WO2023275960A1 - Optical element and display device - Google Patents

Optical element and display device Download PDF

Info

Publication number
WO2023275960A1
WO2023275960A1 PCT/JP2021/024422 JP2021024422W WO2023275960A1 WO 2023275960 A1 WO2023275960 A1 WO 2023275960A1 JP 2021024422 W JP2021024422 W JP 2021024422W WO 2023275960 A1 WO2023275960 A1 WO 2023275960A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
display device
pixel
bell
function
Prior art date
Application number
PCT/JP2021/024422
Other languages
French (fr)
Japanese (ja)
Inventor
宗和 伊達
信哉 志水
奏 山本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/024422 priority Critical patent/WO2023275960A1/en
Publication of WO2023275960A1 publication Critical patent/WO2023275960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size

Definitions

  • the present disclosure relates to optical elements and display devices.
  • FIG. 17 is a diagram showing a configuration example of a conventional optical element 10A that functions as a light blocking body that blocks part of incident light and transmits the rest.
  • the optical element 10A includes a light blocking portion 11 that blocks light and a transmission portion 12 that transmits light.
  • the light blocking portion 11 and the transmitting portion 12 linearly extend in a predetermined direction (hereinafter referred to as the “Y direction”), and extend in a direction orthogonal to the extending direction of the light blocking portion 11 and the transmitting portion 12 (hereinafter referred to as the “Y direction”). (referred to as "X direction”) are repeatedly provided at a predetermined cycle.
  • the optical element 10A has a configuration in which the distribution of the expected value of the transmittance in the X direction repeats two values of "0 (light blocking portion 11)" and "1 (transmitting portion 12)".
  • the light shielding body shown in FIG. 17 is used, for example, in combination with a two-dimensional display device in which pixels are arranged periodically, for a naked-eye three-dimensional display device that allows an observer to observe a three-dimensional image with the naked eye.
  • a naked-eye three-dimensional display device that allows an observer to observe a three-dimensional image with the naked eye.
  • moire occurs due to interference between the periodically arranged pixels and the periodic structure of the light blocking member.
  • an object having a periodic structure is placed on the opposite side of the user by sandwiching a blind or a heater having electrodes formed periodically on transparent glass. The same problem occurs if you do.
  • Patent Literature 1 describes a technique in which a diffusion plate is arranged between two periodic structures and scattering by the diffusion plate is used.
  • Patent Literature 2 describes a technique that utilizes refraction due to a fine concave-convex structure of a transparent body.
  • An object of the present disclosure which has been made in view of the problems described above, is to provide an optical element and a display device capable of suppressing moire while suppressing an increase in size and cost of the device.
  • an optical element includes a light shielding portion and a transmission portion repeatedly provided in a predetermined direction at a predetermined period on a plane, and the expected value of the transmittance in the predetermined direction is a repetition of the bell-shaped function distributed at the predetermined period.
  • a display device includes the above-described optical element and a two-dimensional display device, and the optical element is arranged on the front or back surface of the two-dimensional display device.
  • optical element and the display device According to the optical element and the display device according to the present disclosure, it is possible to suppress moire while suppressing an increase in size and cost of the device.
  • FIG. 1 is a diagram showing a configuration example of an optical element according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing another configuration example of an optical element according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure
  • FIG. 10 is a diagram showing the shape of the difference between the two error functions shown in Equation 3;
  • FIG. 4 is a diagram showing distribution of expected values of transmittance in the X direction in an optical element according to an embodiment of the present disclosure
  • 1 is a diagram illustrating a configuration example of a display device according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing another configuration example of a display device according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing the relationship between the weighted average of two images and the contour position
  • It is a figure which shows an example of a structure of a light-shielding body.
  • 6 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device shown in FIGS. 3A and 3B and the transmission region of the light shield shown in FIG. 5;
  • FIG. 7 is a diagram showing a mixture ratio of sub-pixels observed when the transmissive region shown in FIG. 6 is apparently shifted in the horizontal direction;
  • 3B is a diagram showing another example of the pixel configuration of the two-dimensional display device shown in FIGS. 3A and 3B;
  • FIG. It is a figure which shows another example of a structure of a light-shielding body. 9. It is a figure which shows an example of the positional relationship of the pixel structure of the two-dimensional display apparatus shown in FIG. 8, and the transmission region of the light-shielding body shown in FIG.
  • FIG. 10 is a diagram showing a mixing ratio of sub-pixels observed when the transmissive region shown in FIG. 9 is apparently shifted in the horizontal direction; 9.
  • FIG. 10 is a diagram showing the degree of suppression of moiré according to the standard deviation ⁇ of the optical element according to the first example. It is a figure which shows the spatial frequency characteristic of the optical element used by the 2nd Example. It is a figure which shows an example of the hardware constitutions of the control part shown to FIG. 3A and 3B. It is a figure which shows the structural example of the conventional optical element.
  • FIG. 1A is a diagram showing a configuration example of an optical element 10 according to an embodiment of the present disclosure.
  • the optical element 10 according to the present disclosure functions as a light blocking body that blocks part of incident light and transmits the rest.
  • the optical element 10 includes a light blocking portion 11 that blocks light and a transmission portion 12 that transmits light, which are provided on a plane.
  • the light blocking portions 11 and the transmitting portions 12 each extend in a predetermined direction (Y direction) and are alternately provided in a direction (X direction) perpendicular to the extending direction at predetermined intervals. That is, the optical element 10 includes light shielding portions 11 and transmitting portions 12 that are repeatedly provided on a plane at predetermined intervals in a predetermined direction (X direction).
  • p is the period in which the light shielding portion 11 and the transmitting portion 12 are repeated.
  • the expected value of the transmittance at the peripheral portion of the light shielding portion 11 continuously rises toward the transmitting portion 12 . That is, the transmittance of the light shielding portion 11 is controlled so that the distribution of the expected value of the transmittance in the X direction becomes a bell-shaped function.
  • a bell-shaped function is, for example, a convolution of a rectangular function and a Gaussian distribution.
  • Equation 1 x is the coordinate in the X direction.
  • Equation 2 The Gaussian distribution is expressed by Equation 2 below, where ⁇ is the spread parameter (standard deviation).
  • Equation 3 The convolution of the rectangular function shown in Equation 1 and the Gaussian distribution shown in Equation 2 is shown in Equation 3 below.
  • Equation 3 erf() is the error function, which is shown in Equation 4 below.
  • Equation 3 The shape of the function shown in Equation 3 is shown in FIG. 2A. As shown in FIG. 2A, the difference in the error functions erf(x) shifted in the x-direction has a bell-like shape.
  • FIG. 2B is a diagram showing the distribution of expected values of transmittance in the X direction in the optical element 10 according to this embodiment.
  • the distribution of the expected value of the transmittance in the X direction is a bell-shaped distribution with a period p (the repetition period of the light shielding portion 11 and the light transmitting portion 12). is a repetition of the function of Specifically, the transmittance is highest near the center of the transmitting portion 12 in the X direction, and decreases toward the light shielding portions 11 on both sides.
  • the bell-shaped function is a convolution of a rectangular function with a Gaussian distribution. Therefore, the width of the bell-shaped function in the X direction, that is, the width of the light-transmitting portion 12 is d, which is the same as the width of the rectangular function.
  • FIG. 2B shows an example in which two bell-shaped function waveforms are arranged in the X direction. As a result, the waveform of the bell-shaped function is repeated many times in the X direction.
  • the optical element 10 in which the transmittance continuously changes in the peripheral portion of the light shielding portion 11 exposes a film of a camera, for example, to light of intensity corresponding to the continuously changing transmittance.
  • a film of a camera for example, to light of intensity corresponding to the continuously changing transmittance.
  • it is not easy to achieve such a change in transmittance with a fine structure with high accuracy.
  • it is a binary configuration such as transmittance "0" and "1”
  • it can be manufactured at low cost and with high precision using a semiconductor process such as photolithography or high-definition printing technology. .
  • the distribution of the expected value of the transmittance in the X direction can be made to be a repetition of a bell-shaped function distributed with a period p by the distribution of the light shielding portion 11 having a uniform transmittance, it is possible to achieve a lower cost and higher accuracy.
  • Optical element 10 can be fabricated.
  • FIG. 1B is a diagram showing a configuration example of the optical element 10 in which the distribution of the expected value of the transmittance in the X direction is controlled by the distribution of the light shielding portions 11 with uniform transmittance.
  • FIG. 1B shows an example in which the light blocking portion 11 is formed so that the transmissive portion 12 has a zigzag shape.
  • the light shielding portion 11 is formed so that the two curves of the transmissive portion 12 facing each other in the X direction have shapes represented by the two error functions of Equation 3, respectively.
  • the area of the light blocking portion 11 in the Y direction at each position in the X direction changes according to the distribution shown in FIG. 2B. Therefore, in the optical element 10 shown in FIG. 1B, similarly to the optical element 10 shown in FIG. 1A, the distribution of the expected value of the transmittance in the X direction is a repetition of a bell-shaped function distributed with the period p. In this manner, the expected value of the transmittance in the X direction can be controlled by the area gradation of the light shielding portion 11 in the Y direction.
  • the optical element 10 in which the expected value of the transmittance in the X direction is controlled by the area gradation of the light shielding portion 11 has a distribution of the expected value of the transmittance in the X direction, for example, as a bell-shaped function. It can be manufactured by forming a thin film of chromium on a glass substrate in accordance with the shape of the light shielding portion 11 that repeats the above. In addition, such an optical element 10 can also be produced using, for example, a high-resolution photomechanical material such as a lith film.
  • the center of the transmissive portion 12 is a position that is equidistant in the X direction from both ends of the transmissive portion 12 in the X direction.
  • FIG. 1C is a diagram showing another configuration example of the optical element 10 according to this embodiment. Similar to the optical element 10 shown in FIG. 1B, the optical element 10 shown in FIG. different.
  • the outline of the transmission portion 12 has a bell-like function shape.
  • the outline of the transparent portion 12 has a shape obtained by normalizing the function of Equation 3 with the maximum value.
  • the distribution of the expected value of the transmittance in the X direction is a repetition of the bell-shaped function distributed with the period p.
  • the optical element 10 shown in FIG. can be improved.
  • the optical element 10 shown in FIG. can be improved.
  • the transmitting portions 12 are configured such that the shapes having a bell-like outline are continuously arranged in the Y direction, it is assumed that the transmitting portions 12 have a periodic structure in the Y direction. Even when superimposed, it is possible to suppress the occurrence of moire although the degree is weaker than that in the X direction.
  • the light shielding portion 11 may be composed of minute dots (halftone dots), and the expected value of the transmittance in the X direction may be controlled by the density of the halftone dots.
  • the bell-shaped function is a convolution of a rectangular function and a Gaussian distribution, but it is not limited to this.
  • a bell-shaped function may be any function having a bell-shaped shape, such as, for example, Gaussian, Laurentian or Voigt distributions.
  • the bell-shaped function may be a convolution of a rectangular function and a function having a bell-shaped shape.
  • a function having a bell-shaped shape is, for example, Gaussian distribution, Laurentian distribution or Voigt distribution, but is not limited thereto.
  • FIG. 1B and 1C show an example in which the patterns formed by the light blocking portions 11 and the transmitting portions 12 are aligned in the Y direction and have a uniform period, but the pattern is not limited to this.
  • the distribution of the expected value of the transmittance in the X direction is the same as that of the optical element 10 shown in FIGS. 1B and 1C, for example, as shown in FIG. may be formed.
  • the distribution of the expected value of the transmittance in the X direction is similar to that of the optical element 10 shown in FIGS. 1B and 1C, for example, as shown in FIG.
  • the width in the Y direction of the portion up to the next turn may be different.
  • FIG. 3A is a diagram showing a configuration example of the display device 100 according to this embodiment.
  • the display device 100 includes an optical element 10, a two-dimensional display device 101, a backlight 102, and a control section 103.
  • the optical element 10, the two-dimensional display device 101, and the backlight 102 are arranged in this order as seen from the observer ob. That is, the optical element 10 is provided in front of the two-dimensional display device 101 as seen from the observer ob.
  • the two-dimensional display device 101 has a configuration in which a plurality of pixels each having a plurality of sub-pixels of a plurality of colors (eg, red, green, and blue) arranged in a predetermined direction are arranged two-dimensionally.
  • the two-dimensional display device 101 modulates light emitted from a backlight 102, which is a surface light source provided on the back side, and emits the light from the front side.
  • the two-dimensional display device 101 and the backlight 102 are, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, a PDP (Plasma Display Panel) display, an LED (Light Emitting Diode) display, etc., but are not limited to these.
  • the optical element 10 transmits part of the light emitted from the two-dimensional display device 101 and blocks the rest. The light transmitted through the optical element 10 is observed by the observer ob.
  • the optical element 10 may be provided between the two-dimensional display device 101 and the backlight 102 . That is, the optical element 10 may be provided on the back surface of the two-dimensional display device 101 . In this case, the optical element 10 transmits part of the light emitted from the backlight 102 and blocks the rest. The light transmitted through the optical element 10 is modulated by the two-dimensional display device 101 and observed by the observer ob.
  • the observer ob observes the light transmitted through the transmission portion 12 of the optical element 10 .
  • an image of an object viewed from each viewpoint (hereinafter referred to as a “directive image”) changes as the observation direction (viewpoint position) of the observer ob changes. ) can be observed, motion parallax (change in appearance depending on observation position) can be reproduced.
  • smoother motion parallax can be reproduced by linear blending that smoothly changes the luminance ratio of a plurality of images as the observation position moves. Linear blending will be described below.
  • FIG. 4 is a diagram showing the relationship between the weighted average of two images (images A and B) and the contour position.
  • the weighting ratio is between 0 and 1, as shown in FIG. , it changes linearly and continuously, so it is possible to generate an image with an appropriate contour position that matches the position of the viewpoint. That is, by connecting two images with small image shifts at a ratio that varies linearly, an image of an intermediate viewpoint between adjacent viewpoints can be visually perceived. Note that in the case of an image with few high-frequency spatial frequency components, an intermediate viewpoint image is perceived even if the shift width is about 10 [arc min].
  • Linear blending combining the two-dimensional display device 101 and the light shielding body 20 will be described. First, an example of the configuration of the light shielding body 20 will be described.
  • FIG. 5 is a diagram showing an example of the configuration of the light blocking body 20. As shown in FIG.
  • the light shielding body 20 includes a light shielding region 21 that blocks light and a plurality of transmission regions 22 that transmit light.
  • the light-shielding region 21 and the transmissive region 22 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to this embodiment, respectively.
  • the transmissive area 22 is hatched diagonally upward to the right, and the light shielding area 21 is outlined.
  • the plurality of transmissive regions 22 have a width of d in the horizontal direction and are arranged in the horizontal direction with a period of n ⁇ dp. n is an integer.
  • FIG. 6 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device 101 and the transmissive region 22 of the light blocking member 20 shown in FIG.
  • the pixel configuration of the two-dimensional display device 101 has a pixel structure in which a plurality of sub-pixels of different colors are arranged vertically and sub-pixels of the same color are arranged horizontally.
  • FIG. 6 shows a structure in which three primary color sub-pixels of red (R), green (G), and blue (B) are arranged in stripes.
  • One pixel px is composed of three sub-pixels, a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B arranged in the vertical direction.
  • Each of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B has a horizontally long shape with a width in the horizontal direction longer than the width in the vertical direction.
  • the pixel pitch is dp in both the vertical and horizontal directions, that is, the width of each pixel px in the horizontal and vertical directions is dp (square pixel).
  • the shape of the pixel px may be a horizontally long shape that is long in the horizontal direction or a vertically long shape that is long in the vertical direction.
  • the transmissive region 22 is arranged so that the entire pixel px can be observed at a predetermined viewpoint.
  • FIG. 7 shows the mixing ratio of sub-pixels observed through the transmissive area 22 when the transmissive area 22 apparently moves in the horizontal direction from the state shown in FIG. 6 as the viewpoint position changes. It is a figure which shows a change.
  • red subpixel R2 green subpixel G2 and blue subpixel B2 decrease and red subpixel R1, green subpixel G1 and blue subpixel B1 load.
  • FIG. 8 is a diagram showing another example of the pixel configuration of the two-dimensional display device 101.
  • FIG. 8 is a diagram showing another example of the pixel configuration of the two-dimensional display device 101.
  • the two-dimensional display device 101 has a pixel structure in which a plurality of sub-pixels of different colors are arranged horizontally and sub-pixels of the same color are arranged vertically.
  • FIG. 8 shows a structure in which three primary color sub-pixels of red (R), green (G), and blue (B) are arranged in stripes.
  • the pixel configuration of the two-dimensional display device 101 shown in FIG. 8 corresponds to the vertical stripe pixel configuration according to Example 2, which will be described later.
  • One pixel px is composed of three sub-pixels, a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B arranged in the horizontal direction.
  • Each of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B has a vertically elongated shape in which the width in the vertical direction is longer than the width in the horizontal direction.
  • the pixel pitch is dp in both the vertical and horizontal directions, that is, the width of each pixel px in the horizontal and vertical directions is dp (square pixel).
  • the shape of the pixel px may be a horizontally long shape that is long in the horizontal direction or a vertically long shape that is long in the vertical direction.
  • the light shielding body 20 includes a light shielding region 21 that blocks light and a plurality of transmission regions 22 that transmit light.
  • the light-shielding region 21 and the transmissive region 22 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to this embodiment, respectively.
  • the transmissive area 22 is hatched diagonally upward to the right, and the light shielding area 21 is outlined.
  • the plurality of transmissive regions 22 are arranged, for example, in the horizontal direction with a period of n/3dp. n is an integer. However, the pitch at which the plurality of transmissive regions 22 are arranged may be a non-integer multiple of the horizontal width of the pixel px.
  • the transmissive region 22 has a width (dp/C) corresponding to 1/C of the width of the pixel px in the horizontal direction (C is the number of colors of the sub-pixels forming the pixel), and has a width greater than the width of the sub-pixel in the vertical direction. have a long width.
  • the width of the sub-pixel includes the width of the sub-pixel, and the width of the transmissive region 22 in the lateral direction is obtained by considering the processing error of the transmissive region 22 or the diffraction of light passing through the transmissive region. contains a width slightly smaller than the lateral width of the It should be noted that when the light shielding body 20 as a whole is reduced or enlarged, the transmissive area 22 is also reduced or enlarged.
  • D is the width of the sub-pixel
  • D' is the width of the transmissive region
  • x is the distance between the two-dimensional display device 101 and the light shielding member 20
  • L is the optimum viewing distance
  • the distance x between the two-dimensional display device 101 and the light shielding body 20 is about several mm (for example, about 2 mm).
  • the optimum viewing distance L is about several meters (for example, about 1 m). Therefore, the distance between the width D of the sub-pixel and the width D' of the transmissive region 22 is very small. "A width slightly smaller than the width of the sub-pixel in the horizontal direction" means that the distance x between the two-dimensional display device 101 and the light shielding member 20 as defined by Equation 5 and the optimum viewing distance L It includes a range smaller than the width D of the sub-pixel.
  • the pixel configuration of the two-dimensional display device 101 is a vertical stripe in which sub-pixels of the same color are arranged in the vertical direction.
  • the pixel configuration is not limited to this.
  • the pixel configuration of the two-dimensional display device 101 may be horizontal stripes in which sub-pixels of the same color are arranged horizontally. Even if the pixel configuration of the two-dimensional display device 101 is horizontal stripes, the width of the transmissive region 22 may include a width slightly smaller than the width of the sub-pixels.
  • FIG. 10 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device 101 shown in FIG. 8 and the transmissive region 22 of the light shield 20 shown in FIG.
  • the transmissive region 22 is arranged so that the entire red sub-pixel R2 can be observed at a predetermined viewpoint.
  • the pitch at which the plurality of transmissive regions 22 are arranged is an integral multiple of the horizontal width of the pixel px.
  • FIG. 11 shows the mixing ratio of the sub-pixels observed through the transmissive area 22 when the transmissive area 22 apparently moves laterally from the state shown in FIG. 10 as the viewpoint position changes. It is a figure which shows a change.
  • the light-shielding region 21 and the transmissive region 22 of the light-shielding body 20 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to the present embodiment, respectively, and the light-shielding portion and the light-transmitting portion is repeated alternately in a predetermined direction. Therefore, the display device 100 including the optical element 10 can also achieve linear blending.
  • the pitch at which the transmissive regions 22 are arranged is an integral multiple of the horizontal width of the pixel px. That is, the transmissive regions 22 are arranged with a period of n/3dp in the horizontal direction.
  • the pitch at which the transmissive regions 22 are arranged may be a non-integer multiple of the horizontal width of the pixel. In such a configuration, the colors of the sub-pixels observed through the two transmissive regions 22 arranged adjacent to each other in the horizontal direction are different from each other. In the example shown in FIG. 12, the entire red sub-pixel R2 is observed through one transmissive region 22 (the transmissive region 22 arranged on the left side in FIG.
  • one pixel is composed of sub-pixels of three primary colors
  • the present invention is not limited to this. It may be composed of sub-pixels of four colors.
  • the control unit 103 controls the display of the two-dimensional display device 101.
  • control unit 103 can display an image with an angle of parallax of 10 minutes or less, more preferably 5 minutes or less between images displayed in a combination of adjacent sub-pixels (combination of sub-pixels with consecutive numbers).
  • Image parallax is the amount of deviation ⁇ between images of viewpoints located next to each other on the screen, which is expressed as an angle when viewed from a distance L from an assumed observation position to display device 100, and is expressed below. be done.
  • a panel of RGB horizontal stripes with a pixel pitch dp of 96 ⁇ m (a panel in which sub-pixels of the same color are arranged in the horizontal direction and sub-pixels of different colors forming one pixel are arranged in the vertical direction) is used.
  • a bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. Note that any of the optical elements 10 shown in FIGS. 1A to 1E may be used because the distribution of expected transmittance values is the same.
  • the width of the transmissive portion 12 (the width d of the rectangular function) is such that a plurality of sub-pixels of different colors forming the two-dimensional display device 101 are arranged in a direction perpendicular to the direction in which the light shielding portions 11 and the transmissive portions 12 are repeated.
  • a display device 100 having a pitch (width) substantially equal to that of a pixel or a sub-pixel constituting the pixel was prepared. In such a display device 100, when the optical element 10A shown in FIG. 17 was used in place of the optical element 10 according to the present embodiment, moire was severely generated.
  • FIG. 13 is a graph showing spatial frequency characteristics of the optical element 10 used in this example.
  • the waveform shown in FIG. 13 shows the spectral envelope that indicates the spatial frequency characteristics.
  • this envelope is applied with a comb function consisting of a line spectrum with an interval of 1/p (an interval of 1 on the scale of the graph in FIG. 13).
  • the line spectrum frequencies are indicated by white triangles attached to the upper frame of the graph.
  • the spatial frequency is 1/d, that is, the envelope is attenuated while crossing the X-axis at the position of 7 on the scale of the horizontal axis.
  • 1/d is the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 .
  • the black triangles attached to the upper frame of the graph indicate spatial frequencies corresponding to the pixel pitch of the two-dimensional display device 101 .
  • the optical element 10 when the bell-shaped function is the convolution of the rectangular function and the Gaussian distribution, the standard deviation ⁇ of the Gaussian distribution is 0.25d to 0.5d. preferable.
  • FIG. 14 is a graph showing the degree of occurrence of moire depending on the magnitude of ⁇ .
  • the horizontal axis represents ⁇
  • the two-dimensional display device 101 has a pixel pitch dp of 96 ⁇ m and an RGB vertical stripe panel (a panel in which sub-pixels of the same color are arranged vertically and sub-pixels of different colors forming one pixel are arranged horizontally).
  • a bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. Note that any of the optical elements 10 shown in FIGS. 1A to 1E may be used because the distribution of expected transmittance values is the same.
  • a display device in which the prepared optical element 10 is arranged in front of the prepared two-dimensional display device 101 with a predetermined interval so that the pixel stripes of the two-dimensional display device 101 and the stripes of the transmission part 12 are parallel. 100 were prepared. That is, the display device 100 was prepared in which the width of the transmissive portion 12 (the width d of the rectangular function) is substantially equal to the pitch (width) of the sub-pixels of the pixels forming the two-dimensional display device 101 . In such a display device 100, when the optical element 10A shown in FIG. 17 was used in place of the optical element 10 according to the present embodiment, moire was severely generated.
  • FIG. 15 is a graph showing the spatial frequency characteristics of the optical element 10 used in this example.
  • the waveform shown in FIG. 15 shows a spectrum envelope indicating spatial frequency characteristics.
  • this envelope is applied with a comb function consisting of a line spectrum with an interval of 1/p (an interval of 1 on the scale of the graph in FIG. 15).
  • the line spectrum frequencies are indicated by white triangles attached to the upper frame of the graph.
  • the spatial frequency is 1/d, that is, the envelope is attenuated while crossing the X-axis at the position of 7 on the scale of the horizontal axis. 1/3d is the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 .
  • the black triangle attached to the upper frame of the graph indicates the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 .
  • harmonic components remained until ⁇ 0.25d, and moire was observed although there was a difference in degree.
  • harmonic components with a frequency of 1/d or more were almost completely suppressed, and moire was also suppressed.
  • the optical element 10 when the bell-shaped function is the convolution of the rectangular function and the Gaussian distribution, the standard deviation ⁇ of the Gaussian distribution is 0.25d to 0.5d. preferable.
  • the bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. The point is that it is sufficient to attenuate high-frequency components above a specific frequency, so other bell-shaped functions with smooth tails on the high-frequency side may be used.
  • FIG. 16 is a block diagram showing a schematic configuration of a computer 200 functioning as the control unit 103.
  • Computer 200 may be a general purpose computer, special purpose computer, workstation, personal computer (PC), electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the computer 200 includes a processor 210, a ROM (Read Only Memory) 220, a RAM (Random Access Memory) 230, a storage 240, an input section 250, an output section 260, and a communication interface ( I/F) 270.
  • Each component is communicatively connected to each other via a bus 290 .
  • the processor 210 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of
  • the processor 210 executes control of each configuration and various kinds of arithmetic processing. That is, processor 210 reads a program from ROM 220 or storage 240 and executes the program using RAM 230 as a work area. The processor 210 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 220 or the storage 240 . In this embodiment, the ROM 220 or storage 240 stores the program according to the present disclosure.
  • the program may be stored in a storage medium readable by the computer 200. Programs can be installed in the computer 200 using such a storage medium.
  • the storage medium storing the program may be a non-transitory storage medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like.
  • this program may be downloaded from an external device via a network.
  • the ROM 220 stores various programs and various data.
  • RAM 230 temporarily stores programs or data as a work area.
  • the storage 240 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
  • the input unit 250 includes one or more input interfaces that receive user's input operations and acquire information based on the user's operations.
  • the input unit 250 is a pointing device, keyboard, mouse, etc., but is not limited to these.
  • the output unit 260 includes one or more output interfaces that output information.
  • the output unit 260 is a display that outputs information as video or a speaker that outputs information as audio, but is not limited to these.
  • the output unit 260 also functions as the input unit 250 in the case of a touch panel type display.
  • the communication interface 270 is an interface for communicating with an external device.
  • the optical element 10 includes the light blocking portions 11 and the transmitting portions 12 that are repeatedly provided in a predetermined direction on a plane with a predetermined period.
  • the distribution of expected transmittance values in a given direction is a repetition of a bell-shaped function distributed at a given cycle.
  • the distribution of the expected transmittance value is a repetition of a bell-shaped function, it is possible to suppress high-frequency components above a predetermined value that cause moiré, so that the occurrence of moiré can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The optical element (10) pertaining to the present invention comprises shading parts (11) and transmitting parts (12) repeatedly provided in a prescribed direction and in a prescribed cycle on a plane, and the distribution of expected values of transmittance in the prescribed direction is a repetition of a bell-shaped function distributed in a prescribed cycle.

