WO2023275998A1 - Terminal, network node, and communication method - Google Patents

Terminal, network node, and communication method Download PDF

Info

Publication number
WO2023275998A1
WO2023275998A1 PCT/JP2021/024569 JP2021024569W WO2023275998A1 WO 2023275998 A1 WO2023275998 A1 WO 2023275998A1 JP 2021024569 W JP2021024569 W JP 2021024569W WO 2023275998 A1 WO2023275998 A1 WO 2023275998A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network node
gnss
network
information
Prior art date
Application number
PCT/JP2021/024569
Other languages
French (fr)
Japanese (ja)
Inventor
淳 巳之口
真央樹 彦坂
政宏 澤田
敬浩 青木
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202180098760.9A priority Critical patent/CN117397302A/en
Priority to PCT/JP2021/024569 priority patent/WO2023275998A1/en
Publication of WO2023275998A1 publication Critical patent/WO2023275998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed

Definitions

  • the present invention relates to terminals, network nodes and communication methods in communication systems.
  • 5G or NR New Radio
  • NR New Radio
  • 5G A wireless communication system called “5G” (hereinafter, the wireless communication system is referred to as “5G” or "NR”) is under study.
  • 5G various radio technologies are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less.
  • 5GC 5G Core Network
  • EPC Evolved Packet Core
  • LTE Long Term Evolution
  • E-UTRAN Radio Access Network
  • NG-RAN Next Generation-Radio Access Network
  • Evolved Universal Terrestrial Radio Access Network A network architecture including NG-RAN (Next Generation-Radio Access Network) corresponding to Evolved Universal Terrestrial Radio Access Network
  • NTN Non-Terrestrial Network
  • Non-Patent Document 2 NTN uses non-terrestrial networks such as satellites to provide services to areas that cannot be covered by terrestrial 5G networks mainly due to cost.
  • NTN which uses satellite communications
  • TN Terrestrial Network
  • a terminal geographically located in one country may be connected to a core network in another country.
  • a terminal When a terminal is connected to a core network in another country, it may not meet the laws and regulations of the country where the terminal is located, so the network needs to acquire the terminal's location information accurately.
  • the present invention has been made in view of the above points, and an object of the present invention is to enable a network to accurately acquire terminal location information.
  • a terminal including a USIM Universal Subscriber Identity Module
  • the USIM includes a receiving unit that receives GNSS (Global navigation satellite system) input information from the terminal, and a receiving unit that receives the GNSS input information.
  • GNSS Global navigation satellite system
  • a control unit for calculating location information of the device itself; and a transmission unit for transmitting to the network node the location information and the GNSS input information concealed with the public key of the network node and signed with the private key of the USIM.
  • a terminal having a terminal is provided.
  • the network can accurately acquire terminal location information.
  • FIG. 1 is a diagram for explaining an example of a network
  • FIG. 1 is a diagram for explaining an example of a network in a roaming environment
  • FIG. FIG. 2 is a diagram for explaining an example of an environment according to an embodiment of the present invention
  • FIG. 4 is a sequence diagram for explaining an example of operations related to position information according to the embodiment of the present invention
  • 4 is a flowchart for explaining an example (1) of registration operation in the embodiment of the present invention
  • 9 is a flow chart for explaining example (2) of registration operation in the embodiment of the present invention.
  • It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention
  • FIG. 2 is a diagram showing an example of hardware configurations of base station 10 and terminal 20 according to an embodiment of the present invention
  • LTE Long Term Evolution
  • LTE-Advanced and LTE-Advanced and later systems eg: NR
  • wireless LAN Local Area Network
  • “configuring" the wireless parameters and the like may mean that predetermined values are set in advance (pre-configure), or the network node 30 or A wireless parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram showing an example (1) of NTN.
  • NTN Non-Terrestrial Network
  • NTN can provide more reliable service. For example, it is assumed to be applied to IoT (Inter of things), ships, buses, trains, and critical communications. NTN also has scalability through efficient multicast or broadcast.
  • a satellite 10A retransmits a signal transmitted from a terrestrial base station 10B to provide service to an area where no terrestrial base station is deployed, such as mountainous areas. can be done.
  • a terrestrial 5G network includes one or more base stations 10 and terminals 20 .
  • the base station 10 is a communication device that provides one or more cells and wirelessly communicates with the terminal 20 .
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • the base station 10 transmits synchronization signals and system information to the terminal 20 . Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink), and receives control signals or data from the terminal 20 on UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Also, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Also, both the base station 10 and the terminal 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module.
  • the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby using various communication services provided by the wireless communication system.
  • FIG. 2 is a diagram showing an example (2) of NTN.
  • the area per cell or beam in NTN is very large compared to terrestrial networks (Terrestrial Network, TN).
  • FIG. 2 shows an example of an NTN composed of retransmissions by satellite.
  • the connection between satellite 10A and NTN gateway 10B is called a feeder link, and the connection between satellite 10A and UE 20 is called a service link.
  • the difference in delay between the near side UE 20A and the far side UE 20B is, for example, 10.3 ms for Geosynchronous orbit (GEO). , 3.2 ms in the case of LEO (Low Earth orbit).
  • the beam size in NTN is, for example, 3500 km for GEO and 1000 km for LEO.
  • FIG. 3 is a diagram for explaining an example of a network.
  • the communication system consists of a UE, which is a terminal 20, and a plurality of network nodes 30.
  • FIG. Hereinafter, one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function.
  • the "connection" described below may be a logical connection or a physical connection.
  • a RAN Radio Access Network
  • AMF Access and Mobility Management Function
  • UPF User plane function
  • the AMF is a network node 30 having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • the UPF is a network node 30 that has functions such as a PDU (Protocol Data Unit) session point to the outside that interconnects with a DN (Data Network), packet routing and forwarding, and user plane QoS (Quality of Service) handling.
  • PDU Protocol Data Unit
  • DN Data Network
  • packet routing and forwarding and user plane QoS (Quality of Service) handling.
  • UPF and DN constitute a network slice.
  • a plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
  • AMF is UE, RAN, SMF (Session Management function), NSSF (Network Slice Selection Function), NEF (Network Exposure Function), NRF (Network Repository Function), UDM (Unified Data Management), AUSF (Authentication Server Function), PCF (Policy Control Function) and AF (Application Function) are connected.
  • AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
  • the SMF is a network node 30 that has functions such as session management, UE IP (Internet Protocol) address allocation and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
  • a NEF is a network node 30 that has the function of notifying other NFs (Network Functions) of capabilities and events. NSSF selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects. be.
  • a PCF is a network node 30 having a function of performing network policy control.
  • AF is a network node 30 having the function of controlling an application server.
  • An NRF is a network node 30 that has the ability to discover NF instances that provide services.
  • a UDM is a network node 30 that manages subscriber data and authentication data. The UDM is connected to a UDR (Unified Data Repository) that holds the data.
  • UDR Unified Data Repository
  • FIG. 3 is a diagram for explaining an example of a network in a roaming environment.
  • the network consists of a UE, which is a terminal 20, and a plurality of network nodes 30.
  • one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function.
  • the "connection" described below may be a logical connection or a physical connection.
  • RAN is a network node 30 with radio access functionality and is connected with UE, AMF and UPF.
  • the AMF is a network node 30 having functions such as RAN interface termination, NAS termination, registration management, connection management, reachability management, and mobility management.
  • a UPF is a network node 30 that has functions such as PDU session point to the outside world interconnecting DNs, packet routing and forwarding, user plane QoS handling, and so on.
  • UPF and DN constitute a network slice.
  • a plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
  • AMF is connected to UE, RAN, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF, and SEPP (Security Edge Protection Proxy).
  • AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
  • the SMF is a network node 30 that has functions such as session management, UE IP address allocation and management, DHCP function, ARP proxy, roaming function, and the like.
  • a NEF is a network node 30 that has the function of notifying other NFs of capabilities and events.
  • the NSSF is a network node 30 that has functions such as selecting a network slice to which the UE connects, determining allowed NSSAIs, determining configured NSSAIs, determining the AMF set to which the UE connects, and so on.
  • a PCF is a network node 30 having a function of performing network policy control.
  • AF is a network node 30 having the function of controlling an application server.
  • An NRF is a network node 30 that has the ability to discover NF instances that provide services.
  • SEPP is a non-transparent proxy that filters control plane messages between PLMNs (Public Land Mobile Networks).
  • the vSEPP shown in FIG. 3 is the SEPP in the visited network, and the hSEPP is the SEPP in the home network.
  • the UE is in a roaming environment connected with RAN and AMF in VPLMN (Visited PLMN).
  • VPLMN and HPLMN are connected via vSEPP and hSEPP.
  • the UE can, for example, communicate with the HPLMN's UDM via the VPLMN's AMF.
  • FIG. 5 is a diagram for explaining an example environment in the embodiment of the present invention. Satellite communication, High Altitude Platform Station (HAPS), Mobile Integrated Access and Backhaul (IAB) are important components of 5G development and 6G. For example, as shown in FIG. 5, NTN by satellite communication is assumed. Satellite 10 covers A country and B country. Here, 1) and 2) shown below are important.
  • HAPS High Altitude Platform Station
  • IAB Mobile Integrated Access and Backhaul
  • Networks need to handle emergency calls, wiretapping and billing appropriately based on reliable terminal location information.
  • Terminals need to switch core networks when crossing national borders. The network can switch the core network by the terminal invoking the mobile registration procedure at the border.
  • AMF initiates the 5GC-NI-LR (Network Induced Location Request) procedure.
  • the UE-assisted A-GNSS Assisted-Global navigation satellite system
  • LMF Location Management Function
  • the AMF maps the terminal position obtained by the procedure on the map.
  • the AMF determines that the terminal is located in an area that the AMF cannot handle, it deregisters the terminal.
  • AMF will then periodically trigger the 5GC-NI-LR procedure.
  • the periodic calls from the network required by the above method consume radio resources.
  • the above method is only an approximate correspondence with respect to the above 2).
  • the authenticity of the GNSS input information that the terminal sends to the network is not guaranteed.
  • it takes about 10 seconds to calculate the terminal position on the network side, which is long compared to the several seconds that the terminal takes to calculate the position.
