WO2023275966A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2023275966A1
WO2023275966A1 PCT/JP2021/024473 JP2021024473W WO2023275966A1 WO 2023275966 A1 WO2023275966 A1 WO 2023275966A1 JP 2021024473 W JP2021024473 W JP 2021024473W WO 2023275966 A1 WO2023275966 A1 WO 2023275966A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
inrush current
power
line
capacitance
Prior art date
Application number
PCT/JP2021/024473
Other languages
French (fr)
Japanese (ja)
Inventor
佑典 鈴木
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/024473 priority Critical patent/WO2023275966A1/en
Priority to JP2023531177A priority patent/JPWO2023275966A1/ja
Publication of WO2023275966A1 publication Critical patent/WO2023275966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/16Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • the present disclosure relates to a power supply device that supplies power to a motor that operates a robot arm.
  • Patent Literature 1 describes a power supply control device capable of suppressing the generation of inrush current when a power switch is turned on to a bypass capacitor connected in parallel to a load to which a DC voltage is supplied from a DC power supply via a power switch. ing.
  • Patent Document 1 does not describe increasing the capacitance, so even if the power control device described in Patent Document 1 is used, the above problem cannot be solved.
  • An object of the present disclosure is to provide a power supply device that can easily increase the capacitance of a power supply line when desired.
  • the power supply device of the present disclosure includes a power supply board that supplies power to a motor that operates a robot arm, and a power supply line connected in parallel to the power supply board to increase the capacitance of the power supply line.
  • a power supply board that supplies power to a motor that operates a robot arm, and a power supply line connected in parallel to the power supply board to increase the capacitance of the power supply line.
  • one or more extended capacitance substrates a capacitor provided on the extended capacitance substrate for increasing the capacitance of the power supply line; an inrush current suppressing mechanism for suppressing an excessive inrush current from flowing into the capacitor.
  • FIG. 3 is a block diagram showing the electrical connection relationship of the control device; 3 is an electric circuit diagram showing the circuit configuration of the power supply device; FIG. FIG. 4 is an electric circuit diagram used for simulating the action of an inrush current prevention resistor; 5 is a diagram showing a simulation result of the electric circuit of FIG. 4; FIG. FIG. 5 is an electric circuit diagram in which an extension capacity is added to the electric circuit of FIG. 4; FIG. 7 is a diagram showing a simulation result of the electric circuit of FIG. 6; It is a figure which shows the connection aspect which connects an expansion capacity
  • FIG. 1 shows an outline of the configuration of the mounter 10
  • FIG. 2 shows the electrical connections of the control device 60.
  • the vertical direction in FIG. 1 is the Z-axis direction.
  • the component mounter 10 of this embodiment includes a vertical articulated robot 40, a Z-axis movement device 50, a nozzle 53, and a control device 60 (see FIG. 2).
  • the vertical articulated robot 40 has four robot movable parts (shoulder 42, lower arm 43, upper arm 44 and wrist 45).
  • the four robot movable parts are connected on a cylindrical base part 41 .
  • the shoulder 42 is connected to the upper surface of the base portion 41 via a first joint 41j so as to be rotatable around the vertical shaft 41a.
  • a lower end of a lower arm 43 is connected to the shoulder 42 via a second joint 42j so as to be rotatable around a horizontal shaft 42a.
  • the base end of the upper arm 44 is connected to the upper end of the lower arm 43 via a third joint 43j so as to be rotatable around the horizontal shaft 43a.
  • a wrist 45 is connected to the distal end of the upper arm 44 via a fourth joint 44j so as to be rotatable around a shaft 44a extending in a direction perpendicular to the longitudinal direction of the upper arm 44.
  • a Z-axis movement device 50 is connected to the wrist 45 so as to be rotatable together with the wrist 45 around an axis 44a.
  • the first joint 41j contains a first motor 41m that drives the shoulder 41 to rotate
  • the second joint 42j contains a second motor 42m that drives the lower arm 43 to rotate.
  • the third joint 43j contains a third motor 43m that drives the upper arm 44 to rotate
  • the fourth joint 44j contains a fourth motor 44m that drives the wrist 45 to rotate.
  • the first to fourth motors 41m to 44m are provided with first to fourth encoders 41e to 44e (see FIG. 2), respectively.
  • a servomotor is used as the motor
  • a rotary encoder is used as the encoder.
  • the Z-axis movement device 50 includes a device body 51 and a Z-axis slider 52 .
  • the device main body 51 is a substantially rectangular parallelepiped member here, and is fixed to the wrist 45 . Therefore, the device main body 51 is rotatable around the shaft 44a.
  • the Z-axis slider 52 is attached to the front surface of the device main body 51 so as to be slidable along the longitudinal direction of the device main body 51 .
  • This Z-axis slider 52 is driven by a Z-axis driving device 54 (for example, a linear motor or a ball screw mechanism) attached to the device main body 51 .
  • a Z-axis driving device 54 for example, a linear motor or a ball screw mechanism
  • the nozzle 53 is provided on the bottom surface of the suction head 55 .
  • the nozzle 53 sucks a component or releases the sucked component by adjusting the pressure at the tip of the nozzle.
  • the nozzle 53 is detachably and axially rotatably attached to the suction head 55 .
  • the suction head 55 is fixed to the Z-axis slider 52 . Therefore, the nozzle 53 slides together with the suction head 55 and the Z-axis slider 52 .
  • the control device 60 is a device that controls the motion of the vertical articulated robot 40 and the motion of the Z-axis movement device 50 .
  • the control device 60 includes a CPU 61, a ROM 62, an HDD 63, and a RAM 64, as shown in FIG.
  • Connected to the CPU 61 are first to fourth drive circuits 41d to 44d, first to fourth position detection circuits 41p to 44p, a Z-axis drive circuit 54d, a Z-axis position detection circuit 54p, an input device 70, and an output device 72.
  • the first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d are provided corresponding to the first to fourth motors 41m to 44m and the Z-axis drive device 54, respectively.
  • the first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d output electrical signals based on command signals from the CPU 61 to the corresponding first to fourth motors 41m to 44m and the Z-axis drive device 54. do.
  • the first to fourth position detection circuits 41p to 44p are for detecting the positions of the respective robot movable parts, and are provided corresponding to the first to fourth encoders 41e to 44e, respectively.
  • the Z-axis position detection circuit 54p is for detecting the Z-axis position of the nozzle 53, and is provided corresponding to the Z-axis encoder 54e.
  • the first to fourth position detection circuits 41p to 44p detect the angular positions of the first to fourth motors 41m to 44m based on the detection signals input from the corresponding first to fourth encoders 41e to 44e. Output to the CPU 61 .
  • the Z-axis position detection circuit 54p detects the Z-axis position of the nozzle 53 based on the detection signal input from the Z-axis encoder 54e, and outputs it to CPU61.
  • the input device 70 is a keyboard or a mouse for operator's input operation.
  • the output device 72 is a display that displays various data as visual information such as images.
  • FIG. 3 shows an outline of the electric circuit of the power control device 100.
  • the power supply control device 100 mainly includes an AC power supply (sometimes abbreviated as “power supply”) V, a power supply board 110 and an expansion capacity board 120 .
  • the power supply board 110 supplies the motor drive circuit 112 and the like with the power supply DCLINK based on the power supply V.
  • the expansion capacity board 120 expands the capacitance of the power supply line DCLINK of the power supply board 110 .
  • the power supply board 110 has a switch S1 that functions as a safety breaker that turns on/off the supply of the power supply V to the power supply board 110 via the full-wave rectifier circuit 111 .
  • the input terminal of the full-wave rectifier circuit 111 is connected to the output terminal of the switch S1.
  • a full-wave rectifier circuit 111 converts the AC voltage of the power supply V into a DC voltage.
  • One end of an inrush current suppression resistor R1 is connected to the output end of the full-wave rectifier circuit 111, and the other end of the inrush current suppression resistor R1 is connected to one end of each of the positive electrodes of the electrolytic capacitors C1 and C2.
  • the other negative ends of the electrolytic capacitors C1 and C2 are grounded.
  • a switch S2 is connected in parallel with the inrush current suppression resistor R1. Furthermore, the input end of the motor drive circuit 112 is connected to one end on the positive electrode side of each of the electrolytic capacitors C1 and C2.
  • the motor drive circuit 112 includes the first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d.
  • a motor 200 is connected to the output end of the motor drive circuit 112 .
  • the motor 200 includes the first to fourth motors 41m to 44m and the Z-axis driving device .
  • the power supply board 110 is mounted with electronic components from the switch S1 to the motor drive circuit 112. As shown in FIG.
  • the switch S2 When the switch S1 is turned on, the switch S2 directs the direct current (also abbreviated as "current") supplied from the power supply V through the full-wave rectifier circuit 111 to the electrolytic capacitor via the inrush current suppression resistor R1.
  • the switch S2 is turned off and on to switch whether to supply the current to the capacitors C1 and C2 or bypass the inrush current suppression resistor R1 and directly supply the current to the electrolytic capacitors C1 and C2.
  • the switch S2 is, for example, a relay that automatically switches from off to on when the voltage value of the power supply line DCLINK rises to a predetermined voltage value ( ⁇ the output voltage value from the full-wave rectifier circuit 111) or higher. ing.
  • the predetermined voltage value that is, the switching threshold can be set to any value by setting.
  • the switch S1 is switched from off to on and the supply of current from the power supply V through the full-wave rectifier circuit 111 to the power supply board 110 is started, no charge is accumulated in the electrolytic capacitors C1 and C2.
  • S2 is in an off state. After that, electric charges accumulate in the electrolytic capacitors C1 and C2 as time passes, and when the voltage value of the power supply line DCLINK becomes equal to or higher than the switching threshold, the switch S2 is automatically switched from off to on.
  • the current supplied from the full-wave rectifier circuit 111 bypasses the inrush current suppression resistor R1 and directly flows into the electrolytic capacitors C1 and C2 via the switch S2.
  • the electrolytic capacitors C 1 and C 2 are fully charged, and the voltage value of the power supply line DCLINK rises to the output voltage value from the full-wave rectifier circuit 111 .
  • the current from the full-wave rectifier circuit 111 is caused to flow through the electrolytic capacitors C1 and C2 via the inrush current suppression resistor R1.
  • the inrush current suppressing resistor R1 to limit the current that suddenly flows through the electrolytic capacitors C1 and C2, ie, an excessive inrush current, by the inrush current suppressing resistor R1. If an excessive inrush current occurs, the copper foil pattern of the substrate may be burnt out or the electronic parts may be damaged.
  • the current from the full-wave rectifier circuit 111 is constantly flowing through the inrush current suppression resistor R1, a voltage drop in the power supply line DCLINK and unnecessary heat generation will occur.
  • the switch S2 is switched from off to on to bypass the inrush current suppression resistor R1.
  • the predetermined voltage value varies depending on the output voltage value from the full-wave rectifier circuit 111, electronic components used, etc., and cannot be determined universally. A lower voltage value is determined empirically or by experiment each time.
  • the expansion capacity board 120 is connected in parallel to the power supply line DCLINK of the power supply board 110 via the connection line 130 .