Description

光学素子および表示装置Optical element and display device
 本開示は、光学素子および表示装置に関する。 The present disclosure relates to optical elements and display devices.
 図17は、入射した光の一部を遮り、残りを透過する遮光体として機能する、従来の光学素子10Aの構成例を示す図である。図17に示すように、光学素子10Aは、光を遮る遮光部11と、光を透過する透過部12とを備える。遮光部11および透過部12は、所定の方向(以下、「Y方向」と称する)に直線的に延在し、遮光部11および透過部12の延在方向とは直交する方向(以下、「X方向」と称する)に、所定の周期で繰り返し設けられている。光学素子10Aは、X方向の透過率の期待値の分布が「0(遮光部11)」と「1(透過部12)」との二値を繰り返す構成を有する。 FIG. 17 is a diagram showing a configuration example of a conventional optical element 10A that functions as a light blocking body that blocks part of incident light and transmits the rest. As shown in FIG. 17, the optical element 10A includes a light blocking portion 11 that blocks light and a transmission portion 12 that transmits light. The light blocking portion 11 and the transmitting portion 12 linearly extend in a predetermined direction (hereinafter referred to as the “Y direction”), and extend in a direction orthogonal to the extending direction of the light blocking portion 11 and the transmitting portion 12 (hereinafter referred to as the “Y direction”). (referred to as "X direction") are repeatedly provided at a predetermined cycle. The optical element 10A has a configuration in which the distribution of the expected value of the transmittance in the X direction repeats two values of "0 (light blocking portion 11)" and "1 (transmitting portion 12)".
 図17に示す遮光体は、例えば、周期的に画素が配列された二次元表示装置と組み合わせて、観察者に裸眼で三次元的な映像を観察させる裸眼三次元表示装置に利用される。しかしながら、このような裸眼三次元表示装置では、周期的に配置された画素と、遮光体の周期的な構造との干渉によるモアレの発生が問題となる。 The light shielding body shown in FIG. 17 is used, for example, in combination with a two-dimensional display device in which pixels are arranged periodically, for a naked-eye three-dimensional display device that allows an observer to observe a three-dimensional image with the naked eye. However, in such a naked-eye three-dimensional display device, moire occurs due to interference between the periodically arranged pixels and the periodic structure of the light blocking member.
 上述した裸眼三次元表示装置の他に、例えば、ブラインド、あるいは、透明なガラス上に周期的に電極を形成したヒータなどを挟んで、ユーザとは反対側に周期的な構造を有する物体を配置した場合にも、同様の問題が発生する。 In addition to the naked-eye three-dimensional display device described above, for example, an object having a periodic structure is placed on the opposite side of the user by sandwiching a blind or a heater having electrodes formed periodically on transparent glass. The same problem occurs if you do.
 モアレを抑制する技術として、特許文献1には、2つの周期構造の間に拡散板を配置し、拡散板による散乱を利用した技術が記載されている。また、特許文献2には、透明体の微細な凹凸構造による屈折を利用した技術が記載されている。 As a technique for suppressing moire, Patent Literature 1 describes a technique in which a diffusion plate is arranged between two periodic structures and scattering by the diffusion plate is used. In addition, Patent Literature 2 describes a technique that utilizes refraction due to a fine concave-convex structure of a transparent body.
特開2003-066371号公報JP 2003-066371 A 再表2007-091373号公報Retable 2007-091373
 特許文献1,2に記載の技術を上述した裸眼三次元表示装置に適用した場合、周期的な構造を有する遮光体(光学素子10A)の前後に、光を散乱あるいは屈折させるための光学素子をさらに設けることが考えられる。しかしながら、このような光学素子を設けると、遮光体と二次元表示装置とを密着させることが困難であり、装置の大型化を招く、タッチパネルのようなデバイスへの適用が困難であるなどの問題がある。 When the techniques described in Patent Documents 1 and 2 are applied to the naked-eye three-dimensional display device described above, an optical element for scattering or refracting light is provided before and after the light shielding body (optical element 10A) having a periodic structure. It is conceivable to provide more. However, when such an optical element is provided, it is difficult to bring the light shield and the two-dimensional display device into close contact with each other. There is
 また、特許文献2に記載の技術のように、微細な立体構造を利用する場合、微細構造の形成の難易度が高いため、特定の条件に合わせた寸法の構造体を少量作成する場合には、非常に高価になる、また、汎用品を用いると、モアレを抑制することはできても、奥にある物体が著しくぼやけて表示されることがある、といった問題がある。 In addition, as in the technique described in Patent Document 2, when using a fine three-dimensional structure, it is difficult to form a fine structure. In addition, if a general-purpose product is used, even if moire can be suppressed, objects in the background may be displayed as being significantly blurred.
 上記のような問題点に鑑みてなされた本開示の目的は、装置の大型化およびコストの増大を抑制しつつ、モアレの抑制を図ることができる光学素子および表示装置を提供することにある。 An object of the present disclosure, which has been made in view of the problems described above, is to provide an optical element and a display device capable of suppressing moire while suppressing an increase in size and cost of the device.
 上記課題を解決するため、本開示に係る光学素子は、平面上に所定の周期で、所定の方向に繰り返し設けられた遮光部と透過部とを備え、前記所定の方向の透過率の期待値の分布が、前記所定の周期で分布する釣鐘状の関数の繰り返しである。 In order to solve the above problems, an optical element according to the present disclosure includes a light shielding portion and a transmission portion repeatedly provided in a predetermined direction at a predetermined period on a plane, and the expected value of the transmittance in the predetermined direction is a repetition of the bell-shaped function distributed at the predetermined period.
 また、上記課題を解決するため、本開示に係る表示装置は、上述した光学素子と、二次元表示装置とを備え、前記光学素子が、前記二次元表示装置の前面または背面に配置される。 Also, in order to solve the above problems, a display device according to the present disclosure includes the above-described optical element and a two-dimensional display device, and the optical element is arranged on the front or back surface of the two-dimensional display device.
 本開示に係る光学素子および表示装置によれば、装置の大型化およびコストの増大を抑制しつつ、モアレの抑制を図ることができる。 According to the optical element and the display device according to the present disclosure, it is possible to suppress moire while suppressing an increase in size and cost of the device.
本開示の一実施形態に係る光学素子の構成例を示す図である。1 is a diagram showing a configuration example of an optical element according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る光学素子の別の構成例を示す図である。FIG. 4 is a diagram showing another configuration example of an optical element according to an embodiment of the present disclosure; 本開示の一実施形態に係る光学素子のさらに別の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure; 本開示の一実施形態に係る光学素子のさらに別の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure; 本開示の一実施形態に係る光学素子のさらに別の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example of an optical element according to an embodiment of the present disclosure; 式3に示す2つの誤差関数の差の形状を示す図である。FIG. 10 is a diagram showing the shape of the difference between the two error functions shown in Equation 3; 本開示の一実施形態に係る光学素子における、X方向の透過率の期待値の分布を示す図である。FIG. 4 is a diagram showing distribution of expected values of transmittance in the X direction in an optical element according to an embodiment of the present disclosure; 本開示の一実施形態に係る表示装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a display device according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る表示装置の別の構成例を示す図である。FIG. 4 is a diagram showing another configuration example of a display device according to an embodiment of the present disclosure; 2つの画像の加重平均と輪郭位置との関係を示す図である。FIG. 4 is a diagram showing the relationship between the weighted average of two images and the contour position; 遮光体の構成の一例を示す図である。It is a figure which shows an example of a structure of a light-shielding body. 図3A,3Bに示す二次元表示装置の画素構成と、図5に示す遮光体の透過領域との位置関係の一例を示す図である。6 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device shown in FIGS. 3A and 3B and the transmission region of the light shield shown in FIG. 5; FIG. 図6に示す透過領域が見かけ上、横方向に移動した場合に観察されるサブ画素の混合比を示す図である。FIG. 7 is a diagram showing a mixture ratio of sub-pixels observed when the transmissive region shown in FIG. 6 is apparently shifted in the horizontal direction; 図3A,3Bに示す二次元表示装置の画素構成の別の一例を示す図である。3B is a diagram showing another example of the pixel configuration of the two-dimensional display device shown in FIGS. 3A and 3B; FIG. 遮光体の構成の別の一例を示す図である。It is a figure which shows another example of a structure of a light-shielding body. 図8に示す二次元表示装置の画素構成と、図9に示す遮光体の透過領域との位置関係の一例を示す図である。9. It is a figure which shows an example of the positional relationship of the pixel structure of the two-dimensional display apparatus shown in FIG. 8, and the transmission region of the light-shielding body shown in FIG. 図9に示す透過領域が見かけ上、横方向に移動した場合に観察されるサブ画素の混合比を示す図である。FIG. 10 is a diagram showing a mixing ratio of sub-pixels observed when the transmissive region shown in FIG. 9 is apparently shifted in the horizontal direction; 図8に示す二次元表示装置の画素構成と、図9に示す遮光体の透過領域との位置関係の別の一例を示す図である。9. It is a figure which shows another example of the positional relationship of the pixel structure of the two-dimensional display apparatus shown in FIG. 8, and the transmission region of the light-shielding body shown in FIG. 第1の実施例で用いた光学素子の空間周波数特性を示す図である。It is a figure which shows the spatial frequency characteristic of the optical element used in the 1st Example. 第1の実施例に係る光学素子による、標準偏差σの大きさに応じたモアレの抑制度合いを示す図である。FIG. 10 is a diagram showing the degree of suppression of moiré according to the standard deviation σ of the optical element according to the first example. 第2の実施例で用いた光学素子の空間周波数特性を示す図である。It is a figure which shows the spatial frequency characteristic of the optical element used by the 2nd Example. 図3A,3Bに示す制御部のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the control part shown to FIG. 3A and 3B. 従来の光学素子の構成例を示す図である。It is a figure which shows the structural example of the conventional optical element.
 以下、本開示の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1Aは、本開示の一実施形態に係る光学素子10の構成例を示す図である。本開示に係る光学素子10は、入射した光の一部を遮り、残りを透過する遮光体として機能するものである。 FIG. 1A is a diagram showing a configuration example of an optical element 10 according to an embodiment of the present disclosure. The optical element 10 according to the present disclosure functions as a light blocking body that blocks part of incident light and transmits the rest.
 図1Aに示すように、本実施形態に係る光学素子10は、平面上に設けられた、光を遮る遮光部11と、光を透過する透過部12とを備える。遮光部11および透過部12はそれぞれ、所定の方向(Y方向)に延在し、その延在方向と直交する方向(X方向)に、所定の周期で交互に設けられている。すなわち、光学素子10は、平面上に所定の周期で、所定の方向(X方向)に繰り返し設けられた遮光部11と透過部12とを備える。以下では、遮光部11および透過部12が繰り返される周期をpとする。 As shown in FIG. 1A, the optical element 10 according to the present embodiment includes a light blocking portion 11 that blocks light and a transmission portion 12 that transmits light, which are provided on a plane. The light blocking portions 11 and the transmitting portions 12 each extend in a predetermined direction (Y direction) and are alternately provided in a direction (X direction) perpendicular to the extending direction at predetermined intervals. That is, the optical element 10 includes light shielding portions 11 and transmitting portions 12 that are repeatedly provided on a plane at predetermined intervals in a predetermined direction (X direction). In the following description, p is the period in which the light shielding portion 11 and the transmitting portion 12 are repeated.
 図1Aに示す光学素子10においては、遮光部11の周縁部における透過率の期待値が、透過部12に向かって連続的に上昇する。すなわち、X方向の透過率の期待値の分布が、釣鐘状の関数となるように、遮光部11の透過率が制御される。釣鐘状の関数は、例えば、矩形関数と、ガウシアン分布とのコンボリューション(畳み込み)である。 In the optical element 10 shown in FIG. 1A, the expected value of the transmittance at the peripheral portion of the light shielding portion 11 continuously rises toward the transmitting portion 12 . That is, the transmittance of the light shielding portion 11 is controlled so that the distribution of the expected value of the transmittance in the X direction becomes a bell-shaped function. A bell-shaped function is, for example, a convolution of a rectangular function and a Gaussian distribution.
 矩形関数の幅をdとすると、矩形関数は以下の式1で示される。式1において、xはX方向の座標である。 If the width of the rectangular function is d, the rectangular function is given by Equation 1 below. In Equation 1, x is the coordinate in the X direction.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ガウシアン分布は、拡がりのパラメータ(標準偏差)をσとすると、以下の式2で示される。 The Gaussian distribution is expressed by Equation 2 below, where σ is the spread parameter (standard deviation).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式1に示す矩形関数と式2に示すガウシアン分布とのコンボリューションは、以下の式3で示される。 The convolution of the rectangular function shown in Equation 1 and the Gaussian distribution shown in Equation 2 is shown in Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式3において、erf()は誤差関数であり、以下の式4で示される。 In Equation 3, erf() is the error function, which is shown in Equation 4 below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式3に示す関数の形状を図2Aに示す。図2Aに示すように、x方向にずれた誤差関数erf(x)の差は、釣鐘状の形状となる。 The shape of the function shown in Equation 3 is shown in FIG. 2A. As shown in FIG. 2A, the difference in the error functions erf(x) shifted in the x-direction has a bell-like shape.
 図2Bは、本実施形態に係る光学素子10における、X方向の透過率の期待値の分布を示す図である。 FIG. 2B is a diagram showing the distribution of expected values of transmittance in the X direction in the optical element 10 according to this embodiment.
 図2Bに示すように、本実施形態に係る光学素子10においては、X方向の透過率の期待値の分布が、周期p(遮光部11および透過部12の繰り返しの周期)で分布する釣鐘状の関数の繰り返しである。具体的には、透過部12のX方向中央付近において透過率が最も高くなり、両側にある遮光部11に向かうにつれて、透過率が低くなる。上述したように、釣鐘状の関数は、矩形関数と、ガウシアン分布とのコンボリューションである。したがって、X方向の釣鐘状の関数の幅、すなわち、光を透過する透過部12の幅は、矩形関数の幅と同じdとなる。なお、図2Bにおいては、釣鐘状の関数の波形がX方向に2つ並ぶ例を示しているが、実際には、光学素子10には、多数の遮光部11と透過部12とが交互に形成されているため、釣鐘状の関数の波形が、X方向に多数繰り返される。 As shown in FIG. 2B, in the optical element 10 according to the present embodiment, the distribution of the expected value of the transmittance in the X direction is a bell-shaped distribution with a period p (the repetition period of the light shielding portion 11 and the light transmitting portion 12). is a repetition of the function of Specifically, the transmittance is highest near the center of the transmitting portion 12 in the X direction, and decreases toward the light shielding portions 11 on both sides. As mentioned above, the bell-shaped function is a convolution of a rectangular function with a Gaussian distribution. Therefore, the width of the bell-shaped function in the X direction, that is, the width of the light-transmitting portion 12 is d, which is the same as the width of the rectangular function. Note that FIG. 2B shows an example in which two bell-shaped function waveforms are arranged in the X direction. As a result, the waveform of the bell-shaped function is repeated many times in the X direction.
 図1Aに示すような、遮光部11の周縁部において、透過率が連続的に変化する光学素子10は、例えば、カメラのフィルムに、連続的に変化する透過率に対応した強度の光を露光することで形成することができる。しかしながら、このような透過率の変化を、微細な構造で高精度に実現することは容易ではない。一方、透過率「0」と「1」のような二値の構成であれば、フォトリソグラフィーのような半導体プロセスあるいは高精細の印刷技術を利用して、安価かつ高精度に製作することができる。そのため、透過率が一様な遮光部11の分布により、X方向の透過率の期待値の分布が、周期pで分布する釣鐘状の関数の繰り返しとすることができれば、より安価かつ高精度に光学素子10を製作することができる。 As shown in FIG. 1A, the optical element 10 in which the transmittance continuously changes in the peripheral portion of the light shielding portion 11 exposes a film of a camera, for example, to light of intensity corresponding to the continuously changing transmittance. can be formed by However, it is not easy to achieve such a change in transmittance with a fine structure with high accuracy. On the other hand, if it is a binary configuration such as transmittance "0" and "1", it can be manufactured at low cost and with high precision using a semiconductor process such as photolithography or high-definition printing technology. . Therefore, if the distribution of the expected value of the transmittance in the X direction can be made to be a repetition of a bell-shaped function distributed with a period p by the distribution of the light shielding portion 11 having a uniform transmittance, it is possible to achieve a lower cost and higher accuracy. Optical element 10 can be fabricated.
 図1Bは、透過率が一様な遮光部11の分布により、X方向の透過率の期待値の分布を制御した光学素子10の構成例を示す図である。図1Bにおいては、透過部12がジグザグ状となるように遮光部11が形成された例を示している。具体的には、透過部12のX方向に対向する2つの曲線がそれぞれ、式3の2つの誤差関数で表される形状となるように、遮光部11が形成される。 FIG. 1B is a diagram showing a configuration example of the optical element 10 in which the distribution of the expected value of the transmittance in the X direction is controlled by the distribution of the light shielding portions 11 with uniform transmittance. FIG. 1B shows an example in which the light blocking portion 11 is formed so that the transmissive portion 12 has a zigzag shape. Specifically, the light shielding portion 11 is formed so that the two curves of the transmissive portion 12 facing each other in the X direction have shapes represented by the two error functions of Equation 3, respectively.
 図1Bに示す光学素子10においては、X方向のそれぞれの位置における、Y方向の遮光部11の面積が、図2Bに示す分布に従って変化する。そのため、図1Bに示す光学素子10においても、図1Aに示す光学素子10と同様に、X方向の透過率の期待値の分布が、周期pで分布する釣鐘状の関数の繰り返しとなる。このように、X方向の透過率の期待値は、Y方向についての遮光部11の面積階調により制御することができる。 In the optical element 10 shown in FIG. 1B, the area of the light blocking portion 11 in the Y direction at each position in the X direction changes according to the distribution shown in FIG. 2B. Therefore, in the optical element 10 shown in FIG. 1B, similarly to the optical element 10 shown in FIG. 1A, the distribution of the expected value of the transmittance in the X direction is a repetition of a bell-shaped function distributed with the period p. In this manner, the expected value of the transmittance in the X direction can be controlled by the area gradation of the light shielding portion 11 in the Y direction.
 図1Bに示すような、X方向の透過率の期待値が遮光部11の面積階調により制御される光学素子10は、例えば、X方向の透過率の期待値の分布が、釣鐘状の関数の繰り返しとなる遮光部11の形状に合わせて、ガラス基板上にクロムの薄膜を形成することで作製することができる。また、このような光学素子10は、例えば、リスフィルムのような解像力の高い写真製版用材料を使用して作製することも可能である。 As shown in FIG. 1B, the optical element 10 in which the expected value of the transmittance in the X direction is controlled by the area gradation of the light shielding portion 11 has a distribution of the expected value of the transmittance in the X direction, for example, as a bell-shaped function. It can be manufactured by forming a thin film of chromium on a glass substrate in accordance with the shape of the light shielding portion 11 that repeats the above. In addition, such an optical element 10 can also be produced using, for example, a high-resolution photomechanical material such as a lith film.
 図1Bに示す光学素子10では、透過部12の中心に遮光部11が存在するため、光の利用効率が低下する。なお、透過部12の中心とは、透過部12のX方向の両端部からX方向の距離が等しい位置である。 In the optical element 10 shown in FIG. 1B, since the light shielding portion 11 exists in the center of the transmitting portion 12, the light utilization efficiency is lowered. Note that the center of the transmissive portion 12 is a position that is equidistant in the X direction from both ends of the transmissive portion 12 in the X direction.
 図1Cは、本実施形態に係る光学素子10の他の構成例を示す図である。図1Cに示す光学素子10も図1Bに示す光学素子10と同様に、遮光部11の面積階調により、X方向の透過率の期待値を制御するものであるが、透過部12の形状が異なる。 FIG. 1C is a diagram showing another configuration example of the optical element 10 according to this embodiment. Similar to the optical element 10 shown in FIG. 1B, the optical element 10 shown in FIG. different.
 図1Cに示す光学素子10においては、透過部12の輪郭が、釣鐘状の関数の形状をしている。具体的には、透過部12の輪郭は、式3の関数を最大値で規格化した形状である。図1Cに示す光学素子10においても、X方向の透過率の期待値の分布が、周期pで分布する釣鐘状の関数の繰り返しとなる。また、図1Cに示すように、透過部12の中心には遮光部11が存在していないため、図1Cに示す光学素子10は、図1Bに示す光学素子10と比べて、光の利用効率の向上を図ることができる。また、図1Cに示す光学素子10では、透過部12が、釣鐘状に近い輪郭を有する形状がY方向に連続的に並んで構成されているため、Y方向に周期的な構造を有するものと重ね合わせた場合にも、X方向にくらべると程度は弱いがモアレの発生を抑制することができる。 In the optical element 10 shown in FIG. 1C, the outline of the transmission portion 12 has a bell-like function shape. Specifically, the outline of the transparent portion 12 has a shape obtained by normalizing the function of Equation 3 with the maximum value. Also in the optical element 10 shown in FIG. 1C, the distribution of the expected value of the transmittance in the X direction is a repetition of the bell-shaped function distributed with the period p. In addition, as shown in FIG. 1C, since the light blocking portion 11 does not exist in the center of the transmission portion 12, the optical element 10 shown in FIG. can be improved. In addition, in the optical element 10 shown in FIG. 1C, since the transmitting portions 12 are configured such that the shapes having a bell-like outline are continuously arranged in the Y direction, it is assumed that the transmitting portions 12 have a periodic structure in the Y direction. Even when superimposed, it is possible to suppress the occurrence of moire although the degree is weaker than that in the X direction.
 なお、図1B,1Cにおいては、遮光部11の形状を制御することで、X方向の透過率の期待値を階調制御する例を用いて説明したが、これに限られるものではない。例えば、遮光部11を、微小な点(網点)で構成し、網点の密度により、X方向の透過率の期待値を制御してもよい。 In addition, in FIGS. 1B and 1C, an example in which the expected value of the transmittance in the X direction is gradation controlled by controlling the shape of the light shielding portion 11 has been described, but the present invention is not limited to this. For example, the light shielding portion 11 may be composed of minute dots (halftone dots), and the expected value of the transmittance in the X direction may be controlled by the density of the halftone dots.
 また、上述した例では、釣鐘状の関数は、矩形関数とガウシアン分布とのコンボリューションである例を用いて説明したが、これに限られるものではない。釣鐘状の関数は、例えば、ガウシアン分布、ローレンチアン分布またはフォークト分布などの、釣鐘状の形状を有する任意の関数であってよい。また、釣鐘状の関数は、矩形関数と、釣鐘状の形状を有する関数とのコンボリューションであってよい。釣鐘状の形状を有する関数は、例えば、ガウシアン分布、ローレンチアン分布またはフォークト分布などであるが、これらに限られない。 Also, in the above example, the bell-shaped function is a convolution of a rectangular function and a Gaussian distribution, but it is not limited to this. A bell-shaped function may be any function having a bell-shaped shape, such as, for example, Gaussian, Laurentian or Voigt distributions. Also, the bell-shaped function may be a convolution of a rectangular function and a function having a bell-shaped shape. A function having a bell-shaped shape is, for example, Gaussian distribution, Laurentian distribution or Voigt distribution, but is not limited thereto.
 また、図1B,1Cでは、遮光部11および透過部12により形成される紋様が、Y方向に揃っており、均一な周期である例を示しているが、これに限られるものではない。X方向の透過率の期待値の分布が、図1B,1Cに示す光学素子10と同様であれば、例えば、図1Dに示すように、X方向に隣り合う透過部12がY方向にずれて形成されてよい。また、X方向の透過率の期待値の分布が、図1B,1Cに示す光学素子10と同様であれば、例えば、図1Eに示すように、ジグザグ形状の透過部12の、一の折り返しから次の折り返しまでの部分のY方向の幅が異なっていてよい。このようにY方向の周期を乱すことにより、Y方向の周期構造とのモアレを抑制することができる。 1B and 1C show an example in which the patterns formed by the light blocking portions 11 and the transmitting portions 12 are aligned in the Y direction and have a uniform period, but the pattern is not limited to this. If the distribution of the expected value of the transmittance in the X direction is the same as that of the optical element 10 shown in FIGS. 1B and 1C, for example, as shown in FIG. may be formed. Further, if the distribution of the expected value of the transmittance in the X direction is similar to that of the optical element 10 shown in FIGS. 1B and 1C, for example, as shown in FIG. The width in the Y direction of the portion up to the next turn may be different. By disturbing the period in the Y direction in this way, it is possible to suppress moire with the periodic structure in the Y direction.
 図3Aは、本実施形態に係る表示装置100の構成例を示す図である。 FIG. 3A is a diagram showing a configuration example of the display device 100 according to this embodiment.
 図3Aに示すように、本実施形態に係る表示装置100は、光学素子10と、二次元表示装置101と、バックライト102と、制御部103とを備える。図3Aに示す表示装置100では、観察者obから見て、光学素子10、二次元表示装置101およびバックライト102がこの順に配置されている。すなわち、観察者obから見て、光学素子10が、二次元表示装置101の前面に設けられている。 As shown in FIG. 3A, the display device 100 according to this embodiment includes an optical element 10, a two-dimensional display device 101, a backlight 102, and a control section 103. In the display device 100 shown in FIG. 3A, the optical element 10, the two-dimensional display device 101, and the backlight 102 are arranged in this order as seen from the observer ob. That is, the optical element 10 is provided in front of the two-dimensional display device 101 as seen from the observer ob.
 二次元表示装置101は、複数の色(例えば、赤色、緑色、青色)のサブ画素が所定の方向並んで構成される複数の画素が、二次元状に配置された構成を有する。二次元表示装置101は、背面側に設けられた面光源であるバックライト102から出射された光を変調して、前面側から出射する。二次元表示装置101およびバックライト102は、例えば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、PDP(Plasma Display Panel)ディスプレイ、LED(Light Emitting Diode)ディスプレイなどであるが、これらに限られない。 The two-dimensional display device 101 has a configuration in which a plurality of pixels each having a plurality of sub-pixels of a plurality of colors (eg, red, green, and blue) arranged in a predetermined direction are arranged two-dimensionally. The two-dimensional display device 101 modulates light emitted from a backlight 102, which is a surface light source provided on the back side, and emits the light from the front side. The two-dimensional display device 101 and the backlight 102 are, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, a PDP (Plasma Display Panel) display, an LED (Light Emitting Diode) display, etc., but are not limited to these.
 光学素子10は、二次元表示装置101から出射された光の一部を透過し、残りを遮る。光学素子10を透過した光が観察者obに観察される。 The optical element 10 transmits part of the light emitted from the two-dimensional display device 101 and blocks the rest. The light transmitted through the optical element 10 is observed by the observer ob.
 図3Aにおいては、光学素子10が二次元表示装置101の前面に設けられる例を用いて説明したが、これに限られるものではない。図3Bに示すように、光学素子10は、二次元表示装置101とバックライト102との間に設けられてよい。すなわち、光学素子10は、二次元表示装置101の背面に設けられてよい。この場合、光学素子10は、バックライト102から出射された光の一部を透過し、残りを遮る。光学素子10を透過した光は二次元表示装置101により変調され、観察者obに観察される。 In FIG. 3A, an example in which the optical element 10 is provided on the front surface of the two-dimensional display device 101 has been described, but it is not limited to this. As shown in FIG. 3B, the optical element 10 may be provided between the two-dimensional display device 101 and the backlight 102 . That is, the optical element 10 may be provided on the back surface of the two-dimensional display device 101 . In this case, the optical element 10 transmits part of the light emitted from the backlight 102 and blocks the rest. The light transmitted through the optical element 10 is modulated by the two-dimensional display device 101 and observed by the observer ob.
 図3A,3Bに示す表示装置100は、光学素子10の透過部12を透過した光が観察者obに観察される。このような構成により、本実施形態に係る表示装置100によれば、観察者obの観察方向(視点位置)の変化に伴って、各視点から対象を見た画像(以下、「指向性画像」と称する)を観察させることで、運動視差(観察位置に応じた見え方の変化)を再現することができる。ここで、観察位置の移動に伴い、複数の画像の輝度の比率を滑らかに変化させるリニアブレンディングにより、より滑らかな運動視差の再現が可能となる。以下では、リニアブレンディングについて説明する。 In the display device 100 shown in FIGS. 3A and 3B, the observer ob observes the light transmitted through the transmission portion 12 of the optical element 10 . With such a configuration, according to the display device 100 according to the present embodiment, an image of an object viewed from each viewpoint (hereinafter referred to as a “directive image”) changes as the observation direction (viewpoint position) of the observer ob changes. ) can be observed, motion parallax (change in appearance depending on observation position) can be reproduced. Here, smoother motion parallax can be reproduced by linear blending that smoothly changes the luminance ratio of a plurality of images as the observation position moves. Linear blending will be described below.
 図4は、二つの画像(画像A,B)の加重平均と輪郭位置との関係を示す図である。隣り合う視点間での画像のずれ幅が3[arc min]程度の小さな値となるように、指向性画像を表示した場合には、図4に示すように、加重比が0~1の間では直線的かつ連続的に変化するため、視点位置にあった適切な輪郭位置の画像を生成することができる。すなわち、画像のずれが小さい二つの画像を線形的に変化する比率で結ぶことにより、忠実に隣り合う視点間の中間の中間視点の画像が視覚される。なお、空間周波数の高周波成分が少ない画像の場合には、ずれ幅が10[arc min]程度であっても、中間視点の画像が知覚される。 FIG. 4 is a diagram showing the relationship between the weighted average of two images (images A and B) and the contour position. When the directional image is displayed so that the image shift width between adjacent viewpoints is a small value of about 3 [arc min], the weighting ratio is between 0 and 1, as shown in FIG. , it changes linearly and continuously, so it is possible to generate an image with an appropriate contour position that matches the position of the viewpoint. That is, by connecting two images with small image shifts at a ratio that varies linearly, an image of an intermediate viewpoint between adjacent viewpoints can be visually perceived. Note that in the case of an image with few high-frequency spatial frequency components, an intermediate viewpoint image is perceived even if the shift width is about 10 [arc min].
 二次元表示装置101と、遮光体20とを組み合わせたリニアブレンディングについて説明する。まず、遮光体20の構成の一例について説明する。 Linear blending combining the two-dimensional display device 101 and the light shielding body 20 will be described. First, an example of the configuration of the light shielding body 20 will be described.
 図5は、遮光体20の構成の一例を示す図である。 FIG. 5 is a diagram showing an example of the configuration of the light blocking body 20. As shown in FIG.
 図5に示すように、遮光体20は、光を遮る遮光領域21と、光を透過する複数の透過領域22とを備える。遮光領域21および透過領域22はそれぞれ、本実施形態に係る光学素子10の遮光部11および透過部12に対応する。図5においては、透過領域22には右斜め上がりのハッチングを付し、遮光領域21は白抜きで示している。複数の透過領域22は、例えば、横方向の幅がdであり、横方向にn×dpの周期で配置される。nは整数である。 As shown in FIG. 5, the light shielding body 20 includes a light shielding region 21 that blocks light and a plurality of transmission regions 22 that transmit light. The light-shielding region 21 and the transmissive region 22 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to this embodiment, respectively. In FIG. 5, the transmissive area 22 is hatched diagonally upward to the right, and the light shielding area 21 is outlined. For example, the plurality of transmissive regions 22 have a width of d in the horizontal direction and are arranged in the horizontal direction with a period of n×dp. n is an integer.
 図6は、二次元表示装置101の画素構成と、図5に示す遮光体20の透過領域22との位置関係の一例を示す図である。なお、図6においては、二次元表示装置101の画素構成は、縦方向には異なる色の複数のサブ画素が並び、横方向には同じ色のサブ画素が並ぶ画素構造を有する。図6においては、赤色(R)、緑色(G)、青色(B)の3原色のサブ画素が、ストライプ状に配置された構造を示している。 FIG. 6 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device 101 and the transmissive region 22 of the light blocking member 20 shown in FIG. In FIG. 6, the pixel configuration of the two-dimensional display device 101 has a pixel structure in which a plurality of sub-pixels of different colors are arranged vertically and sub-pixels of the same color are arranged horizontally. FIG. 6 shows a structure in which three primary color sub-pixels of red (R), green (G), and blue (B) are arranged in stripes.
 1つの画素pxは、縦方向に並んだ赤色サブ画素R、緑色サブ画素Gおよび青色サブ画素Bの3つのサブ画素から構成される。赤色サブ画素R、緑色サブ画素Gおよび青色サブ画素Bはそれぞれ、横方向の幅が縦方向の幅よりも長い横長の形状を有する。以下では、画素ピッチは縦方向および横方向ともにdpである、すなわち、横方向および縦方向の画素pxの幅がdpである(正方画素)として説明する。ただし、画素pxの形状は、横方向に長い横長の形状であっても、縦方向に長い縦長の形状であってもよい。  One pixel px is composed of three sub-pixels, a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B arranged in the vertical direction. Each of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B has a horizontally long shape with a width in the horizontal direction longer than the width in the vertical direction. In the following description, the pixel pitch is dp in both the vertical and horizontal directions, that is, the width of each pixel px in the horizontal and vertical directions is dp (square pixel). However, the shape of the pixel px may be a horizontally long shape that is long in the horizontal direction or a vertically long shape that is long in the vertical direction.
 図6に示すように、透過領域22は、所定の視点において、ある画素pxの全体が観察されるように配置されている。 As shown in FIG. 6, the transmissive region 22 is arranged so that the entire pixel px can be observed at a predetermined viewpoint.
 図7は、視点位置が変化することに伴って、図6に示す状態から、透過領域22が見かけ上、横方向に移動した場合に透過領域22を介して観察されるサブ画素の混合比の変化を示す図である。 FIG. 7 shows the mixing ratio of sub-pixels observed through the transmissive area 22 when the transmissive area 22 apparently moves in the horizontal direction from the state shown in FIG. 6 as the viewpoint position changes. It is a figure which shows a change.
 図7において、横軸に示す「0」は、図6に示す状態でのサブ画素の混合比を示す。横軸が「0」の状態では、透過領域22を介して、赤色サブ画素R2、緑色サブ画素G2および青色サブ画素B2の全体が観察される。視点位置が変化することに伴って、図6に示す状態から、透過領域22が見かけ上、紙面の右方向に移動するにつれ(図7の右方向に相当)、透過領域22を介して観察される赤色サブ画素R2、緑色サブ画素G2および青色サブ画素B2は減少し、赤色サブ画素R3、緑色サブ画素G3および青色サブ画素B3が増加する。また、視点位置が変化することに伴って、図6に示す状態から、透過領域22が見かけ上、紙面の左方向に移動するにつれ(図7の左方向に相当)、透過領域22を介して観察される赤色サブ画素R2、緑色サブ画素G2および青色サブ画素B2は減少し、赤色サブ画素R1、緑色サブ画素G1および青色サブ画素B1が装荷する。このように、遮光体20を介して二次元表示装置101を観察することで、視点位置が横方向に移動した場合に、赤色、緑色、青色のそれぞれについて、リニアブレンディングを実現することができる。 In FIG. 7, "0" shown on the horizontal axis indicates the mixing ratio of sub-pixels in the state shown in FIG. When the horizontal axis is "0", the entire red sub-pixel R2, green sub-pixel G2 and blue sub-pixel B2 are observed through the transmissive region 22. FIG. As the viewpoint position changes, as the transmissive region 22 apparently moves to the right in the drawing (corresponding to the right direction in FIG. 7) from the state shown in FIG. Red sub-pixel R2, green sub-pixel G2 and blue sub-pixel B2 are decreased and red sub-pixel R3, green sub-pixel G3 and blue sub-pixel B3 are increased. In addition, as the viewpoint position changes, as the transmissive area 22 apparently moves leftward in the plane of the drawing (corresponding to the leftward direction in FIG. 7) from the state shown in FIG. Observed red subpixel R2, green subpixel G2 and blue subpixel B2 decrease and red subpixel R1, green subpixel G1 and blue subpixel B1 load. By observing the two-dimensional display device 101 through the light blocking member 20 in this manner, linear blending can be achieved for each of red, green, and blue when the viewpoint position moves in the horizontal direction.
 図8は、二次元表示装置101の画素構成の別の一例を示す図である。 FIG. 8 is a diagram showing another example of the pixel configuration of the two-dimensional display device 101. FIG.
 図8に示す例では、二次元表示装置101は、横方向には異なる色の複数のサブ画素が並び、縦方向には同じ色のサブ画素が並ぶ画素構造を有する。図8においては、赤色(R)、緑色(G)、青色(B)の3原色のサブ画素が、ストライプ状に配置された構造を示している。図8に示す二次元表示装置101の画素構成は、後述する実施例2に係る縦ストライプの画素構成に対応するものである。 In the example shown in FIG. 8, the two-dimensional display device 101 has a pixel structure in which a plurality of sub-pixels of different colors are arranged horizontally and sub-pixels of the same color are arranged vertically. FIG. 8 shows a structure in which three primary color sub-pixels of red (R), green (G), and blue (B) are arranged in stripes. The pixel configuration of the two-dimensional display device 101 shown in FIG. 8 corresponds to the vertical stripe pixel configuration according to Example 2, which will be described later.
 1つの画素pxは、横方向に並んだ赤色サブ画素R、緑色サブ画素Gおよび青色サブ画素Bの3つのサブ画素から構成される。赤色サブ画素R、緑色サブ画素Gおよび青色サブ画素Bはそれぞれ、縦方向の幅が横方向の幅よりも長い縦長の形状を有する。以下では、画素ピッチは縦方向および横方向ともにdpである、すなわち、横方向および縦方向の画素pxの幅がdpである(正方画素)として説明する。ただし、画素pxの形状は、横方向に長い横長の形状であっても、縦方向に長い縦長の形状であってもよい。  One pixel px is composed of three sub-pixels, a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B arranged in the horizontal direction. Each of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B has a vertically elongated shape in which the width in the vertical direction is longer than the width in the horizontal direction. In the following description, the pixel pitch is dp in both the vertical and horizontal directions, that is, the width of each pixel px in the horizontal and vertical directions is dp (square pixel). However, the shape of the pixel px may be a horizontally long shape that is long in the horizontal direction or a vertically long shape that is long in the vertical direction.
 以下では、図8に示す画素構成の二次元表示装置101と、図9に示す遮光体20とを組み合わせた場合のリニアブレンディングを例として説明する。まず、遮光体20の構成について説明する。 In the following, linear blending in the case of combining the two-dimensional display device 101 having the pixel configuration shown in FIG. 8 and the light blocking member 20 shown in FIG. 9 will be described as an example. First, the structure of the light shielding body 20 will be described.
 図9に示すように、遮光体20は、光を遮る遮光領域21と、光を透過する複数の透過領域22とを備える。遮光領域21および透過領域22はそれぞれ、本実施形態に係る光学素子10の遮光部11および透過部12に対応する。図9においては、透過領域22には右斜め上がりのハッチングを付し、遮光領域21は白抜きで示している。複数の透過領域22は、例えば、横方向にn/3dpの周期で配置される。nは整数である。ただし、複数の透過領域22が配置されるピッチは、画素pxの横方向の幅の非整数倍であってもよい。 As shown in FIG. 9, the light shielding body 20 includes a light shielding region 21 that blocks light and a plurality of transmission regions 22 that transmit light. The light-shielding region 21 and the transmissive region 22 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to this embodiment, respectively. In FIG. 9, the transmissive area 22 is hatched diagonally upward to the right, and the light shielding area 21 is outlined. The plurality of transmissive regions 22 are arranged, for example, in the horizontal direction with a period of n/3dp. n is an integer. However, the pitch at which the plurality of transmissive regions 22 are arranged may be a non-integer multiple of the horizontal width of the pixel px.
 透過領域22は、横方向に画素pxの幅の1/Cに相当する幅(dp/C)(Cは画素を構成するサブ画素の色数)を有し、縦方向にサブ画素の幅より長い幅を有する。サブ画素の幅とは、サブ画素の幅を含み、さらに、透過領域22の横方向の幅が、透過領域22の加工誤差あるいは透過領域を通過した光の回折を考慮して求められる、サブ画素の横方向の幅よりも若干小さい幅を含むものである。なお、遮光体20全体を縮小あるいは拡大すると、透過領域22も縮小あるいは拡大する。ここで、サブ画素の幅をD、透過領域の幅をD’、二次元表示装置101と遮光体20との距離をx、最適視距離をLとすると、画素pdの幅Dと遮光領域の幅D’との関係は以下の式5で表される。 The transmissive region 22 has a width (dp/C) corresponding to 1/C of the width of the pixel px in the horizontal direction (C is the number of colors of the sub-pixels forming the pixel), and has a width greater than the width of the sub-pixel in the vertical direction. have a long width. The width of the sub-pixel includes the width of the sub-pixel, and the width of the transmissive region 22 in the lateral direction is obtained by considering the processing error of the transmissive region 22 or the diffraction of light passing through the transmissive region. contains a width slightly smaller than the lateral width of the It should be noted that when the light shielding body 20 as a whole is reduced or enlarged, the transmissive area 22 is also reduced or enlarged. Here, if D is the width of the sub-pixel, D' is the width of the transmissive region, x is the distance between the two-dimensional display device 101 and the light shielding member 20, and L is the optimum viewing distance, then D is the width of the pixel pd and D is the width of the light shielding region. The relationship with the width D' is represented by Equation 5 below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、一般に、二次元表示装置101と遮光体20との距離xは、数mm程度(例えば、2mm程度)である。また、最適視距離Lは、数m程度(例えば、1m程度)である。したがって、サブ画素の幅Dと透過領域22の幅D’の幅との距離は非常に小さいものとなる。「サブ画素の横方向の幅よりも若干小さい幅」とは、式5で規定されるような、二次元表示装置101と遮光体20との距離xと、最適視距離Lとに応じた、サブ画素の幅Dよりも小さい範囲を含むものである。また、上述した例では、二次元表示装置101の画素構成が、同じ色のサブ画素が縦方向に並ぶ縦ストライプである例を用いて説明したが、これに限られるものではない。二次元表示装置101の画素構成が、同じ色のサブ画素が横方向に並ぶ横ストライプであってもよい。二次元表示装置101の画素構成が横ストライプである場合でも、透過領域の22の幅は、サブ画素の幅よりも若干小さい幅を含んでよい。 Here, generally, the distance x between the two-dimensional display device 101 and the light shielding body 20 is about several mm (for example, about 2 mm). Also, the optimum viewing distance L is about several meters (for example, about 1 m). Therefore, the distance between the width D of the sub-pixel and the width D' of the transmissive region 22 is very small. "A width slightly smaller than the width of the sub-pixel in the horizontal direction" means that the distance x between the two-dimensional display device 101 and the light shielding member 20 as defined by Equation 5 and the optimum viewing distance L It includes a range smaller than the width D of the sub-pixel. In the above example, the pixel configuration of the two-dimensional display device 101 is a vertical stripe in which sub-pixels of the same color are arranged in the vertical direction. However, the pixel configuration is not limited to this. The pixel configuration of the two-dimensional display device 101 may be horizontal stripes in which sub-pixels of the same color are arranged horizontally. Even if the pixel configuration of the two-dimensional display device 101 is horizontal stripes, the width of the transmissive region 22 may include a width slightly smaller than the width of the sub-pixels.
 図8に示す例では、画素pxは、赤色サブ画素R、緑色サブ画素Gおよび青色サブ画素Bから構成されているため、C=3である。このため、透過領域22は、横方向の幅がdp/3であり、縦方向の幅が画素の幅より長い開口である。図9に示す例では、透過領域22の縦方向の幅は、遮光体20の縦方向の幅である。 In the example shown in FIG. 8, the pixel px is composed of a red sub-pixel R, a green sub-pixel G and a blue sub-pixel B, so C=3. Therefore, the transmissive region 22 is an opening having a horizontal width of dp/3 and a vertical width longer than the pixel width. In the example shown in FIG. 9 , the vertical width of the transmissive region 22 is the vertical width of the light blocking member 20 .
 図10は、図8に示す二次元表示装置101の画素構成と、図9に示す遮光体20の透過領域22との位置関係の一例を示す図である。図10に示すように、透過領域22は、所定の視点において、赤色サブ画素R2の全体が観察されるように配置されている。図10に示す例では、複数の透過領域22が配置されるピッチは、画素pxの横方向の幅の整数倍である。 FIG. 10 is a diagram showing an example of the positional relationship between the pixel configuration of the two-dimensional display device 101 shown in FIG. 8 and the transmissive region 22 of the light shield 20 shown in FIG. As shown in FIG. 10, the transmissive region 22 is arranged so that the entire red sub-pixel R2 can be observed at a predetermined viewpoint. In the example shown in FIG. 10, the pitch at which the plurality of transmissive regions 22 are arranged is an integral multiple of the horizontal width of the pixel px.
 図11は、視点位置が変化することに伴って、図10に示す状態から、透過領域22が見かけ上、横方向に移動した場合に透過領域22を介して観察されるサブ画素の混合比の変化を示す図である。 FIG. 11 shows the mixing ratio of the sub-pixels observed through the transmissive area 22 when the transmissive area 22 apparently moves laterally from the state shown in FIG. 10 as the viewpoint position changes. It is a figure which shows a change.
 図11において、横軸に示す「0」は、図10に示す状態でのサブ画素の混合比を示す。横軸が「0」の状態では、透過領域22を介して、赤色サブ画素R2の全体が観察される。視点位置が変化することに伴って、図10に示す状態から、透過領域22が見かけ上、紙面の右方向に移動するにつれ(図11の右方向に相当)、透過領域22を介して観察される赤色サブ画素R2は減少し、緑色サブ画素G2が増加する。また、視点位置が変化することに伴って、図10に示す状態から、透過領域22が見かけ上、紙面の左方向に移動するにつれ(図11の左方向に相当)、透過領域22を介して観察される赤色サブ画素R2は減少し、青色サブ画素B1が増加する。このように、遮光体20を介して二次元表示装置101を観察することで、視点位置が横方向に移動した場合に、赤色、緑色、青色のそれぞれについて、リニアブレンディングを実現することができる。 In FIG. 11, "0" shown on the horizontal axis indicates the mixing ratio of sub-pixels in the state shown in FIG. When the horizontal axis is "0", the entire red sub-pixel R2 is observed through the transmissive region 22. FIG. As the viewpoint position changes, as the transmissive region 22 apparently moves rightward in the plane of the drawing (corresponding to the rightward direction in FIG. 11) from the state shown in FIG. The number of red sub-pixels R2 to be used decreases and the number of green sub-pixels G2 increases. In addition, as the viewpoint position changes, as the transmissive area 22 apparently moves leftward in the plane of the drawing (corresponding to the leftward direction in FIG. 11) from the state shown in FIG. The observed red subpixel R2 decreases and the blue subpixel B1 increases. By observing the two-dimensional display device 101 through the light blocking member 20 in this manner, linear blending can be achieved for each of red, green, and blue when the viewpoint position moves in the horizontal direction.
 上述したように、遮光体20の遮光領域21および透過領域22はそれぞれ、本実施形態に係る光学素子10の遮光部11および透過部12に相当し、光を遮る部分と光を透過する部分とが所定の方向に交互に繰り返される構成も同様である。したがって、光学素子10を備える表示装置100によっても、リニアブレンディングを実現することができる。 As described above, the light-shielding region 21 and the transmissive region 22 of the light-shielding body 20 correspond to the light-shielding portion 11 and the transmissive portion 12 of the optical element 10 according to the present embodiment, respectively, and the light-shielding portion and the light-transmitting portion is repeated alternately in a predetermined direction. Therefore, the display device 100 including the optical element 10 can also achieve linear blending.
 なお、図10においては、透過領域22が配置されるピッチは、画素pxの横方向幅の整数倍である。すなわち、透過領域22は、横方向にn/3dpの周期で配置される。しかしながら、図12に示すように、透過領域22が配置されるピッチは、画素の横方向の幅の非整数倍であってもよい。このような構成においては、横方向に隣り合って配置される2つの透過領域22を介して観察されるサブ画素の色は互いに異なる。図12に示す例では、一の透過領域22(図12の左側に配置された透過領域22)を介して、赤色サブ画素R2の全体が観察され、一の透過領域22と横方向に隣り合う透過領域22(図12の右側に配置された透過領域22)を介して、緑色サブ画素G7の全体が観察される。このように、nが3の倍数でないことによって、隣り合う3つの透過領域22を介して観察されるサブ画素の色が異なるため、透過領域22を介して偏った色の画像が見えることがなくなり、色むらを防ぐことができる。 Note that in FIG. 10, the pitch at which the transmissive regions 22 are arranged is an integral multiple of the horizontal width of the pixel px. That is, the transmissive regions 22 are arranged with a period of n/3dp in the horizontal direction. However, as shown in FIG. 12, the pitch at which the transmissive regions 22 are arranged may be a non-integer multiple of the horizontal width of the pixel. In such a configuration, the colors of the sub-pixels observed through the two transmissive regions 22 arranged adjacent to each other in the horizontal direction are different from each other. In the example shown in FIG. 12, the entire red sub-pixel R2 is observed through one transmissive region 22 (the transmissive region 22 arranged on the left side in FIG. 12), and is laterally adjacent to the one transmissive region 22. The entire green sub-pixel G7 is observed through the transmissive area 22 (the transmissive area 22 arranged on the right side in FIG. 12). Since n is not a multiple of 3, the colors of the sub-pixels observed through the three adjacent transmissive areas 22 are different. , can prevent color shading.
 本実施形態では、3原色のサブ画素により1画素が構成される例を用いているが、これに限られるものではなく、1画素が、4原色、あるいは、赤色、緑色、青色および白色などの4色のサブ画素から構成されてよい。 In this embodiment, an example in which one pixel is composed of sub-pixels of three primary colors is used, but the present invention is not limited to this. It may be composed of sub-pixels of four colors.
 図3A,3Bを再び参照すると、制御部103は、二次元表示装置101の表示を制御する。具体的には、制御部103は、所定の視点から透過部12を介して観察される、二次元表示装置101の画素に、その視点からの画像の画素を表示する。こうすることで、視点位置の変化に伴う運動視差を再現した、より臨場感のある映像表示が可能となる。 Referring to FIGS. 3A and 3B again, the control unit 103 controls the display of the two-dimensional display device 101. FIG. Specifically, the control unit 103 displays the pixels of the image from a predetermined viewpoint on the pixels of the two-dimensional display device 101 that are observed through the transmission unit 12 from that viewpoint. By doing so, it is possible to reproduce the motion parallax caused by the change of the viewpoint position, thereby realizing a more realistic image display.
 なお、制御部103は、隣接するサブ画素の組み合わせ(番号が連続するサブ画素の組み合わせ)に表示する画像の視差が10分以下、より好ましくは5分以下の角度となる画像を表示することが好ましい。画像の視差とは、画面上の隣に位置する視点の画像間のずれδを、想定した観察位置から表示装置100までの距離Lから見たときの角度で表した量であり、以下で表される。 Note that the control unit 103 can display an image with an angle of parallax of 10 minutes or less, more preferably 5 minutes or less between images displayed in a combination of adjacent sub-pixels (combination of sub-pixels with consecutive numbers). preferable. Image parallax is the amount of deviation δ between images of viewpoints located next to each other on the screen, which is expressed as an angle when viewed from a distance L from an assumed observation position to display device 100, and is expressed below. be done.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本実施形態においては、リニアブレンディングを用いた、視点位置の変化に伴う運動視差を再現した映像表示を行う例を説明したが、これに限られるものではなく、表示装置100は、リニアブレンディングを用いない映像表示を行ってもよい。 In the present embodiment, an example in which video display is performed using linear blending to reproduce motion parallax caused by a change in viewpoint position has been described. It is also possible to display images that are not displayed.
 次に、本実施形態に係る光学素子10によるモアレの抑制について、図3Aに示す表示装置100を具体例として説明する。 Next, suppression of moiré by the optical element 10 according to this embodiment will be described using the display device 100 shown in FIG. 3A as a specific example.
 (第1の実施例)
 二次元表示装置101としては、画素ピッチdp=96μmでRGB横ストライプのパネル(同じ色のサブ画素が横方向に並び、1画素を構成する異なる色のサブ画素が縦方向に並んだパネル)を用意した。また、X方向の透過部12の幅(=矩形関数の幅d)が96μm、周期p=7d=762μmである光学素子10を用意した。釣鐘状の関数は、矩形関数とガウシアン分布とのコンボリューションとした。なお、透過率の期待値の分布は同じであるため、図1A~図1Eに示すいずれの光学素子10を用いてもよい。
(First embodiment)
As the two-dimensional display device 101, a panel of RGB horizontal stripes with a pixel pitch dp of 96 μm (a panel in which sub-pixels of the same color are arranged in the horizontal direction and sub-pixels of different colors forming one pixel are arranged in the vertical direction) is used. prepared. Also, an optical element 10 was prepared in which the width of the transmitting portion 12 in the X direction (=the width d of the rectangular function) was 96 μm and the period p=7d=762 μm. A bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. Note that any of the optical elements 10 shown in FIGS. 1A to 1E may be used because the distribution of expected transmittance values is the same.
 用意した二次元表示装置101の前面に、所定の間隔をあけて、用意した光学素子10を、二次元表示装置101の画素ストライプと透過部12の縞とが直交するように配置した表示装置100を用意した。すなわち、透過部12の幅(矩形関数の幅d)が、二次元表示装置101を構成する、異なる色の複数のサブ画素が、遮光部11および透過部12の繰り返し方向と直交する方向に配置された画素またはその画素を構成するサブ画素のピッチ(幅)とほぼ同程度である表示装置100を用意した。このような表示装置100において、本実施形態に係る光学素子10の代わりに、図17に示す光学素子10Aを用いた場合、モアレが激しく発生した。 A display device 100 in which the prepared optical element 10 is arranged in front of the prepared two-dimensional display device 101 with a predetermined interval so that the pixel stripes of the two-dimensional display device 101 and the stripes of the transmission part 12 are orthogonal to each other. prepared. That is, the width of the transmissive portion 12 (the width d of the rectangular function) is such that a plurality of sub-pixels of different colors forming the two-dimensional display device 101 are arranged in a direction perpendicular to the direction in which the light shielding portions 11 and the transmissive portions 12 are repeated. A display device 100 having a pitch (width) substantially equal to that of a pixel or a sub-pixel constituting the pixel was prepared. In such a display device 100, when the optical element 10A shown in FIG. 17 was used in place of the optical element 10 according to the present embodiment, moire was severely generated.
 一方、本実施形態に係る光学素子10を用いた場合、σ=0.25dの場合、モアレが若干発生したが、σ=0.375dの場合、モアレはほぼ観察されなかった。 On the other hand, when the optical element 10 according to the present embodiment was used, moire was slightly observed when σ=0.25d, but almost no moire was observed when σ=0.375d.
 図13は、本実施例で用いた光学素子10の空間周波数特性を示すグラフである。 FIG. 13 is a graph showing spatial frequency characteristics of the optical element 10 used in this example.
 図13に示す波形は、空間周波数特性を示すスペクトルの包絡線を示す。実際の光学素子10における周期pに対応して、この包絡線に、間隔が1/p(図13のグラフの目盛りで間隔1)の線スペクトルからなるcomb関数がかかることになる。線スペクトルの周波数は、グラフの上枠に付した白抜き三角で示される。 The waveform shown in FIG. 13 shows the spectral envelope that indicates the spatial frequency characteristics. Corresponding to the period p in the actual optical element 10, this envelope is applied with a comb function consisting of a line spectrum with an interval of 1/p (an interval of 1 on the scale of the graph in FIG. 13). The line spectrum frequencies are indicated by white triangles attached to the upper frame of the graph.
 図17に示す光学素子10Aの場合、σ=0で示すsinc関数の包絡線となる。空間周波数が1/d、すなわち、横軸の目盛りが7の位置でX軸と交差しながら、包絡線が減衰している。1/dは、二次元表示装置101の画素ピッチに対応する空間周波数である。高周波を含めると、グラフの上枠に付した黒塗り三角が、二次元表示装置101の画素ピッチに対応する空間周波数を示す。 In the case of the optical element 10A shown in FIG. 17, it is the envelope of the sinc function indicated by σ=0. The spatial frequency is 1/d, that is, the envelope is attenuated while crossing the X-axis at the position of 7 on the scale of the horizontal axis. 1/d is the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 . Including high frequencies, the black triangles attached to the upper frame of the graph indicate spatial frequencies corresponding to the pixel pitch of the two-dimensional display device 101 .
 白抜き三角と黒塗り三角とが一致するところでモアレが発生するため、1/d以上の空間周波数成分を抑制すればモアレの除去に有効であると考えられる。 Since moire occurs where white triangles and black triangles match, it is considered effective to remove moire by suppressing spatial frequency components of 1/d or higher.
 図13に示すように、σ≦0.25dまでは高周波成分が残っており、程度の差はあるが、モアレが観測された。しかしながら、σ≧0.375dになると、周波数1/d以上の高調波成分がほぼ完全に抑圧され、モアレも抑制された。 As shown in FIG. 13, high-frequency components remained until σ≦0.25d, and moiré was observed to some extent. However, when σ≧0.375d, harmonic components with a frequency of 1/d or more were almost completely suppressed, and moire was also suppressed.
 モアレの抑制の程の必要性は使用条件にもよるが、σ≧0.375dであれば、十分にモアレを抑制することができ、σ≧0.25dであれば、条件によっては利用可能である。また、モアレが目立ちやすい場合であっても、σ=0.5dであれば、十分にモアレを抑制することができる。したがって、本実施形態に係る光学素子10においては、釣鐘状の関数が、矩形関数とガウシアン分布とのコンボリューションである場合、ガウシアン分布の標準偏差σ=0.25d~0.5dであることが好ましい。 Whether it is necessary to suppress moire depends on the conditions of use. be. Further, even if moiré is conspicuous, if σ=0.5d, moiré can be sufficiently suppressed. Therefore, in the optical element 10 according to the present embodiment, when the bell-shaped function is the convolution of the rectangular function and the Gaussian distribution, the standard deviation σ of the Gaussian distribution is 0.25d to 0.5d. preferable.
 表示装置100に光学素子10を用いる場合、σがあまり大きいと、複数の指向性画像が混ざり、十分な奥行を表示できない。σ=0.375dの光学素子10を作成し、表示装置100の使用したところ、モアレのない良好な三次元映像を裸眼で観察することができた。 When the optical element 10 is used in the display device 100, if σ is too large, multiple directional images are mixed and sufficient depth cannot be displayed. When the optical element 10 with σ=0.375d was produced and the display device 100 was used, a good three-dimensional image without moire could be observed with the naked eye.
 図14は、σの大きさによるモアレの発生度合いを示すグラフである。図14においては、横軸はσを示し、縦軸はガウシアン分布の空間周波数1/dにおける、図17に示す光学素子10Aに相当するσ=0でのモアレの振幅を100%とした場合の、モアレの振幅の相対値を示す。縦軸の値が、モアレの強度に比例すると考えらえる。 FIG. 14 is a graph showing the degree of occurrence of moire depending on the magnitude of σ. In FIG. 14, the horizontal axis represents σ, and the vertical axis represents the amplitude of moire at σ=0 corresponding to the optical element 10A shown in FIG. , indicates the relative value of the moire amplitude. It can be considered that the value on the vertical axis is proportional to the moire intensity.
 図14に示すように、モアレの振幅は、σ=0の場合と比較して、σ=0.25dでは約29%に減少し、σ=0.375dでは約6%に減少し、σ=0.5dでは約0.7%まで減少することが確認された。 As shown in FIG. 14, the moire amplitude decreases to about 29% at σ=0.25d, to about 6% at σ=0.375d, and to about 6% at σ=0, compared to the case of σ=0. It was confirmed that it decreased to about 0.7% at 0.5d.
 (第2の実施例)
 二次元表示装置101としては、画素ピッチdp=96μmで、RGB縦ストライプのパネル(同じ色のサブ画素が縦方向に並び、1画素を構成する異なる色のサブ画素が横方向に並んだパネル)を用意した。また、X方向の透過部12の幅(=矩形関数の幅d)が32μm、周期p=7d=224μmである光学素子10を用意した。釣鐘状の関数は、矩形関数とガウシアン分布とのコンボリューションとした。なお、透過率の期待値の分布は同じであるため、図1A~図1Eに示すいずれの光学素子10を用いてもよい。
(Second embodiment)
The two-dimensional display device 101 has a pixel pitch dp of 96 μm and an RGB vertical stripe panel (a panel in which sub-pixels of the same color are arranged vertically and sub-pixels of different colors forming one pixel are arranged horizontally). prepared. Also, an optical element 10 was prepared in which the width of the transmissive portion 12 in the X direction (=the width d of the rectangular function) was 32 μm and the period p=7d=224 μm. A bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. Note that any of the optical elements 10 shown in FIGS. 1A to 1E may be used because the distribution of expected transmittance values is the same.
 用意した二次元表示装置101の前面に、所定の間隔をあけて、用意した光学素子10を、二次元表示装置101の画素ストライプと透過部12の縞とが平行になるように配置した表示装置100を用意した。すなわち、透過部12の幅(矩形関数の幅d)が、二次元表示装置101を構成する画素のサブ画素のピッチ(幅)と略同等である表示装置100を用意した。このような表示装置100において、本実施形態に係る光学素子10の代わりに、図17に示す光学素子10Aを用いた場合、モアレが激しく発生した。 A display device in which the prepared optical element 10 is arranged in front of the prepared two-dimensional display device 101 with a predetermined interval so that the pixel stripes of the two-dimensional display device 101 and the stripes of the transmission part 12 are parallel. 100 were prepared. That is, the display device 100 was prepared in which the width of the transmissive portion 12 (the width d of the rectangular function) is substantially equal to the pitch (width) of the sub-pixels of the pixels forming the two-dimensional display device 101 . In such a display device 100, when the optical element 10A shown in FIG. 17 was used in place of the optical element 10 according to the present embodiment, moire was severely generated.
 一方、本実施形態に係る光学素子10を用いた場合、σ=0.25dの場合、モアレが若干発生したが、σ=0.375dの場合、モアレはほぼ観察されなかった。 On the other hand, when the optical element 10 according to the present embodiment was used, moire was slightly observed when σ=0.25d, but almost no moire was observed when σ=0.375d.
 図15は、本実施例で用いた光学素子10の空間周波数特性を示すグラフである。 FIG. 15 is a graph showing the spatial frequency characteristics of the optical element 10 used in this example.
 図15に示す波形は、空間周波数特性を示すスペクトルの包絡線を示す。実際の光学素子10における周期pに対応して、この包絡線に、間隔が1/p(図15のグラフの目盛りで間隔1)の線スペクトルからなるcomb関数がかかることになる。線スペクトルの周波数は、グラフの上枠に付した白抜き三角で示される。 The waveform shown in FIG. 15 shows a spectrum envelope indicating spatial frequency characteristics. Corresponding to the period p in the actual optical element 10, this envelope is applied with a comb function consisting of a line spectrum with an interval of 1/p (an interval of 1 on the scale of the graph in FIG. 15). The line spectrum frequencies are indicated by white triangles attached to the upper frame of the graph.
 図17に示す光学素子10Aの場合、σ=0で示すsinc関数の包絡線となる。空間周波数が1/d、すなわち、横軸の目盛りが7の位置でX軸と交差しながら、包絡線が減衰している。1/3dは、二次元表示装置101の画素ピッチに対応する空間周波数である。高調波を含めると、グラフの上枠に付した黒塗り三角が、二次元表示装置101の画素ピッチに対応する空間周波数を示す。 In the case of the optical element 10A shown in FIG. 17, it is the envelope of the sinc function indicated by σ=0. The spatial frequency is 1/d, that is, the envelope is attenuated while crossing the X-axis at the position of 7 on the scale of the horizontal axis. 1/3d is the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 . When harmonics are included, the black triangle attached to the upper frame of the graph indicates the spatial frequency corresponding to the pixel pitch of the two-dimensional display device 101 .
 白抜き三角と黒塗り三角とが一致するところでモアレが発生するため、第1の実施例と同様に、1/d以上の空間周波数成分を抑制すればモアレの除去に有効であると考えられる。なお、パネルの空間周波数には、1/d以下の成分も含まれるが、白抜き三角と黒塗り三角とが一致しないため、モアレの発生には寄与しない。よって、σの値は第1の実施例と同様になる。 Since moire occurs where white triangles and black triangles coincide, it is considered effective to remove moire if spatial frequency components of 1/d or higher are suppressed, as in the first embodiment. Although the spatial frequency of the panel also includes a component of 1/d or less, it does not contribute to the generation of moire since the white triangle and the black triangle do not match. Therefore, the value of σ is the same as in the first embodiment.
 図15に示すように、σ≦0.25dまでは高調波成分が残っており、程度の差はあるが、モアレが観測された。しかしながら、σ≧0.375dになると、周波数1/d以上の高調波成分がほぼ完全に抑圧され、モアレも抑制された。 As shown in FIG. 15, harmonic components remained until σ≦0.25d, and moire was observed although there was a difference in degree. However, when σ≧0.375d, harmonic components with a frequency of 1/d or more were almost completely suppressed, and moire was also suppressed.
 モアレの抑制の程の必要性は使用条件にもよるが、σ≧0.375dであれば、十分にモアレを抑制することができ、σ≧0.25dであれば、条件によっては利用可能である。また、モアレが目立ちやすい場合であっても、σ=0.5dであれば、十分にモアレを抑制することができる。したがって、本実施形態に係る光学素子10においては、釣鐘状の関数が、矩形関数とガウシアン分布とのコンボリューションである場合、ガウシアン分布の標準偏差σ=0.25d~0.5dであることが好ましい。 Whether it is necessary to suppress moire depends on the conditions of use. be. Further, even if moiré is conspicuous, if σ=0.5d, moiré can be sufficiently suppressed. Therefore, in the optical element 10 according to the present embodiment, when the bell-shaped function is the convolution of the rectangular function and the Gaussian distribution, the standard deviation σ of the Gaussian distribution is 0.25d to 0.5d. preferable.
 表示装置100に光学素子10を用いる場合、σがあまり大きいと、複数の指向性画像が混ざり、十分な奥行を表示できない。σ=0.375dの光学素子10を作成し、表示装置100の使用したところ、モアレのない良好な三次元映像を裸眼で観察することができた。 When the optical element 10 is used in the display device 100, if σ is too large, multiple directional images are mixed and sufficient depth cannot be displayed. When the optical element 10 with σ=0.375d was produced and the display device 100 was used, a good three-dimensional image without moire could be observed with the naked eye.
 なお、上述した第1および第2の実施例では、釣鐘状の関数が、矩形関数とガウシアン分布とのコンボリューションである例を用いて説明した、これに限られるものではない。要は、特定の周波数以上の高周波成分を減衰させることができればよいため、高周波側に滑らかに裾を引いた他の釣鐘状の関数でもよい。 In addition, in the first and second embodiments described above, the bell-shaped function is a convolution of a rectangular function and a Gaussian distribution. The point is that it is sufficient to attenuate high-frequency components above a specific frequency, so other bell-shaped functions with smooth tails on the high-frequency side may be used.
 上述した表示装置100の制御部103として機能させるために、プログラム命令を実行可能なコンピュータ200を用いることも可能である。図16は、制御部103として機能するコンピュータ200の概略構成を示すブロック図である。コンピュータ200は、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。 It is also possible to use a computer 200 capable of executing program instructions in order to function as the control unit 103 of the display device 100 described above. FIG. 16 is a block diagram showing a schematic configuration of a computer 200 functioning as the control unit 103. As shown in FIG. Computer 200 may be a general purpose computer, special purpose computer, workstation, personal computer (PC), electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks.
 図16に示すように、コンピュータ200は、プロセッサ210と、ROM(Read Only Memory)220と、RAM(Random Access Memory)230と、ストレージ240と、入力部250と、出力部260と、通信インタフェース(I/F)270とを備える。各構成は、バス290を介して相互に通信可能に接続されている。プロセッサ210は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種または異種の複数のプロセッサにより構成されてもよい。 As shown in FIG. 16, the computer 200 includes a processor 210, a ROM (Read Only Memory) 220, a RAM (Random Access Memory) 230, a storage 240, an input section 250, an output section 260, and a communication interface ( I/F) 270. Each component is communicatively connected to each other via a bus 290 . The processor 210 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of
 プロセッサ210は、各構成の制御および各種の演算処理を実行する。すなわち、プロセッサ210は、ROM220またはストレージ240からプログラムを読み出し、RAM230を作業領域としてプログラムを実行する。プロセッサ210は、ROM220またはストレージ240に記憶されているプログラムに従って、上記各構成の制御および各種の演算処理を行う。本実施形態では、ROM220またはストレージ240に、本開示に係るプログラムが格納される。 The processor 210 executes control of each configuration and various kinds of arithmetic processing. That is, processor 210 reads a program from ROM 220 or storage 240 and executes the program using RAM 230 as a work area. The processor 210 performs control of each configuration and various arithmetic processing according to programs stored in the ROM 220 or the storage 240 . In this embodiment, the ROM 220 or storage 240 stores the program according to the present disclosure.
 プログラムは、コンピュータ200が読み取り可能な記憶媒体に記憶されていてもよい。このような記憶媒体を用いれば、プログラムをコンピュータ200にインストールすることが可能である。ここで、プログラムが記憶された記憶媒体は、非一時的(non-transitory)記憶媒体であってもよい。非一時的記憶媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリなどであってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 The program may be stored in a storage medium readable by the computer 200. Programs can be installed in the computer 200 using such a storage medium. Here, the storage medium storing the program may be a non-transitory storage medium. The non-temporary storage medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like. Also, this program may be downloaded from an external device via a network.
 ROM220は、各種プログラム及び各種データを格納する。RAM230は、作業領域として一時的にプログラムまたはデータを記憶する。ストレージ240は、HDD(Hard Disk Drive)またはSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラムおよび各種データを格納する。 The ROM 220 stores various programs and various data. RAM 230 temporarily stores programs or data as a work area. The storage 240 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
 入力部250は、ユーザの入力操作を受け付けて、ユーザの操作に基づく情報を取得する1つ以上の入力インタフェースを含む。例えば、入力部250は、ポインティングデバイス、キーボード、マウスなどであるが、これらに限定されない。 The input unit 250 includes one or more input interfaces that receive user's input operations and acquire information based on the user's operations. For example, the input unit 250 is a pointing device, keyboard, mouse, etc., but is not limited to these.
 出力部260は、情報を出力する1つ以上の出力インタフェースを含む。例えば、出力部260は、情報を映像で出力するディスプレイまたは情報を音声で出力するスピーカであるが、これらに限定されない。なお、出力部260は、タッチパネル方式のディスプレイである場合には、入力部250としても機能する。 The output unit 260 includes one or more output interfaces that output information. For example, the output unit 260 is a display that outputs information as video or a speaker that outputs information as audio, but is not limited to these. Note that the output unit 260 also functions as the input unit 250 in the case of a touch panel type display.
 通信インタフェース270は、外部の装置と通信するためのインタフェースである。 The communication interface 270 is an interface for communicating with an external device.
 このように本実施形態に係る光学素子10は、平面上に所定の周期で、所定の方向に繰り返し設けられた遮光部11と透過部12とを備える。そして、所定の方向の透過率の期待値の分布が、所定の周期で分布する釣鐘状の関数の繰り返しである。 As described above, the optical element 10 according to the present embodiment includes the light blocking portions 11 and the transmitting portions 12 that are repeatedly provided in a predetermined direction on a plane with a predetermined period. The distribution of expected transmittance values in a given direction is a repetition of a bell-shaped function distributed at a given cycle.
 透過率の期待値の分布が釣鐘状の関数の繰り返しであることで、モアレの発生の原因となる所定値以上の高周波成分を抑制することができるので、モアレの発生を抑制することができる。また、他の光学素子などを別途設ける必要が無いので、装置の大型化を抑制することができるとともに、印刷などにより比較的簡易に作製することができるので、作製に要するコストの増大を抑制することができる。 Since the distribution of the expected transmittance value is a repetition of a bell-shaped function, it is possible to suppress high-frequency components above a predetermined value that cause moiré, so that the occurrence of moiré can be suppressed. In addition, since there is no need to separately provide other optical elements, it is possible to suppress an increase in the size of the device, and it is possible to relatively easily fabricate by printing or the like, so an increase in the cost required for fabrication can be suppressed. be able to.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨および範囲内で、多くの変更および置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形または変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above-described embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, this invention should not be construed as limited by the above-described embodiments, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the configuration diagrams of the embodiments into one, or divide one configuration block.
 10  光学素子
 11  遮光部
 12  透過部
 100  表示装置
 101  二次元表示装置
 102  バックライト
 103  制御部
 20  遮光体
 21  遮光領域
 22  透過領域
 200  コンピュータ
 210  プロセッサ
 220  ROM
 230  RAM
 240  ストレージ
 250  入力部
 260  表示部
 270  通信I/F
 290  パス
REFERENCE SIGNS LIST 10 optical element 11 light shielding section 12 transmission section 100 display device 101 two-dimensional display device 102 backlight 103 control section 20 light shielding body 21 light shielding region 22 transmission region 200 computer 210 processor 220 ROM
230 RAM
240 storage 250 input unit 260 display unit 270 communication I/F
290 passes

Claims (8)

  1.  平面上に所定の周期で、所定の方向に繰り返し設けられた遮光部と透過部とを備え、
     前記所定の方向の透過率の期待値の分布が、前記所定の周期で分布する釣鐘状の関数の繰り返しである、光学素子。
    Equipped with a light shielding portion and a transmission portion repeatedly provided in a predetermined direction at a predetermined cycle on a plane,
    The optical element, wherein the distribution of expected values of transmittance in the predetermined direction is a repetition of a bell-shaped function distributed at the predetermined period.
  2.  請求項1に記載の光学素子において、
     前記釣鐘状の関数は、ガウシアン分布、ローレンチアン分布またはフォークト分布である、光学素子。
    In the optical element according to claim 1,
    The optical element, wherein the bell-shaped function is a Gaussian distribution, a Lorentian distribution or a Voigt distribution.
  3.  請求項1に記載の光学素子において、
     前記釣鐘状の関数は、矩形関数と、ガウシアン分布、ローレンチアン分布またはフォークト分布とのコンボリューションである、光学素子。
    In the optical element according to claim 1,
    The optical element, wherein the bell-shaped function is a convolution of a rectangular function with a Gaussian distribution, a Lorentian distribution or a Voigt distribution.
  4.  請求項3に記載の光学素子において、
     前記釣鐘状の関数は、矩形関数とガウシアン分布とのコンボリューションであり、
     前記矩形関数の幅をdとすると、前記ガウシアン分布の標準偏差σ=0.25d~0.5dである、光学素子。
    In the optical element according to claim 3,
    The bell-shaped function is a convolution of a rectangular function and a Gaussian distribution,
    The optical element, wherein the standard deviation σ of the Gaussian distribution is 0.25d to 0.5d, where d is the width of the rectangular function.
  5.  請求項1から4のいずれか一項に記載の光学素子において、
     前記透過率の期待値は、前記遮光部の面積階調により制御される、光学素子。
    In the optical element according to any one of claims 1 to 4,
    The optical element, wherein the expected value of the transmittance is controlled by the area gradation of the light shielding portion.
  6.  請求項5に記載の光学素子において、
     前記透過部の輪郭が、前記釣鐘状の関数の形状である、光学素子。
    In the optical element according to claim 5,
    The optical element, wherein the outline of the transmission portion is the shape of the bell-shaped function.
  7.  請求項1から6のいずれか一項の記載の光学素子と、二次元表示装置とを備え、
     前記光学素子が、前記二次元表示装置の前面または背面に配置される、表示装置。
    An optical element according to any one of claims 1 to 6 and a two-dimensional display device,
    A display device, wherein the optical element is arranged on the front or back surface of the two-dimensional display device.
  8.  請求項7に記載の表示装置において、
     前記釣鐘状の関数は、矩形関数と、釣鐘状の形状を有する関数とのコンボリューションであり、
     前記矩形関数の幅が、前記二次元表示装置を構成する画素または前記画素を構成するサブ画素のピッチと略同等である、表示装置。
    The display device according to claim 7,
    the bell-shaped function is a convolution of a rectangular function and a function having a bell-shaped shape;
    The display device, wherein the width of the rectangular function is substantially equal to the pitch of the pixels forming the two-dimensional display device or the sub-pixels forming the pixels.
PCT/JP2021/024422 2021-06-28 2021-06-28 Optical element and display device WO2023275960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024422 WO2023275960A1 (en) 2021-06-28 2021-06-28 Optical element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024422 WO2023275960A1 (en) 2021-06-28 2021-06-28 Optical element and display device

Publications (1)

Publication Number Publication Date
WO2023275960A1 true WO2023275960A1 (en) 2023-01-05

Family

ID=84691008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024422 WO2023275960A1 (en) 2021-06-28 2021-06-28 Optical element and display device

Country Status (1)

Country Link
WO (1) WO2023275960A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007757A1 (en) * 2009-07-13 2011-01-20 Yoshida Kenji Parallax barrier for autostereoscopic display, autostereoscopic display, and method for designing parallax barrier for autostereoscopic display
WO2013094192A1 (en) * 2011-12-19 2013-06-27 パナソニック株式会社 Display device
WO2020017241A1 (en) * 2018-07-18 2020-01-23 日本電信電話株式会社 Display device and display method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007757A1 (en) * 2009-07-13 2011-01-20 Yoshida Kenji Parallax barrier for autostereoscopic display, autostereoscopic display, and method for designing parallax barrier for autostereoscopic display
WO2013094192A1 (en) * 2011-12-19 2013-06-27 パナソニック株式会社 Display device
WO2020017241A1 (en) * 2018-07-18 2020-01-23 日本電信電話株式会社 Display device and display method

Similar Documents

Publication Publication Date Title
JP5664031B2 (en) Display device
JP4968664B2 (en) Display device and terminal device
JP4132048B2 (en) Autostereoscopic image display method using wavelength filter array
RU2655624C2 (en) Autosteroscopic display device
JP5809293B2 (en) Display device
JP2012053342A (en) Display apparatus
KR101878250B1 (en) Conductive film, display device provided therewith, and conductive film evaluation method
KR20080003828A (en) A stereoscopic display apparatus
JP6126376B2 (en) Display device
TWI434066B (en) Stereoscopic image display
JP2012053345A (en) Display apparatus
US11310478B2 (en) Multiview camera array, multiview system, and method having camera sub-arrays with a shared camera
WO2003079094A2 (en) Optimising point spread function of spatial filter
JP2013140276A (en) Display device
TWI677738B (en) Multicolor static multiview display and method
WO2023275960A1 (en) Optical element and display device
JP2012053344A (en) Display apparatus
WO2020017241A1 (en) Display device and display method
JP2001330717A (en) Diffraction grating pattern and method for manufacturing the same
CN101236266B (en) Grating and stereo display device containing same
KR101807820B1 (en) Method and apparatus for quantifying perceived intensity of color moires
CN221303616U (en) Coupling-out assembly and optical waveguide
JP7269403B2 (en) Display medium, display support medium, processing device, processing program and recording medium
CN111837070A (en) Horizontal parallax multiview display with tilted multibeam columns and method
US20240077736A1 (en) Light guide and near-eye display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948272

Country of ref document: EP

Kind code of ref document: A1