  • the current specification does not allow the network to trust the location information calculated by the terminal.
  • position calculation is performed by USIM (Universal Subscriber Identity Module) under the control of HPLMN.
  • USIM Universal Subscriber Identity Module
  • the USIM performs the location calculation internally, hides the location information and adds a signature.
  • the USIM sends the signed and hidden location information to the network via the terminal.
  • Public key cryptography is used so that it can also be used for registration requests prior to the authentication procedure. Additionally, procedures may be performed to validate GNSS input information.
  • FIG. 6 is a sequence diagram for explaining an example of operations related to position information according to the embodiment of the present invention.
  • the USIM calculates location information based on the GNSS input information.
  • the USIM has inside it the GNSS calculation logic, its own private key and the public key of the NW node 10 (eg satellite ground station).
  • the NW node 10 internally has its own private key and the HPLMN-signed public key of each USIM.
  • UE20 may transmit GNSS input information to USIM.
  • the USIM conceals the result calculated using the GNSS calculation logic, that is, the location information of its own device and the GNSS input information used for the calculation with the public key of the NW node 10 .
  • the USIM signs the hidden location information and GNSS input information with its own private key.
  • the USIM transmits the signed and confidential location information and GNSS input information to the NW node 10 via the UE 20 .
  • the NW node 10 verifies the signature with the corresponding USIM public key.
  • the NW node 10 decrypts the location information and GNSS input information with its own private key.
  • the NW node 10 and core network proceed with processing using the location information.
  • the NW node 10 transmits the location information and GNSS input information to the AMF 30A.
  • step S14 the AMF 30A transmits the location information and GNSS input information to the AI processing node 30C.
  • the AI processing node 30C verifies the validity of the location information and GNSS input information.
  • the verification method may be an implementation-dependent method. Note that the AI processing node 30C may have another name.
  • the AI processing node 30C determines that the GNSS input information is not valid, it transmits the verification result to the AMF 30A and OAM (Operation Administration and Maintenance) 30B (S16, S17).
  • the verification result may include information indicating that the GNSS input information is invalid.
  • the AI processing node 30C may transmit a verification result indicating validity to the AMF 30 or OAM 30B.
  • the execution order of steps S16 and S17 does not matter.
  • step S18 the OAM 30B records the PEI (Permanent Equipment Identifier) corresponding to the UE 20 in the 5G-EIR (5G-Equipment Identity Register), and checks the corresponding subscriber information in association with the GNSS input information abnormality. The subscriber information may be recorded in association with the number of GNSS input information anomalies.
  • step S19 the AMF transmits a deregistration request (Deregister) to the UE20 to deregister the UE20.
  • Deregister deregistration request
  • FIG. 7 is a flow chart for explaining example (1) of the registration operation according to the embodiment of the present invention.
  • FIG. 7 shows the operation of the AMF after executing the sequence shown in FIG.
  • the AMF receives a registration request from the UE.
  • the AMF determines whether the PEI of the registration request is the recorded PEI. If it is a recorded PEI (YES in S22), the process proceeds to step S23, and if it is not a recorded PEI (NO in S22), the process proceeds to step S24.
  • the AMF rejects the registration request.
  • the AMF approves the registration request.
  • FIG. 8 is a flowchart for explaining example (2) of the registration operation according to the embodiment of the present invention.
  • FIG. 8 shows the operation of the AMF after executing the sequence shown in FIG.
  • the AMF receives a registration request from the UE.
  • the AMF determines whether or not the GNSS input information abnormality due to the subscriber information of the registration request is equal to or greater than the set number of times. If it is equal to or greater than the set number of times (YES in S32), the process proceeds to step S33, and if it is less than the set number of times (NO in S32), the process proceeds to step S34.
  • the AMF rejects the registration request.
  • the AMF approves the registration request.
  • the HPLMN may use the existing SoR (Steering of Roaming) procedure or the existing UPU (UE Parameters Update) procedure to set or update the GNSS calculation logic in the USIM and the public key of the NW node.
  • the USIM may also use existing Generic Authentication Architecture (GAA)/Generic Bootstrapping Architecture (GBA) procedures to obtain the HPLMN's signature on the public key corresponding to its private key.
  • GAA Generic Authentication Architecture
  • GBA Generic Bootstrapping Architecture
  • the network can obtain reliable terminal location information.
  • Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations.
  • the network can verify that the terminal is not reporting false location information by tampering with the GNSS input. Also, compared to the method in which the network calculates the terminal location information, the time to determine the location information is shortened.
  • the network can accurately acquire the location information of the terminal.
  • the base station 10, network node 30, and terminal 20 include functionality to implement the embodiments described above. However, each of the base station 10, network node 30, and terminal 20 may have only part of the functions in the embodiments.
  • FIG. 9 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
  • the network node 30 may have a functional configuration similar to that of the base station 10 . Also, the network node 30 having multiple different functions on the system architecture may be composed of multiple network nodes 30 separated for each function.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 or another network node 30 and transmitting the signal by wire or wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 or other network nodes 30 and acquiring, for example, higher layer information from the received signals.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the contents of the setting information are, for example, settings related to communication using NTN.
  • the control unit 140 performs processing related to communication using NTN, as described in the embodiment. Also, the control unit 140 performs processing related to communication with the terminal 20 . In addition, the control unit 140 performs processing related to geographic position verification of the terminal 20 .
  • a functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 .
  • FIG. 10 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary.
  • the USIM worn by the terminal 20 may have a transmitting section 210 , a receiving section 220 , a setting section 230 , and a control section 240 similarly to the terminal 20 .
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the receiving unit 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, reference signals, etc. transmitted from the network node 30 .
  • the setting unit 230 stores various types of setting information received from the network node 30 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the contents of the setting information are, for example, settings related to communication using NTN.
  • the control unit 240 performs processing related to connection control to networks and network slices, as described in the embodiments.
  • a functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210
  • a functional unit related to signal reception in control unit 240 may be included in receiving unit 220 .
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the network node 30 may have hardware configuration similar to that of the base station 10 .
  • USIM may have the same hardware configuration as terminal 20 .
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 9 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • the USIM may be internally implemented with hardware that implements GNSS calculation logic, or internally with hardware that holds its own private key and the public key of the NW node 10 (for example, a satellite ground station). good too.
  • a terminal including a USIM (Universal Subscriber Identity Module), the USIM receives GNSS (Global Navigation Satellite System) input information from the terminal a receiving unit, a control unit that calculates the location information of the device based on the GNSS input information, and the location information and the GNSS input information that are confidential with the public key of the network node and signed with the private key of the USIM. and a transmitter for transmitting to the network node.
  • USIM Universal Subscriber Identity Module
  • GNSS Global Navigation Satellite System
  • the network can obtain reliable terminal location information.
  • Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations.
  • the network can verify that the terminal is not reporting false location information by tampering with the GNSS input.
  • the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
  • a receiving unit that receives terminal position information and GNSS (Global navigation satellite system) input information used for calculating the terminal position information from a first network node; a transmitter configured to transmit the terminal location information and the GNSS input information to a second network node, the receiver verifying from the second network node that the GNSS input information is invalid.
  • the transmitting unit is provided with a network node for transmitting a deregistration request to the terminal upon receiving a result.
  • the network can obtain reliable terminal location information.
  • Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations.
  • the network can verify that the terminal is not reporting false location information by tampering with the GNSS input.
  • the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
  • the receiving unit When the receiving unit receives a verification result indicating that the GNSS input information is not valid from the second network node, even if the registration request from the PEI (Permanent Equipment Identifier) corresponding to the terminal is rejected good.
  • PEI Permanent Equipment Identifier
  • the registration request from the subscriber information corresponding to the terminal is rejected. You may This configuration allows the network to reject a registration request from a terminal if the terminal may have reported false location information by tampering with the GNSS input information.
  • GNSS Global navigation satellite system
  • the network can obtain reliable terminal location information.
  • Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations.
  • the network can verify that the terminal is not reporting false location information by tampering with the GNSS input.
  • the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the network node 30 and terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the network node 30 according to the embodiment of the invention and the software operated by the processor of the terminal 20 according to the embodiment of the invention are respectively stored in random access memory (RAM), flash memory, read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the network node 30 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with terminal 20 may be network node 30 and other network nodes other than network node 30 (eg, but not limited to MME or S-GW).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the network node 30 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 30 network node 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises a universal subscriber identity module (USIM). The USIM has a reception unit that receives global navigation satellite system (GNSS) input information from the terminal; a control unit that calculates self-position information on the basis of the GNSS input information; and a transmission unit that transmits to a network node the GNSS input information and the position information concealed by a public key of the network node and signed with a secret key of the USIM.