  • the expansion capacitor board 120 includes switches S3 and S4, an inrush current suppression resistor R2, and electrolytic capacitors C3 to C5.
  • the connection relationships of the electronic components S4, R2, C3 to C5 provided on the expansion capacity board 120 are substantially the same as the connection relationships of the electronic components S2, R1, C1, C2 provided on the power supply board 110. , the description of which is omitted.
  • the electrolytic capacitors C3-C5 are capacitors for increasing the capacitance of the power supply line DCLINK.
  • a switch S ⁇ b>3 (an example of a “first switching mechanism”) switches ON/OFF of substantial connection of the expansion capacity board 120 to the power supply board 110 .
  • the switch S3 is automatically turned on from off when the voltage value of the power supply line DCLINK rises to a predetermined voltage value ( ⁇ output voltage value from the full-wave rectifier circuit 111) or more.
  • Switching for example, consists of a relay.
  • the switch S3 differs from the switch S2 in that the predetermined voltage value, that is, the switching threshold, may not be the same.
  • the switching threshold of the switch S3 is hereinafter referred to as "first predetermined value".
  • An inrush current suppressing resistor R2 (an example of an "inrush current suppressing mechanism"), like the inrush current suppressing resistor R1, receives an excessive inrush current, that is, the current from the power supply line DCLINK. This is for suppressing an excessive rush current generated by flowing into C5.
  • the switch S4 (an example of the "second switching mechanism") electrolyzes the current supplied from the power supply line DCLINK by turning on the switch S3 through the inrush current suppression resistor R2, similarly to the switch S2. The switch S4 is turned off and on to switch whether to supply the current to the capacitors C3 to C5 or bypass the inrush current suppression resistor R2 and directly supply the current to the electrolytic capacitors C3 to C5.
  • the switch S4 is automatically turned on from off when the voltage value of the power supply line DCLINK rises to a predetermined voltage value ( ⁇ the output voltage value from the full-wave rectifier circuit 111) or higher.
  • a predetermined voltage value ⁇ the output voltage value from the full-wave rectifier circuit 111 or higher.
  • Switching for example, consists of a relay.
  • the switch S4 differs from the switches S2 and S3 in that the predetermined voltage value, that is, the switching threshold may not be the same.
  • the switching threshold of the switch S4 is hereinafter referred to as "second predetermined value".
  • FIG. 4 is an electric circuit diagram used for simulation to show the effect of the inrush current suppression resistor R1 in the power supply board 110.
  • FIG. 4 the same electronic parts as those in FIG. 3 are given the same reference numerals.
  • the power supply V1 indicates a DC power supply
  • FIG. 4 As can be seen by comparing the electric circuit diagram of FIG. 4 and the electric circuit diagram of FIG. 3, a resistor R11 is added to the electronic components on the power supply board 110 of FIG.
  • the resistor R11 is used for convenience in order to stabilize the output waveform obtained by simulation, and can be ignored in practice.
  • the value displayed near each electronic component indicates the standard of the electronic component.
  • Fig. 5 shows the simulation results of the electric circuit in Fig. 4.
  • the switch S1 is switched from off to on after 0.5 seconds, and when the voltage value of the power supply line DCLINK reaches 250 V, the switch S2 is switched from off to on.
  • the switching time is approximately 1 second, which is approximately 0.5 seconds after the switch S1 is switched from OFF to ON.
  • FIG. 5(a) shows the transition of the voltage value G1 of the power supply line DCLINK.
  • a solid line G2 indicates transition of the current value flowing through the inrush current suppression resistor R1
  • a dashed line G3 indicates transition of the current value flowing through the electrolytic capacitor C1.
  • a solid line G4 indicates transition of the power consumed by the inrush current suppression resistor R1
  • a broken line G5 indicates transition of the power supplied to the electrolytic capacitor C1.
  • the current from the power supply V1 is supplied to the electrolytic capacitor C1 via the inrush current suppression resistor R1, so that the inrush current
  • the peak value of the current flowing through the suppression resistor R1 is approximately 3.0A, and the peak value of the current supplied to the electrolytic capacitor C1 is also approximately 1.5A.
  • the reason why the peak value of the current supplied to the electrolytic capacitor C1 is 1/2 of the peak value of the current flowing through the inrush current suppressing resistor R1 is that the electrolytic capacitors C1 and C2 are connected to the inrush current suppressing resistor R1. This is because the flowing current is equally divided.
  • FIG. 6 shows a simulation for comparing the effect of the inrush current suppression resistor R1 in the power supply board 110 and the effect of the inrush current suppression resistor R2 in the power control device 100 in which the expansion capacity board 120 is connected to the power supply board 110. It is an electric circuit diagram used.
  • the same electronic parts as those in FIG. 3 are denoted by the same reference numerals.
  • the electronic components on the power supply board 110 in FIG. 6 are given reference numerals obtained by adding "b" to the electronic components on the power supply board 110 in FIG. This is because the electronic components on the power supply board 110 are the electronic components on the power supply board 110 to which the extended capacity board 120 is connected, or the electronic components on the power supply board 110 to which the extended capacity board 120 is not connected. It does so only to distinguish whether it is
  • FIG. 7 shows the simulation results of the electric circuit of FIG. In the simulation result of FIG. 7, similarly to the simulation result of FIG. S2b is switched from off to on.
  • the switching time is approximately 1 second, which is approximately 0.5 seconds after the switches S1 and S1b are switched from off to on.
  • the switch S3 is switched from OFF to ON when the voltage value of the power supply line DCLINK reaches 250V.
  • graphs corresponding to the graphs in FIG. 5 are denoted by the same reference numerals.
  • the solid line G1 indicates the transition of the voltage value of the power power line DCLINK
  • the dashed line G11 indicates the transition of the voltage value of the power power line exDLINK
  • a solid line G2 indicates transition of the current value flowing through the inrush current suppression resistor R1b
  • a dashed line G3 indicates transition of the current value flowing through the electrolytic capacitor C1b
  • a solid line G21 indicates transition of the current value flowing through the inrush current suppression resistor R2
  • a broken line G31 indicates transition of the current value flowing through the electrolytic capacitor C3.
  • a solid line G4 indicates the transition of power consumed by the rush current suppression resistor R1b
  • a dashed line G41 indicates the transition of power consumed by the rush current suppression resistor R2.
  • a solid line G5 indicates transition of the power supplied to the electrolytic capacitor C1b
  • a dashed line G51 indicates transition of the power supplied to the electrolytic capacitor C3.
  • the current from the power supply line DCLINK is supplied to the electrolytic capacitor C3 via the inrush current suppression resistor R2, so that the solid line G21 in FIG. , excessive inrush current is suppressed.
  • the peak value of the power consumed by the inrush current suppression resistor R2 from approximately 1 second to approximately 2.8 seconds is the peak value of the power consumed by the inrush current suppression resistor R1 from 0.5 seconds to approximately 1 second. decreased compared to the peak value. This is because the value of the inrush current limiting resistor R2 is greater than the value of the inrush current limiting resistor R1, so the current passing through the inrush current limiting resistor R2 is more limited.
  • the temperature rise due to heat generation of the inrush current suppression resistor R2 is lower than the temperature rise due to heat generation of the inrush current suppression resistor R1.
  • the durability of the inrush current suppressing resistor R2 due to heat generation is improved more than that of the current suppressing resistor R1.
  • the inrush current supplied to the electrolytic capacitors C3-C5 is further limited, so that the amount of charge per unit time supplied to the electrolytic capacitors C3-C5 is reduced. As a result, as indicated by the dashed line G11 in FIG.
  • the voltage value of the power supply line exDLINK gradually rises. That is, the time from when the switch S1 is switched from off to on until the power supply control device 100 enters the standby state is delayed. Therefore, it is desirable to determine the resistance value of the inrush current suppression resistor R2 by comparing the durability of the inrush current suppression resistor R2 and the time required for the power supply control device 100 to enter the standby state.
  • the second predetermined value of the switch S4 is the voltage value of the power supply line exDLINK when it rises to a value at which there is no danger of excessive inrush current flowing into the electrolytic capacitors C3 to C5.
  • This second predetermined value also cannot be universally determined, like the switching threshold of the switch S2. That is, while the voltage value of the power supply line exDLINK is lower than the second predetermined value, the current from the power supply line DCLINK is supplied to the electrolytic capacitors C3 to C5 via the inrush current suppression resistor R2, and the inrush current is It is limited by the inrush current suppression resistor R2.
  • the current from the power supply line DCLINK bypasses the inrush current suppression resistor R2 and is directly supplied to the electrolytic capacitors C3 to C5.
  • the current value of the rush current is determined according to the magnitude of the potential difference between the power supply line DCLINK and the power supply line exDCLINK. This is because it is determined whether or not it becomes excessive.
  • the power supply control device 100 of the present embodiment it is possible to increase the capacitance of the power supply line DCLINK while suppressing the inrush current simply by connecting the expansion capacitor board 120 to the power supply board 110.
  • the expansion capacity board 120 monitors the voltage value of the power supply line DCLINK by itself and automatically switches ON/OFF of the connection to the power supply board 110, there is no need to transmit a switching signal from the outside. As a result, the manufacturing cost of the entire power supply board 110 can be reduced.
  • the capacitance increases, the regenerative energy generated on the power supply line DCLINK when the robot 40 decelerates or suddenly stops during operation can be recovered as reusable capacitance instead of being consumed as heat energy. It becomes a device that is friendly to the environment.
  • FIG. 8 shows a connection mode for connecting the expansion capacity to the power supply line.
  • FIG. 8A shows a mode of connecting the expansion capacity board 120 when controlling a plurality of motors with one power supply board 110 .
  • FIG. 8(b) shows an example of how the expansion capacity board 120 is connected when a plurality of motors are controlled by a plurality of power supply boards 110a to 110c. Since the connection mode of FIG. 8(a) is the same as the connection mode shown in FIG. 3, further explanation is omitted.
  • the power supply boards 110a to 110c shown in FIG. 8B are assembled inside the joints 41j to 43j of the vertical articulated robot 40, the power supply boards 110a to 110c are connected in a daisy chain.
  • the farther the control shaft is from the base of the main body the more the power supply may be delayed or the power supply line DCLINK may sway. If only the hand is operated sharply, or if it is desired to mount an electrolytic capacitor in order to stabilize the power supply line DCLINK by the components of the power supply boards 110a to 110c, but it is not possible to mount it, FIG.
  • the power supply boards 110a to 110c are relayed in such a manner that the expansion capacitor board 120 is connected between the power supply boards 110a to 110c, thereby increasing the capacitance of the power supply line DCLINK. can be stabilized.
  • the interior of the joints 41j to 43j is filled with the power supply boards 110a to 110c and there is often no space. can do.

