WO2023276274A1 - Photoelectric conversion element, light detecting device, and electronic apparatus - Google Patents

Photoelectric conversion element, light detecting device, and electronic apparatus Download PDF

Info

Publication number
WO2023276274A1
WO2023276274A1 PCT/JP2022/008881 JP2022008881W WO2023276274A1 WO 2023276274 A1 WO2023276274 A1 WO 2023276274A1 JP 2022008881 W JP2022008881 W JP 2022008881W WO 2023276274 A1 WO2023276274 A1 WO 2023276274A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
electrode
layer
light
imaging
Prior art date
Application number
PCT/JP2022/008881
Other languages
French (fr)
Japanese (ja)
Inventor
修一 瀧澤
陽介 齊藤
修 榎
治典 塩見
加代子 菊地
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, ソニーグループ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023276274A1 publication Critical patent/WO2023276274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present disclosure relates to a photoelectric conversion element that performs photoelectric conversion, and a photodetector and electronic equipment having the same.
  • a photoelectric conversion element as one embodiment of the present disclosure includes a laminated structure having a first electrode, a second electrode, a photoelectric conversion layer, and a reflective layer.
  • the first electrode transmits light in the first wavelength band.
  • the second electrode faces the first electrode and transmits light in the first wavelength band.
  • the photoelectric conversion layer is located between the first electrode and the second electrode, and detects light in the first wavelength band to perform photoelectric conversion.
  • the reflective layer is located on the opposite side of the photoelectric conversion layer when viewed from the second electrode, and reflects light in the first wavelength band that passes through the first electrode, the photoelectric conversion layer, and the second electrode toward the photoelectric conversion layer. do.
  • FIG. 1 is a cross-sectional schematic diagram showing an example of an imaging device according to a first embodiment of the present disclosure
  • FIG. It is a cross-sectional schematic diagram showing the imaging element as a 1st modification of the 1st Embodiment of this indication.
  • FIG. 20 is a schematic cross-sectional view showing an imaging device as a twenty-third modification of the first embodiment of the present disclosure
  • FIG. 2 is a schematic configuration diagram representing an imaging device according to a second embodiment of the present disclosure
  • FIG. 1 is a schematic diagram showing an example of the overall configuration of an electronic device;
  • FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit; 1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system; FIG. 3 is a block diagram showing an example of functional configurations of a camera head and a CCU; FIG. It is a figure showing the evaluation result of an experimental example.
  • FIG. 4 is a first characteristic diagram showing wavelength dependence of reflectance of a conductive film;
  • FIG. 4 is a second characteristic diagram showing the wavelength dependence of the reflectance of a conductive film; It is a cross-sectional schematic diagram showing an example of an imaging device as another modified example of the present disclosure.
  • First Embodiment An example of an imaging device having a reflective layer in contact with a lower electrode. 2. Modification of First Embodiment 2-1. An example of an imaging device further provided with an insulating layer between a lower electrode and a reflective layer. 2-2. An example of an imaging device further provided with a second photoelectric conversion layer. 2-3. An example of an imaging device provided with a curved reflective layer. 3. Second Embodiment An example of an imaging device having a plurality of imaging elements. 4. Example of application to electronic equipment5. Example of application to moving bodies6. Application example to endoscopic surgery system7. Experimental example 8. Other variations
  • FIG. 1 is a cross-sectional view schematically showing an imaging device P1 according to the first embodiment of the present disclosure.
  • the imaging element P1 is a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
  • the imaging element P1 includes a laminated structure having a substrate 1, a reflective layer 2, a lower electrode 3, a photoelectric conversion layer 4, and an upper electrode 5 in this order, as shown in FIG. 1, for example.
  • a buffer layer 6 may further be provided between the lower electrode 3 and the photoelectric conversion layer 4 .
  • a buffer layer 7 may further be provided between the photoelectric conversion layer 4 and the upper electrode 5 .
  • the imaging device P1 may further have a contact layer 8 provided to penetrate the insulating layer Z.
  • the insulating layer Z is provided on the same layer as the reflective layer 2 .
  • the contact layer 8 includes, for example, an upper end connected to the lower surface of the lower electrode 3 and a lower end connected to the upper surface of the wiring layer M provided on the substrate 1 .
  • the upper electrode 5 is a specific example corresponding to the "first electrode” of the present disclosure.
  • the lower electrode 3 is a specific example corresponding to the "second electrode” of the present disclosure.
  • the photoelectric conversion layer 4 is a specific example corresponding to the "photoelectric conversion layer” of the present disclosure.
  • the reflective layer 2 is a specific example corresponding to the "reflective layer” of the present disclosure.
  • the imaging device P1 In the imaging device P1, light incident from the side opposite to the substrate 1 when viewed from the upper electrode 5 reaches the photoelectric conversion layer 4, and charges corresponding to the incident light are generated in the photoelectric conversion layer 4. . Further, in the imaging element P1, a predetermined bias voltage is applied between the lower electrode 3 and the upper electrode 5, thereby causing the charge generated in the photoelectric conversion layer 4 to move to the lower electrode 3, and then move to the lower electrode 3. A signal corresponding to the charge can be taken out to the outside.
  • the imaging element P1 can be formed by, for example, a vacuum deposition method, or can be formed by a vacuum sputtering method. Alternatively, the imaging element P1 can also be formed using a coating method.
  • the substrate 1 is, for example, a supporting substrate made of quartz.
  • the reflective layer 2 contains, for example, metal as a main component.
  • Metals contained as a main component in the reflective layer 2 include, for example, aluminum (Al), Cu (copper), Ag (silver), and Au (gold).
  • the thickness of the reflective layer 2 can be, for example, 50 nm or more and 100 nm or less. Further, in the imaging device P1, the lower electrode 3 and the reflective layer 2 are configured to be in direct contact with each other.
  • the lower electrode 3 and the upper electrode 5 are each conductive. Moreover, the lower electrode 3 and the upper electrode 5 are each configured to be able to transmit at least the light in the first wavelength band received by the photoelectric conversion layer 4 .
  • the first wavelength range is, for example, a visible range, a near-infrared range, or an infrared range. That is, the lower electrode 3 and the upper electrode 5 can be made of, for example, a transparent conductive material.
  • transparent conductive material means a material that exhibits a transmittance higher than that of the reflective layer 2 with respect to light incident on the photoelectric conversion layer 4 .
  • the transparent conductive material desirably has, for example, a transmittance of 90% or more for visible light or infrared light.
  • transparent conductive materials include indium oxide, indium tin oxide (ITO), indium-zinc oxide (IZO), indium-gallium oxide (IGO), indium-gallium-zinc oxide (IGZO, In -GaZnO4 ), IFO (fluorinated indium oxide), tin oxide (SnO2), ATO (Sb - doped SnO2), FTO (fluorinated tin oxide), zinc oxide, aluminum-zinc oxide (AZO), Gallium-zinc oxide (GZO), boron-zinc oxide, titanium oxide (TiO 2 ), niobium-titanium oxide (TNO), antimony oxide, spinel-type oxides, oxides having a YbFe 2 O 4 structure.
  • the thickness of the lower electrode 3 and the thickness of the upper electrode 5 can each be, for example, 50 nm or more and 100 nm or less.
  • the thickness of the lower electrode 3 is d
  • the wavelength of light transmitted through the lower electrode 3 is ⁇
  • the refractive index of the lower electrode 3 with respect to light having a wavelength ⁇ that is transmitted through the lower electrode 3 is n.
  • it is desirable to satisfy the following formula (1). d ⁇ /(4 ⁇ n) (1)
  • the photoelectric conversion layer 4 is made of, for example, a photoelectric conversion material that absorbs light in the first wavelength band and generates charges according to the absorbed light.
  • the photoelectric conversion layer 4 may have a single layer structure, or may have a multilayer structure. Both an inorganic material and an organic material can be used as the photoelectric conversion material forming the photoelectric conversion layer 4 . However, from the viewpoint of superior spectral characteristics and photosensitivity, it is preferable to use an organic material rather than an inorganic material. Examples of the organic material forming the photoelectric conversion layer 4 include quinacridone skeleton, phthalocyanine skeleton, and anthraquinone skeleton materials.
  • the buffer layer 6 can be made of, for example, titanium oxide or zinc oxide.
  • the buffer layer 7 can be made of poly(3-hexylthiophene-2,5-diyl), for example.
  • the contact layer 8 is a conductive path through which charges generated in the photoelectric conversion layer 4 are extracted to the wiring layer M through the lower electrode 3 .
  • the contact layer 8 may be made of, for example, Cu (copper).
  • the insulating layer Z can be made of, for example, aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN).
  • the wiring layer M can be made of, for example, Cu (copper).
  • the imaging device P1 of the present embodiment includes a laminated structure having the upper electrode 5, the photoelectric conversion layer 4, the lower electrode 3, and the reflective layer in this order.
  • the photoelectric conversion layer 4 detects light in the first wavelength range, ie, visible light or infrared light, and performs photoelectric conversion. Both the upper electrode 5 and the lower electrode 3 transmit light in the first wavelength band.
  • the reflective layer 2 is located on the opposite side of the photoelectric conversion layer 4 when viewed from the lower electrode 3 , and reflects light in the first wavelength band that passes through the upper electrode 5 , the photoelectric conversion layer 4 , and the lower electrode 3 to the photoelectric conversion layer 4 . It is designed to reflect toward.
  • the reflective layer 2 is provided separately from the lower electrode 3, so the lower electrode 3 can be made of a material other than metal.
  • the lower electrode 3 is made of metal, an oxide film may form on the surface of the lower electrode 3 during the manufacturing process or under the environment of use. If such an oxide film is formed on the surface of the lower electrode 3, an increase in resistance between the lower electrode 3 and the upper electrode 5, a change in the work function of the lower electrode 3, and the like may occur.
  • the lower electrode 3 is made of metal, the metal may be eluted into the buffer layer 6 . In such a case, there is concern about deterioration of photoelectric conversion characteristics.
  • the lower electrode 3 is made of a non-metallic transparent conductive material such as ITO. Elution of metal into the buffer layer 6 can be avoided. Therefore, the photoelectric conversion performance of the image sensor P1 can be stably obtained. That is, it is possible to suppress deterioration in performance due to the manufacturing process and usage environment, and obtain high long-term reliability.
  • the reflective layer 2 exhibiting a high reflectance with respect to the light in the first wavelength band is provided on the opposite side of the photoelectric conversion layer 4 when viewed from the lower electrode 3. Therefore, even when the photoelectric conversion layer 4 is thinned, the optical path length can be lengthened, and a decrease in external quantum efficiency (EQE) can be suppressed. That is, a decrease in photoelectric conversion efficiency can be suppressed.
  • EQE external quantum efficiency
  • by making the photoelectric conversion layer 4 thinner it is possible to shorten the readout time of the charges generated in the photoelectric conversion layer 4 . That is, responsiveness can be improved. Therefore, it is possible to ensure both excellent external quantum efficiency (EQE) and excellent responsiveness.
  • the lower electrode 3 and the reflective layer 2 are in direct contact. Therefore, it is advantageous to reduce the thickness of the entire image sensor P1. Moreover, since the reflective layer 2 can be brought close to the photoelectric conversion layer 4 , it is advantageous for increasing the photoelectric conversion efficiency of the photoelectric conversion layer 4 .
  • FIG. 2 is a cross-sectional view schematically showing an imaging device P2 as a first modification of the first embodiment of the present disclosure.
  • the imaging element P2 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
  • the imaging device P2 further includes an insulating layer Z2 provided between the lower electrode 3 and the reflective layer 2, as shown in FIG.
  • the insulating layer Z2 can be made of, for example, aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN).
  • the configuration of the imaging device P2 is substantially the same as the configuration of the imaging device P1, except that an insulating layer Z2 is further provided.
  • the imaging element P2 further includes the insulating layer Z2 provided between the lower electrode 3 and the reflective layer 2.
  • the insulating layer Z2 provided between the lower electrode 3 and the reflective layer 2.
  • FIG. 3 is a cross-sectional view schematically showing an imaging device P3 as a second modification of the first embodiment of the present disclosure.
  • the imaging element P3 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
  • the imaging device P3 further includes a semiconductor layer 9, an insulating layer Z3, and an insulating layer Z4, as shown in FIG.
  • the semiconductor layer 9 is provided between the lower electrode 3 and the photoelectric conversion layer 4 .
  • the insulating layer Z3 is provided between the semiconductor layer 9 and the lower electrode 3 .
  • the insulating layer Z4 is provided on the same layer as the lower electrode 3 .
  • the insulating layers Z3 and Z4 can be made of, for example, aluminum oxide (Al2O3) or aluminum nitride (AlN).
  • the contact layer 8 is configured to penetrate the insulating layer Z4, the insulating layer Z3, and the insulating layer Z to connect the semiconductor layer 9 and the wiring layer M, for example.
  • a material having a large bandgap value for example, a bandgap value of 3.0 eV or more
  • a higher mobility than the material forming the photoelectric conversion layer 4 can be used.
  • oxide semiconductor materials such as IGZO; transition metal dichalcogenides; silicon carbide; diamond; graphene; carbon nanotubes;
  • the lower electrode 3 forms a kind of capacitor together with the insulating layer Z3 and the semiconductor layer 9, and charges generated in the photoelectric conversion layer 4 are transferred to the lower electrode through a part of the semiconductor layer 9, for example, the insulating layer Z3 of the semiconductor layer 9. 3 is stored in the area corresponding to the number 3.
  • FIG. 4 is a cross-sectional view schematically showing an imaging device P4 as a third modified example of the first embodiment of the present disclosure.
  • the imaging element P4 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
  • the reflective layer 2 is curved so as to have a concave surface 2U that is recessed toward the photoelectric conversion layer 4.
  • the configuration of the imaging device P4 is substantially the same as the configuration of the imaging device P2 except that the reflective layer 2 has a concave surface 2U.
  • the reflective layer 2 has the concave surface 2U, so the obliquely incident light that has passed through the lower electrode 3 is reflected by the concave surface 2U and then enters the photoelectric conversion layer 4 again. Therefore, it is expected that the photoelectric conversion efficiency in the photoelectric conversion layer 4 is further improved.
  • Second Embodiment> [Configuration of imaging device 10] Next, referring to FIG. 5, an imaging apparatus 10 as a second embodiment to which the imaging elements P1 to P4 described in the first embodiment and the modified example can be applied will be described.
  • FIG. 5 shows an overall configuration example of a solid-state imaging device 1 according to an embodiment of the present disclosure.
  • the solid-state imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the solid-state imaging device 1 takes in incident light (image light) from a subject, for example, via an optical lens system, converts the incident light imaged on the imaging surface into an electric signal for each pixel, and outputs the electric signal as a pixel signal.
  • incident light image light
  • the solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a pixel section 100 as an imaging area, a vertical driving circuit 111, a column signal processing circuit 112, a horizontal driving circuit 113, and an output It has a circuit 114 , a control circuit 115 and an input/output terminal 116 .
  • This solid-state imaging device 1 is a specific example corresponding to the "photodetector" of the present disclosure.
  • the pixel unit 100 has, for example, a plurality of pixels P arranged two-dimensionally in a matrix.
  • the pixel unit 100 includes, for example, pixel rows each composed of a plurality of pixels P arranged in the horizontal direction (horizontal direction of the paper) and pixel columns composed of a plurality of pixels P arranged in the vertical direction (the vertical direction of the paper). Multiple are provided.
  • one pixel drive line Lread (row selection line and reset control line) is wired for each pixel row, and one vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for signal readout from each pixel P.
  • the ends of the plurality of pixel drive lines Lread are connected to the plurality of output terminals corresponding to the pixel rows of the vertical drive circuit 111, respectively.
  • the vertical drive circuit 111 is composed of a shift register, an address decoder, and the like, and is a pixel drive section that drives each pixel P in the pixel section 100, for example, in units of pixel rows.
  • a signal output from each pixel P in a pixel row selectively scanned by the vertical driving circuit 111 is supplied to the column signal processing circuit 112 through each vertical signal line Lsig.
  • the column signal processing circuit 112 is composed of amplifiers, horizontal selection switches, etc. provided for each vertical signal line Lsig.
  • the horizontal drive circuit 113 is composed of a shift register, an address decoder, etc., and sequentially drives the horizontal selection switches of the column signal processing circuit 112 while scanning them.
  • the signals of the pixels P transmitted through each of the plurality of vertical signal lines Lsig are sequentially output to the horizontal signal line 121, and are output to the outside of the semiconductor substrate 11 through the horizontal signal line 121. It is designed to be transmitted.
  • the output circuit 114 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 112 via the horizontal signal line 121 and outputs the processed signals.
  • the output circuit 114 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • a circuit portion consisting of the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, the horizontal signal line 121 and the output circuit 114 may be formed directly on the semiconductor substrate 11, or may be formed on the external control IC. It may be arranged. Moreover, those circuit portions may be formed on another substrate connected by a cable or the like.
  • the control circuit 115 receives a clock given from the outside of the semiconductor substrate 11, data instructing an operation mode, etc., and outputs data such as internal information of the pixel P which is an imaging device.
  • the control circuit 115 further has a timing generator that generates various timing signals, and controls the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, etc. based on the various timing signals generated by the timing generator. It controls driving of peripheral circuits.
  • the input/output terminal 116 exchanges signals with the outside.
  • one pixel P among the plurality of pixels P arranged in a matrix in the pixel unit 100 is provided with the imaging elements P1 to P4 described in the first embodiment and its modification. can be applied. As a result, long-term reliability is excellent, and high imaging performance can be obtained in spite of its small size.
  • FIG. 6 is a block diagram showing a configuration example of an electronic device 2000 to which the present technology is applied.
  • Electronic device 2000 has a function as a camera, for example.
  • An electronic device 2000 includes an optical unit 2001 including a group of lenses, a photodetector 2002 to which the above-described solid-state imaging device 1 or the like (hereinafter referred to as the solid-state imaging device 1 or the like) is applied, and a DSP (which is a camera signal processing circuit). Digital Signal Processor) circuit 2003 is provided. Electronic device 2000 also includes frame memory 2004 , display unit 2005 , recording unit 2006 , operation unit 2007 , and power supply unit 2008 . DSP circuit 2003 , frame memory 2004 , display unit 2005 , recording unit 2006 , operation unit 2007 and power supply unit 2008 are interconnected via bus line 2009 .
  • the optical unit 2001 captures incident light (image light) from a subject and forms an image on the imaging surface of the photodetector 2002 .
  • the photodetector 2002 converts the amount of incident light imaged on the imaging surface by the optical unit 2001 into an electric signal for each pixel, and outputs the electric signal as a pixel signal.
  • the display unit 2005 is composed of, for example, a panel-type display device such as a liquid crystal panel or an organic EL panel, and displays moving images or still images captured by the photodetector 2002 .
  • a recording unit 2006 records a moving image or still image captured by the photodetector 2002 in a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 2007 issues operation commands for various functions of the electronic device 2000 under the user's operation.
  • a power supply unit 2008 appropriately supplies various power supplies as operating power supplies for the DSP circuit 2003, the frame memory 2004, the display unit 2005, the recording unit 2006, and the operation unit 2007 to these supply targets.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 7 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, etc. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, etc. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 8 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 8 shows an example of the imaging range of the imaging units 12101 to 12104 .
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device P1 in FIG. 1 can be applied to the imaging unit 12031 .
  • the technology according to the present disclosure it is possible to obtain a captured image that is easier to see, thereby reducing driver fatigue.
  • Example of application to an endoscopic surgery system The technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 9 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (this technology) can be applied.
  • FIG. 9 illustrates a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 11100 with irradiation light for imaging a surgical site or the like.
  • a light source such as an LED (light emitting diode)
  • LED light emitting diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging element of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer.
  • irradiation light i.e., white light
  • Narrow Band Imaging in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is examined.
  • a fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 10 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the number of imaging elements constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 11402 of the camera head 11102 among the configurations described above.
  • the imaging element P1 in FIG. 1 can be applied to the imaging unit 11402 .
  • the technology according to the present disclosure may also be applied to, for example, a microsurgery system.
  • Example 1 As Example 1, a sample of the imaging device P1 shown in FIG. 1 was produced. Here, a reflective layer 2, a lower electrode 3, a buffer layer 6, a photoelectric conversion layer 4, a buffer layer 7, and an upper electrode 5 are sequentially laminated on a substrate 1 by a vacuum sputtering method, a vacuum evaporation method, or a spin coating method. I made it The reflective layer 2 was formed of Al (aluminum) to a thickness of 50 nm. The lower electrode 3 was formed of ITO to a thickness of 50 nm. Moreover, the photoelectric conversion layer 4 was formed to have a thickness of 120 nm.
  • Example 2 As Example 2, a sample of the imaging device P1 shown in FIG. 1 was produced. Here, the photoelectric conversion layer 4 was made to have a thickness of 240 nm. A sample of Example 2 was produced so as to have the same configuration as that of Example 1 except for this point.
  • Comparative Example 1 As Comparative Example 1, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the configuration of the imaging device P1 shown in FIG. 1 was manufactured. The configuration of Comparative Example 1 was the same as that of Example 1 except for this point.
  • Comparative Example 2 As Comparative Example 2, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the configuration of the imaging device P1 shown in FIG. 1 was manufactured. Except for this point, the configuration of Comparative Example 2 was the same as that of Example 2.
  • Comparative Example 3 As Comparative Example 3, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the imaging device P1 shown in FIG. 1 was manufactured. Furthermore, in Comparative Example 3, the lower electrode 3 was formed of Al (aluminum) so as to have a thickness of 50 nm. That is, in Comparative Example 3, the lower electrode 3 acted as a reflective layer on the photoelectric conversion layer 4 .
  • FIG. 11 also shows information on the thickness of the lower electrode, the reflective layer, the cross-sectional structure, and the photoelectric conversion layer in the samples of the imaging elements of Examples 1 and 2 and Comparative Examples 1 and 3.
  • an ultraviolet-visible-near-infrared spectrophotometer V770 manufactured by JASCO Corporation having an integrating sphere was used to measure the reflectance of light with a wavelength of 1400 nm in reflection mode.
  • FIG. 12A shows the wavelength dependence of the reflectance [%] for each of the Al/ITO two-layer film, the Al single-layer film, and the ITO single-layer film.
  • three types of samples each having an Al/ITO two-layer film, an Al single-layer film, or an ITO single-layer film formed on a glass substrate were examined from the opposite side of the glass substrate in a wavelength range of 300 nm to 1600 nm. I set it to irradiate the following light.
  • FIG. 12B shows the wavelength dependence of the reflectance [%] for each of the Cu/ITO two-layer film, the Cu single-layer film, and the ITO single-layer film.
  • the wavelength range of 300 nm to 1600 nm was measured from the opposite side of the glass substrate. I set it to irradiate the following light. From the results of FIG. 12A, it was found that the Al/ITO two-layer film exhibited a sufficiently high reflectance compared to the ITO single-layer film. From the results of FIG. 12B, it was found that the Cu/ITO two-layer film exhibited a sufficiently high reflectance compared to the ITO single-layer film.
  • Comparative Example 1 a decrease in external quantum efficiency (EQE) was observed compared to Example 1. Moreover, in Comparative Example 2, a decrease in external quantum efficiency (EQE) was observed as compared with Example 2. In Comparative Examples 1 and 2, it is considered that the absence of the reflective layer 2 causes a decrease in external quantum efficiency (EQE). Moreover, in Comparative Example 3, sufficient performance was not obtained in both external quantum efficiency (EQE) and responsiveness. Furthermore, in Comparative Examples 3 and 4, an increase in resistance, a change in work function, and metal elution were observed. This is considered to be due to the formation of an oxide film on the surface of the lower electrode 3 .
  • the photoelectric conversion element of the present disclosure may be the imaging element P5 having the configuration shown in FIG.
  • the image pickup device P5 has a photoelectric conversion section composed of a laminated structure of a lower electrode 11 , an organic photoelectric conversion layer 13 and an upper electrode 12 .
  • a reflective layer 14 is provided on the side of the lower electrode 11 opposite to the organic photoelectric conversion layer 13 .
  • the imaging device P5 further includes a control section provided on the semiconductor substrate 70 and connected to the lower electrode 11, and the photoelectric conversion section is arranged above the semiconductor substrate 70.
  • the light incident surface of the semiconductor substrate 70 is the upper side
  • the opposite side of the semiconductor substrate 70 is the lower side.
  • a wiring layer 62 composed of a plurality of wirings is provided under the semiconductor substrate 70 .
  • the semiconductor substrate 70 is provided with at least a charge storage portion (floating diffusion layer FD) and an amplification transistor TR1, which constitute a control portion, and the lower electrode 11 is connected to the floating diffusion layer FD and the gate portion of the amplification transistor TR1. It is connected.
  • the charge storage portion (floating diffusion layer FD1) stores charges generated in the organic photoelectric conversion layer 13 .
  • the semiconductor substrate 70 is further provided with a reset transistor TR2 and a selection transistor TR3 that constitute a control section.
  • the floating diffusion layer FD1 is connected to one source/drain region of the reset transistor TR2, and one source/drain region of the amplification transistor TR1 is connected to one source/drain region of the selection transistor TR3.
  • the other source/drain region of the selection transistor TR3 is connected to the signal line.
  • the image pickup device P5 in FIG. 13 is a front side illumination type image pickup device.
  • the reflective layer 14 is formed on the interlayer insulating layer 81 in the imaging device P5.
  • the reflective layer 14 is made of a metal such as copper or aluminum, like the reflective layer 2 of the first embodiment.
  • a lower electrode 11 is provided on the reflective layer 14 .
  • a first organic material layer (hole injection blocking layer), a second organic material layer, an organic photoelectric conversion layer 13 and an electron injection blocking layer are formed on the lower electrode 11, and an upper electrode 12 is formed on the electron injection blocking layer. is formed.
  • a protective layer 82 is formed on the entire surface including the upper electrode 12 .
  • An on-chip micro lens 90 is provided on the protective layer 82 .
  • the lower electrode 11 and the upper electrode 12 are composed of transparent electrodes made of ITO, for example.
  • the interlayer insulating layer 81 and protective layer 82 are made of well-known insulating materials (such as SiO 2 and SiN).
  • An element isolation region 71 is formed on the side of the first surface 70A of the semiconductor substrate 70, and an oxide film 72 is formed on the first surface 70A of the semiconductor substrate 70. Further, on the first surface 70A side of the semiconductor substrate 70, a reset transistor TR2, an amplification transistor TR1, a selection transistor TR3, and a first floating diffusion layer FD1 are provided.
  • the second electrode can be made of a material other than metal. Therefore, it is possible to avoid an increase in resistance due to an oxide film, a change in work function, or elution of metal into the photoelectric conversion layer, which may occur when the second electrode is formed of metal. Therefore, the performance of the photoelectric conversion element can be stabilized. Further, by providing the reflective layer, the optical path length can be lengthened even when the photoelectric conversion layer is thinned, and a decrease in photoelectric conversion efficiency can be suppressed (a decrease in EQE can be suppressed). Note that the effects described in this specification are merely examples and are not limited to the descriptions, and other effects may be provided.
  • the present technology can take the following configurations.
  • a first electrode that transmits light in a first wavelength range a second electrode facing the first electrode and transmitting light in the first wavelength band; a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion; light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer;
  • the photoelectric conversion element according to (1) above, wherein the first electrode and the second electrode are indium tin oxide (ITO).
  • the metal is aluminum (Al), Cu (copper), Ag (silver), or Au (gold).
  • the photoelectric conversion element according to any one of (1) to (7) above, wherein the laminated structure further includes a semiconductor layer positioned between the second electrode and the photoelectric conversion layer.
  • the photoelectric conversion element is a first electrode that transmits light in a first wavelength range; a second electrode facing the first electrode and transmitting light in the first wavelength range; a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion; light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer;
  • a photodetector device comprising a laminate structure having a reflective layer that reflects toward and a reflective layer.
  • the photoelectric conversion element is a first electrode that transmits light in a first wavelength range; a second electrode facing the first electrode and transmitting light in the first wavelength range; a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion; light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer;
  • An electronic device comprising a laminated structure having a reflective layer that reflects toward the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

Provided is a photoelectric conversion element having high functionality. The disclosed photoelectric conversion element includes a first electrode (5), a second electrode (3), a photoelectric conversion layer (4), and a reflective layer (2). The first electrode (5) transmits light in a first wavelength region. The second electrode (3) faces the first electrode (5), and transmits light in the first wavelength region. The photoelectric conversion layer (4) is positioned between the first electrode (5) and the second electrode (3), and detects and photoelectrically converts light in the first wavelength region. The reflective layer (2) is positioned on the opposite side to the photoelectric conversion layer (4), as seen from the second electrode (3), and reflects, toward the photoelectric conversion layer (4), light in the first wavelength region that has been transmitted through the first electrode (5), the photoelectric conversion layer (4), and the second electrode (3).

Description

光電変換素子、光検出装置、および電子機器Photoelectric conversion element, photodetector, and electronic device
 本開示は、光電変換を行う光電変換素子、ならびにそれを備えた光検出装置および電子機器に関する。 The present disclosure relates to a photoelectric conversion element that performs photoelectric conversion, and a photodetector and electronic equipment having the same.
 これまでに、可視光などを受光して光電変換を行う光電変換層を含む光電変換素子、およびそれを備えた固体撮像装置が提案されている(例えば、特許文献1参照)。 So far, a photoelectric conversion element including a photoelectric conversion layer that performs photoelectric conversion by receiving visible light or the like, and a solid-state imaging device including the same have been proposed (see, for example, Patent Document 1).
特開2018-98438号公報JP 2018-98438 A
 ところで、固体撮像装置では、機能向上が求められている。 By the way, solid-state imaging devices are required to improve their functions.
 したがって、高い機能を有する光電変換素子を提供することが望まれる。 Therefore, it is desirable to provide photoelectric conversion elements with high functionality.
 本開示の一実施形態としての光電変換素子は、第1電極と、第2電極と、光電変換層と、反射層とを有する積層構造を含む。第1電極は、第1の波長域の光を透過する。第2電極は、第1電極と対向し、第1の波長域の光を透過する。光電変換層は、第1電極と第2電極との間に位置し、第1の波長域の光を検出して光電変換を行う。反射層は、第2電極から見て光電変換層と反対側に位置し、第1電極、光電変換層、および第2 電極を透過する第1の波長域の光を光電変換層へ向けて反射する。 A photoelectric conversion element as one embodiment of the present disclosure includes a laminated structure having a first electrode, a second electrode, a photoelectric conversion layer, and a reflective layer. The first electrode transmits light in the first wavelength band. The second electrode faces the first electrode and transmits light in the first wavelength band. The photoelectric conversion layer is located between the first electrode and the second electrode, and detects light in the first wavelength band to perform photoelectric conversion. The reflective layer is located on the opposite side of the photoelectric conversion layer when viewed from the second electrode, and reflects light in the first wavelength band that passes through the first electrode, the photoelectric conversion layer, and the second electrode toward the photoelectric conversion layer. do.
本開示の第1の実施の形態に係る撮像素子の一例を表す断面模式図である。1 is a cross-sectional schematic diagram showing an example of an imaging device according to a first embodiment of the present disclosure; FIG. 本開示の第1の実施の形態の第1変形例としての撮像素子を表す断面模式図である。It is a cross-sectional schematic diagram showing the imaging element as a 1st modification of the 1st Embodiment of this indication. 本開示の第1の実施の形態の第2変形例としての撮像素子を表す断面模式図である。It is a cross-sectional schematic diagram showing the imaging element as a 2nd modification of 1st Embodiment of this indication. 本開示の第1の実施の形態の第23変形例としての撮像素子を表す断面模式図である。FIG. 20 is a schematic cross-sectional view showing an imaging device as a twenty-third modification of the first embodiment of the present disclosure; 本開示の第2の実施の形態に係る撮像装置を表す概略構成図である。FIG. 2 is a schematic configuration diagram representing an imaging device according to a second embodiment of the present disclosure; FIG. 電子機器の全体構成例を表す概略図である。1 is a schematic diagram showing an example of the overall configuration of an electronic device; FIG. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit; 内視鏡手術システムの概略的な構成の一例を示す図である。1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system; FIG. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。3 is a block diagram showing an example of functional configurations of a camera head and a CCU; FIG. 実験例の評価結果を表す図である。It is a figure showing the evaluation result of an experimental example. 導電膜の反射率の波長依存性を表す第1の特性図である。FIG. 4 is a first characteristic diagram showing wavelength dependence of reflectance of a conductive film; 導電膜の反射率の波長依存性を表す第2の特性図である。FIG. 4 is a second characteristic diagram showing the wavelength dependence of the reflectance of a conductive film; 本開示のその他の変形例としての撮像素子の一例を表す断面模式図である。It is a cross-sectional schematic diagram showing an example of an imaging device as another modified example of the present disclosure.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
 下部電極と接する反射層を備えた撮像素子の例。
2.第1の実施の形態の変形例
 2-1.下部電極と反射層との間に絶縁層がさらに設けられた撮像素子の例。
 2-2.第2の光電変換層がさらに設けられた撮像素子の例。
 2-3.湾曲した反射層が設けられた撮像素子の例。
3.第2の実施の形態
 複数の撮像素子を備えた撮像装置の例。
4.電子機器への適用例
5.移動体への応用例
6.内視鏡手術システムへの応用例
7.実験例
8.その他の変形例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First Embodiment An example of an imaging device having a reflective layer in contact with a lower electrode.
2. Modification of First Embodiment 2-1. An example of an imaging device further provided with an insulating layer between a lower electrode and a reflective layer.
2-2. An example of an imaging device further provided with a second photoelectric conversion layer.
2-3. An example of an imaging device provided with a curved reflective layer.
3. Second Embodiment An example of an imaging device having a plurality of imaging elements.
4. Example of application to electronic equipment5. Example of application to moving bodies6. Application example to endoscopic surgery system7. Experimental example 8. Other variations
<1.第1の実施の形態>
[撮像素子P1の構成]
 図1は、本開示の第1の実施の形態の撮像素子P1を模式的に表す断面図である。撮像素子P1は、本開示の「光電変換素子」に対応する一具体例である。撮像素子P1は、例えば図1に示したように、基板1と、反射層2と、下部電極3と、光電変換層4と、上部電極5とを順に有する積層構造を含んでいる。下部電極3と光電変換層4との間に、バッファ層6をさらに有していてもよい。光電変換層4と上部電極5との間に、バッファ層7をさらに有していてもよい。撮像素子P1は、絶縁層Zを貫くように設けられたコンタクト層8をさらに有していてもよい。絶縁層Zは、反射層2と同じ階層に設けられている。コンタクト層8は、例えば、下部電極3の下面と接続される上端部と、基板1に設けられた配線層Mの上面と接続される下端部とを含んでいる。
<1. First Embodiment>
[Configuration of image sensor P1]
FIG. 1 is a cross-sectional view schematically showing an imaging device P1 according to the first embodiment of the present disclosure. The imaging element P1 is a specific example corresponding to the "photoelectric conversion element" of the present disclosure. The imaging element P1 includes a laminated structure having a substrate 1, a reflective layer 2, a lower electrode 3, a photoelectric conversion layer 4, and an upper electrode 5 in this order, as shown in FIG. 1, for example. A buffer layer 6 may further be provided between the lower electrode 3 and the photoelectric conversion layer 4 . A buffer layer 7 may further be provided between the photoelectric conversion layer 4 and the upper electrode 5 . The imaging device P1 may further have a contact layer 8 provided to penetrate the insulating layer Z. As shown in FIG. The insulating layer Z is provided on the same layer as the reflective layer 2 . The contact layer 8 includes, for example, an upper end connected to the lower surface of the lower electrode 3 and a lower end connected to the upper surface of the wiring layer M provided on the substrate 1 .
 ここで、上部電極5は、本開示の「第1電極」に対応する一具体例である。下部電極3は、本開示の「第2電極」に対応する一具体例である。光電変換層4は、本開示の「光電変換層」に対応する一具体例である。反射層2は、本開示の「反射層」に対応する一具体例である。 Here, the upper electrode 5 is a specific example corresponding to the "first electrode" of the present disclosure. The lower electrode 3 is a specific example corresponding to the "second electrode" of the present disclosure. The photoelectric conversion layer 4 is a specific example corresponding to the "photoelectric conversion layer" of the present disclosure. The reflective layer 2 is a specific example corresponding to the "reflective layer" of the present disclosure.
 撮像素子P1では、上部電極5から見て基板1と反対側から入射された光が光電変換層4に到達し、入射した光に応じた電荷が光電変換層4で発生するようになっている。さらに、撮像素子P1は、下部電極3と上部電極5との間に、所定のバイアス電圧を印加することにより光電変換層4で発生した電荷を下部電極3に移動させ、下部電極3に移動した電荷に応じた信号を外部に取り出すことができるようになっている。なお、撮像素子P1は、例えば、真空蒸着法により形成することができるし、真空スパッタ法により形成することもできる。あるいは、撮像素子P1は塗布法を用いて形成することもできる。 In the imaging device P1, light incident from the side opposite to the substrate 1 when viewed from the upper electrode 5 reaches the photoelectric conversion layer 4, and charges corresponding to the incident light are generated in the photoelectric conversion layer 4. . Further, in the imaging element P1, a predetermined bias voltage is applied between the lower electrode 3 and the upper electrode 5, thereby causing the charge generated in the photoelectric conversion layer 4 to move to the lower electrode 3, and then move to the lower electrode 3. A signal corresponding to the charge can be taken out to the outside. Note that the imaging element P1 can be formed by, for example, a vacuum deposition method, or can be formed by a vacuum sputtering method. Alternatively, the imaging element P1 can also be formed using a coating method.
 基板1は、例えば、石英からなる支持基板である。 The substrate 1 is, for example, a supporting substrate made of quartz.
 反射層2は、例えば金属を主成分として含む。反射層2に主成分として含まれる金属としては、例えばアルミニウム(Al),Cu(銅),Ag(銀)またはAu(金)が挙げられる。反射層2の厚さは、例えば50nm以上100nm以下とすることができる。また、撮像素子P1では、下部電極3と反射層2とが直接接するように構成されている。 The reflective layer 2 contains, for example, metal as a main component. Metals contained as a main component in the reflective layer 2 include, for example, aluminum (Al), Cu (copper), Ag (silver), and Au (gold). The thickness of the reflective layer 2 can be, for example, 50 nm or more and 100 nm or less. Further, in the imaging device P1, the lower electrode 3 and the reflective layer 2 are configured to be in direct contact with each other.
 下部電極3および上部電極5は、それぞれ、導電性を有する。また、下部電極3および上部電極5は、それぞれ、光電変換層4が受光する第1の波長域の光を少なくとも透過可能に構成されている。第1の波長域とは、例えば可視域、近赤外域または赤外域である。すなわち、下部電極3および上部電極5は、例えば透明導電材料により構成することができる。ここでいう「透明導電材料」とは、光電変換層4へ入射する光に対して反射層2の透過率よりも高い透過率を示す材料を意味する。透明導電材料は、例えば、可視光又は赤外光に対して90%以上の透過率を有することが望ましい。具体的には、透明導電材料として、酸化インジウム、インジウム錫酸化物(ITO),インジウム-亜鉛酸化物(IZO),インジウム-ガリウム酸化物(IGO),インジウム-ガリウム-亜鉛酸化物(IGZO,In -GaZnO4),IFO(フッ素添加インジウム酸化物),酸化錫(SnO2),ATO(SbドープのSnO2),FTO(フッ素添加錫酸化物),酸化亜鉛、アルミニウム- 亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO),ホウ素-亜鉛酸化物,酸化チタン(TiO2),ニオブ-チタン酸化物(TNO),酸化アンチモン,スピネル型酸化物,YbFe24構造を有する酸化物を挙げることができる。さらには、ガリウム酸化物、チタン酸化物、ニオブ酸化物、またはニッケル酸化物等を母層とする透明電極を挙げることができる。下部電極3の厚さおよび上部電極5の厚さは、それぞれ、例えば50nm以上100nm以下とすることができる。特に、下部電極3は、下部電極3の厚さをdとし、下部電極3を透過する光の波長をλ、下部電極3を透過する波長λの光に対する下部電極3の屈折率をnとしたとき、下記の式(1)を満足することが望ましい。
d=λ/(4×n) ……(1)
The lower electrode 3 and the upper electrode 5 are each conductive. Moreover, the lower electrode 3 and the upper electrode 5 are each configured to be able to transmit at least the light in the first wavelength band received by the photoelectric conversion layer 4 . The first wavelength range is, for example, a visible range, a near-infrared range, or an infrared range. That is, the lower electrode 3 and the upper electrode 5 can be made of, for example, a transparent conductive material. As used herein, the term “transparent conductive material” means a material that exhibits a transmittance higher than that of the reflective layer 2 with respect to light incident on the photoelectric conversion layer 4 . The transparent conductive material desirably has, for example, a transmittance of 90% or more for visible light or infrared light. Specifically, transparent conductive materials include indium oxide, indium tin oxide (ITO), indium-zinc oxide (IZO), indium-gallium oxide (IGO), indium-gallium-zinc oxide (IGZO, In -GaZnO4 ), IFO (fluorinated indium oxide), tin oxide (SnO2), ATO (Sb - doped SnO2), FTO (fluorinated tin oxide), zinc oxide, aluminum-zinc oxide (AZO), Gallium-zinc oxide (GZO), boron-zinc oxide, titanium oxide (TiO 2 ), niobium-titanium oxide (TNO), antimony oxide, spinel-type oxides, oxides having a YbFe 2 O 4 structure. be able to. Further examples include transparent electrodes having gallium oxide, titanium oxide, niobium oxide, nickel oxide, or the like as a base layer. The thickness of the lower electrode 3 and the thickness of the upper electrode 5 can each be, for example, 50 nm or more and 100 nm or less. In particular, for the lower electrode 3, the thickness of the lower electrode 3 is d, the wavelength of light transmitted through the lower electrode 3 is λ, and the refractive index of the lower electrode 3 with respect to light having a wavelength λ that is transmitted through the lower electrode 3 is n. At that time, it is desirable to satisfy the following formula (1).
d=λ/(4×n) (1)
 光電変換層4は、例えば第1の波長域の光を吸収して、吸収した光に応じた電荷を発生する光電変換材料で構成される。光電変換層4は単層構造を有していてもよいし、多層構造を有していてもよい。光電変換層4を構成する光電変換材料としては、無機材料および有機材料の双方を用いることができる。但し、分光特性や受光感度に優れる点から、無機材料よりも有機材料を用いることが好ましい。光電変換層4を構成する有機材料としては、例えばキナクリドン骨格、フタロシアニン骨格、およびアントラキノン骨格の材料等が挙げられる。 The photoelectric conversion layer 4 is made of, for example, a photoelectric conversion material that absorbs light in the first wavelength band and generates charges according to the absorbed light. The photoelectric conversion layer 4 may have a single layer structure, or may have a multilayer structure. Both an inorganic material and an organic material can be used as the photoelectric conversion material forming the photoelectric conversion layer 4 . However, from the viewpoint of superior spectral characteristics and photosensitivity, it is preferable to use an organic material rather than an inorganic material. Examples of the organic material forming the photoelectric conversion layer 4 include quinacridone skeleton, phthalocyanine skeleton, and anthraquinone skeleton materials.
 バッファ層6は、例えば酸化チタンや酸化亜鉛により構成することができる。 The buffer layer 6 can be made of, for example, titanium oxide or zinc oxide.
 バッファ層7は、例えばポリ(3-ヘキシルチオフェン-2,5-ジイル)により構成することができる。 The buffer layer 7 can be made of poly(3-hexylthiophene-2,5-diyl), for example.
 コンタクト層8は、光電変換層4で発生した電荷を、下部電極3を介して配線層Mへ取り出す導電経路である。コンタクト層8は、例えばCu(銅)などにより構成され得る。 The contact layer 8 is a conductive path through which charges generated in the photoelectric conversion layer 4 are extracted to the wiring layer M through the lower electrode 3 . The contact layer 8 may be made of, for example, Cu (copper).
 絶縁層Zは、例えば酸化アルミニウム(Al23)や窒化アルミニウム(AlN)などにより構成され得る。 The insulating layer Z can be made of, for example, aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN).
 配線層Mは、例えばCu(銅)などにより構成され得る。 The wiring layer M can be made of, for example, Cu (copper).
[撮像素子P1の作用効果]
 以上、説明したように、本実施の形態の撮像素子P1は、上部電極5と、光電変換層4と、下部電極3と、反射層とを順に有する積層構造を含む。光電変換層4は、第1の波長域の光、すなわち例えば可視光または赤外光を検出して光電変換を行う。上部電極5および下部電極3は、いずれも第1の波長域の光を透過する。反射層2は、下部電極3から見て光電変換層4と反対側に位置し、上部電極5、光電変換層4、および下部電極3を透過する第1の波長域の光を光電変換層4へ向けて反射するようになっている。
[Action and effect of image sensor P1]
As described above, the imaging device P1 of the present embodiment includes a laminated structure having the upper electrode 5, the photoelectric conversion layer 4, the lower electrode 3, and the reflective layer in this order. The photoelectric conversion layer 4 detects light in the first wavelength range, ie, visible light or infrared light, and performs photoelectric conversion. Both the upper electrode 5 and the lower electrode 3 transmit light in the first wavelength band. The reflective layer 2 is located on the opposite side of the photoelectric conversion layer 4 when viewed from the lower electrode 3 , and reflects light in the first wavelength band that passes through the upper electrode 5 , the photoelectric conversion layer 4 , and the lower electrode 3 to the photoelectric conversion layer 4 . It is designed to reflect toward.
 このように、撮像素子P1では、下部電極3とは別に反射層2を設けるようにしたので、下部電極3を金属以外の材料により構成することができる。仮に、下部電極3を金属により構成するようにした場合には、製造過程において、あるいは、使用環境下において、下部電極3の表面に酸化被膜が生じる可能性がある。そのような酸化被膜が下部電極3の表面に生成されると、下部電極3と上部電極5との間の抵抗増加や、下部電極3の仕事関数の変動などが生じ得る。また、下部電極3を金属により構成するようにした場合には、バッファ層6へ金属の溶出が生じる可能性もある。そうした場合には、光電変換特性の劣化が懸念される。しかしながら、本実施の形態の撮像素子P1では、ITOなどの非金属の透明導電材料により下部電極3を構成するようにしているので、酸化被膜による抵抗の増加や仕事関数の変動、あるいは使用時におけるバッファ層6への金属の溶出を回避することができる。よって、撮像素子P1の光電変換性能を安定的に得ることができる。すなわち、製造過程や使用環境に起因する性能低下を抑制し、高い長期信頼性を得ることができる。 Thus, in the imaging device P1, the reflective layer 2 is provided separately from the lower electrode 3, so the lower electrode 3 can be made of a material other than metal. If the lower electrode 3 is made of metal, an oxide film may form on the surface of the lower electrode 3 during the manufacturing process or under the environment of use. If such an oxide film is formed on the surface of the lower electrode 3, an increase in resistance between the lower electrode 3 and the upper electrode 5, a change in the work function of the lower electrode 3, and the like may occur. Moreover, when the lower electrode 3 is made of metal, the metal may be eluted into the buffer layer 6 . In such a case, there is concern about deterioration of photoelectric conversion characteristics. However, in the imaging device P1 of the present embodiment, the lower electrode 3 is made of a non-metallic transparent conductive material such as ITO. Elution of metal into the buffer layer 6 can be avoided. Therefore, the photoelectric conversion performance of the image sensor P1 can be stably obtained. That is, it is possible to suppress deterioration in performance due to the manufacturing process and usage environment, and obtain high long-term reliability.
 さらに、撮像素子P1では、下部電極3から見て光電変換層4と反対側に、第1の波長域の光に対して高い反射率を示す反射層2を設けるようにしている。このため、光電変換層4を薄型化した場合であっても光路長を長くすることができ、外部量子効率(EQE)の低下を抑制できる。すなわち、光電変換効率の低下を抑制できる。また、光電変換層4の薄型化により、光電変換層4において生成された電荷の読み出し時間を短くすることができる。すなわち、応答性を向上させることができる。したがって、優れた外部量子効率(EQE)の確保と、優れた応答性の確保との両立を図ることができる。 Furthermore, in the imaging element P1, the reflective layer 2 exhibiting a high reflectance with respect to the light in the first wavelength band is provided on the opposite side of the photoelectric conversion layer 4 when viewed from the lower electrode 3. Therefore, even when the photoelectric conversion layer 4 is thinned, the optical path length can be lengthened, and a decrease in external quantum efficiency (EQE) can be suppressed. That is, a decrease in photoelectric conversion efficiency can be suppressed. In addition, by making the photoelectric conversion layer 4 thinner, it is possible to shorten the readout time of the charges generated in the photoelectric conversion layer 4 . That is, responsiveness can be improved. Therefore, it is possible to ensure both excellent external quantum efficiency (EQE) and excellent responsiveness.
 また、撮像素子P1では、下部電極3と反射層2とが直接接するようにしている。このため、撮像素子P1の全体の厚さをより薄くするのに有利となる。また、反射層2を光電変換層4に近接させることができるので、光電変換層4における光電変換効率を高めるのに有利となる。 Also, in the imaging device P1, the lower electrode 3 and the reflective layer 2 are in direct contact. Therefore, it is advantageous to reduce the thickness of the entire image sensor P1. Moreover, since the reflective layer 2 can be brought close to the photoelectric conversion layer 4 , it is advantageous for increasing the photoelectric conversion efficiency of the photoelectric conversion layer 4 .
<2.第1の実施の形態の変形例>
[第1変形例]
 図2は、本開示の第1の実施の形態の第1変形例としての撮像素子P2を模式的に表す断面図である。撮像素子P2もまた、本開示の「光電変換素子」に対応する一具体例である。
<2. Modification of First Embodiment>
[First modification]
FIG. 2 is a cross-sectional view schematically showing an imaging device P2 as a first modification of the first embodiment of the present disclosure. The imaging element P2 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
 撮像素子P2は、図2に示したように、下部電極3と反射層2との間に設けられた絶縁層Z2をさらに備えるようにしたものである。絶縁層Z2は、例えば酸化アルミニウム(Al23)や窒化アルミニウム(AlN)などにより構成され得る。撮像素子P2の構成は、絶縁層Z2をさらに備えるようにした点を除き、他は撮像素子P1の構成と実質的に同じである。 The imaging device P2 further includes an insulating layer Z2 provided between the lower electrode 3 and the reflective layer 2, as shown in FIG. The insulating layer Z2 can be made of, for example, aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN). The configuration of the imaging device P2 is substantially the same as the configuration of the imaging device P1, except that an insulating layer Z2 is further provided.
 このように、撮像素子P2では、下部電極3と反射層2との間に設けられた絶縁層Z2をさらに備えるようにした。このため、例えば反射層2が金属により構成されている場合、反射層2の表面に酸化被膜が形成されることによる下部電極3への影響、例えば下部電極3の抵抗増加を確実に避けることができる。 Thus, the imaging element P2 further includes the insulating layer Z2 provided between the lower electrode 3 and the reflective layer 2. As shown in FIG. Therefore, for example, when the reflective layer 2 is made of metal, it is possible to reliably avoid the influence of the formation of an oxide film on the surface of the reflective layer 2 on the lower electrode 3, such as an increase in the resistance of the lower electrode 3. can.
[第2変形例]
 図3は、本開示の第1の実施の形態の第2変形例としての撮像素子P3を模式的に表す断面図である。撮像素子P3もまた、本開示の「光電変換素子」に対応する一具体例である。
[Second modification]
FIG. 3 is a cross-sectional view schematically showing an imaging device P3 as a second modification of the first embodiment of the present disclosure. The imaging element P3 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
 撮像素子P3は、図3に示したように、半導体層9と、絶縁層Z3と、絶縁層Z4とをさらに備えるようにしたものである。半導体層9は、下部電極3と光電変換層4との間に設けられている。絶縁層Z3は、半導体層9と下部電極3との間に設けられている。絶縁層Z4は、下部電極3と同じ階層に設けられている。絶縁層Z3,Z4は、例えば酸化アルミニウム(Al2O3)や窒化アルミニウム(AlN)などにより構成され得る。撮像素子P3では、コンタクト層8が、例えば絶縁層Z4、絶縁層Z3、および絶縁層Zを貫通して半導体層9と配線層Mとを繋ぐように構成されている。半導体層9を構成する材料としては、バンドギャップの値が大きく(例えば、3.0eV以上のバンドギャップの値)、光電変換層4を構成する材料よりも高い移動度を有する材料を用いることが好ましい。具体的には、IGZO等の酸化物半導体材料;遷移金属ダイカルコゲナイド;シリコンカーバイド;ダイヤモンド;グラフェン;カーボンナノチューブ;縮合多環炭化水素化合物や縮合複素環化合物等の有機半導体材料を挙げることができる。 The imaging device P3 further includes a semiconductor layer 9, an insulating layer Z3, and an insulating layer Z4, as shown in FIG. The semiconductor layer 9 is provided between the lower electrode 3 and the photoelectric conversion layer 4 . The insulating layer Z3 is provided between the semiconductor layer 9 and the lower electrode 3 . The insulating layer Z4 is provided on the same layer as the lower electrode 3 . The insulating layers Z3 and Z4 can be made of, for example, aluminum oxide (Al2O3) or aluminum nitride (AlN). In the imaging device P3, the contact layer 8 is configured to penetrate the insulating layer Z4, the insulating layer Z3, and the insulating layer Z to connect the semiconductor layer 9 and the wiring layer M, for example. As a material forming the semiconductor layer 9, a material having a large bandgap value (for example, a bandgap value of 3.0 eV or more) and having a higher mobility than the material forming the photoelectric conversion layer 4 can be used. preferable. Specific examples include oxide semiconductor materials such as IGZO; transition metal dichalcogenides; silicon carbide; diamond; graphene; carbon nanotubes;
 下部電極3は、絶縁層Z3および半導体層9と共に一種のキャパシタを形成し、光電変換層4において発生する電荷を半導体層9の一部、例えば半導体層9のうち絶縁層Z3を介して下部電極3に対応した領域部分に蓄積するようになっている。 The lower electrode 3 forms a kind of capacitor together with the insulating layer Z3 and the semiconductor layer 9, and charges generated in the photoelectric conversion layer 4 are transferred to the lower electrode through a part of the semiconductor layer 9, for example, the insulating layer Z3 of the semiconductor layer 9. 3 is stored in the area corresponding to the number 3.
[第3変形例]
 図4は、本開示の第1の実施の形態の第3変形例としての撮像素子P4を模式的に表す断面図である。撮像素子P4もまた、本開示の「光電変換素子」に対応する一具体例である。
[Third Modification]
FIG. 4 is a cross-sectional view schematically showing an imaging device P4 as a third modified example of the first embodiment of the present disclosure. The imaging element P4 is also a specific example corresponding to the "photoelectric conversion element" of the present disclosure.
 撮像素子P4では、図4に示したように、反射層2が、光電変換層4に向けて凹んだ凹面2Uを有するように湾曲している。撮像素子P4の構成は、反射層2が凹面2Uを有するようにした点を除き、他は撮像素子P2の構成と実質的に同じである。 In the imaging device P4, as shown in FIG. 4, the reflective layer 2 is curved so as to have a concave surface 2U that is recessed toward the photoelectric conversion layer 4. The configuration of the imaging device P4 is substantially the same as the configuration of the imaging device P2 except that the reflective layer 2 has a concave surface 2U.
 撮像素子P4では、反射層2が凹面2Uを有するようにしたので、下部電極3を透過した斜入射光が凹面2Uにおいて反射したのち、光電変換層4に再度入射するようになる。よって、光電変換層4における光電変換効率がさらに向上することが期待される。 In the imaging device P4, the reflective layer 2 has the concave surface 2U, so the obliquely incident light that has passed through the lower electrode 3 is reflected by the concave surface 2U and then enters the photoelectric conversion layer 4 again. Therefore, it is expected that the photoelectric conversion efficiency in the photoelectric conversion layer 4 is further improved.
<2.第2の実施の形態>
[撮像装置10の構成]
 次に、図5を参照して、上記第1の実施の形態および変形例で説明した撮像素子P1~P4が適用され得る第2の実施の形態としての撮像装置10について説明する。
<2. Second Embodiment>
[Configuration of imaging device 10]
Next, referring to FIG. 5, an imaging apparatus 10 as a second embodiment to which the imaging elements P1 to P4 described in the first embodiment and the modified example can be applied will be described.
(全体構成例)
 図5は、本開示の一実施の形態に係る固体撮像装置1の全体構成例を表している。固体撮像装置1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。固体撮像装置1は、例えば光学レンズ系を介して被写体からの入射光(像光)を取り込み、撮像面上に結像された入射光を画素単位で電気信号に変換して画素信号として出力するようになっている。固体撮像装置1は、例えば半導体基板11上に、撮像エリアとしての画素部100と、その画素部100の周辺領域に配置された垂直駆動回路111、カラム信号処理回路112、水平駆動回路113、出力回路114、制御回路115および入出力端子116とを有している。この固体撮像装置1は、本開示の「光検出装置」に対応する一具体例である。
(Overall configuration example)
FIG. 5 shows an overall configuration example of a solid-state imaging device 1 according to an embodiment of the present disclosure. The solid-state imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor. The solid-state imaging device 1 takes in incident light (image light) from a subject, for example, via an optical lens system, converts the incident light imaged on the imaging surface into an electric signal for each pixel, and outputs the electric signal as a pixel signal. It's like The solid-state imaging device 1 includes, for example, a semiconductor substrate 11, a pixel section 100 as an imaging area, a vertical driving circuit 111, a column signal processing circuit 112, a horizontal driving circuit 113, and an output It has a circuit 114 , a control circuit 115 and an input/output terminal 116 . This solid-state imaging device 1 is a specific example corresponding to the "photodetector" of the present disclosure.
 画素部100には、例えば、行列状に2次元配置された複数の画素Pを有している。画素部100には、例えば水平方向(紙面横方向)に並ぶ複数の画素Pにより構成される画素行と、垂直方向(紙面縦方向)に並ぶ複数の画素Pにより構成される画素列とがそれぞれ複数設けられている。画素部100には、例えば、画素行ごとに1つの画素駆動線Lread(行選択線およびリセット制御線)が配線され、画素列ごとに1つの垂直信号線Lsigが配線されている。画素駆動線Lreadは、各画素Pからの信号読み出しのための駆動信号を伝送するものである。複数の画素駆動線Lreadの端部は、垂直駆動回路111の各画素行に対応した複数の出力端子にそれぞれ接続されている。 The pixel unit 100 has, for example, a plurality of pixels P arranged two-dimensionally in a matrix. The pixel unit 100 includes, for example, pixel rows each composed of a plurality of pixels P arranged in the horizontal direction (horizontal direction of the paper) and pixel columns composed of a plurality of pixels P arranged in the vertical direction (the vertical direction of the paper). Multiple are provided. In the pixel section 100, for example, one pixel drive line Lread (row selection line and reset control line) is wired for each pixel row, and one vertical signal line Lsig is wired for each pixel column. The pixel drive line Lread transmits a drive signal for signal readout from each pixel P. FIG. The ends of the plurality of pixel drive lines Lread are connected to the plurality of output terminals corresponding to the pixel rows of the vertical drive circuit 111, respectively.
 垂直駆動回路111は、シフトレジスタやアドレスデコーダ等によって構成されており、画素部100における各画素Pを、例えば、画素行単位で駆動する画素駆動部である。垂直駆動回路111によって選択走査された画素行の各画素Pから出力される信号は、垂直信号線Lsigの各々を通してカラム信号処理回路112に供給される。 The vertical drive circuit 111 is composed of a shift register, an address decoder, and the like, and is a pixel drive section that drives each pixel P in the pixel section 100, for example, in units of pixel rows. A signal output from each pixel P in a pixel row selectively scanned by the vertical driving circuit 111 is supplied to the column signal processing circuit 112 through each vertical signal line Lsig.
 カラム信号処理回路112は、垂直信号線Lsig毎に設けられたアンプや水平選択スイッチ等によって構成されている。 The column signal processing circuit 112 is composed of amplifiers, horizontal selection switches, etc. provided for each vertical signal line Lsig.
 水平駆動回路113は、シフトレジスタやアドレスデコーダ等によって構成され、カラム信号処理回路112の各水平選択スイッチを走査しつつ順番に駆動するものである。この水平駆動回路113による選択走査により、複数の垂直信号線Lsigの各々を通して伝送される各画素Pの信号が順番に水平信号線121に出力され、その水平信号線121を通じて半導体基板11の外部へ伝送されるようになっている。 The horizontal drive circuit 113 is composed of a shift register, an address decoder, etc., and sequentially drives the horizontal selection switches of the column signal processing circuit 112 while scanning them. By the selective scanning by the horizontal driving circuit 113, the signals of the pixels P transmitted through each of the plurality of vertical signal lines Lsig are sequentially output to the horizontal signal line 121, and are output to the outside of the semiconductor substrate 11 through the horizontal signal line 121. It is designed to be transmitted.
 出力回路114は、カラム信号処理回路112の各々から水平信号線121を介して順次供給される信号に対し、信号処理を行って出力するものである。出力回路114は、例えば、バッファリングのみを行う場合もあるし、黒レベル調整、列ばらつき補正および各種デジタル信号処理等が行われる場合もある。 The output circuit 114 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 112 via the horizontal signal line 121 and outputs the processed signals. For example, the output circuit 114 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
 垂直駆動回路111、カラム信号処理回路112、水平駆動回路113、水平信号線121および出力回路114からなる回路部分は、半導体基板11上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。 A circuit portion consisting of the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, the horizontal signal line 121 and the output circuit 114 may be formed directly on the semiconductor substrate 11, or may be formed on the external control IC. It may be arranged. Moreover, those circuit portions may be formed on another substrate connected by a cable or the like.
 制御回路115は、半導体基板11の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、撮像素子である画素Pの内部情報等のデータを出力するものである。制御回路115はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動回路111、カラム信号処理回路112および水平駆動回路113等の周辺回路の駆動制御を行う。 The control circuit 115 receives a clock given from the outside of the semiconductor substrate 11, data instructing an operation mode, etc., and outputs data such as internal information of the pixel P which is an imaging device. The control circuit 115 further has a timing generator that generates various timing signals, and controls the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, etc. based on the various timing signals generated by the timing generator. It controls driving of peripheral circuits.
 入出力端子116は、外部との信号のやり取りを行うものである。 The input/output terminal 116 exchanges signals with the outside.
 撮像装置10では、画素部100において行列状に配列された複数の画素Pのうちの一の画素Pのそれぞれに、上記第1の実施の形態およびその変形例として説明した撮像素子P1~P4が適用され得る。このため、長期信頼性に優れ、小型でありながら高い撮像性能が得られる。 In the imaging device 10, one pixel P among the plurality of pixels P arranged in a matrix in the pixel unit 100 is provided with the imaging elements P1 to P4 described in the first embodiment and its modification. can be applied. As a result, long-term reliability is excellent, and high imaging performance can be obtained in spite of its small size.
<4.電子機器への適用例>
 図6は、本技術を適用した電子機器2000の構成例を示すブロック図である。電子機器2000は、例えばカメラとしての機能を有する。
<4. Examples of application to electronic devices>
FIG. 6 is a block diagram showing a configuration example of an electronic device 2000 to which the present technology is applied. Electronic device 2000 has a function as a camera, for example.
 電子機器2000は、レンズ群などからなる光学部2001、上述の固体撮像装置1など(以下、固体撮像装置1等という。)が適用される光検出装置2002、およびカメラ信号処理回路であるDSP(Digital Signal Processor)回路2003を備える。また、電子機器2000は、フレームメモリ2004、表示部2005、記録部2006、操作部2007、および電源部2008も備える。DSP回路2003、フレームメモリ2004、表示部2005、記録部2006、操作部2007および電源部2008は、バスライン2009を介して相互に接続されている。 An electronic device 2000 includes an optical unit 2001 including a group of lenses, a photodetector 2002 to which the above-described solid-state imaging device 1 or the like (hereinafter referred to as the solid-state imaging device 1 or the like) is applied, and a DSP (which is a camera signal processing circuit). Digital Signal Processor) circuit 2003 is provided. Electronic device 2000 also includes frame memory 2004 , display unit 2005 , recording unit 2006 , operation unit 2007 , and power supply unit 2008 . DSP circuit 2003 , frame memory 2004 , display unit 2005 , recording unit 2006 , operation unit 2007 and power supply unit 2008 are interconnected via bus line 2009 .
 光学部2001は、被写体からの入射光(像光)を取り込んで光検出装置2002の撮像面上に結像する。光検出装置2002は、光学部2001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。 The optical unit 2001 captures incident light (image light) from a subject and forms an image on the imaging surface of the photodetector 2002 . The photodetector 2002 converts the amount of incident light imaged on the imaging surface by the optical unit 2001 into an electric signal for each pixel, and outputs the electric signal as a pixel signal.
 表示部2005は、例えば、液晶パネルや有機ELパネル等のパネル型表示装置からなり、光検出装置2002で撮像された動画または静止画を表示する。記録部2006は、光検出装置2002で撮像された動画または静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。 The display unit 2005 is composed of, for example, a panel-type display device such as a liquid crystal panel or an organic EL panel, and displays moving images or still images captured by the photodetector 2002 . A recording unit 2006 records a moving image or still image captured by the photodetector 2002 in a recording medium such as a hard disk or a semiconductor memory.
 操作部2007は、ユーザによる操作の下に、電子機器2000が持つ様々な機能について操作指令を発する。電源部2008は、DSP回路2003、フレームメモリ2004、表示部2005、記録部2006および操作部2007の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation unit 2007 issues operation commands for various functions of the electronic device 2000 under the user's operation. A power supply unit 2008 appropriately supplies various power supplies as operating power supplies for the DSP circuit 2003, the frame memory 2004, the display unit 2005, the recording unit 2006, and the operation unit 2007 to these supply targets.
 上述したように、光検出装置2002として、上述した撮像装置10を用いることで、良好な画像の取得が期待できる。 As described above, by using the imaging device 10 described above as the photodetection device 2002, acquisition of a good image can be expected.
 <5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図7は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 7 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図7に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 7, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, etc. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図7の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 7, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図8は、撮像部12031の設置位置の例を示す図である。 FIG. 8 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図8では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 8, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図8には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 It should be noted that FIG. 8 shows an example of the imaging range of the imaging units 12101 to 12104 . The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、例えば図1の撮像素子P1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, for example, the imaging device P1 in FIG. 1 can be applied to the imaging unit 12031 . By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to obtain a captured image that is easier to see, thereby reducing driver fatigue.
 <6.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<6. Example of application to an endoscopic surgery system>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図9は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 9 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (this technology) can be applied.
 図9では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 9 illustrates a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 . As illustrated, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 . In the illustrated example, an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 . Note that the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system. The imaging device photoelectrically converts the observation light to generate an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 11100 with irradiation light for imaging a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 . For example, the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like. The pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in. The recorder 11207 is a device capable of recording various types of information regarding surgery. The printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 It should be noted that the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out. Further, in this case, the observation target is irradiated with laser light from each of the RGB laser light sources in a time-division manner, and by controlling the drive of the imaging element of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging element.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. By controlling the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Also, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, the wavelength dependence of light absorption in body tissues is used to irradiate a narrower band of light than the irradiation light (i.e., white light) used during normal observation, thereby observing the mucosal surface layer. So-called Narrow Band Imaging, in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is examined. A fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
 図10は、図9に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 10 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405. The CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 . The camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 A lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 . A lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The number of imaging elements constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type). When the image pickup unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. The 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site. Note that when the imaging unit 11402 is configured as a multi-plate type, a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Also, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 . For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Also, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 . The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 . The communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Also, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 . Image signals and control signals can be transmitted by electric communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 In addition, the control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 . At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize. When displaying the captured image on the display device 11202, the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、カメラヘッド11102の撮像部11402に適用され得る。具体的には、例えば図1の撮像素子P1は、撮像部11402に適用することができる。撮像部11402に本開示に係る技術を適用することにより、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。 An example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to, for example, the imaging unit 11402 of the camera head 11102 among the configurations described above. Specifically, for example, the imaging element P1 in FIG. 1 can be applied to the imaging unit 11402 . By applying the technology according to the present disclosure to the imaging unit 11402, a clearer image of the surgical site can be obtained, so that the operator can reliably check the surgical site.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Although the endoscopic surgery system has been described as an example here, the technology according to the present disclosure may also be applied to, for example, a microsurgery system.
<7.実験例>
 以下、いくつかの実験例により本開示を具体的に説明する。ただし、本開示は以下の実験例のみに限定されるものではない。
<7. Experimental example>
The present disclosure will be specifically described below with some experimental examples. However, the present disclosure is not limited only to the following experimental examples.
(撮像素子の構成)
[実施例1]
 実施例1として、図1に示した撮像素子P1のサンプルを作製した。ここでは、基板1の上に、反射層2、下部電極3、バッファ層6、光電変換層4、バッファ層7、上部電極5を、真空スパッタ法、真空蒸着法、あるいはスピンコート法により順に積層するようにした。反射層2は、Al(アルミニウム)により50nmの厚さとなるように形成した。下部電極3は、ITOにより50nmの厚さとなるように形成した。また、光電変換層4は、120nmの厚さとなるように形成した。
(Structure of image sensor)
[Example 1]
As Example 1, a sample of the imaging device P1 shown in FIG. 1 was produced. Here, a reflective layer 2, a lower electrode 3, a buffer layer 6, a photoelectric conversion layer 4, a buffer layer 7, and an upper electrode 5 are sequentially laminated on a substrate 1 by a vacuum sputtering method, a vacuum evaporation method, or a spin coating method. I made it The reflective layer 2 was formed of Al (aluminum) to a thickness of 50 nm. The lower electrode 3 was formed of ITO to a thickness of 50 nm. Moreover, the photoelectric conversion layer 4 was formed to have a thickness of 120 nm.
[実施例2]
 実施例2として、図1に示した撮像素子P1のサンプルを作製した。ここでは、光電変換層4が240nmの厚さとなるようにした。その点を除き、他は実施例1と同様の構成となるように実施例2のサンプルを作製した。
[Example 2]
As Example 2, a sample of the imaging device P1 shown in FIG. 1 was produced. Here, the photoelectric conversion layer 4 was made to have a thickness of 240 nm. A sample of Example 2 was produced so as to have the same configuration as that of Example 1 except for this point.
[比較例1]
 比較例1として、図1に示した撮像素子P1の構成から反射層2を取り除いた構成を有する撮像素子のサンプルを作製した。その点を除き、比較例1の構成は実施例1と同様の構成とした。
[Comparative Example 1]
As Comparative Example 1, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the configuration of the imaging device P1 shown in FIG. 1 was manufactured. The configuration of Comparative Example 1 was the same as that of Example 1 except for this point.
[比較例2]
 比較例2として、図1に示した撮像素子P1の構成から反射層2を取り除いた構成を有する撮像素子のサンプルを作製した。その点を除き、比較例2の構成は実施例2と同様の構成とした。
[Comparative Example 2]
As Comparative Example 2, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the configuration of the imaging device P1 shown in FIG. 1 was manufactured. Except for this point, the configuration of Comparative Example 2 was the same as that of Example 2.
[比較例3]
 比較例3として、図1に示した撮像素子P1から反射層2を取り除いた構成を有する撮像素子のサンプルを作製した。さらに、比較例3では、下部電極3をAl(アルミニウム)により50nmの厚さとなるように形成した。すなわち、比較例3では、下部電極3が光電変換層4に対し反射層としての作用を及ぼすようにした。
[Comparative Example 3]
As Comparative Example 3, a sample of an imaging device having a configuration in which the reflective layer 2 was removed from the imaging device P1 shown in FIG. 1 was manufactured. Furthermore, in Comparative Example 3, the lower electrode 3 was formed of Al (aluminum) so as to have a thickness of 50 nm. That is, in Comparative Example 3, the lower electrode 3 acted as a reflective layer on the photoelectric conversion layer 4 .
(撮像素子の性能評価)
 上記実施例1~2および比較例1~3の各撮像素子のサンプルについて、外部量子効率(EQE)、応答性、抵抗増加の有無、仕事関数の変化の有無、金属溶出の有無、1400nmの光に対する反射率をそれぞれ評価した。その結果を図11にまとめて示す。なお、図11には、実施例1~2および比較例1~3の撮像素子のサンプルにおける、下部電極、反射層、断面構造、および光電変換層の厚さの各情報を併せて記載している。
(Performance evaluation of imaging device)
External quantum efficiency (EQE), responsiveness, presence/absence of resistance increase, presence/absence of change in work function, presence/absence of metal elution, and 1400 nm light for the samples of the imaging devices of Examples 1 and 2 and Comparative Examples 1 and 3. The reflectance for each was evaluated. The results are collectively shown in FIG. Note that FIG. 11 also shows information on the thickness of the lower electrode, the reflective layer, the cross-sectional structure, and the photoelectric conversion layer in the samples of the imaging elements of Examples 1 and 2 and Comparative Examples 1 and 3. there is
反射率については、積分球を有する紫外可視近赤外分光光度計V770(日本分光株式会社製)を用い、反射モードで1400nmの波長光の反射率を測定した。 As for the reflectance, an ultraviolet-visible-near-infrared spectrophotometer V770 (manufactured by JASCO Corporation) having an integrating sphere was used to measure the reflectance of light with a wavelength of 1400 nm in reflection mode.
 また、図12Aは、Al/ITOの2層膜、Alの単層膜、ITOの単層膜のそれぞれについての反射率[%]の波長依存性を示している。ここでは、ガラス基板の上に、Al/ITOの2層膜、Alの単層膜、またはITOの単層膜をそれぞれ形成した3種類のサンプルにつき、ガラス基板と反対側から波長範囲300nm以上1600nm以下の光を照射するようにした。さらに、図12Bは、Cu/ITOの2層膜、Cuの単層膜、ITOの単層膜のそれぞれについての反射率[%]の波長依存性を示している。ここでは、ガラス基板の上に、Cu/ITOの2層膜、Cuの単層膜、またはITOの単層膜をそれぞれ形成した3種類のサンプルにつき、ガラス基板と反対側から波長範囲300nm以上1600nm以下の光を照射するようにした。図12Aの結果から、ITOの単層膜と比較
して、Al/ITOの2層膜は十分に高い反射率を示すことがわかった。図12Bの結果から、ITOの単層膜と比較して、Cu/ITOの2層膜は十分に高い反射率を示すことがわかった。
FIG. 12A shows the wavelength dependence of the reflectance [%] for each of the Al/ITO two-layer film, the Al single-layer film, and the ITO single-layer film. Here, three types of samples each having an Al/ITO two-layer film, an Al single-layer film, or an ITO single-layer film formed on a glass substrate were examined from the opposite side of the glass substrate in a wavelength range of 300 nm to 1600 nm. I set it to irradiate the following light. Further, FIG. 12B shows the wavelength dependence of the reflectance [%] for each of the Cu/ITO two-layer film, the Cu single-layer film, and the ITO single-layer film. Here, for three types of samples in which a Cu/ITO two-layer film, a Cu single-layer film, or an ITO single-layer film were formed on a glass substrate, the wavelength range of 300 nm to 1600 nm was measured from the opposite side of the glass substrate. I set it to irradiate the following light. From the results of FIG. 12A, it was found that the Al/ITO two-layer film exhibited a sufficiently high reflectance compared to the ITO single-layer film. From the results of FIG. 12B, it was found that the Cu/ITO two-layer film exhibited a sufficiently high reflectance compared to the ITO single-layer film.
 図11に示したように、実施例1~2では、いずれも、外部量子効率(EQE)および応答性において良好な性能が得られた。また、実施例1~2では、抵抗増加、仕事関数の変化、および金属溶出についても認められなかった。さらに、反射層2において93%~95%という高い反射率を示した。 As shown in FIG. 11, in Examples 1 and 2, good performance was obtained in terms of external quantum efficiency (EQE) and responsiveness. Moreover, in Examples 1 and 2, no increase in resistance, no change in work function, and no metal elution were observed. Furthermore, the reflective layer 2 exhibited a high reflectance of 93% to 95%.
 これに対し、比較例1では、実施例1と比較して、外部量子効率(EQE)の低下が認められた。また、比較例2では、実施例2と比較して、外部量子効率(EQE)の低下が認められた。比較例1および比較例2では、反射層2を有しないことが外部量子効率(EQE)の低下を招いているものと考えられる。また、比較例3では、外部量子効率(EQE)および応答性の双方において十分な性能が得られなかった。さらに、比較例3~4では、抵抗増加、仕事関数の変化、および金属溶出がそれぞれ認められた。下部電極3の表面に酸化被膜が形成された影響と考えられる。 On the other hand, in Comparative Example 1, a decrease in external quantum efficiency (EQE) was observed compared to Example 1. Moreover, in Comparative Example 2, a decrease in external quantum efficiency (EQE) was observed as compared with Example 2. In Comparative Examples 1 and 2, it is considered that the absence of the reflective layer 2 causes a decrease in external quantum efficiency (EQE). Moreover, in Comparative Example 3, sufficient performance was not obtained in both external quantum efficiency (EQE) and responsiveness. Furthermore, in Comparative Examples 3 and 4, an increase in resistance, a change in work function, and metal elution were observed. This is considered to be due to the formation of an oxide film on the surface of the lower electrode 3 .
(まとめ)
 以上の結果から、本開示の撮像素子によれば、優れた外部量子効率(EQE)の確保と、優れた応答性の確保とを両立できることが確認できた。また、実施例1~2では抵抗増加、仕事関数の変化、および金属溶出についても認められなかったことから、本開示の撮像素子によれば、製造過程や使用環境に起因する性能低下を抑制し、高い長期信頼性を得ることができることも確認できた。
(summary)
From the above results, it was confirmed that according to the imaging device of the present disclosure, it is possible to ensure both excellent external quantum efficiency (EQE) and excellent responsiveness. In addition, in Examples 1 and 2, no increase in resistance, change in work function, and metal elution were observed. , it was also confirmed that high long-term reliability can be obtained.
<8.その他の変形例>
 以上、いくつかの実施の形態および変形例、ならびにそれらの適用例もしくは応用例(以下、実施の形態等という。)を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば本開示の光電変換素子は、図13に示した構成を有する撮像素子P5であってもよい。撮像素子P5は、下部電極11、有機光電変換層13および上部電極12の積層構造体から成る光電変換部を備えている。下部電極11の、有機光電変換層13と反対側には反射層14が設けられている。撮像素子P5では、半導体基板70に設けられ、下部電極11が接続された制御部を更に備えており、光電変換部は、半導体基板70の上方に配置されている。ここで、半導体基板70における光入射面を上方とし、半導体基板70の反対側を下方とする。半導体基板70の下方には複数の配線から成る配線層62が設けられている。また、半導体基板70には、制御部を構成する少なくとも電荷蓄積部(浮遊拡散層FD)及び増幅トランジスタTR1が設けられており、下部電極11は、浮遊拡散層FD及び増幅トランジスタTR1のゲート部に接続されている。電荷蓄積部(浮遊拡散層FD1)は、有機光電変換層13において生成した電荷を蓄積する。半導体基板70には、更に、制御部を構成するリセット・トランジスタTR2及び選択トランジスタTR3が設けられている。また、浮遊拡散層FD1は、リセット・トランジスタTR2の一方のソース/ドレイン領域に接続されており、増幅トランジスタTR1の一方のソース/ドレイン領域は、選択トランジスタTR3の一方のソース/ドレイン領域に接続されており、選択トランジスタTR3の他方のソース/ドレイン領域は信号線に接続されている。
<8. Other modified examples>
As described above, the present disclosure has been described by citing several embodiments, modifications, and application examples or application examples thereof (hereinafter referred to as embodiments, etc.), but the present disclosure is limited to the above embodiments, etc. Various modifications are possible. For example, the photoelectric conversion element of the present disclosure may be the imaging element P5 having the configuration shown in FIG. The image pickup device P5 has a photoelectric conversion section composed of a laminated structure of a lower electrode 11 , an organic photoelectric conversion layer 13 and an upper electrode 12 . A reflective layer 14 is provided on the side of the lower electrode 11 opposite to the organic photoelectric conversion layer 13 . The imaging device P5 further includes a control section provided on the semiconductor substrate 70 and connected to the lower electrode 11, and the photoelectric conversion section is arranged above the semiconductor substrate 70. FIG. Here, the light incident surface of the semiconductor substrate 70 is the upper side, and the opposite side of the semiconductor substrate 70 is the lower side. A wiring layer 62 composed of a plurality of wirings is provided under the semiconductor substrate 70 . In addition, the semiconductor substrate 70 is provided with at least a charge storage portion (floating diffusion layer FD) and an amplification transistor TR1, which constitute a control portion, and the lower electrode 11 is connected to the floating diffusion layer FD and the gate portion of the amplification transistor TR1. It is connected. The charge storage portion (floating diffusion layer FD1) stores charges generated in the organic photoelectric conversion layer 13 . The semiconductor substrate 70 is further provided with a reset transistor TR2 and a selection transistor TR3 that constitute a control section. The floating diffusion layer FD1 is connected to one source/drain region of the reset transistor TR2, and one source/drain region of the amplification transistor TR1 is connected to one source/drain region of the selection transistor TR3. The other source/drain region of the selection transistor TR3 is connected to the signal line.
 具体的には、図13の撮像素子P5は、表面照射型の撮像素子である。撮像素子P5では、反射層14が層間絶縁層81上に形成されている。反射層14は、上記第1の実施の形態の反射層2と同様、銅やアルミニウムなどの金属により構成されている。反射層14の上には、下部電極11が設けられている。下部電極11上には、第1有機材料層(正孔注入ブロッキング層)、第2有機材料層、有機光電変換層13及び電子注入ブロッキング層が形成され、電子注入ブロッキング層上には上部電極12が形成されている。上部電極12を含む全面には、保護層82が形成されている。保護層82上にオンチップ・マイクロ・レンズ90が設けられている。下部電極11および上部電極12は、例えば、ITOから成る透明電極から構成されている。層間絶縁層81 および保護層82は、周知の絶縁材料(例えば、SiO2およびSiNなど)から構成されている。 Specifically, the image pickup device P5 in FIG. 13 is a front side illumination type image pickup device. The reflective layer 14 is formed on the interlayer insulating layer 81 in the imaging device P5. The reflective layer 14 is made of a metal such as copper or aluminum, like the reflective layer 2 of the first embodiment. A lower electrode 11 is provided on the reflective layer 14 . A first organic material layer (hole injection blocking layer), a second organic material layer, an organic photoelectric conversion layer 13 and an electron injection blocking layer are formed on the lower electrode 11, and an upper electrode 12 is formed on the electron injection blocking layer. is formed. A protective layer 82 is formed on the entire surface including the upper electrode 12 . An on-chip micro lens 90 is provided on the protective layer 82 . The lower electrode 11 and the upper electrode 12 are composed of transparent electrodes made of ITO, for example. The interlayer insulating layer 81 and protective layer 82 are made of well-known insulating materials (such as SiO 2 and SiN).
 半導体基板70の第1面70Aの側には素子分離領域71が形成され、また、半導体基板70の第1面70Aには酸化膜72が形成されている。更には、半導体基板70 の第1面70A側には、制御部を構成するリセット・トランジスタTR2、増幅トランジスタTR1及び選択トランジスタTR3と、第1浮遊拡散層FD1とが設けられている。 An element isolation region 71 is formed on the side of the first surface 70A of the semiconductor substrate 70, and an oxide film 72 is formed on the first surface 70A of the semiconductor substrate 70. Further, on the first surface 70A side of the semiconductor substrate 70, a reset transistor TR2, an amplification transistor TR1, a selection transistor TR3, and a first floating diffusion layer FD1 are provided.
 このような撮像素子P5であっても、上記第1の実施の形態の撮像素子P1と同様の効果が期待できる。 Even with such an image pickup device P5, the same effect as that of the image pickup device P1 of the first embodiment can be expected.
 また、上記実施の形態等で記載した各種材料は例示であって、本開示はこれに限定されるものではない。 Also, the various materials described in the above embodiments and the like are examples, and the present disclosure is not limited to these.
 本開示の一実施形態としての光電変換素子では、第2電極とは別に反射層を設けるようにしたので、第2電極を金属以外の材料により構成することができる。このため、金属により第2電極を形成した場合に生じ得る、酸化被膜による抵抗の増加や仕事関数の変動、あるいは光電変換層への金属の溶出を回避することができる。よって、光電変換素子の性能を安定化することができる。また、反射層を設けることで、光電変換層を薄型化した場合であっても光路長を長くすることができ、光電変換効率の低下を抑制できる(EQEの低下を抑制できる)。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
 第1の波長域の光を透過する第1電極と、
 前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
 前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
 前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
 を有する積層構造を含む光電変換素子。
(2)
 前記第1電極および前記第2電極は、インジウム錫酸化物(ITO)である
 上記(1)記載の光電変換素子。
(3)
 前記反射層は金属を主成分として含む
 上記(1)または(2)記載の光電変換素子。
(4)
 前記金属は、アルミニウム(Al),Cu(銅),Ag(銀)またはAu(金)である
 上記(3)記載の光電変換素子。
(5)
 前記第2電極と前記反射層とが直接接している
 上記(1)から(4)のいずれか1つに記載の光電変換素子。
(6)
 前記第2電極と前記反射層との間に位置する絶縁層をさらに有する
 上記(1)から(4)のいずれか1つに記載の光電変換素子。
(7)
 前記反射層は、前記光電変換層に向けて凹んだ凹面を有する
 上記(1)から(6)のいずれか1つに記載の光電変換素子。
(8)
 前記積層構造は、前記第2電極と前記光電変換層との間に位置する半導体層をさらに有する
 上記(1)から(7)のいずれか1つに記載の光電変換素子。
(9)
 複数の光電変換素子を備え、
 前記光電変換素子は、
 第1の波長域の光を透過する第1電極と、
 前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
 前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
 前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
 を有する積層構造を含む
 光検出装置。
(10)
 光学部と、信号処理部と、光電変換素子を備え、
 前記光電変換素子は、
 第1の波長域の光を透過する第1電極と、
 前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
 前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
 前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
 を有する積層構造を含む
 電子機器。
In the photoelectric conversion element as one embodiment of the present disclosure, since the reflective layer is provided separately from the second electrode, the second electrode can be made of a material other than metal. Therefore, it is possible to avoid an increase in resistance due to an oxide film, a change in work function, or elution of metal into the photoelectric conversion layer, which may occur when the second electrode is formed of metal. Therefore, the performance of the photoelectric conversion element can be stabilized. Further, by providing the reflective layer, the optical path length can be lengthened even when the photoelectric conversion layer is thinned, and a decrease in photoelectric conversion efficiency can be suppressed (a decrease in EQE can be suppressed).
Note that the effects described in this specification are merely examples and are not limited to the descriptions, and other effects may be provided. In addition, the present technology can take the following configurations.
(1)
a first electrode that transmits light in a first wavelength range;
a second electrode facing the first electrode and transmitting light in the first wavelength band;
a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; A photoelectric conversion element including a laminated structure having a reflective layer that reflects toward the surface.
(2)
The photoelectric conversion element according to (1) above, wherein the first electrode and the second electrode are indium tin oxide (ITO).
(3)
The photoelectric conversion element according to (1) or (2) above, wherein the reflective layer contains a metal as a main component.
(4)
The photoelectric conversion element according to (3) above, wherein the metal is aluminum (Al), Cu (copper), Ag (silver), or Au (gold).
(5)
The photoelectric conversion element according to any one of (1) to (4) above, wherein the second electrode and the reflective layer are in direct contact.
(6)
The photoelectric conversion element according to any one of (1) to (4) above, further comprising an insulating layer positioned between the second electrode and the reflective layer.
(7)
The photoelectric conversion element according to any one of (1) to (6) above, wherein the reflective layer has a concave surface facing the photoelectric conversion layer.
(8)
The photoelectric conversion element according to any one of (1) to (7) above, wherein the laminated structure further includes a semiconductor layer positioned between the second electrode and the photoelectric conversion layer.
(9)
Equipped with multiple photoelectric conversion elements,
The photoelectric conversion element is
a first electrode that transmits light in a first wavelength range;
a second electrode facing the first electrode and transmitting light in the first wavelength range;
a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; A photodetector device comprising a laminate structure having a reflective layer that reflects toward and a reflective layer.
(10)
Equipped with an optical unit, a signal processing unit, and a photoelectric conversion element,
The photoelectric conversion element is
a first electrode that transmits light in a first wavelength range;
a second electrode facing the first electrode and transmitting light in the first wavelength range;
a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; An electronic device comprising a laminated structure having a reflective layer that reflects toward the surface.
 本出願は、日本国特許庁において2021年6月29日に出願された日本特許出願番号2021-108123号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-108123 filed on June 29, 2021 at the Japan Patent Office, and the entire contents of this application are incorporated herein by reference. to refer to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Depending on design requirements and other factors, those skilled in the art may conceive various modifications, combinations, subcombinations, and modifications that fall within the scope of the appended claims and their equivalents. It is understood that

Claims (10)

  1.  第1の波長域の光を透過する第1電極と、
     前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
     前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
     前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
     を有する積層構造を含む光電変換素子。
    a first electrode that transmits light in a first wavelength range;
    a second electrode facing the first electrode and transmitting light in the first wavelength band;
    a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
    light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; A photoelectric conversion element including a laminated structure having a reflective layer that reflects toward the surface.
  2.  前記第1電極および前記第2電極は、インジウム錫酸化物(ITO)である
     請求項1記載の光電変換素子。
    The photoelectric conversion device according to claim 1, wherein the first electrode and the second electrode are indium tin oxide (ITO).
  3.  前記反射層は金属を主成分として含む
     請求項1記載の光電変換素子。
    The photoelectric conversion device according to claim 1, wherein the reflective layer contains metal as a main component.
  4.  前記金属は、アルミニウム(Al),Cu(銅),Ag(銀)またはAu(金)である
     請求項3記載の光電変換素子。
    The photoelectric conversion element according to claim 3, wherein the metal is aluminum (Al), Cu (copper), Ag (silver) or Au (gold).
  5.  前記第2電極と前記反射層とが直接接している
     請求項1記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the second electrode and the reflective layer are in direct contact.
  6.  前記第2電極と前記反射層との間に位置する絶縁層をさらに有する
     請求項1記載の光電変換素子。
    2. The photoelectric conversion device according to claim 1, further comprising an insulating layer located between said second electrode and said reflective layer.
  7.  前記反射層は、前記光電変換層に向けて凹んだ凹面を有する
     請求項1記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the reflective layer has a concave surface facing the photoelectric conversion layer.
  8.  前記積層構造は、前記第2電極と前記光電変換層との間に位置する半導体層をさらに有する
     請求項1記載の光電変換素子。
    2. The photoelectric conversion element according to claim 1, wherein the laminated structure further includes a semiconductor layer positioned between the second electrode and the photoelectric conversion layer.
  9.  複数の光電変換素子を備え、
     前記光電変換素子は、
     第1の波長域の光を透過する第1電極と、
     前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
     前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
     前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
     を有する積層構造を含む
     光検出装置。
    Equipped with multiple photoelectric conversion elements,
    The photoelectric conversion element is
    a first electrode that transmits light in a first wavelength range;
    a second electrode facing the first electrode and transmitting light in the first wavelength range;
    a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
    light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; A photodetector device comprising a laminate structure having a reflective layer that reflects toward and a reflective layer.
  10.  光学部と、信号処理部と、光電変換素子を備え、
     前記光電変換素子は、
     第1の波長域の光を透過する第1電極と、
     前記第1電極と対向し、前記第1の波長域の光を透過する第2電極と、
     前記第1電極と前記第2電極との間に位置し、前記第1の波長域の光を検出して光電変換を行う光電変換層と、
     前記第2電極から見て前記光電変換層と反対側に位置し、前記第1電極、前記光電変換層、および前記第2電極を透過する前記第1の波長域の光を前記光電変換層へ向けて反射する反射層と
     を有する積層構造を含む
     電子機器。
    Equipped with an optical unit, a signal processing unit, and a photoelectric conversion element,
    The photoelectric conversion element is
    a first electrode that transmits light in a first wavelength range;
    a second electrode facing the first electrode and transmitting light in the first wavelength range;
    a photoelectric conversion layer positioned between the first electrode and the second electrode for detecting light in the first wavelength band and performing photoelectric conversion;
    light in the first wavelength region located on the opposite side of the photoelectric conversion layer as viewed from the second electrode and transmitted through the first electrode, the photoelectric conversion layer, and the second electrode to the photoelectric conversion layer; An electronic device comprising a laminated structure having a reflective layer that reflects toward the surface.
PCT/JP2022/008881 2021-06-29 2022-03-02 Photoelectric conversion element, light detecting device, and electronic apparatus WO2023276274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108123 2021-06-29
JP2021108123A JP2023005880A (en) 2021-06-29 2021-06-29 Photoelectric conversion element, light detection device, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2023276274A1 true WO2023276274A1 (en) 2023-01-05

Family

ID=84692286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008881 WO2023276274A1 (en) 2021-06-29 2022-03-02 Photoelectric conversion element, light detecting device, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2023005880A (en)
WO (1) WO2023276274A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238894A (en) * 1998-02-23 1999-08-31 Canon Inc Photovolatic device
JP2006093521A (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Photoelectric conversion film laminated solid-state imaging element
JP2008153361A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Solid-state imaging device, and light detector and authentication equipment using the same
JP2018085402A (en) * 2016-11-22 2018-05-31 ソニー株式会社 Image pick-up device, stacked image pick-up device and solid state imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238894A (en) * 1998-02-23 1999-08-31 Canon Inc Photovolatic device
JP2006093521A (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Photoelectric conversion film laminated solid-state imaging element
JP2008153361A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Solid-state imaging device, and light detector and authentication equipment using the same
JP2018085402A (en) * 2016-11-22 2018-05-31 ソニー株式会社 Image pick-up device, stacked image pick-up device and solid state imaging device

Also Published As

Publication number Publication date
JP2023005880A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP7007088B2 (en) Light receiving elements, image sensors and electronic devices
JP7227235B2 (en) Imaging element and imaging device
JP6979974B2 (en) Manufacturing method of light receiving element
WO2019092988A1 (en) Imaging element and imaging device
WO2022131268A1 (en) Photoelectric conversion element, light detection apparatus, light detection system, electronic device, and moving body
JP2022093359A (en) Distance measuring element
US11417696B2 (en) Imaging element comprising polarization unit with a conductive member as an electrode for a charge holder
WO2023013444A1 (en) Imaging device
WO2023276274A1 (en) Photoelectric conversion element, light detecting device, and electronic apparatus
JP7366936B2 (en) Etching method for oxide semiconductor film
WO2020012842A1 (en) Photoelectric conversion element
WO2023105678A1 (en) Light detection device and optical filter
JP7344114B2 (en) Image sensor and electronic equipment
WO2024029408A1 (en) Imaging device
WO2024057814A1 (en) Light-detection device and electronic instrument
WO2024095832A1 (en) Photodetector, electronic apparatus, and optical element
WO2023171149A1 (en) Solid-state imaging device and electronic apparatus
WO2023079835A1 (en) Photoelectric converter
JP7291082B2 (en) Imaging device
EP4391061A1 (en) Optical detection device and method for manufacturing same
WO2023105783A1 (en) Solid-state imaging device and method for manufacturing same
WO2023127498A1 (en) Light detection device and electronic instrument
JP2023152523A (en) light detection device
JP2023152522A (en) light detection device
JP2022172951A (en) Solid-state imaging element

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832440

Country of ref document: EP

Kind code of ref document: A1