Description

端末、ネットワークノード及び通信方法Terminal, network node and communication method
 本発明は、通信システムにおける端末、ネットワークノード及び通信方法に関する。 The present invention relates to terminals, network nodes and communication methods in communication systems.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「5G」あるいは「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術の検討が行われている。 In the 3GPP (3rd Generation Partnership Project), 5G or NR (New Radio) and NR (New Radio) are being used in order to further increase the system capacity, further increase the data transmission speed, and further reduce the delay in the wireless section. A wireless communication system called "5G" (hereinafter, the wireless communication system is referred to as "5G" or "NR") is under study. In 5G, various radio technologies are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less.
 NRでは、LTE(Long Term Evolution)のネットワークアーキテクチャにおけるコアネットワークであるEPC(Evolved Packet Core)に対応する5GC(5G Core Network)及びLTEのネットワークアーキテクチャにおけるRAN(Radio Access Network)であるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)に対応するNG-RAN(Next Generation - Radio Access Network)を含むネットワークアーキテクチャが検討されている(例えば非特許文献1)。 In NR, 5GC (5G Core Network) corresponding to EPC (Evolved Packet Core) which is the core network in LTE (Long Term Evolution) network architecture and E-UTRAN (RAN (Radio Access Network) in LTE network architecture ( A network architecture including NG-RAN (Next Generation-Radio Access Network) corresponding to Evolved Universal Terrestrial Radio Access Network) is under consideration (for example, Non-Patent Document 1).
 また現在、NTN(Non-Terrestrial Network)が検討されている(例えば非特許文献2)。NTNとは、衛星等の非地上型ネットワークを使用して、地上型5Gネットワークでは主にコスト面でカバーできないエリアにサービスを提供するものである。 Also, NTN (Non-Terrestrial Network) is currently under consideration (for example, Non-Patent Document 2). NTN uses non-terrestrial networks such as satellites to provide services to areas that cannot be covered by terrestrial 5G networks mainly due to cost.
 例えば、衛星通信を使用するNTNでは、セル又はビームごとのエリアは地上型ネットワーク(Terrestrial Network, TN)と比較して非常に広く、複数の国が同時にサービス圏内となり得る。そのため、地理的にある国に位置する端末が、他国のコアネットワークに接続される可能性がある。端末が他国のコアネットワークと接続される場合、当該端末が位置する国の法規を満たせない恐れがあるため、ネットワークは端末の位置情報を正確に取得する必要がある。 For example, in NTN, which uses satellite communications, the area of each cell or beam is much wider than that of a terrestrial network (Terrestrial Network, TN), and multiple countries can be in service at the same time. As such, a terminal geographically located in one country may be connected to a core network in another country. When a terminal is connected to a core network in another country, it may not meet the laws and regulations of the country where the terminal is located, so the network needs to acquire the terminal's location information accurately.
 本発明は上記の点に鑑みてなされたものであり、ネットワークが端末の位置情報を正確に取得することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to enable a network to accurately acquire terminal location information.
 開示の技術によれば、USIM(Universal Subscriber Identity Module)を備える端末であって、前記USIMは、前記端末からGNSS(Global navigation satellite system)入力情報を受信する受信部と、前記GNSS入力情報に基づいて、自装置の位置情報を算出する制御部と、ネットワークノードの公開鍵で秘匿しかつ前記USIMの秘密鍵で署名した前記位置情報及び前記GNSS入力情報を前記ネットワークノードに送信する送信部とを有する端末が提供される。 According to the disclosed technique, a terminal including a USIM (Universal Subscriber Identity Module), the USIM includes a receiving unit that receives GNSS (Global navigation satellite system) input information from the terminal, and a receiving unit that receives the GNSS input information. a control unit for calculating location information of the device itself; and a transmission unit for transmitting to the network node the location information and the GNSS input information concealed with the public key of the network node and signed with the private key of the USIM. A terminal having a terminal is provided.
 開示の技術によれば、ネットワークが端末の位置情報を正確に取得することができる。 According to the disclosed technology, the network can accurately acquire terminal location information.
NTNの例(1)を示す図である。It is a figure which shows the example (1) of NTN. NTNの例(2)を示す図である。It is a figure which shows the example (2) of NTN. ネットワークの例を説明するための図である。1 is a diagram for explaining an example of a network; FIG. ローミング環境下のネットワークの例を説明するための図である。1 is a diagram for explaining an example of a network in a roaming environment; FIG. 本発明の実施の形態における環境の例を説明するための図である。FIG. 2 is a diagram for explaining an example of an environment according to an embodiment of the present invention; FIG. 本発明の実施の形態における位置情報に係る動作の例を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining an example of operations related to position information according to the embodiment of the present invention; 本発明の実施の形態における登録動作の例(1)を説明するためのフローチャートである。4 is a flowchart for explaining an example (1) of registration operation in the embodiment of the present invention; 本発明の実施の形態における登録動作の例(2)を説明するためのフローチャートである。9 is a flow chart for explaining example (2) of registration operation in the embodiment of the present invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention; FIG. 本発明の実施の形態における基地局10及び端末20のハードウェア構成の一例を示す図である。2 is a diagram showing an example of hardware configurations of base station 10 and terminal 20 according to an embodiment of the present invention; FIG.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. In addition, the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。 Existing technologies are appropriately used for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. In addition, the term "LTE" used in this specification, unless otherwise specified, has a broad meaning including LTE-Advanced and LTE-Advanced and later systems (eg: NR), or wireless LAN (Local Area Network). shall have
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、ネットワークノード30又は端末20から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" the wireless parameters and the like may mean that predetermined values are set in advance (pre-configure), or the network node 30 or A wireless parameter notified from the terminal 20 may be set.
 図1は、NTNの例(1)を示す図である。NTN(Non-Terrestrial Network)とは、衛星等の非地上型ネットワークを使用して、地上型5Gネットワークでは主にコスト面でカバーできないエリアにサービスを提供するものである。NTNによって、より信頼性の高いサービスを供給することができる。例えば、IoT(Inter of things)、船舶、バス、列車、クリティカルな通信に適用することが想定される。また、NTNは、効率的なマルチキャスト又はブロードキャストによるスケーラビリティを有する。 FIG. 1 is a diagram showing an example (1) of NTN. NTN (Non-Terrestrial Network) uses non-terrestrial networks such as satellites to provide services to areas that cannot be covered by terrestrial 5G networks mainly in terms of cost. NTN can provide more reliable service. For example, it is assumed to be applied to IoT (Inter of things), ships, buses, trains, and critical communications. NTN also has scalability through efficient multicast or broadcast.
 NTNの例として、図1に示されるように、衛星10Aは、地上基地局10Bから送信される信号を再送信して、例えば山岳地帯等の地上基地局が配置されないエリアにサービスを提供することができる。 As an example of an NTN, as shown in FIG. 1, a satellite 10A retransmits a signal transmitted from a terrestrial base station 10B to provide service to an area where no terrestrial base station is deployed, such as mountainous areas. can be done.
 なお、地上型5Gネットワークは、以下に記載するような構成であってもよい。地上型5Gネットワークは、1又は複数の基地局10及び端末20を含む。基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。 Note that the terrestrial 5G network may be configured as described below. A terrestrial 5G network includes one or more base stations 10 and terminals 20 . The base station 10 is a communication device that provides one or more cells and wirelessly communicates with the terminal 20 . A physical resource of a radio signal is defined in the time domain and the frequency domain. The time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. The base station 10 transmits synchronization signals and system information to the terminal 20 . Synchronization signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH, and is also called broadcast information.
 基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。 The base station 10 transmits control signals or data to the terminal 20 on DL (Downlink), and receives control signals or data from the terminal 20 on UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Also, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Also, both the base station 10 and the terminal 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。 The terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. The terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby using various communication services provided by the wireless communication system.
 図2は、NTNの例(2)を示す図である。NTNにおけるセル又はビームごとのエリアは地上型ネットワーク(Terrestrial Network, TN)と比較して非常に広い。図2は、衛星による再送信により構成されるNTNの例を示す。衛星10AとNTNゲートウェイ10B間の接続を、フィーダリンクといい、また衛星10AとUE20間の接続を、サービスリンクという。 FIG. 2 is a diagram showing an example (2) of NTN. The area per cell or beam in NTN is very large compared to terrestrial networks (Terrestrial Network, TN). FIG. 2 shows an example of an NTN composed of retransmissions by satellite. The connection between satellite 10A and NTN gateway 10B is called a feeder link, and the connection between satellite 10A and UE 20 is called a service link.
 図2に示されるように、近端(near side)のUE20Aと遠端(far side)のUE20B間の遅延の差分は、例えば、GEO(Geosynchronous orbit, 静止軌道)の場合、10.3msとなる、LEO(Low Earth orbit,地球低軌道)の場合、3.2msとなる。また、NTNにおけるビームサイズは、例えば、GEOの場合3500km、LEOの場合1000kmとなる。 As shown in FIG. 2, the difference in delay between the near side UE 20A and the far side UE 20B is, for example, 10.3 ms for Geosynchronous orbit (GEO). , 3.2 ms in the case of LEO (Low Earth orbit). Also, the beam size in NTN is, for example, 3500 km for GEO and 1000 km for LEO.
 図3は、ネットワークの例を説明するための図である。図3に示されるように、通信システムは、端末20であるUE、複数のネットワークノード30から構成される。以下、機能ごとに1つのネットワークノード30が対応するものとするが、複数の機能を1つのネットワークノード30が実現してもよいし、複数のネットワークノード30が1つの機能を実現してもよい。また、以下に記載する「接続」は、論理的な接続であってもよいし、物理的な接続であってもよい。 FIG. 3 is a diagram for explaining an example of a network. As shown in FIG. 3, the communication system consists of a UE, which is a terminal 20, and a plurality of network nodes 30. FIG. Hereinafter, one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function. . Also, the "connection" described below may be a logical connection or a physical connection.
 RAN(Radio Access Network)は、無線アクセス機能を有するネットワークノード30であり、基地局10を含んでもよく、UE、AMF(Access and Mobility Management Function)及びUPF(User plane function)と接続される。AMFは、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノード30である。UPFは、DN(Data Network)と相互接続する外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノード30である。UPF及びDNは、ネットワークスライスを構成する。本発明の実施の形態における無線通信ネットワークでは、複数のネットワークスライスが構築されている。 A RAN (Radio Access Network) is a network node 30 having a radio access function, may include a base station 10, and is connected with a UE, an AMF (Access and Mobility Management Function) and a UPF (User plane function). The AMF is a network node 30 having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management. The UPF is a network node 30 that has functions such as a PDU (Protocol Data Unit) session point to the outside that interconnects with a DN (Data Network), packet routing and forwarding, and user plane QoS (Quality of Service) handling. UPF and DN constitute a network slice. A plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
