WO2023276525A1 - Biological information acquisition device and biological state warning system using same - Google Patents

Biological information acquisition device and biological state warning system using same Download PDF

Info

Publication number
WO2023276525A1
WO2023276525A1 PCT/JP2022/022053 JP2022022053W WO2023276525A1 WO 2023276525 A1 WO2023276525 A1 WO 2023276525A1 JP 2022022053 W JP2022022053 W JP 2022022053W WO 2023276525 A1 WO2023276525 A1 WO 2023276525A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological
information acquisition
acquisition device
stress
biological information
Prior art date
Application number
PCT/JP2022/022053
Other languages
French (fr)
Japanese (ja)
Inventor
浩士 中村
Original Assignee
浩士 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩士 中村 filed Critical 浩士 中村
Priority to JP2023531721A priority Critical patent/JPWO2023276525A1/ja
Publication of WO2023276525A1 publication Critical patent/WO2023276525A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention is a biological information acquisition device for acquiring biological information of a subject, and in particular, calculates a stress index by accurately simultaneously acquiring a plurality of pieces of biological information such as the heart rate and respiration rate of the subject.
  • the present invention also relates to a biological information acquisition device for monitoring the physical and mental conditions of a person to be measured, and a biological condition warning system using the same.
  • a biometric information acquisition device that measures biometric information and monitors the physical and mental condition of a subject.
  • a measurement tool having a built-in bone-flesh-conducted sound sensor (microphone) is inserted into the external auditory canal of a person to be measured, and a bone-flesh-conducted sound, which is a biological signal, is transmitted through the bone-flesh-conducted sound.
  • the bone-flesh-conducted sounds include vascular sounds caused by the beating of the heart of the person being measured and breath sounds caused by the respiratory movement of the lungs, respectively. The physical and mental condition of the subject can be confirmed.
  • the biological information acquisition device of Patent Document 1 requires that the measurement tools be inserted into the left and right ear canals of the subject. Therefore, when acquiring biological information over a long period of time, the measurement tool inserted into the external auditory canal makes it difficult for the subject to hear external sounds, which may interfere with daily life.
  • the measurement tool of Patent Document 1 has a tool body having a cavity formed therein to facilitate the transmission of external sound. are attached respectively. By outputting the external sound collected by the external air-conducting sound microphone from the external air-conducting sound speaker, the external sound is transmitted to the subject even when the measurement tool is inserted into the external auditory canal. .
  • Patent Document 1 the number of parts increases and the structure becomes complicated by incorporating an external air-conducting microphone or the like into the measurement tool, so there is a problem that the cost increases.
  • Patent Document 1 since the measurement tool must be inserted into the ear canal during measurement, the act of measurement itself becomes stressful for the person being measured. There is also the risk that accurate measurement data for breath sounds will not be obtained.
  • the present invention has been made in view of the above points, and an object thereof is to provide a biological information acquiring apparatus capable of accurately measuring a biological signal without interfering with daily life at a low cost. .
  • the present invention is characterized by measuring biosignals while applying the same urging force in left and right winds.
  • biometric information acquisition device that acquires the biometric information of a subject, and took the following solutions.
  • a pair of measuring pad portions capable of measuring a biosignal and applying the same urging force in a direction of approaching each other in a state in which each of the measuring pad portions is applied to each of the shadows of the person to be measured.
  • a biomedical signal processing unit connected to each of the measurement pads to perform arithmetic processing on the biomedical signal measured by each of the measurement pads to extract the biometric information.
  • the measurement pad section includes a body-conducted sound sensor capable of measuring a body-conducted sound signal
  • the biological signal processing section includes a body-conducted sound sensor capable of measuring a body-conducted sound signal.
  • a low-pass filter unit that passes only signals lower than a predetermined frequency of the sound signal and extracts them as heart rate fluctuations (heartbeat fluctuations), and a low-pass filter unit that passes only signals higher than the predetermined frequency and extracts breathing rate fluctuations and a high-pass filter section for extracting fluctuations.
  • the biological signal processing unit sets the heart rate variation extracted by the low-pass filter unit to ⁇ HR, and the respiration rate extracted by the high-pass filter unit
  • the stress index SI and the subjective evaluation items preliminarily input by the person to be measured every time T are calculated.
  • the evaluation values W are arranged in order as rows, and a stress index matrix M with the time axis as the columns is output.
  • the measurement pad section includes a temperature sensor capable of measuring the surface temperature (body temperature) of the subject, and the biological signal processing section includes, in the stress index matrix M, 3.
  • the surface temperature (body temperature) measured by the temperature sensor every time T elapses is arranged in rows and the time axis is output in columns.
  • the present invention also targets a biological condition warning system that displays stress conditions to a plurality of subjects, and has taken the following means of solution.
  • the plurality of biological information acquisition devices according to the third invention respectively worn by a plurality of subjects, and the estimated stress of each subject based on the stress index matrix M an artificial intelligence or an external database that outputs the state, and each of the stress index matrices M that are connected to the biological information acquisition device and the artificial intelligence or the external database via a communication network and received from the biological information acquisition device; Determining the stress state of each subject based on the estimated stress state input by the artificial intelligence or the external database, generating biological state information according to the determination result, and the communication network and a management server that transmits each of the biological state information to the corresponding biological information acquisition device via the.
  • the biological information warning system further comprises personal identification means capable of confirming whether or not the person to be measured is the person himself/herself, It is characterized by transmitting the biological state information to the corresponding biological information acquisition device when it is confirmed that there is one.
  • a seventh invention is characterized in that, in the sixth invention, the personal identification means is a face authentication system using an image taken by a camera.
  • the biosignal is measured by applying each measuring pad portion to each wave of the person to be measured, there is no need to insert the measuring tool into the external auditory canal as in Patent Document 1, and the ear is not required to be inserted. no need to cover. Therefore, the person to be measured does not have difficulty in hearing the sound during the measurement of the biological signal, and not only does the measurement not interfere with daily life even if the measurement is performed over a long period of time, but the act of measurement itself is not difficult for the person to be measured. It is possible to obtain biological signals that are not stressed and are less affected by disturbances.
  • the urging force application section applies the same urging force to each measuring pad in the direction in which each measuring pad approaches each other, so that the measurement positions of each measuring pad are fixed with a constant pressure and are unlikely to shift. become a state. Therefore, the measurement signal strength of the obtained biosignal becomes constant, and the measurement accuracy can be improved.
  • the condition of the person to be measured can be evaluated using the obtained heart rate data and breathing rate data. It can be carried out.
  • the stress is displayed quantitatively, and by confirming the stress index matrix M, the subject's stress state and the subject's subjective evaluation can be collectively confirmed in chronological order. be possible. Therefore, the subject's stress state can be easily evaluated, and the time-series state of the subject can be comprehensively evaluated.
  • the surface temperature of the person to be measured is measured at the same time as measuring the heart rate and respiratory rate data of the person to be measured. Therefore, by examining the correlation between the heart rate and respiration rate data of the person being measured and the surface temperature, abnormal measurement data can be eliminated, and measurement accuracy can be improved.
  • the surface temperature data of the person to be measured can be output in chronological order to the matrix elements of the stress index matrix M that quantitatively displays stress and pain, stress evaluation can be performed in more dimensions. , the stress state of the subject can be accurately determined.
  • the stress index matrix M of a plurality of subjects can be transmitted to the management server via a communication network. It is possible to determine the stress state of each person to be measured at the same time every time T elapses.
  • the management server since the management server is connected to an artificial intelligence or an external database that outputs the estimated stress state of each subject based on the stress index matrix M of each subject, the stress state based on the estimated output can be evaluated. Biological condition information is generated according to the determination result. Then, the management server can transmit each piece of biological state information to the corresponding biological information acquisition device via the communication network. Therefore, each subject wearing the biological information acquisition device can receive appropriate biological state information at optimum timing via the communication network.
  • the management server transmits the biological state information to each corresponding biological information acquisition device only when the person to be measured is confirmed to be the person himself/herself by the personal identification means. Therefore, the biological condition information will not be mistakenly sent to a biometric information acquisition device other than the subject, and the personal information of the subject will not be leaked to a third party other than the subject. and privacy can be protected.
  • the seventh invention by using a face authentication system using images taken by a camera as identity confirmation means, it is possible to reliably and inexpensively confirm the identity of a plurality of persons to be measured with a relatively simple configuration. can.
  • FIG. 1 is a perspective view of a measuring device in the biological information acquisition device according to Embodiment 1 of the present invention
  • FIG. 1 is a block diagram of a biological information acquisition device according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram showing a stress index matrix calculated by the biological information acquisition device according to Embodiment 1 of the present invention
  • FIG. 5 is a diagram showing a stress warning system according to Embodiment 2 of the present invention
  • FIG. 7 is a conceptual diagram of artificial intelligence in the stress warning system according to Embodiment 2 of the present invention
  • FIG. 10 is a diagram showing an example in which the biological information acquisition device according to Embodiment 3 of the present invention is applied to a COVID-19 detection system
  • FIG. 10 is a diagram showing an example of evaluation results obtained by a COVID-19 detection system to which the biological information acquisition device according to Embodiment 3 of the present invention is applied
  • FIG. 10 is a diagram showing a stress index matrix in a COVID-19 detection system to which the biological information acquisition device according to Embodiment 3 of the present invention is applied
  • FIG. 10 is a diagram showing an online medical care system according to Embodiment 5 of the present invention; It is a figure which shows the death time prediction system which concerns on Embodiment 6 of this invention.
  • FIG. 11 is a conceptual diagram of artificial intelligence in the death time prediction system according to Embodiment 6 of the present invention. It is a figure explaining the death time prediction system which concerns on Embodiment 6 of this invention. It is a figure which shows the disaster occurrence reporting system which concerns on Embodiment 7 of this invention.
  • ⁇ Embodiment 1 of the invention>> 1 to 3 show a biological information acquisition device 1 according to Embodiment 1 of the present invention.
  • the biometric information acquiring apparatus 1 calculates a stress index for monitoring the physical and mental condition of the subject H1 based on a plurality of biosignals acquired from each of the lingering winds E1 of the subject H1. and an information processing terminal 10B wirelessly connected to the measuring instrument 10A.
  • the measuring device 10A includes a flexible body frame 2 (biasing force applying portion) having a substantially horseshoe shape.
  • the body frame 2 is formed by coating a metal spring with resin or by a resin spring or the like. It is gaining power.
  • a gravity sensor 2 a capable of detecting the direction of gravity is embedded in the middle of the body frame 2 , and the gravity sensor 2 a detects the tilt angle of the body frame 2 .
  • a pair of measurement pad portions 3 capable of measuring a subject's biosignals are embedded in the portions of the body frame 2 that face each other at one end and the other end.
  • the measurement pad section 3 is provided with a temperature sensor 3b which is a thermistor that abuts against each of the winds E1 of the subject H1 during measurement, and the temperature sensor 3b is substantially disk-shaped and lid-shaped.
  • a measurement opening 3d communicating with the inside is formed on the surface of each temperature sensor 3b facing each other.
  • a body-conducting sound sensor 3a having an electret condenser microphone (ECM) and a radio transmitter/receiver 3c connected to the body-conducting sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a are accommodated.
  • ECM electret condenser microphone
  • the temperature sensor 3b covers the body-conducted sound sensor 3a, the body-conducted sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a.
  • the radio transmitter/receiver 3c is adapted to transmit and receive signals wirelessly to and from the biological signal processor 4.
  • the body-conducting sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a are connected to the measurement opening 3d.
  • Each sensor signal measured via is transmitted to the information processing terminal 10B.
  • the measuring instrument 10A is equipped with a main body frame 2 so as to surround the occipital region of the subject H1 from the occipital side, and each measuring pad portion 3 is applied to each of the winds E1.
  • the frame 2 applies the same urging force to each measurement pad section 3 toward each of the slight breezes E1 of the person H1 to be measured.
  • the body frame 2 may be attached so as to surround the lower jaw from the forehead side of the person H1 to be measured, and each measurement pad portion 3 may be applied to each of the winds E1.
  • the information processing terminal 10B is connected to a biosignal processing unit 4 that performs arithmetic processing on each biosignal acquired by the measurement pad unit 3, and the biosignal processing unit 4.
  • An input unit 8 capable of inputting and operating necessary information
  • an output unit 9 connected to the biological signal processing unit 4 and capable of displaying evaluation results and the like on a display, and communication between the biological signal processing unit 4 and an external server.
  • a communication interface unit 11 for performing.
  • the input unit 8 is designed so that the person H1 to be measured inputs an evaluation value W of subjective evaluation items such as stress and pain.
  • Subjective evaluation items include, for example, a visual analog scale (VAS), a numerical rating scale (NRS), and a 10-step evaluation of mood.
  • the biological signal processing unit 4 includes a wireless transmission/reception unit 5 that transmits and receives signals to and from the wireless transmission/reception unit 3c of the measurement pad unit 3, and a body-conducted sound signal processing unit that processes the body-conducted sound signal acquired by the body-conducted sound sensor 3a. and a stress index matrix calculator 7 for outputting a stress index matrix M capable of grasping the stress state of the subject.
  • the wireless transmission/reception section 5 is wirelessly connected to the wireless transmission/reception section 3c of the measurement pad section 3, and receives, for example, sensor signals transmitted by the wireless transmission/reception section 3c.
  • the biological signal processing unit 4 determines that the measurement device 10A is attached to the subject H1 in the correct posture, and performs each measurement.
  • a measurement start signal is output to the pad section 3 to measure body-conducted sound signals and body temperature signals.
  • the body-guided sound signal processing unit 6 includes an acoustic heart rate measurement unit 61 and an acoustic breathing rate measurement unit 62 connected to the wireless transmission/reception unit 5 and the stress index matrix calculation unit 7, respectively.
  • the acoustic heart rate measurement unit 61 includes a low-pass filter unit 61a that passes only low-frequency components in the waveform output from the radio transmission/reception unit 5, and the output waveform obtained by the low-pass filter unit 61a.
  • An acoustic heart rate calculator 61b for extracting the heart rate and its variation is provided, and the acoustic heart rate calculator 61b outputs the extracted heart rate and its variation as an output ⁇ HR to the stress index matrix calculator 7. ing.
  • the acoustic respiration rate measurement unit 62 includes a high-pass filter unit 62a that passes only high-frequency components in the waveform output from the radio transmission/reception unit 5, and the output waveform obtained by the high-pass filter unit 62a.
  • An acoustic respiration rate calculator 62b for extracting the respiration rate and its variation is provided, and the acoustic respiration rate calculator 62b outputs the extracted respiration rate and its variation as an output ⁇ RR to the stress index matrix calculator 7. ing.
  • the stress index matrix calculation unit 7 outputs a stress index matrix M to the output unit 9 from the calculated stress index SI and the subjective evaluation value W input from the input unit 8.
  • the stress index matrix The output unit 9 that receives M displays the stress index matrix M on the display.
  • the stress index matrix calculation unit 7 outputs the stress index matrix M to an external server via the communication interface unit 11.
  • the stress index matrix M is composed of objective evaluation items including the stress index SI for the subject's stress, pain, etc., for each elapse of time T, and subjective evaluation input by the subject himself/herself every time T.
  • the evaluation values W of the items are arranged in order as rows in a vertical vector, and the vertical vectors are arranged in columns in the horizontal direction of the time axis.
  • the objective evaluation item is not limited to the stress index SI, and may include, for example, the subject's blood pressure, body temperature, and the like. By increasing the number of evaluation items, multidimensional evaluation of stress and pain becomes possible, and more precise evaluation can be performed.
  • the stress index matrix M in FIG. Vertical vectors in which evaluation values W of items are arranged in rows are arranged in columns in the horizontal direction in the order of times t, t1, t2, .
  • the person H1 to be measured wears the measuring device 10A so that the measurement pads 3 are exposed to the left and right winds E1, and activates the biological information acquisition device 1. Then, the inclination angle of the measurement device 10A with respect to the subject H1 is detected by the gravity sensor 2a (S1). For example, when each measurement pad section 3 is correctly attached to the left and right winds E1 of the person H1 to be measured, the gravity sensor 2a detects vertically downward gravity in the negative direction of the Z axis of the gravity sensor 2a. When the subject H1 wears the measuring device 10A so that the left and right winds E1 are reversed, the body frame 2 is turned upside down, so the gravity sensor 2a detects the direction of gravity in the positive direction of the Z axis. do. In this manner, the left and right mounting states of the respective measurement pad portions 3 can be known from the value of the gravity sensor detected by the gravity sensor 2a.
  • the biological signal processing unit 4 determines that each measurement pad unit 3 is normally attached to the subject H1, A measurement start signal is output to the body-conducted sound sensor 3a and the temperature sensor 3b. Then, the body-conducted sound sensor 3a and the temperature sensor 3b acquire waveforms of body sounds and body temperature of the subject H1. On the other hand, when the biological signal processing unit 4 determines that each measurement pad unit 3 is not properly attached to the subject H1, the biological signal processing unit 4 outputs a measurement start signal to the body conduction sound sensor 3a and the temperature sensor 3b. Therefore, waveform acquisition by the body-conducted sound sensor 3a and the temperature sensor 3b is not executed (S2). In this way, only body sound and body temperature waveform data obtained while the measuring device 10A is normally attached to the subject H1 is transmitted to the body signal processing section 4 by the wireless transmitting/receiving section 3c.
  • a predetermined threshold value for example, Z ⁇ 0
  • the acquired body sound waveform data is input to the body conduction sound signal processing section 6 via the wireless transmission/reception section 5 .
  • a low-pass filter unit 61a in the acoustic heart rate measurement unit 61 extracts low-frequency pass signals (signals close to heart sounds) from the acquired body sounds, while a high-pass filter unit 62a in the acoustic respiration rate measurement unit 62 extracts low-frequency pass signals (signals close to heart sounds).
  • a high-frequency passing signal (a signal close to breathing sounds) is extracted by . That is, the body sound waveform data is separated into heart rate and respiration rate waveform data (S3).
  • envelope detection and waveform peak acquisition are performed from the low-frequency passing signal, and the acoustic heart rate and its variation ⁇ HR are calculated from the cycle thereof.
  • the acoustic respiration rate calculator 62b calculates the acoustic respiration rate and its variation ⁇ RR from the high-frequency passing signal by envelope detection and respiration start point detection (S4).
  • subject H1 operated the touch panel of the input unit 8 to use a visual analog scale (VAS), a numerical rating scale (NRS), and a graded evaluation of mood as subjective evaluation items for stress and pain of subject H1.
  • VAS visual analog scale
  • NRS numerical rating scale
  • W graded evaluation of mood as subjective evaluation items for stress and pain of subject H1.
  • An evaluation value W is input every preset time T (S5).
  • the stress index SI, the evaluation value W input by the input unit 8, and the body temperature of the person to be measured by the temperature sensor 3b are arranged in order as rows in a vertical vector, and the vertical vector is arranged in the horizontal direction of the time axis.
  • a stress index matrix M arranged in columns is calculated (S6).
  • the calculated stress index matrix M is displayed on the display by the output unit 9 (S7).
  • the biometric information acquisition device 1 After that, if the acquisition of biometric information is to be completed, the biometric information acquisition device 1 is terminated. On the other hand, if the acquisition of biometric information is not to be completed, the process returns to S1 and repeats the above operation (S8).
  • each measurement pad section 3 is applied to each of the winds E1 of the subject H1 to measure biosignals, so there is no need to cover the ears. Therefore, subject H1 does not have difficulty in hearing sounds during biosignal measurement. It is possible to obtain biomedical signals that are not stressed to H1 and are less affected by disturbances.
  • an external air-conducting sound speaker or an external air-conducting sound microphone into the measuring part, or to provide a hollow part in the measuring part, the number of parts can be reduced, the structure can be simplified, and the device can be provided at a low cost. can do.
  • the body frame 2 causes each of the measurement pads 3 to apply the same biasing force to each of the shadows E1 of the subject H1 in the direction in which they approach each other, the measurement positions of each of the measurement pads 3 are kept at a constant pressure. It becomes fixed and difficult to shift. Therefore, the measurement signal strength of the obtained biosignal becomes constant, and the measurement accuracy can be improved.
  • the body frame 2 is provided with the gravity sensor 2a, the inclination angle of each measurement pad portion 3 worn by the person H1 to be measured can be known. Therefore, it can be known whether or not the measurement pad section 3 is correctly measuring the left and right winds E1 of the person H1 to be measured, and erroneous measurement of the biosignal can be prevented.
  • the posture of the subject H1 wearing the measurement pad section 3 can be known, the measurement data when the subject H1 is in an abnormal posture can be removed, and the measurement accuracy can be improved.
  • the measurement pad section 3 includes the body-conducted sound sensor 3a, fluctuations in the heart rate and breathing rate of the person H1 to be measured can be obtained in chronological order. Therefore, the condition of subject H1 can be evaluated using the obtained heart rate data and respiratory rate data.
  • the biomedical signal processing unit 4 calculates the stress index matrix M
  • the stress is displayed quantitatively, and by confirming the stress index matrix M, the stress state of the subject H1 and the subject H1 are displayed. It becomes possible to check the subjective evaluation of Therefore, the stress state of subject H1 can be easily evaluated, and the chronological state of subject H1 can be comprehensively evaluated.
  • the biological signal processing unit 4 can easily input subjective evaluation items that are part of the stress index matrix M from the visual analog scale (VAS), the numerical rating scale (NRS), and the graded evaluation of mood by the input unit 8. Since it is possible, it is possible to easily grasp the stress and pain of the subject H1.
  • VAS visual analog scale
  • NRS numerical rating scale
  • graded evaluation of mood by the input unit 8. Since it is possible, it is possible to easily grasp the stress and pain of the subject H1.
  • the measurement pad section 3 includes the temperature sensor 3b, it is possible to measure the body temperature of the subject H1 at the same time as measuring the heart rate and respiratory rate data of the subject H1. Therefore, by examining the correlation between the heart rate and respiration rate data of the subject H1 and the body temperature, abnormal measurement data can be eliminated, and measurement accuracy can be improved.
  • the body temperature data of the subject H1 can be output in chronological order to the matrix elements of the stress index matrix M that quantitatively displays stress and pain, stress evaluation can be performed in a multidimensional manner. It is possible to accurately determine the stress state of the subject H1.
  • the temperature sensor 3b is a thermistor located in a region that abuts on each of the winds E1 of the person to be measured at the time of measurement, the sensitivity of the signal obtained from each of the winds E1 of the person to be measured H1 is improved. It becomes possible to know the stress condition of the measurer H1 in more detail.
  • the temperature sensor 3b since the temperature sensor 3b is lid-shaped, the temperature sensor 3b covers the body-conducted sound sensor 3a. Therefore, there is no need to install an additional cover component to protect the body-conducted sound sensor 3a, and the component cost can be kept low.
  • FIG. 6 shows a stress warning system 100 (biological state warning system) according to Embodiment 2 of the present invention using the biological information acquisition device 1 .
  • a stress warning system 100 biological state warning system
  • FIG. 6 shows a stress warning system 100 (biological state warning system) according to Embodiment 2 of the present invention using the biological information acquisition device 1 .
  • Parts similar to those of the first embodiment are denoted by the same reference numerals, and only different parts will be described.
  • the stress warning system 100 can simultaneously determine the stress states of a plurality of subjects A, B, and C who live far away from each other. 14 and a stress management server 15.
  • the stress management server 15 is connected to the repeater 12, the artificial intelligence 13, and the external database 14, respectively. and are connected respectively.
  • the biological information acquisition device 1 of Embodiment 2 is attached to subjects A to C, respectively.
  • the biometric information acquiring devices 1 attached to subjects A to C are hereinafter referred to as biometric information acquiring devices 1A, 1B, and 1C.
  • the artificial intelligence 13 and the external database 14 learn based on the time-series data or compare with past similar data for the input of each stress index matrix M of the subjects A to C obtained by the biological information acquisition device 1. to output the latest estimated stress states of subjects A to C.
  • the artificial intelligence 13 and the external database 14 may be neural networks.
  • objective data such as heart rate variability ⁇ HR, respiratory variability ⁇ RR, body temperature, blood pressure, social distance, medication dosage, administration method, etc. of the subject, cough, It has an input layer for inputting subjective data such as taste disorders, a hidden layer consisting of two layers, and an output layer for outputting the necessity of PCR testing for COVID-19 infection.
  • the stress management server 15 calculates the stress state of each subject A to C based on each stress index matrix M obtained by the biological information acquisition device 1 and the estimated stress state output by the artificial intelligence 13 or the external database 14. It is designed to judge.
  • the stress management server 15 also generates stress warning information (biological state information) according to the determination results of each of the subjects A to C, and transmits the generated stress warning information to the repeater 12. It's like
  • the repeater 12 is a hub device that transmits and receives data between the biological information acquisition apparatuses 1A, 1B, and 1C and the stress management server 15, and converts each stress index matrix M received from the biological information acquisition apparatuses 1A to 1C into stress. While transmitting to the management server 15, stress warning information received from the stress management server 15 is transmitted to the biological information acquisition apparatuses 1A to 1C.
  • the repeater 12 may be a communication router or switch.
  • the repeater 12 receives the stress index matrix M of the subjects A, B, and C via the communication interface section 11 of each biological information acquisition device 1A, 1B, and 1C, and transmits it to the stress management server 15 .
  • the stress management server 15 inputs each received stress index matrix M to the artificial intelligence 13 or the external database 14 .
  • the artificial intelligence 13 or the external database 14 calculates the estimated stress state of each subject A, B, and C based on each stress index matrix M and outputs it to the stress management server 15 .
  • the stress management server 15 determines the stress state of each subject A, B, and C based on the estimated stress state and the stress index matrix M.
  • the stress management server 15 generates stress warning information according to the determination results of each of the subjects A to C, and then transmits the stress warning information to the repeater 12 .
  • the repeater 12 transmits each piece of stress warning information received from the stress management server 15 to the biological information acquisition devices 1A, 1B, and 1C of the subjects A, B, and C, respectively.
  • the stress index matrix M of a plurality of subjects A, B, and C can be transmitted to the stress management server 15 via the repeater 12. Therefore, the stress management server 15 can determine the stress state of each subject A, B, and C every time T elapses.
  • the stress management server 15 is connected to an artificial intelligence 13 or an external database 14 that outputs the estimated stress state of each subject A, B, and C based on the stress index matrix M of each subject A, B, and C. Therefore, it is possible to generate stress warning information according to the stress condition determination result based on the estimated output and transmit it to the repeater 12 . Therefore, each subject A, B, and C wearing the biological information acquisition device 1 can receive appropriate stress warning information at optimum timing via the repeater 12 .
  • FIG. 8 shows part of a COVID-19 detection system 200 (biological state warning system) including the biological information acquisition device 1 according to Embodiment 3 of the present invention. Parts similar to those of the first embodiment are denoted by the same reference numerals, and only different parts will be described.
  • the COVID-19 detection system 200 includes a biological information acquisition device 1 and a temperature sensor TS that can be attached to the forehead of the subject H1.
  • the temperature sensor TS measures the body temperature at the forehead of the subject H1.
  • FIG. 9 shows the left and right wave surface temperatures (body temperature) of the subject H1 acquired by the biological information acquisition device 1, the acquired difference between the left and right wave surface temperatures of the subject H1, and the measured subject H1 detected by the temperature sensor TS.
  • the forehead surface temperature (body temperature) and the subjective evaluation of pharynx discomfort were obtained when subject H1 was a patient suffering from COVID-19 and a healthy subject.
  • the surface temperature of the left and right shadows and the surface temperature of the forehead are close values, so it can be judged that each measurement result is appropriate.
  • COVID-19 patients with a large lateral difference in the surface temperature of the left and right wind report discomfort in the pharynx.
  • Small COVID-19 patients and healthy individuals were found to report feeling comfortable in the pharynx.
  • FIG. 10 is a stress index matrix used for the COVID-19 detection system 200.
  • As components of the vertical vector of the stress index matrix it is possible to input the left and right wind surface temperatures of the person H1 to be measured. This makes it possible to evaluate the stress caused by COVID-19 and the discomfort in the pharynx, and to detect whether or not the subject H1 is suffering from COVID-19 without contact.
  • the stress management server 15 confirms whether or not the person to be measured H1 is the person himself/herself. It is also possible to detect whether or not subject H1 is infected with COVID-19, and to transmit the determination result as to whether a PCR test is necessary or not to the corresponding biological information acquisition device.
  • the temperature sensor TS is used to measure the forehead of the subject H1.
  • the temperature sensor TS is used to measure the forehead of the subject H1.
  • FIG. 11 shows a biological information acquisition device 1 according to Embodiment 4 of the present invention.
  • This biological information acquisition device 1 is the same as that of the first embodiment except that the output unit 9 is provided on the body frame 2. Only different parts will be explained.
  • the output unit 9 includes a red light emitting unit Lr, a yellow light emitting unit Ly, and a green light emitting unit Lg provided on the surface of the body frame 2 opposite to the side facing the subject H1.
  • the biological signal processing unit 4 determines the red light emitting unit Lr, the yellow light emitting unit Ly, and the green light emitting unit Ly. It is configured to cause any one of the light emitting portions Lg to emit light. For example, when the stress index SI of the subject H1 exceeds +20% of the predetermined threshold, the red light emitting unit Lr emits light, while the stress index SI of the subject H1 is -20% of the predetermined threshold. The green light emitting portion Lg emits light when the value is less than .
  • the stress index SI of the person H1 to be measured is located in the range of -20% to 20% of the predetermined threshold value, the yellow light emitting part Ly emits light, and the magnitude of the stress index SI is It can be confirmed by the difference in the color of light emitted. Therefore, the stress indices SI of many persons H1 to be measured can be accurately and simultaneously efficiently determined from a distant position.
  • the output unit 9 of the fourth embodiment causes any one of the red light emitting unit Lr, the yellow light emitting unit Ly, and the green light emitting unit Lg to emit light, thereby confirming the stress index SI of the subject H1 from a distant position.
  • the present invention is not limited to this, and the stress index SI of the subject H1 may be confirmed from a distant position by generating a warning sound or voice.
  • the output unit 9 of Embodiment 4 is provided in a part of the body frame 2, it is not limited to this, and is provided over the entire surface of the body frame 2 so that the entire body frame 2 emits light. can be
  • FIG. 12 shows an online medical care system 300 (biological condition warning system) according to Embodiment 5 of the present invention.
  • the online medical care system 300 uses camera-equipped communication terminals SA, SB, SC including smartphones, tablets, etc. owned by each patient (person to be measured) and a communication network 32 instead of the repeater 12 to perform online medical care.
  • a server 15 and the biometric information acquisition devices 1A, 1B, and 1C of patients A, B, and C are connected.
  • the online medical care system 300 is capable of personal identification (authentication) by the cameras of the camera-equipped communication terminals SA, SB, SC, and SD owned by each patient A, B, C, and doctor I. It differs from the second embodiment. Other than that, it is the same as the second embodiment, so the same reference numerals are given to the same parts as the second embodiment, and only the different parts will be described.
  • the communication interface unit 11 of the biological information acquisition device 1 includes a wireless communication circuit including Bluetooth (registered trademark), NFC (Near Field Communication) circuit, etc., and a camera having the same circuit. It is configured to be connectable to a communication terminal. That is, the biological information acquisition devices 1A, 1B, 1C of the patients A, B, C are uniquely connected to the camera-equipped communication terminals SA, SB, SC of the patients A, B, C via wireless communication. There is Communication terminals SA, SB, and SC with cameras of patients A, B, and C are connected to the Internet via a communication network 32, while the online medical care server 15 is connected to the communication network 32 via the Internet.
  • Bluetooth registered trademark
  • NFC Near Field Communication
  • the stress index matrix M can be acquired from the biometric information acquisition devices 1A, 1B, and 1C of the patients A, B, and C via the communication network 32 . Therefore, the online medical care system 300 does not need to be provided with a dedicated repeater 12 for connecting the biological information acquisition apparatuses 1A, 1B, and 1C to the online medical care server 15, so that the system can be simple and inexpensive.
  • Doctor I's camera-equipped communication terminal SD is connected to the Internet via a communication network 32.
  • the online medical care system 300 connects the camera-equipped communication terminals SA, SB, and SC of the patients A, B, and C, and of the doctor I.
  • the camera of the communication terminal SD with a camera can be used to verify the identity of the user. That is, the online medical care server 15 receives a confirmation signal indicating the identity of the patient by a face authentication system using images of patients A, B, and C and doctor I photographed by the camera of the camera-equipped communication terminal.
  • the online medical care server 15 Upon receiving the confirmation signal, the online medical care server 15 receives the stress index matrix M from the biological information acquisition devices 1A, 1B, and 1C, and sends the generated biological state information to the corresponding biological information acquisition devices 1A, 1B, and 1C. Send. Since the generated biological condition information is not transmitted to a biological information acquisition device other than the patient, the personal information of each patient A, B, and C is not leaked to a third party other than the patient, so the patient's personal information and privacy are protected. can be protected. Note that the face authentication system can use known technology.
  • the communication network 32 may be the Internet network.
  • the communication network 32 may include a local area network, a mobile communication network, or a VPN (Virtual Private Network).
  • the biological information acquisition apparatuses 1A, 1B, and 1C acquire distance information between the camera-equipped communication terminals SA, SB, and SC by wireless communication, and transmit the acquired distance information to each patient A, SB, and SC. It is designed to be stored as social distance data between B and C. Therefore, the above social distance data can be used as objective data when the artificial intelligence 13 of the online medical care system 300 outputs the estimated stress state.
  • the doctor I can determine the light emission state of the output unit 9 of the biological information acquisition device 1, the patient's complexion, and the like. can be confirmed through the screen, the online medical care server 15 can generate more appropriate biological condition information.
  • the personal identification means is a face authentication system using images taken by the cameras of the camera-equipped communication terminals SA, SB, SC, and SD, it is not limited to this.
  • a voiceprint authentication system or the like can be used.
  • FIG. 13 shows a death time prediction system 400 (biological state warning system) according to Embodiment 6 of the present invention.
  • the death time prediction system 400 is the same as in Embodiment 2 except that the stress management server 15, artificial intelligence 13 and external database 14 of Embodiment 2 are replaced with a death time prediction management server 45, artificial intelligence 43 and external database 44, respectively.
  • the same parts as in the second embodiment are denoted by the same reference numerals, and only different parts will be described.
  • the death time prediction system 400 is designed to predict death times for patients D, E, and F to be diagnosed.
  • the artificial intelligence 43 and the external database 44 input each stress index matrix M of the target patient obtained by the biological information acquisition devices 1D, 1E, and 1F attached to the target patients D, E, and F, respectively, and the time series
  • the latest estimated time of death (biological condition information) of the target patient is output by learning based on the data or comparison with past similar data.
  • Fig. 14 shows the artificial intelligence 43, which is a neural network dedicated to predicting the time of death.
  • the artificial intelligence 43 includes an input layer for inputting objective data such as heart rate variability ⁇ HR, respiratory variability ⁇ RR, gravity, velocity/angular velocity, body temperature, biomagnetic force, etc., and subjective data such as doctor's findings, and three layers. and an output layer that outputs the estimated time of death.
  • Fig. 15 shows general changes in the stress index over time for the target patient.
  • the stress index SI for the target patient initially decreased over time and increased approximately 72 hours before the time of death, confirming that it is effective for estimating the time of death. Therefore, the artificial intelligence 43 can predict the time of death by inputting objective data including the subject patient's stress index SI and subjective data by a doctor.
  • the death time prediction system 400 by predicting the death time of target patients D, E, and F, it is possible to encourage anticipatory grief for the patient's family and to alleviate psychological distress at the end of life.
  • FIG. 16 shows a disaster occurrence notification system 500 (biological state warning system) according to Embodiment 7 of the present invention.
  • the stress management server 15, the artificial intelligence 13, and the external database 14 of the fifth embodiment are replaced with a disaster occurrence report management server 55, the artificial intelligence 53 dedicated to disaster occurrence reports, and the external database 54, respectively. Since it is the same as that of Embodiment 5 other than that, the same code
  • the disaster occurrence notification system 500 is designed to notify the emergency vehicle 56 of a request for relief when a disaster or the like occurs to the person to be measured.
  • the disaster occurrence report management server 55 is connected to the emergency vehicle 56 through the communication network 32 or a predetermined communication line.
  • the artificial intelligence 53 and the external database 54 learn based on the time-series data for the inputs of the stress index matrices M of the subjects A, B, and C obtained by the biological information acquisition apparatuses 1A, 1B, and 1C.
  • the latest estimated damage state (biological state information) of subjects A, B, and C is output to the disaster occurrence notification management server 55 by comparison with past similar data.
  • the disaster occurrence report management server 55 judges the estimated disaster state of each subject A, B, and C, and transmits the disaster occurrence information RQ including a relief request according to the judgment result to the emergency vehicle 56. It's becoming
  • biometric information acquisition devices 1A, 1B, and 1C attached to subjects A, B, and C are equipped with cameras that are uniquely connected by wireless communication.
  • the communication terminals SA, SB, and SC transmit the stress index matrix M of the subjects A, B, and C to the disaster report management server 55 via the communication network 32 .
  • the disaster occurrence report management server 55 inputs the received stress index matrix M to the dedicated artificial intelligence 53 or the external database 54 .
  • the dedicated artificial intelligence 53 or the external database 54 calculates estimated disaster states of the subjects A, B, and C based on the stress index matrix M, and outputs them to the disaster occurrence report management server 55 .
  • the disaster occurrence notification management server 55 determines the relief priority of subjects A, B, and C based on the received estimated damage state, and performs a predetermined notification operation.
  • the disaster occurrence notification management server 55 provides each of the estimated disaster states, such as relief 3 with a low priority, relief 2 with a medium priority, and relief 1 with a high priority, to the subjects A and B. , C.
  • the disaster occurrence report management server 55 first transmits to the emergency vehicle 56 the disaster occurrence information RQ for the person to be measured C, who has a high relief priority, and the location information of the person to be measured C from the camera-equipped communication terminal SC.
  • the disaster occurrence notification management server 55 transmits the same information about the person to be measured B, whose priority for relief is middle, to the emergency vehicle 56, and finally, the information about the person to be measured, whose priority is low to the emergency vehicle 56.
  • the disaster occurrence report management server 55 can accurately transmit the rapid disaster occurrence information RQ according to the relief priority of the affected subjects A, B, and C to the emergency vehicle 56. can.
  • the disaster occurrence report management server 55 transmits the report result to the emergency vehicle 56 including the disaster occurrence information RQ to the biological information acquiring devices 1A, 1B, and 1C of the corresponding subjects A, B, and C.
  • a notification system 500 can be provided.
  • this system will provide online medical treatment based on contactless biological condition information, telemedicine, management of intractable diseases (triglyceride accumulation cardiovascular disease: TGCV, etc.), regional comprehensive It can also be applied to care systems, hospital ships (systems), and service provider selection systems.
  • the input unit 8, the output unit 9, and the communication interface unit 11 are constructed as separate housings, but they may be constructed as the same housing.
  • the input unit 8, the output unit 9, and the communication interface unit 11 are constructed as separate housings, but they may be constructed as the same housing.
  • the body-conducted sound signal processing unit 6 of the biological signal processing unit 4 into the same housing as the body frame 2 and the measurement pad unit 3, there is no need to transmit and receive sensor signals via the wireless transmission/reception units 3c and 5. . Therefore, the communication overhead required for transmitting the sensor signal to the biological signal processing unit 4 is unnecessary, and the amount of communication can be reduced, so that the communication band can be suppressed.
  • the biological information acquisition device 1 has been described as a case where the pair of measurement pad portions 3 abut against the left and right winds E1 of the subject H1, the present invention is not limited thereto. It may be made to contact acupuncture points (pots) such as the left and right polar springs.
  • the biological information acquisition device 1 has been described as having a pair of measurement pad portions 3, the present invention is not limited to this, and one or more than three measurement pad portions 3 are provided, and each measurement pad portion 3 is one. Or you may make it contact
  • the biometric information acquisition device 1 may include only one measurement pad section 3, and the measurement pad section 3 may abut on acupuncture points (acupuncture points) such as the middle of the subject H1.
  • the sensor signal When the body-conducted sound signal processing unit 6 receives the sensor signal via the wireless transmission/reception unit 5, the sensor signal is Fourier-transformed for a predetermined time (for example, 30 seconds), and the signal after Fourier transformation is converted into an acoustic heartbeat signal. It may be input to the number measuring section 61 and the acoustic respiration rate measuring section 62 . A low-pass signal is output from the Fourier-transformed signal by the low-pass filter section 61a, and a high-pass signal is output by the high-pass filter section 62a.
  • each period can be derived from the inverse Fourier-transformed signal obtained by further inverse Fourier transforming the low-pass signal and the high-pass signal, the variation in the heart rate and the variation in the respiration rate can be calculated based on the derived period. can be extracted.
  • Reference Signs List 1 1A, 1B, 1C biological information acquisition device 2 body frame (biasing force application unit) 2a gravity sensor 3 measurement pad unit 3a body-conducting sound sensor 3b temperature sensor 4 biological signal processing unit 12 repeater 13 artificial intelligence 14 external database 15 stress management server 32 communication network 43 artificial intelligence 44 external database 45 death time prediction management server 53 artificial Intelligence 54 External database 55 Disaster occurrence report management server 61a Low-pass filter unit 62a High-pass filter unit 100 Stress warning system (biological condition warning system) 200 COVID-19 Detection System (Biological Condition Warning System) 300 online medical care system (biological condition warning system) 400 Death Time Prediction System (Biological Condition Warning System) 500 Disaster occurrence notification system (biological condition warning system) SA, SB, SC, SD Communication terminal with camera

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Signal Processing (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention inexpensively provides a biological information acquisition device that can accurately measure biological signals without interfering with daily life. A biological information acquisition device 1 acquires biological information about a subject H1 and comprises a pair of measurement pad parts 3 that can measure biological signals and a body frame 2 that presses the measurement pad parts 3 toward each other onto the backs of the base of the ears E1 of the subject H1 with equal urging force. A biological signal processing unit 4 is connected to the measurement pad parts 3. The biological signal processing unit 4 performs computation processing on the biological signals measured by the measurement pad parts 3 and extracts biological information.

Description

生体情報取得装置及びそれを用いた生体状態警告システムBIOLOGICAL INFORMATION ACQUISITION DEVICE AND BIOLOGICAL STATE WARNING SYSTEM USING IT
 本発明は、被測定者の生体情報を取得する生体情報取得装置であって、特に、被測定者の心拍数および呼吸数などの複数の生体情報を正確に同時に取得することによりストレス指数を算出し、被測定者の心身の状態を監視する生体情報取得装置、及びそれを用いた生体状態警告システムに関するものである。 The present invention is a biological information acquisition device for acquiring biological information of a subject, and in particular, calculates a stress index by accurately simultaneously acquiring a plurality of pieces of biological information such as the heart rate and respiration rate of the subject. The present invention also relates to a biological information acquisition device for monitoring the physical and mental conditions of a person to be measured, and a biological condition warning system using the same.
 従来より、生体情報を測定して被測定者の心身の状態を監視する生体情報取得装置が知られている。例えば、特許文献1に開示されている生体情報取得装置は、骨肉導音センサ(マイク)が内蔵された測定ツールを被測定者の外耳道内に挿入し、生体信号である骨肉導音を骨肉導音センサで取得するようになっている。該骨肉導音には、被測定者の心臓の拍動による血管音と、肺の呼吸運動による呼吸音とがそれぞれ含まれており、血管音と呼吸音とを骨肉導音から抽出することによって被測定者の心身の状態を確認できるようになっている。  Conventionally, there has been known a biometric information acquisition device that measures biometric information and monitors the physical and mental condition of a subject. For example, in the biological information acquiring apparatus disclosed in Patent Document 1, a measurement tool having a built-in bone-flesh-conducted sound sensor (microphone) is inserted into the external auditory canal of a person to be measured, and a bone-flesh-conducted sound, which is a biological signal, is transmitted through the bone-flesh-conducted sound. Acquired by a sound sensor. The bone-flesh-conducted sounds include vascular sounds caused by the beating of the heart of the person being measured and breath sounds caused by the respiratory movement of the lungs, respectively. The physical and mental condition of the subject can be confirmed.
 ところで、特許文献1の生体情報取得装置は、測定ツールを被測定者の左右の外耳道内に挿入する必要がある。したがって、長期に亘って生体情報を取得する場合、被測定者は外耳道内に挿入した測定ツールによって外部の音が聞きづらい状態になり、生活に支障をきたすおそれがある。 By the way, the biological information acquisition device of Patent Document 1 requires that the measurement tools be inserted into the left and right ear canals of the subject. Therefore, when acquiring biological information over a long period of time, the measurement tool inserted into the external auditory canal makes it difficult for the subject to hear external sounds, which may interfere with daily life.
 これを回避するために、特許文献1の測定ツールは、外部の音を伝わり易くする空洞部が内部に形成されたツール本体を備え、該ツール本体には、外気導音マイクと外気導音スピーカとがそれぞれ取り付けられている。そして、外気導音マイクにより集音した外部の音を外気導音スピーカから出力することにより、外耳道内に測定ツールを挿入した状態であっても被測定者に外部の音が伝わるようにしている。 In order to avoid this, the measurement tool of Patent Document 1 has a tool body having a cavity formed therein to facilitate the transmission of external sound. are attached respectively. By outputting the external sound collected by the external air-conducting sound microphone from the external air-conducting sound speaker, the external sound is transmitted to the subject even when the measurement tool is inserted into the external auditory canal. .
特開2020-121120号公報Japanese Patent Application Laid-Open No. 2020-121120
 しかし、特許文献1では、測定ツールに外気導音マイク等を組み込むことによって部品点数が増えるとともに構造が複雑になるので、コストが嵩んでしまうという問題がある。 However, in Patent Document 1, the number of parts increases and the structure becomes complicated by incorporating an external air-conducting microphone or the like into the measurement tool, so there is a problem that the cost increases.
 また、特許文献1の測定ツールは、測定時において外耳道内に挿入されるだけであるので、測定ツールの測定位置が固定され難く、当該測定ツールと外耳道との相対的な位置関係がばらつき易い。したがって、外耳道内で測定される生体信号の信号強度が変化し易くなってしまい、正確な測定データを得にくいという問題がある。 In addition, since the measurement tool of Patent Document 1 is only inserted into the ear canal during measurement, it is difficult to fix the measurement position of the measurement tool, and the relative positional relationship between the measurement tool and the ear canal tends to vary. Therefore, there is a problem that the signal strength of the biological signal measured in the ear canal tends to change, making it difficult to obtain accurate measurement data.
 さらに、特許文献1では、測定の際に測定ツールを外耳道内に挿入しなければならないので、測定行為自体が被測定者にとってストレスになってしまい、このことが影響して本来得るべき血管音や呼吸音の正確な測定データが得られなくなるというおそれもある。 Furthermore, in Patent Document 1, since the measurement tool must be inserted into the ear canal during measurement, the act of measurement itself becomes stressful for the person being measured. There is also the risk that accurate measurement data for breath sounds will not be obtained.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、生活に支障をきたすことなく生体信号を正確に測定可能な生体情報取得装置を安価に提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object thereof is to provide a biological information acquiring apparatus capable of accurately measuring a biological signal without interfering with daily life at a low cost. .
 上記の目的を達成するために、本発明は、左右の翳風において同じ付勢力を加えながら生体信号を測定するようにしたことを特徴とする。 In order to achieve the above object, the present invention is characterized by measuring biosignals while applying the same urging force in left and right winds.
 具体的には、被測定者の生体情報を取得する生体情報取得装置を対象とし、次のような解決手段を講じた。 Specifically, we targeted a biometric information acquisition device that acquires the biometric information of a subject, and took the following solutions.
 すなわち、第1の発明では、生体信号を測定可能な一対の測定パッド部と、該各測定パッド部を前記被測定者の各翳風にそれぞれあてがった状態で互いに接近する方向に同じ付勢力を加える付勢力付加部と、前記各測定パッド部に接続され、当該各測定パッド部により測定した前記生体信号を演算処理して前記生体情報を抽出する生体信号処理部とを備えることを特徴とする。 That is, in the first invention, a pair of measuring pad portions capable of measuring a biosignal and applying the same urging force in a direction of approaching each other in a state in which each of the measuring pad portions is applied to each of the shadows of the person to be measured. and a biomedical signal processing unit connected to each of the measurement pads to perform arithmetic processing on the biomedical signal measured by each of the measurement pads to extract the biometric information. .
 第2の発明では、第1の発明において、前記測定パッド部は、体導音信号を測定可能な体導音センサを備え、前記生体信号処理部は、前記体導音センサにより測定する体導音信号の所定周波数より低い信号のみを通過させて心拍数の変動(心拍のゆらぎ)として抽出する低域通過フィルタ部と、前記所定周波数より高い信号のみを通過させて呼吸数の変動(呼吸のゆらぎ)として抽出する高域通過フィルタ部とを備えていることを特徴とする。 According to a second invention, in the first invention, the measurement pad section includes a body-conducted sound sensor capable of measuring a body-conducted sound signal, and the biological signal processing section includes a body-conducted sound sensor capable of measuring a body-conducted sound signal. A low-pass filter unit that passes only signals lower than a predetermined frequency of the sound signal and extracts them as heart rate fluctuations (heartbeat fluctuations), and a low-pass filter unit that passes only signals higher than the predetermined frequency and extracts breathing rate fluctuations and a high-pass filter section for extracting fluctuations.
 第3の発明では、第2の発明において、前記生体信号処理部は、前記低域通過フィルタ部で抽出した心拍数の変動をσHRとし、且つ、前記高域通過フィルタ部で抽出した呼吸数の変動をσRRとすると、あらかじめ設定した時間T経過毎にストレス指数SIをSI=σRR/σHRで算出するとともに、当該ストレス指数SIと前記被測定者により前記時間T毎に予め入力された主観評価項目の評価値Wとをそれぞれ順に行として並べ、且つ、時間軸を列としたストレス指数行列Mを出力するよう構成されていることを特徴とする。 In a third invention according to the second invention, the biological signal processing unit sets the heart rate variation extracted by the low-pass filter unit to σHR, and the respiration rate extracted by the high-pass filter unit Assuming that the fluctuation is σRR, the stress index SI is calculated as SI=σRR/σHR every time a preset time T elapses, and the stress index SI and the subjective evaluation items preliminarily input by the person to be measured every time T are calculated. and the evaluation values W are arranged in order as rows, and a stress index matrix M with the time axis as the columns is output.
 第4の発明では、第3の発明において、前記測定パッド部は、前記被測定者の表面温(体温)を計測可能な温度センサを備え、前記生体信号処理部は、前記ストレス指数行列Mにおいて、前記温度センサにより時間T経過毎に計測した表面温(体温)を行として並べ、かつ時間軸を列として出力するよう構成されていることを特徴とする。 In a fourth aspect of the invention, in the third aspect, the measurement pad section includes a temperature sensor capable of measuring the surface temperature (body temperature) of the subject, and the biological signal processing section includes, in the stress index matrix M, 3. The surface temperature (body temperature) measured by the temperature sensor every time T elapses is arranged in rows and the time axis is output in columns.
 また、本発明は、複数の被測定者にストレス状態を表示する生体状態警告システムをも対象とし、次のような解決手段を講じた。 In addition, the present invention also targets a biological condition warning system that displays stress conditions to a plurality of subjects, and has taken the following means of solution.
 すなわち、第5の発明では、複数の被測定者にそれぞれ装着される第3の発明に記載の前記複数の生体情報取得装置と、前記各ストレス指数行列Mに基づいて各被測定者の推定ストレス状態を出力する人工知能又は外部データベースと、通信網を介して、前記生体情報取得装置と前記人工知能又は外部データベースとにそれぞれ接続され、前記生体情報取得装置から受信する前記各ストレス指数行列Mと前記人工知能又は外部データベースにより入力される前記各推定ストレス状態とに基づいて各被測定者のストレス状態を判定し、且つ、その判定結果に応じた生体状態情報をそれぞれ生成するとともに、該通信網を介して、対応する前記生体情報取得装置に当該各生体状態情報を送信する管理サーバとを備えることを特徴とする。 That is, in the fifth invention, the plurality of biological information acquisition devices according to the third invention respectively worn by a plurality of subjects, and the estimated stress of each subject based on the stress index matrix M an artificial intelligence or an external database that outputs the state, and each of the stress index matrices M that are connected to the biological information acquisition device and the artificial intelligence or the external database via a communication network and received from the biological information acquisition device; Determining the stress state of each subject based on the estimated stress state input by the artificial intelligence or the external database, generating biological state information according to the determination result, and the communication network and a management server that transmits each of the biological state information to the corresponding biological information acquisition device via the.
 第6の発明では、第5の発明において、前記生体情報警告システムは、前記被測定者が本人か否かを確認可能な本人確認手段をさらに備え、前記管理サーバは、本人確認手段により本人であると確認された際、対応する前記生体情報取得装置に前記生体状態情報を送信することを特徴とする。 In a sixth aspect according to the fifth aspect, the biological information warning system further comprises personal identification means capable of confirming whether or not the person to be measured is the person himself/herself, It is characterized by transmitting the biological state information to the corresponding biological information acquisition device when it is confirmed that there is one.
 第7の発明では、第6の発明において、前記本人確認手段は、カメラにより撮影された画像を用いた顔認証システムであることを特徴とする。 A seventh invention is characterized in that, in the sixth invention, the personal identification means is a face authentication system using an image taken by a camera.
 第1の発明では、各測定パッド部を被測定者の各翳風にあてがって生体信号の測定を行うので、特許文献1の如き外耳道内に測定ツールを挿入するといった必要がなく、また耳を覆う必要がない。そのため、被測定者は生体信号の測定時において音が聞きづらくなるといったことがなく、長期に亘って測定を行っても生活に支障をきたすことが無いばかりか、測定行為自体が被測定者にとってストレスになることがなく、外乱の影響が少ない生体信号を得ることができる。また、測定部分に外気導音スピーカや外気導音マイクを組み込んだり、或いは測定部分に空洞部を設ける必要がないので、部品点数を減らしてシンプルな構造にすることができ、装置を安価に提供することができる。さらに、付勢力付加部により、各測定パッドが被測定者の各翳風に対して互いに接近する方向に同じ付勢力を加えるので、各測定パッドの測定位置が一定の圧力で固定されてずれ難い状態になる。そのため、得られる生体信号の測定信号強度が一定になり、測定精度を向上させることができる。 In the first invention, since the biosignal is measured by applying each measuring pad portion to each wave of the person to be measured, there is no need to insert the measuring tool into the external auditory canal as in Patent Document 1, and the ear is not required to be inserted. no need to cover. Therefore, the person to be measured does not have difficulty in hearing the sound during the measurement of the biological signal, and not only does the measurement not interfere with daily life even if the measurement is performed over a long period of time, but the act of measurement itself is not difficult for the person to be measured. It is possible to obtain biological signals that are not stressed and are less affected by disturbances. In addition, since it is not necessary to incorporate an external air-conducting sound speaker or an external air-conducting sound microphone into the measuring part, or to provide a hollow part in the measuring part, the number of parts can be reduced, the structure can be simplified, and the device can be provided at a low cost. can do. Furthermore, the urging force application section applies the same urging force to each measuring pad in the direction in which each measuring pad approaches each other, so that the measurement positions of each measuring pad are fixed with a constant pressure and are unlikely to shift. become a state. Therefore, the measurement signal strength of the obtained biosignal becomes constant, and the measurement accuracy can be improved.
 第2の発明では、被測定者の心拍数の変動と呼吸数の変動とが時系列で得られるので、得られた心拍数データと呼吸数データとを用いて被測定者の状態の評価を行うことができる。 In the second invention, since the heart rate fluctuation and breathing rate fluctuation of the person to be measured are obtained in time series, the condition of the person to be measured can be evaluated using the obtained heart rate data and breathing rate data. It can be carried out.
 第3の発明では、ストレスが定量的な表示になるとともに、ストレス指数行列Mを確認することによって被測定者のストレスの状態と被測定者の主観評価とを時系列にまとめて確認することが可能になる。したがって、被測定者のストレス状態が評価し易くなるとともに、被測定者の時系列の状態を総合的に評価することができる。 In the third invention, the stress is displayed quantitatively, and by confirming the stress index matrix M, the subject's stress state and the subject's subjective evaluation can be collectively confirmed in chronological order. be possible. Therefore, the subject's stress state can be easily evaluated, and the time-series state of the subject can be comprehensively evaluated.
 第4の発明では、被測定者の心拍数及び呼吸数データを測定するのと同時に、被測定者の表面温も測定されるようになる。したがって、被測定者の心拍数及び呼吸数データと表面温との相関を調べることで異常な測定データを排除できるようになり、測定精度を向上させることができる。また、ストレスおよび痛みを定量的に表示するストレス指数行列Mの行列要素に被測定者の表面温データを時系列に出力可能になるので、ストレス評価をより多次元で行うことができるようになり、被測定者のストレス状態を正確に判定することができる。 In the fourth invention, the surface temperature of the person to be measured is measured at the same time as measuring the heart rate and respiratory rate data of the person to be measured. Therefore, by examining the correlation between the heart rate and respiration rate data of the person being measured and the surface temperature, abnormal measurement data can be eliminated, and measurement accuracy can be improved. In addition, since the surface temperature data of the person to be measured can be output in chronological order to the matrix elements of the stress index matrix M that quantitatively displays stress and pain, stress evaluation can be performed in more dimensions. , the stress state of the subject can be accurately determined.
 第5の発明では、通信網を介して複数の被測定者のストレス指数行列Mを管理サーバに送信できるようになるので、管理サーバは、受信した複数の被測定者のストレス指数行列Mに基づいて各被測定者のストレス状態を時間T経過毎に同時に判定することができる。また、管理サーバは、各被測定者のストレス指数行列Mに基づいて各被測定者の推定ストレス状態を出力する人工知能または外部データベースに接続されているので、その推定の出力に基づくストレス状態の判定結果に応じた生体状態情報を生成する。そして、管理サーバは、該通信網を介して対応する生体情報取得装置に各生体状態情報を送信可能になる。したがって、生体情報取得装置を装着する各被測定者は、通信網を介して適切な生体状態情報を最適なタイミングで受信することができる。 In the fifth invention, the stress index matrix M of a plurality of subjects can be transmitted to the management server via a communication network. It is possible to determine the stress state of each person to be measured at the same time every time T elapses. In addition, since the management server is connected to an artificial intelligence or an external database that outputs the estimated stress state of each subject based on the stress index matrix M of each subject, the stress state based on the estimated output can be evaluated. Biological condition information is generated according to the determination result. Then, the management server can transmit each piece of biological state information to the corresponding biological information acquisition device via the communication network. Therefore, each subject wearing the biological information acquisition device can receive appropriate biological state information at optimum timing via the communication network.
 第6の発明では、本人確認手段により被測定者が本人であると確認されたときにだけ、管理サーバによって生体状態情報が対応する各生体情報取得装置に送信されるようになる。したがって、本人以外の生体情報取得装置に間違って生体状態情報が送信されることが無くなるため、被測定者の個人情報が本人以外の第三者に漏洩することがなくなり、被測定者の個人情報及びプライバシーを保護することができる。 In the sixth invention, the management server transmits the biological state information to each corresponding biological information acquisition device only when the person to be measured is confirmed to be the person himself/herself by the personal identification means. Therefore, the biological condition information will not be mistakenly sent to a biometric information acquisition device other than the subject, and the personal information of the subject will not be leaked to a third party other than the subject. and privacy can be protected.
 第7の発明では、本人確認手段としてカメラにより撮影された画像を用いた顔認証システムを使用することにより、比較的簡単な構成で複数の被測定者の本人確認を確実且つ安価に行うことができる。 In the seventh invention, by using a face authentication system using images taken by a camera as identity confirmation means, it is possible to reliably and inexpensively confirm the identity of a plurality of persons to be measured with a relatively simple configuration. can.
本発明の実施形態1に係る生体情報取得装置の使用状態を示す図である。It is a figure which shows the use condition of the biometric information acquisition apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る生体情報取得装置における測定器の斜視図である。1 is a perspective view of a measuring device in the biological information acquisition device according to Embodiment 1 of the present invention; FIG. 本発明の実施形態1に係る生体情報取得装置のブロック図である。1 is a block diagram of a biological information acquisition device according to Embodiment 1 of the present invention; FIG. 本発明の実施形態1に係る生体情報取得装置が算出するストレス指数行列を示す図である。4 is a diagram showing a stress index matrix calculated by the biological information acquisition device according to Embodiment 1 of the present invention; FIG. 本発明の実施形態1に係る生体情報取得装置の動作フローを示す図である。It is a figure which shows the operation|movement flow of the biometric information acquisition apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るストレス警告システムを示す図である。FIG. 5 is a diagram showing a stress warning system according to Embodiment 2 of the present invention; 本発明の実施形態2に係るストレス警告システムにおける人工知能の概念図である。FIG. 7 is a conceptual diagram of artificial intelligence in the stress warning system according to Embodiment 2 of the present invention; 本発明の実施形態3に係る生体情報取得装置をCOVID-19検出システムに適用した例を示す図である。FIG. 10 is a diagram showing an example in which the biological information acquisition device according to Embodiment 3 of the present invention is applied to a COVID-19 detection system; 本発明の実施形態3に係る生体情報取得装置が適用されたCOVID-19検出システムにより得られた評価結果例を示す図である。FIG. 10 is a diagram showing an example of evaluation results obtained by a COVID-19 detection system to which the biological information acquisition device according to Embodiment 3 of the present invention is applied; 本発明の実施形態3に係る生体情報取得装置が適用されたCOVID-19検出システムにおけるストレス指数行列を示す図である。FIG. 10 is a diagram showing a stress index matrix in a COVID-19 detection system to which the biological information acquisition device according to Embodiment 3 of the present invention is applied; 本発明の実施形態4に係る図1相当図である。1 equivalent view according to Embodiment 4 of the present invention. FIG. 本発明の実施形態5に係るオンライン診療システムを示す図である。FIG. 10 is a diagram showing an online medical care system according to Embodiment 5 of the present invention; 本発明の実施形態6に係る死亡時刻予測システムを示す図である。It is a figure which shows the death time prediction system which concerns on Embodiment 6 of this invention. 本発明の実施形態6に係る死亡時刻予測システムにおける人工知能の概念図である。FIG. 11 is a conceptual diagram of artificial intelligence in the death time prediction system according to Embodiment 6 of the present invention. 本発明の実施形態6に係る死亡時刻予測システムについて説明する図である。It is a figure explaining the death time prediction system which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る被災発生通報システムを示す図である。It is a figure which shows the disaster occurrence reporting system which concerns on Embodiment 7 of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. It should be noted that the following description of preferred embodiments is merely exemplary in nature.
 《発明の実施形態1》
 図1乃至図3は、本発明の実施形態1に係る生体情報取得装置1を示す。該生体情報取得装置1は、被測定者H1の各翳風E1から取得する複数の生体信号に基づいて被測定者の心身の状態を監視するためのストレス指数を算出するものであり、生体信号を測定する測定器10Aと、無線によって測定器10Aに接続された情報処理端末10Bとを備えている。
<<Embodiment 1 of the invention>>
1 to 3 show a biological information acquisition device 1 according to Embodiment 1 of the present invention. The biometric information acquiring apparatus 1 calculates a stress index for monitoring the physical and mental condition of the subject H1 based on a plurality of biosignals acquired from each of the lingering winds E1 of the subject H1. and an information processing terminal 10B wirelessly connected to the measuring instrument 10A.
 測定器10Aは、略馬蹄形状をなす可撓性本体フレーム2(付勢力付加部)を備えている。該本体フレーム2は、金属バネを樹脂により被覆するか、或いは、樹脂製のバネ等により形成されていて、その一端側部分と他端側部分とを離間させると、互いに接近する方向に同じ付勢力が加わるようになっている。 The measuring device 10A includes a flexible body frame 2 (biasing force applying portion) having a substantially horseshoe shape. The body frame 2 is formed by coating a metal spring with resin or by a resin spring or the like. It is gaining power.
 本体フレーム2の中途部には、重力の向きを検知可能な重力センサ2aが埋設され、該重力センサ2aは、本体フレーム2の傾斜角度を検知するようになっている。 A gravity sensor 2 a capable of detecting the direction of gravity is embedded in the middle of the body frame 2 , and the gravity sensor 2 a detects the tilt angle of the body frame 2 .
 本体フレーム2の一端と他端とにおける互いに対向する部分には、被測定者の生体信号を測定可能な一対の測定パッド部3が埋設されている。 A pair of measurement pad portions 3 capable of measuring a subject's biosignals are embedded in the portions of the body frame 2 that face each other at one end and the other end.
 該測定パッド部3は、測定時において被測定者H1の各翳風E1に当接するサーミスタである温度センサ3bを備え、該温度センサ3bは、略円盤形状で且つ蓋状をなしている。 The measurement pad section 3 is provided with a temperature sensor 3b which is a thermistor that abuts against each of the winds E1 of the subject H1 during measurement, and the temperature sensor 3b is substantially disk-shaped and lid-shaped.
 各温度センサ3bの互いに対向する側の面には、内部に連通する測定用開口部3dが形成されている。 A measurement opening 3d communicating with the inside is formed on the surface of each temperature sensor 3b facing each other.
 温度センサ3bの内側には、エレクトレットコンデンサマイクロフォン(ECM)を有する体導音センサ3aと、該体導音センサ3a、温度センサ3b及び重力センサ2aに接続された無線送受信部3cとが収容されている。つまり、温度センサ3bは、体導音センサ3aと、体導音センサ3a、温度センサ3b及び重力センサ2aを覆っている。 Inside the temperature sensor 3b, a body-conducting sound sensor 3a having an electret condenser microphone (ECM) and a radio transmitter/receiver 3c connected to the body-conducting sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a are accommodated. there is That is, the temperature sensor 3b covers the body-conducted sound sensor 3a, the body-conducted sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a.
 該無線送受信部3cは、生体信号処理部4との間において無線による信号の送受信を行うようになっていて、例えば、体導音センサ3a、温度センサ3b及び重力センサ2aが測定用開口部3dを介して測定する各センサ信号を情報処理端末10Bへと送信するようになっている。 The radio transmitter/receiver 3c is adapted to transmit and receive signals wirelessly to and from the biological signal processor 4. For example, the body-conducting sound sensor 3a, the temperature sensor 3b, and the gravity sensor 2a are connected to the measurement opening 3d. Each sensor signal measured via is transmitted to the information processing terminal 10B.
 そして、測定器10Aは、図1に示すように、被測定者H1の後頭部側から当該後頭部を囲うように本体フレーム2を装着して各測定パッド部3を各翳風E1にあてがうと、本体フレーム2が、各測定パッド部3を被測定者H1の各翳風E1に向けて同じ付勢力を加えるようになっている。なお、被測定者H1の前頭部側から下顎を囲うように本体フレーム2を装着して各測定パッド部3を各翳風E1にあてがうようにしてもよい。 Then, as shown in FIG. 1, the measuring instrument 10A is equipped with a main body frame 2 so as to surround the occipital region of the subject H1 from the occipital side, and each measuring pad portion 3 is applied to each of the winds E1. The frame 2 applies the same urging force to each measurement pad section 3 toward each of the slight breezes E1 of the person H1 to be measured. In addition, the body frame 2 may be attached so as to surround the lower jaw from the forehead side of the person H1 to be measured, and each measurement pad portion 3 may be applied to each of the winds E1.
 情報処理端末10Bは、図3に示すように、測定パッド部3で取得した各生体信号を演算処理する生体信号処理部4と、該生体信号処理部4に接続され、静電誘導式タッチパネルにより必要な情報を入力操作可能な入力部8と、生体信号処理部4に接続され、評価結果等をディスプレイに表示可能な出力部9と、生体信号処理部4と外部サーバとの間の通信を行う通信インタフェース部11とを備えている。 As shown in FIG. 3, the information processing terminal 10B is connected to a biosignal processing unit 4 that performs arithmetic processing on each biosignal acquired by the measurement pad unit 3, and the biosignal processing unit 4. An input unit 8 capable of inputting and operating necessary information, an output unit 9 connected to the biological signal processing unit 4 and capable of displaying evaluation results and the like on a display, and communication between the biological signal processing unit 4 and an external server. and a communication interface unit 11 for performing.
 入力部8は、被測定者H1がストレスや痛み等といった主観評価項目の評価値Wを入力するようになっている。尚、主観評価項目として、例えば、視覚アナログスケール(VAS)、数値評価スケール(NRS)及び気分の10段階評価等がある。 The input unit 8 is designed so that the person H1 to be measured inputs an evaluation value W of subjective evaluation items such as stress and pain. Subjective evaluation items include, for example, a visual analog scale (VAS), a numerical rating scale (NRS), and a 10-step evaluation of mood.
 生体信号処理部4は、測定パッド部3の無線送受信部3cとの間で信号を送受信する無線送受信部5と、体導音センサ3aで取得した体導音信号を処理する体導音信号処理部6と、被測定者のストレス状態を把握可能なストレス指数行列Mを出力するストレス指数行列算出部7とを有している。 The biological signal processing unit 4 includes a wireless transmission/reception unit 5 that transmits and receives signals to and from the wireless transmission/reception unit 3c of the measurement pad unit 3, and a body-conducted sound signal processing unit that processes the body-conducted sound signal acquired by the body-conducted sound sensor 3a. and a stress index matrix calculator 7 for outputting a stress index matrix M capable of grasping the stress state of the subject.
 無線送受信部5は、測定パッド部3の無線送受信部3cに無線により接続され、例えば、無線送受信部3cにより送信されるセンサ信号の受信を行うようになっている。 The wireless transmission/reception section 5 is wirelessly connected to the wireless transmission/reception section 3c of the measurement pad section 3, and receives, for example, sensor signals transmitted by the wireless transmission/reception section 3c.
 生体信号処理部4は、重力センサ2aにより検知する測定パッド部3の傾斜角度が予め決められた閾値内にある際、測定器10Aが正しい姿勢で被測定者H1に装着されているとして各測定パッド部3に測定開始信号を出力して体導音信号や体温信号を測定するようになっている。 When the inclination angle of the measurement pad 3 detected by the gravity sensor 2a is within a predetermined threshold value, the biological signal processing unit 4 determines that the measurement device 10A is attached to the subject H1 in the correct posture, and performs each measurement. A measurement start signal is output to the pad section 3 to measure body-conducted sound signals and body temperature signals.
 体導音信号処理部6は、無線送受信部5及びストレス指数行列算出部7にそれぞれ接続された音響心拍数測定部61及び音響呼吸数測定部62を備えている。 The body-guided sound signal processing unit 6 includes an acoustic heart rate measurement unit 61 and an acoustic breathing rate measurement unit 62 connected to the wireless transmission/reception unit 5 and the stress index matrix calculation unit 7, respectively.
 音響心拍数測定部61は、無線送受信部5から出力される波形のうち低域周波数成分のみを通過させる低域通過フィルタ部61aと、該低域通過フィルタ部61aにて得られた出力波形から心拍数及びその変動を抽出する音響心拍数演算部61bとを備え、該音響心拍数演算部61bは、抽出した心拍数及びその変動を出力σHRとしてストレス指数行列算出部7に出力するようになっている。 The acoustic heart rate measurement unit 61 includes a low-pass filter unit 61a that passes only low-frequency components in the waveform output from the radio transmission/reception unit 5, and the output waveform obtained by the low-pass filter unit 61a. An acoustic heart rate calculator 61b for extracting the heart rate and its variation is provided, and the acoustic heart rate calculator 61b outputs the extracted heart rate and its variation as an output σHR to the stress index matrix calculator 7. ing.
 音響呼吸数測定部62は、無線送受信部5から出力される波形のうち高域周波数成分のみを通過させる高域通過フィルタ部62aと、該高域通過フィルタ部62aにて得られた出力波形から呼吸数及びその変動を抽出する音響呼吸数演算部62bとを備え、該音響呼吸数演算部62bは、抽出した呼吸数及びその変動を出力σRRとしてストレス指数行列算出部7に出力するようになっている。 The acoustic respiration rate measurement unit 62 includes a high-pass filter unit 62a that passes only high-frequency components in the waveform output from the radio transmission/reception unit 5, and the output waveform obtained by the high-pass filter unit 62a. An acoustic respiration rate calculator 62b for extracting the respiration rate and its variation is provided, and the acoustic respiration rate calculator 62b outputs the extracted respiration rate and its variation as an output σRR to the stress index matrix calculator 7. ing.
 ストレス指数行列算出部7は、音響心拍数演算部61bから出力σHRを、音響呼吸数演算部62bから出力σRRをそれぞれ受け取ると、ストレス指数SIをSI=σRR/σHRで算出するようになっている。 When the stress index matrix calculator 7 receives the output σHR from the acoustic heart rate calculator 61b and the output σRR from the acoustic respiratory rate calculator 62b, it calculates the stress index SI as SI=σRR/σHR. .
 また、ストレス指数行列算出部7は、算出したストレス指数SIと入力部8により入力される主観評価値Wとから、出力部9にストレス指数行列Mを出力するようになっていて、ストレス指数行列Mを受け取った出力部9は、当該ストレス指数行列Mをディスプレイに表示するようになっている。 The stress index matrix calculation unit 7 outputs a stress index matrix M to the output unit 9 from the calculated stress index SI and the subjective evaluation value W input from the input unit 8. The stress index matrix The output unit 9 that receives M displays the stress index matrix M on the display.
 さらに、ストレス指数行列算出部7は、通信インタフェース部11を介して外部サーバに対してストレス指数行列Mを出力するようになっている。 Furthermore, the stress index matrix calculation unit 7 outputs the stress index matrix M to an external server via the communication interface unit 11.
 ストレス指数行列Mは、図4に示すように、被測定者のストレスや痛み等に対する時間T経過毎のストレス指数SIを含む客観評価項目と、被測定者自身により時間T毎に入力する主観評価項目の評価値Wとをそれぞれ順に行として縦ベクトルに並べるとともに、当該縦ベクトルを時間軸の横方向に列として並べたものである。尚、客観評価項目は、ストレス指数SIに限らず、例えば、被測定者の血圧や体温等を含むようにしてもよい。評価項目を増やすことにより、ストレスや痛みの多次元評価が可能になり、より精密な評価を行うことができる。例えば、図4のストレス指数行列Mは、各時刻t、t1、t2、・・・における主観評価値VAS、気分の10段階評価、ストレス指数SI、血圧、体温、及び数値化された行動並びに観察項目の各評価値Wを行として並べた縦ベクトルを時刻t、t1、t2、・・・の順に横方向に列として並べている。 As shown in FIG. 4, the stress index matrix M is composed of objective evaluation items including the stress index SI for the subject's stress, pain, etc., for each elapse of time T, and subjective evaluation input by the subject himself/herself every time T. The evaluation values W of the items are arranged in order as rows in a vertical vector, and the vertical vectors are arranged in columns in the horizontal direction of the time axis. The objective evaluation item is not limited to the stress index SI, and may include, for example, the subject's blood pressure, body temperature, and the like. By increasing the number of evaluation items, multidimensional evaluation of stress and pain becomes possible, and more precise evaluation can be performed. For example, the stress index matrix M in FIG. Vertical vectors in which evaluation values W of items are arranged in rows are arranged in columns in the horizontal direction in the order of times t, t1, t2, .
 次に、本発明の実施形態1に係る生体情報取得装置1の動作について、図5を用いて詳述する。 Next, the operation of the biological information acquisition device 1 according to Embodiment 1 of the present invention will be described in detail using FIG.
 まず、被測定者H1は、左右の翳風E1に各測定パッド部3が当たるように測定器10Aを装着し、生体情報取得装置1を起動させる。すると、重力センサ2aにより測定器10Aの被測定者H1に対する傾斜角度が検知される(S1)。例えば、各測定パッド部3が被測定者H1の左右の翳風E1に正しく装着されている状態の場合、重力センサ2aは、鉛直下向きの重力を重力センサ2aのZ軸負方向に検知するが、被測定者H1が測定器10Aを左右の翳風E1が逆となるように装着すると、本体フレーム2の上下が逆向きとなるので、重力センサ2aは重力の向きをZ軸正方向に検知する。このように、重力センサ2aが検知する重力センサの値により各測定パッド部3の左右の装着状態を知ることができる。 First, the person H1 to be measured wears the measuring device 10A so that the measurement pads 3 are exposed to the left and right winds E1, and activates the biological information acquisition device 1. Then, the inclination angle of the measurement device 10A with respect to the subject H1 is detected by the gravity sensor 2a (S1). For example, when each measurement pad section 3 is correctly attached to the left and right winds E1 of the person H1 to be measured, the gravity sensor 2a detects vertically downward gravity in the negative direction of the Z axis of the gravity sensor 2a. When the subject H1 wears the measuring device 10A so that the left and right winds E1 are reversed, the body frame 2 is turned upside down, so the gravity sensor 2a detects the direction of gravity in the positive direction of the Z axis. do. In this manner, the left and right mounting states of the respective measurement pad portions 3 can be known from the value of the gravity sensor detected by the gravity sensor 2a.
 重力センサ2aによる重力センサ値が所定の閾値内(例えば、Z<0)にある場合、生体信号処理部4は各測定パッド部3が正常に被測定者H1に装着されていると判断し、体導音センサ3a及び温度センサ3bに測定開始信号を出力する。すると、体導音センサ3a及び温度センサ3bは、被測定者H1の生体音及び体温の波形取得を実行する。一方、各測定パッド部3が正常に被測定者H1に装着されていないと生体信号処理部4が判断すると、生体信号処理部4は体導音センサ3a及び温度センサ3bに測定開始信号を出力せず、体導音センサ3a及び温度センサ3bによる波形取得が実行されない(S2)。このように、測定器10Aが被測定者H1に正常に装着されている状態で取得された生体音及び体温の波形データのみが、無線送受信部3cにより生体信号処理部4に送信される。 When the gravity sensor value obtained by the gravity sensor 2a is within a predetermined threshold value (for example, Z<0), the biological signal processing unit 4 determines that each measurement pad unit 3 is normally attached to the subject H1, A measurement start signal is output to the body-conducted sound sensor 3a and the temperature sensor 3b. Then, the body-conducted sound sensor 3a and the temperature sensor 3b acquire waveforms of body sounds and body temperature of the subject H1. On the other hand, when the biological signal processing unit 4 determines that each measurement pad unit 3 is not properly attached to the subject H1, the biological signal processing unit 4 outputs a measurement start signal to the body conduction sound sensor 3a and the temperature sensor 3b. Therefore, waveform acquisition by the body-conducted sound sensor 3a and the temperature sensor 3b is not executed (S2). In this way, only body sound and body temperature waveform data obtained while the measuring device 10A is normally attached to the subject H1 is transmitted to the body signal processing section 4 by the wireless transmitting/receiving section 3c.
 取得された生体音の波形データは、無線送受信部5を介して体導音信号処理部6に入力される。取得された生体音は、音響心拍数測定部61における低域通過フィルタ部61aによって低周波通過信号(心音に近い信号)が抽出される一方、音響呼吸数測定部62における高域通過フィルタ部62aによって高周波通過信号(呼吸音に近い信号)が抽出される。つまり、生体音の波形データを心拍数及び呼吸数の波形データに分離する(S3)。その後、音響心拍数演算部61bにおいて、低周波通過信号から包絡線検波と波形ピーク取得とがされるとともにその周期から音響心拍数とその変動σHRとが演算される。また、音響呼吸数演算部62bにおいて、高周波通過信号から包絡線検波と呼吸開始点検出とにより、音響呼吸数とその変動σRRとが演算される(S4)。 The acquired body sound waveform data is input to the body conduction sound signal processing section 6 via the wireless transmission/reception section 5 . A low-pass filter unit 61a in the acoustic heart rate measurement unit 61 extracts low-frequency pass signals (signals close to heart sounds) from the acquired body sounds, while a high-pass filter unit 62a in the acoustic respiration rate measurement unit 62 extracts low-frequency pass signals (signals close to heart sounds). A high-frequency passing signal (a signal close to breathing sounds) is extracted by . That is, the body sound waveform data is separated into heart rate and respiration rate waveform data (S3). After that, in the acoustic heart rate calculator 61b, envelope detection and waveform peak acquisition are performed from the low-frequency passing signal, and the acoustic heart rate and its variation σHR are calculated from the cycle thereof. The acoustic respiration rate calculator 62b calculates the acoustic respiration rate and its variation σRR from the high-frequency passing signal by envelope detection and respiration start point detection (S4).
 次いで、被測定者H1による入力部8のタッチパネル操作により、被測定者H1のストレス及び痛みの主観評価項目としての視覚アナログスケール(VAS)、数値評価スケール(NRS)及び気分の段階評価を用いた評価値Wを予め設定した時間T毎に入力する(S5)。 Next, subject H1 operated the touch panel of the input unit 8 to use a visual analog scale (VAS), a numerical rating scale (NRS), and a graded evaluation of mood as subjective evaluation items for stress and pain of subject H1. An evaluation value W is input every preset time T (S5).
 しかる後、ストレス指数行列算出部7において、時間T経過毎に演算される音響心拍数の変動(心拍のゆらぎ)σHR及び音響呼吸数の変動(呼吸のゆらぎ)σRRに対して、ストレス指数SIをSI=σRR/σHRで算出する。また、当該ストレス指数SIと、入力部8により入力した評価値Wと、さらに温度センサ3bによる被測定者の体温とをそれぞれ順に行として縦ベクトルに並べ、当該縦ベクトルを時間軸の横方向に列として並べたストレス指数行列Mを算出する(S6)。 After that, in the stress index matrix calculator 7, the stress index SI is calculated with respect to the acoustic heart rate fluctuation (heartbeat fluctuation) σHR and the acoustic breathing rate fluctuation (breathing fluctuation) σRR calculated each time T elapses. It is calculated by SI=σRR/σHR. In addition, the stress index SI, the evaluation value W input by the input unit 8, and the body temperature of the person to be measured by the temperature sensor 3b are arranged in order as rows in a vertical vector, and the vertical vector is arranged in the horizontal direction of the time axis. A stress index matrix M arranged in columns is calculated (S6).
 そして、算出されたストレス指数行列Mは、出力部9にてディスプレイ上に表示される(S7)。 Then, the calculated stress index matrix M is displayed on the display by the output unit 9 (S7).
 その後、生体情報の取得を完了させるのであれば、生体情報取得装置1を終了させる。一方、生体情報の取得を完了させないのであれば、上述のS1に戻って上記動作を繰り返す(S8)。 After that, if the acquisition of biometric information is to be completed, the biometric information acquisition device 1 is terminated. On the other hand, if the acquisition of biometric information is not to be completed, the process returns to S1 and repeats the above operation (S8).
 このように、本発明の実施形態1によると、各測定パッド部3を被測定者H1の各翳風E1にあてがって生体信号の測定を行うので、耳を覆う必要がない。そのため、被測定者H1は生体信号の測定時において音が聞きづらくなるといったことがなく、長期に亘って測定を行っても生活に支障をきたすことが無いばかりか、測定行為自体が被測定者H1にとってストレスになることがなく、外乱の影響が少ない生体信号を得ることができる。また、測定部分に外気導音スピーカや外気導音マイクを組み込んだり、或いは測定部分に空洞部を設ける必要がないので、部品点数を減らしてシンプルな構造にすることができ、装置を安価に提供することができる。さらに、本体フレーム2により、各測定パッド部3が被測定者H1の各翳風E1に対して互いに接近する方向に同じ付勢力を加えるので、各測定パッド部3の測定位置が一定の圧力で固定されてずれ難い状態になる。そのため、得られる生体信号の測定信号強度が一定になり、測定精度を向上させることができる。 As described above, according to Embodiment 1 of the present invention, each measurement pad section 3 is applied to each of the winds E1 of the subject H1 to measure biosignals, so there is no need to cover the ears. Therefore, subject H1 does not have difficulty in hearing sounds during biosignal measurement. It is possible to obtain biomedical signals that are not stressed to H1 and are less affected by disturbances. In addition, since it is not necessary to incorporate an external air-conducting sound speaker or an external air-conducting sound microphone into the measuring part, or to provide a hollow part in the measuring part, the number of parts can be reduced, the structure can be simplified, and the device can be provided at a low cost. can do. Furthermore, since the body frame 2 causes each of the measurement pads 3 to apply the same biasing force to each of the shadows E1 of the subject H1 in the direction in which they approach each other, the measurement positions of each of the measurement pads 3 are kept at a constant pressure. It becomes fixed and difficult to shift. Therefore, the measurement signal strength of the obtained biosignal becomes constant, and the measurement accuracy can be improved.
 また、本体フレーム2は、重力センサ2aを備えるので、被測定者H1が装着する各測定パッド部3の傾斜角度が分かるようになる。そのため、測定パッド部3が被測定者H1の左右の翳風E1を正しく測定しているのか否かを知ることができ、生体信号を誤って測定することを防止することができる。また、測定パッド部3を装着する被測定者H1の体勢が分かるようになるので、被測定者H1の体勢が異常な時の測定データが取り除かれるようになり、測定精度を向上させることができる。 In addition, since the body frame 2 is provided with the gravity sensor 2a, the inclination angle of each measurement pad portion 3 worn by the person H1 to be measured can be known. Therefore, it can be known whether or not the measurement pad section 3 is correctly measuring the left and right winds E1 of the person H1 to be measured, and erroneous measurement of the biosignal can be prevented. In addition, since the posture of the subject H1 wearing the measurement pad section 3 can be known, the measurement data when the subject H1 is in an abnormal posture can be removed, and the measurement accuracy can be improved. .
 また、測定パッド部3は、体導音センサ3aを備えるので、被測定者H1の心拍数の変動と呼吸数の変動とが時系列で得られる。したがって、得られた心拍数データと呼吸数データとを用いて被測定者H1の状態の評価を行うことができる。 In addition, since the measurement pad section 3 includes the body-conducted sound sensor 3a, fluctuations in the heart rate and breathing rate of the person H1 to be measured can be obtained in chronological order. Therefore, the condition of subject H1 can be evaluated using the obtained heart rate data and respiratory rate data.
 また、生体信号処理部4は、ストレス指数行列Mを算出するので、ストレスが定量的な表示になるとともに、ストレス指数行列Mを確認することによって被測定者H1のストレスの状態と被測定者H1の主観評価とを時系列にまとめて確認することが可能になる。したがって、被測定者H1のストレス状態が評価し易くなるとともに、被測定者H1の時系列の状態を総合的に評価することができる。 In addition, since the biomedical signal processing unit 4 calculates the stress index matrix M, the stress is displayed quantitatively, and by confirming the stress index matrix M, the stress state of the subject H1 and the subject H1 are displayed. It becomes possible to check the subjective evaluation of Therefore, the stress state of subject H1 can be easily evaluated, and the chronological state of subject H1 can be comprehensively evaluated.
 また、生体信号処理部4は、入力部8により、ストレス指数行列Mの一部である主観評価項目を視覚アナログスケール(VAS)、数値評価スケール(NRS)及び気分の段階評価から簡単に入力が可能なので、被測定者H1のストレスおよび痛みの把握を容易に行うことができる。 In addition, the biological signal processing unit 4 can easily input subjective evaluation items that are part of the stress index matrix M from the visual analog scale (VAS), the numerical rating scale (NRS), and the graded evaluation of mood by the input unit 8. Since it is possible, it is possible to easily grasp the stress and pain of the subject H1.
 また、測定パッド部3は、温度センサ3bを備えるので、被測定者H1の心拍数及び呼吸数データを測定するのと同時に、被測定者H1の体温も測定できる。したがって、被測定者H1の心拍数及び呼吸数データと体温との相関を調べることで異常な測定データを排除できるようになり、測定精度を向上させることができる。また、ストレスおよび痛みを定量的に表示するストレス指数行列Mの行列要素に被測定者H1の体温データを時系列に出力できるので、ストレス評価をより多次元で行うことができるようになり、被測定者H1のストレス状態を正確に判定することができる。 In addition, since the measurement pad section 3 includes the temperature sensor 3b, it is possible to measure the body temperature of the subject H1 at the same time as measuring the heart rate and respiratory rate data of the subject H1. Therefore, by examining the correlation between the heart rate and respiration rate data of the subject H1 and the body temperature, abnormal measurement data can be eliminated, and measurement accuracy can be improved. In addition, since the body temperature data of the subject H1 can be output in chronological order to the matrix elements of the stress index matrix M that quantitatively displays stress and pain, stress evaluation can be performed in a multidimensional manner. It is possible to accurately determine the stress state of the subject H1.
 また、温度センサ3bは、測定時において被測定者の各翳風E1に当接する領域に位置するサーミスタであるので、被測定者H1の各翳風E1から得られる信号の感度が良くなり、被測定者H1のストレス状態をさらに詳細に知ることが可能になる。 In addition, since the temperature sensor 3b is a thermistor located in a region that abuts on each of the winds E1 of the person to be measured at the time of measurement, the sensitivity of the signal obtained from each of the winds E1 of the person to be measured H1 is improved. It becomes possible to know the stress condition of the measurer H1 in more detail.
 また、温度センサ3bが蓋状をなしているので、温度センサ3bが体導音センサ3aを覆うようになる。したがって、体導音センサ3aを保護するために追加でカバー部品を取り付けるといった必要が無くなり、部品コストを低く抑えることができる。 Also, since the temperature sensor 3b is lid-shaped, the temperature sensor 3b covers the body-conducted sound sensor 3a. Therefore, there is no need to install an additional cover component to protect the body-conducted sound sensor 3a, and the component cost can be kept low.
 《発明の実施形態2》
 図6は、生体情報取得装置1を用いた本発明の実施形態2に係るストレス警告システム100(生体状態警告システム)を示す。実施形態1と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Invention Embodiment 2>>
FIG. 6 shows a stress warning system 100 (biological state warning system) according to Embodiment 2 of the present invention using the biological information acquisition device 1 . Parts similar to those of the first embodiment are denoted by the same reference numerals, and only different parts will be described.
 ストレス警告システム100は、それぞれ遠方で生活する複数の被測定者A、B、Cのストレス状態を同時に判定可能とするものであり、生体情報取得装置1、中継器12、人工知能13、外部データベース14及びストレス管理サーバ15で構成されていて、該ストレス管理サーバ15は、中継器12、人工知能13及び外部データベース14にそれぞれ接続され、中継器12は、生体情報取得装置1とストレス管理サーバ15とにそれぞれ接続されている。 The stress warning system 100 can simultaneously determine the stress states of a plurality of subjects A, B, and C who live far away from each other. 14 and a stress management server 15. The stress management server 15 is connected to the repeater 12, the artificial intelligence 13, and the external database 14, respectively. and are connected respectively.
 実施形態2の生体情報取得装置1は、被測定者A~Cにそれぞれ装着されている。尚、以下では、便宜上、被測定者A~Cに装着された各生体情報取得装置1を生体情報取得装置1A、1B、1Cと呼ぶことにする。 The biological information acquisition device 1 of Embodiment 2 is attached to subjects A to C, respectively. For the sake of convenience, the biometric information acquiring devices 1 attached to subjects A to C are hereinafter referred to as biometric information acquiring devices 1A, 1B, and 1C.
 人工知能13及び外部データベース14は、生体情報取得装置1で得られた被測定者A~Cの各ストレス指数行列Mの入力に対して、その時系列データに基づく学習又は過去の類似データとの比較により被測定者A~Cの最新の推定ストレス状態を出力するようになっている。 The artificial intelligence 13 and the external database 14 learn based on the time-series data or compare with past similar data for the input of each stress index matrix M of the subjects A to C obtained by the biological information acquisition device 1. to output the latest estimated stress states of subjects A to C.
 尚、人工知能13及び外部データベース14は、ニューラルネットワークであってもよい。例えば、図7のニューラルネットワークでは、被測定者の心拍変動σHR、呼吸変動σRR、体温、血圧、ソーシャルディスタンス、服用している薬の投与量、投与方法その他に関する服薬情報などの客観データ及び咳、味覚障害などの主観データを入力とする入力層と、2層からなる隠れ層と、COVID-19感染に対するPCR検査の要否状態を出力する出力層とを備えている。 The artificial intelligence 13 and the external database 14 may be neural networks. For example, in the neural network of FIG. 7, objective data such as heart rate variability σHR, respiratory variability σRR, body temperature, blood pressure, social distance, medication dosage, administration method, etc. of the subject, cough, It has an input layer for inputting subjective data such as taste disorders, a hidden layer consisting of two layers, and an output layer for outputting the necessity of PCR testing for COVID-19 infection.
 ストレス管理サーバ15は、生体情報取得装置1で得られた各ストレス指数行列Mと、人工知能13又は外部データベース14が出力する推定ストレス状態とに基づいて各被測定者A~Cのストレス状態を判定するようになっている。 The stress management server 15 calculates the stress state of each subject A to C based on each stress index matrix M obtained by the biological information acquisition device 1 and the estimated stress state output by the artificial intelligence 13 or the external database 14. It is designed to judge.
 また、ストレス管理サーバ15は、判定した各被測定者A~Cの判定結果に応じたストレス警告情報(生体状態情報)をそれぞれ生成するとともに、それぞれ生成したストレス警告情報を中継器12に送信するようになっている。 The stress management server 15 also generates stress warning information (biological state information) according to the determination results of each of the subjects A to C, and transmits the generated stress warning information to the repeater 12. It's like
 中継器12は、生体情報取得装置1A、1B、1Cとストレス管理サーバ15との間でデータの送受信を行うハブ装置であり、生体情報取得装置1A~1Cから受信する各ストレス指数行列Mをストレス管理サーバ15に送信する一方、当該ストレス管理サーバ15から受信するストレス警告情報を生体情報取得装置1A~1Cに送信するようになっている。 The repeater 12 is a hub device that transmits and receives data between the biological information acquisition apparatuses 1A, 1B, and 1C and the stress management server 15, and converts each stress index matrix M received from the biological information acquisition apparatuses 1A to 1C into stress. While transmitting to the management server 15, stress warning information received from the stress management server 15 is transmitted to the biological information acquisition apparatuses 1A to 1C.
 尚、中継器12は、通信ルータまたはスイッチであってもよい。 The repeater 12 may be a communication router or switch.
 次に、本発明の実施形態2に係るストレス警告システム100の動作について説明する。複数の被測定者A、B、Cにそれぞれ装着される生体情報取得装置1A、1B、1Cは、上述の通り、時間T経過毎のストレス指数行列Mを出力する。中継器12は、各生体情報取得装置1A、1B、1Cの通信インタフェース部11を介して、被測定者A、B、Cのストレス指数行列Mを受信して、ストレス管理サーバ15に送信する。ストレス管理サーバ15は、受信した各ストレス指数行列Mを、人工知能13又は外部データベース14に入力する。すると、人工知能13又は外部データベース14は、各ストレス指数行列Mに基づく各被測定者A、B、Cの推定ストレス状態を演算してストレス管理サーバ15に出力する。ストレス管理サーバ15は、当該推定ストレス状態及びストレス指数行列Mに基づいて各被測定者A、B、Cのストレス状態を判定する。そして、ストレス管理サーバ15は、被測定者A~Cの各判定結果に応じたストレス警告情報をそれぞれ生成した後、当該各ストレス警告情報を中継器12に送信する。中継器12は、ストレス管理サーバ15から受け取った各ストレス警告情報を各被測定者A、B、Cの生体情報取得装置1A、1B、1Cにそれぞれ送信する。 Next, the operation of the stress warning system 100 according to Embodiment 2 of the present invention will be described. The biological information acquisition devices 1A, 1B, and 1C attached to the plurality of subjects A, B, and C, respectively, output the stress index matrix M each time T elapses, as described above. The repeater 12 receives the stress index matrix M of the subjects A, B, and C via the communication interface section 11 of each biological information acquisition device 1A, 1B, and 1C, and transmits it to the stress management server 15 . The stress management server 15 inputs each received stress index matrix M to the artificial intelligence 13 or the external database 14 . Then, the artificial intelligence 13 or the external database 14 calculates the estimated stress state of each subject A, B, and C based on each stress index matrix M and outputs it to the stress management server 15 . The stress management server 15 determines the stress state of each subject A, B, and C based on the estimated stress state and the stress index matrix M. FIG. Then, the stress management server 15 generates stress warning information according to the determination results of each of the subjects A to C, and then transmits the stress warning information to the repeater 12 . The repeater 12 transmits each piece of stress warning information received from the stress management server 15 to the biological information acquisition devices 1A, 1B, and 1C of the subjects A, B, and C, respectively.
 このように、本発明の実施形態2によると、中継器12を介して複数の被測定者A、B、Cのストレス指数行列Mをストレス管理サーバ15に送信できるようになるので、ストレス管理サーバ15は、各被測定者A、B、Cのストレス状態を時間T経過毎に判定することができる。また、ストレス管理サーバ15は、各被測定者A、B、Cのストレス指数行列Mに基づいて各被測定者A、B、Cの推定ストレス状態を出力する人工知能13または外部データベース14に接続されているので、その推定出力に基づくストレス状態の判定結果に応じたストレス警告情報を生成し、中継器12に送信可能になる。したがって、生体情報取得装置1を装着する各被測定者A、B、Cは、中継器12を介して適切なストレス警告情報を最適なタイミングで受信することができる。 As described above, according to the second embodiment of the present invention, the stress index matrix M of a plurality of subjects A, B, and C can be transmitted to the stress management server 15 via the repeater 12. Therefore, the stress management server 15 can determine the stress state of each subject A, B, and C every time T elapses. In addition, the stress management server 15 is connected to an artificial intelligence 13 or an external database 14 that outputs the estimated stress state of each subject A, B, and C based on the stress index matrix M of each subject A, B, and C. Therefore, it is possible to generate stress warning information according to the stress condition determination result based on the estimated output and transmit it to the repeater 12 . Therefore, each subject A, B, and C wearing the biological information acquisition device 1 can receive appropriate stress warning information at optimum timing via the repeater 12 .
 《発明の実施形態3》
 図8は、本発明の実施形態3に係る生体情報取得装置1を備えたCOVID-19検出システム200(生体状態警告システム)の一部を示す。実施形態1と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Embodiment 3 of the invention>>
FIG. 8 shows part of a COVID-19 detection system 200 (biological state warning system) including the biological information acquisition device 1 according to Embodiment 3 of the present invention. Parts similar to those of the first embodiment are denoted by the same reference numerals, and only different parts will be described.
 COVID-19検出システム200は、生体情報取得装置1と、被測定者H1の前額部に装着可能な温度センサTSとを備え、生体情報取得装置1の測定器10Aにより被測定者H1の左右の翳風において体温を測定するとともに、温度センサTSにより被測定者H1の前額部において体温を測定するようになっている。 The COVID-19 detection system 200 includes a biological information acquisition device 1 and a temperature sensor TS that can be attached to the forehead of the subject H1. The temperature sensor TS measures the body temperature at the forehead of the subject H1.
 図9は、生体情報取得装置1により取得した被測定者H1の左右の翳風表面温度(体温)、取得した被測定者H1における翳風表面温度の左右差、温度センサTSによる被測定者H1の前額部表面温度(体温)、及び、咽頭部違和感の主観評価を被測定者H1がCOVID-19に罹患した患者である場合と健常者である場合とにおいてそれぞれ得た結果を示す。いずれの被測定者H1においても、左右の翳風表面温度と前額部表面温度とが近い数値であるので、各測定結果は妥当であると判断できる。 FIG. 9 shows the left and right wave surface temperatures (body temperature) of the subject H1 acquired by the biological information acquisition device 1, the acquired difference between the left and right wave surface temperatures of the subject H1, and the measured subject H1 detected by the temperature sensor TS. The forehead surface temperature (body temperature) and the subjective evaluation of pharynx discomfort were obtained when subject H1 was a patient suffering from COVID-19 and a healthy subject. For any of the subjects H1, the surface temperature of the left and right shadows and the surface temperature of the forehead are close values, so it can be judged that each measurement result is appropriate.
 左右の翳風表面温度の左右差が大きいCOVID-19の患者(重症度が中等症I及び軽症)は、咽頭部に違和感があるとしており、一方で、左右の翳風表面温度の左右差が小さいCOVID-19の患者及び健常者は、咽頭部に違和感がないとしていることが分かった。つまり、被測定者H1の翳風表面温度の左右差とCOVID-19を罹患したことによる咽頭部の違和感との間には相関があり、翳風表面温度の左右差を観察することがCOVID-19の罹患の検出に有効であることが確認された。 COVID-19 patients with a large lateral difference in the surface temperature of the left and right wind (moderate I and mild severity) report discomfort in the pharynx. Small COVID-19 patients and healthy individuals were found to report feeling comfortable in the pharynx. In other words, there is a correlation between the lateral difference in the surface temperature of the shadow of H1 and the discomfort of the pharynx due to COVID-19. It was confirmed to be effective in detecting 19 morbidity.
 図10は、COVID-19検出システム200に使用するストレス指数行列である。ストレス指数行列の縦ベクトルの成分として、被測定者H1の左右の翳風表面温度を入力することができるようになっている。これにより、COVID-19によるストレスや咽頭部違和感の評価が可能になり、被測定者H1がCOVID-19を罹患しているか否かの検出を非接触で行うことができる。 FIG. 10 is a stress index matrix used for the COVID-19 detection system 200. As components of the vertical vector of the stress index matrix, it is possible to input the left and right wind surface temperatures of the person H1 to be measured. This makes it possible to evaluate the stress caused by COVID-19 and the discomfort in the pharynx, and to detect whether or not the subject H1 is suffering from COVID-19 without contact.
 また、被測定者H1の個人情報やプライバシーの保護が必要な場合、生体情報取得装置1A、1B、1Cとストレス管理サーバ15との接続において被測定者H1の本人確認(認証)がなされるようにしてもよい。ストレス管理サーバ15は、被測定者H1が本人か否かを確認し、本人であることを示す確認シグナルを受信すると、生体情報取得装置1A、1B、1Cからストレス指数行列を受信するとともに、被測定者H1がCOVID-19を罹患しているか否かの検出を行いPCR検査要否の判定結果を対応する生体情報取得装置に送信するようにしてもよい。 In addition, when personal information and privacy protection of the subject H1 is required, personal identification (authentication) of the subject H1 is performed in the connection between the biometric information acquisition devices 1A, 1B, and 1C and the stress management server 15. can be The stress management server 15 confirms whether or not the person to be measured H1 is the person himself/herself. It is also possible to detect whether or not subject H1 is infected with COVID-19, and to transmit the determination result as to whether a PCR test is necessary or not to the corresponding biological information acquisition device.
 なお、実施形態3では、被測定者H1の前額部を温度センサTSで測定するようにしているが、当該温度センサTSで被測定者H1の前額部を測定するのは必須ではなく、任意である。 In the third embodiment, the temperature sensor TS is used to measure the forehead of the subject H1. Optional.
 《発明の実施形態4》
 図11は、本発明の実施形態4に係る生体情報取得装置1を示す。この生体情報取得装置1は、出力部9が本体フレーム2に設けられている点以外は、実施形態1と同じであるので、実施形態1と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Embodiment 4 of the invention>>
FIG. 11 shows a biological information acquisition device 1 according to Embodiment 4 of the present invention. This biological information acquisition device 1 is the same as that of the first embodiment except that the output unit 9 is provided on the body frame 2. Only different parts will be explained.
 実施形態4に係る出力部9は、本体フレーム2における被測定者H1に面する側とは反対側の表面に設けられた赤色発光部Lr、黄色発光部Ly及び緑色発光部Lgにより構成されている。 The output unit 9 according to the fourth embodiment includes a red light emitting unit Lr, a yellow light emitting unit Ly, and a green light emitting unit Lg provided on the surface of the body frame 2 opposite to the side facing the subject H1. there is
 実施形態4に係る生体信号処理部4は、ストレス指数行列演算部7の算出したストレス指数SIと予め設定された閾値とを比較した結果に基づいて、赤色発光部Lr、黄色発光部Ly及び緑色発光部Lgのいずれか1つを発光させるように構成されている。例えば、被測定者H1のストレス指数SIが予め決められた閾値の+20%を超える場合に赤色発光部Lrが発光する一方、被測定者H1のストレス指数SIが予め決められた閾値の-20%を下回る場合に緑色発光部Lgが発光するようになっている。また、被測定者H1のストレス指数SIが予め決められた閾値の-20%~20%の範囲に位置する場合に黄色発光部Lyが発光するようになっていて、ストレス指数SIの大きさを発光する色の違いによって確認できるようになっている。そのため、多数の被測定者H1のストレス指数SIを遠くの位置から正確に且つ同時に効率良く判定することができる。 Based on the result of comparing the stress index SI calculated by the stress index matrix calculator 7 with a preset threshold value, the biological signal processing unit 4 according to the fourth embodiment determines the red light emitting unit Lr, the yellow light emitting unit Ly, and the green light emitting unit Ly. It is configured to cause any one of the light emitting portions Lg to emit light. For example, when the stress index SI of the subject H1 exceeds +20% of the predetermined threshold, the red light emitting unit Lr emits light, while the stress index SI of the subject H1 is -20% of the predetermined threshold. The green light emitting portion Lg emits light when the value is less than . In addition, when the stress index SI of the person H1 to be measured is located in the range of -20% to 20% of the predetermined threshold value, the yellow light emitting part Ly emits light, and the magnitude of the stress index SI is It can be confirmed by the difference in the color of light emitted. Therefore, the stress indices SI of many persons H1 to be measured can be accurately and simultaneously efficiently determined from a distant position.
 尚、実施形態4の出力部9は、赤色発光部Lr、黄色発光部Ly及び緑色発光部Lgのいずれか1つを発光させることにより、被測定者H1のストレス指数SIを遠くの位置から確認できるようにしているが、これに限らず、警告音や音声を発生させることにより被測定者H1のストレス指数SIを遠くの位置から確認できるようにしてもよい。 Note that the output unit 9 of the fourth embodiment causes any one of the red light emitting unit Lr, the yellow light emitting unit Ly, and the green light emitting unit Lg to emit light, thereby confirming the stress index SI of the subject H1 from a distant position. However, the present invention is not limited to this, and the stress index SI of the subject H1 may be confirmed from a distant position by generating a warning sound or voice.
 また、実施形態4の出力部9は、本体フレーム2の一部に設けられているが、これに限らず、本体フレーム2の表面全域に設けて当該本体フレーム2の全体が発光するような構成にしてもよい。 In addition, although the output unit 9 of Embodiment 4 is provided in a part of the body frame 2, it is not limited to this, and is provided over the entire surface of the body frame 2 so that the entire body frame 2 emits light. can be
 《発明の実施形態5》
 図12は、本発明の実施形態5に係るオンライン診療システム300(生体状態警告システム)を示す。該オンライン診療システム300は、中継器12の代わりに、各患者(被測定者)が所有するスマートフォン、タブレット等を含むカメラ付き通信端末SA、SB、SCと通信網32とを用いて、オンライン診療サーバ15と各患者A、B、Cの生体情報取得装置1A、1B、1Cとを接続している。また、当該オンライン診療システム300は、各患者A、B、C及び医師Iが所有するカメラ付き通信端末SA、SB、SC及びSDの備えるカメラによる本人確認(認証)が可能になっている点が実施形態2と異なる。それ以外は実施形態2と同じであるので、実施形態2と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Embodiment 5 of the invention>>
FIG. 12 shows an online medical care system 300 (biological condition warning system) according to Embodiment 5 of the present invention. The online medical care system 300 uses camera-equipped communication terminals SA, SB, SC including smartphones, tablets, etc. owned by each patient (person to be measured) and a communication network 32 instead of the repeater 12 to perform online medical care. A server 15 and the biometric information acquisition devices 1A, 1B, and 1C of patients A, B, and C are connected. In addition, the online medical care system 300 is capable of personal identification (authentication) by the cameras of the camera-equipped communication terminals SA, SB, SC, and SD owned by each patient A, B, C, and doctor I. It differs from the second embodiment. Other than that, it is the same as the second embodiment, so the same reference numerals are given to the same parts as the second embodiment, and only the different parts will be described.
 本発明の実施形態5に係る生体情報取得装置1の通信インタフェース部11は、ブルートゥース(登録商標)、NFC(Near Field Communication)回路等を含む無線交信式通信回路を備え、同回路を有するカメラ付き通信端末と接続可能に構成されている。すなわち、患者A、B、Cの生体情報取得装置1A、1B、1Cは、無線交信式通信を介して各患者A、B、Cのカメラ付き通信端末SA、SB、SCと一意に接続されている。各患者A、B、Cのカメラ付き通信端末SA、SB、SCは、通信網32を介してインターネットに接続される一方、オンライン診療サーバ15は、インターネットを介して通信網32に接続されていて、当該通信網32を介して患者A、B、Cの生体情報取得装置1A、1B、1Cからストレス指数行列Mを取得可能になっている。そのため、オンライン診療システム300は、生体情報取得装置1A、1B、1Cをオンライン診療サーバ15に接続するための専用の中継器12を設ける必要がないので、簡単かつ安価なシステムとすることができる。 The communication interface unit 11 of the biological information acquisition device 1 according to the fifth embodiment of the present invention includes a wireless communication circuit including Bluetooth (registered trademark), NFC (Near Field Communication) circuit, etc., and a camera having the same circuit. It is configured to be connectable to a communication terminal. That is, the biological information acquisition devices 1A, 1B, 1C of the patients A, B, C are uniquely connected to the camera-equipped communication terminals SA, SB, SC of the patients A, B, C via wireless communication. there is Communication terminals SA, SB, and SC with cameras of patients A, B, and C are connected to the Internet via a communication network 32, while the online medical care server 15 is connected to the communication network 32 via the Internet. , the stress index matrix M can be acquired from the biometric information acquisition devices 1A, 1B, and 1C of the patients A, B, and C via the communication network 32 . Therefore, the online medical care system 300 does not need to be provided with a dedicated repeater 12 for connecting the biological information acquisition apparatuses 1A, 1B, and 1C to the online medical care server 15, so that the system can be simple and inexpensive.
 また、医師Iのカメラ付き通信端末SDは、通信網32を介してインターネットに接続されている。そして、オンライン診療システム300は、生体情報取得装置1A、1B、1Cとオンライン診療サーバ15との接続の際に、各患者A、B、Cのカメラ付き通信端末SA、SB、SC及び医師Iのカメラ付き通信端末SDのカメラによる本人確認が可能になっている。すなわち、オンライン診療サーバ15は、カメラ付き通信端末のカメラで撮影された患者A、B、C及び医師Iの画像を用いた顔認証システムにより本人であることを示す確認シグナルを受信する。該確認シグナルを受信すると、オンライン診療サーバ15は、生体情報取得装置1A、1B、1Cからストレス指数行列Mを受信するとともに、生成した生体状態情報を対応する生体情報取得装置1A、1B、1Cに送信する。生成した生体状態情報は、本人以外の生体情報取得装置に送信されないため、各患者A、B、Cの個人情報が本人以外の第三者に漏洩することがないので、患者の個人情報及びプライバシーを保護することができる。なお、顔認証システムは、公知の技術を使用することができる。 Doctor I's camera-equipped communication terminal SD is connected to the Internet via a communication network 32. When connecting the biological information acquisition apparatuses 1A, 1B, and 1C to the online medical care server 15, the online medical care system 300 connects the camera-equipped communication terminals SA, SB, and SC of the patients A, B, and C, and of the doctor I. The camera of the communication terminal SD with a camera can be used to verify the identity of the user. That is, the online medical care server 15 receives a confirmation signal indicating the identity of the patient by a face authentication system using images of patients A, B, and C and doctor I photographed by the camera of the camera-equipped communication terminal. Upon receiving the confirmation signal, the online medical care server 15 receives the stress index matrix M from the biological information acquisition devices 1A, 1B, and 1C, and sends the generated biological state information to the corresponding biological information acquisition devices 1A, 1B, and 1C. Send. Since the generated biological condition information is not transmitted to a biological information acquisition device other than the patient, the personal information of each patient A, B, and C is not leaked to a third party other than the patient, so the patient's personal information and privacy are protected. can be protected. Note that the face authentication system can use known technology.
 通信網32は、インターネット網であってもよい。通信網32は、ローカルエリアネットワークを含んでもよく、移動体通信網を含んでもよく、VPN(Virtual Private Network)を含んでもよい。 The communication network 32 may be the Internet network. The communication network 32 may include a local area network, a mobile communication network, or a VPN (Virtual Private Network).
 また、生体情報取得装置1A、1B、1Cは、無線交信式通信によりカメラ付き通信端末SA、SB、SC間の距離情報を取得するようになっていて、この取得した距離情報を各患者A、B、C間のソーシャルディスタンスデータとして記憶するようになっている。そのため、オンライン診療システム300の人工知能13が推定ストレス状態を出力する際に上述のソーシャルディスタンスデータを客観データとして利用することができる。 The biological information acquisition apparatuses 1A, 1B, and 1C acquire distance information between the camera-equipped communication terminals SA, SB, and SC by wireless communication, and transmit the acquired distance information to each patient A, SB, and SC. It is designed to be stored as social distance data between B and C. Therefore, the above social distance data can be used as objective data when the artificial intelligence 13 of the online medical care system 300 outputs the estimated stress state.
 また、各患者A、B、Cのカメラ付き通信端末SA、SB、SCのカメラにより撮影された画像を用いると、医師Iが生体情報取得装置1の出力部9の発光状態や患者の顔色等を画面越しに確認できるため、オンライン診療サーバ15は、より適切な生体状態情報を生成することができる。 Further, by using the images captured by the cameras of the camera-equipped communication terminals SA, SB, and SC of the patients A, B, and C, the doctor I can determine the light emission state of the output unit 9 of the biological information acquisition device 1, the patient's complexion, and the like. can be confirmed through the screen, the online medical care server 15 can generate more appropriate biological condition information.
 なお、本人確認手段は、カメラ付き通信端末SA、SB、SC、SDのカメラにより撮影された画像を用いた顔認証システムである場合について説明したが、これに限らず、カメラ付き通信端末等に内蔵されている指紋センサ(図示せず)による指紋認証システム、赤外線センサ(図示せず)による静脈の形状パターンを用いた静脈認証システム、またはボイスセンサ(図示せず)による人間の声紋を用いた声紋認証システム等を用いることができる。 Although the personal identification means is a face authentication system using images taken by the cameras of the camera-equipped communication terminals SA, SB, SC, and SD, it is not limited to this. A fingerprint authentication system using a built-in fingerprint sensor (not shown), a vein authentication system using a vein shape pattern using an infrared sensor (not shown), or a human voiceprint using a voice sensor (not shown) A voiceprint authentication system or the like can be used.
 《発明の実施形態6》
 図13は、本発明の実施形態6に係る死亡時刻予測システム400(生体状態警告システム)を示す。該死亡時刻予測システム400は、実施形態2のストレス管理サーバ15、人工知能13及び外部データベース14がそれぞれ死亡時刻予測管理サーバ45、人工知能43及び外部データベース44に変わっている点以外は実施形態2と同様であるので、実施形態2と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Invention Embodiment 6>>
FIG. 13 shows a death time prediction system 400 (biological state warning system) according to Embodiment 6 of the present invention. The death time prediction system 400 is the same as in Embodiment 2 except that the stress management server 15, artificial intelligence 13 and external database 14 of Embodiment 2 are replaced with a death time prediction management server 45, artificial intelligence 43 and external database 44, respectively. , the same parts as in the second embodiment are denoted by the same reference numerals, and only different parts will be described.
 死亡時刻予測システム400は、診断対象の患者D、E、Fに対して死亡時刻を予測するようになっている。 The death time prediction system 400 is designed to predict death times for patients D, E, and F to be diagnosed.
 人工知能43及び外部データベース44は、対象患者D、E、Fにそれぞれ装着された生体情報取得装置1D、1E、1Fにより得られた対象患者の各ストレス指数行列Mの入力に対して、その時系列データに基づく学習又は過去の類似データとの比較により対象患者の最新の推定死亡時刻(生体状態情報)を出力するようになっている。 The artificial intelligence 43 and the external database 44 input each stress index matrix M of the target patient obtained by the biological information acquisition devices 1D, 1E, and 1F attached to the target patients D, E, and F, respectively, and the time series The latest estimated time of death (biological condition information) of the target patient is output by learning based on the data or comparison with past similar data.
 図14は、死亡時刻予測専用のニューラルネットワークである人工知能43を示す。該人工知能43は、対象患者の心拍変動σHR、呼吸変動σRR、重力、速度・角速度、体温、生体磁力などの客観データ及び医師の所見などの主観データを入力とする入力層と、3層からなる隠れ層と、推定死亡時刻を出力する出力層とを備えている。 Fig. 14 shows the artificial intelligence 43, which is a neural network dedicated to predicting the time of death. The artificial intelligence 43 includes an input layer for inputting objective data such as heart rate variability σHR, respiratory variability σRR, gravity, velocity/angular velocity, body temperature, biomagnetic force, etc., and subjective data such as doctor's findings, and three layers. and an output layer that outputs the estimated time of death.
 図15は、対象患者に対するストレス指数の一般的な経時変化を示す。対象患者に対するストレス指数SIは、当初、時間経過とともに下降し、死亡時刻の約72時間前の時点で上昇するという相関関係が認められ、死亡時刻の推定に有効であることが確認された。したがって、人工知能43は、対象患者のストレス指数SIを含む客観データ及び医師による主観データを入力することにより、死亡時刻予測を行うことができる。 Fig. 15 shows general changes in the stress index over time for the target patient. A correlation was observed that the stress index SI for the target patient initially decreased over time and increased approximately 72 hours before the time of death, confirming that it is effective for estimating the time of death. Therefore, the artificial intelligence 43 can predict the time of death by inputting objective data including the subject patient's stress index SI and subjective data by a doctor.
 死亡時刻予測システム400によれば、対象患者D、E、Fの死亡時刻を予測することにより患者の家族に対する予期的悲嘆を促すとともに、看取り時の心理的苦痛を緩和することができる。 According to the death time prediction system 400, by predicting the death time of target patients D, E, and F, it is possible to encourage anticipatory grief for the patient's family and to alleviate psychological distress at the end of life.
 《発明の実施形態7》
 図16は、本発明の実施形態7に係る被災発生通報システム500(生体状態警告システム)を示す。該被災発生通報システム500は、実施形態5のストレス管理サーバ15、人工知能13及び外部データベース14がそれぞれ被災発生通報管理サーバ55、被災発生通報専用の人工知能53及び外部データベース54に変わっている点以外は実施形態5と同様であるので、実施形態5と同様の部分には同じ符号を付し、その他、異なる部分のみを説明する。
<<Embodiment 7 of the invention>>
FIG. 16 shows a disaster occurrence notification system 500 (biological state warning system) according to Embodiment 7 of the present invention. In the disaster occurrence report system 500, the stress management server 15, the artificial intelligence 13, and the external database 14 of the fifth embodiment are replaced with a disaster occurrence report management server 55, the artificial intelligence 53 dedicated to disaster occurrence reports, and the external database 54, respectively. Since it is the same as that of Embodiment 5 other than that, the same code|symbol is attached|subjected to the same part as Embodiment 5, and other than that, only a different part is demonstrated.
 被災発生通報システム500は、被測定者に災害等が発生した時に緊急車両56に救護要請の通報を行うようになっている。 The disaster occurrence notification system 500 is designed to notify the emergency vehicle 56 of a request for relief when a disaster or the like occurs to the person to be measured.
 被災発生通報管理サーバ55は、通信網32又は所定の通信回線を通じて、緊急車両56に接続されている。 The disaster occurrence report management server 55 is connected to the emergency vehicle 56 through the communication network 32 or a predetermined communication line.
 また、人工知能53及び外部データベース54は、生体情報取得装置1A、1B、1Cで得られた被測定者A、B、Cの各ストレス指数行列Mの入力に対して、その時系列データに基づく学習又は過去の類似データとの比較により被測定者A、B、Cの最新の推定被災状態(生体状態情報)を被災発生通報管理サーバ55に出力するようになっている。また、被災発生通報管理サーバ55は、各被測定者A、B、Cの推定被災状態を判定し、その判定結果に応じた救護要請を含む被災発生情報RQを緊急車両56に送信するようになっている。 In addition, the artificial intelligence 53 and the external database 54 learn based on the time-series data for the inputs of the stress index matrices M of the subjects A, B, and C obtained by the biological information acquisition apparatuses 1A, 1B, and 1C. Alternatively, the latest estimated damage state (biological state information) of subjects A, B, and C is output to the disaster occurrence notification management server 55 by comparison with past similar data. In addition, the disaster occurrence report management server 55 judges the estimated disaster state of each subject A, B, and C, and transmits the disaster occurrence information RQ including a relief request according to the judgment result to the emergency vehicle 56. It's becoming
 例えば、被測定者A、B、Cが被災した場合、被測定者A、B、Cに装着された生体情報取得装置1A、1B、1Cは、無線交信式通信で一意に接続されたカメラ付き通信端末SA、SB、SCにより、通信網32を介して被災発生通報管理サーバ55に被測定者A、B、Cのストレス指数行列Mを送信する。被災発生通報管理サーバ55は、受信したストレス指数行列Mを、専用の人工知能53又は外部データベース54に入力する。すると、専用の人工知能53又は外部データベース54は、ストレス指数行列Mに基づく被測定者A、B、Cの推定被災状態を演算して被災発生通報管理サーバ55に出力する。被災発生通報管理サーバ55は、受信した推定被災状態に基づいて被測定者A、B、Cの救護優先度を判定し、所定の通報動作を行う。 For example, when subjects A, B, and C are affected by a disaster, biometric information acquisition devices 1A, 1B, and 1C attached to subjects A, B, and C are equipped with cameras that are uniquely connected by wireless communication. The communication terminals SA, SB, and SC transmit the stress index matrix M of the subjects A, B, and C to the disaster report management server 55 via the communication network 32 . The disaster occurrence report management server 55 inputs the received stress index matrix M to the dedicated artificial intelligence 53 or the external database 54 . Then, the dedicated artificial intelligence 53 or the external database 54 calculates estimated disaster states of the subjects A, B, and C based on the stress index matrix M, and outputs them to the disaster occurrence report management server 55 . The disaster occurrence notification management server 55 determines the relief priority of subjects A, B, and C based on the received estimated damage state, and performs a predetermined notification operation.
 被災発生通報管理サーバ55は、例えば、救護優先度が低い要救護3、救護優先度が中程度の要救護2、救護優先度が高い要救護1の各推定被災状態を被測定者A、B、Cから受信したとする。被災発生通報管理サーバ55は、まず、救護優先度が高い被測定者Cについての被災発生情報RQと被測定者Cのカメラ付き通信端末SCによる位置情報とを緊急車両56に送信する。次に、被災発生通報管理サーバ55は、救護優先度が中程度の被測定者Bについての同情報を緊急車両56に送信し、最後に、救護優先度が低い被測定者Aについての同情報を緊急車両56に送信する。このようにして、被災発生通報管理サーバ55は、緊急車両56に対して、被災した被測定者A、B、Cの救護優先度に応じた迅速な被災発生情報RQを的確に送信することができる。 The disaster occurrence notification management server 55, for example, provides each of the estimated disaster states, such as relief 3 with a low priority, relief 2 with a medium priority, and relief 1 with a high priority, to the subjects A and B. , C. The disaster occurrence report management server 55 first transmits to the emergency vehicle 56 the disaster occurrence information RQ for the person to be measured C, who has a high relief priority, and the location information of the person to be measured C from the camera-equipped communication terminal SC. Next, the disaster occurrence notification management server 55 transmits the same information about the person to be measured B, whose priority for relief is middle, to the emergency vehicle 56, and finally, the information about the person to be measured, whose priority is low to the emergency vehicle 56. In this way, the disaster occurrence report management server 55 can accurately transmit the rapid disaster occurrence information RQ according to the relief priority of the affected subjects A, B, and C to the emergency vehicle 56. can.
 また、被災発生通報管理サーバ55は、対応する被測定者A、B、Cの各生体情報取得装置1A、1B、1Cに被災発生情報RQを含む緊急車両56への通報結果を送信する。 In addition, the disaster occurrence report management server 55 transmits the report result to the emergency vehicle 56 including the disaster occurrence information RQ to the biological information acquiring devices 1A, 1B, and 1C of the corresponding subjects A, B, and C.
 本発明の実施形態7によれば、複数の被測定者A、B、Cに対して、生体情報取得装置1A、1B、1Cを用いた被災発生時のタイムリ且つ的確な通報が可能な被災発生通報システム500を提供することができる。 According to the seventh embodiment of the present invention, when a disaster occurs, it is possible to timely and accurately report the occurrence of a disaster to a plurality of subjects A, B, and C using the biometric information acquisition devices 1A, 1B, and 1C. A notification system 500 can be provided.
 なお、このシステムは、利用者のプラットフォームを再構築することで、非接触で取得した生体状態情報に基づくオンライン診療、遠隔医療、難病(中性脂肪蓄積心血管病:TGCVなど)管理、地域包括ケアシステム、病院船(システム)や、サービス提供者選定システムにも応用可能である。 In addition, by reconstructing the user platform, this system will provide online medical treatment based on contactless biological condition information, telemedicine, management of intractable diseases (triglyceride accumulation cardiovascular disease: TGCV, etc.), regional comprehensive It can also be applied to care systems, hospital ships (systems), and service provider selection systems.
 また、本発明の実施形態1~7に係る生体情報取得装置1では、図2~3に示すように、各測定パッド部3を本体フレーム2の両端に一体成形し、その他の生体信号処理部4、入力部8、出力部9、及び通信インタフェース部11を別筐体として構成しているが、それらを同一筐体としてもよい。例えば、生体信号処理部4の体導音信号処理部6を本体フレーム2及び測定パッド部3と同一筐体とすることによって、無線送受信部3c、5を介してセンサ信号を送受信する必要がない。そのため、該センサ信号を生体信号処理部4に送信するのに必要な通信オーバヘッドが不要となり通信量を削減できるので通信帯域を抑えることができる。 Further, in the biometric information acquiring apparatus 1 according to Embodiments 1 to 7 of the present invention, as shown in FIGS. 4. The input unit 8, the output unit 9, and the communication interface unit 11 are constructed as separate housings, but they may be constructed as the same housing. For example, by forming the body-conducted sound signal processing unit 6 of the biological signal processing unit 4 into the same housing as the body frame 2 and the measurement pad unit 3, there is no need to transmit and receive sensor signals via the wireless transmission/ reception units 3c and 5. . Therefore, the communication overhead required for transmitting the sensor signal to the biological signal processing unit 4 is unnecessary, and the amount of communication can be reduced, so that the communication band can be suppressed.
 また、生体情報取得装置1は、一対の測定パッド部3が被測定者H1の左右の翳風E1に当接する場合について説明したが、これに限らず、該測定パッド部3が被測定者H1の左右の極泉等の経穴(つぼ)に当接するようにされてもよい。 Moreover, although the biological information acquisition device 1 has been described as a case where the pair of measurement pad portions 3 abut against the left and right winds E1 of the subject H1, the present invention is not limited thereto. It may be made to contact acupuncture points (pots) such as the left and right polar springs.
 また、生体情報取得装置1は、一対の測定パッド部3を備える場合について説明したが、これに限らず、1つ又は3つ以上の測定パッド部3を備え、各測定パッド部3が1つ又は3つ以上の経穴(つぼ)に当接するようにされてもよい。例えば、生体情報取得装置1は、1つの測定パッド部3のみを備え、該測定パッド部3が被測定者H1のだん中等の経穴(つぼ)に当接するようにされてもよい。 In addition, although the biological information acquisition device 1 has been described as having a pair of measurement pad portions 3, the present invention is not limited to this, and one or more than three measurement pad portions 3 are provided, and each measurement pad portion 3 is one. Or you may make it contact|abut on three or more acupuncture points (pot). For example, the biometric information acquisition device 1 may include only one measurement pad section 3, and the measurement pad section 3 may abut on acupuncture points (acupuncture points) such as the middle of the subject H1.
 また、体導音信号処理部6は、無線送受信部5を介してセンサ信号を受けると、そのセンサ信号における所定時間(例えば30秒間)についてセンサ信号をフーリエ変換したフーリエ変換後信号を、音響心拍数測定部61及び音響呼吸数測定部62に入力するようにされてもよい。フーリエ変換後信号から、低域通過フィルタ部61aによって低域通過信号が出力されるとともに、高域通過フィルタ部62aによって高域通過信号が出力される。低域通過信号と高域通過信号とをさらに逆フーリエ変換した逆フーリエ変換後信号から、それぞれの周期を導出することができるので、導出した周期に基づいて心拍数の変動と呼吸数の変動とを抽出することができる。 When the body-conducted sound signal processing unit 6 receives the sensor signal via the wireless transmission/reception unit 5, the sensor signal is Fourier-transformed for a predetermined time (for example, 30 seconds), and the signal after Fourier transformation is converted into an acoustic heartbeat signal. It may be input to the number measuring section 61 and the acoustic respiration rate measuring section 62 . A low-pass signal is output from the Fourier-transformed signal by the low-pass filter section 61a, and a high-pass signal is output by the high-pass filter section 62a. Since each period can be derived from the inverse Fourier-transformed signal obtained by further inverse Fourier transforming the low-pass signal and the high-pass signal, the variation in the heart rate and the variation in the respiration rate can be calculated based on the derived period. can be extracted.
 1、1A、1B、1C    生体情報取得装置
 2    本体フレーム(付勢力付加部)
 2a   重力センサ
 3    測定パッド部
 3a   体導音センサ
 3b   温度センサ
 4    生体信号処理部
 12   中継器
 13   人工知能
 14   外部データベース
 15   ストレス管理サーバ
 32   通信網
 43   人工知能
 44   外部データベース
 45   死亡時刻予測管理サーバ
 53   人工知能
 54   外部データベース
 55   被災発生通報管理サーバ
 61a  低域通過フィルタ部
 62a  高域通過フィルタ部
 100  ストレス警告システム(生体状態警告システム)
 200  COVID-19検出システム(生体状態警告システム)
 300  オンライン診療システム(生体状態警告システム)
 400  死亡時刻予測システム(生体状態警告システム)
 500  被災発生通報システム(生体状態警告システム)
 SA、SB、SC、SD  カメラ付き通信端末
Reference Signs List 1, 1A, 1B, 1C biological information acquisition device 2 body frame (biasing force application unit)
2a gravity sensor 3 measurement pad unit 3a body-conducting sound sensor 3b temperature sensor 4 biological signal processing unit 12 repeater 13 artificial intelligence 14 external database 15 stress management server 32 communication network 43 artificial intelligence 44 external database 45 death time prediction management server 53 artificial Intelligence 54 External database 55 Disaster occurrence report management server 61a Low-pass filter unit 62a High-pass filter unit 100 Stress warning system (biological condition warning system)
200 COVID-19 Detection System (Biological Condition Warning System)
300 online medical care system (biological condition warning system)
400 Death Time Prediction System (Biological Condition Warning System)
500 Disaster occurrence notification system (biological condition warning system)
SA, SB, SC, SD Communication terminal with camera

Claims (7)

  1.  被測定者の生体情報を取得する生体情報取得装置であって、
     生体信号を測定可能な一対の測定パッド部と、
     該各測定パッド部を前記被測定者の各翳風にそれぞれあてがった状態で互いに接近する方向に同じ付勢力を加える付勢力付加部と、
     前記各測定パッド部に接続され、当該各測定パッド部により測定した前記生体信号を演算処理して前記生体情報を抽出する生体信号処理部とを備えることを特徴とする生体情報取得装置。
    A biological information acquisition device for acquiring biological information of a subject,
    a pair of measurement pads capable of measuring biosignals;
    an urging force applying unit that applies the same urging force in a direction in which each measuring pad portion is applied to each of the shadows of the person to be measured in the direction of approaching each other;
    A biological information acquisition device, comprising: a biological signal processing unit connected to each of the measurement pad units and configured to perform arithmetic processing on the biological signal measured by each of the measurement pad units to extract the biological information.
  2.  請求項1に記載の生体情報取得装置において、
     前記測定パッド部は、体導音信号を測定可能な体導音センサを備え、
     前記生体信号処理部は、前記体導音センサにより測定する体導音信号の所定周波数より低い信号のみを通過させて心拍数の変動(心拍のゆらぎ)として抽出する低域通過フィルタ部と、前記所定周波数より高い信号のみを通過させて呼吸数の変動(呼吸のゆらぎ)として抽出する高域通過フィルタ部とを備えていることを特徴とする生体情報取得装置。
    In the biological information acquisition device according to claim 1,
    The measurement pad section includes a body-conducted sound sensor capable of measuring a body-conducted sound signal,
    The biological signal processing unit includes a low-pass filter unit that passes only signals lower than a predetermined frequency of body-conducted sound signals measured by the body-conducted sound sensor and extracts them as heart rate fluctuations (heartbeat fluctuations); and a high-pass filter section for passing only signals higher than a predetermined frequency and extracting them as fluctuations in respiration rate (fluctuations in respiration).
  3.  請求項2に記載の生体情報取得装置において、
     前記生体信号処理部は、前記低域通過フィルタ部で抽出した心拍数の変動をσHRとし、且つ、前記高域通過フィルタ部で抽出した呼吸数の変動をσRRとすると、あらかじめ設定した時間T経過毎にストレス指数SIをSI=σRR/σHRで算出するとともに、当該ストレス指数SIと前記被測定者により前記時間T毎に予め入力された主観評価項目の評価値Wとをそれぞれ順に行として並べ、且つ、時間軸を列としたストレス指数行列Mを出力するよう構成されていることを特徴とする生体情報取得装置。
    In the biological information acquisition device according to claim 2,
    The biomedical signal processing unit sets the variation of the heart rate extracted by the low-pass filter unit as σHR and the variation of the respiration rate extracted by the high-pass filter unit as σRR. The stress index SI is calculated by SI=σRR/σHR every time, and the stress index SI and the evaluation value W of the subjective evaluation item preliminarily input by the subject for each time T are arranged in rows in order, Further, the biometric information acquisition device is configured to output a stress index matrix M with a time axis as a column.
  4.  請求項3に記載の生体情報取得装置において、
     前記測定パッド部は、前記被測定者の表面温を計測可能な温度センサを備え、
     前記生体信号処理部は、前記ストレス指数行列Mにおいて、前記温度センサにより時間T経過毎に計測した表面温を行として並べ、かつ時間軸を列として出力するよう構成されていることを特徴とする生体情報取得装置。
    In the biological information acquisition device according to claim 3,
    The measurement pad section includes a temperature sensor capable of measuring the surface temperature of the person to be measured,
    The biomedical signal processing unit is configured to arrange the surface temperatures measured by the temperature sensor every time T elapsed in the stress index matrix M as rows and to output the time axis as columns. Biometric information acquisition device.
  5.  複数の被測定者にそれぞれ装着される請求項3に記載の前記複数の生体情報取得装置と、
     前記各ストレス指数行列Mに基づいて各被測定者の推定ストレス状態を出力する人工知能又は外部データベースと、
     通信網を介して、前記生体情報取得装置と前記人工知能又は外部データベースとにそれぞれ接続され、前記生体情報取得装置から受信する前記各ストレス指数行列Mと前記人工知能又は外部データベースにより入力される前記各推定ストレス状態とに基づいて各被測定者のストレス状態を判定し、且つ、その判定結果に応じた生体状態情報をそれぞれ生成するとともに、該通信網を介して、対応する前記生体情報取得装置に当該各生体状態情報を送信する管理サーバとを備えることを特徴とする生体状態警告システム。
    The plurality of biological information acquisition devices according to claim 3, which are respectively worn by a plurality of subjects;
    an artificial intelligence or an external database that outputs an estimated stress state of each subject based on the stress index matrix M;
    Via a communication network, the biological information acquisition device and the artificial intelligence or an external database are connected respectively, and the stress index matrix M received from the biological information acquisition device and the artificial intelligence or the external database input determining the stress state of each subject based on each estimated stress state, generating biological state information according to the determination result, and transmitting the corresponding biological information acquisition device via the communication network; and a management server for transmitting each piece of biological state information to a biological state warning system.
  6.  請求項5に記載の生体状態警告システムにおいて、
     前記被測定者が本人か否かを確認可能な本人確認手段をさらに備え、
     前記管理サーバは、前記本人確認手段により本人であると確認された際、対応する前記生体情報取得装置に前記生体状態情報を送信することを特徴とする生体状態警告システム。
    In the biological state warning system of claim 5,
    further comprising identity verification means capable of confirming whether the person to be measured is the person himself/herself;
    The biological state warning system, wherein the management server transmits the biological state information to the corresponding biological information acquisition device when the identity is confirmed by the personal identification means.
  7.  請求項6に記載の生体状態警告システムにおいて、
     前記本人確認手段は、カメラにより撮影された画像を用いた顔認証システムであることを特徴とする生体状態警告システム。
    The biological condition warning system of claim 6,
    A biological state warning system, wherein the personal identification means is a face authentication system using an image photographed by a camera.
PCT/JP2022/022053 2021-06-29 2022-05-31 Biological information acquisition device and biological state warning system using same WO2023276525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531721A JPWO2023276525A1 (en) 2021-06-29 2022-05-31

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-108070 2021-06-29
JP2021108070 2021-06-29
JP2021175232 2021-10-27
JP2021-175232 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023276525A1 true WO2023276525A1 (en) 2023-01-05

Family

ID=84691216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022053 WO2023276525A1 (en) 2021-06-29 2022-05-31 Biological information acquisition device and biological state warning system using same

Country Status (2)

Country Link
JP (1) JPWO2023276525A1 (en)
WO (1) WO2023276525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238717A1 (en) * 2022-06-06 2023-12-14 浩士 中村 Device for screening cold syndrome positive person

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202939A (en) * 2006-02-06 2007-08-16 Masafumi Matsumura Biological information detecting apparatus
CN102728003A (en) * 2012-07-03 2012-10-17 成都中医药大学 Intelligent evidence-based acupuncture diagnostic and therapeutic instrument for treating Bell palsy
CN202715034U (en) * 2012-07-03 2013-02-06 成都中医药大学 Qiaogong acupuncture point massaging-based therapeutic apparatus for hypertension
JP2017533804A (en) * 2014-11-11 2017-11-16 グローバル ストレス インデックス プロプライエタリー リミテッド System and method for generating personal stress level and stress tolerance level information
WO2018034239A1 (en) * 2016-08-15 2018-02-22 国立大学法人 筑波大学 Swallowing action measuring device and swallowing action supporting system
JP2019004924A (en) * 2017-06-20 2019-01-17 株式会社東芝 System and method
JP2021074464A (en) * 2019-11-13 2021-05-20 国立大学法人山口大学 Contact type biological sound sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202939A (en) * 2006-02-06 2007-08-16 Masafumi Matsumura Biological information detecting apparatus
CN102728003A (en) * 2012-07-03 2012-10-17 成都中医药大学 Intelligent evidence-based acupuncture diagnostic and therapeutic instrument for treating Bell palsy
CN202715034U (en) * 2012-07-03 2013-02-06 成都中医药大学 Qiaogong acupuncture point massaging-based therapeutic apparatus for hypertension
JP2017533804A (en) * 2014-11-11 2017-11-16 グローバル ストレス インデックス プロプライエタリー リミテッド System and method for generating personal stress level and stress tolerance level information
WO2018034239A1 (en) * 2016-08-15 2018-02-22 国立大学法人 筑波大学 Swallowing action measuring device and swallowing action supporting system
JP2019004924A (en) * 2017-06-20 2019-01-17 株式会社東芝 System and method
JP2021074464A (en) * 2019-11-13 2021-05-20 国立大学法人山口大学 Contact type biological sound sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238717A1 (en) * 2022-06-06 2023-12-14 浩士 中村 Device for screening cold syndrome positive person

Also Published As

Publication number Publication date
JPWO2023276525A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10624559B2 (en) Fall prediction system and method of using the same
US20220054092A1 (en) Eyewear with health assessment, risk monitoring and recovery assistance
CN106999065B (en) Wearable pain monitor using accelerometry
US20210275109A1 (en) System and method for diagnosing and notification regarding the onset of a stroke
US20200285873A1 (en) Wearable authentication device
US20220248970A1 (en) Monitoring system and method of using same
JP2019523027A (en) Apparatus and method for recording and analysis of memory and function decline
KR20130010207A (en) System for analyze the user&#39;s health and stress
KR20160108967A (en) Device and method for bio-signal measurement
WO2023276525A1 (en) Biological information acquisition device and biological state warning system using same
KR20160149651A (en) User authentication method and system via the skin impedence recognition in the bio-electrical signal measurement environment using wearable sensors
Sun et al. Earmonitor: In-ear motion-resilient acoustic sensing using commodity earphones
KR102114638B1 (en) Monitoring system for stroke during sleep
US20230210464A1 (en) Ear-wearable system and method for detecting heat stress, heat stroke and related conditions
CN108882883A (en) Parasympathetic autonomic nerves system is measured to while sympathetic autonomic nerves system to independent activities, related and analysis method and system
TWM620879U (en) Microvascular physiological parameters detection and estimation device, and its related physiological measuring gun, ear-hanging physiological measuring instrument, earplug measuring instrument, portable physiological measuring instrument, physiological measuring lens, and glasses measuring instrument
WO2016040647A2 (en) Method and apparatus for monitoring eye tremor
US20230107691A1 (en) Closed Loop System Using In-ear Infrasonic Hemodynography and Method Therefor
Kañtoch Technical verification of integrating wearable sensors into bsn-based telemedical monitoring system
Song Enabling Smart Health Applications via Active Acoustic Sensing on Commodity Mobile Devices
KR20230100360A (en) Remote health management system using biological signal measuring device based on network and method thereof
CN117651525A (en) Systems, devices, and methods for active auscultation and detection of acoustic signals and/or acoustic wave energy measurements
EA024345B1 (en) Method for monitoring activity of cardiovascular system and airways

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE