WO2023276105A1 - Air-conditioning and ventilation system - Google Patents

Air-conditioning and ventilation system Download PDF

Info

Publication number
WO2023276105A1
WO2023276105A1 PCT/JP2021/024932 JP2021024932W WO2023276105A1 WO 2023276105 A1 WO2023276105 A1 WO 2023276105A1 JP 2021024932 W JP2021024932 W JP 2021024932W WO 2023276105 A1 WO2023276105 A1 WO 2023276105A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ventilation
control device
area
volume
Prior art date
Application number
PCT/JP2021/024932
Other languages
French (fr)
Japanese (ja)
Inventor
翔大 野口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/024932 priority Critical patent/WO2023276105A1/en
Publication of WO2023276105A1 publication Critical patent/WO2023276105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • This disclosure relates to an air conditioning ventilation system.
  • Patent Literature 1 describes a ventilation system that identifies the number of people in an air-conditioned space using wearable terminals worn by people in the air-conditioned space, and appropriately controls the amount of ventilation according to the number of people.
  • Patent Document 2 describes a ventilation system that records the behavior of a person in the room with a camera and determines the amount of ventilation based on the metabolic rate of the person in the room.
  • An object of the present disclosure is to provide an air-conditioning ventilation system capable of controlling not only a ventilation device but also an air-conditioning device in consideration of the risk of infection with infectious diseases.
  • the air-conditioning system includes a ventilation device for ventilating the air-conditioned space, a first air-conditioning device for air-conditioning the air-conditioned space, a first sensor for detecting the state of a person present in the air-conditioned space, and a control device.
  • the control device calculates the ventilation amount of the air-conditioned space according to the number of people present in the air-conditioned space, identifies the infection risk based on at least the detection value of the first sensor, and determines the infection risk according to the identified infection risk. Control the air direction or air volume of the air conditioner, and control the ventilation device based on the ventilation volume.
  • an air-conditioning ventilation system capable of controlling not only the ventilation device but also the air-conditioning device in consideration of the infection risk of infectious diseases.
  • FIG. 1 is a diagram showing the overall configuration of an air-conditioning and ventilation system according to Embodiment 1.
  • FIG. 2 is a diagram showing a functional configuration of a control device according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing the relationship between the sound volume in an air-conditioned space and the risk of infection;
  • FIG. 4 is a diagram showing an example of evaluating the level of infection risk based on the volume and density in an air-conditioned space; It is a figure which shows the content of control of an air conditioner according to an infection risk.
  • 4 is a flow chart showing a process of evaluating the level of infection risk based on the volume and density in the air-conditioned space.
  • 4 is a flow chart showing a process of calculating the required ventilation volume according to the infection risk level.
  • FIG. 4 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 1).
  • 7 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 2).
  • 9 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 3).
  • 10 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 4).
  • FIG. 12 is a diagram showing an example in which a wind direction sensor is provided near the door of a room (Embodiment 5); 14 is a flow chart showing processing for determining an optimum ventilation route based on simulation (Embodiment 5).
  • FIG. 12 is a diagram showing an example in which a wind direction sensor is provided near the door of a room (Embodiment 5);
  • 14 is a flow chart showing processing for determining an optimum ventilation route based on simulation
  • FIG. 13 is a flow chart showing an example of a process for performing ventilation based on a determined ventilation route (Embodiment 5);
  • FIG. 19 is a flowchart including processing for correcting the level of infection risk according to whether or not a person is wearing a mask (Embodiment 6).
  • FIG. 1 is a diagram showing the overall configuration of an air conditioning ventilation system 1 according to Embodiment 1.
  • the air-conditioning ventilation system 1 functions in an air-conditioned space 80 .
  • Air-conditioned space 80 is, for example, a floor of a building that accommodates a large number of people.
  • the air-conditioned space 80 is divided into an area 81, an area 82, an area 83, and an area 84 by partitions.
  • the air-conditioned space 80 is provided with an air supply device 60 that takes in fresh air from the outside of the air-conditioned space 80 and an exhaust device 70 that discharges the air in the air-conditioned space 80 to the outside.
  • a ventilator is configured by the air supply device 60 and the exhaust device 70 .
  • the upper part of the wall that constitutes the partition of the air-conditioned space 80 does not reach the ceiling surface. Therefore, the fresh air taken in by the air supply device 60 spreads over the areas 81 to 84, and the dirty air in the areas 81 to 84 is discharged to the outside by the exhaust device .
  • a volume sensor 41 and an air conditioner 51 are arranged in the area 81 .
  • a volume sensor 42 and an air conditioner 52 are arranged in the area 82 .
  • a volume sensor 43 and an air conditioner 53 are arranged in the area 83 .
  • the volume sensor 44 and the air conditioner 54 are arranged in the area 84 .
  • the air conditioners 51-54 adjust the temperature of the corresponding areas 81-84.
  • the volume sensors 41 to 44 are examples of sensors that detect human states. Volume sensors 41 to 44 detect sounds output in accordance with human vocalizations. The volume sensors 41 to 44 can detect the state of a person, such as being silent, speaking softly, speaking loudly, and coughing well.
  • the air-conditioned space 80 is further provided with an image sensor 20 that constitutes a photographing device.
  • the image sensor 20 is installed on the ceiling surface so as to photograph the areas 81-84.
  • Image sensor 20 is an example of a sensor that detects a person's condition.
  • the image detected by the image sensor 20 By analyzing the images detected by the image sensor 20, it is possible to specify for each of the areas 81 to 84 whether there are many people in the areas 81 to 84 or not. More specifically, the number of people in the room can be specified for each of the areas 81 to 84 from the image detected by the image sensor 20 . In other words, by using the image detected by the image sensor 20, the density of people can be specified for each of the areas 81-84. Furthermore, by analyzing the image detected by the image sensor 20, it is possible to specify the intensity of the person's movement.
  • the air conditioning ventilation system 1 includes the image sensor 20, sound volume sensors 41 to 44, air conditioners 51 to 54, air supply device 60, and exhaust device 70 described above.
  • the air conditioning ventilation system 1 further includes a control device 100 that controls the entire system.
  • the control device 100 is connected with the image sensor 20 by the communication line 11 .
  • Control device 100 is connected to volume sensors 41 to 44 by communication line 12 .
  • Control device 100 is connected to air conditioners 51 to 54 , air supply device 60 and exhaust device 70 via communication line 13 .
  • the control device 100 may communicate with the image sensor 20, the volume sensors 41 to 44, the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 not by wire but by radio.
  • the control device 100 includes a processor 101 and a memory 102 .
  • the memory 102 includes ROM (Read Only Memory) and RAM (Random Access Memory).
  • the processor 101 expands a program stored in ROM into RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 100 are described.
  • the control device 100 processes the detection values of the image sensor 20 and the sound volume sensors 41-44 according to the program stored in the memory 102, and controls the air conditioners 51-54, the air supply device 60 and the exhaust device 70.
  • the control device 100 may be provided in the air-conditioned space 80 or may be provided on a floor different from the air-conditioned space 80 .
  • the control device 100 may be provided at a location different from the building in which the air-conditioned space 80 is housed.
  • the control device 100 evaluates the volume in the areas 81-84 based on the detection values of the volume sensors 41-44.
  • volume is the loudness of a person's voice. The louder a person's voice, the higher the risk of catching the virus through droplets from a person's mouth.
  • the control device 100 evaluates the volume in the areas 81-84, that is, the degree of splashing, based on the detection values of the volume sensors 41-44.
  • the control device 100 Based on the image detected by the image sensor 20, the control device 100 evaluates the density of people in the areas 81-84.
  • the control device 100 evaluates the infection risk in the areas 81 to 84 from the two viewpoints of volume (droplet degree) and density, and controls the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 according to the evaluation. do.
  • FIG. 1 shows an example in which the air-conditioned space 80 is divided into four areas.
  • the number of partitioned areas may be two, three, or five or more.
  • an image sensor 20 may be provided for each of the areas 81-84.
  • FIG. 2 is a diagram showing the functional configuration of the control device 100 according to the first embodiment.
  • Control device 100 includes first communication unit 111 , sensor information processing unit 112 , position information processing unit 113 , second communication unit 114 , and storage unit 115 . These are functions realized by the processor 101 and the memory 102 shown in FIG.
  • the first communication unit 111 communicates with the image sensor 20 and volume sensors 41-44.
  • the sensor information processing unit 112 uses the sensor information as an information source for calculating the ventilation volume and evaluating the risk of infection.
  • the amount of ventilation can be determined by the number of people in the room on the floor and the amount of activity of the people in the room. For example, it can be evaluated that the amount of activity is large when the person in the room moves rapidly, and the amount of activity is small when the person in the room moves little.
  • the infection risk can be evaluated by the density that can be grasped from the positions of people in the room, the volume of voice that can be converted from the volume, and the frequency of conversation.
  • the positional information indicating in which of the areas 81 to 84 the volume sensors 41 to 44 are arranged the evaluation result for each of the areas 81 to 84 can be obtained.
  • the position information processing unit 113 processes such position information, for example.
  • the sensor information processing unit 112 monitors the ventilation volume by processing sensor information from the image sensor 20 and sound volume sensors 41-44. Specifically, the sensor information processing unit 112 identifies the number of people in the room, the positions of people, and the behavior of people for each of the areas 81 to 84 by analyzing the images detected by the image sensor 20 . For example, the greater the amount of human activity per unit time, the greater the ventilation required. The sensor information processing unit 112 corrects the required ventilation volume by evaluating human behavior.
  • the sensor information processing unit 112 identifies the loudness of a person's voice for each of the areas 81-84 by analyzing the volume detected by the volume sensors 41-44.
  • the sensor information processing unit 112 calculates the amount of ventilation required for the air-conditioned space 80 .
  • the sensor information processing unit 112 evaluates the infection risk in units of areas 81-84.
  • the position information processing unit 113 determines the control contents of the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 based on the calculated ventilation volume and the evaluation result of the infection risk in units of the areas 81 to 84. decide. At this time, the position information processing unit 113 refers to the position information of the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70, and the calculated ventilation volume.
  • the control details determined by the position information processing unit 113 are sent from the second communication unit 114 to the air conditioners 51 to 54, the air supply device 60, and the exhaust device .
  • the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 operate according to the contents of control.
  • a floor map of the air-conditioned space 80 is stored in the storage unit 115 .
  • This floor map includes information indicating the positions of the image sensor 20, volume sensors 41-44, ventilators (air supply device 60 and exhaust device 70), and air conditioners 51-54. Furthermore, the floor map includes information on areas 81-84 that can be air-conditioned by the air conditioners 51-54.
  • the storage unit 115 may store a floor map in which the positions of various devices such as the image sensor 20 are associated in advance. Alternatively, storage unit 115 may store a floor map in which the positions of various devices are not associated in advance. In the latter case, the controller 100 is configured to allow the administrator to associate the location of various devices with the floor map. By doing so, the position information of the floor map can be corrected when the positions of the air conditioners 51 to 54 are moved.
  • the storage unit 115 further stores information for evaluating the behavior of people in the room and control information for various devices.
  • the sensor information processing unit 112 and the position information processing unit 113 described above are implemented by the processor 101 included in the control device 100 .
  • the control device 100 calculates the ventilation volume in consideration of human behavior.
  • Control device 100 controls air supply device 60 and exhaust device 70 based on the calculated ventilation volume.
  • the control device 100 controls the air conditioners 51 to 54 according to the infection risk.
  • the control device 100 increases the ventilation volume, reduces the air blow volume of air conditioners placed in areas with a high infection risk, and reduces the ventilation volume of air conditioners placed in areas with a low infection risk. You may increase the amount of air blowing.
  • the control device 100 may control the air conditioner 51 in the area 81 so as not to direct the airflow to the person in the room.
  • the control device 100 adjusts the air conditioning near the air supply port of the air supply device 60 in consideration of the change in the amount of air supplied by the air supply device 60, the change in the amount of exhaust air of the exhaust device 70, and the temperature difference between the indoor and outdoor air.
  • the set temperature of the device 51 may be corrected.
  • the air-conditioned space 80 may be provided with a plurality of ventilation devices composed of the air supply device 60 and the exhaust device 70 .
  • it may be configured such that the air volume of the ventilation device can be changed in stages such as strong, medium, and weak.
  • the ventilation rate of the ventilation device closer to the densely populated area among the areas 81 to 84 may be set higher than the ventilation rate of the other ventilation devices.
  • the user can keep the indoor air fresh by manually adjusting the ventilation volume of the ventilation device according to the number of people in the room.
  • the number of people in a room and their behavior change over time.
  • users have had to adjust the amount of ventilation each time to prevent the air-conditioned space from becoming an uncomfortable air environment.
  • users tend to operate the ventilator more than necessary in an attempt to ensure the necessary ventilation volume, resulting in energy loss.
  • the control device 100 evaluates the infection risk by monitoring the position and behavior of a person, and adjusts the amount of ventilation, so appropriate ventilation can be performed automatically. Further, according to the present embodiment, by comparing the position information of the person and the air conditioner, it is possible to suppress the airflow to the person and the area with high infection risk.
  • FIG. 3 is a diagram showing the relationship between the sound volume in the air-conditioned space 80 and the risk of infection.
  • the volume sensors 41-44 arranged in the air-conditioned space 80 detect the volume of human voices. Among the areas 81 to 84, the area where the voice volume is loud is considered to have a higher risk of droplet infection than the other areas. Therefore, the degree of splash can be evaluated by evaluating the sound volume.
  • the volume of human voices detected in areas 81 to 84 changes with time, for example, as shown in FIG.
  • the control device 100 evaluates that there is an infection risk when the volume exceeding the threshold is detected over the time Ts shown in FIG.
  • the controller 100 stores three thresholds v1, v2, and v3.
  • the control device 100 determines that the risk of infection is low when a volume v that satisfies "v1 ⁇ v ⁇ v2" is detected over time Ts. The control device 100 determines that the infection risk is high when the volume v that satisfies “v2 ⁇ v ⁇ v3” is detected over the time Ts. The control device 100 determines that the risk of infection is high when the sound volume v that satisfies "v3 ⁇ v" is detected beyond the time Ts. The control device 100 determines that there is no infection risk when the volume v satisfies "v ⁇ v1".
  • t1 to t2 are at low risk of infection
  • t2 to t3 are at medium risk of infection
  • t3 to t4 are at high risk of infection
  • t4 to t5 are at medium risk of infection
  • t5 to t6 are at high risk of infection
  • t6 to t7 are at high risk of infection.
  • t7 to t8 correspond to low infection risk and t8 to no infection risk, respectively.
  • the control device 100 evaluates the infection risk according to the criteria shown in FIG. 3 for each area 81-84.
  • Control device 100 evaluates the infection risk of area 81 based on the detection value of volume sensor 41 provided corresponding to area 81 .
  • Control device 100 evaluates the infection risk of area 82 based on the detection value of volume sensor 42 provided corresponding to area 82 .
  • Control device 100 evaluates the infection risk of area 83 based on the detection value of volume sensor 43 provided corresponding to area 83 .
  • Control device 100 evaluates the infection risk of area 84 based on the detection value of volume sensor 44 provided corresponding to area 84 .
  • FIG. 4 is a diagram showing an example of evaluating the infection risk level based on the volume and density in the air-conditioned space 80.
  • the control device 100 evaluates the degree of splashing by evaluating the volume. Therefore, the control device 100 substantially evaluates the infection risk level for each of the areas 81 to 84 from the two viewpoints of the degree of droplet droplets and the degree of density.
  • the volume evaluation method is as described with reference to FIG.
  • the density can be evaluated, for example, based on the size of the area and the number of people present in the area.
  • FIG. 4 illustrates the level of infection risk determined based on volume and density. For example, if there is no risk in the loudness evaluation and no risk in the crowding evaluation, the infection risk level is evaluated as level 1. Here, level 1 corresponds to no infection risk. If the risk level is high in the volume evaluation and the risk level is medium in the density evaluation, the infection risk level is evaluated as level 4.
  • control device 100 may be designed such that an administrator who manages control device 100 can arbitrarily set these levels.
  • FIG. 5 is a diagram showing details of control of the air conditioners 51 to 54 according to the infection risk.
  • Control device 100 evaluates the infection risk level from the two viewpoints of volume and density, and then controls air conditioners 51 to 54 according to the evaluated level as shown in FIG.
  • control shown in FIG. 5 is based on the concept of preventing viruses that may exist in areas with a high risk of infection from being scattered by the wind blown from the air conditioners 51-54. Therefore, for example, when area 81 is evaluated as level 1, ie, no risk of infection, control device 100 does not change the settings of the air direction and air volume of air conditioner 51 corresponding to area 81 .
  • the control device 100 sets the wind direction of the air conditioner 51 to a windbreak. However, the control device 100 does not change the setting of the air volume of the air conditioner 51 .
  • the wind direction of the air conditioner 51 is set to be a shelter from the wind, the air conditioner 51 blows air in a direction away from people while considering air conditioning efficiency. This prevents direct blowing of the wind to people in the area 81 where there is a risk of infection.
  • the temperature of the area 81 can be kept at an appropriate value as much as possible.
  • the control device 100 sets the wind direction of the air conditioner 51 to shelter and the air volume to medium.
  • the air volume of the air conditioner 51 is forcibly reduced from high to medium. This enhances the effect of preventing viruses that may exist from being scattered not only from the viewpoint of wind direction but also from the viewpoint of wind volume.
  • the air volume may be changed in consideration of the original air volume setting, instead of uniformly setting the air volume to medium. For example, if the original air volume setting is low, that setting may be maintained. Also, if the original airflow setting is medium, the setting may be changed to small.
  • the air direction of the corresponding air conditioner 51 is set upward and the air volume is set to small. This prevents the virus from being scattered by the air blown from the air conditioner 51 in the area 81 where the risk of infection is extremely high.
  • the control device 100 similarly controls the air conditioner 52 corresponding to the area 82, the air conditioner 53 corresponding to the area 83, and the air conditioner 54 corresponding to the area 84 according to the infection risk level.
  • FIG. 6 is a flow chart showing the process of evaluating the infection risk level based on the volume and density in the air-conditioned space 80.
  • FIG. Processing based on this flowchart is executed by the control device 100 .
  • control device 100 acquires position information of the volume sensors 41 to 44 (step S1). As a result, on the floor map, the positions of the volume sensors 41 to 44 are associated with the areas 81 to 84 that are air-conditioned areas. Therefore, control device 100 can identify the correspondence between areas 81-84 and volume sensors 41-44. Next, the control device 100 acquires position information of the image sensor 20 (step S2).
  • control device 100 acquires volume from the volume sensors 41 to 44 (step S3). Thereby, the control device 100 can specify the volume for each of the areas 81-84.
  • control device 100 acquires an image from the image sensor 20 (step S4). Image sensor 20 captures an image of conditioned space 80 including areas 81-84.
  • control device 100 analyzes the acquired volume and image (step S5). For example, control device 100 identifies the volume for each of areas 81 to 84 and generates volume data as described with reference to FIG. The control device 100 specifies the number of people in the room for each of the areas 81 to 84 based on the image acquired from the image sensor 20, and also specifies the amount of activity of each person.
  • the control device 100 evaluates the density for each of the areas 81-84 (step S6).
  • the degree of infection risk can be evaluated from the number of people present in the areas 81-84.
  • the control device 100 evaluates the density based on the result of calculating "the number of people in the area N/area size".
  • the infection risk based on the density is evaluated, for example, in four stages of high, medium, low, and none, as shown in FIG.
  • the control device 100 evaluates the volume for each of the areas 81-84 (step S7).
  • the evaluation of sound volume means evaluating the degree of infection risk from the volume of voices of people present in the area. That is, evaluating the volume is equivalent to evaluating the degree of splashing.
  • the control device 100 evaluates the volume based on the volume and the duration of the volume, as described using FIG.
  • the risk of infection based on sound volume is evaluated in four stages of high, medium, low, and none, as shown in FIG. 4, for example.
  • the control device 100 evaluates the infection risk level for each of the areas 81 to 84 (step S8).
  • the evaluation of the infection risk level means evaluating the infection risk level based on the density evaluation and the volume evaluation.
  • f (density evaluation, volume (droplet) evaluation), for example.
  • control device 100 stores the level of infection risk evaluated for each of the areas 81 to 84 in the memory 102 (step S9), and ends the process.
  • the infection risk level stored in step S9 is read out in step S12 of FIG.
  • FIG. 7 is a flowchart showing the process of calculating the required ventilation volume according to the infection risk level. Processing based on this flowchart is executed by the control device 100 .
  • control device 100 sets the variable n to 1 (step S11).
  • control device 100 reads the infection risk level for each of the areas 81 to 84 from the memory 102 (step S12).
  • control device 100 determines whether the infection risk level of the n-th area is 1 (step S13).
  • the n-th area is any one of areas 81-84.
  • the target area in step S13 changes to the first area, second area, third area, and so on.
  • the first area is associated with area 81
  • the second area is associated with area 82
  • the third area is associated with area 83
  • the fourth area is associated with area 84 .
  • level 1 infection risk means that there is no risk of infection.
  • step S13 for example, if it is determined that the infection risk level of the first area is 1 (YES in step S13), there is no infection risk in the first area. On the other hand, if it is determined in step S13 that the infection risk level of the first area is not 1 (NO in step S13), it means that the infection risk exists in the first area.
  • the required ventilation volume (m 3 /hour) is calculated (steps S14 and S15).
  • the unit ventilation D used to calculate the required ventilation differs between when there is an infection risk and when there is no infection risk.
  • the control device 100 calculates the required ventilation volume using the unit ventilation volume D1.
  • the control device 100 calculates the required ventilation volume using the unit ventilation volume D2.
  • Steps S14 and S15 will be explained in detail. For example, if it is determined in step S13 that the infection risk level of the first area is 1, that is, that there is no infection risk, then in step S14 the required ventilation volume 1 corresponding to the first area is calculated.
  • the function for calculating the required ventilation volume in step S14 can be expressed as f1 (number of people, D1, ⁇ ).
  • the number of people is the number of people in the target area
  • D1 is the unit ventilation volume
  • is the correction value of the amount of activity.
  • the correction value for the amount of activity is a correction value that considers the amount of activity of each person present in the target area.
  • the correction value for a person with a large amount of activity is large, and the correction value for a person with a small amount of activity is small.
  • the required ventilation volume is calculated so as to increase as the number of people in the target floor increases and the number of people who move a lot increases.
  • step S15 if the level of infection risk in the first area is not 1, that is, if it is determined that there is an infection risk in step S13, the required ventilation volume 1 corresponding to the first area is calculated in step S15.
  • the function for calculating the required ventilation volume in step S15 can be expressed as f2 (number of people, D2, ⁇ ).
  • f2 number of people, D2, ⁇
  • the unit ventilation volume differs between step S15 and step S14.
  • D1 ⁇ D2 is set, even if the number of people in the room and the amount of movement of each person are the same in the two areas, the area with the risk of infection requires more ventilation than the area without the risk of infection. calculated to be
  • the required ventilation volume is calculated uniformly using the unit ventilation volume D2 in step S15, but the unit ventilation volume may be changed according to the level of infection risk 2-4.
  • unit ventilation D2 is used corresponding to infection risk 2.
  • a unit ventilation D3 is used corresponding to an infection risk of 3.
  • a unit ventilation D4 is used corresponding to an infection risk of 4.
  • the relationship between the sizes of D2 to D4 is D2 ⁇ D3 ⁇ D4.
  • step S16 the control device 100 updates the variable n (step S16).
  • step S17 the control device 100 determines whether or not the required ventilation volumes for all the areas 81 to 84 included in the air-conditioned space 80 have been calculated. If the required ventilation volumes for all the areas 81 to 84 have not been calculated, the control device 100 executes the process of step S12 again. The control device 100 calculates the required ventilation volumes of all the areas 81 to 84 included in the air-conditioned space 80 by repeatedly executing the processes of steps S12 to S17.
  • the control device 100 After calculating the required ventilation volumes 1 to n for all areas 81 to 84, the control device 100 sets the sum of the calculated required ventilation volumes 1 to n as the "necessary ventilation volume" (step S18). Thereby, the necessary ventilation amount for the entire air-conditioned space 80 is set. Next, the control device 100 stores the set required ventilation volume in the memory 102 (step S19), and ends the processing based on this flowchart.
  • FIG. 8 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (Embodiment 1). Processing based on this flowchart is executed by the control device 100 .
  • control device 100 reads out the calculated required ventilation volume from the memory 102 (step S31).
  • the required ventilation volume read here is the one stored in memory 102 in step S19 of FIG.
  • control device 100 determines a ventilation volume correction value (step S32).
  • the correction value is the difference between the calculated required ventilation volume and the current ventilation volume. That is, the ventilation volume to be added to the current ventilation volume per unit time corresponds to the correction value. For example, if the correction value is a positive value, the operability of air supply device 60 and exhaust device 70 needs to be increased from the current level.
  • the air supply device 60 and the exhaust device 70 are provided with fans.
  • the operability of air supply device 60 and exhaust device 70 is, for example, the number of rotations of the fan per unit time.
  • control device 100 reads the infection risk level for each of the areas 81 to 84 from the memory 102 (step S33).
  • the control device 100 determines the wind direction and wind volume corresponding to the infection risk for each of the areas 81 to 84 (step S34).
  • the control device 100 determines the wind direction and air volume according to the infection risk based on the criteria shown in FIG.
  • control device 100 controls the air supply device 60 and the exhaust device 70 based on the ventilation amount correction value calculated in step S32 (step S35).
  • the operability of the air supply device 60 and the exhaust device 70 is increased in order to compensate for the ventilation volume according to the correction value. For example, when the number of people in the air-conditioned space 80 increases, and when the number of people who behave at high risk of infection increases, the amount of ventilation by the air supply device 60 and the exhaust device 70 also increases. As a result, the risk of infection within the air-conditioned space 80 can be reduced.
  • control device 100 controls the air conditioners 51 to 54 for each of the areas 81 to 84 based on the wind direction and air volume determined in step S34 (step S36), and ends the processing based on this flowchart.
  • step S36 the direction and volume of the air blown by the air conditioners 51-54 are controlled according to the infection risk level of the areas 81-84. Therefore, for example, when the level of infection risk in area 81 is extremely high (level 4), the wind direction of air conditioner 51 is controlled to be upward and the wind volume is small. As a result, it is possible to prevent the occurrence of new infected persons within the area 81 .
  • the image sensor 20 and the sound volume sensors 41 to 44 are used to monitor the number of people in the air-conditioned space 80, their positions, and their actions, thereby evaluating infection risk. be able to. Furthermore, appropriate ventilation can be performed automatically by adjusting the ventilation volume based on the evaluation.
  • the air conditioners 51 to 54 are controlled according to the infection risk, so it is possible to suppress the air currents of the air conditioners 51 to 54 from going to people and areas with a high infection risk.
  • priority when there is no risk of infection in the air-conditioned space 80, priority can be given to both comfort and energy efficiency with the minimum required amount of ventilation.
  • control for infection suppression can be performed with priority over energy saving.
  • An air conditioning ventilation system 1 and a control device 100 can be provided.
  • FIG. 9 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (second embodiment). Processing based on this flowchart is executed by the control device 100 .
  • control device 100 notifies a person near the exhaust device 70 that strong exhaust will occur when the correction value of the ventilation volume exceeds the threshold. After the notification, control device 100 increases the air supply amount of air supply device 60 and the exhaust amount of exhaust device 70 .
  • steps S41 to S44 are the same as steps S31 to S34 in the flowchart shown in FIG. 8, and steps S49 and S50 are the same as steps S35 and S36 in the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
  • the control device 100 determines whether or not the ventilation volume correction value exceeds the first threshold (step S45).
  • the first threshold can be appropriately determined in consideration of the size of the air-conditioned space 80 . An administrator may operate the control device 100 to arbitrarily set the first threshold. If the correction value of the ventilation volume is a positive value, the control device 100 may determine YES in step S45.
  • control device 100 determines whether or not there is a person near the exhaust device 70 (step S46). For example, the control device 100 identifies the presence of a person near the exhaust device 70 by analyzing the image acquired from the image sensor 20 . If a person exists within a certain area with reference to the exhaust port of the exhaust device 70 , the control device 100 may determine that the person is near the exhaust device 70 .
  • the image sensor 20 may be further provided near the exhaust device 70 .
  • the control device 100 identifies the presence of a person near the exhaust device 70 by analyzing an image acquired from the image sensor 20 provided near the exhaust device 70 .
  • control device 100 determines that there is a person near the exhaust device 70
  • the control device 100 transmits a message to the portable terminal possessed by the person to be determined (step S47). For example, the control device 100 sends a warning message to the mobile terminal, saying, "Please move away from that place because ventilation will increase.”
  • a database that associates people with mobile terminal contact information may be stored in advance in the memory 102 of the control device 100 .
  • the control device 100 may identify a person near the exhaust device 70 by analyzing the image acquired from the image sensor 20 .
  • the control device 100 executes the processes of steps S49 and S50. Therefore, after the person leaves the exhaust system 70, the exhaust amount of the exhaust system 70 increases. As a result, people near the exhaust system 70 can be prevented from being infected with viruses that may be contained in the exhaust.
  • step S50 related to the control of the air conditioners 51 to 54 may be executed without waiting for the waiting time of step S48 to elapse.
  • Embodiment 3 will be described with reference to FIG.
  • FIG. 10 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (Embodiment 3). Processing based on this flowchart is executed by the control device 100 .
  • the control device 100 has a function of controlling the wind blown from the air conditioner in the area with the risk of infection to be directed toward people when there is an area with the risk of infection and there are no people outside the area.
  • Embodiment 3 is the same as Embodiment 1 except that such functions are added to Embodiment 1.
  • FIG. 1 is the same as Embodiment 1 except that such functions are added to Embodiment 1.
  • control device 100 controls the air blown from corresponding air conditioner 51 so that it does not hit people. This prevents viruses that may exist in area 81 from spreading to other areas 82-84. However, if there are no people in the areas 82 to 84 other than the area 81, even if the virus spreads to the areas 82 to 84, the areas 82 to 84 will not be infected.
  • control device 100 controls the air conditioner in area 81 with an infection risk.
  • the wind blowing from 51 is controlled to be directed to a person.
  • steps S61-S63 are the same as steps S31-S33 of the flowchart shown in FIG. 8 and steps S67-S69 are the same as steps S34-S36 of the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
  • step S64 the control device 100 determines whether a person exists in only one of the four areas 81 to 84 (step S64). When it is determined as NO in step S64, the control device 100 executes the process of step S67.
  • control device 100 determines whether the infection risk of area 81 is higher than level 1 (step S65). That is, in step S65, the control device 100 determines whether or not there is an infection risk in the target area.
  • control device 100 executes the process of step S67.
  • control device 100 determines in step S65 that there is an infection risk in the target area (YES in step S65), in the only area where people exist, for example area 81, the wind direction is directed toward people and , the air volume is set large (step S66).
  • step S66 the control device 100 executes steps S68 and S69. Thereby, the setting in step S66 is reflected in the control in step S69.
  • step S69 the control in step S69.
  • FIG. 11 is a flow chart showing a process for controlling air supply device 60, exhaust device 70, and air conditioners 51-54 (fourth embodiment). Processing based on this flowchart is executed by the control device 100 .
  • the control device 100 has a function of setting the set temperatures of the air conditioners 51 to 54 according to the ventilation volume correction value when the ventilation volume correction value exceeds the second threshold.
  • the fourth embodiment is the same as the first embodiment except that such functions are added to the first embodiment.
  • the control device 100 sets the set temperatures of the air conditioners 51 to 54 in accordance with the ventilation amount correction value.
  • steps S71 to S75 are the same as steps S31 to S35 in the flowchart shown in FIG. 8, and step S77 is the same as step S36 in the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
  • the control device 100 determines whether or not the ventilation volume correction value exceeds the second threshold (step S76).
  • the second threshold can be appropriately determined in consideration of the size of the air-conditioned space 80 .
  • the administrator may operate the control device 100 to arbitrarily set the second threshold.
  • control device 100 determines that the correction value of the ventilation volume does not exceed the second threshold, the process proceeds to step S77.
  • the control device 100 determines that the ventilation volume correction value exceeds the second threshold value, the control device 100 determines the set temperatures of the air conditioners 51 to 54 according to the ventilation volume correction value (step S78).
  • the control device 100 determines the set temperature of the air conditioners 51 to 54 to be lower as the ventilation amount correction value is larger.
  • the control device 100 sets the set temperature of the air conditioners 51 to 54 to a higher value as the ventilation amount correction value increases.
  • control device 100 controls the air conditioners 51 to 54 for each of the areas 81 to 84 based on the wind direction and air volume determined in step S74 and the set temperature determined in step S78 (step S79), the processing based on this flow chart ends.
  • the set temperatures of the air conditioners 51 to 54 are appropriately adjusted according to the correction value of the ventilation amount, so even if the ventilation amount suddenly increases, the temperature in the air-conditioned space 80 is not affected by the outside air. It is possible to prevent sudden fluctuations due to receiving As a result, according to Embodiment 4, the air-conditioned space 80 can be maintained at a comfortable temperature while preventing the spread of infection by automatically changing the amount of ventilation according to the risk of infection.
  • control device 100 may be configured to have all the functions of the first to fourth embodiments.
  • a CO2 sensor that detects the amount of carbon dioxide may be provided in the air-conditioned space 80.
  • the control device 100 may determine the required ventilation volume based on the detected value of the CO2 sensor.
  • the control device 100 may correct the required ventilation volume determined in step S14 or step S15 based on the detected value of the CO2 sensor.
  • step S8 of the flowchart in Fig. 6 the level of infection risk was evaluated from the two perspectives of density and volume.
  • the level of infection risk may be assessed based on one of crowding and volume.
  • the control device 100 may evaluate the infection risk level based only on the sound volume.
  • the control device 100 may perform the process of step S13 in FIG. 7 based on the infection risk evaluated based on one of the density and volume.
  • control device 100 controls the air direction and air volume of the air conditioners 51 to 54 according to the infection risk level.
  • control device 100 may control one of the wind direction and the wind volume of the air conditioners 51 to 54 according to the infection risk level.
  • control device 100 may control only the wind direction of air conditioners 51-54.
  • step S45 may be deleted.
  • the control device 100 may transmit a message to a person near the exhaust device 70 regardless of the magnitude of the ventilation volume correction value.
  • control device 100 may determine the set temperature for at least one of the air conditioners 51-54. For example, control device 100 may adjust only the set temperature of air conditioner 51 and not adjust the set temperatures of air conditioners 52 to 54 in step S78.
  • Embodiment 5 Next, Embodiment 5 will be described.
  • the control device 100 simulates the ventilation route based on the calculation result of the density and the degree of splash for each area and the area with the ventilation section (opening and closing section such as a ventilation device and a window).
  • the control device 100 controls the air conditioner 51 and the ventilation device according to the simulation result.
  • areas with a high degree of scattering and areas with a high degree of droplets are basically areas that should be ventilated. Therefore, in order to efficiently ventilate those areas toward the ventilation section, the air conditioner 51 also supports ventilation by blowing air or the like.
  • Air-conditioning control is performed so that the air is directed toward the ventilation section.
  • air conditioning control is performed such that the air in an area with a high degree of scattering or an area with a high degree of splashing is directed to the window.
  • air conditioning control is performed to confine air in an area with a high degree of scattering or an area with a high degree of splashing.
  • a wind direction sensor 45 that detects not only the direction of the wind but also the volume of the wind may be provided near openings and closing parts such as doors and windows of a room, for example, in order to direct the air in an area with a high degree of scattering or an area with a high degree of splashing to the windows.
  • FIG. 12 is a diagram showing an example in which wind direction sensors 45 are provided near doors 89 of rooms 85-87.
  • the rooms 85-87 shown in FIG. 12 are more specific than three of the areas 81-84 shown in FIG.
  • FIG. 12 shows an example in which three rooms are arranged side by side. 12, illustration of the image sensor 20 and volume sensors 41 to 44 shown in FIG. 1 is omitted.
  • wind direction sensors 45 are provided near doors 89 of rooms 85-87.
  • Rooms 85 to 87 are provided with air conditioners 50 similar to the air conditioners 51 to 54 shown in FIG.
  • the rooms 85 to 87 are provided with a window 90, which is an example of a ventilation section.
  • the room 85 is provided with a ventilator 91 .
  • Wind direction sensor 45 detects the flow of air near door 89 . This airflow is not the airflow directly blown out by the air conditioner 50 but the airflow that is naturally generated near the door 89 .
  • the wind direction sensor 45 detects airflow from near the door 89 of the room 87 toward the window 90 .
  • the wind direction sensor 45 detects the flow of air from the vicinity of the door 89 of the room 87 toward the window 90 when the window 90 is open.
  • the control device 100 determines that the risk of infection in the room 87 is much higher than in the other rooms 85 and 86.
  • a ventilation route there is a route from the room 87 to the ventilation device 91 of the room 85 through the corridor 88 and the room 86 .
  • room 86 may be occupied by many people.
  • the control device 100 selects the route toward the window 90 of the room 87 as the ventilation route.
  • Whether or not the window 90 is open can be identified based on the detection result of the wind direction sensor 45 provided in the room 87. If the window 90 is not open, the control device 100 may send a message to the remote controller of the air conditioner 50 to prompt the window 90 to be opened. In this case, the person who notices the message opens the window 90 . Also, if the room 87 has a window other than the window 90 , a message prompting the user to open the window may be sent to the remote controller of the air conditioner 50 .
  • FIG. 13 is a flowchart showing the process of determining the optimum ventilation route based on simulation. Processing based on this flowchart is executed by the control device 100 .
  • control device 100 reads the infection risk level for each of the rooms 85 to 87 from the memory 102 (step S81). This process is the same as step S12 in FIG.
  • control device 100 identifies a room to be ventilated (step S82). For example, of the rooms 85 to 87, the room with the highest risk of infection may be the room to be ventilated.
  • control device 100 reads the ventilation function data for each of the rooms 85 to 87 (step S83).
  • the data on the ventilation function is, for example, data indicating the presence or absence of the ventilator 91 and the window 90 .
  • the control device 100 simulates the ventilation route (step S84). More specifically, the control device 100 selects the optimum ventilation route based on the room to be ventilated, the position of the ventilator, and the conditions of the rooms existing from the room to be ventilated to the ventilator. As a result, for example, when a room with a high density of people exists in the middle of the route from the room to be ventilated to the ventilation device, the control device 100 optimizes the ventilation route passing through the room with a high density of people. Exclude from route targets.
  • control device 100 determines the optimum ventilation route based on the simulation (step S85). As a result, for example, control device 100 may select a route toward window 90 of the room to be ventilated as the ventilation route.
  • control device 100 controls the air conditioner 50 and the ventilation device 91 according to the determined ventilation route (step S86), and ends the process.
  • FIG. 14 is a flowchart showing an example of processing for performing ventilation based on the determined ventilation route. Processing based on this flowchart is executed by the control device 100 .
  • the process when the route to the window 90 of the room 87 to be ventilated is selected as the ventilation route will be described.
  • the control device 100 determines whether or not ventilation should be performed through a route toward the window 90 in the room 87 to be ventilated, instead of through a ventilation route toward the ventilation device 91 .
  • the control device 100 ends the process when the determination result is NO.
  • the control device 100 determines whether the window 90 of the room 87 to be ventilated is open (step S92). As described above, the control device 100 determines whether or not the window 90 of the room 87 to be ventilated is open based on the detection value of the wind direction sensor 45 provided near the door 89 .
  • the control device 100 transmits a message prompting the opening of the window 90 to the remote controller of the air conditioner 50 arranged in the room 87 to be ventilated (step S93). After that, the control device 100 checks again whether the window 90 is open (step S92).
  • the control device 100 sets the air blowing volume of the air conditioner 50 arranged in the room 87 to be ventilated to the maximum (step S94). Ventilation from the window 90 is thereby performed. Next, the control device 100 notifies that the room 87 is being ventilated (step S95), and finishes the process.
  • control device 100 may display a message on the remote controller of air conditioner 50 indicating that room 87 is being ventilated.
  • a message indicating that the room 87 is being ventilated may be sent to a company-issued or personally owned smart phone or the like possessed by a person in the room 87 or a person who is about to enter the room 87 .
  • FIG. 15 is a flowchart including processing for correcting the infection risk level depending on whether or not the person is wearing a mask. This flowchart is a modification of the flowchart shown in FIG.
  • the control device 100 may correct the infection risk level calculated in step S8 based on whether the person in the room is wearing a mask.
  • the control device 100 may determine whether or not the person in the room is wearing a mask based on the image acquired by the image sensor 20 .
  • the image sensor 20 a thermosensor that can acquire an image that makes it easy to identify whether a mask is worn or not may be used.
  • the control device 100 may determine the infection risk in the area by considering the percentage of people wearing masks. For example, if the sound volume detected by the sound volume sensor is high in a certain area, but everyone in that area is wearing a mask, the control device 100 may lower the infection risk determination result by one level. . Conversely, if the volume detected by the volume sensor in a certain area is low, but no one in the area is wearing a mask, the control device 100 raises the infection risk determination result by one level. good.
  • control device 100 may perform control to confine the air in that area.
  • a function similar to the notification function shown in step S95 of FIG. 14 may be exhibited.
  • the LED provided in the air conditioner 50 may emit light in a color corresponding to the content of the notification to notify that the control for confining the air is being performed.
  • a message indicating the details of the control may be displayed on the remote controller of the air conditioner 50 .
  • the message may be sent to a company-issued or personally owned smart phone or the like possessed by a person who is about to enter the area.
  • the wind direction sensor 45 that detects the air volume in addition to the wind direction is provided at the opening and closing part of the room (near the window and the door where people enter and exit), and the air flow due to the natural wind is detected. Effective ventilation may be provided.
  • the first to sixth embodiments and various modifications described above can be combined arbitrarily.
  • the present disclosure relates to an air conditioning ventilation system (1) or a control device (100).
  • the air-conditioning system includes ventilators (60, 70) for ventilating an air-conditioned space (80), a first air-conditioner (51) for air-conditioning the air-conditioned space, and a first sensor ( 41) and a control device.
  • the control device calculates the ventilation rate of the air-conditioned space according to the number of people present in the air-conditioned space (steps S14 and S15), and identifies the risk of virus infection based on at least the detection value of the first sensor (step S8), the air direction or air volume of the first air conditioner is controlled according to the identified infection risk (step S36), and the ventilator is controlled based on the ventilation volume (step S35).
  • the air conditioning ventilation system further comprises a second air conditioner (52) for air conditioning the air conditioned space, and the air conditioned space corresponds to the first area (81) corresponding to the first air conditioner and the second air conditioner. and a second area (82), the control device identifies the virus infection risk for each of the first area and the second area (step S8), and according to the virus infection risk in the first area, the first air conditioner , and controls the direction or volume of air from the second air conditioner according to the risk of virus infection in the second area (step S36).
  • the control device calculates the first ventilation volume according to the number of people present in the first area, and calculates the second ventilation volume according to the number of people present in the second area (steps S11 to Step S17), the ventilation volume is calculated including the first ventilation volume and the second ventilation volume (step S18).
  • the control device calculates the ventilation volume using the first unit ventilation volume (step S14), and when the virus infection risk exceeds the standard level , the second unit ventilation volume, which is larger than the first unit ventilation volume, is used to calculate the ventilation volume (step S15).
  • the control device controls the wind direction of the first air conditioner so that it does not hit people in the first area Control the air volume (Fig. 5).
  • control device If there are people only in the first area of the air-conditioned space and the risk of virus infection in the first area exceeds the standard level (level 1), the control device will set the wind of the first air conditioner to the first The air direction or air volume of the first air conditioner is controlled so as to hit people in one area (step S66).
  • the first sensor is composed of sound sensors (41-44), and the second sensor is an image sensor (20).
  • the control device identifies the degree of droplets from a person's mouth based on the detection value of the sound sensor (step S7), and identifies the degree of crowding of people based on the detection value of the image sensor (step S6), the risk of virus infection is identified based on the degree of droplet droplets and density (step S8).
  • the ventilation device includes an air supply device (60) and an exhaust device (70), and the control device exists at the position of the exhaust device when increasing the ventilation rate of the ventilation device (YES in step S45). After warning the person (step S47), the ventilator is controlled based on the ventilation volume (step S49).
  • the control device controls the set temperature of the first air conditioner according to the ventilation volume (step S78).
  • a ventilation route is determined, and the first air conditioner (50) and the ventilation device are controlled based on the determination result (steps S81 to S86).
  • the opening/closing section is composed of a window (90), and when the area to be ventilated is selected from among the areas included in the air-conditioned space, the control device selects a route to the opening/closing section provided in the area to be ventilated. It can be determined as a route (step S91).
  • a wind direction sensor (45) is provided at the entrance of the area (the position of the door 89) to detect the wind direction, and the control device opens and closes the area where the wind direction sensor is installed based on the detection result of the wind direction sensor. It is determined whether or not the part is open (step S92).
  • control device determines the route to the open/close unit provided in the ventilation target area as the ventilation route, it notifies that ventilation will be performed in the ventilation target area (step S95).
  • the control device determines whether the person present in the air-conditioned space is wearing a mask, and if the person present in the air-conditioned space is wearing a mask , Corrected the level of infection risk identified based on the droplet rate and density to a higher level, and if the person in the air-conditioned space was wearing a mask, identified based on the droplet rate and density The infection risk level is corrected to a lower level (step S8A).
  • Air-conditioning ventilation system 11-13 Communication line, 20 Image sensor (photographing device), 41-44 Sound volume sensor, 45 Wind direction sensor, 50-54 Air conditioner, 60 Air supply device, 70 Exhaust device, 80 Air-conditioned space, 81- 84 area, 85 to 87 room, 88 corridor, 89 door, 90 window, 91 ventilator, 100 control device, 101 processor, 102 memory, 111 first communication unit, 112 sensor information processing unit, 113 position information processing unit, 114 Second communication unit, 115 storage unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air-conditioning and ventilation system (1) is equipped with: ventilation devices (60, 70) for ventilating a space (80) to be air-conditioned; a first air-conditioning device (51) for air-conditioning the space to be air-conditioned; a first sensor (41) for detecting the state of a person present in the space to be air-conditioned; and a control device (100). The control device (100) calculates the ventilation amount in the space to be air-conditioned according to the number of people present in the space to be air-conditioned (step S14, step S15), identifies the risk of infection by a virus on the basis of at least a detected value from a first sensor (41) (step S8), controls the direction or amount of airflow from the first air-conditioning device (51) according to the identified risk of infection (step S36), and controls the ventilation devices (60, 70) on the basis of the ventilation amount (step S35).

Description

空調換気システムair conditioning ventilation system
 本開示は、空調換気システムに関する。 This disclosure relates to an air conditioning ventilation system.
 人が過ごす空調空間を適切に換気することは重要である。たとえば、特許文献1には、空調空間内の人に装着されたウェアラブル端末を用いて空調空間内の人数を特定し、換気量を人数に応じて適切に制御する換気システムが記載されている。また、特許文献2には、在室者の行動をカメラで記録し、在室者の代謝量に基づいて換気量を決定する換気システムが記載されている。 It is important to properly ventilate air-conditioned spaces where people spend time. For example, Patent Literature 1 describes a ventilation system that identifies the number of people in an air-conditioned space using wearable terminals worn by people in the air-conditioned space, and appropriately controls the amount of ventilation according to the number of people. Further, Patent Document 2 describes a ventilation system that records the behavior of a person in the room with a camera and determines the amount of ventilation based on the metabolic rate of the person in the room.
特開2020-200998号公報Japanese Patent Application Laid-Open No. 2020-200998 特開2020-038052号公報JP 2020-038052 A
 空調空間を適切に換気することは、空気感染や飛沫感染で感染する感染症の対策として有効である。しかしながら、従来、換気装置を制御するばかりでなく、感染リスクを考慮して空調装置を制御するシステムは見当たらない。  Properly ventilating air-conditioned spaces is effective as a countermeasure against infectious diseases transmitted by airborne infections and droplet infections. However, conventionally, there has not been found a system that not only controls the ventilator but also controls the air conditioner in consideration of the risk of infection.
 本開示は、換気装置を制御するばかりでなく、感染症に対する感染リスクを考慮して空調装置を制御することが可能な空調換気システムを提供することを目的とする。 An object of the present disclosure is to provide an air-conditioning ventilation system capable of controlling not only a ventilation device but also an air-conditioning device in consideration of the risk of infection with infectious diseases.
 本開示は、空調換気システムに関する。空調システムは、空調空間を換気する換気装置と、空調空間を空調する第1空調装置と、空調空間に存在する人の状態を検出する第1センサと、制御装置とを備える。制御装置は、空調空間に存在する人の数に応じて空調空間の換気量を算出し、少なくとも第1センサの検出値に基づいて感染リスクを特定し、特定された感染リスクに応じて第1空調装置の風向きまたは風量を制御し、換気量に基づいて換気装置を制御する。 This disclosure relates to an air conditioning ventilation system. The air-conditioning system includes a ventilation device for ventilating the air-conditioned space, a first air-conditioning device for air-conditioning the air-conditioned space, a first sensor for detecting the state of a person present in the air-conditioned space, and a control device. The control device calculates the ventilation amount of the air-conditioned space according to the number of people present in the air-conditioned space, identifies the infection risk based on at least the detection value of the first sensor, and determines the infection risk according to the identified infection risk. Control the air direction or air volume of the air conditioner, and control the ventilation device based on the ventilation volume.
 本開示によれば、換気装置を制御するばかりでなく、感染症に対する感染リスクを考慮して空調装置を制御することが可能な空調換気システムを提供することができる。 According to the present disclosure, it is possible to provide an air-conditioning ventilation system capable of controlling not only the ventilation device but also the air-conditioning device in consideration of the infection risk of infectious diseases.
実施の形態1における空調換気システムの全体構成を示す図である。1 is a diagram showing the overall configuration of an air-conditioning and ventilation system according to Embodiment 1. FIG. 実施の形態1における制御装置の機能構成を示す図である。2 is a diagram showing a functional configuration of a control device according to Embodiment 1; FIG. 空調空間内の音量と感染リスクとの関係を示す図である。FIG. 4 is a diagram showing the relationship between the sound volume in an air-conditioned space and the risk of infection; 空調空間内の音量および密集度に基づいて感染リスクのレベルを評価する例を示す図である。FIG. 4 is a diagram showing an example of evaluating the level of infection risk based on the volume and density in an air-conditioned space; 感染リスクに応じた空調装置の制御の内容を示す図である。It is a figure which shows the content of control of an air conditioner according to an infection risk. 空調空間内の音量および密集度に基づいて感染リスクのレベルを評価する処理を示すフローチャートである。4 is a flow chart showing a process of evaluating the level of infection risk based on the volume and density in the air-conditioned space. 感染リスクのレベルに応じて必要換気量を算出する処理を示すフローチャートである。4 is a flow chart showing a process of calculating the required ventilation volume according to the infection risk level. 給気装置、排気装置、および空調装置を制御する処理を示すフローチャートである(実施の形態1)。4 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 1). 給気装置、排気装置、および空調装置を制御する処理を示すフローチャートである(実施の形態2)。7 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 2). 給気装置、排気装置、および空調装置を制御する処理を示すフローチャートである(実施の形態3)。9 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 3). 給気装置、排気装置、および空調装置を制御する処理を示すフローチャートである(実施の形態4)。10 is a flow chart showing processing for controlling an air supply device, an exhaust device, and an air conditioner (Embodiment 4). 部屋のドア付近に風向きセンサを設けた例を示す図である(実施の形態5)。FIG. 12 is a diagram showing an example in which a wind direction sensor is provided near the door of a room (Embodiment 5); シミュレーションに基づいて最適な換気経路を決定する処理を示すフローチャートである(実施の形態5)。14 is a flow chart showing processing for determining an optimum ventilation route based on simulation (Embodiment 5). 決定された換気経路に基づいて換気を行うための処理の一例を示すフローチャートである(実施の形態5)。FIG. 13 is a flow chart showing an example of a process for performing ventilation based on a determined ventilation route (Embodiment 5); FIG. 人がマスクを着用しているか否かに応じて感染リスクのレベルを補正する処理を含むフローチャートである(実施の形態6)。19 is a flowchart including processing for correcting the level of infection risk according to whether or not a person is wearing a mask (Embodiment 6).
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1における空調換気システム1の全体構成を示す図である。空調換気システム1は、空調空間80において機能する。空調空間80は、たとえば、多数の人を収容するビルのフロアである。空調空間80は、パーティションによってエリア81、エリア82、エリア83、およびエリア84に仕切られている。
Embodiment 1.
FIG. 1 is a diagram showing the overall configuration of an air conditioning ventilation system 1 according to Embodiment 1. As shown in FIG. The air-conditioning ventilation system 1 functions in an air-conditioned space 80 . Air-conditioned space 80 is, for example, a floor of a building that accommodates a large number of people. The air-conditioned space 80 is divided into an area 81, an area 82, an area 83, and an area 84 by partitions.
 空調空間80には、空調空間80の外部から新鮮な空気を取り込む給気装置60と、空調空間80内の空気を外部に排出する排気装置70とが設けられる。給気装置60と排気装置70とにより、換気装置が構成されている。 The air-conditioned space 80 is provided with an air supply device 60 that takes in fresh air from the outside of the air-conditioned space 80 and an exhaust device 70 that discharges the air in the air-conditioned space 80 to the outside. A ventilator is configured by the air supply device 60 and the exhaust device 70 .
 空調空間80のパーティションを構成する壁の上方は天井面に達していない。このため給気装置60によって取り込まれた新鮮な空気は、エリア81~84に行き渡り、エリア81~84の汚れた空気は、排気装置70によって外部に排出される。 The upper part of the wall that constitutes the partition of the air-conditioned space 80 does not reach the ceiling surface. Therefore, the fresh air taken in by the air supply device 60 spreads over the areas 81 to 84, and the dirty air in the areas 81 to 84 is discharged to the outside by the exhaust device .
 エリア81には音量センサ41と空調装置51とが配置される。エリア82には音量センサ42と空調装置52とが配置される。エリア83には音量センサ43と空調装置53とが配置される。エリア84には音量センサ44と空調装置54とが配置される。 A volume sensor 41 and an air conditioner 51 are arranged in the area 81 . A volume sensor 42 and an air conditioner 52 are arranged in the area 82 . A volume sensor 43 and an air conditioner 53 are arranged in the area 83 . The volume sensor 44 and the air conditioner 54 are arranged in the area 84 .
 空調装置51~54は、対応するエリア81~84の温度を調整する。
 音量センサ41~44は、人の状態を検出するセンサの一例である。音量センサ41~44は、人の発声に伴って出力される音声を検出する。音量センサ41~44により、黙り込んでいる状態、小さな声で話している状態、大きな声で話している状態、咳をよくしている状態、などといった人の状態を検出することができる。
The air conditioners 51-54 adjust the temperature of the corresponding areas 81-84.
The volume sensors 41 to 44 are examples of sensors that detect human states. Volume sensors 41 to 44 detect sounds output in accordance with human vocalizations. The volume sensors 41 to 44 can detect the state of a person, such as being silent, speaking softly, speaking loudly, and coughing well.
 空調空間80には、さらに、撮影装置を構成する画像センサ20が設けられる。画像センサ20は、エリア81~84内を撮影できるよう、天井面に設置されている。画像センサ20は、人の状態を検出するセンサの一例である。 The air-conditioned space 80 is further provided with an image sensor 20 that constitutes a photographing device. The image sensor 20 is installed on the ceiling surface so as to photograph the areas 81-84. Image sensor 20 is an example of a sensor that detects a person's condition.
 画像センサ20が検出する画像を解析することにより、エリア81~84において人が多数存在する状態が否かをエリア81~84毎に特定できる。より具体的には、画像センサ20が検出する画像から在室人数をエリア81~84毎に特定できる。つまり、画像センサ20が検出した画像を用いることによって、人の密集度をエリア81~84毎に特定することができる。さらに、画像センサ20が検出する画像を解析することにより、人の動きの激しさを特定することができる。 By analyzing the images detected by the image sensor 20, it is possible to specify for each of the areas 81 to 84 whether there are many people in the areas 81 to 84 or not. More specifically, the number of people in the room can be specified for each of the areas 81 to 84 from the image detected by the image sensor 20 . In other words, by using the image detected by the image sensor 20, the density of people can be specified for each of the areas 81-84. Furthermore, by analyzing the image detected by the image sensor 20, it is possible to specify the intensity of the person's movement.
 空調換気システム1は、以上、説明した画像センサ20、音量センサ41~44、空調装置51~54、給気装置60、および排気装置70を含む。空調換気システム1は、さらに、システム全体を制御する制御装置100を含む。制御装置100は、通信線11によって画像センサ20と接続される。制御装置100は、通信線12によって音量センサ41~44と接続される。制御装置100は、通信線13によって空調装置51~54、給気装置60、および排気装置70と接続される。 The air conditioning ventilation system 1 includes the image sensor 20, sound volume sensors 41 to 44, air conditioners 51 to 54, air supply device 60, and exhaust device 70 described above. The air conditioning ventilation system 1 further includes a control device 100 that controls the entire system. The control device 100 is connected with the image sensor 20 by the communication line 11 . Control device 100 is connected to volume sensors 41 to 44 by communication line 12 . Control device 100 is connected to air conditioners 51 to 54 , air supply device 60 and exhaust device 70 via communication line 13 .
 制御装置100は、画像センサ20、音量センサ41~44、空調装置51~54、給気装置60、および排気装置70と有線でなく無線によって通信してもよい。 The control device 100 may communicate with the image sensor 20, the volume sensors 41 to 44, the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 not by wire but by radio.
 制御装置100は、プロセッサ101と、メモリ102とを含んで構成される。メモリ102は、ROM(Read Only Memory)およびRAM(Random Access Memory)を含む。プロセッサ101は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。 The control device 100 includes a processor 101 and a memory 102 . The memory 102 includes ROM (Read Only Memory) and RAM (Random Access Memory). The processor 101 expands a program stored in ROM into RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 100 are described.
 制御装置100は、メモリ102に格納されたプログラムに従って、画像センサ20、および音量センサ41~44の検出値を処理するとともに、空調装置51~54、給気装置60および排気装置70を制御する。制御装置100は、空調空間80に設けられてもよく、空調空間80とは別のフロアに設けられてもよい。制御装置100を空調空間80が収容されたビルとは異なる場所に設けてもよい。 The control device 100 processes the detection values of the image sensor 20 and the sound volume sensors 41-44 according to the program stored in the memory 102, and controls the air conditioners 51-54, the air supply device 60 and the exhaust device 70. The control device 100 may be provided in the air-conditioned space 80 or may be provided on a floor different from the air-conditioned space 80 . The control device 100 may be provided at a location different from the building in which the air-conditioned space 80 is housed.
 制御装置100は、音量センサ41~44の検出値に基づいて、エリア81~84における音量を評価する。ここで、音量は、人の声の大きさである。人の声が大きければ、人の口から飛沫する液体によってウイルスに感染するリスクが高くなる。制御装置100は、音量センサ41~44の検出値に基づいて、エリア81~84における音量、すなわち飛沫度を評価する。 The control device 100 evaluates the volume in the areas 81-84 based on the detection values of the volume sensors 41-44. Here, volume is the loudness of a person's voice. The louder a person's voice, the higher the risk of catching the virus through droplets from a person's mouth. The control device 100 evaluates the volume in the areas 81-84, that is, the degree of splashing, based on the detection values of the volume sensors 41-44.
 制御装置100は、画像センサ20が検出する画像に基づいて、エリア81~84における人の密集度を評価する。制御装置100は、音量(飛沫度)と密集度の2つの観点からエリア81~84における感染リスクを評価し、評価に応じて空調装置51~54、給気装置60、および排気装置70を制御する。 Based on the image detected by the image sensor 20, the control device 100 evaluates the density of people in the areas 81-84. The control device 100 evaluates the infection risk in the areas 81 to 84 from the two viewpoints of volume (droplet degree) and density, and controls the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 according to the evaluation. do.
 図1には、空調空間80が4つのエリアに区画される例が示されている。しかし、区画されるエリアの数は2つであっても、3つであってもよく、また、5つ以上であってもよい。また、エリア81~84毎に画像センサ20を設けてもよい。 FIG. 1 shows an example in which the air-conditioned space 80 is divided into four areas. However, the number of partitioned areas may be two, three, or five or more. Also, an image sensor 20 may be provided for each of the areas 81-84.
 図2は、実施の形態1における制御装置100の機能構成を示す図である。制御装置100は、第1通信部111と、センサ情報処理部112と、位置情報処理部113と、第2通信部114と、記憶部115とを含む。これらは、図1に示したプロセッサ101およびメモリ102によって実現される機能である。 FIG. 2 is a diagram showing the functional configuration of the control device 100 according to the first embodiment. Control device 100 includes first communication unit 111 , sensor information processing unit 112 , position information processing unit 113 , second communication unit 114 , and storage unit 115 . These are functions realized by the processor 101 and the memory 102 shown in FIG.
 第1通信部111は、画像センサ20および音量センサ41~44と通信する。センサ情報処理部112は、センサ情報を換気量の算出および感染リスク評価の情報源とする。換気量は、フロアの在室人数および在室者の行動量で決定することができる。たとえば、在室者の動きが激しい場合には行動量が多く、在室者の動きが少ない場合には行動量が少ないと評価できる。 The first communication unit 111 communicates with the image sensor 20 and volume sensors 41-44. The sensor information processing unit 112 uses the sensor information as an information source for calculating the ventilation volume and evaluating the risk of infection. The amount of ventilation can be determined by the number of people in the room on the floor and the amount of activity of the people in the room. For example, it can be evaluated that the amount of activity is large when the person in the room moves rapidly, and the amount of activity is small when the person in the room moves little.
 感染リスクは、在室者の位置から把握できる密集度と、音量から換算できる声量、および会話の頻度で評価することができる。このとき、音量センサ41~44がエリア81~84のどのエリアに配置されているかを示す位置情報を用いることにより、エリア81~84毎の評価結果を得ることができる。位置情報処理部113は、たとえば、このような位置情報を処理する。 The infection risk can be evaluated by the density that can be grasped from the positions of people in the room, the volume of voice that can be converted from the volume, and the frequency of conversation. At this time, by using the positional information indicating in which of the areas 81 to 84 the volume sensors 41 to 44 are arranged, the evaluation result for each of the areas 81 to 84 can be obtained. The position information processing unit 113 processes such position information, for example.
 センサ情報処理部112は、画像センサ20および音量センサ41~44のセンサ情報を処理することによって換気量を監視する。具体的には、センサ情報処理部112は、画像センサ20が検出する画像を解析することによって、エリア81~84毎に、在室人数、人の位置、および人の行動を特定する。たとえば、単位時間当たりの人の動作量が多いほど、必要な換気量は多くなる。センサ情報処理部112は、人の行動を評価することによって、必要な換気量を補正する。 The sensor information processing unit 112 monitors the ventilation volume by processing sensor information from the image sensor 20 and sound volume sensors 41-44. Specifically, the sensor information processing unit 112 identifies the number of people in the room, the positions of people, and the behavior of people for each of the areas 81 to 84 by analyzing the images detected by the image sensor 20 . For example, the greater the amount of human activity per unit time, the greater the ventilation required. The sensor information processing unit 112 corrects the required ventilation volume by evaluating human behavior.
 さらに、センサ情報処理部112は、音量センサ41~44が検出する音量を解析することによって、エリア81~84毎に、人の声の大きさを特定する。 Furthermore, the sensor information processing unit 112 identifies the loudness of a person's voice for each of the areas 81-84 by analyzing the volume detected by the volume sensors 41-44.
 センサ情報処理部112は、空調空間80に必要な換気量を算出する。センサ情報処理部112は、エリア81~84単位で感染リスクを評価する。 The sensor information processing unit 112 calculates the amount of ventilation required for the air-conditioned space 80 . The sensor information processing unit 112 evaluates the infection risk in units of areas 81-84.
 位置情報処理部113は、算出された換気量と、エリア81~84単位での感染リスクの評価結果とに基づいて、空調装置51~54、給気装置60、および排気装置70の制御内容を決定する。このとき、位置情報処理部113は、空調装置51~54、給気装置60、および排気装置70の位置情報、並びに算出された換気量を参照する。 The position information processing unit 113 determines the control contents of the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 based on the calculated ventilation volume and the evaluation result of the infection risk in units of the areas 81 to 84. decide. At this time, the position information processing unit 113 refers to the position information of the air conditioners 51 to 54, the air supply device 60, and the exhaust device 70, and the calculated ventilation volume.
 位置情報処理部113が決定した制御内容は、第2通信部114から空調装置51~54、給気装置60、および排気装置70に送られる。空調装置51~54、給気装置60、および排気装置70は、制御内容に従って動作する。 The control details determined by the position information processing unit 113 are sent from the second communication unit 114 to the air conditioners 51 to 54, the air supply device 60, and the exhaust device . The air conditioners 51 to 54, the air supply device 60, and the exhaust device 70 operate according to the contents of control.
 記憶部115には、空調空間80のフロアマップが格納されている。このフロアマップには、画像センサ20、音量センサ41~44、換気装置(給気装置60および排気装置70)、および空調装置51~54の位置を示す情報が含まれている。さらに、フロアマップには、空調装置51~54が空調可能なエリア81~84の情報が含まれている。 A floor map of the air-conditioned space 80 is stored in the storage unit 115 . This floor map includes information indicating the positions of the image sensor 20, volume sensors 41-44, ventilators (air supply device 60 and exhaust device 70), and air conditioners 51-54. Furthermore, the floor map includes information on areas 81-84 that can be air-conditioned by the air conditioners 51-54.
 記憶部115には、画像センサ20などの各種装置の位置が予め関連付けられたフロアマップを格納してもよい。あるいは、記憶部115には、各種装置の位置が予め関連付けられていないフロアマップを格納してもよい。後者の場合、管理者が各種装置の位置をフロアマップに対して関連付けることができるように、制御装置100を構成する。このようにすることで、空調装置51~54の位置を移動したときに、フロアマップの位置情報を修正することができる。記憶部115には、さらに、在室者の行動を評価するための情報および各種機器の制御情報が格納される。 The storage unit 115 may store a floor map in which the positions of various devices such as the image sensor 20 are associated in advance. Alternatively, storage unit 115 may store a floor map in which the positions of various devices are not associated in advance. In the latter case, the controller 100 is configured to allow the administrator to associate the location of various devices with the floor map. By doing so, the position information of the floor map can be corrected when the positions of the air conditioners 51 to 54 are moved. The storage unit 115 further stores information for evaluating the behavior of people in the room and control information for various devices.
 以上、説明したセンサ情報処理部112および位置情報処理部113は、制御装置100に含まれるプロセッサ101によって実現される。制御装置100は、人の行動を考慮して換気量を算出する。制御装置100は、算出した換気量に基づいて給気装置60および排気装置70を制御する。さらに、制御装置100は、感染リスクに応じて空調装置51~54を制御する。 The sensor information processing unit 112 and the position information processing unit 113 described above are implemented by the processor 101 included in the control device 100 . The control device 100 calculates the ventilation volume in consideration of human behavior. Control device 100 controls air supply device 60 and exhaust device 70 based on the calculated ventilation volume. Furthermore, the control device 100 controls the air conditioners 51 to 54 according to the infection risk.
 たとえば、感染リスクが高い場合、制御装置100は、換気量を多くする一方で、感染リスクの高いエリアに配置された空調装置の送風量を減らし、感染リスクの低いエリアに配置された空調装置の送風量を増やしてもよい。 For example, when the infection risk is high, the control device 100 increases the ventilation volume, reduces the air blow volume of air conditioners placed in areas with a high infection risk, and reduces the ventilation volume of air conditioners placed in areas with a low infection risk. You may increase the amount of air blowing.
 制御装置100は、たとえば、エリア81内に感染リスクの高い行動をする在室者が存在する場合、在室者に気流を向けないようエリア81の空調装置51を制御してもよい。制御装置100は、給気装置60の給気量の変化と、排気装置70の排気量の変化と、室内と外気の温度差とを考慮して、給気装置60の給気口に近い空調装置51の設定温度を補正してもよい。 For example, if there is a person in the room who behaves at a high risk of infection in the area 81, the control device 100 may control the air conditioner 51 in the area 81 so as not to direct the airflow to the person in the room. The control device 100 adjusts the air conditioning near the air supply port of the air supply device 60 in consideration of the change in the amount of air supplied by the air supply device 60, the change in the amount of exhaust air of the exhaust device 70, and the temperature difference between the indoor and outdoor air. The set temperature of the device 51 may be corrected.
 空調空間80には、給気装置60および排気装置70により構成される換気装置を複数設けてもよい。この場合、たとえば、強、中、弱のように段階的に換気装置の風量を変更できるように構成してもよい。たとえば、空調空間80の換気量を増加する場合、エリア81~84のうち、人が密集しているエリアに近い換気装置の換気量を他の換気装置の換気量よりも多くしてもよい。 The air-conditioned space 80 may be provided with a plurality of ventilation devices composed of the air supply device 60 and the exhaust device 70 . In this case, for example, it may be configured such that the air volume of the ventilation device can be changed in stages such as strong, medium, and weak. For example, when increasing the ventilation rate of the air-conditioned space 80, the ventilation rate of the ventilation device closer to the densely populated area among the areas 81 to 84 may be set higher than the ventilation rate of the other ventilation devices.
 ユーザーは、室内の人数に応じて換気装置の換気量を手動操作によって調節することで、室内の空気を新鮮に保つことができる。しかしながら、室内の人数および人の行動は時間とともに変化する。従来、ユーザーは、空調空間が不快な空気環境となることを防止するため、都度、換気量を調節する必要があった。また、従来、ユーザーは、必要な換気量を確保しようとするあまり、換気装置を必要以上に稼動させてしまい、エネルギーロスを生じさせてしまうことがあった。 The user can keep the indoor air fresh by manually adjusting the ventilation volume of the ventilation device according to the number of people in the room. However, the number of people in a room and their behavior change over time. Conventionally, users have had to adjust the amount of ventilation each time to prevent the air-conditioned space from becoming an uncomfortable air environment. In addition, conventionally, users tend to operate the ventilator more than necessary in an attempt to ensure the necessary ventilation volume, resulting in energy loss.
 本実施の形態によれば、制御装置100が人の位置と行動をモニタすることで感染リスクを評価し、換気量を調整するため、適切な換気を自動で行うことができる。また、本実施の形態によれば、人と空調装置の位置情報を照らし合わせることで、感染リスクの高い人およびエリアへの気流を抑制することができる。 According to the present embodiment, the control device 100 evaluates the infection risk by monitoring the position and behavior of a person, and adjusts the amount of ventilation, so appropriate ventilation can be performed automatically. Further, according to the present embodiment, by comparing the position information of the person and the air conditioner, it is possible to suppress the airflow to the person and the area with high infection risk.
 図3は、空調空間80内の音量と感染リスクとの関係を示す図である。空調空間80に配置された音量センサ41~44は、人の声の音量を検出する。エリア81~84のうち、声の音量が大きいエリアは、他のエリアに比べて飛沫感染のリスクが高いと考えられる。したがって、音量を評価することによって、飛沫度を評価することができる。 FIG. 3 is a diagram showing the relationship between the sound volume in the air-conditioned space 80 and the risk of infection. The volume sensors 41-44 arranged in the air-conditioned space 80 detect the volume of human voices. Among the areas 81 to 84, the area where the voice volume is loud is considered to have a higher risk of droplet infection than the other areas. Therefore, the degree of splash can be evaluated by evaluating the sound volume.
 エリア81~84において検出される人の声の音量は、たとえば、図3に示されるように時間とともに変化する。制御装置100は、閾値を超える音量が図3に示される時間Tsを超えて検出される場合に、感染リスク有と評価する。制御装置100は、v1,v2,およびv3の3つの閾値を記憶している。 The volume of human voices detected in areas 81 to 84 changes with time, for example, as shown in FIG. The control device 100 evaluates that there is an infection risk when the volume exceeding the threshold is detected over the time Ts shown in FIG. The controller 100 stores three thresholds v1, v2, and v3.
 制御装置100は、「v1<v≦v2」を満たす音量vが時間Tsを超えて検出された場合、感染リスク小と判定する。制御装置100は、「v2<v≦v3」を満たす音量vが時間Tsを超えて検出された場合、感染リスク中と判定する。制御装置100は、「v3<v」を満たす音量vが時間Tsを超えて検出された場合、感染リスク大と判定する。制御装置100は、音量vが「v≦v1」を満たすとき、感染リスク無しと判定する。 The control device 100 determines that the risk of infection is low when a volume v that satisfies "v1<v≤v2" is detected over time Ts. The control device 100 determines that the infection risk is high when the volume v that satisfies “v2<v≦v3” is detected over the time Ts. The control device 100 determines that the risk of infection is high when the sound volume v that satisfies "v3<v" is detected beyond the time Ts. The control device 100 determines that there is no infection risk when the volume v satisfies "v≦v1".
 その結果、図3の確定時間に対応する部分に対して、感染リスク有と判定されるとともに、状況に応じて感染リスクの大きさが決定される。たとえば、図3において、t1~t2は感染リスク小、t2~t3は感染リスク中、t3~t4は感染リスク大、t4~t5は感染リスク中、t5~t6は感染リスク大、t6~t7は感染リスク中、t7~t8は感染リスク小、t8~感染リスク無し、にそれぞれ対応する。 As a result, it is determined that there is an infection risk for the part corresponding to the fixed time in Fig. 3, and the magnitude of the infection risk is determined according to the situation. For example, in FIG. 3, t1 to t2 are at low risk of infection, t2 to t3 are at medium risk of infection, t3 to t4 are at high risk of infection, t4 to t5 are at medium risk of infection, t5 to t6 are at high risk of infection, and t6 to t7 are at high risk of infection. Among the infection risks, t7 to t8 correspond to low infection risk and t8 to no infection risk, respectively.
 制御装置100は、エリア81~84毎に図3に示される基準に従って感染リスクを評価する。制御装置100は、エリア81に対応して設けた音量センサ41の検出値に基づいて、エリア81の感染リスクを評価する。制御装置100は、エリア82に対応して設けた音量センサ42の検出値に基づいて、エリア82の感染リスクを評価する。制御装置100は、エリア83に対応して設けた音量センサ43の検出値に基づいて、エリア83の感染リスクを評価する。制御装置100は、エリア84に対応して設けた音量センサ44の検出値に基づいて、エリア84の感染リスクを評価する。 The control device 100 evaluates the infection risk according to the criteria shown in FIG. 3 for each area 81-84. Control device 100 evaluates the infection risk of area 81 based on the detection value of volume sensor 41 provided corresponding to area 81 . Control device 100 evaluates the infection risk of area 82 based on the detection value of volume sensor 42 provided corresponding to area 82 . Control device 100 evaluates the infection risk of area 83 based on the detection value of volume sensor 43 provided corresponding to area 83 . Control device 100 evaluates the infection risk of area 84 based on the detection value of volume sensor 44 provided corresponding to area 84 .
 図4は、空調空間80内の音量および密集度に基づいて感染リスクのレベルを評価する例を示す図である。制御装置100は、音量を評価することによって、飛沫度を評価している。したがって、制御装置100は、実質的に、飛沫度と密集度との2つの観点から感染リスクのレベルをエリア81~84毎に評価している。音量の評価方法は、図3を用いて説明したとおりである。密集度は、たとえば、エリアの大きさとエリアに存在する人の数とに基づいて評価することができる。 FIG. 4 is a diagram showing an example of evaluating the infection risk level based on the volume and density in the air-conditioned space 80. FIG. The control device 100 evaluates the degree of splashing by evaluating the volume. Therefore, the control device 100 substantially evaluates the infection risk level for each of the areas 81 to 84 from the two viewpoints of the degree of droplet droplets and the degree of density. The volume evaluation method is as described with reference to FIG. The density can be evaluated, for example, based on the size of the area and the number of people present in the area.
 図4には、音量と密集度とに基づいて決定される感染リスクのレベルが例示されている。たとえば、音量評価においてリスク無し、かつ、密集度評価においてリスク無し、であれば、感染リスクのレベルはレベル1と評価される。ここで、レベル1は、感染リスク無しに対応する。音量評価においてリスクのレベル大、かつ、密集度評価においてリスクのレベル中、であれば、感染リスクのレベルはレベル4と評価される。 FIG. 4 illustrates the level of infection risk determined based on volume and density. For example, if there is no risk in the loudness evaluation and no risk in the crowding evaluation, the infection risk level is evaluated as level 1. Here, level 1 corresponds to no infection risk. If the risk level is high in the volume evaluation and the risk level is medium in the density evaluation, the infection risk level is evaluated as level 4.
 なお、図4に示される感染リスクのレベルは例示に過ぎない。たとえば、制御装置100を管理する管理者がこれらのレベルを任意に設定できるように、制御装置100を設計してもよい。 It should be noted that the infection risk levels shown in FIG. 4 are merely examples. For example, control device 100 may be designed such that an administrator who manages control device 100 can arbitrarily set these levels.
 図5は、感染リスクに応じた空調装置51~54の制御の内容を示す図である。制御装置100は、音量と密集度との2つの観点から感染リスクのレベルを評価した後、評価したレベルに応じて図5に示されるとおりに空調装置51~54を制御する。 FIG. 5 is a diagram showing details of control of the air conditioners 51 to 54 according to the infection risk. Control device 100 evaluates the infection risk level from the two viewpoints of volume and density, and then controls air conditioners 51 to 54 according to the evaluated level as shown in FIG.
 図5に示される制御は、感染リスクが高いエリアに関しては、そこに存在するかもしれないウイルスが空調装置51~54から吹き出される風によって飛散することを防止する、という考え方に基づいている。したがって、たとえば、エリア81がレベル1、すなわち、感染リスクなしと評価された場合、制御装置100は、エリア81に対応する空調装置51の風向きおよび風量のいずれの設定も変更しない。 The control shown in FIG. 5 is based on the concept of preventing viruses that may exist in areas with a high risk of infection from being scattered by the wind blown from the air conditioners 51-54. Therefore, for example, when area 81 is evaluated as level 1, ie, no risk of infection, control device 100 does not change the settings of the air direction and air volume of air conditioner 51 corresponding to area 81 .
 しかしながら、エリア81がレベル2と評価された場合、制御装置100は、空調装置51の風向きを風よけに設定する。ただし、制御装置100は、空調装置51の風量の設定を変更しない。空調装置51の風向きを風よけに設定した場合、空調装置51は、空調効率を考慮しつつ、人がいない方向に風を吹き出す。これにより、感染リスクの有るエリア81に存在する人に対して直接、風が当たることを防止する。一方、風量の設定は変更されないため、エリア81の温度を極力、適正値に保つことができる。 However, when the area 81 is evaluated as level 2, the control device 100 sets the wind direction of the air conditioner 51 to a windbreak. However, the control device 100 does not change the setting of the air volume of the air conditioner 51 . When the wind direction of the air conditioner 51 is set to be a shelter from the wind, the air conditioner 51 blows air in a direction away from people while considering air conditioning efficiency. This prevents direct blowing of the wind to people in the area 81 where there is a risk of infection. On the other hand, since the setting of the air volume is not changed, the temperature of the area 81 can be kept at an appropriate value as much as possible.
 エリア81がレベル3と評価された場合、制御装置100は、空調装置51の風向きを風よけ、かつ、風量を中に設定する。その結果、たとえば、現在、空調装置51の風量が強に設定されている場合、空調装置51の風量が強制的に強から中に弱められる。これにより、風向きの観点のみならず、風量の観点からも、存在するかもしれないウイルスが飛散することを防止する効果が高められる。 When the area 81 is evaluated as level 3, the control device 100 sets the wind direction of the air conditioner 51 to shelter and the air volume to medium. As a result, for example, if the air volume of the air conditioner 51 is currently set to high, the air volume of the air conditioner 51 is forcibly reduced from high to medium. This enhances the effect of preventing viruses that may exist from being scattered not only from the viewpoint of wind direction but also from the viewpoint of wind volume.
 なお、レベル3と評価された場合、風量を一律に中に設定するのではなく、元の風量の設定を考慮して風量を変更してもよい。たとえば、元の風量の設定が小であれば、その設定を維持してもよい。また、元の風量の設定が中であれば、設定を小に変更してもよい。 In addition, if it is evaluated as level 3, the air volume may be changed in consideration of the original air volume setting, instead of uniformly setting the air volume to medium. For example, if the original air volume setting is low, that setting may be maintained. Also, if the original airflow setting is medium, the setting may be changed to small.
 エリア81がレベル4と評価された場合、対応する空調装置51の風向きを上向き、かつ、風量を小に設定する。これにより、感染リスクが非常に高いエリア81において、空調装置51から吹き出す風がウイルスを飛散させてしまうことを防止する。 When the area 81 is evaluated as level 4, the air direction of the corresponding air conditioner 51 is set upward and the air volume is set to small. This prevents the virus from being scattered by the air blown from the air conditioner 51 in the area 81 where the risk of infection is extremely high.
 ここでは、エリア81を例に挙げて、エリア81に対応する空調装置51の制御の内容を説明した。制御装置100は、感染リスクのレベルに応じて、エリア82に対応する空調装置52、エリア83に対応する空調装置53、およびエリア84に対応する空調装置54も同様に制御する。 Here, the details of the control of the air conditioner 51 corresponding to the area 81 have been explained, taking the area 81 as an example. The control device 100 similarly controls the air conditioner 52 corresponding to the area 82, the air conditioner 53 corresponding to the area 83, and the air conditioner 54 corresponding to the area 84 according to the infection risk level.
 図6は、空調空間80内の音量および密集度に基づいて感染リスクのレベルを評価する処理を示すフローチャートである。このフローチャートに基づく処理は、制御装置100によって実行される。 FIG. 6 is a flow chart showing the process of evaluating the infection risk level based on the volume and density in the air-conditioned space 80. FIG. Processing based on this flowchart is executed by the control device 100 .
 はじめに、制御装置100は、音量センサ41~44の位置情報を取得する(ステップS1)。これにより、フロアマップにおいて、音量センサ41~44の位置と、空調可能エリアであるエリア81~84とが紐づけられる。したがって、制御装置100は、エリア81~84と音量センサ41~44との対応関係を特定することが可能になる。次に、制御装置100は、画像センサ20の位置情報を取得する(ステップS2)。 First, the control device 100 acquires position information of the volume sensors 41 to 44 (step S1). As a result, on the floor map, the positions of the volume sensors 41 to 44 are associated with the areas 81 to 84 that are air-conditioned areas. Therefore, control device 100 can identify the correspondence between areas 81-84 and volume sensors 41-44. Next, the control device 100 acquires position information of the image sensor 20 (step S2).
 次に、制御装置100は、音量センサ41~44から音量を取得する(ステップS3)。これにより、制御装置100は、エリア81~84毎に音量を特定できる。次に、制御装置100は、画像センサ20から画像を取得する(ステップS4)。画像センサ20はエリア81~84を含む空調空間80の画像を撮影する。 Next, the control device 100 acquires volume from the volume sensors 41 to 44 (step S3). Thereby, the control device 100 can specify the volume for each of the areas 81-84. Next, the control device 100 acquires an image from the image sensor 20 (step S4). Image sensor 20 captures an image of conditioned space 80 including areas 81-84.
 次に、制御装置100は、取得した音量および画像を解析する(ステップS5)。たとえば、制御装置100は、エリア81~84毎に音量を特定し、図3を用いて説明したような音量のデータを生成する。制御装置100は、画像センサ20から取得した画像に基づいてエリア81~84毎に在室人数を特定するとともに、各人の行動量を特定する。 Next, the control device 100 analyzes the acquired volume and image (step S5). For example, control device 100 identifies the volume for each of areas 81 to 84 and generates volume data as described with reference to FIG. The control device 100 specifies the number of people in the room for each of the areas 81 to 84 based on the image acquired from the image sensor 20, and also specifies the amount of activity of each person.
 次に、制御装置100は、エリア81~84毎に密集度を評価する(ステップS6)。密集度を評価することにより、エリア81~84に存在する人の多さから感染リスクの度を評価することができる。たとえば、制御装置100は、「エリア内の人数N/エリアサイズ」を算出した結果に基づいて、密集度を評価する。密集度に基づく感染リスクは、たとえば、図4に示されるように、大、中、小、無しの4段階で評価される。 Next, the control device 100 evaluates the density for each of the areas 81-84 (step S6). By evaluating the density, the degree of infection risk can be evaluated from the number of people present in the areas 81-84. For example, the control device 100 evaluates the density based on the result of calculating "the number of people in the area N/area size". The infection risk based on the density is evaluated, for example, in four stages of high, medium, low, and none, as shown in FIG.
 次に、制御装置100は、エリア81~84毎に音量を評価する(ステップS7)。ここで、音量の評価とは、エリアに存在する人の声の大きさから感染リスクの度を評価することを意味する。すなわち、音量を評価することは、飛沫度を評価することに等しい。 Next, the control device 100 evaluates the volume for each of the areas 81-84 (step S7). Here, the evaluation of sound volume means evaluating the degree of infection risk from the volume of voices of people present in the area. That is, evaluating the volume is equivalent to evaluating the degree of splashing.
 制御装置100は、図3を用いて説明したように、音量とその音量が持続する時間とに基づいて、音量を評価する。音量に基づく感染リスクは、たとえば、図4に示されるように、大、中、小、無しの4段階で評価される。 The control device 100 evaluates the volume based on the volume and the duration of the volume, as described using FIG. The risk of infection based on sound volume is evaluated in four stages of high, medium, low, and none, as shown in FIG. 4, for example.
 次に、制御装置100は、エリア81~84毎に感染リスクのレベルを評価する(ステップS8)。ここで、感染リスクのレベルの評価とは、密集度評価および音量評価に基づいて感染リスクのレベルを評価することを意味する。 Next, the control device 100 evaluates the infection risk level for each of the areas 81 to 84 (step S8). Here, the evaluation of the infection risk level means evaluating the infection risk level based on the density evaluation and the volume evaluation.
 図4を用いて説明したように、感染リスクは、レベル1~レベル4の4段階で評価される。音量と密集度との2つの観点から感染リスクのレベルを評価するため、感染リスクを評価する関数を、たとえば、f=(密集度評価,音量(飛沫度)評価)と表現することができる。 As explained using Figure 4, the risk of infection is evaluated in four stages from level 1 to level 4. In order to evaluate the level of infection risk from the two viewpoints of volume and density, a function for evaluating infection risk can be expressed as f = (density evaluation, volume (droplet) evaluation), for example.
 次に、制御装置100は、エリア81~84毎に評価した感染リスクのレベルをメモリ102に格納し(ステップS9)、処理を終える。ステップS9において格納された感染リスクのレベルは、図7のステップS12にて読出される。 Next, the control device 100 stores the level of infection risk evaluated for each of the areas 81 to 84 in the memory 102 (step S9), and ends the process. The infection risk level stored in step S9 is read out in step S12 of FIG.
 図7は、感染リスクのレベルに応じて必要換気量を算出する処理を示すフローチャートである。このフローチャートに基づく処理は、制御装置100によって実行される。 FIG. 7 is a flowchart showing the process of calculating the required ventilation volume according to the infection risk level. Processing based on this flowchart is executed by the control device 100 .
 はじめに、制御装置100は、変数nを1に設定する(ステップS11)。次に、制御装置100は、感染リスクのレベルをエリア81~84毎にメモリ102から読み出す(ステップS12)。次に、制御装置100は、第nエリアの感染リスクのレベルは1であるか否かを判定する(ステップS13)。 First, the control device 100 sets the variable n to 1 (step S11). Next, the control device 100 reads the infection risk level for each of the areas 81 to 84 from the memory 102 (step S12). Next, the control device 100 determines whether the infection risk level of the n-th area is 1 (step S13).
 ここで、第nエリアは、エリア81~84のいずれかである。ステップS16においてnが更新される毎に、ステップS13において対象となるエリアは、第1エリア、第2エリア、第3エリア…と変化する。たとえば、第1エリアはエリア81に対応付けられ、第2エリアはエリア82に対応付けられ、第3エリアはエリア83に対応付けられ、第4エリアはエリア84に対応付けられる。 Here, the n-th area is any one of areas 81-84. Each time n is updated in step S16, the target area in step S13 changes to the first area, second area, third area, and so on. For example, the first area is associated with area 81 , the second area is associated with area 82 , the third area is associated with area 83 , and the fourth area is associated with area 84 .
 すでに説明したように、感染リスクのレベル1は、感染リスクが無いことを意味する。ステップS13において、たとえば、第1エリアの感染リスクのレベルが1であると判定された場合(ステップS13にてYES)、第1エリアに感染リスクが存在しないことになる。一方、ステップS13において、第1エリアの感染リスクのレベルが1でないと判定された場合(ステップS13にてNO)、第1エリアに感染リスクが存在することになる。 As already explained, level 1 infection risk means that there is no risk of infection. In step S13, for example, if it is determined that the infection risk level of the first area is 1 (YES in step S13), there is no infection risk in the first area. On the other hand, if it is determined in step S13 that the infection risk level of the first area is not 1 (NO in step S13), it means that the infection risk exists in the first area.
 ステップS13において、感染リスク有および感染リスク無のいずれに判定された場合でも、必要換気量(m/時間)が算出される(ステップS14,S15)。ただし、必要換気量の算出に用いられる単位換気量Dが、感染リスク有の場合と感染リスク無の場合とで異なる。感染リスク無と判定した場合、制御装置100は、単位換気量D1を用いて必要換気量を算出する。一方、感染リスク有と判定した場合、制御装置100は、単位換気量D2を用いて必要換気量を算出する。ここで、D1<D2である。 Regardless of whether there is an infection risk or no infection risk in step S13, the required ventilation volume (m 3 /hour) is calculated (steps S14 and S15). However, the unit ventilation D used to calculate the required ventilation differs between when there is an infection risk and when there is no infection risk. When determining that there is no infection risk, the control device 100 calculates the required ventilation volume using the unit ventilation volume D1. On the other hand, when it is determined that there is an infection risk, the control device 100 calculates the required ventilation volume using the unit ventilation volume D2. Here, D1<D2.
 ステップS14,S15を詳しく説明する。たとえば、ステップS13において第1エリアの感染リスクのレベルが1、つまり、感染リスク無しと判定された場合、ステップS14において第1エリアに対応する必要換気量1が算出される。 Steps S14 and S15 will be explained in detail. For example, if it is determined in step S13 that the infection risk level of the first area is 1, that is, that there is no infection risk, then in step S14 the required ventilation volume 1 corresponding to the first area is calculated.
 ステップS14において必要換気量を算出する関数は、f1(人数,D1,α)と表すことができる。ここで、人数は、対象のエリアに在室する人数であり、D1は単位換気量であり、αは行動量の補正値である。行動量の補正値は、対象のエリアに存在する各人の行動量を考慮した補正値である。行動量の多い人に対する補正値は大きくなり、行動量の少ない人に対する補正値は小さくなる。必要換気量は、対象のフロアの在室人数が多く、行動量の多い人が多いほど、多くなるように算出される。 The function for calculating the required ventilation volume in step S14 can be expressed as f1 (number of people, D1, α). Here, the number of people is the number of people in the target area, D1 is the unit ventilation volume, and α is the correction value of the amount of activity. The correction value for the amount of activity is a correction value that considers the amount of activity of each person present in the target area. The correction value for a person with a large amount of activity is large, and the correction value for a person with a small amount of activity is small. The required ventilation volume is calculated so as to increase as the number of people in the target floor increases and the number of people who move a lot increases.
 一方、ステップS13において第1エリアの感染リスクのレベルが1でない、つまり、感染リスク有と判定された場合、ステップS15において第1エリアに対応する必要換気量1が算出される。 On the other hand, if the level of infection risk in the first area is not 1, that is, if it is determined that there is an infection risk in step S13, the required ventilation volume 1 corresponding to the first area is calculated in step S15.
 ステップS15において必要換気量を算出する関数は、f2(人数,D2,α)と表すことができる。このように、ステップS15とステップS14とでは、単位換気量が異なる。特に、D1<D2に設定されているため、2つのエリアで在室人数および各人の行動量が同じであっても、感染リスクの有るエリアは感染リスクの無いエリアよりも必要換気量が多くなるように算出される。 The function for calculating the required ventilation volume in step S15 can be expressed as f2 (number of people, D2, α). Thus, the unit ventilation volume differs between step S15 and step S14. In particular, since D1<D2 is set, even if the number of people in the room and the amount of movement of each person are the same in the two areas, the area with the risk of infection requires more ventilation than the area without the risk of infection. calculated to be
 なお、ここでは、各エリアの容積がすべて同一である場合を想定している。しかし、各エリアの容積が異なる場合には、ステップS14およびステップS15において用いる関数にエリアの容積の変数を追加するとよい。 It should be noted that here, it is assumed that the volume of each area is the same. However, if the volume of each area is different, it is preferable to add a variable of the volume of the area to the functions used in steps S14 and S15.
 また、感染リスク有の場合、ステップS15において一律に単位換気量D2を用いて必要換気量を算出したが、感染リスク2~4のレベルに応じて、単位換気量を異ならせてもよい。たとえば、感染リスク2に対応して単位換気量D2を用いる。感染リスク3に対応して単位換気量D3を用いる。感染リスク4に対応して単位換気量D4を用いる。ここで、D2~D4の大きさの関係は、D2<D3<D4とする。 Also, when there is an infection risk, the required ventilation volume is calculated uniformly using the unit ventilation volume D2 in step S15, but the unit ventilation volume may be changed according to the level of infection risk 2-4. For example, unit ventilation D2 is used corresponding to infection risk 2. A unit ventilation D3 is used corresponding to an infection risk of 3. A unit ventilation D4 is used corresponding to an infection risk of 4. Here, the relationship between the sizes of D2 to D4 is D2<D3<D4.
 ステップS14またはステップS15の処理の後、制御装置100は、変数nを更新する(ステップS16)。次に、制御装置100は、空調空間80に含まれるすべてのエリア81~84の必要換気量を算出済みであるか否か判定する(ステップS17)。すべてのエリア81~84の必要換気量を算出済みでなければ、制御装置100は、再度、ステップS12の処理を実行する。制御装置100は、ステップS12~S17の処理を繰り返し実行することにより、空調空間80に含まれるすべてのエリア81~84の必要換気量を算出する。 After the process of step S14 or step S15, the control device 100 updates the variable n (step S16). Next, the control device 100 determines whether or not the required ventilation volumes for all the areas 81 to 84 included in the air-conditioned space 80 have been calculated (step S17). If the required ventilation volumes for all the areas 81 to 84 have not been calculated, the control device 100 executes the process of step S12 again. The control device 100 calculates the required ventilation volumes of all the areas 81 to 84 included in the air-conditioned space 80 by repeatedly executing the processes of steps S12 to S17.
 制御装置100は、すべてのエリア81~84の必要換気量1~nを算出すると、算出した必要換気量1~nの総和を「必要換気量」として設定する(ステップS18)。これにより、空調空間80の全体に必要な換気量が設定される。次に、制御装置100は、設定した必要換気量をメモリ102に格納し(ステップS19)、本フローチャートに基づく処理を終える。 After calculating the required ventilation volumes 1 to n for all areas 81 to 84, the control device 100 sets the sum of the calculated required ventilation volumes 1 to n as the "necessary ventilation volume" (step S18). Thereby, the necessary ventilation amount for the entire air-conditioned space 80 is set. Next, the control device 100 stores the set required ventilation volume in the memory 102 (step S19), and ends the processing based on this flowchart.
 図8は、給気装置60、排気装置70、および空調装置51~54を制御する処理を示すフローチャートである(実施の形態1)。このフローチャートに基づく処理は、制御装置100によって実行される。 FIG. 8 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (Embodiment 1). Processing based on this flowchart is executed by the control device 100 .
 はじめに、制御装置100は、算出済みの必要換気量をメモリ102から読出す(ステップS31)。ここで読出される必要換気量は、図7のステップS19においてメモリ102に格納されたものである。次に、制御装置100は、換気量の補正値を決定する(ステップS32)。 First, the control device 100 reads out the calculated required ventilation volume from the memory 102 (step S31). The required ventilation volume read here is the one stored in memory 102 in step S19 of FIG. Next, the control device 100 determines a ventilation volume correction value (step S32).
 補正値は、算出された必要換気量と現在の換気量との差分である。つまり、単位時間当たりの現在の換気量に対して追加すべき換気量が補正値に該当する。たとえば、補正値が正の値である場合、給気装置60および排気装置70の運転能力を現在よりも上昇させる必要がある。給気装置60および排気装置70は、ファンを備えている。給気装置60および排気装置70の運転能力は、たとえば、単位時間当たりのファンの回転数である。 The correction value is the difference between the calculated required ventilation volume and the current ventilation volume. That is, the ventilation volume to be added to the current ventilation volume per unit time corresponds to the correction value. For example, if the correction value is a positive value, the operability of air supply device 60 and exhaust device 70 needs to be increased from the current level. The air supply device 60 and the exhaust device 70 are provided with fans. The operability of air supply device 60 and exhaust device 70 is, for example, the number of rotations of the fan per unit time.
 次に、制御装置100は、エリア81~84毎の感染リスクのレベルをメモリ102から読出す(ステップS33)。次に、制御装置100は、感染リスクに応じた風向きおよび風量をエリア81~84毎に決定する(ステップS34)。制御装置100は、感染リスクに応じた風向きおよび風量を図5に示される基準に基づいて決定する。 Next, the control device 100 reads the infection risk level for each of the areas 81 to 84 from the memory 102 (step S33). Next, the control device 100 determines the wind direction and wind volume corresponding to the infection risk for each of the areas 81 to 84 (step S34). The control device 100 determines the wind direction and air volume according to the infection risk based on the criteria shown in FIG.
 次に、制御装置100は、ステップS32にて算出した換気量の補正値に基づいて、給気装置60および排気装置70を制御する(ステップS35)。これにより、補正値に応じた換気量を補うために、給気装置60および排気装置70の運転能力が上がる。たとえば、空調空間80の人数が増加した場合の他、感染リスクの高い行動をする人が増えた場合にも、給気装置60および排気装置70による換気量が増える。その結果、空調空間80内での感染リスクを下げることができる。 Next, the control device 100 controls the air supply device 60 and the exhaust device 70 based on the ventilation amount correction value calculated in step S32 (step S35). As a result, the operability of the air supply device 60 and the exhaust device 70 is increased in order to compensate for the ventilation volume according to the correction value. For example, when the number of people in the air-conditioned space 80 increases, and when the number of people who behave at high risk of infection increases, the amount of ventilation by the air supply device 60 and the exhaust device 70 also increases. As a result, the risk of infection within the air-conditioned space 80 can be reduced.
 次に、制御装置100は、ステップS34にて決定された風向きおよび風量に基づいて、エリア81~84毎に空調装置51~54を制御し(ステップS36)、本フローチャートに基づく処理を終える。 Next, the control device 100 controls the air conditioners 51 to 54 for each of the areas 81 to 84 based on the wind direction and air volume determined in step S34 (step S36), and ends the processing based on this flowchart.
 ステップS36により、エリア81~84の感染リスクのレベルに応じて、空調装置51~54が吹き出す風の風向きおよび風量が制御される。このため、たとえば、エリア81における感染リスクのレベルが非常に高い場合(レベル4)、空調装置51の風向きが上かつ風量が小に制御される。これにより、エリア81内で新たな感染者が発生することを防止できる。  By step S36, the direction and volume of the air blown by the air conditioners 51-54 are controlled according to the infection risk level of the areas 81-84. Therefore, for example, when the level of infection risk in area 81 is extremely high (level 4), the wind direction of air conditioner 51 is controlled to be upward and the wind volume is small. As a result, it is possible to prevent the occurrence of new infected persons within the area 81 .
 以上、説明したように、本実施の形態によれば、画像センサ20および音量センサ41~44を用いて空調空間80内の人数、人の位置、および行動をモニタすることによって感染リスクを評価することができる。さらに、その評価に基づいて換気量を調整することにより、適切な換気を自動で行うことができる。 As described above, according to the present embodiment, the image sensor 20 and the sound volume sensors 41 to 44 are used to monitor the number of people in the air-conditioned space 80, their positions, and their actions, thereby evaluating infection risk. be able to. Furthermore, appropriate ventilation can be performed automatically by adjusting the ventilation volume based on the evaluation.
 本実施の形態によれば、感染リスクに応じて空調装置51~54が制御されるため、感染リスクの高い人およびエリアに空調装置51~54の気流が向かうことを抑制することができる。 According to the present embodiment, the air conditioners 51 to 54 are controlled according to the infection risk, so it is possible to suppress the air currents of the air conditioners 51 to 54 from going to people and areas with a high infection risk.
 本実施の形態によれば、空調空間80に感染リスクが無い場合、必要最低限の換気量で快適性と省エネ性の両立を優先することができる。一方、空調空間80に感染リスクが有る場合、省エネ性よりも感染抑制のための制御を優先的に行うことできる。 According to the present embodiment, when there is no risk of infection in the air-conditioned space 80, priority can be given to both comfort and energy efficiency with the minimum required amount of ventilation. On the other hand, when there is a risk of infection in the air-conditioned space 80, control for infection suppression can be performed with priority over energy saving.
 以上のとおり、本実施の形態によれば、給気装置60および排気装置70を制御するばかりでなく、感染症に対する感染リスクを考慮して空調装置51~54を適切に制御することが可能な空調換気システム1および制御装置100を提供することができる。 As described above, according to the present embodiment, it is possible not only to control the air supply device 60 and the exhaust device 70, but also to appropriately control the air conditioners 51 to 54 in consideration of the risk of infection with infectious diseases. An air conditioning ventilation system 1 and a control device 100 can be provided.
 実施の形態2.
 図9を用いて、実施の形態2を説明する。図9は、給気装置60、排気装置70、および空調装置51~54を制御する処理を示すフローチャートである(実施の形態2)。このフローチャートに基づく処理は、制御装置100によって実行される。
Embodiment 2.
Embodiment 2 will be described with reference to FIG. FIG. 9 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (second embodiment). Processing based on this flowchart is executed by the control device 100 .
 実施の形態2において、制御装置100は、換気量の補正値が閾値を超える場合、排気装置70の付近にいる人に強い排気が発生することを通知する。制御装置100は、その通知後に、給気装置60の給気量および排気装置70の排気量を上げる。 In the second embodiment, the control device 100 notifies a person near the exhaust device 70 that strong exhaust will occur when the correction value of the ventilation volume exceeds the threshold. After the notification, control device 100 increases the air supply amount of air supply device 60 and the exhaust amount of exhaust device 70 .
 これにより、排気装置70に向かう強い気流が排気装置70の付近の人に当たることを防止する。その結果、排気装置70付近の人が排気に含まれるかも知れないウイルスに感染することを防止できる。実施の形態2は、実施の形態1に対してこのような通知機能が追加されている。 This prevents the strong airflow toward the exhaust device 70 from hitting people near the exhaust device 70 . As a result, people near the exhaust system 70 can be prevented from being infected with viruses that may be contained in the exhaust. In the second embodiment, such a notification function is added to the first embodiment.
 以下、図9のフローチャートを説明する。図9に示すフローチャートのうち、ステップS41~S44は図8に示すフローチャートのステップS31~S34と同じであり、ステップS49およびS50は図8に示すフローチャートのステップS35およびS36と同じである。したがって、ここでは、それらのステップの説明を繰り返さない。 The flowchart in FIG. 9 will be described below. In the flowchart shown in FIG. 9, steps S41 to S44 are the same as steps S31 to S34 in the flowchart shown in FIG. 8, and steps S49 and S50 are the same as steps S35 and S36 in the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
 制御装置100は、図9のステップS44の後、換気量の補正値が第1閾値を超えるか否かを判定する(ステップS45)。第1閾値は空調空間80のサイズを考慮して適宜決定することができる。管理者が制御装置100を操作することによって第1閾値を任意に設定できるようにしてもよい。制御装置100は、換気量の補正値が正の値であれば、ステップS45においてYESと判定するようにしてもよい。 After step S44 in FIG. 9, the control device 100 determines whether or not the ventilation volume correction value exceeds the first threshold (step S45). The first threshold can be appropriately determined in consideration of the size of the air-conditioned space 80 . An administrator may operate the control device 100 to arbitrarily set the first threshold. If the correction value of the ventilation volume is a positive value, the control device 100 may determine YES in step S45.
 制御装置100は、換気量の補正値が第1閾値を超えないと判定した場合、ステップS49の処理に進む。制御装置100は、換気量の補正値が第1閾値を超えると判定した場合、排気装置70の付近に人がいるか否かを判定する(ステップS46)。たとえば、制御装置100は、画像センサ20から取得した画像を解析することによって、排気装置70付近の人の存在を特定する。排気装置70の排気口を基準にした一定範囲のエリアに人が存在する場合、制御装置100は、排気装置70付近に人がいると判定してもよい。 When the control device 100 determines that the correction value of the ventilation volume does not exceed the first threshold, the process proceeds to step S49. If the control device 100 determines that the correction value of the ventilation volume exceeds the first threshold value, it determines whether or not there is a person near the exhaust device 70 (step S46). For example, the control device 100 identifies the presence of a person near the exhaust device 70 by analyzing the image acquired from the image sensor 20 . If a person exists within a certain area with reference to the exhaust port of the exhaust device 70 , the control device 100 may determine that the person is near the exhaust device 70 .
 なお、排気装置70の付近に画像センサ20をさらに設けてもよい。この場合、制御装置100は、排気装置70の付近に設けた画像センサ20から取得した画像を解析することにより、排気装置70付近の人の存在を特定する。 Note that the image sensor 20 may be further provided near the exhaust device 70 . In this case, the control device 100 identifies the presence of a person near the exhaust device 70 by analyzing an image acquired from the image sensor 20 provided near the exhaust device 70 .
 制御装置100は、排気装置70の付近に人がいると判定した場合、判定対象の人が所持する携帯端末に対してメッセージを送信する(ステップS47)。たとえば、制御装置100は、「換気量がアップするため、その場所から離れて下さい。」という警告メッセージを携帯端末に送る。このような制御を実現するために、人と携帯端末の連絡先とを対応付けたデータベースを制御装置100のメモリ102に予め格納してもよい。制御装置100は、画像センサ20から取得した画像を解析することにより、排気装置70の付近にいる人物を特定してもよい。 When the control device 100 determines that there is a person near the exhaust device 70, the control device 100 transmits a message to the portable terminal possessed by the person to be determined (step S47). For example, the control device 100 sends a warning message to the mobile terminal, saying, "Please move away from that place because ventilation will increase." In order to implement such control, a database that associates people with mobile terminal contact information may be stored in advance in the memory 102 of the control device 100 . The control device 100 may identify a person near the exhaust device 70 by analyzing the image acquired from the image sensor 20 .
 制御装置100は、携帯端末への通知から一定の待機時間が経過した後(ステップS48にてYES)、ステップS49およびS50の処理を実行する。このため、排気装置70から人が立ち去った後、排気装置70の排気量が上昇することになる。その結果、排気装置70付近の人が排気に含まれるかも知れないウイルスに感染することを防止できる。 After a certain waiting time has passed since the notification to the mobile terminal (YES in step S48), the control device 100 executes the processes of steps S49 and S50. Therefore, after the person leaves the exhaust system 70, the exhaust amount of the exhaust system 70 increases. As a result, people near the exhaust system 70 can be prevented from being infected with viruses that may be contained in the exhaust.
 図9のフローチャートにおいて、空調装置51~54の制御に関わるステップS50の処理は、ステップS48の待機時間の経過を待つことなく、実行されるものとしてもよい。 In the flowchart of FIG. 9, the process of step S50 related to the control of the air conditioners 51 to 54 may be executed without waiting for the waiting time of step S48 to elapse.
 実施の形態3.
 図10を用いて、実施の形態3を説明する。図10は、給気装置60、排気装置70、および空調装置51~54を制御する処理を示すフローチャートである(実施の形態3)。このフローチャートに基づく処理は、制御装置100によって実行される。
Embodiment 3.
Embodiment 3 will be described with reference to FIG. FIG. 10 is a flow chart showing processing for controlling the air supply device 60, the exhaust device 70, and the air conditioners 51 to 54 (Embodiment 3). Processing based on this flowchart is executed by the control device 100 .
 制御装置100は、感染リスクの有るエリアが存在し、かつ、そのエリア以外に人が存在しない場合、感染リスクの有るエリアにおいて空調装置から吹き出す風を人に向けるように制御する機能を備える。実施の形態3は、実施の形態1に対してこのような機能が追加されている点を除いて、実施の形態1と同様である。 The control device 100 has a function of controlling the wind blown from the air conditioner in the area with the risk of infection to be directed toward people when there is an area with the risk of infection and there are no people outside the area. Embodiment 3 is the same as Embodiment 1 except that such functions are added to Embodiment 1. FIG.
 実施の形態1において、たとえば、エリア81に感染リスクが有る場合、制御装置100は、対応する空調装置51から吹き出す風が人に当たらないように制御する。これにより、エリア81に存在するかもしれないウイルスが他のエリア82~84に拡散することを防止できる。しかし、エリア81以外のエリア82~84に人が存在しないのであれば、仮にウイルスがエリア82~84に拡散したとしても、エリア82~84で感染が発生することはない。 In the first embodiment, for example, when there is an infection risk in area 81, control device 100 controls the air blown from corresponding air conditioner 51 so that it does not hit people. This prevents viruses that may exist in area 81 from spreading to other areas 82-84. However, if there are no people in the areas 82 to 84 other than the area 81, even if the virus spreads to the areas 82 to 84, the areas 82 to 84 will not be infected.
 このような場合、エリア81内にウイルスが滞留してしまうことによってエリア81内で感染が広がることを防止することが望ましい。そこで、実施の形態3において、制御装置100は、たとえば、エリア81に感染リスクが存在し、かつ、エリア81以外のエリア82~84に人が存在しない場合、感染リスクの有るエリア81において空調装置51から吹き出す風を人に向けるように制御する。 In such a case, it is desirable to prevent the spread of infection within the area 81 due to the virus remaining within the area 81 . Therefore, in the third embodiment, for example, if there is an infection risk in area 81 and there are no people in areas 82 to 84 other than area 81, control device 100 controls the air conditioner in area 81 with an infection risk. The wind blowing from 51 is controlled to be directed to a person.
 以下、図10のフローチャートを説明する。図10に示すフローチャートのうち、ステップS61~S63は図8に示すフローチャートのステップS31~S33と同じであり、ステップS67~S69は図8に示すフローチャートのステップS34~S36と同じである。したがって、ここでは、それらのステップの説明を繰り返さない。 The flowchart of FIG. 10 will be described below. 10, steps S61-S63 are the same as steps S31-S33 of the flowchart shown in FIG. 8, and steps S67-S69 are the same as steps S34-S36 of the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
 制御装置100は、図10のステップS63の後、4つのエリア81~84のうち、1つのエリアのみにひとが存在するか否かを判定する(ステップS64)。ステップS64にてNOと判定した場合、制御装置100は、ステップS67の処理を実行する。 After step S63 in FIG. 10, the control device 100 determines whether a person exists in only one of the four areas 81 to 84 (step S64). When it is determined as NO in step S64, the control device 100 executes the process of step S67.
 制御装置100は、たとえば、エリア81~84のうち、エリア81のみに人が存在すると判定した場合、そのエリア81の感染リスクはレベル1より大きいか否かを判定する(ステップS65)。つまり、制御装置100は、ステップS65において、対象のエリアに感染リスクが有るか否かを判定する。制御装置100は、ステップS65において、対象のエリアに感染リスクが無いと判定した場合(ステップS65にてNO)、ステップS67の処理を実行する。 For example, when it is determined that a person exists only in area 81 of areas 81 to 84, control device 100 determines whether the infection risk of area 81 is higher than level 1 (step S65). That is, in step S65, the control device 100 determines whether or not there is an infection risk in the target area. When control device 100 determines in step S65 that there is no risk of infection in the target area (NO in step S65), control device 100 executes the process of step S67.
 制御装置100は、ステップS65において、対象のエリアに感染リスクが有ると判定した場合(ステップS65にてYES)、人が存在する唯一のエリア、たとえばエリア81において、風向きを人の方向に、かつ、風量を大に設定する(ステップS66)。 When control device 100 determines in step S65 that there is an infection risk in the target area (YES in step S65), in the only area where people exist, for example area 81, the wind direction is directed toward people and , the air volume is set large (step S66).
 制御装置100は、ステップS66の後、ステップS68およびS69を実行する。これにより、ステップS66の設定は、ステップS69の制御に反映される。その結果、たとえば、エリア81を対象としてステップS66の処理が実行された場合、空調装置51から吹き出す風は、最大の風量で人に向けられる。その結果、エリア81内に存在するかもしれないウイルスが滞留することを防止できる。 After step S66, the control device 100 executes steps S68 and S69. Thereby, the setting in step S66 is reflected in the control in step S69. As a result, for example, when the process of step S66 is executed targeting area 81, the air blown out from air conditioner 51 is directed at the person at the maximum air volume. As a result, it is possible to prevent viruses that may exist in the area 81 from stagnation.
 実施の形態4.
 図11を用いて、実施の形態4を説明する。図11は、給気装置60、排気装置70、および空調装置51~54を制御する処理を示すフローチャートである(実施の形態4)。このフローチャートに基づく処理は、制御装置100によって実行される。
Embodiment 4.
Embodiment 4 will be described with reference to FIG. FIG. 11 is a flow chart showing a process for controlling air supply device 60, exhaust device 70, and air conditioners 51-54 (fourth embodiment). Processing based on this flowchart is executed by the control device 100 .
 制御装置100は、換気量の補正値が第2閾値を超える場合、空調装置51~54の設定温度を換気量の補正値に応じて設定する機能を備える。実施の形態4は、実施の形態1に対してこのような機能が追加されている点を除いて、実施の形態1と同様である。 The control device 100 has a function of setting the set temperatures of the air conditioners 51 to 54 according to the ventilation volume correction value when the ventilation volume correction value exceeds the second threshold. The fourth embodiment is the same as the first embodiment except that such functions are added to the first embodiment.
 換気量の補正値が大きくなるにつれて、空調空間80内の温度が外気の影響を受けて急激に変動する。その結果、空調空間80を快適な温度の空間に維持することが困難になる。そこで、実施の形態4において、制御装置100は、空調装置51~54の設定温度を換気量の補正値に応じて設定する。 As the ventilation amount correction value increases, the temperature inside the air-conditioned space 80 fluctuates rapidly due to the influence of the outside air. As a result, it becomes difficult to maintain the air-conditioned space 80 at a comfortable temperature. Therefore, in the fourth embodiment, the control device 100 sets the set temperatures of the air conditioners 51 to 54 in accordance with the ventilation amount correction value.
 以下、図11のフローチャートを説明する。図11に示すフローチャートのうち、ステップS71~S75は図8に示すフローチャートのステップS31~S35と同じであり、ステップS77は図8に示すフローチャートのステップS36と同じである。したがって、ここでは、それらのステップの説明を繰り返さない。 The flowchart of FIG. 11 will be described below. In the flowchart shown in FIG. 11, steps S71 to S75 are the same as steps S31 to S35 in the flowchart shown in FIG. 8, and step S77 is the same as step S36 in the flowchart shown in FIG. Therefore, the description of those steps will not be repeated here.
 制御装置100は、図11のステップS75の後、換気量の補正値が第2閾値を超えるか否かを判定する(ステップS76)。第2閾値は空調空間80のサイズを考慮して適宜決定することができる。管理者が制御装置100を操作することによって第2閾値を任意に設定できるようにしてもよい。 After step S75 in FIG. 11, the control device 100 determines whether or not the ventilation volume correction value exceeds the second threshold (step S76). The second threshold can be appropriately determined in consideration of the size of the air-conditioned space 80 . The administrator may operate the control device 100 to arbitrarily set the second threshold.
 制御装置100は、換気量の補正値が第2閾値を超えないと判定した場合、ステップS77の処理に進む。制御装置100は、換気量の補正値が第2閾値を超えると判定した場合、換気量の補正値に応じて、空調装置51~54の設定温度を決定する(ステップS78)。 When the control device 100 determines that the correction value of the ventilation volume does not exceed the second threshold, the process proceeds to step S77. When the control device 100 determines that the ventilation volume correction value exceeds the second threshold value, the control device 100 determines the set temperatures of the air conditioners 51 to 54 according to the ventilation volume correction value (step S78).
 たとえば、空調装置51~54が冷房運転を実行している場合、制御装置100は、換気量の補正値が大きいほど、空調装置51~54の設定温度を低い値に決定する。一方、空調装置51~54が暖房運転を実行している場合、制御装置100は、換気量の補正値が大きいほど、空調装置51~54の設定温度を高い値に決定する。 For example, when the air conditioners 51 to 54 are performing a cooling operation, the control device 100 determines the set temperature of the air conditioners 51 to 54 to be lower as the ventilation amount correction value is larger. On the other hand, when the air conditioners 51 to 54 are performing the heating operation, the control device 100 sets the set temperature of the air conditioners 51 to 54 to a higher value as the ventilation amount correction value increases.
 次に、制御装置100は、ステップS74にて決定された風向きおよび風量、さらにはステップS78にて決定された設定温度に基づいて、エリア81~84毎に空調装置51~54を制御し(ステップS79)、本フローチャートに基づく処理を終える。 Next, the control device 100 controls the air conditioners 51 to 54 for each of the areas 81 to 84 based on the wind direction and air volume determined in step S74 and the set temperature determined in step S78 (step S79), the processing based on this flow chart ends.
 実施の形態4においては、換気量の補正値に応じて空調装置51~54の設定温度が適切に調整されるため、換気量が急激に多くなっても空調空間80内の温度が外気の影響を受けて急激に変動してしまうことを防止できる。その結果、実施の形態4によれば、換気量を感染リスクに応じて自動的に変更し、感染拡大を防止しつつも、空調空間80を快適な温度の空間に維持することができる。 In the fourth embodiment, the set temperatures of the air conditioners 51 to 54 are appropriately adjusted according to the correction value of the ventilation amount, so even if the ventilation amount suddenly increases, the temperature in the air-conditioned space 80 is not affected by the outside air. It is possible to prevent sudden fluctuations due to receiving As a result, according to Embodiment 4, the air-conditioned space 80 can be maintained at a comfortable temperature while preventing the spread of infection by automatically changing the amount of ventilation according to the risk of infection.
 以上、説明した実施の形態1~実施の形態4は、任意に組み合わせることが可能である。たとえば、実施の形態1~実施の形態4のすべての機能を備えるように制御装置100を構成してもよい。 Embodiments 1 to 4 described above can be combined arbitrarily. For example, control device 100 may be configured to have all the functions of the first to fourth embodiments.
 空調空間80に二酸化炭素の量を検出するCO2センサを設けてもよい。制御装置100は、必要換気量をCO2センサの検出値に基づいて決定してもよい。制御装置100は、CO2センサの検出値に基づいて、ステップS14またはステップS15で決定した必要換気量を補正してもよい。 A CO2 sensor that detects the amount of carbon dioxide may be provided in the air-conditioned space 80. The control device 100 may determine the required ventilation volume based on the detected value of the CO2 sensor. The control device 100 may correct the required ventilation volume determined in step S14 or step S15 based on the detected value of the CO2 sensor.
 図6のフローチャートのステップS8においては、密集度と音量との2つの観点から感染リスクのレベルを評価した。しかし、密集度および音量のうちの一方に基づいて、感染リスクのレベルを評価してもよい。たとえば、制御装置100は、音量のみに基づいて、感染リスクのレベルを評価してもよい。制御装置100は、密集度および音量のうちの一方に基づいて評価した感染リスクにより、図7のステップS13の処理を実行してもよい。 In step S8 of the flowchart in Fig. 6, the level of infection risk was evaluated from the two perspectives of density and volume. However, the level of infection risk may be assessed based on one of crowding and volume. For example, the control device 100 may evaluate the infection risk level based only on the sound volume. The control device 100 may perform the process of step S13 in FIG. 7 based on the infection risk evaluated based on one of the density and volume.
 各実施の形態において、制御装置100は、感染リスクのレベルに応じて、空調装置51~54の風向きと風量とを制御する。しかし、制御装置100は、感染リスクのレベルに応じて、空調装置51~54の風向きおよび風量のうちの一方を制御してもよい。たとえば、制御装置100は、空調装置51~54の風向きのみを制御してもよい。 In each embodiment, the control device 100 controls the air direction and air volume of the air conditioners 51 to 54 according to the infection risk level. However, the control device 100 may control one of the wind direction and the wind volume of the air conditioners 51 to 54 according to the infection risk level. For example, control device 100 may control only the wind direction of air conditioners 51-54.
 図9のフローチャートにおいて、ステップS45を削除してもよい。すなわち、制御装置100は、換気量の補正値の大きさに関わらず、排気装置70付近の人に対してメッセージを送信してもよい。 In the flowchart of FIG. 9, step S45 may be deleted. In other words, the control device 100 may transmit a message to a person near the exhaust device 70 regardless of the magnitude of the ventilation volume correction value.
 図11のフローチャートのステップS78において、制御装置100は、空調装置51~54のうち、少なくとも1つを対象にして設定温度を決定すればよい。たとえば、制御装置100は、ステップS78において、空調装置51の設定温度のみを調整し、空調装置52~54の設定温度を調整しなくてもよい。 In step S78 of the flowchart of FIG. 11, the control device 100 may determine the set temperature for at least one of the air conditioners 51-54. For example, control device 100 may adjust only the set temperature of air conditioner 51 and not adjust the set temperatures of air conditioners 52 to 54 in step S78.
 実施の形態5.
 次に、実施の形態5を説明する。実施の形態5において、制御装置100は、エリアごとの密集度および飛沫度の算出結果と、換気部(換気装置や窓などの開閉部)のあるエリアに基づき、換気経路をシミュレーションする。制御装置100は、シミュレーション結果に従い、空調装置51と換気装置とを制御する。
Embodiment 5.
Next, Embodiment 5 will be described. In Embodiment 5, the control device 100 simulates the ventilation route based on the calculation result of the density and the degree of splash for each area and the area with the ventilation section (opening and closing section such as a ventilation device and a window). The control device 100 controls the air conditioner 51 and the ventilation device according to the simulation result.
 たとえば、飛散度が高いエリアおよび飛沫度が高いエリアのいずれも、基本的には、換気をすべきエリアである。このため、それらのエリアは換気部に向けて効率よく換気するために、空調装置51も送風運転等で換気を支援する。 For example, areas with a high degree of scattering and areas with a high degree of droplets are basically areas that should be ventilated. Therefore, in order to efficiently ventilate those areas toward the ventilation section, the air conditioner 51 also supports ventilation by blowing air or the like.
 ただし、飛散度が高いエリアまたは飛沫度が高いエリアと換気部との間に人が密集する密集エリアがある場合は、飛散度が高いエリアまたは飛沫度が高いエリアの空気が密集エリアを迂回して換気部に向かうような空調制御を行う。または、飛散度が高いエリアまたは飛沫度が高いエリアの空気を窓に向けるような空調制御を行う。あるいは、飛散度が高いエリアまたは飛沫度が高いエリアに空気を閉じ込めるような空調制御を行う。 However, if there is a dense area where people are concentrated between the area with high splash rate or high splash rate and the ventilation part, the air in the area with high splash rate or high splash rate bypasses the dense area. Air-conditioning control is performed so that the air is directed toward the ventilation section. Alternatively, air conditioning control is performed such that the air in an area with a high degree of scattering or an area with a high degree of splashing is directed to the window. Alternatively, air conditioning control is performed to confine air in an area with a high degree of scattering or an area with a high degree of splashing.
 飛散度が高いエリアまたは飛沫度が高いエリアの空気を窓に向けるために、たとえば、部屋のドアおよび窓などの開閉部付近に、風向に加えて風量を検出する風向きセンサ45を設けてもよい。図12は、部屋85~87のドア89付近に風向きセンサ45を設けた例を示す図である。図12に示される部屋85~87は、図1に示されるエリア81~84のうちの3つをより具体化したものである。 A wind direction sensor 45 that detects not only the direction of the wind but also the volume of the wind may be provided near openings and closing parts such as doors and windows of a room, for example, in order to direct the air in an area with a high degree of scattering or an area with a high degree of splashing to the windows. . FIG. 12 is a diagram showing an example in which wind direction sensors 45 are provided near doors 89 of rooms 85-87. The rooms 85-87 shown in FIG. 12 are more specific than three of the areas 81-84 shown in FIG.
 ここで、図1に示すエリア81~84と同様に、部屋85~87を仕切る壁の上方は天井面に達していない。このため、部屋85~87の間で空気が流れる。図12には、図1と異なり、3つの部屋が横並びに配置される例が示されている。なお、図12においては、図1に示される画像センサ20および音量センサ41~44の図示を省略している。 Here, similarly to the areas 81 to 84 shown in FIG. 1, the upper part of the wall separating the rooms 85 to 87 does not reach the ceiling surface. Therefore, air flows between the rooms 85-87. Unlike FIG. 1, FIG. 12 shows an example in which three rooms are arranged side by side. 12, illustration of the image sensor 20 and volume sensors 41 to 44 shown in FIG. 1 is omitted.
 図12に示されるように、部屋85~87のドア89の付近には風向きセンサ45が設けられている。部屋85~87には、図1に示される空調装置51~54と同様の空調装置50が配置されている。さらに、部屋85~87には、換気部の一例となる窓90が設けられている。さらに、部屋85には換気装置91が設けられている。風向きセンサ45は、ドア89付近の空気の流れを検出する。この空気の流れは、空調装置50が直接に吹き出す空気の流れではなく、ドア89付近で自然に発生している空気の流れである。 As shown in FIG. 12, wind direction sensors 45 are provided near doors 89 of rooms 85-87. Rooms 85 to 87 are provided with air conditioners 50 similar to the air conditioners 51 to 54 shown in FIG. Furthermore, the rooms 85 to 87 are provided with a window 90, which is an example of a ventilation section. Furthermore, the room 85 is provided with a ventilator 91 . Wind direction sensor 45 detects the flow of air near door 89 . This airflow is not the airflow directly blown out by the air conditioner 50 but the airflow that is naturally generated near the door 89 .
 たとえば、部屋87の窓90が開いている場合、風向きセンサ45は、部屋87のドア89付近から窓90に向かう空気の流れを検出する。なお、ドア89が完全に閉じていても、通常、ドア89の下方には部屋87と廊下88との間を空気が流れる隙間がある。このため、風向きセンサ45は、ドア89が完全に閉じていても、窓90が開いている場合、部屋87のドア89付近から窓90に向かう空気の流れを検出する。 For example, when the window 90 of the room 87 is open, the wind direction sensor 45 detects airflow from near the door 89 of the room 87 toward the window 90 . Note that even if the door 89 is completely closed, there is normally a gap below the door 89 through which air flows between the room 87 and the corridor 88 . Therefore, even if the door 89 is completely closed, the wind direction sensor 45 detects the flow of air from the vicinity of the door 89 of the room 87 toward the window 90 when the window 90 is open.
 たとえば、部屋87の感染リスクが他の部屋85,86に比べて非常に高いと制御装置100が判断したとする。このとき、換気経路としては、部屋87から廊下88および部屋86を通って部屋85の換気装置91に至る経路が存在する。しかし、部屋86に多数の人が在室するかも知れない。このように、部屋86が人の密集度が高い密集エリアである場合、換気経路としてそのような密集エリアを通る経路を選択することは好ましくない。そこで、このような場合、制御装置100は、部屋87の窓90に向かう経路を換気経路として選択する。 For example, suppose that the control device 100 determines that the risk of infection in the room 87 is much higher than in the other rooms 85 and 86. At this time, as a ventilation route, there is a route from the room 87 to the ventilation device 91 of the room 85 through the corridor 88 and the room 86 . However, room 86 may be occupied by many people. Thus, if the room 86 is a dense area with a high density of people, it is not preferable to select a route passing through such a dense area as the ventilation route. Therefore, in such a case, the control device 100 selects the route toward the window 90 of the room 87 as the ventilation route.
 なお、窓90が開いているか否かは、部屋87に設けた風向きセンサ45の検出結果に基づいて特定できる。窓90が開いていない場合、制御装置100は、窓90の開けることを促すメッセージを空調装置50のリモコンに送信してもよい。この場合、メッセージに気づいた人が窓90を開ける。また、部屋87に窓90以外にも窓が存在する場合、その窓を開くことを促すメッセージを空調装置50のリモコンに送信してもよい。 Whether or not the window 90 is open can be identified based on the detection result of the wind direction sensor 45 provided in the room 87. If the window 90 is not open, the control device 100 may send a message to the remote controller of the air conditioner 50 to prompt the window 90 to be opened. In this case, the person who notices the message opens the window 90 . Also, if the room 87 has a window other than the window 90 , a message prompting the user to open the window may be sent to the remote controller of the air conditioner 50 .
 図13はシミュレーションに基づいて最適な換気経路を決定する処理を示すフローチャートである。このフローチャートに基づく処理は、制御装置100によって実行される。 FIG. 13 is a flowchart showing the process of determining the optimum ventilation route based on simulation. Processing based on this flowchart is executed by the control device 100 .
 はじめに、制御装置100は、感染リスクのレベルを部屋85~87毎にメモリ102から読み出す(ステップS81)。この処理は、図7のステップS12と同様である。次に、制御装置100は、換気対象の部屋を特定する(ステップS82)。たとえば、部屋85~87のうち、最も感染リスクが高い部屋を換気対象の部屋としてもよい。 First, the control device 100 reads the infection risk level for each of the rooms 85 to 87 from the memory 102 (step S81). This process is the same as step S12 in FIG. Next, control device 100 identifies a room to be ventilated (step S82). For example, of the rooms 85 to 87, the room with the highest risk of infection may be the room to be ventilated.
 次に、制御装置100は、部屋85~87毎の換気機能のデータを読み出す(ステップS83)。換気機能のデータは、たとえば、換気装置91や窓90の有無を示すデータである。 Next, the control device 100 reads the ventilation function data for each of the rooms 85 to 87 (step S83). The data on the ventilation function is, for example, data indicating the presence or absence of the ventilator 91 and the window 90 .
 次に、制御装置100は、換気経路をシミュレーションする(ステップS84)。より具体的には、制御装置100は、換気対象の部屋、換気装置の位置、および換気対象の部屋から換気装置に至るまでに存在する部屋の状況を踏まえて、最適な換気経路を選択する。これにより、たとえば、換気対象の部屋から換気装置に至る経路の途中に人の密集度が高い部屋が存在する場合、制御装置100は、人の密集度が高い部屋を経由する換気経路を最適な経路の対象から除外する。 Next, the control device 100 simulates the ventilation route (step S84). More specifically, the control device 100 selects the optimum ventilation route based on the room to be ventilated, the position of the ventilator, and the conditions of the rooms existing from the room to be ventilated to the ventilator. As a result, for example, when a room with a high density of people exists in the middle of the route from the room to be ventilated to the ventilation device, the control device 100 optimizes the ventilation route passing through the room with a high density of people. Exclude from route targets.
 次に、制御装置100は、シミュレーションに基づいて最適な換気経路を決定する(ステップS85)。これにより、たとえば、制御装置100は、換気対象の部屋の窓90に向かう経路を換気経路として選択する場合がある。 Next, the control device 100 determines the optimum ventilation route based on the simulation (step S85). As a result, for example, control device 100 may select a route toward window 90 of the room to be ventilated as the ventilation route.
 次に、制御装置100は、決定した換気経路に応じて空調装置50および換気装置91を制御し(ステップS86)、処理を終える。 Next, the control device 100 controls the air conditioner 50 and the ventilation device 91 according to the determined ventilation route (step S86), and ends the process.
 図14は、決定された換気経路に基づいて換気を行うための処理の一例を示すフローチャートである。このフローチャートに基づく処理は、制御装置100によって実行される。ここでは、図14を参照して、換気対象の部屋87の窓90に向かう経路が換気経路として選択された場合の処理を説明する。 FIG. 14 is a flowchart showing an example of processing for performing ventilation based on the determined ventilation route. Processing based on this flowchart is executed by the control device 100 . Here, with reference to FIG. 14, the process when the route to the window 90 of the room 87 to be ventilated is selected as the ventilation route will be described.
 はじめに、制御装置100は、換気装置91に向かう換気経路ではなく、換気対象の部屋87内の窓90に向かう経路で換気すべきか否かを判定する。制御装置100は、判定結果がNOの場合には処理を終える。制御装置100は、判定結果がYESの場合、換気対象の部屋87の窓90は開いているか否かを判定する(ステップS92)。上述のとおり、制御装置100は、ドア89付近に設けた風向きセンサ45の検出値に基づいて、換気対象の部屋87の窓90は開いているか否かを判定する。 First, the control device 100 determines whether or not ventilation should be performed through a route toward the window 90 in the room 87 to be ventilated, instead of through a ventilation route toward the ventilation device 91 . The control device 100 ends the process when the determination result is NO. When the determination result is YES, the control device 100 determines whether the window 90 of the room 87 to be ventilated is open (step S92). As described above, the control device 100 determines whether or not the window 90 of the room 87 to be ventilated is open based on the detection value of the wind direction sensor 45 provided near the door 89 .
 制御装置100は、換気対象の部屋87の窓90が開いていない場合、窓90を開けることを促すメッセージを換気対象の部屋87に配置された空調装置50のリモコンに送信する(ステップS93)。その後、制御装置100は、再度、窓90が開いているか否かを確認する(ステップS92)。 When the window 90 of the room 87 to be ventilated is not open, the control device 100 transmits a message prompting the opening of the window 90 to the remote controller of the air conditioner 50 arranged in the room 87 to be ventilated (step S93). After that, the control device 100 checks again whether the window 90 is open (step S92).
 制御装置100は、窓90が開いている場合、換気対象の部屋87に配置された空調装置50の送風量を最大に設定する(ステップS94)。これにより、窓90からの換気が実施される。次に、制御装置100は、部屋87内で換気中であることを報知し(ステップS95)、処理を終える。 When the window 90 is open, the control device 100 sets the air blowing volume of the air conditioner 50 arranged in the room 87 to be ventilated to the maximum (step S94). Ventilation from the window 90 is thereby performed. Next, the control device 100 notifies that the room 87 is being ventilated (step S95), and finishes the process.
 たとえば、空調装置50に設けたLEDを報知内容に対応する色で発光させることにより、部屋87内で換気中であることを報知する。あるいは、制御装置100は、部屋87内で換気中であることを示すメッセージを空調装置50のリモコンに表示してもよい。また、部屋87内の人または部屋87に入ろうとしている人が所持する会社支給または個人所有のスマートフォン等に、部屋87内で換気中であることを示すメッセージを送信してもよい。 For example, by causing the LED provided in the air conditioner 50 to emit light in a color corresponding to the notification content, it is notified that the room 87 is being ventilated. Alternatively, control device 100 may display a message on the remote controller of air conditioner 50 indicating that room 87 is being ventilated. Also, a message indicating that the room 87 is being ventilated may be sent to a company-issued or personally owned smart phone or the like possessed by a person in the room 87 or a person who is about to enter the room 87 .
 実施の形態6.
 次に、実施の形態6を説明する。図15は、人がマスクを着用しているか否かに応じて感染リスクのレベルを補正する処理を含むフローチャートである。このフローチャートは、図6に示されるフローチャートを変形したものである。
Embodiment 6.
Next, Embodiment 6 will be described. FIG. 15 is a flowchart including processing for correcting the infection risk level depending on whether or not the person is wearing a mask. This flowchart is a modification of the flowchart shown in FIG.
 図15のステップS8Aに示されるように、制御装置100は、在室者がマスクを着用しているか否かに基づいて、ステップS8で算出された感染リスクのレベルを補正してもよい。この場合、制御装置100は、画像センサ20が取得した画像に基づいて在室者がマスクを着用しているか否かを判定してもよい。たとえば、画像センサ20として、マスクの着用の有無を識別し易い画像を取得できるサーモセンサを利用してもよい。 As shown in step S8A of FIG. 15, the control device 100 may correct the infection risk level calculated in step S8 based on whether the person in the room is wearing a mask. In this case, the control device 100 may determine whether or not the person in the room is wearing a mask based on the image acquired by the image sensor 20 . For example, as the image sensor 20, a thermosensor that can acquire an image that makes it easy to identify whether a mask is worn or not may be used.
 制御装置100は、マスクを着用している人の割合を考慮してエリア内の感染リスクを判断してもよい。たとえば、あるエリアにおいて音量センサにより検出される音量が大きいものの、そのエリアに在室する全員がマスクを着用している場合、制御装置100は、感染リスクの判定結果を一段階低下させてもよい。逆に、あるエリアにおいて音量センサにより検出される音量が小さいものの、そのエリアに在室する全員がマスクを着用していない場合、制御装置100は、感染リスクの判定結果を一段階上昇させてもよい。 The control device 100 may determine the infection risk in the area by considering the percentage of people wearing masks. For example, if the sound volume detected by the sound volume sensor is high in a certain area, but everyone in that area is wearing a mask, the control device 100 may lower the infection risk determination result by one level. . Conversely, if the volume detected by the volume sensor in a certain area is low, but no one in the area is wearing a mask, the control device 100 raises the infection risk determination result by one level. good.
 次に、変形例を説明する。制御装置100は、たとえば、エリア81内に感染リスクの高い行動をする在室者が存在する場合、そのエリアに空気を閉じ込める制御をしてもよい。このような制御をしていることを知らずにそのエリアに人が入ってしまうことを避けるため、図14のステップS95に示した報知機能と同様の機能を発揮させてもよい。すなわち、空調装置50に設けたLEDを報知内容に対応する色で発光させることにより、空気を閉じ込める制御をしていることを報知してもよい。あるいは、空調装置50のリモコンに制御の内容を示すメッセージを表示してもよい。また、エリアに入ろうとしている人が所持する会社支給または個人所有のスマートフォン等にメッセージを送信してもよい。 Next, a modified example will be explained. For example, when there is a person in the room who behaves at a high risk of infection in area 81, control device 100 may perform control to confine the air in that area. In order to prevent people from entering the area without knowing that such control is being performed, a function similar to the notification function shown in step S95 of FIG. 14 may be exhibited. In other words, the LED provided in the air conditioner 50 may emit light in a color corresponding to the content of the notification to notify that the control for confining the air is being performed. Alternatively, a message indicating the details of the control may be displayed on the remote controller of the air conditioner 50 . Alternatively, the message may be sent to a company-issued or personally owned smart phone or the like possessed by a person who is about to enter the area.
 上述のとおり、室内の開閉部(窓や人の出入りのあるドア付近)に風向に加えて風量を検出する風向きセンサ45を設け、自然の風による空気の流れを検知し、その空気の流れも有効活用した換気を行ってもよい。以上、説明した実施の形態1~実施の形態6、および各種の変形例は、任意に組み合わせることが可能である。 As described above, the wind direction sensor 45 that detects the air volume in addition to the wind direction is provided at the opening and closing part of the room (near the window and the door where people enter and exit), and the air flow due to the natural wind is detected. Effective ventilation may be provided. The first to sixth embodiments and various modifications described above can be combined arbitrarily.
 (まとめ)
 以上の実施の形態について総括する。
(summary)
The above embodiment will be summarized.
 (1) 本開示は、空調換気システム(1)または制御装置(100)に関する。空調システムは、空調空間(80)を換気する換気装置(60,70)と、空調空間を空調する第1空調装置(51)と、空調空間に存在する人の状態を検出する第1センサ(41)と、制御装置とを備える。制御装置は、空調空間に存在する人の数に応じて空調空間の換気量を算出し(ステップS14,ステップS15)、少なくとも第1センサの検出値に基づいてウイルスに対する感染リスクを特定し(ステップS8)、特定された感染リスクに応じて第1空調装置の風向きまたは風量を制御し(ステップS36)、換気量に基づいて換気装置を制御する(ステップS35)。 (1) The present disclosure relates to an air conditioning ventilation system (1) or a control device (100). The air-conditioning system includes ventilators (60, 70) for ventilating an air-conditioned space (80), a first air-conditioner (51) for air-conditioning the air-conditioned space, and a first sensor ( 41) and a control device. The control device calculates the ventilation rate of the air-conditioned space according to the number of people present in the air-conditioned space (steps S14 and S15), and identifies the risk of virus infection based on at least the detection value of the first sensor (step S8), the air direction or air volume of the first air conditioner is controlled according to the identified infection risk (step S36), and the ventilator is controlled based on the ventilation volume (step S35).
 (2) 空調換気システムは、空調空間を空調する第2空調装置(52)をさらに備え、空調空間は、第1空調装置が対応する第1エリア(81)と、第2空調装置が対応する第2エリア(82)とを含み、制御装置は、第1エリアおよび第2エリア毎にウイルスに対する感染リスクを特定し(ステップS8)、第1エリアのウイルスに対する感染リスクに応じて第1空調装置の風向きまたは風量を制御し、第2エリアのウイルスに対する感染リスクに応じて第2空調装置の風向きまたは風量を制御する(ステップS36)。 (2) The air conditioning ventilation system further comprises a second air conditioner (52) for air conditioning the air conditioned space, and the air conditioned space corresponds to the first area (81) corresponding to the first air conditioner and the second air conditioner. and a second area (82), the control device identifies the virus infection risk for each of the first area and the second area (step S8), and according to the virus infection risk in the first area, the first air conditioner , and controls the direction or volume of air from the second air conditioner according to the risk of virus infection in the second area (step S36).
 (3) 制御装置は、第1エリアに存在する人の数に応じた第1換気量を算出し、第2エリアに存在する人の数に応じた第2換気量を算出し(ステップS11~ステップS17)、第1換気量と第2換気量とを含めて換気量を算出する(ステップS18)。 (3) The control device calculates the first ventilation volume according to the number of people present in the first area, and calculates the second ventilation volume according to the number of people present in the second area (steps S11 to Step S17), the ventilation volume is calculated including the first ventilation volume and the second ventilation volume (step S18).
 (4) 制御装置は、ウイルスに対する感染リスクが基準レベル(レベル1)以下の場合、第1単位換気量を用いて換気量を算出し(ステップS14)、ウイルスに対する感染リスクが基準レベルを超える場合、第1単位換気量よりも多い第2単位換気量を用いて換気量を算出する(ステップS15)。 (4) When the risk of virus infection is below the standard level (level 1), the control device calculates the ventilation volume using the first unit ventilation volume (step S14), and when the virus infection risk exceeds the standard level , the second unit ventilation volume, which is larger than the first unit ventilation volume, is used to calculate the ventilation volume (step S15).
 (5) 制御装置は、第1エリアのウイルスに対する感染リスクが基準レベル(レベル1)を超える場合、第1空調装置の風が第1エリアの人に当たらないように第1空調装置の風向きまたは風量を制御する(図5)。 (5) When the risk of virus infection in the first area exceeds the standard level (level 1), the control device controls the wind direction of the first air conditioner so that it does not hit people in the first area Control the air volume (Fig. 5).
 (6) 制御装置は、空調空間のうち第1エリアのみに人が存在し、かつ、第1エリアのウイルスに対する感染リスクが基準レベル(レベル1)を超える場合、第1空調装置の風が第1エリアの人に当たるように第1空調装置の風向きまたは風量を制御する(ステップS66)。 (6) If there are people only in the first area of the air-conditioned space and the risk of virus infection in the first area exceeds the standard level (level 1), the control device will set the wind of the first air conditioner to the first The air direction or air volume of the first air conditioner is controlled so as to hit people in one area (step S66).
 (7) 空調空間に存在する人の状態を検出する第2センサ(20)をさらに備え、第1センサは音声センサ(41~44)により構成されており、第2センサは画像センサ(20)により構成されており、制御装置は、音声センサの検出値に基づいて人の口からの飛沫度を特定し(ステップS7)、画像センサの検出値に基づいて人の密集度を特定し(ステップS6)、飛沫度と密集度とに基づいてウイルスに対する感染リスクを特定する(ステップS8)。 (7) Further equipped with a second sensor (20) for detecting the state of people present in the air-conditioned space, the first sensor is composed of sound sensors (41-44), and the second sensor is an image sensor (20). The control device identifies the degree of droplets from a person's mouth based on the detection value of the sound sensor (step S7), and identifies the degree of crowding of people based on the detection value of the image sensor (step S6), the risk of virus infection is identified based on the degree of droplet droplets and density (step S8).
 (8) 換気装置は、給気装置(60)と排気装置(70)とを含み、制御装置は、換気装置の換気量を上げる場合(ステップS45にてYES)、排気装置の位置に存在する人に警告した後(ステップS47)、換気量に基づいて換気装置を制御する(ステップS49)。 (8) The ventilation device includes an air supply device (60) and an exhaust device (70), and the control device exists at the position of the exhaust device when increasing the ventilation rate of the ventilation device (YES in step S45). After warning the person (step S47), the ventilator is controlled based on the ventilation volume (step S49).
 (9) 制御装置は、換気量に応じて第1空調装置の設定温度を制御する(ステップS78)。 (9) The control device controls the set temperature of the first air conditioner according to the ventilation volume (step S78).
 (10) 制御装置は、空調空間に含まれるエリア(85~87)毎の感染リスクと、換気装置(91)の位置または空調空間の外部に開閉する開閉部(90)の位置とに基づき、換気経路を決定し、決定結果に基づいて第1空調装置(50)および換気装置を制御する(ステップS81~ステップS86)。 (10) Based on the infection risk for each area (85 to 87) included in the air-conditioned space and the position of the ventilator (91) or the position of the opening/closing part (90) that opens and closes to the outside of the air-conditioned space, A ventilation route is determined, and the first air conditioner (50) and the ventilation device are controlled based on the determination result (steps S81 to S86).
 (11) 開閉部は窓(90)により構成され、制御装置は、空調空間に含まれるエリアのうちから換気対象のエリアを選択した場合、換気対象のエリアに設けられる開閉部に向かう経路を換気経路として決定することが可能である(ステップS91)。 (11) The opening/closing section is composed of a window (90), and when the area to be ventilated is selected from among the areas included in the air-conditioned space, the control device selects a route to the opening/closing section provided in the area to be ventilated. It can be determined as a route (step S91).
 (12) エリアの入口(ドア89の位置)に設けられ、風向きを検出する風向きセンサ(45)をさらに備え、制御装置は、風向きセンサの検出結果に基づいて、風向きセンサが設けられるエリアの開閉部が開いているか否かを判定する(ステップS92)。 (12) A wind direction sensor (45) is provided at the entrance of the area (the position of the door 89) to detect the wind direction, and the control device opens and closes the area where the wind direction sensor is installed based on the detection result of the wind direction sensor. It is determined whether or not the part is open (step S92).
 (13) 制御装置は、換気対象のエリアに設けられる開閉部に向かう経路を換気経路として決定した場合、換気対象のエリアにおいて換気を行うことを報知する(ステップS95)。 (13) When the control device determines the route to the open/close unit provided in the ventilation target area as the ventilation route, it notifies that ventilation will be performed in the ventilation target area (step S95).
 (14) 制御装置は、第2センサの検出値に基づいて、空調空間に存在する人がマスクを着用しているか否かを判定し、空調空間に存在する人がマスクを着用している場合、飛沫度と密集度とに基づいて特定した感染リスクのレベルをより高いレベルに補正し、空調空間に存在する人がマスクを着用している場合、飛沫度と密集度とに基づいて特定した感染リスクのレベルをより低いレベルに補正する(ステップS8A)。 (14) Based on the detection value of the second sensor, the control device determines whether the person present in the air-conditioned space is wearing a mask, and if the person present in the air-conditioned space is wearing a mask , Corrected the level of infection risk identified based on the droplet rate and density to a higher level, and if the person in the air-conditioned space was wearing a mask, identified based on the droplet rate and density The infection risk level is corrected to a lower level (step S8A).
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 空調換気システム、11~13 通信線、20 画像センサ(撮影装置)、41~44 音量センサ、45 風向きセンサ、50~54 空調装置、60 給気装置、70 排気装置、80 空調空間、81~84 エリア、85~87 部屋、88 廊下、89 ドア、90 窓、91 換気装置、100 制御装置、101 プロセッサ、102 メモリ、111 第1通信部、112 センサ情報処理部、113 位置情報処理部、114 第2通信部、115 記憶部。 1 Air-conditioning ventilation system, 11-13 Communication line, 20 Image sensor (photographing device), 41-44 Sound volume sensor, 45 Wind direction sensor, 50-54 Air conditioner, 60 Air supply device, 70 Exhaust device, 80 Air-conditioned space, 81- 84 area, 85 to 87 room, 88 corridor, 89 door, 90 window, 91 ventilator, 100 control device, 101 processor, 102 memory, 111 first communication unit, 112 sensor information processing unit, 113 position information processing unit, 114 Second communication unit, 115 storage unit.

Claims (14)

  1.  空調換気システムであって、
     空調空間を換気する換気装置と、
     前記空調空間を空調する第1空調装置と、
     前記空調空間に存在する人の状態を検出する第1センサと、
     制御装置とを備え、
     前記制御装置は、
      前記空調空間に存在する人の数に応じた前記空調空間の換気量を算出し、
      少なくとも前記第1センサの検出値に基づいてウイルスに対する感染リスクを特定し、
      特定された感染リスクに応じて前記第1空調装置の風向きまたは風量を制御し、前記換気量に基づいて前記換気装置を制御する、空調換気システム。
    An air conditioning ventilation system,
    a ventilation device for ventilating the air-conditioned space;
    a first air conditioner that air-conditions the air-conditioned space;
    a first sensor that detects the state of a person present in the air-conditioned space;
    a control device;
    The control device is
    calculating the ventilation amount of the air-conditioned space according to the number of people present in the air-conditioned space;
    identifying the risk of virus infection based on at least the detection value of the first sensor;
    An air-conditioning and ventilation system that controls the air direction or air volume of the first air conditioner according to the identified infection risk, and controls the ventilation device based on the ventilation volume.
  2.  前記空調空間を空調する第2空調装置をさらに備え、
     前記空調空間は、前記第1空調装置が対応する第1エリアと、前記第2空調装置が対応する第2エリアとを含み、
     前記制御装置は、
      前記第1エリアおよび前記第2エリア毎にウイルスに対する感染リスクを特定し、
      前記第1エリアのウイルスに対する感染リスクに応じて前記第1空調装置の風向きまたは風量を制御し、
      前記第2エリアのウイルスに対する感染リスクに応じて前記第2空調装置の風向きまたは風量を制御する、請求項1に記載の空調換気システム。
    further comprising a second air conditioner that air-conditions the air-conditioned space;
    The air-conditioned space includes a first area corresponding to the first air conditioner and a second area corresponding to the second air conditioner,
    The control device is
    identifying the risk of virus infection for each of the first area and the second area;
    controlling the wind direction or air volume of the first air conditioner according to the risk of virus infection in the first area;
    2. The air-conditioning and ventilation system according to claim 1, wherein the air direction or air volume of said second air conditioner is controlled according to the virus infection risk of said second area.
  3.  前記制御装置は、
      前記第1エリアに存在する人の数に応じた第1換気量を算出し、
      前記第2エリアに存在する人の数に応じた第2換気量を算出し、
      前記第1換気量と前記第2換気量とを含めて前記換気量を算出する、請求項2に記載の空調換気システム。
    The control device is
    Calculate a first ventilation volume according to the number of people present in the first area,
    Calculate a second ventilation volume according to the number of people present in the second area,
    3. The air-conditioning ventilation system according to claim 2, wherein said ventilation volume is calculated including said first ventilation volume and said second ventilation volume.
  4.  前記制御装置は、
      ウイルスに対する感染リスクが基準レベル以下の場合、第1単位換気量を用いて前記換気量を算出し、
      ウイルスに対する感染リスクが前記基準レベルを超える場合、前記第1単位換気量よりも多い第2単位換気量を用いて前記換気量を算出する、請求項2または請求項3に記載の空調換気システム。
    The control device is
    If the risk of infection with the virus is below the reference level, calculate the ventilation volume using the first unit ventilation volume,
    4. The air-conditioning/ventilation system according to claim 2, wherein when the risk of virus infection exceeds the reference level, the ventilation is calculated using a second unit ventilation that is larger than the first unit ventilation.
  5.  前記制御装置は、前記第1エリアのウイルスに対する感染リスクが前記基準レベルを超える場合、前記第1空調装置の風が前記第1エリアの人に当たらないように前記第1空調装置の風向きまたは風量を制御する、請求項4に記載の空調換気システム。 When the infection risk of the virus in the first area exceeds the reference level, the control device controls the wind direction or air volume of the first air conditioner so that the wind of the first air conditioner does not hit people in the first area. 5. The air-conditioning and ventilation system of claim 4, which controls the
  6.  前記制御装置は、前記空調空間のうち前記第1エリアのみに人が存在し、かつ、前記第1エリアのウイルスに対する感染リスクが前記基準レベルを超える場合、前記第1空調装置の風が前記第1エリアの人に当たるように前記第1空調装置の風向きまたは風量を制御する、請求項4に記載の空調換気システム。 In the control device, when a person exists only in the first area of the air-conditioned space and the risk of virus infection in the first area exceeds the reference level, the wind of the first air conditioner is reduced to the first area. 5. The air-conditioning and ventilation system according to claim 4, wherein the air direction or air volume of said first air conditioner is controlled so as to hit people in one area.
  7.  前記空調空間に存在する人の状態を検出する第2センサをさらに備え、
     前記第1センサは音声センサにより構成されており、
     前記第2センサは画像センサにより構成されており、
     前記制御装置は、
     前記音声センサの検出値に基づいて人の口からの飛沫度を特定し、
     前記画像センサの検出値に基づいて人の密集度を特定し、
     前記飛沫度と前記密集度とに基づいてウイルスに対する感染リスクを特定する、請求項1~請求項6のいずれか1項に記載の空調換気システム。
    Further comprising a second sensor that detects the state of a person present in the air-conditioned space,
    The first sensor is configured by an audio sensor,
    The second sensor is configured by an image sensor,
    The control device is
    Identifying the degree of droplets from a person's mouth based on the detection value of the audio sensor,
    Identifying the density of people based on the detection value of the image sensor,
    The air-conditioning and ventilation system according to any one of claims 1 to 6, wherein the risk of virus infection is identified based on the degree of droplet droplets and the degree of density.
  8.  前記換気装置は、給気装置と排気装置とを含み、
     前記制御装置は、前記換気装置の前記換気量を上げる場合、前記排気装置の位置に存在する人に警告した後、前記換気量に基づいて前記換気装置を制御する、請求項1~請求項7のいずれか1項に記載の空調換気システム。
    The ventilation device includes an air supply device and an exhaust device,
    Claims 1 to 7, wherein when the ventilation volume of the ventilation device is increased, the control device controls the ventilation device based on the ventilation volume after warning a person present at the position of the ventilation device. The air conditioning ventilation system according to any one of Claims 1 to 3.
  9.  前記制御装置は、前記換気量に応じて前記第1空調装置の設定温度を制御する、請求項1~請求項8のいずれか1項に記載の空調換気システム。 The air conditioning and ventilation system according to any one of claims 1 to 8, wherein the control device controls the set temperature of the first air conditioner according to the ventilation amount.
  10.  前記制御装置は、前記空調空間に含まれるエリア毎の感染リスクと、前記換気装置の位置または前記空調空間の外部に開閉する開閉部の位置とに基づき、換気経路を決定し、決定結果に基づいて前記第1空調装置および前記換気装置を制御する、請求項1~請求項9のいずれか1項に記載の空調換気システム。 The control device determines a ventilation route based on the infection risk for each area included in the air-conditioned space and the position of the ventilation device or the position of the opening and closing part that opens and closes to the outside of the air-conditioned space, and based on the determination result The air-conditioning and ventilation system according to any one of claims 1 to 9, wherein the first air-conditioning device and the ventilation device are controlled by the first air-conditioning device and the ventilation device.
  11.  前記開閉部は窓により構成され、
     前記制御装置は、前記空調空間に含まれるエリアのうちから換気対象のエリアを選択した場合、前記換気対象のエリアに設けられる前記開閉部に向かう経路を前記換気経路として決定することが可能である、請求項10に記載の空調換気システム。
    The opening and closing part is configured by a window,
    When an area to be ventilated is selected from areas included in the air-conditioned space, the control device can determine a route toward the opening/closing unit provided in the area to be ventilated as the ventilation route. 11. Air conditioning and ventilation system according to claim 10.
  12.  前記エリアの入口に設けられ、風向きを検出する風向きセンサをさらに備え、
     前記制御装置は、前記風向きセンサの検出結果に基づいて、前記風向きセンサが設けられるエリアの前記開閉部が開いているか否かを判定する、請求項11に記載の空調換気システム。
    A wind direction sensor is provided at the entrance of the area and detects the direction of the wind,
    12. The air-conditioning/ventilating system according to claim 11, wherein said control device determines whether or not said open/close section in an area where said wind direction sensor is provided is open based on the detection result of said wind direction sensor.
  13.  前記制御装置は、前記換気対象のエリアに設けられる前記開閉部に向かう経路を前記換気経路として決定した場合、前記換気対象のエリアにおいて換気を行うことを報知する、請求項11または請求項12に記載の空調換気システム。 13. The control device according to claim 11 or claim 12, wherein when a route toward the opening/closing unit provided in the ventilation target area is determined as the ventilation route, the control device notifies that ventilation will be performed in the ventilation target area. Air-conditioning and ventilation system as described.
  14.  前記制御装置は、前記第2センサの検出値に基づいて、前記空調空間に存在する人がマスクを着用しているか否かを判定し、前記空調空間に存在する人がマスクを着用している場合、前記飛沫度と前記密集度とに基づいて特定した前記感染リスクのレベルをより高いレベルに補正し、前記空調空間に存在する人がマスクを着用している場合、前記飛沫度と前記密集度とに基づいて特定した前記感染リスクのレベルをより低いレベルに補正する、請求項7に記載の空調換気システム。 The control device determines whether a person present in the air-conditioned space is wearing a mask based on the detection value of the second sensor, and determines whether the person present in the air-conditioned space is wearing a mask. In this case, the level of infection risk identified based on the droplet rate and the density is corrected to a higher level, and if the person present in the air-conditioned space is wearing a mask, the droplet rate and the density 8. The air-conditioning and ventilation system according to claim 7, wherein the level of infection risk identified based on the degree of infection is corrected to a lower level.
PCT/JP2021/024932 2021-07-01 2021-07-01 Air-conditioning and ventilation system WO2023276105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024932 WO2023276105A1 (en) 2021-07-01 2021-07-01 Air-conditioning and ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024932 WO2023276105A1 (en) 2021-07-01 2021-07-01 Air-conditioning and ventilation system

Publications (1)

Publication Number Publication Date
WO2023276105A1 true WO2023276105A1 (en) 2023-01-05

Family

ID=84691671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024932 WO2023276105A1 (en) 2021-07-01 2021-07-01 Air-conditioning and ventilation system

Country Status (1)

Country Link
WO (1) WO2023276105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116720999A (en) * 2023-08-07 2023-09-08 戈尔电梯(天津)有限公司 Control method and device for intelligent community, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091243A (en) * 2008-10-09 2010-04-22 Locus:Kk Energy saving ventilation system and energy saving building having the same
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
WO2019239812A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Information processing method, information processing program, and information processing system
JP2020030010A (en) * 2018-08-24 2020-02-27 パナソニックIpマネジメント株式会社 Ventilation system, ventilation method, ventilation notification system, ventilation notification method, and control device
WO2020110185A1 (en) * 2018-11-27 2020-06-04 三菱電機株式会社 Ventilation regulation device and ventilation regulation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091243A (en) * 2008-10-09 2010-04-22 Locus:Kk Energy saving ventilation system and energy saving building having the same
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
WO2019239812A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Information processing method, information processing program, and information processing system
JP2020030010A (en) * 2018-08-24 2020-02-27 パナソニックIpマネジメント株式会社 Ventilation system, ventilation method, ventilation notification system, ventilation notification method, and control device
WO2020110185A1 (en) * 2018-11-27 2020-06-04 三菱電機株式会社 Ventilation regulation device and ventilation regulation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116720999A (en) * 2023-08-07 2023-09-08 戈尔电梯(天津)有限公司 Control method and device for intelligent community, electronic equipment and storage medium
CN116720999B (en) * 2023-08-07 2023-11-07 戈尔电梯(天津)有限公司 Control method and device for intelligent community, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US6645066B2 (en) Space-conditioning control employing image-based detection of occupancy and use
JP4453679B2 (en) Equipment control system and equipment control apparatus
CN108592320B (en) Air conditioner control method, air conditioner and computer readable storage medium
JP6120820B2 (en) Ventilation system
JP4864019B2 (en) How to control the comfort of your environment with an air conditioning system
WO2023276105A1 (en) Air-conditioning and ventilation system
CN114450534A (en) Information processing apparatus
WO2021042436A1 (en) Air conditioning system and control method and device thereof
JPH1078254A (en) Ventilating and air-conditioning system
KR102101024B1 (en) Building automatically control system for reducing the fine dust
CN114838484B (en) Air conditioner control method, air conditioner and computer readable storage medium
JP2017096584A (en) Air conditioning system and program
KR102101023B1 (en) Building automatically control system and method for reducing the fine dust
CN114963437A (en) Control method of fresh air fan in air conditioner indoor unit and air conditioner indoor unit
KR101203999B1 (en) Compound air conditioning system and the control method
JP2008089786A (en) Ventilation sensing equipment, and coolness comparing and sensing equipment
KR20180101192A (en) Environment control system and method
WO2023062735A1 (en) Ventilation system and notification control method
CN220506986U (en) Fresh air device and fresh air conditioning system of ceiling type air conditioner
JP2022050792A (en) Ventilation system
JP2023085698A (en) Air conditioning management device, air conditioning management program
KR20190092987A (en) Air-conditioner and Contral Method
KR102645952B1 (en) Ventilation device performing intensive ventilation in each room and control method of the ventilation device
JP2022111612A (en) Information processing device, airflow control system, and program
JP7437552B2 (en) Ventilation systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948409

Country of ref document: EP

Kind code of ref document: A1