to <5>, wherein the acid component (A) is the acid component (A1).
<7> The electrolysis according to any one of <1> to <6>, wherein the base component (B) contains one selected from the group consisting of secondary amines (B2) and tertiary amines (B3). Electrolyte for capacitors.
<8> For electrolytic capacitors according to any one of <1> to <7>, wherein the content of the basic component (B) is 0.1 to 15% by weight based on the weight of the electrolytic solution for electrolytic capacitors. Electrolyte.
<9> The electrolytic solution for electrolytic capacitors according to <1> to <8>, wherein the content of the organic solvent (C) is 50 to 98% by weight based on the weight of the electrolytic solution for electrolytic capacitors.
<10> An electrolytic capacitor containing the electrolytic solution for an electrolytic capacitor according to any one of <1> to <9>.
<11> A hybrid electrolytic capacitor comprising the electrolytic solution for electrolytic capacitors according to any one of <1> to <9> and a solid electrolyte layer.
 以下、本発明の一実施形態を実施例及び比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 An embodiment of the present invention will be specifically described below based on examples and comparative examples, but the present invention is not limited to the following examples.
 <電解コンデンサ用電解液の作製>
 <実施例1~22(EL1~EL22)及び比較例1~9(R1~R9)>
 酸成分(A)、塩基成分(B)、有機溶媒(C)及び必要により水を、それぞれ表1に示す配合部数(重量部)となるように配合し、混合して電解コンデンサ用電解液EL1~EL22及び比較用の電解液R1~R9を作製した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
<Preparation of electrolytic solution for electrolytic capacitor>
<Examples 1 to 22 (EL1 to EL22) and Comparative Examples 1 to 9 (R1 to R9)>
The acid component (A), the base component (B), the organic solvent (C) and, if necessary, water are blended so that the number of blending parts (parts by weight) shown in Table 1 are obtained, and mixed to obtain an electrolytic solution EL1 for electrolytic capacitors. ˜EL22 and electrolytic solutions R1 to R9 for comparison were prepared.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
 電解コンデンサ用電解液EL1~EL22及び比較用の電解液R1~R9を用い、下記の方法で、箔の腐食、電解液のpH変化量、初期電導度及び高温放置後の電導度を評価し、その結果を表2に記載した。 Using the electrolytic solutions EL1 to EL22 for electrolytic capacitors and the comparative electrolytic solutions R1 to R9, the corrosion of the foil, the pH change amount of the electrolytic solution, the initial conductivity, and the conductivity after being left at high temperature were evaluated by the following methods, The results are shown in Table 2.
 [箔の腐食]
 2cmの未化成のアルミニウム箔を電解液に完全に含浸させ、電解液を密閉容器で145℃環境下2000時間保持し、アルミニウム箔の腐食の有無を、目視で観察し、下記4段階で評価した。評価が◎又は○であると腐食が低減されていると言え、◎であると腐食が特に低減されていると言える。
[Corrosion of foil]
A 2 cm 2 unformed aluminum foil was completely impregnated with the electrolytic solution, the electrolytic solution was held in a sealed container at 145 ° C. for 2000 hours, and the presence or absence of corrosion of the aluminum foil was visually observed and evaluated according to the following four stages. did. If the evaluation is ⊚ or ◯, it can be said that corrosion is reduced, and if it is ⊚, it can be said that corrosion is particularly reduced.
 ◎:腐食なし
 ○:箔の縁辺の一部にわずかな変色が見られる
 △:箔の縁辺の大部分に腐食が見られる
 ×:全体に腐食が見られる
◎: No corrosion ○: Slight discoloration is observed on part of the edge of the foil △: Corrosion is observed on most of the edge of the foil ×: Corrosion is observed on the whole
 [評価:pHの測定]
 株式会社堀場アドバンスドテクノ製pHメータF-53を用いて、作製から1時間以内の電解液の25℃環境下でのpH(P1)を測定した。P1を、初期の電解液のpHとした。
[Evaluation: Measurement of pH]
Using a pH meter F-53 manufactured by Horiba Advanced Techno Co., Ltd., the pH (P1) of the electrolytic solution was measured in an environment of 25° C. within 1 hour after preparation. P1 was the initial pH of the electrolyte.
 次いで、電解液を145℃で2000時間保持し、pH(P1)の測定と同様の手順で、25℃環境下で、pH(P2)を測定した。P2を、145℃保持後の電解液のpHとした。pH変化量として、P2-P1の値を求めた。 Then, the electrolytic solution was held at 145°C for 2000 hours, and pH (P2) was measured under a 25°C environment in the same procedure as the measurement of pH (P1). P2 was defined as the pH of the electrolytic solution after being held at 145°C. A value of P2-P1 was obtained as the amount of pH change.
 [評価:電導度の測定]
 東亜電波工業株式会社製電導度計CM-40Sを用いて、作製から1時間以内の電解液の30℃環境下での電導度(初期電導度)を測定した。
[Evaluation: measurement of conductivity]
Using a conductivity meter CM-40S manufactured by Toa Denpa Kogyo Co., Ltd., the conductivity (initial conductivity) of the electrolytic solution was measured in an environment of 30° C. within 1 hour after preparation.
 次いで、145℃で2000時間保持し、初期電導度と同様の手順で、30℃環境下で、電導度(高温放置後の電導度)を測定した。初期電導度に対する145℃保持後の電解液の電導度の比率(高温放置後の電導度/初期電導度)を求めた。 Then, it was held at 145°C for 2000 hours, and the conductivity (conductivity after being left at high temperature) was measured in a 30°C environment in the same procedure as the initial conductivity. The ratio of the conductivity of the electrolytic solution after holding at 145° C. to the initial conductivity (conductivity after standing at high temperature/initial conductivity) was determined.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 <電解コンデンサの作製>
 <実施例23~44(電解コンデンサCA1~CA22)及び比較例10~18(比較用の電解コンデンサCR1~CR9)>
 上記の電解コンデンサ用電解液を用い、電解コンデンサを以下の手順で作製する。
<Production of electrolytic capacitor>
<Examples 23 to 44 (electrolytic capacitors CA1 to CA22) and comparative examples 10 to 18 (comparative electrolytic capacitors CR1 to CR9)>
Using the electrolytic solution for an electrolytic capacitor, an electrolytic capacitor is produced by the following procedure.
(1)酸化アルミニウム皮膜の誘電体層を表面に有する陽極箔と陰極箔とセパレータとを一定の幅と長さに切断する。そしてリード線を陽極、陰極にカシメによって接続する。 (1) An anode foil, a cathode foil, and a separator each having a dielectric layer of an aluminum oxide film on its surface are cut into a given width and length. Then, connect the lead wires to the anode and cathode by caulking.
(2)ロール状に巻き取って円筒型にする。更にその外周側面を絶縁テープで固定しコンデンサ素子を完成させる。次に封止ゴムとリード線を通し装着させる。 (2) Winding into a roll to form a cylindrical shape. Furthermore, the outer peripheral side surface is fixed with an insulating tape to complete the capacitor element. Next, the sealing rubber and the lead wire are passed through and installed.
(3)上記の電解液(EL1~EL22、R1~R9)をそれぞれコンデンサ素子に含浸させ、ケースに格納しカシメを行い、電解コンデンサを完成させた。 (3) Capacitor elements were impregnated with the above electrolytic solutions (EL1 to EL22, R1 to R9), stored in a case, and crimped to complete an electrolytic capacitor.
 電解コンデンサCA1~CA22及びCR1~CR9を用い、下記の方法で、高温放置後の膨れ、初期ESR及び高温放置後のESRを評価し、その結果を表3に記載した。 Using electrolytic capacitors CA1 to CA22 and CR1 to CR9, swelling after high temperature exposure, initial ESR, and ESR after high temperature exposure were evaluated by the following method, and the results are shown in Table 3.
 [評価:高温放置後の膨れ測定]
 電解コンデンサを250℃で3分間保持し、保持後の電解コンデンサの膨れを目視で観察し、下記2段階で評価した。評価が○であれば、経時変化が小さいと言える。
[Evaluation: Measurement of swelling after being left at high temperature]
The electrolytic capacitor was held at 250° C. for 3 minutes, and the swelling of the electrolytic capacitor after holding was visually observed and evaluated according to the following two grades. If the evaluation is ◯, it can be said that the change over time is small.
 ○:膨れなし
 ×:膨れが見られる
 [評価:ESRの測定]
 20℃の環境下で、4端子測定用のLCRメータを用いて、作製から1時間以内の電解コンデンサの周波数100kHzにおけるESR(初期ESR)を測定した。
○: no swelling ×: swelling observed [Evaluation: measurement of ESR]
In an environment of 20° C., the ESR (initial ESR) at a frequency of 100 kHz of the electrolytic capacitor was measured within 1 hour from the production using a 4-terminal measurement LCR meter.
 次いで、145℃で定格電圧を印加しながら、電解コンデンサを2000時間保持した。その後、初期ESRと同様の手順で、20℃環境下で、ESR(高温放置後のESR)を測定した。初期ESRに対する145℃保持後の電解コンデンサのESRの比率(高温放置後のESR/初期ESR)を求めた。 Then, the electrolytic capacitor was held for 2000 hours while applying the rated voltage at 145°C. After that, the ESR (ESR after being left at high temperature) was measured in a 20° C. environment in the same procedure as the initial ESR. A ratio of the ESR of the electrolytic capacitor after being held at 145° C. to the initial ESR (ESR after being left at high temperature/initial ESR) was obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<ハイブリッド型電解コンデンサの作製>
<実施例45~66(ハイブリッド型電解コンデンサHA1~HA22)及び比較例19~27(比較用の電解コンデンサHR1~HR9)>
 上記の電解コンデンサ用電解液を用い、ハイブリッド型電解コンデンサを以下の手順で作製する。
<Production of hybrid electrolytic capacitor>
<Examples 45 to 66 (Hybrid Electrolytic Capacitors HA1 to HA22) and Comparative Examples 19 to 27 (Comparative Electrolytic Capacitors HR1 to HR9)>
Using the electrolytic solution for electrolytic capacitors described above, a hybrid electrolytic capacitor is produced in the following procedure.
 (1)酸化アルミニウム皮膜の誘電体層を表面に有する陽極箔と陰極箔とセパレータとを一定の幅と長さに切断する。そしてリード線を陽極、陰極にカシメによって接続する。 (1) An anode foil, a cathode foil, and a separator each having a dielectric layer of an aluminum oxide film on its surface are cut into pieces of constant width and length. Then, connect the lead wires to the anode and cathode by caulking.
 (2)ロール状に巻き取って円筒型にする。更にその外周側面を絶縁テープで固定しコンデンサ素子を完成させる。次に封止ゴムとリード線を通し装着させる。 (2) Roll it up into a cylindrical shape. Furthermore, the outer peripheral side surface is fixed with an insulating tape to complete the capacitor element. Next, the sealing rubber and the lead wire are passed through and installed.
 (3)コンデンサ素子に、導電性高分子としてポリ3,4-エチレンジオキシドチオフェン(PEDOT)からなる固体電解質層を形成する。具体的には、PEDOTを水溶液に分散させた分散液に作製したコンデンサ素子を含浸した後、そのコンデンサ素子を120℃の恒温槽内で1時間乾燥させる。なお、ドーパントとしてはポリスチレンスルホン酸を適用している。 (3) Form a solid electrolyte layer made of poly 3,4-ethylenedioxidethiophene (PEDOT) as a conductive polymer on the capacitor element. Specifically, after impregnating the produced capacitor element with a dispersion liquid in which PEDOT is dispersed in an aqueous solution, the capacitor element is dried in a constant temperature bath at 120° C. for 1 hour. Polystyrene sulfonic acid is used as a dopant.
 (4)上記の電解液(EL1~EL22、R1~R9)をそれぞれコンデンサ素子に含浸させ、ケースに格納しカシメを行い、コンデンサを完成させた。なお、実施例、比較例すべてにおいて、固体電解質層には、PEDOTを用いた。 (4) Capacitor elements were impregnated with the above electrolytic solutions (EL1 to EL22, R1 to R9), stored in a case, and crimped to complete a capacitor. In all of the examples and comparative examples, PEDOT was used for the solid electrolyte layer.
 ハイブリッド型電解コンデンサHA1~HA22及びHR1~HR9を用い、下記の方法で、高温放置後の膨れ、初期ESR及び高温放置後のESRを評価し、その結果を表4に記載した。 Using the hybrid electrolytic capacitors HA1 to HA22 and HR1 to HR9, swelling after high temperature exposure, initial ESR, and ESR after high temperature exposure were evaluated by the following method, and the results are shown in Table 4.
 [評価:高温放置後の膨れ測定]
 ハイブリッド型電解コンデンサを250℃で3分間保持し、保持後のハイブリッド型電解コンデンサの膨れを目視で観察し、下記2段階で評価した。評価が○であれば、経時変化が小さいと言える。
[Evaluation: Measurement of swelling after being left at high temperature]
The hybrid electrolytic capacitor was held at 250° C. for 3 minutes, and swelling of the hybrid electrolytic capacitor after holding was visually observed and evaluated in the following two stages. If the evaluation is ◯, it can be said that the change over time is small.
 ○:膨れなし
 ×:膨れが見られる
 [評価:ESRの測定]
 20℃の環境下で、4端子測定用のLCRメータを用いて、作製から1時間以内のハイブリッド型電解コンデンサの周波数100kHzにおけるESR(初期ESR)を測定した。
○: no swelling ×: swelling observed [Evaluation: measurement of ESR]
In an environment of 20° C., the ESR (initial ESR) at a frequency of 100 kHz of the hybrid electrolytic capacitor was measured within 1 hour from the production using an LCR meter for four-terminal measurement.
 次いで、145℃で定格電圧を印加しながら、ハイブリッド型電解コンデンサを2000時間保持した。その後、初期ESRと同様の手順で、20℃環境下で、ESR(高温放置後のESR)を測定した。ESRの増加率として、初期値に対する145℃保持後のハイブリッド型電解コンデンサのESRの比率(高温放置後のESR/初期ESR)を求めた。 Then, the hybrid electrolytic capacitor was held for 2000 hours while applying the rated voltage at 145°C. After that, the ESR (ESR after being left at high temperature) was measured in a 20° C. environment in the same procedure as the initial ESR. As the ESR increase rate, the ratio of the ESR of the hybrid electrolytic capacitor after being held at 145° C. to the initial value (ESR after being left at high temperature/initial ESR) was obtained.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2より、本発明の一実施形態に係る実施例1~実施例22の電解液は初期電導度が高く優れており、腐食が低減されており(箔の腐食がないか、箔の縁辺の一部にわずかな変色が見られる程度であった)、高温放置後においても、pH及び電導度の変化が小さい。 From Table 2, the electrolytic solutions of Examples 1 to 22 according to one embodiment of the present invention are excellent in high initial conductivity, and corrosion is reduced (no corrosion of the foil, no corrosion of the edge of the foil) Only a slight discoloration was observed in some areas), and the change in pH and conductivity was small even after standing at high temperature.
 一方、比較例1~比較例5の電解液は、箔の腐食が大きかった。比較例6及び比較例7の電解液は、初期電導度が低かった。比較例8及び比較例9の電解液は、高温放置後のpH及び電導度の変化が大きかった。このように、比較例の電解液には、高い初期伝導度、低減された腐食及び高い安定性の全てを満たしているものはなかった。 On the other hand, the electrolytic solutions of Comparative Examples 1 to 5 caused significant foil corrosion. The electrolytic solutions of Comparative Examples 6 and 7 had low initial conductivity. The electrolytic solutions of Comparative Examples 8 and 9 showed large changes in pH and conductivity after being left at high temperatures. Thus, none of the electrolytes of the comparative examples met all of high initial conductivity, reduced corrosion and high stability.
 また、表3、4より、本発明の一実施形態に係る実施例23~実施例66の電解コンデンサ及びハイブリッド型電解コンデンサは、ESRが低く優れており、高温放置後においても、ESRの変化が小さい。 Further, from Tables 3 and 4, the electrolytic capacitors and hybrid electrolytic capacitors of Examples 23 to 66 according to one embodiment of the present invention are excellent in ESR with low ESR, and there is no change in ESR even after being left at high temperature. small.
 一方、比較例10~比較例14及び比較例17~比較例18の電解コンデンサ並びに比較例19~比較例23及び比較例26~比較例27のハイブリッド型電解コンデンサは、高温放置後のESRの変化が大きかった。比較例15~16の電解コンデンサ及び比較例24~25のハイブリッド型電解コンデンサは、初期のESRが高かった。このように、比較例の電解コンデンサ及びハイブリッド電解コンデンサには、低く経時変化の少ないESRを達成したものはなかった。 On the other hand, the electrolytic capacitors of Comparative Examples 10 to 14 and Comparative Examples 17 to 18 and the hybrid electrolytic capacitors of Comparative Examples 19 to 23 and Comparative Examples 26 to 27 show changes in ESR after being left at high temperatures. was big. The electrolytic capacitors of Comparative Examples 15 and 16 and the hybrid electrolytic capacitors of Comparative Examples 24 and 25 had high initial ESR. Thus, none of the electrolytic capacitors and hybrid electrolytic capacitors of the comparative examples achieved a low ESR with little change over time.
 本発明の一実施形態に係る電解液を使用することで、初期電導度が高く、経時変化が小さく、かつコンデンサ部材の腐食が低減された電解液を実現できる。さらに、初期ESRが低く、経時変化が小さい、電解コンデンサ及びハイブリッド型電解コンデンサもまた実現できる。したがって、市場における使用電源の長寿命化が進むなかで、この発明の電解液の市場価値は非常に大きい。本発明の一実施形態に係る電解液は、車載電装用電源用やデジタル家電用の電解コンデンサ及びハイブリッド型電解コンデンサに特に有用である。 By using the electrolytic solution according to one embodiment of the present invention, it is possible to realize an electrolytic solution with high initial conductivity, little change over time, and reduced corrosion of capacitor members. In addition, electrolytic capacitors and hybrid electrolytic capacitors with low initial ESR and little change over time can also be realized. Therefore, the market value of the electrolytic solution of the present invention is very large as the life of the power supply used in the market is becoming longer. The electrolytic solution according to one embodiment of the present invention is particularly useful for electrolytic capacitors and hybrid electrolytic capacitors for power sources for automotive electrical equipment and digital home appliances.

Claims (11)

  1.  酸成分(A)、塩基成分(B)及び有機溶媒(C)を含む電解コンデンサ用電解液であって、
     前記酸成分(A)が、下記一般式(1)で示される酸成分(A1)及び/又は下記一般式(2)で示される酸成分(A2)を含み、
     前記酸成分(A1)及び酸成分(A2)の含有量の合計が、前記酸成分(A)の重量に基づいて50重量%以上であり、
     前記塩基成分(B)が、アンモニウム、1級アミン(B1)、2級アミン(B2)及び3級アミン(B3)からなる群から選ばれる少なくとも1種の成分を含む電解コンデンサ用電解液。
    Figure JPOXMLDOC01-appb-C000001
     [式(1)中、Xは炭素数3~20の水酸基を有していてもよい炭化水素基を表し、Yは水素原子、水酸基を有していてもよい炭素数1~10の炭化水素基又はポリアルキレングリコールの水酸基から水素原子を1つ除いた残基を表す。]
    Figure JPOXMLDOC01-appb-C000002
     [式(2)中、2つあるZはそれぞれ独立に炭素数1~6の炭化水素基を表す。]
    An electrolytic solution for an electrolytic capacitor containing an acid component (A), a base component (B) and an organic solvent (C),
    The acid component (A) contains an acid component (A1) represented by the following general formula (1) and/or an acid component (A2) represented by the following general formula (2),
    The total content of the acid component (A1) and the acid component (A2) is 50% by weight or more based on the weight of the acid component (A),
    The electrolytic solution for an electrolytic capacitor, wherein the base component (B) contains at least one component selected from the group consisting of ammonium, primary amine (B1), secondary amine (B2) and tertiary amine (B3).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X represents a hydrocarbon group optionally having a hydroxyl group having 3 to 20 carbon atoms, Y represents a hydrogen atom, a hydrocarbon having 1 to 10 carbon atoms optionally having a hydroxyl group, group or a residue obtained by removing one hydrogen atom from the hydroxyl group of polyalkylene glycol. ]
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), two Zs independently represent a hydrocarbon group having 1 to 6 carbon atoms. ]
  2.  前記有機溶媒(C)が、多価アルコール、スルホン化合物、ラクトン化合物及びカーボネート化合物からなる群から選ばれる少なくとも1種の成分を含む、請求項1に記載の電解コンデンサ用電解液。 The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the organic solvent (C) contains at least one component selected from the group consisting of polyhydric alcohols, sulfone compounds, lactone compounds and carbonate compounds.
  3.  前記有機溶媒(C)が多価アルコールを含む請求項1又は2に記載の電解コンデンサ用電解液。 The electrolytic solution for electrolytic capacitors according to claim 1 or 2, wherein the organic solvent (C) contains a polyhydric alcohol.
  4.  水を含まないか、又は、水を含む場合の水の含有量が、電解コンデンサ用電解液の重量に基づいて、10重量%以下である請求項1~3のいずれか1項に記載の電解コンデンサ用電解液。 4. The electrolyte according to any one of claims 1 to 3, wherein the water content is 10% by weight or less based on the weight of the electrolytic solution for electrolytic capacitors. Electrolyte for capacitors.
  5.  前記酸成分(A)の含有量が、電解コンデンサ用電解液の重量に基づいて1~20重量%である、請求項1~4のいずれか1項に記載の電解コンデンサ用電解液。 The electrolytic solution for electrolytic capacitors according to any one of claims 1 to 4, wherein the content of the acid component (A) is 1 to 20% by weight based on the weight of the electrolytic solution for electrolytic capacitors.
  6.  前記酸成分(A)が、酸成分(A1)である、請求項1~5のいずれか1項に記載の電解コンデンサ用電解液。 The electrolytic solution for electrolytic capacitors according to any one of claims 1 to 5, wherein the acid component (A) is the acid component (A1).
  7.  前記塩基成分(B)が、2級アミン(B2)及び3級アミン(B3)からなる群より選択される1種を含む、請求項1~6のいずれか1項に記載の電解コンデンサ用電解液。 The electrolyte for electrolytic capacitors according to any one of claims 1 to 6, wherein the base component (B) contains one selected from the group consisting of secondary amines (B2) and tertiary amines (B3). liquid.
  8.  前記塩基成分(B)の含有量が、電解コンデンサ用電解液の重量に基づいて0.1~15重量%である、請求項1~7のいずれか1項に記載の電解コンデンサ用電解液。 The electrolytic solution for electrolytic capacitors according to any one of claims 1 to 7, wherein the content of the basic component (B) is 0.1 to 15% by weight based on the weight of the electrolytic solution for electrolytic capacitors.
  9.  前記有機溶媒(C)の含有量が、電解コンデンサ用電解液の重量に基づいて50~98重量%である、請求項1~8のいずれか1項に記載の電解コンデンサ用電解液。 The electrolytic solution for electrolytic capacitors according to any one of claims 1 to 8, wherein the content of the organic solvent (C) is 50 to 98% by weight based on the weight of the electrolytic solution for electrolytic capacitors.
  10.  請求項1~9のいずれか1項に記載の電解コンデンサ用電解液を含む電解コンデンサ。 An electrolytic capacitor containing the electrolytic solution for electrolytic capacitors according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の電解コンデンサ用電解液及び固体電解質層を含むハイブリッド型電解コンデンサ。 A hybrid electrolytic capacitor comprising the electrolytic solution for electrolytic capacitors according to any one of claims 1 to 9 and a solid electrolyte layer.
PCT/JP2022/023046 2021-06-28 2022-06-08 Electrolyte for electrolytic capacitor and electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte WO2023276589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023531745A JPWO2023276589A1 (en) 2021-06-28 2022-06-08
CN202280039317.9A CN117441219A (en) 2021-06-28 2022-06-08 Electrolyte for electrolytic capacitor, electrolytic capacitor using the same, and hybrid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106830 2021-06-28
JP2021-106830 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276589A1 true WO2023276589A1 (en) 2023-01-05

Family

ID=84690271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023046 WO2023276589A1 (en) 2021-06-28 2022-06-08 Electrolyte for electrolytic capacitor and electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte

Country Status (3)

Country Link
JP (1) JPWO2023276589A1 (en)
CN (1) CN117441219A (en)
WO (1) WO2023276589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226913A (en) * 1985-04-01 1986-10-08 エルナ−株式会社 Electrolytic liquid for driving of electrolytic capacitor
JPH03102811A (en) * 1989-09-14 1991-04-30 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH03225908A (en) * 1990-01-31 1991-10-04 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH04282816A (en) * 1991-03-11 1992-10-07 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JP2012146833A (en) * 2011-01-13 2012-08-02 Sanyo Chem Ind Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226913A (en) * 1985-04-01 1986-10-08 エルナ−株式会社 Electrolytic liquid for driving of electrolytic capacitor
JPH03102811A (en) * 1989-09-14 1991-04-30 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH03225908A (en) * 1990-01-31 1991-10-04 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JPH04282816A (en) * 1991-03-11 1992-10-07 Hitachi Aic Inc Electrolyte for electrolytic capacitor
JP2012146833A (en) * 2011-01-13 2012-08-02 Sanyo Chem Ind Ltd Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same

Also Published As

Publication number Publication date
JPWO2023276589A1 (en) 2023-01-05
CN117441219A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP7462177B2 (en) Electrolytic capacitor
US5507966A (en) Electrolyte for an electrolytic capacitor
JP2008066502A (en) Electrolytic capacitor
KR102603989B1 (en) solid electrolytic capacitor
JP7226593B2 (en) solid electrolytic capacitor
JPWO2020022472A1 (en) Electrolytic capacitor
JP6391326B2 (en) Electrolyte for electrolytic capacitor, electrolytic solution and electrolytic capacitor using the same
JP5327255B2 (en) Electrolytic capacitor manufacturing method
JP2022002341A (en) Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitors using the same
JP2017017188A (en) Composition for gel electrolyte, gel electrolyte including the same, and electrolytic capacitor
US5177673A (en) Electrolyte for driving electrolytic capacitors and capacitor using the same
WO2023276589A1 (en) Electrolyte for electrolytic capacitor and electrolytic capacitor and hybrid electrolytic capacitor using said electrolyte
JP2019091924A (en) Electrolyte for hybrid electrolytic capacitor
JP2019029498A (en) Electrolytic capacitor and electrolytic solution for electrolytic capacitor
US11081287B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP6399466B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
EP0956573B1 (en) Electrolyte for electrolytic capacitor
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
JP5488998B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP7241658B2 (en) Capacitor, manufacturing method thereof, and conductive polymer dispersion
EP4383294A1 (en) Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion
JP2024045918A (en) Electrolyte for hybrid capacitor and hybrid capacitor
JP6201172B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6316571B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2023138354A (en) Electrolyte for hybrid electrolytic capacitor and hybrid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531745

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039317.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832746

Country of ref document: EP

Kind code of ref document: A1