 AMFは、UE、RAN、SMF(Session Management function)、NSSF(Network Slice Selection Function)、NEF(Network Exposure Function)、NRF(Network Repository Function)、UDM(Unified Data Management)、AUSF(Authentication Server Function)、PCF(Policy Control Function)、AF(Application Function)と接続される。AMF、SMF、NSSF、NEF、NRF、UDM、AUSF、PCF、AFは、各々のサービスに基づくインタフェース、Namf、Nsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Nafを介して相互に接続されるネットワークノード30である。 AMF is UE, RAN, SMF (Session Management function), NSSF (Network Slice Selection Function), NEF (Network Exposure Function), NRF (Network Repository Function), UDM (Unified Data Management), AUSF (Authentication Server Function), PCF (Policy Control Function) and AF (Application Function) are connected. AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
 SMFは、セッション管理、UEのIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノード30である。NEFは、他のNF(Network Function)に能力及びイベントを通知する機能を有するネットワークノード30である。NSSFは、UEが接続するネットワークスライスの選択、許可されるNSSAI(Network Slice Selection Assistance Information)の決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノード30である。PCFは、ネットワークのポリシ制御を行う機能を有するネットワークノード30である。AFは、アプリケーションサーバを制御する機能を有するネットワークノード30である。NRFは、サービスを提供するNFインスタンスを発見する機能を有するネットワークノード30である。UDMは、加入者データ及び認証データを管理するネットワークノード30である。UDMは、当該データを保持するUDR(Unified Data Repository)と接続される。 The SMF is a network node 30 that has functions such as session management, UE IP (Internet Protocol) address allocation and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function. A NEF is a network node 30 that has the function of notifying other NFs (Network Functions) of capabilities and events. NSSF selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects. be. A PCF is a network node 30 having a function of performing network policy control. AF is a network node 30 having the function of controlling an application server. An NRF is a network node 30 that has the ability to discover NF instances that provide services. A UDM is a network node 30 that manages subscriber data and authentication data. The UDM is connected to a UDR (Unified Data Repository) that holds the data.
 図3は、ローミング環境下のネットワークの例を説明するための図である。図3に示されるように、ネットワークは、端末20であるUE、複数のネットワークノード30から構成される。以下、機能ごとに1つのネットワークノード30が対応するものとするが、複数の機能を1つのネットワークノード30が実現してもよいし、複数のネットワークノード30が1つの機能を実現してもよい。また、以下に記載する「接続」は、論理的な接続であってもよいし、物理的な接続であってもよい。 FIG. 3 is a diagram for explaining an example of a network in a roaming environment. As shown in FIG. 3, the network consists of a UE, which is a terminal 20, and a plurality of network nodes 30. As shown in FIG. Hereinafter, one network node 30 corresponds to each function, but one network node 30 may realize a plurality of functions, or a plurality of network nodes 30 may realize one function. . Also, the "connection" described below may be a logical connection or a physical connection.
 RANは、無線アクセス機能を有するネットワークノード30であり、UE、AMF及びUPFと接続される。AMFは、RANインタフェースの終端、NASの終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノード30である。UPFは、DNと相互接続する外部に対するPDUセッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoSハンドリング等の機能を有するネットワークノード30である。UPF及びDNは、ネットワークスライスを構成する。本発明の実施の形態における無線通信ネットワークでは、複数のネットワークスライスが構築されている。 RAN is a network node 30 with radio access functionality and is connected with UE, AMF and UPF. The AMF is a network node 30 having functions such as RAN interface termination, NAS termination, registration management, connection management, reachability management, and mobility management. A UPF is a network node 30 that has functions such as PDU session point to the outside world interconnecting DNs, packet routing and forwarding, user plane QoS handling, and so on. UPF and DN constitute a network slice. A plurality of network slices are constructed in the wireless communication network according to the embodiment of the present invention.
 AMFは、UE、RAN、SMF、NSSF、NEF、NRF、UDM、AUSF、PCF、AF、SEPP(Security Edge Protection Proxy)と接続される。AMF、SMF、NSSF、NEF、NRF、UDM、AUSF、PCF、AFは、各々のサービスに基づくインタフェース、Namf、Nsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Nafを介して相互に接続されるネットワークノード30である。 AMF is connected to UE, RAN, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF, and SEPP (Security Edge Protection Proxy). AMF, SMF, NSSF, NEF, NRF, UDM, AUSF, PCF, AF are interconnected via respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf. network node 30 .
 SMFは、セッション管理、UEのIPアドレス割り当て及び管理、DHCP機能、ARPプロキシ、ローミング機能等の機能を有するネットワークノード30である。NEFは、他のNFに能力及びイベントを通知する機能を有するネットワークノード30である。NSSFは、UEが接続するネットワークスライスの選択、許可されるNSSAIの決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノード30である。PCFは、ネットワークのポリシ制御を行う機能を有するネットワークノード30である。AFは、アプリケーションサーバを制御する機能を有するネットワークノード30である。NRFは、サービスを提供するNFインスタンスを発見する機能を有するネットワークノード30である。SEPPは、非透過的なプロキシであり、PLMN(Public Land Mobile Network)間のコントロールプレーンのメッセージをフィルタリングする。図3に示されるvSEPPは、visitedネットワークにおけるSEPPであり、hSEPPは、homeネットワークにおけるSEPPである。 The SMF is a network node 30 that has functions such as session management, UE IP address allocation and management, DHCP function, ARP proxy, roaming function, and the like. A NEF is a network node 30 that has the function of notifying other NFs of capabilities and events. The NSSF is a network node 30 that has functions such as selecting a network slice to which the UE connects, determining allowed NSSAIs, determining configured NSSAIs, determining the AMF set to which the UE connects, and so on. A PCF is a network node 30 having a function of performing network policy control. AF is a network node 30 having the function of controlling an application server. An NRF is a network node 30 that has the ability to discover NF instances that provide services. SEPP is a non-transparent proxy that filters control plane messages between PLMNs (Public Land Mobile Networks). The vSEPP shown in FIG. 3 is the SEPP in the visited network, and the hSEPP is the SEPP in the home network.
 図3に示されるように、UEは、VPLMN(Visited PLMN)においてRAN及びAMFと接続されているローミング環境にある。VPLMN及びHPLMN(Home PLMN)は、vSEPP及びhSEPPを経由して接続されている。UEは、例えば、VPLMNのAMFを介してHPLMNのUDMと通信が可能である。 As shown in FIG. 3, the UE is in a roaming environment connected with RAN and AMF in VPLMN (Visited PLMN). VPLMN and HPLMN (Home PLMN) are connected via vSEPP and hSEPP. The UE can, for example, communicate with the HPLMN's UDM via the VPLMN's AMF.
 図5は、本発明の実施の形態における環境の例を説明するための図である。衛星通信、HAPS(High Altitude Platform Station)、移動IAB(Integrated Access and Backhaul)は、5G発展及び6Gの重要な構成要素である。例えば、図5に示されるように、衛星通信によるNTNを想定する。衛星10は、A国及びB国をカバレッジとする。ここで、以下に示される1)及び2)が重要である。 FIG. 5 is a diagram for explaining an example environment in the embodiment of the present invention. Satellite communication, High Altitude Platform Station (HAPS), Mobile Integrated Access and Backhaul (IAB) are important components of 5G development and 6G. For example, as shown in FIG. 5, NTN by satellite communication is assumed. Satellite 10 covers A country and B country. Here, 1) and 2) shown below are important.
1)ネットワークが信頼ある端末位置情報をどのように取得するか。ネットワークは、信頼ある端末位置情報に基づいて、適切に緊急呼、通信傍受、課金を扱う必要がある。
2)端末は国境横断時にコアネットワークを切り替える必要がある。端末が国境で移動登録手順を起動することで、ネットワークはコアネットワークを切り替えることができる。
1) How the network obtains reliable terminal location information. Networks need to handle emergency calls, wiretapping and billing appropriately based on reliable terminal location information.
2) Terminals need to switch core networks when crossing national borders. The network can switch the core network by the terminal invoking the mobile registration procedure at the border.
 上記1)及び2)を解決するため、例えば、登録手順後にネットワークは端末位置の確認が完了するまで、サービスを提供しなくてもよい。AMFが、5GC-NI-LR(Network Induced Location Request)手順を起動する。当該手順のUEポジショニングにおいて、UE及びLMF(Location Management Function)間で、UEアシステッドのA-GNSS(Assisted - Global navigation satellite system)方式を実行する。AMFは、当該手順により取得した端末位置を地図にマッピングする。AMFは、当該端末が当該AMFが扱えない地域に位置すると判定した場合、当該端末を登録解除(Deregister)する。AMFは、その後も定期的に5GC-NI-LR手順を起動する。ここで、端末はネットワークにGNSS入力情報を変更なく転送する前提が存在する。 In order to solve 1) and 2) above, for example, after the registration procedure, the network does not have to provide services until confirmation of the terminal location is completed. AMF initiates the 5GC-NI-LR (Network Induced Location Request) procedure. In the UE positioning of this procedure, the UE-assisted A-GNSS (Assisted-Global navigation satellite system) method is carried out between the UE and LMF (Location Management Function). The AMF maps the terminal position obtained by the procedure on the map. When the AMF determines that the terminal is located in an area that the AMF cannot handle, it deregisters the terminal. AMF will then periodically trigger the 5GC-NI-LR procedure. Here, there is an assumption that the terminal forwards the GNSS input information to the network without modification.
 しかしながら、上記方式が要求するネットワークからの定期的な呼び出しは無線リソースを消費する。また、上記方式は、上記2)に関して、近似的な対応にすぎない。さらに、端末がネットワークに送信するGNSS入力情報の真正性は保証されていない。さらに、ネットワーク側での端末位置算出には10秒程度を要し、端末側での位置算出時間が数秒程度であることと比較すると長い。なお、登録手順時に位置計算を端末で実行することは可能であるものの、現状の仕様では、ネットワークは端末が計算する位置情報を信頼できない。 However, the periodic calls from the network required by the above method consume radio resources. In addition, the above method is only an approximate correspondence with respect to the above 2). Furthermore, the authenticity of the GNSS input information that the terminal sends to the network is not guaranteed. Furthermore, it takes about 10 seconds to calculate the terminal position on the network side, which is long compared to the several seconds that the terminal takes to calculate the position. It should be noted that although it is possible for the terminal to perform location calculations during the registration procedure, the current specification does not allow the network to trust the location information calculated by the terminal.
 そこで、位置計算をHPLMNの管理下でUSIM(Universal Subscriber Identity Module)で行う方式を採用してもよい。USIMが、内部で位置計算を実行し、位置情報を秘匿し、署名を加える。USIMは、署名済秘匿位置情報を端末経由でネットワークに送信する。認証手順前の登録要求にも使用できるように、公開鍵暗号を用いる。さらに、GNSS入力情報を検証する手順を実行してもよい。 Therefore, a method may be adopted in which position calculation is performed by USIM (Universal Subscriber Identity Module) under the control of HPLMN. The USIM performs the location calculation internally, hides the location information and adds a signature. The USIM sends the signed and hidden location information to the network via the terminal. Public key cryptography is used so that it can also be used for registration requests prior to the authentication procedure. Additionally, procedures may be performed to validate GNSS input information.
 図6は、本発明の実施の形態における位置情報に係る動作の例を説明するためのシーケンス図である。ステップS11において、UE20において、USIMが位置情報をGNSS入力情報に基づいて算出する。USIMは、内部にGNSS計算ロジック、自らの秘密鍵及びNWノード10(例えば衛星地上局)の公開鍵を有する。NWノード10は、内部に自らの秘密鍵、各USIMのHPLMN署名済の公開鍵を有する。なお、UE20は、GNSS入力情報をUSIMに送信してもよい。 FIG. 6 is a sequence diagram for explaining an example of operations related to position information according to the embodiment of the present invention. In step S11, in the UE 20, the USIM calculates location information based on the GNSS input information. The USIM has inside it the GNSS calculation logic, its own private key and the public key of the NW node 10 (eg satellite ground station). The NW node 10 internally has its own private key and the HPLMN-signed public key of each USIM. In addition, UE20 may transmit GNSS input information to USIM.
 USIMは、GNSS計算ロジックを用いて算出した結果すなわち自装置の位置情報及び計算に用いたGNSS入力情報をNWノード10の公開鍵で秘匿する。USIMは、当該秘匿された位置情報及びGNSS入力情報に自らの秘密鍵で署名する。ステップS12において、USIMは、UE20経由で、当該署名済の秘匿された位置情報及びGNSS入力情報をNWノード10に送信する。 The USIM conceals the result calculated using the GNSS calculation logic, that is, the location information of its own device and the GNSS input information used for the calculation with the public key of the NW node 10 . The USIM signs the hidden location information and GNSS input information with its own private key. In step S<b>12 , the USIM transmits the signed and confidential location information and GNSS input information to the NW node 10 via the UE 20 .
 NWノード10は、対応するUSIMの公開鍵で署名を検証する。NWノード10は、自らの秘密鍵で、位置情報及びGNSS入力情報を復号する。NWノード10及びコアネットワークは、当該位置情報を用いて処理を進める。ステップS13において、NWノード10は、AMF30Aに当該位置情報及びGNSS入力情報を送信する。 The NW node 10 verifies the signature with the corresponding USIM public key. The NW node 10 decrypts the location information and GNSS input information with its own private key. The NW node 10 and core network proceed with processing using the location information. In step S13, the NW node 10 transmits the location information and GNSS input information to the AMF 30A.
 ステップS14において、AMF30Aは、当該位置情報及びGNSS入力情報をAI処理ノード30Cに送信する。ステップS15において、AI処理ノード30Cは、当該位置情報及びGNSS入力情報の妥当性を検証する。検証方法は、実装依存の手法でよい。なお、AI処理ノード30Cは、他の名称であってもよい。AI処理ノード30Cは、当該GNSS入力情報が妥当でないと判断した場合、AMF30A及びOAM(Operation Administration and Maintenance)30Bに検証結果を送信する(S16、S17)。当該検証結果は、当該GNSS入力情報が妥当でないことを示す情報を含んでもよい。なお、AI処理ノード30Cは、当該GNSS入力情報が妥当であると判断した場合も、妥当であることを示す検証結果をAMF30又はOAM30Bに送信してもよい。なお、ステップS16、ステップS17の実行順は問わない。 In step S14, the AMF 30A transmits the location information and GNSS input information to the AI processing node 30C. In step S15, the AI processing node 30C verifies the validity of the location information and GNSS input information. The verification method may be an implementation-dependent method. Note that the AI processing node 30C may have another name. When the AI processing node 30C determines that the GNSS input information is not valid, it transmits the verification result to the AMF 30A and OAM (Operation Administration and Maintenance) 30B (S16, S17). The verification result may include information indicating that the GNSS input information is invalid. Also when the AI processing node 30C determines that the GNSS input information is valid, the AI processing node 30C may transmit a verification result indicating validity to the AMF 30 or OAM 30B. The execution order of steps S16 and S17 does not matter.
 ステップS18において、OAM30Bは、5G-EIR(5G-Equipment Identity Register)に、UE20に対応するPEI(Permanent Equipment Identifier)を記録し、対応する加入者情報にGNSS入力情報異常を関連付けてチェックする。加入者情報にGNSS入力情報異常の回数が関連付けて記録されてもよい。ステップS19において、AMFは、UE20に登録解除要求(Deregister)を送信して、UE20を登録解除する。なお、ステップS18、ステップS19の実行順は問わない。 In step S18, the OAM 30B records the PEI (Permanent Equipment Identifier) corresponding to the UE 20 in the 5G-EIR (5G-Equipment Identity Register), and checks the corresponding subscriber information in association with the GNSS input information abnormality. The subscriber information may be recorded in association with the number of GNSS input information anomalies. In step S19, the AMF transmits a deregistration request (Deregister) to the UE20 to deregister the UE20. The execution order of steps S18 and S19 does not matter.
 図7は、本発明の実施の形態における登録動作の例(1)を説明するためのフローチャートである。図7は、図6に示されるシーケンスを実行した後のAMFの動作を示す。ステップS21において、AMFは、登録要求をUEから受信する。続くステップS22において、AMFは、当該登録要求のPEIが記録されたPEIであるか否かを判定する。記録されたPEIである場合(S22のYES)、ステップS23に進み、記録されたPEIでない場合(S22のNO)、ステップS24に進む。ステップS23において、AMFは、登録要求を拒絶する。一方、ステップS24において、AMFは登録要求を許可する。 FIG. 7 is a flow chart for explaining example (1) of the registration operation according to the embodiment of the present invention. FIG. 7 shows the operation of the AMF after executing the sequence shown in FIG. At step S21, the AMF receives a registration request from the UE. In subsequent step S22, the AMF determines whether the PEI of the registration request is the recorded PEI. If it is a recorded PEI (YES in S22), the process proceeds to step S23, and if it is not a recorded PEI (NO in S22), the process proceeds to step S24. At step S23, the AMF rejects the registration request. On the other hand, in step S24, the AMF approves the registration request.
 図8は、本発明の実施の形態における登録動作の例(2)を説明するためのフローチャートである。図8は、図6に示されるシーケンスを実行した後のAMFの動作を示す。 FIG. 8 is a flowchart for explaining example (2) of the registration operation according to the embodiment of the present invention. FIG. 8 shows the operation of the AMF after executing the sequence shown in FIG.
 ステップS31において、AMFは、登録要求をUEから受信する。続くステップS22において、AMFは、当該登録要求の加入者情報によるGNSS入力情報異常は設定回数以上であるか否かを判定する。設定回数以上である場合(S32のYES)、ステップS33に進み、設定回数未満である場合(S32のNO)、ステップS34に進む。ステップS33において、AMFは、登録要求を拒絶する。一方、ステップS34において、AMFは登録要求を許可する。 At step S31, the AMF receives a registration request from the UE. In subsequent step S22, the AMF determines whether or not the GNSS input information abnormality due to the subscriber information of the registration request is equal to or greater than the set number of times. If it is equal to or greater than the set number of times (YES in S32), the process proceeds to step S33, and if it is less than the set number of times (NO in S32), the process proceeds to step S34. At step S33, the AMF rejects the registration request. On the other hand, in step S34, the AMF approves the registration request.
 なお、図7及び図8のフローチャートは少なくとも一方が実行されてもよく、図7及び図8のフローチャートいずれにおいても登録要求が許可された場合に、当該UEの登録要求を許可してもよい。 Note that at least one of the flowcharts of FIGS. 7 and 8 may be executed, and if the registration request is permitted in both the flowcharts of FIGS. 7 and 8, the registration request of the UE may be permitted.
 また、HPLMNは、既存のSoR(Steering of Roaming)手順又は既存のUPU(UE Parameters Update)手順を用いて、USIM内のGNSS計算ロジック、NWノードの公開鍵を設定してもよいし、更新してもよい。また、USIMは、既存のGAA(Generic Authentication Architecture)/GBA(Generic Bootstrapping Architecture)手順を用いて、自らの秘密鍵に対応する公開鍵へのHPLMNの署名を得てもよい。USIMは、自らの秘密鍵を、自ら生成してもよい。 In addition, the HPLMN may use the existing SoR (Steering of Roaming) procedure or the existing UPU (UE Parameters Update) procedure to set or update the GNSS calculation logic in the USIM and the public key of the NW node. may The USIM may also use existing Generic Authentication Architecture (GAA)/Generic Bootstrapping Architecture (GBA) procedures to obtain the HPLMN's signature on the public key corresponding to its private key. The USIM may generate its own private key by itself.
 上述の実施例により、ネットワークは、信頼ある端末位置情報を取得することができる。移動通信事業者は、無線リソース使用量の増加及び通信傍受規制違反の懸念なく、ネットワーク運用することが可能となる。また、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告していないか検証することができる。また、ネットワークが端末位置情報を算出する方法と比較して、位置情報を確定する時間が短縮される。 With the above-described embodiment, the network can obtain reliable terminal location information. Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations. Also, the network can verify that the terminal is not reporting false location information by tampering with the GNSS input. Also, compared to the method in which the network calculates the terminal location information, the time to determine the location information is shortened.
 すなわち、ネットワークが端末の位置情報を正確に取得することができる。 In other words, the network can accurately acquire the location information of the terminal.
 (装置構成)
 次に、これまでに説明した処理及び動作を実施する基地局10、ネットワークノード30及び端末20の機能構成例を説明する。基地局10、ネットワークノード30及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10、ネットワークノード30及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, functional configuration examples of the base station 10, the network node 30, and the terminal 20 that perform the processes and operations described above will be described. The base station 10, network node 30 and terminal 20 include functionality to implement the embodiments described above. However, each of the base station 10, network node 30, and terminal 20 may have only part of the functions in the embodiments.
 <基地局10及びネットワークノード30>
 図9は、基地局10の機能構成の一例を示す図である。図9に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図9に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、ネットワークノード30は、基地局10と同様の機能構成を有してもよい。また、システムアーキテクチャ上で複数の異なる機能を有するネットワークノード30は、機能ごとに分離された複数のネットワークノード30から構成されてもよい。
<Base station 10 and network node 30>
FIG. 9 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. As shown in FIG. 9, the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary. Note that the network node 30 may have a functional configuration similar to that of the base station 10 . Also, the network node 30 having multiple different functions on the system architecture may be composed of multiple network nodes 30 separated for each function.
 送信部110は、端末20又は他のネットワークノード30に送信する信号を生成し、当該信号を有線又は無線で送信する機能を含む。受信部120は、端末20又は他のネットワークノード30から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 or another network node 30 and transmitting the signal by wire or wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 or other network nodes 30 and acquiring, for example, higher layer information from the received signals.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、NTNを利用する通信に係る設定等である。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary. The contents of the setting information are, for example, settings related to communication using NTN.
 制御部140は、実施例において説明したように、NTNを利用する通信に係る処理を行う。また、制御部140は、端末20との通信に係る処理を行う。また、制御部140は、端末20の地理的位置検証に係る処理を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 The control unit 140 performs processing related to communication using NTN, as described in the embodiment. Also, the control unit 140 performs processing related to communication with the terminal 20 . In addition, the control unit 140 performs processing related to geographic position verification of the terminal 20 . A functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 .
 <端末20>
 図10は、端末20の機能構成の一例を示す図である。図10に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図10に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。端末20が装着するUSIMは、端末20と同様に、送信部210と、受信部220と、設定部230と、制御部240とを有してもよい。
<Terminal 20>
FIG. 10 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. As shown in FIG. 10, the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present invention can be performed, the functional division and the names of the functional units may be arbitrary. The USIM worn by the terminal 20 may have a transmitting section 210 , a receiving section 220 , a setting section 230 , and a control section 240 similarly to the terminal 20 .
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、ネットワークノード30から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号又は参照信号等を受信する機能を有する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. The receiving unit 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, reference signals, etc. transmitted from the network node 30 .
 設定部230は、受信部220によりネットワークノード30から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、NTNを利用する通信に係る設定等である。 The setting unit 230 stores various types of setting information received from the network node 30 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary. The setting unit 230 also stores preset setting information. The contents of the setting information are, for example, settings related to communication using NTN.
 制御部240は、実施例において説明したように、ネットワーク及びネットワークスライスへの接続制御に係る処理を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 The control unit 240 performs processing related to connection control to networks and network slices, as described in the embodiments. A functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and a functional unit related to signal reception in control unit 240 may be included in receiving unit 220 .
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図9及び図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 9 and 10) used to describe the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態におけるネットワークノード30、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。ネットワークノード30は、基地局10と同様のハードウェア構成を有してもよい。USIMは、端末20と同様のハードウェア構成を有してもよい。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the network node 30, the terminal 20, etc. according to the embodiment of the present disclosure may function as computers that perform processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The network node 30 may have hardware configuration similar to that of the base station 10 . USIM may have the same hardware configuration as terminal 20 . The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図9に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図10に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 In addition, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, control unit 140 of base station 10 shown in FIG. 9 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 . Also, for example, the control unit 240 of the terminal 20 shown in FIG. Although it has been explained that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may also be called a register, cache, main memory (main storage device), or the like. The storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be implemented by the communication device 1004 . The transceiver may be physically or logically separate implementations for the transmitter and receiver.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 USIMには、内部にGNSS計算ロジックを実現するハードウェアが実装されてもよいし、内部に自らの秘密鍵及びNWノード10(例えば衛星地上局)の公開鍵を保持するハードウェアが実装されてもよい。 The USIM may be internally implemented with hardware that implements GNSS calculation logic, or internally with hardware that holds its own private key and the public key of the NW node 10 (for example, a satellite ground station). good too.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、USIM(Universal Subscriber Identity Module)を備える端末であって、前記USIMは、前記端末からGNSS(Global navigation satellite system)入力情報を受信する受信部と、前記GNSS入力情報に基づいて、自装置の位置情報を算出する制御部と、ネットワークノードの公開鍵で秘匿しかつ前記USIMの秘密鍵で署名した前記位置情報及び前記GNSS入力情報を前記ネットワークノードに送信する送信部とを有する端末が提供される。
(Summary of embodiment)
As described above, according to the embodiment of the present invention, a terminal including a USIM (Universal Subscriber Identity Module), the USIM receives GNSS (Global Navigation Satellite System) input information from the terminal a receiving unit, a control unit that calculates the location information of the device based on the GNSS input information, and the location information and the GNSS input information that are confidential with the public key of the network node and signed with the private key of the USIM. and a transmitter for transmitting to the network node.
 上記の構成により、ネットワークは、信頼ある端末位置情報を取得することができる。移動通信事業者は、無線リソース使用量の増加及び通信傍受規制違反の懸念なく、ネットワーク運用することが可能となる。また、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告していないか検証することができる。また、ネットワークが端末位置情報を算出する方法と比較して、位置情報を確定する時間が短縮される。すなわち、ネットワークが端末の位置情報を正確に取得することができる。 With the above configuration, the network can obtain reliable terminal location information. Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations. Also, the network can verify that the terminal is not reporting false location information by tampering with the GNSS input. Also, compared to the method in which the network calculates the terminal location information, the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
 また、本発明の実施の形態によれば、端末の位置情報及び前記端末の位置情報の算出に用いたGNSS(Global navigation satellite system)入力情報を、第1のネットワークノードから受信する受信部と、前記端末位置情報及び前記GNSS入力情報を、第2のネットワークノードに送信する送信部とを有し、前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記送信部は、前記端末に登録解除要求を送信するネットワークノードが提供される。 Further, according to the embodiment of the present invention, a receiving unit that receives terminal position information and GNSS (Global navigation satellite system) input information used for calculating the terminal position information from a first network node; a transmitter configured to transmit the terminal location information and the GNSS input information to a second network node, the receiver verifying from the second network node that the GNSS input information is invalid. The transmitting unit is provided with a network node for transmitting a deregistration request to the terminal upon receiving a result.
 上記の構成により、ネットワークは、信頼ある端末位置情報を取得することができる。移動通信事業者は、無線リソース使用量の増加及び通信傍受規制違反の懸念なく、ネットワーク運用することが可能となる。また、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告していないか検証することができる。また、ネットワークが端末位置情報を算出する方法と比較して、位置情報を確定する時間が短縮される。すなわち、ネットワークが端末の位置情報を正確に取得することができる。 With the above configuration, the network can obtain reliable terminal location information. Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations. Also, the network can verify that the terminal is not reporting false location information by tampering with the GNSS input. Also, compared to the method in which the network calculates the terminal location information, the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
 前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記端末に対応するPEI(Permanent Equipment Identifier)からの登録要求を拒絶してもよい。当該構成により、ネットワークは、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告した恐れがある場合に、当該端末からの登録要求を拒絶することができる。 When the receiving unit receives a verification result indicating that the GNSS input information is not valid from the second network node, even if the registration request from the PEI (Permanent Equipment Identifier) corresponding to the terminal is rejected good. This configuration allows the network to reject a registration request from a terminal if the terminal may have reported false location information by tampering with the GNSS input information.
 前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した回数が閾値以上である場合、前記端末に対応する加入者情報からの登録要求を拒絶してもよい。当該構成により、ネットワークは、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告した恐れがある場合に、当該端末からの登録要求を拒絶することができる。 When the number of times the receiving unit receives verification results indicating that the GNSS input information is not valid from the second network node is equal to or greater than a threshold, the registration request from the subscriber information corresponding to the terminal is rejected. You may This configuration allows the network to reject a registration request from a terminal if the terminal may have reported false location information by tampering with the GNSS input information.
 また、本発明の実施の形態によれば、端末の位置情報及び前記端末の位置情報の算出に用いたGNSS(Global navigation satellite system)入力情報を、第1のネットワークノードから受信する受信手順と、前記端末位置情報及び前記GNSS入力情報を、第2のネットワークノードに送信する送信手順と、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記端末に登録解除要求を送信する手順とをネットワークノードが実行する通信方法が提供される。 Further, according to the embodiment of the present invention, a reception procedure for receiving terminal position information and GNSS (Global navigation satellite system) input information used for calculating the terminal position information from a first network node; A transmission procedure for transmitting the terminal location information and the GNSS input information to a second network node; and sending a deregistration request to a network node.
 上記の構成により、ネットワークは、信頼ある端末位置情報を取得することができる。移動通信事業者は、無線リソース使用量の増加及び通信傍受規制違反の懸念なく、ネットワーク運用することが可能となる。また、ネットワークは、端末がGNSS入力情報を改ざんすることで偽の位置情報を報告していないか検証することができる。また、ネットワークが端末位置情報を算出する方法と比較して、位置情報を確定する時間が短縮される。すなわち、ネットワークが端末の位置情報を正確に取得することができる。 With the above configuration, the network can obtain reliable terminal location information. Mobile communication carriers can operate their networks without worrying about an increase in radio resource usage and violation of communication interception regulations. Also, the network can verify that the terminal is not reporting false location information by tampering with the GNSS input. Also, compared to the method in which the network calculates the terminal location information, the time to determine the location information is shortened. That is, the network can accurately acquire the location information of the terminal.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ネットワークノード30及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってネットワークノード30が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, replacements, and the like. be. Although specific numerical examples have been used to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. may apply (unless inconsistent) to the matters set forth in Boundaries of functional or processing units in functional block diagrams do not necessarily correspond to boundaries of physical components. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. As for the processing procedures described in the embodiments, the processing order may be changed as long as there is no contradiction. Although the network node 30 and terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the network node 30 according to the embodiment of the invention and the software operated by the processor of the terminal 20 according to the embodiment of the invention are respectively stored in random access memory (RAM), flash memory, read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Also, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.In addition, RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本明細書においてネットワークノード30によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。ネットワークノード30を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、ネットワークノード30及びネットワークノード30以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記においてネットワークノード30以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation performed by the network node 30 in this specification may be performed by its upper node in some cases. In a network of one or more network nodes, including network node 30, various operations performed for communication with terminal 20 may be network node 30 and other network nodes other than network node 30 ( (eg, but not limited to MME or S-GW). Although the above example illustrates the case where there is one network node other than the network node 30, the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in no way restrictive names. is not.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", Terms such as "cell group," "carrier," and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage. point to
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal", etc. may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述のネットワークノード30が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions of the network node 30 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station may have the functions that the above-described user terminal has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    ネットワークノード
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 30 network node 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Claims (5)

  1.  USIM(Universal Subscriber Identity Module)を備える端末であって、
     前記USIMは、
     前記端末からGNSS(Global navigation satellite system)入力情報を受信する受信部と、
     前記GNSS入力情報に基づいて、自装置の位置情報を算出する制御部と、
     ネットワークノードの公開鍵で秘匿しかつ前記USIMの秘密鍵で署名した前記位置情報及び前記GNSS入力情報を前記ネットワークノードに送信する送信部とを有する端末。
    A terminal comprising a USIM (Universal Subscriber Identity Module),
    The USIM is
    A receiving unit that receives GNSS (Global navigation satellite system) input information from the terminal;
    Based on the GNSS input information, a control unit that calculates the position information of its own device;
    a transmitter for transmitting to the network node the location information and the GNSS input information encrypted with the network node's public key and signed with the USIM's private key.
  2.  端末の位置情報及び前記端末の位置情報の算出に用いたGNSS(Global navigation satellite system)入力情報を、第1のネットワークノードから受信する受信部と、
     前記位置情報及び前記GNSS入力情報を、第2のネットワークノードに送信する送信部とを有し、
     前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記送信部は、前記端末に登録解除要求を送信するネットワークノード。
    A receiving unit that receives terminal location information and GNSS (Global Navigation Satellite System) input information used to calculate the terminal location information from a first network node;
    a transmitting unit configured to transmit the location information and the GNSS input information to a second network node;
    A network node, wherein the transmitting unit transmits a deregistration request to the terminal when the receiving unit receives a verification result from the second network node indicating that the GNSS input information is not valid.
  3.  前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記端末に対応するPEI(Permanent Equipment Identifier)からの登録要求を拒絶する請求項2記載のネットワークノード。 wherein said receiving unit rejects a registration request from a PEI (Permanent Equipment Identifier) corresponding to said terminal when receiving from said second network node a verification result indicating that said GNSS input information is not valid. 2. The network node of claim 2.
  4.  前記受信部が、前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した回数が閾値以上である場合、前記端末に対応する加入者情報からの登録要求を拒絶する請求項2記載のネットワークノード。 When the number of times the receiving unit receives verification results indicating that the GNSS input information is not valid from the second network node is equal to or greater than a threshold, the registration request from the subscriber information corresponding to the terminal is rejected. 3. A network node according to claim 2.
  5.  端末の位置情報及び前記端末の位置情報の算出に用いたGNSS(Global navigation satellite system)入力情報を、第1のネットワークノードから受信する受信手順と、
     前記位置情報及び前記GNSS入力情報を、第2のネットワークノードに送信する送信手順と、
     前記第2のネットワークノードから、前記GNSS入力情報が妥当でないことを示す検証結果を受信した場合、前記端末に登録解除要求を送信する手順とをネットワークノードが実行する通信方法。
    A reception procedure for receiving terminal location information and GNSS (Global Navigation Satellite System) input information used to calculate the terminal location information from a first network node;
    a transmission procedure for transmitting the location information and the GNSS input information to a second network node;
    sending a deregistration request to the terminal upon receiving a verification result from the second network node indicating that the GNSS input information is not valid.
PCT/JP2021/024569 2021-06-29 2021-06-29 Terminal, network node, and communication method WO2023275998A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180098760.9A CN117397302A (en) 2021-06-29 2021-06-29 Terminal, network node and communication method
PCT/JP2021/024569 WO2023275998A1 (en) 2021-06-29 2021-06-29 Terminal, network node, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024569 WO2023275998A1 (en) 2021-06-29 2021-06-29 Terminal, network node, and communication method

Publications (1)

Publication Number Publication Date
WO2023275998A1 true WO2023275998A1 (en) 2023-01-05

Family

ID=84691618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024569 WO2023275998A1 (en) 2021-06-29 2021-06-29 Terminal, network node, and communication method

Country Status (2)

Country Link
CN (1) CN117397302A (en)
WO (1) WO2023275998A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080125A (en) * 2002-08-12 2004-03-11 Sony Corp Portable apparatus
US20070192602A1 (en) * 2004-12-17 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Clone resistant mutual authentication in a radio communication network
CN111031571A (en) * 2018-10-09 2020-04-17 华为技术有限公司 Network slice access control method and device
US20200204988A1 (en) * 2018-12-20 2020-06-25 Here Global B.V. Enabling flexible provision of signature data of position data representing an estimated position
WO2020145299A1 (en) * 2019-01-09 2020-07-16 株式会社Nttドコモ Network node and notification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080125A (en) * 2002-08-12 2004-03-11 Sony Corp Portable apparatus
US20070192602A1 (en) * 2004-12-17 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Clone resistant mutual authentication in a radio communication network
CN111031571A (en) * 2018-10-09 2020-04-17 华为技术有限公司 Network slice access control method and device
US20200204988A1 (en) * 2018-12-20 2020-06-25 Here Global B.V. Enabling flexible provision of signature data of position data representing an estimated position
WO2020145299A1 (en) * 2019-01-09 2020-07-16 株式会社Nttドコモ Network node and notification method

Also Published As

Publication number Publication date
CN117397302A (en) 2024-01-12

Similar Documents

Publication Publication Date Title
US10470149B2 (en) Method and apparatus for performing MM attach and service request procedure for network slice based new radio access technology in wireless communication system
KR102456859B1 (en) Method and apparatus for provisioning service parameters to the ue and the network in 5g system
US11956714B2 (en) User equipment, network node, and communication system
WO2020145299A1 (en) Network node and notification method
JP7412419B2 (en) network node
CN114557031A (en) Method for moving PDU session on non-3 GPP to 3GPP access
WO2021237572A1 (en) Methods to establish a protocol data unit session
CN113676904B (en) Slice authentication method and device
US11622025B2 (en) Techniques in retrieving cached content using information centric networking for protocol data unit sessions
CN114600487B (en) Identity authentication method and communication device
US20220272615A1 (en) Method and device for wireless communication
WO2023275998A1 (en) Terminal, network node, and communication method
EP4224930A1 (en) Support of service continuity for home-routed pdu session when there is no n14 interface between source network and target network
WO2022113370A1 (en) Network node and communication method
WO2022091188A1 (en) Network node and communication method
WO2022195878A1 (en) Network node and communication method
KR20230011294A (en) Method and apparatus for transmitting and receiving signals in a wireless communication system
WO2023275997A1 (en) Network node and communication method
WO2023275996A1 (en) Network node and communication method
WO2022137473A1 (en) Network node, base station, and communication method
WO2023084635A1 (en) Network node and communication method
EP4195780A1 (en) Terminal, network node, and communication method
US20230027788A1 (en) Communication device and method
WO2022162921A1 (en) Network node, communication method and transport
WO2023119385A1 (en) Network node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098760.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948306

Country of ref document: EP

Kind code of ref document: A1