Abstract

A power control device 100 comprises: a power supply board 110 for supplying power to motors 41m-44m for operating a robot arm; one or more expanded capacitor boards 120 connected in parallel with a power line DCLINK of the power supply board 110 and increasing the capacitance of the power line DCLINK; electrolytic capacitors C3-C5 provided to the expanded capacitor boards 120 and used for increasing the capacitance of the power line DCLINK; and an inrush current suppression resistor R3 provided to the expanded capacitor boards 120 and preventing a significant inrush current from flowing in the electrolytic capacitors C3-C5 from the power line DCLINK when the expanded capacitor boards 120 are connected to the power line DCLINK.

Description

電源供給装置power supply
 本開示は、ロボットアームを作動させるモータに電源を供給する電源供給装置に関するものである。 The present disclosure relates to a power supply device that supplies power to a motor that operates a robot arm.
 特許文献1には、直流電源から電源スイッチを介して直流電圧が供給される負荷に並列接続されたバイパスコンデンサへの電源スイッチのオン時における突入電流の発生を抑制し得る電源制御装置が記載されている。 Patent Literature 1 describes a power supply control device capable of suppressing the generation of inrush current when a power switch is turned on to a bypass capacitor connected in parallel to a load to which a DC voltage is supplied from a DC power supply via a power switch. ing.
特許第6467902号公報Japanese Patent No. 6467902
 ところで、多関節ロボットやスカラロボットなど、ロボットアームを作動させるモータに印加する電圧値を変動制御するアンプ基板を搭載したロボットにおいて、瞬発的な動作を必要とする場面がある。その瞬発的な動作を実現するために、動力電源ラインに並列に容量の大きい電解コンデンサを接続してキャパシタンスを増加させたい場合があるが、アンプ基板のサイズ制限や組み付け場所の高さ制限などにより、必要なキャパシタンスが得られるだけの電解コンデンサを搭載できないことがある。 By the way, in robots such as articulated robots and SCARA robots, which are equipped with an amplifier board that controls the variation of the voltage applied to the motors that operate the robot arms, there are situations where instantaneous movements are required. In order to achieve that instantaneous operation, it is sometimes desirable to increase the capacitance by connecting a large-capacity electrolytic capacitor in parallel with the power supply line, but due to size restrictions on the amplifier board and height restrictions on the mounting location, etc. , it may not be possible to install enough electrolytic capacitors to provide the required capacitance.
 しかし、特許文献1には、キャパシタンスを増加させることは記載されていないので、特許文献1に記載の電源制御装置を用いたとしても、上記問題を解決することはできない。 However, Patent Document 1 does not describe increasing the capacitance, so even if the power control device described in Patent Document 1 is used, the above problem cannot be solved.
 本開示は、電源ラインのキャパシタンスを増加させたいときに容易にキャパシタンスを増加させることが可能となる電源供給装置を提供することを目的とする。 An object of the present disclosure is to provide a power supply device that can easily increase the capacitance of a power supply line when desired.
 上記目的を達成するため、本開示の電源供給装置は、ロボットアームを作動させるモータに電源を供給する電源供給基板と、電源供給基板の電源ラインに並列に接続され、電源ラインのキャパシタンスを増大させる1つ以上の拡張容量基板と、拡張容量基板に設けられ、電源ラインのキャパシタンスを増大させるためのキャパシタと、拡張容量基板に設けられ、拡張容量基板が電源ラインに接続されたときに、電源ラインからキャパシタへ過大な突入電流が流入するのを抑制する突入電流抑制機構と、を備えている。 To achieve the above object, the power supply device of the present disclosure includes a power supply board that supplies power to a motor that operates a robot arm, and a power supply line connected in parallel to the power supply board to increase the capacitance of the power supply line. one or more extended capacitance substrates; a capacitor provided on the extended capacitance substrate for increasing the capacitance of the power supply line; an inrush current suppressing mechanism for suppressing an excessive inrush current from flowing into the capacitor.
 本開示によれば、電源ラインのキャパシタンスを増加させたいときに容易にキャパシタンスを増加させることが可能となる。 According to the present disclosure, when it is desired to increase the capacitance of the power supply line, it is possible to easily increase the capacitance.
部品実装機の構成の概略を示す斜視図である。It is a perspective view which shows the outline of a structure of a component mounter. 制御装置の電気的な接続関係を示すブロック図である。FIG. 3 is a block diagram showing the electrical connection relationship of the control device; 電源供給装置の回路構成を示す電気回路図である。3 is an electric circuit diagram showing the circuit configuration of the power supply device; FIG. 突入電流防止抵抗の作用をシミュレーションするために用いた電気回路図である。FIG. 4 is an electric circuit diagram used for simulating the action of an inrush current prevention resistor; 図4の電気回路によるシミュレーション結果を示す図である。5 is a diagram showing a simulation result of the electric circuit of FIG. 4; FIG. 図4の電気回路に拡張容量を追加した電気回路図である。FIG. 5 is an electric circuit diagram in which an extension capacity is added to the electric circuit of FIG. 4; 図6の電気回路によるシミュレーション結果を示す図である。FIG. 7 is a diagram showing a simulation result of the electric circuit of FIG. 6; 動力電源ラインに拡張容量を接続する接続態様を示す図である。It is a figure which shows the connection aspect which connects an expansion capacity|capacitance to a motive power supply line.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。図1は、部品実装機10の構成の概略を示し、図2は、制御装置60の電気的な接続関係を示している。なお、図1中の上下方向がZ軸方向である。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. FIG. 1 shows an outline of the configuration of the mounter 10, and FIG. 2 shows the electrical connections of the control device 60. As shown in FIG. Note that the vertical direction in FIG. 1 is the Z-axis direction.
 本実施形態の部品実装機10は、垂直多関節ロボット40と、Z軸方向移動装置50と、ノズル53と、制御装置60(図2参照)とを備える。 The component mounter 10 of this embodiment includes a vertical articulated robot 40, a Z-axis movement device 50, a nozzle 53, and a control device 60 (see FIG. 2).
 垂直多関節ロボット40は、4つのロボット可動部(ショルダ42、下アーム43、上アーム44及びリスト45)を備えたものである。4つのロボット可動部は、円柱型のベース部41の上に連結されている。具体的には、ベース部41の上面に、第1関節41jを介してショルダ42が上下軸41aの周りに旋回可能に連結されている。このショルダ42には、第2関節42jを介して下アーム43の下端部が水平軸42aの周りに回転可能に連結されている。下アーム43の上端部には、第3関節43jを介して上アーム44の基端部が水平軸43aの周りに回転可能に連結されている。上アーム44の先端部には、第4関節44jを介してリスト45が上アーム44の長手方向と直交する方向に延びる軸44aの周りに回転可能に連結されている。リスト45には、Z軸方向移動装置50がリスト45と共に軸44aの周りに回転可能に連結されている。第1関節41jは、ショルダ41を回転駆動する第1モータ41mを内蔵し、第2関節42jは、下アーム43を回転駆動する第2モータ42mを内蔵している。第3関節43jは、上アーム44を回転駆動する第3モータ43mを内蔵し、第4関節44jは、リスト45を回転駆動する第4モータ44mを内蔵している。第1~第4モータ41m~44mは、それぞれ第1~第4エンコーダ41e~44e(図2参照)を備えている。本実施形態では、モータとしてサーボモータ、エンコーダとしてロータリーエンコーダを用いるものとする。 The vertical articulated robot 40 has four robot movable parts (shoulder 42, lower arm 43, upper arm 44 and wrist 45). The four robot movable parts are connected on a cylindrical base part 41 . Specifically, the shoulder 42 is connected to the upper surface of the base portion 41 via a first joint 41j so as to be rotatable around the vertical shaft 41a. A lower end of a lower arm 43 is connected to the shoulder 42 via a second joint 42j so as to be rotatable around a horizontal shaft 42a. The base end of the upper arm 44 is connected to the upper end of the lower arm 43 via a third joint 43j so as to be rotatable around the horizontal shaft 43a. A wrist 45 is connected to the distal end of the upper arm 44 via a fourth joint 44j so as to be rotatable around a shaft 44a extending in a direction perpendicular to the longitudinal direction of the upper arm 44. As shown in FIG. A Z-axis movement device 50 is connected to the wrist 45 so as to be rotatable together with the wrist 45 around an axis 44a. The first joint 41j contains a first motor 41m that drives the shoulder 41 to rotate, and the second joint 42j contains a second motor 42m that drives the lower arm 43 to rotate. The third joint 43j contains a third motor 43m that drives the upper arm 44 to rotate, and the fourth joint 44j contains a fourth motor 44m that drives the wrist 45 to rotate. The first to fourth motors 41m to 44m are provided with first to fourth encoders 41e to 44e (see FIG. 2), respectively. In this embodiment, a servomotor is used as the motor, and a rotary encoder is used as the encoder.
 Z軸方向移動装置50は、装置本体51と、Z軸スライダ52とを備える。装置本体51は、ここでは略直方体の部材であり、リスト45に固定されている。そのため、装置本体51は、軸44aの周りに回転可能である。Z軸スライダ52は、装置本体51の前面に装置本体51の長手方向に沿ってスライド可能に取り付けられている。このZ軸スライダ52は、装置本体51に取り付けられたZ軸駆動装置54(例えばリニアモータとかボールネジ機構)によって駆動される。 The Z-axis movement device 50 includes a device body 51 and a Z-axis slider 52 . The device main body 51 is a substantially rectangular parallelepiped member here, and is fixed to the wrist 45 . Therefore, the device main body 51 is rotatable around the shaft 44a. The Z-axis slider 52 is attached to the front surface of the device main body 51 so as to be slidable along the longitudinal direction of the device main body 51 . This Z-axis slider 52 is driven by a Z-axis driving device 54 (for example, a linear motor or a ball screw mechanism) attached to the device main body 51 .
 ノズル53は、吸着ヘッド55の下面に設けられている。ノズル53は、ノズル先端の圧力が調整されることにより部品を吸着したり吸着した部品を放したりする。このノズル53は、吸着ヘッド55に着脱自在且つ軸回転可能に取り付けられている。吸着ヘッド55は、Z軸スライダ52に固定されている。そのため、ノズル53は吸着ヘッド55及びZ軸スライダ52と共にスライドする。 The nozzle 53 is provided on the bottom surface of the suction head 55 . The nozzle 53 sucks a component or releases the sucked component by adjusting the pressure at the tip of the nozzle. The nozzle 53 is detachably and axially rotatably attached to the suction head 55 . The suction head 55 is fixed to the Z-axis slider 52 . Therefore, the nozzle 53 slides together with the suction head 55 and the Z-axis slider 52 .
 制御装置60は、垂直多関節ロボット40の動作やZ軸方向移動装置50の動作を制御する装置である。制御装置60は、図2に示すように、CPU61とROM62とHDD63とRAM64とを備える。CPU61には、第1~第4駆動回路41d~44dや第1~第4位置検出回路41p~44p,Z軸駆動回路54d、Z軸位置検出回路54p、入力装置70、出力装置72が接続されている。第1~第4駆動回路41d~44d及びZ軸駆動回路54dは、第1~第4モータ41m~44m及びZ軸駆動装置54のそれぞれに対応して設けられている。第1~第4駆動回路41d~44d及びZ軸駆動回路54dは、CPU61からの指令信号に基づく電気信号を、それぞれに対応する第1~第4モータ41m~44m及びZ軸駆動装置54へ出力する。第1~第4位置検出回路41p~44pは、各ロボット可動部の位置を検出するためのものであり、第1~第4エンコーダ41e~44eのそれぞれに対応して設けられている。Z軸位置検出回路54pは、ノズル53のZ軸位置を検出するためのものであり、Z軸エンコーダ54eに対応して設けられている。第1~第4位置検出回路41p~44pは、それぞれに対応する第1~第4エンコーダ41e~44eから入力した検出信号に基づいて第1~第4モータ41m~44mの角度位置を検出してCPU61へ出力する。Z軸位置検出回路54pは、Z軸エンコーダ54eから入力した検出信号に基づいてノズル53のZ軸位置を検出してCPU61へ出力する。入力装置70は、オペレータが入力操作を行うキーボードやマウスである。出力装置72は、各種データを画像等の視覚的情報として表示するディスプレイである。 The control device 60 is a device that controls the motion of the vertical articulated robot 40 and the motion of the Z-axis movement device 50 . The control device 60 includes a CPU 61, a ROM 62, an HDD 63, and a RAM 64, as shown in FIG. Connected to the CPU 61 are first to fourth drive circuits 41d to 44d, first to fourth position detection circuits 41p to 44p, a Z-axis drive circuit 54d, a Z-axis position detection circuit 54p, an input device 70, and an output device 72. ing. The first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d are provided corresponding to the first to fourth motors 41m to 44m and the Z-axis drive device 54, respectively. The first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d output electrical signals based on command signals from the CPU 61 to the corresponding first to fourth motors 41m to 44m and the Z-axis drive device 54. do. The first to fourth position detection circuits 41p to 44p are for detecting the positions of the respective robot movable parts, and are provided corresponding to the first to fourth encoders 41e to 44e, respectively. The Z-axis position detection circuit 54p is for detecting the Z-axis position of the nozzle 53, and is provided corresponding to the Z-axis encoder 54e. The first to fourth position detection circuits 41p to 44p detect the angular positions of the first to fourth motors 41m to 44m based on the detection signals input from the corresponding first to fourth encoders 41e to 44e. Output to the CPU 61 . The Z-axis position detection circuit 54p detects the Z-axis position of the nozzle 53 based on the detection signal input from the Z-axis encoder 54e, and outputs it to CPU61. The input device 70 is a keyboard or a mouse for operator's input operation. The output device 72 is a display that displays various data as visual information such as images.
 図3は、電源制御装置100の電気回路の概略を示している。電源制御装置100は主として、交流電源(「電源」と略すこともある)Vと、電源供給基板110と、拡張容量基板120とにより構成されている。電源供給基板110は、電源Vに基づいて動力電源DCLINKをモータ駆動回路112等に供給するものである。拡張容量基板120は、電源供給基板110の動力電源ラインDCLINKのキャパシタンスを拡張させるものである。 FIG. 3 shows an outline of the electric circuit of the power control device 100. FIG. The power supply control device 100 mainly includes an AC power supply (sometimes abbreviated as “power supply”) V, a power supply board 110 and an expansion capacity board 120 . The power supply board 110 supplies the motor drive circuit 112 and the like with the power supply DCLINK based on the power supply V. As shown in FIG. The expansion capacity board 120 expands the capacitance of the power supply line DCLINK of the power supply board 110 .
 電源供給基板110は、電源Vの全波整流回路111を介した電源供給基板110への供給をオン/オフする、安全ブレーカとして機能するスイッチS1を備えている。スイッチS1の出力端には、全波整流回路111の入力端が接続されている。全波整流回路111は、電源Vの交流電圧を直流電圧に変換する。全波整流回路111の出力端には、突入電流抑制抵抗R1の一端が接続され、突入電流抑制抵抗R1の他端は、電解コンデンサC1,C2のそれぞれの正極側の一端と接続されている。そして、電解コンデンサC1,C2のそれぞれの負極側の他端は接地されている。また、突入電流抑制抵抗R1と並列に、スイッチS2が接続されている。さらに、電解コンデンサC1,C2のそれぞれの正極側の一端には、モータ駆動回路112の入力端が接続されている。モータ駆動回路112には、上記第1~第4駆動回路41d~44d及びZ軸駆動回路54dが含まれる。モータ駆動回路112の出力端には、モータ200が接続されている。モータ200には、上記第1~第4モータ41m~44m及びZ軸駆動装置54が含まれる。このように電源供給基板110には、スイッチS1からモータ駆動回路112に至るまでの電子部品が載せられている。 The power supply board 110 has a switch S1 that functions as a safety breaker that turns on/off the supply of the power supply V to the power supply board 110 via the full-wave rectifier circuit 111 . The input terminal of the full-wave rectifier circuit 111 is connected to the output terminal of the switch S1. A full-wave rectifier circuit 111 converts the AC voltage of the power supply V into a DC voltage. One end of an inrush current suppression resistor R1 is connected to the output end of the full-wave rectifier circuit 111, and the other end of the inrush current suppression resistor R1 is connected to one end of each of the positive electrodes of the electrolytic capacitors C1 and C2. The other negative ends of the electrolytic capacitors C1 and C2 are grounded. A switch S2 is connected in parallel with the inrush current suppression resistor R1. Furthermore, the input end of the motor drive circuit 112 is connected to one end on the positive electrode side of each of the electrolytic capacitors C1 and C2. The motor drive circuit 112 includes the first to fourth drive circuits 41d to 44d and the Z-axis drive circuit 54d. A motor 200 is connected to the output end of the motor drive circuit 112 . The motor 200 includes the first to fourth motors 41m to 44m and the Z-axis driving device . In this way, the power supply board 110 is mounted with electronic components from the switch S1 to the motor drive circuit 112. As shown in FIG.
 スイッチS2は、スイッチS1をオンすることにより電源Vから全波整流回路111を介して供給される直流電流(「電流」と略すこともある)を、突入電流抑制抵抗R1を経由して電解コンデンサC1,C2に供給するか、突入電流抑制抵抗R1を迂回してそのまま電解コンデンサC1,C2に供給するかを、スイッチS2のオフとオンにより切り替えるものである。スイッチS2は、動力電源ラインDCLINKの電圧値が所定の電圧値(<全波整流回路111からの出力電圧値)以上に上昇したときに、オフからオンに自動的に切り替わる、例えばリレーにより構成されている。その所定の電圧値、つまり切替閾値は、設定により任意の値に設定できるようになっている。スイッチS1がオフからオンに切り替えられ、電源Vから全波整流回路111を介して電源供給基板110に電流の供給が開始された時点では、電解コンデンサC1,C2に電荷が溜まっていないので、スイッチS2はオフ状態となっている。その後、時間の経過に従って電解コンデンサC1,C2に電荷が溜まっていき、動力電源ラインDCLINKの電圧値が切替閾値以上になると、スイッチS2はオフからオンに自動的に切り替わる。これにより、全波整流回路111から供給される電流は、突入電流抑制抵抗R1を迂回し、スイッチS2を経由して直接、電解コンデンサC1,C2に流れ込む。その後、電解コンデンサC1,C2には電荷が満充電され、動力電源ラインDCLINKの電圧値は全波整流回路111からの出力電圧値まで上昇する。 When the switch S1 is turned on, the switch S2 directs the direct current (also abbreviated as "current") supplied from the power supply V through the full-wave rectifier circuit 111 to the electrolytic capacitor via the inrush current suppression resistor R1. The switch S2 is turned off and on to switch whether to supply the current to the capacitors C1 and C2 or bypass the inrush current suppression resistor R1 and directly supply the current to the electrolytic capacitors C1 and C2. The switch S2 is, for example, a relay that automatically switches from off to on when the voltage value of the power supply line DCLINK rises to a predetermined voltage value (<the output voltage value from the full-wave rectifier circuit 111) or higher. ing. The predetermined voltage value, that is, the switching threshold can be set to any value by setting. At the time when the switch S1 is switched from off to on and the supply of current from the power supply V through the full-wave rectifier circuit 111 to the power supply board 110 is started, no charge is accumulated in the electrolytic capacitors C1 and C2. S2 is in an off state. After that, electric charges accumulate in the electrolytic capacitors C1 and C2 as time passes, and when the voltage value of the power supply line DCLINK becomes equal to or higher than the switching threshold, the switch S2 is automatically switched from off to on. As a result, the current supplied from the full-wave rectifier circuit 111 bypasses the inrush current suppression resistor R1 and directly flows into the electrolytic capacitors C1 and C2 via the switch S2. After that, the electrolytic capacitors C 1 and C 2 are fully charged, and the voltage value of the power supply line DCLINK rises to the output voltage value from the full-wave rectifier circuit 111 .
 このように、電解コンデンサC1,C2に電荷が溜まっていない初期段階では、全波整流回路111からの電流を、突入電流抑制抵抗R1を経由して電解コンデンサC1,C2に流すようにしたのは、電解コンデンサC1,C2に急激に流れる電流、つまり過大な突入電流を突入電流抑制抵抗R1により制限するためである。過大な突入電流が発生すると、基板の銅箔パターンの焼損や電子部品の破損を招く虞があるため、突入電流抑制抵抗R1により過大な突入電流の発生を抑制している。しかし、全波整流回路111からの電流を常時、突入電流抑制抵抗R1に流していると、動力電源ラインDCLINKの電圧低下や無駄な発熱が生じるため、過大な突入電流が発生する虞がなくなるとき、つまり、所定の電圧値以上に動力電源ラインDCLINKの電圧値が上昇したときに、スイッチS2をオフからオンに切り替えることにより、突入電流抑制抵抗R1を迂回させるようにしている。なお、所定の電圧値は、全波整流回路111からの出力電圧値や用いている電子部品等によって変動するため、汎用的に決定することはできないが、全波整流回路111からの出力電圧値より低い電圧値を経験によりあるいは実験によりその都度決定する。 Thus, in the initial stage when the electrolytic capacitors C1 and C2 are not charged, the current from the full-wave rectifier circuit 111 is caused to flow through the electrolytic capacitors C1 and C2 via the inrush current suppression resistor R1. , to limit the current that suddenly flows through the electrolytic capacitors C1 and C2, ie, an excessive inrush current, by the inrush current suppressing resistor R1. If an excessive inrush current occurs, the copper foil pattern of the substrate may be burnt out or the electronic parts may be damaged. However, if the current from the full-wave rectifier circuit 111 is constantly flowing through the inrush current suppression resistor R1, a voltage drop in the power supply line DCLINK and unnecessary heat generation will occur. In other words, when the voltage value of the power supply line DCLINK rises above a predetermined voltage value, the switch S2 is switched from off to on to bypass the inrush current suppression resistor R1. Note that the predetermined voltage value varies depending on the output voltage value from the full-wave rectifier circuit 111, electronic components used, etc., and cannot be determined universally. A lower voltage value is determined empirically or by experiment each time.
 また、電源供給基板110の動力電源ラインDCLINKに並列に、拡張容量基板120が、接続線130を介して接続されている。拡張容量基板120は、スイッチS3,S4と、突入電流抑制抵抗R2と、電解コンデンサC3~C5とを備えている。なお、拡張容量基板120に設けられた電子部品S4,R2,C3~C5の接続関係は、電源供給基板110に設けられた電子部品S2,R1,C1,C2の接続関係と略同一であるので、その説明は省略する。 Also, the expansion capacity board 120 is connected in parallel to the power supply line DCLINK of the power supply board 110 via the connection line 130 . The expansion capacitor board 120 includes switches S3 and S4, an inrush current suppression resistor R2, and electrolytic capacitors C3 to C5. The connection relationships of the electronic components S4, R2, C3 to C5 provided on the expansion capacity board 120 are substantially the same as the connection relationships of the electronic components S2, R1, C1, C2 provided on the power supply board 110. , the description of which is omitted.
 電解コンデンサC3~C5は、動力電源ラインDCLINKのキャパシタンスを増大させるためのキャパシタである。スイッチS3(「第1切替機構」の一例)は、拡張容量基板120の電源供給基板110への実質的な接続のオン/オフを切り替える。スイッチS3も、上記スイッチS2と同様に、動力電源ラインDCLINKの電圧値が所定の電圧値(<全波整流回路111からの出力電圧値)以上に上昇したときに、オフからオンに自動的に切り替わる、例えばリレーにより構成されている。ただし、スイッチS3は、スイッチS2とは、所定の電圧値、つまり切替閾値が同じではないことがある点で異なっている。スイッチS3の切替閾値を以下、「第1所定値」という。突入電流抑制抵抗R2(「突入電流抑制機構」の一例)は、上記突入電流抑制抵抗R1と同様に、過大な突入電流、つまり動力電源ラインDCLINKからの電流が電荷が溜まっていない電解コンデンサC3~C5に流れ込むことで発生する過大な突入電流を抑制するためのものである。スイッチS4(「第2切替機構」の一例)は、上記スイッチS2と同様に、スイッチS3がオンされることにより動力電源ラインDCLINKから供給される電流を、突入電流抑制抵抗R2を経由して電解コンデンサC3~C5に供給するか、突入電流抑制抵抗R2を迂回してそのまま電解コンデンサC3~C5に供給するかを、スイッチS4のオフとオンにより切り替えるものである。スイッチS4も、上記スイッチS2と同様に、動力電源ラインDCLINKの電圧値が所定の電圧値(<全波整流回路111からの出力電圧値)以上に上昇したときに、オフからオンに自動的に切り替わる、例えばリレーにより構成されている。ただし、スイッチS4は、スイッチS2,S3とは、所定の電圧値、つまり切替閾値が同じではないことがある点で異なっている。スイッチS4の切替閾値を以下、「第2所定値」という。 The electrolytic capacitors C3-C5 are capacitors for increasing the capacitance of the power supply line DCLINK. A switch S<b>3 (an example of a “first switching mechanism”) switches ON/OFF of substantial connection of the expansion capacity board 120 to the power supply board 110 . Similarly to the switch S2, the switch S3 is automatically turned on from off when the voltage value of the power supply line DCLINK rises to a predetermined voltage value (<output voltage value from the full-wave rectifier circuit 111) or more. Switching, for example, consists of a relay. However, the switch S3 differs from the switch S2 in that the predetermined voltage value, that is, the switching threshold, may not be the same. The switching threshold of the switch S3 is hereinafter referred to as "first predetermined value". An inrush current suppressing resistor R2 (an example of an "inrush current suppressing mechanism"), like the inrush current suppressing resistor R1, receives an excessive inrush current, that is, the current from the power supply line DCLINK. This is for suppressing an excessive rush current generated by flowing into C5. The switch S4 (an example of the "second switching mechanism") electrolyzes the current supplied from the power supply line DCLINK by turning on the switch S3 through the inrush current suppression resistor R2, similarly to the switch S2. The switch S4 is turned off and on to switch whether to supply the current to the capacitors C3 to C5 or bypass the inrush current suppression resistor R2 and directly supply the current to the electrolytic capacitors C3 to C5. Similarly to the switch S2, the switch S4 is automatically turned on from off when the voltage value of the power supply line DCLINK rises to a predetermined voltage value (<the output voltage value from the full-wave rectifier circuit 111) or higher. Switching, for example, consists of a relay. However, the switch S4 differs from the switches S2 and S3 in that the predetermined voltage value, that is, the switching threshold may not be the same. The switching threshold of the switch S4 is hereinafter referred to as "second predetermined value".
 図4は、電源供給基板110における突入電流抑制抵抗R1の効果を示すためのシミュレーションに用いた電気回路図である。図4中、図3中の電子部品と同じ電子部品には、同一符号を付している。ただし、電源V1は、直流電源を示しており、図3では、交流電源Vと全波整流回路111とを併せたものに相当する。図4の電気回路図と図3の電気回路図を見比べれば分かるように、図4の電源供給基板110上の電子部品には抵抗R11が追加されている。抵抗R11は、シミュレーションにより得られる出力波形を安定化させるために便宜上用いたものであり、実際には無視してよいものである。なお、各電子部品の近傍に表示された値は、電子部品の規格を示している。 FIG. 4 is an electric circuit diagram used for simulation to show the effect of the inrush current suppression resistor R1 in the power supply board 110. FIG. In FIG. 4, the same electronic parts as those in FIG. 3 are given the same reference numerals. However, the power supply V1 indicates a DC power supply, and in FIG. As can be seen by comparing the electric circuit diagram of FIG. 4 and the electric circuit diagram of FIG. 3, a resistor R11 is added to the electronic components on the power supply board 110 of FIG. The resistor R11 is used for convenience in order to stabilize the output waveform obtained by simulation, and can be ignored in practice. The value displayed near each electronic component indicates the standard of the electronic component.
 図5は、図4の電気回路によるシミュレーション結果を示している。図5のシミュレーション結果では、0.5秒後、スイッチS1をオフからオンに切り替え、動力電源ラインDCLINKの電圧値が250Vになると、スイッチS2がオフからオンに切り替わっている。その切り替わった時点は、スイッチS1をオフからオンに切り替えた時点から略0.5秒経過した、略1秒の時点である。  Fig. 5 shows the simulation results of the electric circuit in Fig. 4. In the simulation result of FIG. 5, the switch S1 is switched from off to on after 0.5 seconds, and when the voltage value of the power supply line DCLINK reaches 250 V, the switch S2 is switched from off to on. The switching time is approximately 1 second, which is approximately 0.5 seconds after the switch S1 is switched from OFF to ON.
 図5(a)は、動力電源ラインDCLINKの電圧値G1の推移を示している。図5(b)は、実線G2が突入電流抑制抵抗R1に流れる電流値の推移を示し、破線G3が電解コンデンサC1に流れる電流値の推移を示している。図5(c)は、実線G4が突入電流抑制抵抗R1で消費される電力の推移を示し、破線G5が電解コンデンサC1に供給される電力の推移を示している。 FIG. 5(a) shows the transition of the voltage value G1 of the power supply line DCLINK. In FIG. 5(b), a solid line G2 indicates transition of the current value flowing through the inrush current suppression resistor R1, and a dashed line G3 indicates transition of the current value flowing through the electrolytic capacitor C1. In FIG. 5(c), a solid line G4 indicates transition of the power consumed by the inrush current suppression resistor R1, and a broken line G5 indicates transition of the power supplied to the electrolytic capacitor C1.
 0.5秒から略1秒までは、電源V1からの電流は突入電流抑制抵抗R1を経由して電解コンデンサC1に供給されるので、図5(b)の実線G2に示すように、突入電流抑制抵抗R1を流れる電流のピーク値は、略3.0Aとなり、電解コンデンサC1に供給される電流のピーク値も、略1.5Aとなっている。なお、電解コンデンサC1に供給される電流のピーク値が突入電流抑制抵抗R1を流れる電流のピーク値の1/2になっているのは、電解コンデンサC1とC2とで、突入電流抑制抵抗R1を流れる電流を等分割しているからである。このとき仮に、電源V1からの電流を、突入電流抑制抵抗R1を経由させずに直接、電解コンデンサC1に供給したとすると、電解コンデンサC1には、略1400Aの過大な突入電流が瞬間的に流れる。これにより、上述した電源供給基板110上の電子部品の破損や銅箔パターンの焼失などの虞が生ずる。このように突入電流抑制抵抗R1を経由させることで、過大な突入電流の発生が抑制される。一方、0.5秒から略1秒までは、突入電流抑制抵抗R1では、図5(c)の実線G4に示す電力が消費される。この電力消費により突入電流抑制抵抗R1は発熱するので、電流抑制抵抗R1については、その発熱による耐久性に気を付ける必要がある。 From 0.5 seconds to approximately 1 second, the current from the power supply V1 is supplied to the electrolytic capacitor C1 via the inrush current suppression resistor R1, so that the inrush current The peak value of the current flowing through the suppression resistor R1 is approximately 3.0A, and the peak value of the current supplied to the electrolytic capacitor C1 is also approximately 1.5A. The reason why the peak value of the current supplied to the electrolytic capacitor C1 is 1/2 of the peak value of the current flowing through the inrush current suppressing resistor R1 is that the electrolytic capacitors C1 and C2 are connected to the inrush current suppressing resistor R1. This is because the flowing current is equally divided. At this time, assuming that the current from the power supply V1 is supplied directly to the electrolytic capacitor C1 without passing through the inrush current suppression resistor R1, an excessive inrush current of approximately 1400 A instantaneously flows through the electrolytic capacitor C1. . As a result, the electronic components on the power supply board 110 may be damaged or the copper foil pattern may be burned off. By passing through the inrush current suppression resistor R1 in this way, generation of an excessive inrush current is suppressed. On the other hand, from 0.5 seconds to approximately 1 second, the power shown by the solid line G4 in FIG. 5(c) is consumed by the rush current suppression resistor R1. Since the rush current suppressing resistor R1 generates heat due to this power consumption, it is necessary to pay attention to the durability of the current suppressing resistor R1 due to the heat generation.
 図6は、電源供給基板110における突入電流抑制抵抗R1の効果と、電源供給基板110に拡張容量基板120を接続した電源制御装置100における突入電流抑制抵抗R2の効果とを比較するためのシミュレーションに用いた電気回路図である。図6中、図3中の電子部品と同じ電子部品には、同一符号を付している。ただし、図6中の電源供給基板110上の電子部品には、図4中の電源供給基板110上の電子部品に付した符号に“b”を追加した符号が付されている。これは、電源供給基板110上の電子部品が、拡張容量基板120が接続された電源供給基板110上の電子部品であるか、拡張容量基板120が接続されていない電源供給基板110上の電子部品であるかを区別するためにそうしているに過ぎない。 FIG. 6 shows a simulation for comparing the effect of the inrush current suppression resistor R1 in the power supply board 110 and the effect of the inrush current suppression resistor R2 in the power control device 100 in which the expansion capacity board 120 is connected to the power supply board 110. It is an electric circuit diagram used. In FIG. 6, the same electronic parts as those in FIG. 3 are denoted by the same reference numerals. However, the electronic components on the power supply board 110 in FIG. 6 are given reference numerals obtained by adding "b" to the electronic components on the power supply board 110 in FIG. This is because the electronic components on the power supply board 110 are the electronic components on the power supply board 110 to which the extended capacity board 120 is connected, or the electronic components on the power supply board 110 to which the extended capacity board 120 is not connected. It does so only to distinguish whether it is
 図7は、図6の電気回路によるシミュレーション結果を示している。図7のシミュレーション結果でも、図5のシミュレーション結果と同様に、0.5秒後、スイッチS1,S1bをオフからオンに切り替え、動力電源ラインDCLINK,DCLINKBの電圧値が250Vになると、スイッチS2,S2bがオフからオンに切り替わっている。その切り替わった時点は、スイッチS1,S1bをオフからオンに切り替えた時点から略0.5秒経過した、略1秒の時点である。また、スイッチS3は、動力電源ラインDCLINKの電圧値が250Vになると、オフからオンに切り替わっている。なお、図7中、図5中のグラフと対応するグラフには同一符号を付している。 FIG. 7 shows the simulation results of the electric circuit of FIG. In the simulation result of FIG. 7, similarly to the simulation result of FIG. S2b is switched from off to on. The switching time is approximately 1 second, which is approximately 0.5 seconds after the switches S1 and S1b are switched from off to on. Moreover, the switch S3 is switched from OFF to ON when the voltage value of the power supply line DCLINK reaches 250V. In FIG. 7, graphs corresponding to the graphs in FIG. 5 are denoted by the same reference numerals.
 図7(a)は、実線G1が動力電源ラインDCLINKの電圧値の推移を示し、破線G11が動力電源ラインexDCLINKの電圧値の推移を示している。図7(b)は、実線G2が突入電流抑制抵抗R1bに流れる電流値の推移を示し、破線G3が電解コンデンサC1bに流れる電流値の推移を示している。図7(c)は、実線G21が突入電流抑制抵抗R2に流れる電流値の推移を示し、破線G31が電解コンデンサC3に流れる電流値の推移を示している。図7(d)は、実線G4が突入電流抑制抵抗R1bで消費される電力の推移を示し、破線G41が突入電流抑制抵抗R2で消費される電力の推移を示している。図7(e)は、実線G5が電解コンデンサC1bに供給される電力の推移を示し、破線G51が電解コンデンサC3に供給される電力の推移を示している。 In FIG. 7(a), the solid line G1 indicates the transition of the voltage value of the power power line DCLINK, and the dashed line G11 indicates the transition of the voltage value of the power power line exDLINK. In FIG. 7(b), a solid line G2 indicates transition of the current value flowing through the inrush current suppression resistor R1b, and a dashed line G3 indicates transition of the current value flowing through the electrolytic capacitor C1b. In FIG. 7(c), a solid line G21 indicates transition of the current value flowing through the inrush current suppression resistor R2, and a broken line G31 indicates transition of the current value flowing through the electrolytic capacitor C3. In FIG. 7(d), a solid line G4 indicates the transition of power consumed by the rush current suppression resistor R1b, and a dashed line G41 indicates the transition of power consumed by the rush current suppression resistor R2. In FIG. 7(e), a solid line G5 indicates transition of the power supplied to the electrolytic capacitor C1b, and a dashed line G51 indicates transition of the power supplied to the electrolytic capacitor C3.
 略1秒から略2.8秒までは、動力電源ラインDCLINKからの電流は突入電流抑制抵抗R2を経由して電解コンデンサC3に供給されるので、図7(c)の実線G21に示すように、過大な突入電流が抑制される。また、略1秒から略2.8秒までは、突入電流抑制抵抗R2で消費される電力のピーク値は、0.5秒から略1秒までに突入電流抑制抵抗R1で消費される電力のピーク値と比較して低下している。これは、突入電流抑制抵抗R2の値が突入電流抑制抵抗R1の値より大きいため、突入電流抑制抵抗R2を通る電流がより制限されているからである。したがって、突入電流抑制抵抗R2の発熱による温度上昇は、突入電流抑制抵抗R1の発熱による温度上昇より低くなる。その結果、電流抑制抵抗として、R1とR2とで同様の構成のものを用いた場合、突入電流抑制抵抗R2の発熱による耐久性は、電流抑制抵抗R1のそれより向上する。このように突入電流抑制抵抗R2を通る電流をより制限すると、電解コンデンサC3~C5へ供給される突入電流はより制限されるので、電解コンデンサC3~C5へ供給される時間当たりの電荷量が少なくなり、その結果、図7(a)の破線G11に示すように、動力電源ラインexDCLINKの電圧値の上昇は緩やかになる。つまり、スイッチS1をオフからオンに切り替えてから電源制御装置100がスタンバイ状態になるまでの時間が遅くなる。このため、突入電流抑制抵抗R2の抵抗値は、突入電流抑制抵抗R2の耐久性や電源制御装置100がスタンバイ状態になるまでの時間などを比較考量して決めることが望ましい。 From approximately 1 second to approximately 2.8 seconds, the current from the power supply line DCLINK is supplied to the electrolytic capacitor C3 via the inrush current suppression resistor R2, so that the solid line G21 in FIG. , excessive inrush current is suppressed. Also, the peak value of the power consumed by the inrush current suppression resistor R2 from approximately 1 second to approximately 2.8 seconds is the peak value of the power consumed by the inrush current suppression resistor R1 from 0.5 seconds to approximately 1 second. decreased compared to the peak value. This is because the value of the inrush current limiting resistor R2 is greater than the value of the inrush current limiting resistor R1, so the current passing through the inrush current limiting resistor R2 is more limited. Therefore, the temperature rise due to heat generation of the inrush current suppression resistor R2 is lower than the temperature rise due to heat generation of the inrush current suppression resistor R1. As a result, when R1 and R2 having the same structure are used as the current suppressing resistors, the durability of the inrush current suppressing resistor R2 due to heat generation is improved more than that of the current suppressing resistor R1. If the current passing through the inrush current suppression resistor R2 is further limited in this way, the inrush current supplied to the electrolytic capacitors C3-C5 is further limited, so that the amount of charge per unit time supplied to the electrolytic capacitors C3-C5 is reduced. As a result, as indicated by the dashed line G11 in FIG. 7(a), the voltage value of the power supply line exDLINK gradually rises. That is, the time from when the switch S1 is switched from off to on until the power supply control device 100 enters the standby state is delayed. Therefore, it is desirable to determine the resistance value of the inrush current suppression resistor R2 by comparing the durability of the inrush current suppression resistor R2 and the time required for the power supply control device 100 to enter the standby state.
 また、スイッチS4の上記第2所定値は、過大な突入電流が電解コンデンサC3~C5へ流れ込む虞がなくなるような値になるまで上昇したときの動力電源ラインexDCLINKの電圧値である。この第2所定値も、スイッチS2の上記切替閾値と同様に、汎用的に決定することはできない。つまり、動力電源ラインexDCLINKの電圧値が第2所定値を下回っている間は、動力電源ラインDCLINKからの電流は突入電流抑制抵抗R2を経由して電解コンデンサC3~C5へ供給され、突入電流は突入電流抑制抵抗R2により制限される。しかし、動力電源ラインexDCLINKの電圧値が第2所定値以上になると、動力電源ラインDCLINKからの電流は突入電流抑制抵抗R2を迂回して直接、電解コンデンサC3~C5へ供給される。このとき、動力電源ラインDCLINKと動力電源ラインexDCLINKとの電位差の大きさに応じて突入電流の電流値が決まるが、その電流値は、電解コンデンサC3~C5以降の電子部品の規格等に応じて過大となるかどうかが決まるからである。 Also, the second predetermined value of the switch S4 is the voltage value of the power supply line exDLINK when it rises to a value at which there is no danger of excessive inrush current flowing into the electrolytic capacitors C3 to C5. This second predetermined value also cannot be universally determined, like the switching threshold of the switch S2. That is, while the voltage value of the power supply line exDLINK is lower than the second predetermined value, the current from the power supply line DCLINK is supplied to the electrolytic capacitors C3 to C5 via the inrush current suppression resistor R2, and the inrush current is It is limited by the inrush current suppression resistor R2. However, when the voltage value of the power supply line exDLINK becomes equal to or higher than the second predetermined value, the current from the power supply line DCLINK bypasses the inrush current suppression resistor R2 and is directly supplied to the electrolytic capacitors C3 to C5. At this time, the current value of the rush current is determined according to the magnitude of the potential difference between the power supply line DCLINK and the power supply line exDCLINK. This is because it is determined whether or not it becomes excessive.
 以上説明したように、本実施形態の電源制御装置100では、電源供給基板110に拡張容量基板120を接続するだけで、突入電流を抑制しながら動力電源ラインDCLINKのキャパシタンスを増大させることができる。また、拡張容量基板120は、自身で動力電源ラインDCLINKの電圧値を監視し、自動的に電源供給基板110への接続のオン/オフを切り替えるので、外部から切替信号を送信する必要がなく、これにより電源供給基板110全体の製造コストを低減することができる。また、キャパシタンスが増大すると、ロボット40の動作中に減速や急停止したときに動力電源ラインDCLINK上に発生する回生エネルギーを熱エネルギーとして消費させる代わりに、再生利用可能なキャパシタンスとして回収できるので、環境に優しい装置となる。 As described above, in the power supply control device 100 of the present embodiment, it is possible to increase the capacitance of the power supply line DCLINK while suppressing the inrush current simply by connecting the expansion capacitor board 120 to the power supply board 110. In addition, since the expansion capacity board 120 monitors the voltage value of the power supply line DCLINK by itself and automatically switches ON/OFF of the connection to the power supply board 110, there is no need to transmit a switching signal from the outside. As a result, the manufacturing cost of the entire power supply board 110 can be reduced. In addition, when the capacitance increases, the regenerative energy generated on the power supply line DCLINK when the robot 40 decelerates or suddenly stops during operation can be recovered as reusable capacitance instead of being consumed as heat energy. It becomes a device that is friendly to the environment.
 図8は、動力電源ラインに拡張容量を接続する接続態様を示している。そして、図8(a)は、複数のモータを1つの電源供給基板110で制御する場合に拡張容量基板120を接続する態様を示している。図8(b)は、複数のモータを複数の電源供給基板110a~110cで制御する場合に拡張容量基板120を接続する態様の一例を示している。図8(a)の接続態様は、図3に示す接続態様と同じであるので、これ以上の説明は省略する。  Fig. 8 shows a connection mode for connecting the expansion capacity to the power supply line. FIG. 8A shows a mode of connecting the expansion capacity board 120 when controlling a plurality of motors with one power supply board 110 . FIG. 8(b) shows an example of how the expansion capacity board 120 is connected when a plurality of motors are controlled by a plurality of power supply boards 110a to 110c. Since the connection mode of FIG. 8(a) is the same as the connection mode shown in FIG. 3, further explanation is omitted.
 図8(b)に示す電源供給基板110a~110cを、例えば、上記垂直多関節ロボット40の関節41j~43jの内部に組み付けた場合、各電源供給基板110a~110cを数珠つなぎにして接続して行くが、制御軸が本体ベース部から離れるほど、電力供給に遅延が発生したり、動力電源ラインDCLINKが揺れてしまったりする虞が生ずる。手先だけ急峻に稼働させることがあったり、電源供給基板110a~110cの構成部品によって動力電源ラインDCLINKを安定させるために電解コンデンサを実装したいが、実装できない状況であったりすると、図8(b)に示すように、電源供給基板110a~110cの間に拡張容量基板120を接続する態様で電源供給基板110a~110cを中継させることで、動力電源ラインDCLINKのキャパシタンスを増大させて、動力電源ラインDCLINKを安定化させることができる。関節41j~43jの内部は、電源供給基板110a~110cで一杯となっていて、空きがないことが多いので、ロボットアームの中空部分などに拡張容量基板120を設置すれば、空間を無駄なく使用することができる。 For example, when the power supply boards 110a to 110c shown in FIG. 8B are assembled inside the joints 41j to 43j of the vertical articulated robot 40, the power supply boards 110a to 110c are connected in a daisy chain. However, the farther the control shaft is from the base of the main body, the more the power supply may be delayed or the power supply line DCLINK may sway. If only the hand is operated sharply, or if it is desired to mount an electrolytic capacitor in order to stabilize the power supply line DCLINK by the components of the power supply boards 110a to 110c, but it is not possible to mount it, FIG. 2, the power supply boards 110a to 110c are relayed in such a manner that the expansion capacitor board 120 is connected between the power supply boards 110a to 110c, thereby increasing the capacitance of the power supply line DCLINK. can be stabilized. The interior of the joints 41j to 43j is filled with the power supply boards 110a to 110c and there is often no space. can do.
 なお、本発明は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。上記実施形態では、1枚の拡張容量基板120を電源供給基板110に接続する例について説明したが、これに限らず、複数枚の拡張容量基板120を電源供給基板110に接続するようにしてもよい。 It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present invention. In the above embodiment, an example in which one expansion capacity board 120 is connected to the power supply board 110 has been described. good.
 40…垂直多関節ロボット、41m~44m…モータ、60…制御装置、100…電源制御装置、110…電源供給基板、111…全波整流回路、112…モータ駆動回路、120…拡張容量基板、130…接続線、200…モータ、V…交流電源、DCLINK…動力電源ライン、S1~S4…スイッチ、R1,R2…突入電流抑制抵抗、C1~C5…電解コンデンサ。
 
40 Vertical articulated robot 41m to 44m motor 60 control device 100 power control device 110 power supply board 111 full-wave rectifier circuit 112 motor drive circuit 120 expansion capacity board 130 . . Connection line 200 .. Motor V .

Claims (5)

  1.  ロボットアームを作動させるモータに電源を供給する電源供給基板と、
     前記電源供給基板の電源ラインに並列に接続され、前記電源ラインのキャパシタンスを増大させる1つ以上の拡張容量基板と、
     前記拡張容量基板に設けられ、前記電源ラインのキャパシタンスを増大させるためのキャパシタと、
     前記拡張容量基板に設けられ、前記拡張容量基板が前記電源ラインに接続されたときに、前記電源ラインから前記キャパシタへ過大な突入電流が流入するのを抑制する突入電流抑制機構と、
    を備えた電源供給装置。
    a power supply board that supplies power to a motor that operates the robot arm;
    one or more expansion capacitance substrates connected in parallel to a power supply line of the power supply substrate to increase the capacitance of the power supply line;
    a capacitor provided on the extension capacitor substrate for increasing the capacitance of the power supply line;
    an inrush current suppressing mechanism provided in the extended capacitance substrate for suppressing excessive inrush current from flowing into the capacitor from the power source line when the extended capacitance substrate is connected to the power source line;
    power supply with
  2.  前記電源供給装置はさらに、
     前記電源ラインの電圧が第1所定値以上に上昇したときに、前記拡張容量基板の前記電源ラインへの接続をオンに切り替える第1切替機構
    を備えた、
    請求項1に記載の電源供給装置。
    The power supply device further
    a first switching mechanism that switches on connection of the expansion capacitor substrate to the power line when the voltage of the power line rises to a first predetermined value or more,
    The power supply device according to claim 1.
  3.  前記拡張容量基板はさらに、
     前記第1切替機構により前記拡張容量基板の前記電源ラインへの接続がオンに切り替えられた後、前記電源ラインの電圧が第2所定値以上に上昇したときに、前記突入電流抑制機構の前記突入電流の流入抑制をオフに切り替える第2切替機構
    を含む、
    請求項2に記載の電源供給装置。
    The expansion capacity substrate further includes:
    After the connection of the expansion capacitor substrate to the power supply line is switched on by the first switching mechanism, when the voltage of the power supply line rises to a second predetermined value or more, the inrush current suppression mechanism including a second switching mechanism that switches off current inflow suppression,
    The power supply device according to claim 2.
  4.  前記ロボットアームは、複数本あり、複数本の前記ロボットアームは、複数の前記モータにより作動され、複数の前記モータへの電源供給は、複数の前記電源供給基板によりなされている場合、
     前記拡張容量基板は、複数の前記電源供給基板の間に接続される、
    請求項1~3のいずれか1項に記載の電源供給装置。
    When there are a plurality of the robot arms, the plurality of the robot arms are operated by the plurality of the motors, and the power supply to the plurality of the motors is performed by the plurality of the power supply boards,
    The expansion capacity board is connected between the plurality of power supply boards,
    The power supply device according to any one of claims 1 to 3.
  5.  前記拡張容量基板は、複数本の前記ロボットアームのいずれかの中空部分に設置される、
    請求項4に記載の電源供給装置。
    The expansion capacity substrate is installed in a hollow portion of one of the plurality of robot arms,
    The power supply device according to claim 4.
PCT/JP2021/024473 2021-06-29 2021-06-29 Power supply device WO2023275966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024473 WO2023275966A1 (en) 2021-06-29 2021-06-29 Power supply device
JP2023531177A JPWO2023275966A1 (en) 2021-06-29 2021-06-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024473 WO2023275966A1 (en) 2021-06-29 2021-06-29 Power supply device

Publications (1)

Publication Number Publication Date
WO2023275966A1 true WO2023275966A1 (en) 2023-01-05

Family

ID=84691589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024473 WO2023275966A1 (en) 2021-06-29 2021-06-29 Power supply device

Country Status (2)

Country Link
JP (1) JPWO2023275966A1 (en)
WO (1) WO2023275966A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308890A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Servo controller
JP2018015865A (en) * 2016-07-29 2018-02-01 株式会社マキタ Electric work machine
JP2019004643A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Servo motor controller of welding robot and welder
JP2020157401A (en) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 Robot system and robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308890A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Servo controller
JP2018015865A (en) * 2016-07-29 2018-02-01 株式会社マキタ Electric work machine
JP2019004643A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Servo motor controller of welding robot and welder
JP2020157401A (en) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 Robot system and robot

Also Published As

Publication number Publication date
JPWO2023275966A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP2004248488A (en) Motor power supply apparatus
EP3603343B1 (en) Dual led drive circuit
WO2005009621A1 (en) Electrostatic painting device
WO2023275966A1 (en) Power supply device
JP2010074891A (en) Semiconductor circuit
JP6708003B2 (en) Power supply control device
US8487596B2 (en) Driving circuitry and an integrated circuit for use therein
Oliveira et al. Architecture of an wheeled climbing robot with dynamic adjustment of the adhesion system
JP4761209B2 (en) Power converter using electric double layer capacitor and electric double layer capacitor charging method
JP2013013964A (en) Robot, and method for controlling robot
US9871464B2 (en) Ground structure for control unit
JP2008035673A (en) Power supply unit
JP3678165B2 (en) Automotive air conditioner
KR101018896B1 (en) Circuit for Charging and Discharging of Smoothing Capacitor
WO2012039309A1 (en) Motor driving system and motor system
CN112975936B (en) Motor driving system and robot
JP3125493U (en) DC motor overvoltage protection device
JP2021122866A (en) Robot, movable body for loading robot and mobile robot
JP2012151999A (en) Voltage conversion device
JP3618310B2 (en) Power control circuit
JP2005312174A (en) Power supply controller and washing machine having the same
JP5110935B2 (en) Power supply device and recording apparatus provided with power supply device
JP5151963B2 (en) Cooling device for heating element storage device and heating element storage device using the same
KR100692896B1 (en) The wheel motor control apparatus for moving robot
CN219993976U (en) Fan circuit capable of dynamically adjusting air quantity and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE