WO2023275924A1 - Temperature measurement device and temperature measurement system - Google Patents

Temperature measurement device and temperature measurement system Download PDF

Info

Publication number
WO2023275924A1
WO2023275924A1 PCT/JP2021/024328 JP2021024328W WO2023275924A1 WO 2023275924 A1 WO2023275924 A1 WO 2023275924A1 JP 2021024328 W JP2021024328 W JP 2021024328W WO 2023275924 A1 WO2023275924 A1 WO 2023275924A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
ground
conductive material
measurement
Prior art date
Application number
PCT/JP2021/024328
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 砂山
Original Assignee
太平洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋工業株式会社 filed Critical 太平洋工業株式会社
Priority to PCT/JP2021/024328 priority Critical patent/WO2023275924A1/en
Priority to JP2023531142A priority patent/JPWO2023275924A1/ja
Publication of WO2023275924A1 publication Critical patent/WO2023275924A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations

Definitions

  • the present disclosure relates to temperature measurement devices and temperature measurement systems.
  • Patent Document 1 discloses a temperature measuring device that measures the temperature of roads.
  • a temperature measurement device disclosed in Patent Document 1 includes a temperature sensor, a control device, and a transmission/reception circuit.
  • a temperature sensor measures the temperature of the road.
  • the controller acquires the measurement result of the temperature sensor.
  • the control device transmits the measurement result of the temperature sensor to the external device from the transmitting/receiving circuit.
  • the temperature of the ground changes gradually depending on factors such as the time of day, sunshine conditions, and vehicle traffic conditions. If the followability of the temperature sensor to the temperature change of the ground is poor, the discrepancy between the temperature of the ground and the measurement result of the temperature sensor increases. That is, the temperature of the ground cannot be measured with high accuracy.
  • a temperature measuring device comprising an installation body configured to be installed on the ground, and a temperature sensor configured to measure the temperature of the ground.
  • the installation body includes a bottom surface that contacts the ground, and a defining surface that defines a storage area that opens to the bottom surface.
  • the temperature sensor is housed in the housing area, and the temperature measuring device further comprises a thermally conductive material having a thermal conductivity higher than that of air. The thermally conductive material is provided between the temperature sensor and the ground.
  • the temperature of the ground is more easily transferred to the temperature sensor than when a space is provided instead of the heat-conducting material.
  • the measured temperature measured by the temperature sensor tends to follow the temperature of the ground. Therefore, the temperature measuring device can accurately measure the temperature of the ground.
  • the thermally conductive material may be provided between the temperature sensor and the defining surface.
  • the temperature measurement device may further include a transmission circuit configured to transmit the measurement result of the temperature sensor to an external device.
  • a second aspect of the present disclosure provides a temperature measurement system including a temperature measurement device and an external device.
  • the temperature measurement device includes an installation body configured to be installed on the ground, and a temperature sensor configured to measure the temperature of the ground.
  • the installation body includes a bottom surface that contacts the ground, and a defining surface that defines a storage area that opens to the bottom surface.
  • the temperature sensor is housed in the housing area.
  • the temperature measurement device further comprises a thermally conductive material having a thermal conductivity higher than that of air, and a transmission circuit configured to transmit the measurement results of the temperature sensor to the external device.
  • the thermally conductive material is provided between the temperature sensor and the ground.
  • the temperature measured by the temperature sensor easily follows the temperature of the ground. Therefore, the temperature measuring device can accurately measure the temperature of the ground.
  • the temperature measurement system may include a plurality of temperature measurement devices, and the external device may include a receiver configured to receive the measurement results of the plurality of temperature measurement devices.
  • the external device comprises a server
  • the receiver comprises a communication device configured to transmit the measurement results to the server
  • the server comprises a database for the measurement results.
  • FIG. 2 is a perspective view of a temperature measurement device included in the temperature measurement system of FIG. 1;
  • FIG. 3 is a cross-sectional view along line 3-3 of FIG. 2 showing the temperature measuring device;
  • FIG. 2 is a schematic configuration diagram of a temperature measurement device included in the temperature measurement system of FIG. 1;
  • 5 is a schematic diagram showing a database stored in the server of FIG. 4;
  • the temperature measurement system 10 includes one or more temperature measurement devices 20, one or more receivers 60, and one or more servers 70.
  • a plurality of temperature measuring devices 20 are arranged along each lane of the road R1.
  • Road R1 is paved.
  • a vehicle V1 passes through the road R1.
  • the road R1 has a road surface RS1.
  • the road surface RS1 which is the ground, is the surface of the paved road R1.
  • the temperature measuring devices 20 are spaced apart from each other.
  • the temperature measurement device 20 includes an installation body 21, a sensor unit 30, and a heat conductive material 51.
  • the installation body 21 is installed on the road surface RS1.
  • the installation body 21 is a road stud.
  • the installation body 21 has a truncated quadrangular pyramid shape.
  • the installation body 21 has a bottom surface 22 , a top surface 23 and four side surfaces 24 .
  • the bottom surface 22 , the top surface 23 and the side surfaces 24 are surfaces of the installation body 21 .
  • a side surface 24 extends between the bottom surface 22 and the top surface 23 .
  • the installation body 21 has a defining surface 25 .
  • the defining plane 25 includes a first defining plane 26 and a second defining plane 27 .
  • a first defining surface 26 is located between the bottom surface 22 and the top surface 23 .
  • a second delimiting surface 27 extends between the bottom surface 22 and the first delimiting surface 26 .
  • the second defining surface 27 is a peripheral wall surface extending from the bottom surface 22 toward the top surface 23 .
  • the second defining surface 27 has, for example, a square tubular shape.
  • the defining surface 25 defines a housing area S1.
  • the accommodation area S1 opens to the bottom surface 22 .
  • the accommodation area S1 is, for example, rectangular.
  • the installation body 21 is made of ABS resin, for example.
  • the sensor unit 30 includes a housing 31, a temperature sensor 34, a control device 35, a transmission circuit 38, a transmission antenna 39, and potting resin 40.
  • the housing 31 accommodates the temperature sensor 34, the control device 35, the transmission circuit 38, and the transmission antenna 39.
  • Housing 31 includes a first wall 32 and a second wall 33 .
  • the first wall 32 is flat.
  • the second wall 33 is a peripheral wall.
  • a second wall 33 extends from the periphery of the first wall 32 .
  • the temperature sensor 34 measures the temperature. Specifically, the temperature sensor 34 outputs a measurement result corresponding to its own temperature.
  • the control device 35 includes a processor 36 and a storage unit 37.
  • the processor 36 include MPU (Micro Processing Unit), CPU (Central Processing Unit), and DSP (Digital Signal Processor).
  • the storage unit 37 includes RAM (Random Access Memory) and ROM (Read Only Memory). Storage unit 37 stores program code or instructions configured to cause processor 36 to perform processes.
  • the control device 35 may be configured by a hardware circuit such as ASIC or FPGA.
  • the processing circuitry, controller 35 may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof.
  • ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer.
  • the storage unit 37 stores an ID code indicating unique identification information of the corresponding temperature measuring device 20 .
  • the control device 35 generates frames.
  • the control device 35 outputs the generated frame to the transmission circuit 38 .
  • a frame is digital data and is a data string of binary numbers.
  • a frame consists of data in a format defined by the protocol.
  • the frame format includes, for example, preamble, ID code, temperature data, status code, and error detection code.
  • Temperature data is the measurement result of the temperature sensor 34 .
  • the transmission circuit 38 transmits from the transmission antenna 39 a radio signal modulated according to the frame input from the control device 35 .
  • the transmission circuit 38 transmits frames. Thereby, the measurement result of the temperature sensor 34 is transmitted from the transmission circuit 38 .
  • a radio signal is a signal in a predetermined frequency band. Examples of frequency bands include the LF band, MF band, HF band, VHF band, UHF band, and 2.4 GHz band.
  • the housing 31 is filled with potting resin 40 .
  • Urethane resin for example, is used as the potting resin 40 .
  • the sensor unit 30 is housed in the housing area S1.
  • the sensor unit 30 is accommodated in the accommodation area S1 such that the direction in which the second wall 33 extends from the first wall 32 and the direction from the top surface 23 to the bottom surface 22 are the same.
  • the heat-conducting material 51 is filled in the housing area S1.
  • the thermal conductivity of the thermally conductive material 51 is higher than that of air.
  • silicone is used as the thermally conductive material 51 .
  • the thermally conductive material 51 has a first portion 52 and a second portion 53 .
  • the first portion 52 is provided between a virtual plane IS ⁇ b>1 obtained by virtually extending the bottom surface 22 and the sensor unit 30 .
  • the first part 52 is provided so as to be flush with the bottom surface 22 or protrude from the accommodation area S1 to the outside of the accommodation area S1.
  • the first portion 52 is provided between the temperature sensor 34 and the virtual plane IS1.
  • the second portion 53 is provided between the defining surface 25 and the sensor unit 30 .
  • the second parts 53 are provided between the first defining surface 26 and the sensor unit 30 and between the second defining surface 27 and the sensor unit 30, respectively.
  • the second portion 53 is provided between the temperature sensor 34 and the defining surface 25 .
  • Potting resin 40 , housing 31 , and thermally conductive material 51 are located between temperature sensor 34 and defining surface 25 .
  • the temperature measuring device 20 is installed on the road R1 so that the bottom surface 22 is in contact with the road surface RS1.
  • the first portion 52 contacts the road surface RS1.
  • the first portion 52 is located between the sensor unit 30 and the road surface RS1. Therefore, it can be said that the first portion 52 is provided between the temperature sensor 34 and the road surface RS1.
  • the first portion 52 and the potting resin 40 are interposed between the temperature sensor 34 and the road surface RS1.
  • the receiver 60 includes a receiver control device 61, a receiving circuit 64, a receiving antenna 65, and a communication device 66.
  • the receiver control device 61 includes a processor 62 and a storage section 63 .
  • Processors 62 may include, for example, MPUs, CPUs, and DSPs.
  • the storage unit 63 includes ROM and RAM. Storage unit 63 stores program code or instructions configured to cause processor 62 to perform processing.
  • the receiver control device 61 may be configured by a hardware circuit such as ASIC or FPGA.
  • the processing circuitry, receiver controller 61 may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof.
  • ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer.
  • the receiving antenna 65 receives the radio signal transmitted from each temperature measuring device 20 .
  • the receiving circuit 64 demodulates the radio signal received via the receiving antenna 65 to obtain the data contained in the frame.
  • the receiving circuit 64 outputs data to the receiver control device 61 .
  • the receiver control device 61 acquires the measurement result of the temperature sensor 34 .
  • the receiver 60 receives the measurement result of the temperature sensor 34 by receiving the wireless signal transmitted from the temperature measuring device 20 .
  • the communication device 66 is a network device that includes a communication control unit, ports, etc., and can transmit and receive information through the communication network NW.
  • the communication device 66 is connected to the server 70 via the communication network NW.
  • the receiver 60 is arranged so that it can receive wireless signals from the temperature measuring device 20 .
  • the receiver 60 is attached, for example, to a structure UP1 provided along the road R1. Examples of this type of structure UP1 include guardrails and utility poles. In the example shown in FIG. 1, the receiver 60 is attached to a utility pole.
  • the server 70 has a database DB1.
  • the number of servers 70 may be plural or may be one.
  • the database DB1 is a set of data regarding the measured temperature measured by the temperature measuring device 20 .
  • Receiver 60 and server 70 are external devices.
  • the database DB1 created by the server 70 associates the measured temperature with the measurement time and the measurement position.
  • the measurement time is the time when the temperature sensor 34 measures the temperature of the road surface RS1.
  • a measurement position is a position where each temperature measurement device 20 is provided.
  • the position of each temperature measuring device 20 is represented, for example, by coordinates of a coordinate system representing absolute positions on the earth.
  • a coordinate system of this kind can be, for example, a geographic coordinate system.
  • the position of each temperature measuring device 20 may be specified from the ID code included in the radio signal. To achieve this, information in which the ID code of each temperature measuring device 20 is associated with the coordinates of each temperature measuring device 20 is pre-stored in the server 70 or the receiver 60 . In this case, the receiver 60 or server 70 identifies the location of each temperature measurement device 20 .
  • each temperature measurement device 20 may transmit a radio signal including information indicating the position of each temperature measurement device 20 .
  • the server 70 provides services to users. Services are provided as a cloud. A cloud is one form of computer usage that accumulates data and provides services. As a service, for example, provision of the database DB1 can be mentioned.
  • the server 70 may also provide the user with information regarding the road surface RS1 derived based on the database DB1.
  • the information on the road surface RS1 derived based on the database DB1 includes, for example, information on the freezing of the road surface RS1. Whether or not the road surface RS1 is frozen can be estimated from the measured temperature and the measured position. If the measured temperature is 0 degrees or less, it can be estimated that the measurement position associated with the measured temperature is frozen.
  • the server 70 or a management computer connected to the server 70 estimates whether the road surface RS1 is frozen.
  • the server 70 then provides information on the road surface RS1 to the user via the cloud.
  • the server 70 provides information on the road surface RS1 to the user through at least one of a web browser and an application.
  • Information about the road surface RS1 may be provided as text or as an image. Accordingly, when the measured temperature is 0 degrees or less, it is possible to alert the user that the road surface RS1 may be frozen.
  • the temperature of the road surface RS1 is transmitted to the temperature sensor 34, so that the temperature sensor 34 measures the temperature of the road surface RS1.
  • the temperature of the road surface RS1 is conducted to the temperature sensor 34 via the thermally conductive material 51.
  • the thermal conductivity of the thermally conductive material 51 is higher than that of air. Therefore, the temperature of the road surface RS1 is more easily conducted to the temperature sensor 34 than when a space is provided instead of the heat conductive material 51 .
  • the thermally conductive material 51 is provided between the temperature sensor 34 and the road surface RS1. Since the temperature of the road surface RS1 is easily conducted to the temperature sensor 34, the temperature measured by the temperature sensor 34 easily follows the temperature of the road surface RS1. Therefore, the temperature measuring device 20 can accurately measure the temperature of the road surface RS1.
  • the thermally conductive material 51 has a second portion 53 .
  • the second portion 53 is provided between the temperature sensor 34 and the defining surface 25 .
  • the temperature of the road surface RS1 is also transmitted to the temperature sensor 34 via the second portion 53 .
  • the path through which the temperature of the road surface RS1 is conducted to the temperature sensor 34 can be increased. Therefore, it becomes easier for the temperature measured by the temperature sensor 34 to follow the temperature of the road surface RS1.
  • the temperature measurement device 20 has a transmission circuit 38 .
  • the transmission circuit 38 can transmit the measurement result of the temperature sensor 34 to an external device.
  • a measurement result of the temperature sensor 34 can be provided to an external device.
  • External devices are the receiver 60 and the server 70 .
  • a measurement result of the temperature sensor 34 is transmitted to the receiver 60 and further transmitted from the receiver 60 to the server 70 .
  • the receiver 60 receives the measurement results of the plurality of temperature measurement devices 20 and transmits the measurement results to the server 70 , so that the communication device 66 may be provided only in the receiver 60 . Therefore, compared to the case where the communication device 66 is provided for each temperature measurement device 20, the manufacturing cost of the temperature measurement device 20 can be reduced. In addition, compared to the case where the communication device 66 is provided for each temperature measurement device 20, communication costs for communication with the server 70 can be reduced.
  • the temperature of the road R1 may be measured by the temperature sensor 34.
  • the temperature sensor 34 is provided so as to measure the temperature of the road surface RS1, and the heat conductive material 51 is interposed between the temperature sensor 34 and the road surface RS1. This makes it possible to measure the temperature of the road surface RS1 while improving the ability of the temperature sensor 34 to follow the temperature change of the road surface RS1.
  • the thermally conductive material 51 is provided between the temperature sensor 34 and the road surface RS1, and the thermally conductive material 51 does not have to be in contact with the road surface RS1.
  • a space may exist between the thermally conductive material 51 and the road surface RS1 or between the thermally conductive material 51 and the temperature sensor 34 .
  • the provision of the thermally conductive material 51 reduces the volume of the space existing between the temperature sensor 34 and the road surface RS1, so that the temperature of the road surface RS1 is easily conducted to the temperature sensor 34.
  • the heat conductive material 51 may be provided at least between the temperature sensor 34 and the road surface RS1. That is, the heat-conducting material 51 may not have the second portion 53 .
  • the second portion 53 may be provided only between the sensor unit 30 and the first defining surface 26 and between the sensor unit 30 and the second defining surface 27 .
  • the temperature measurement device 20 may be provided on the unpaved ground.
  • the temperature measurement device 20 may include a pressure sensor.
  • a pressure sensor is provided to measure the atmospheric pressure.
  • the pressure sensor measurement results may be sent to the server 70 .
  • the measurement results of the pressure sensor can be used, for example, for weather forecasting.
  • the temperature measurement device 20 does not have to include the transmission circuit 38 .
  • the temperature measurement device 20 may be configured to store the measured temperature measured by the temperature sensor 34 in association with the measurement time. That is, the temperature measuring device 20 may be used as a data logger.
  • the temperature measurement system 10 may include at least one of a display unit and a light emitting unit. At least one of the display section and the light emitting section may be provided in the temperature measurement device 20 . When at least one of the display section and the light emitting section is provided in the temperature measurement device 20, at least one of the display section and the light emitting section is provided on the outer surface of the installation body 21, for example.
  • the control device 35 may estimate whether the road surface RS1 is frozen from the measurement result of the temperature sensor 34 . For example, the control device 35 may estimate that the road surface RS1 is frozen when the measurement result of the temperature sensor 34 is 0 degrees or less.
  • the control device 35 estimates that the road surface RS1 is frozen, it performs display on the display unit and light emission from the light emitting unit. As a result, a warning may be given to people around the installation body 21 .
  • At least one of the display unit and the light emitting unit may be included in the receiver 60 or may be provided separately from the receiver 60 .
  • the receiver control device 61 may estimate whether the road surface RS1 is frozen from the measurement result of the temperature sensor . Then, when the receiver control device 61 estimates that the road surface RS1 is frozen, it performs display on the display unit and light emission from the light emitting unit. As a result, the attention of people around the receiver 60 can be called.
  • the temperature measurement device 20 may include an acceleration sensor.
  • the acceleration sensor measures acceleration applied to the acceleration sensor.
  • an impact is applied to the installation body 21.
  • - ⁇ As a result a larger acceleration is applied to the acceleration sensor than when the vehicle V1 does not pass over the installation body 21 . Therefore, when an accident occurs, checking the measurement result of the acceleration sensor at the time when the accident occurred can be useful for grasping the route that the vehicle V1 has passed.
  • the temperature measurement device 20 may include a communication device.
  • a communication device is a network device that includes a communication control unit, a port, and the like, and can transmit and receive information through a communication network NW.
  • the communication device is connected to the server 70 via the communication network NW.
  • the control device 35 may transmit the measurement result of the temperature sensor 34 to the server 70 via the communication device.
  • temperature measurement system 10 may not include receiver 60 . That is, the measurement result of the temperature sensor 34 may be directly transmitted from the temperature measuring device 20 to the server 70 or may be transmitted to the server 70 via the receiver 60 . It can be said that the external device may be only the server 70 or may be the receiver 60 and the server 70 .
  • the external device may be only the receiver 60 .
  • the receiver 60 receives the measurement results transmitted from the plurality of temperature measurement devices 20 and stores the measurement results.
  • the temperature measurement system 10 is used as a data logger.
  • a lane separator may be used as the installation body 21 .
  • a utility pole, a sign, or the like may be used as the installation body 21 .
  • the receiving antenna 65 of the receiver 60 may be provided outside the installation body 21 if the installation body 21 is made of a material that does not easily transmit radio signals.
  • the installation body 21 is not limited to an existing one, and may be one dedicated to the temperature measurement device 20 .
  • the shape of the installation body 21 may be changed as appropriate.
  • the sensor unit 30 may not include the housing 31 .
  • the temperature sensor 34, the control device 35, the transmission circuit 38, and the transmission antenna 39 may be accommodated in the accommodation area S1, and the accommodation area S1 may be filled with the thermally conductive material 51.
  • There may be only one temperature measuring device 20 .
  • DB1...Database RS1...Road surface as the ground, S1...Accommodation area, 10...Temperature measurement system, 20...Temperature measurement device, 21...Installation body, 22...Bottom surface, 25...Definition surface, 34...Temperature sensor, 51...Heat Conductive material 60 -- Receiver as external equipment 66 -- Communication device 70 -- Server as external equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A temperature measurement device (20) that comprises: an installation body (21) configured so as to be installed on the ground (RS1); and a temperature sensor (34) configured so as to measure the temperature of the ground (RS1). The installation body (21) comprises: a base surface (22) that is in contact with the ground (RS1); and a demarcation surface (25) that demarcates a housing region (S1) that opens to the base surface (22). The temperature sensor (34) is housed in the housing region (S1). A thermally conductive material (51) that has a higher thermal conductivity than air is provided between the temperature sensor (34) and the ground (RS1).

Description

温度測定装置、及び温度測定システムTemperature measuring device and temperature measuring system
 本開示は、温度測定装置、及び温度測定システムに関する。 The present disclosure relates to temperature measurement devices and temperature measurement systems.
 特許文献1には、道路の温度を測定する温度測定装置が開示されている。特許文献1に開示の温度測定装置は、温度センサと、制御装置と、送受信回路と、を備える。温度センサは、道路の温度を測定する。制御装置は、温度センサの測定結果を取得する。制御装置は、送受信回路から温度センサの測定結果を外部機器に送信する。 Patent Document 1 discloses a temperature measuring device that measures the temperature of roads. A temperature measurement device disclosed in Patent Document 1 includes a temperature sensor, a control device, and a transmission/reception circuit. A temperature sensor measures the temperature of the road. The controller acquires the measurement result of the temperature sensor. The control device transmits the measurement result of the temperature sensor to the external device from the transmitting/receiving circuit.
特表2007-536446号公報Japanese Patent Publication No. 2007-536446
 地面の温度は、時刻、日照状況、車両の交通状況等の要素によって逐次変化する。地面の温度変化に対する温度センサの温度変化の追従性が悪いと、地面の温度と温度センサの測定結果との乖離が大きくなる。即ち、地面の温度を精度良く測定することができない。 The temperature of the ground changes gradually depending on factors such as the time of day, sunshine conditions, and vehicle traffic conditions. If the followability of the temperature sensor to the temperature change of the ground is poor, the discrepancy between the temperature of the ground and the measurement result of the temperature sensor increases. That is, the temperature of the ground cannot be measured with high accuracy.
 本開示の第一の態様によれば、地面に設置されるように構成された設置体と、前記地面の温度を測定するように構成された温度センサと、を備えた温度測定装置が提供される。前記設置体は、前記地面に接する底面と、前記底面に開口する収容領域を画定する画定面と、を備える。前記温度センサは、前記収容領域に収容されており、前記温度測定装置はさらに、空気の熱伝導率よりも熱伝導率の高い熱伝導材料を備える。前記熱伝導材料は、前記温度センサと前記地面との間に設けられている。 According to a first aspect of the present disclosure, there is provided a temperature measuring device comprising an installation body configured to be installed on the ground, and a temperature sensor configured to measure the temperature of the ground. be. The installation body includes a bottom surface that contacts the ground, and a defining surface that defines a storage area that opens to the bottom surface. The temperature sensor is housed in the housing area, and the temperature measuring device further comprises a thermally conductive material having a thermal conductivity higher than that of air. The thermally conductive material is provided between the temperature sensor and the ground.
 これによれば、熱伝導材料に代えて空間が設けられている場合に比べて、地面の温度が温度センサに伝導しやすくなる。温度センサによって測定される測定温度が地面の温度に追従しやすい。従って、温度測定装置は、地面の温度を精度良く測定することができる。 According to this, the temperature of the ground is more easily transferred to the temperature sensor than when a space is provided instead of the heat-conducting material. The measured temperature measured by the temperature sensor tends to follow the temperature of the ground. Therefore, the temperature measuring device can accurately measure the temperature of the ground.
 上記温度測定装置について、前記熱伝導材料は、前記温度センサと前記画定面との間に設けられていてもよい。 With regard to the temperature measuring device, the thermally conductive material may be provided between the temperature sensor and the defining surface.
 上記温度測定装置について、前記温度センサの測定結果を外部機器に送信するように構成された送信回路をさらに備えていてもよい。 The temperature measurement device may further include a transmission circuit configured to transmit the measurement result of the temperature sensor to an external device.
 本開示の第二の態様によれば、温度測定装置と、外部機器と、を備えた温度測定システムが提供される。前記温度測定装置は、地面に設置されるように構成された設置体と、前記地面の温度を測定するように構成された温度センサと、を備える。前記設置体は、前記地面に接する底面と、前記底面に開口する収容領域を画定する画定面と、を備える。前記温度センサは、前記収容領域に収容されている。前記温度測定装置はさらに、空気の熱伝導率よりも熱伝導率の高い熱伝導材料と、前記温度センサの測定結果を前記外部機器に送信するように構成された送信回路と、を備える。前記熱伝導材料は、前記温度センサと前記地面との間に設けられている。 A second aspect of the present disclosure provides a temperature measurement system including a temperature measurement device and an external device. The temperature measurement device includes an installation body configured to be installed on the ground, and a temperature sensor configured to measure the temperature of the ground. The installation body includes a bottom surface that contacts the ground, and a defining surface that defines a storage area that opens to the bottom surface. The temperature sensor is housed in the housing area. The temperature measurement device further comprises a thermally conductive material having a thermal conductivity higher than that of air, and a transmission circuit configured to transmit the measurement results of the temperature sensor to the external device. The thermally conductive material is provided between the temperature sensor and the ground.
 温度センサによって測定される測定温度が地面の温度に追従しやすい。従って、温度測定装置は、地面の温度を精度良く測定することができる。  The temperature measured by the temperature sensor easily follows the temperature of the ground. Therefore, the temperature measuring device can accurately measure the temperature of the ground.
 上記温度測定システムについて、前記温度測定装置を複数備え、前記外部機器は、複数の前記温度測定装置の前記測定結果を受信するように構成された受信機を含んでいてもよい。 The temperature measurement system may include a plurality of temperature measurement devices, and the external device may include a receiver configured to receive the measurement results of the plurality of temperature measurement devices.
 上記温度測定システムについて、前記外部機器は、サーバーを備え、前記受信機は、前記測定結果を前記サーバーに送信するように構成された通信装置を備え、前記サーバーは、前記測定結果に関するデータベースを備えていてもよい。 For the above temperature measurement system, the external device comprises a server, the receiver comprises a communication device configured to transmit the measurement results to the server, and the server comprises a database for the measurement results. may be
温度測定システムを示す模式図。Schematic diagram showing a temperature measurement system. 図1の温度測定システムが備える温度測定装置の斜視図。FIG. 2 is a perspective view of a temperature measurement device included in the temperature measurement system of FIG. 1; 温度測定装置を示す図2の3-3線断面図。FIG. 3 is a cross-sectional view along line 3-3 of FIG. 2 showing the temperature measuring device; 図1の温度測定システムが備える温度測定装置の概略構成図。FIG. 2 is a schematic configuration diagram of a temperature measurement device included in the temperature measurement system of FIG. 1; 図4のサーバーに記憶されたデータベースを示す模式図。5 is a schematic diagram showing a database stored in the server of FIG. 4; FIG.
 温度測定装置、及び温度測定システムの一実施形態について説明する。 An embodiment of a temperature measurement device and a temperature measurement system will be described.
 図1に示すように、温度測定システム10は、1つ以上の温度測定装置20と、1つ以上の受信機60と、1つ以上のサーバー70と、を備える。 As shown in FIG. 1, the temperature measurement system 10 includes one or more temperature measurement devices 20, one or more receivers 60, and one or more servers 70.
 複数の温度測定装置20が、道路R1の各車線に沿って配置されている。道路R1は、舗装されている。道路R1には、車両V1が通過する。道路R1は、路面RS1を備える。地面である路面RS1は、舗装された道路R1の表面である。温度測定装置20は、互いに間隔を空けて配置されている。 A plurality of temperature measuring devices 20 are arranged along each lane of the road R1. Road R1 is paved. A vehicle V1 passes through the road R1. The road R1 has a road surface RS1. The road surface RS1, which is the ground, is the surface of the paved road R1. The temperature measuring devices 20 are spaced apart from each other.
 図2及び図3に示すように、温度測定装置20は、設置体21と、センサユニット30と、熱伝導材料51と、を備える。 As shown in FIGS. 2 and 3, the temperature measurement device 20 includes an installation body 21, a sensor unit 30, and a heat conductive material 51.
 設置体21は、路面RS1に設置される。設置体21は、道路鋲である。設置体21は、四角錐台形状である。設置体21は、底面22と、上面23と、4つの側面24と、を備える。底面22、上面23、及び側面24は、設置体21の表面である。側面24は、底面22と上面23との間で延びている。設置体21は、画定面25を備える。画定面25は、第1画定面26と、第2画定面27と、を備える。第1画定面26は、底面22と上面23との間に位置している。第2画定面27は、底面22と第1画定面26との間で延びている。第2画定面27は、底面22から上面23に向かって延びる周壁面である。第2画定面27は、例えば、四角筒状である。画定面25は、収容領域S1を画定している。収容領域S1は、底面22に開口している。収容領域S1は、例えば、四角形状である。設置体21は、例えば、ABS樹脂製である。 The installation body 21 is installed on the road surface RS1. The installation body 21 is a road stud. The installation body 21 has a truncated quadrangular pyramid shape. The installation body 21 has a bottom surface 22 , a top surface 23 and four side surfaces 24 . The bottom surface 22 , the top surface 23 and the side surfaces 24 are surfaces of the installation body 21 . A side surface 24 extends between the bottom surface 22 and the top surface 23 . The installation body 21 has a defining surface 25 . The defining plane 25 includes a first defining plane 26 and a second defining plane 27 . A first defining surface 26 is located between the bottom surface 22 and the top surface 23 . A second delimiting surface 27 extends between the bottom surface 22 and the first delimiting surface 26 . The second defining surface 27 is a peripheral wall surface extending from the bottom surface 22 toward the top surface 23 . The second defining surface 27 has, for example, a square tubular shape. The defining surface 25 defines a housing area S1. The accommodation area S1 opens to the bottom surface 22 . The accommodation area S1 is, for example, rectangular. The installation body 21 is made of ABS resin, for example.
 図3及び図4に示すように、センサユニット30は、ハウジング31と、温度センサ34と、制御装置35と、送信回路38と、送信アンテナ39と、ポッティング樹脂40と、を備える。 As shown in FIGS. 3 and 4, the sensor unit 30 includes a housing 31, a temperature sensor 34, a control device 35, a transmission circuit 38, a transmission antenna 39, and potting resin 40.
 ハウジング31は、温度センサ34、制御装置35、送信回路38、及び送信アンテナ39を収容している。ハウジング31は、第1壁32と、第2壁33と、を備える。第1壁32は、平板状である。第2壁33は、周壁である。第2壁33は、第1壁32の周縁から延びている。 The housing 31 accommodates the temperature sensor 34, the control device 35, the transmission circuit 38, and the transmission antenna 39. Housing 31 includes a first wall 32 and a second wall 33 . The first wall 32 is flat. The second wall 33 is a peripheral wall. A second wall 33 extends from the periphery of the first wall 32 .
 温度センサ34は、温度を測定する。詳細にいえば、温度センサ34は、自身の温度に応じた測定結果を出力する。 The temperature sensor 34 measures the temperature. Specifically, the temperature sensor 34 outputs a measurement result corresponding to its own temperature.
 制御装置35は、プロセッサ36と、記憶部37と、を備える。プロセッサ36としては、例えば、MPU(Micro Processing Unit)、CPU(Central Processing Unit)、及びDSP(Digital Signal Processor)を挙げることができる。記憶部37は、RAM(Random Access Memory)及びROM(Read Only Memory)を含む。記憶部37は、処理をプロセッサ36に実行させるように構成されたプログラムコード又は指令を格納している。制御装置35は、ASICやFPGA等のハードウェア回路によって構成されていてもよい。処理回路である制御装置35は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。ROM及びRAMすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。記憶部37は、対応する温度測定装置20の固有の識別情報を示すIDコードを記憶している。 The control device 35 includes a processor 36 and a storage unit 37. Examples of the processor 36 include MPU (Micro Processing Unit), CPU (Central Processing Unit), and DSP (Digital Signal Processor). The storage unit 37 includes RAM (Random Access Memory) and ROM (Read Only Memory). Storage unit 37 stores program code or instructions configured to cause processor 36 to perform processes. The control device 35 may be configured by a hardware circuit such as ASIC or FPGA. The processing circuitry, controller 35, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof. ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer. The storage unit 37 stores an ID code indicating unique identification information of the corresponding temperature measuring device 20 .
 制御装置35は、フレームを生成する。制御装置35は、生成したフレームを送信回路38に出力する。フレームは、デジタルデータであり2進数のデータ列である。フレームは、プロトコルで規定されたフォーマットのデータで構成されている。フレームのフォーマットは、例えば、プリアンブル、IDコード、温度データ、ステータスコード、及び誤り検出符号を含む。温度データは、温度センサ34の測定結果である。 The control device 35 generates frames. The control device 35 outputs the generated frame to the transmission circuit 38 . A frame is digital data and is a data string of binary numbers. A frame consists of data in a format defined by the protocol. The frame format includes, for example, preamble, ID code, temperature data, status code, and error detection code. Temperature data is the measurement result of the temperature sensor 34 .
 送信回路38は、制御装置35から入力されたフレームに応じた変調を行った無線信号を送信アンテナ39から送信する。送信回路38は、フレームの送信を行う。これにより、送信回路38から温度センサ34の測定結果が送信される。無線信号は、所定の周波数帯の信号である。周波数帯としては、例えば、LF帯、MF帯、HF帯、VHF帯、UHF帯、及び2.4GHz帯を挙げることができる。 The transmission circuit 38 transmits from the transmission antenna 39 a radio signal modulated according to the frame input from the control device 35 . The transmission circuit 38 transmits frames. Thereby, the measurement result of the temperature sensor 34 is transmitted from the transmission circuit 38 . A radio signal is a signal in a predetermined frequency band. Examples of frequency bands include the LF band, MF band, HF band, VHF band, UHF band, and 2.4 GHz band.
 ハウジング31には、ポッティング樹脂40が充填されている。ポッティング樹脂40としては、例えば、ウレタン樹脂が用いられる。 The housing 31 is filled with potting resin 40 . Urethane resin, for example, is used as the potting resin 40 .
 センサユニット30は、収容領域S1に収容されている。センサユニット30は、第1壁32から第2壁33が延びる方向と、上面23から底面22に向かう方向とが一致するように、収容領域S1に収容されている。 The sensor unit 30 is housed in the housing area S1. The sensor unit 30 is accommodated in the accommodation area S1 such that the direction in which the second wall 33 extends from the first wall 32 and the direction from the top surface 23 to the bottom surface 22 are the same.
 熱伝導材料51は、収容領域S1に充填されている。熱伝導材料51の熱伝導率は、空気の熱伝導率よりも高い。熱伝導材料51としては、例えば、シリコーンが用いられる。熱伝導材料51は、第1部位52と、第2部位53と、を備える。第1部位52は、底面22を仮想的に延長した仮想面IS1と、センサユニット30との間に設けられている。第1部位52は、底面22と面一、あるいは、収容領域S1から収容領域S1の外部に突出するように設けられている。第1部位52は、温度センサ34と仮想面IS1との間に設けられている。第2部位53は、画定面25とセンサユニット30との間に設けられている。本実施形態において、第2部位53は、第1画定面26とセンサユニット30の間、及び第2画定面27とセンサユニット30の間のそれぞれに設けられている。第2部位53は、温度センサ34と画定面25との間に設けられている。温度センサ34と画定面25との間には、ポッティング樹脂40、ハウジング31、及び熱伝導材料51が位置している。 The heat-conducting material 51 is filled in the housing area S1. The thermal conductivity of the thermally conductive material 51 is higher than that of air. For example, silicone is used as the thermally conductive material 51 . The thermally conductive material 51 has a first portion 52 and a second portion 53 . The first portion 52 is provided between a virtual plane IS<b>1 obtained by virtually extending the bottom surface 22 and the sensor unit 30 . The first part 52 is provided so as to be flush with the bottom surface 22 or protrude from the accommodation area S1 to the outside of the accommodation area S1. The first portion 52 is provided between the temperature sensor 34 and the virtual plane IS1. The second portion 53 is provided between the defining surface 25 and the sensor unit 30 . In this embodiment, the second parts 53 are provided between the first defining surface 26 and the sensor unit 30 and between the second defining surface 27 and the sensor unit 30, respectively. The second portion 53 is provided between the temperature sensor 34 and the defining surface 25 . Potting resin 40 , housing 31 , and thermally conductive material 51 are located between temperature sensor 34 and defining surface 25 .
 温度測定装置20は、底面22が路面RS1に接するように道路R1に設置される。本実施形態において、第1部位52は、路面RS1に接触する。温度測定装置20が路面RS1に設置された状態で、第1部位52はセンサユニット30と路面RS1との間に位置する。従って、第1部位52は、温度センサ34と路面RS1との間に設けられているといえる。本実施形態において、温度センサ34と路面RS1との間には、第1部位52、及びポッティング樹脂40が介在している。 The temperature measuring device 20 is installed on the road R1 so that the bottom surface 22 is in contact with the road surface RS1. In this embodiment, the first portion 52 contacts the road surface RS1. With the temperature measuring device 20 installed on the road surface RS1, the first portion 52 is located between the sensor unit 30 and the road surface RS1. Therefore, it can be said that the first portion 52 is provided between the temperature sensor 34 and the road surface RS1. In this embodiment, the first portion 52 and the potting resin 40 are interposed between the temperature sensor 34 and the road surface RS1.
 図4に示すように、受信機60は、受信機用制御装置61と、受信回路64と、受信アンテナ65と、通信装置66と、を備える。 As shown in FIG. 4, the receiver 60 includes a receiver control device 61, a receiving circuit 64, a receiving antenna 65, and a communication device 66.
 受信機用制御装置61は、プロセッサ62と、記憶部63と、を備える。プロセッサ62としては、例えば、MPU、CPU、及びDSPを挙げることができる。記憶部63は、ROM及びRAMを含む。記憶部63は、処理をプロセッサ62に実行させるように構成されたプログラムコード又は指令を格納している。受信機用制御装置61は、ASICやFPGA等のハードウェア回路によって構成されていてもよい。処理回路である受信機用制御装置61は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。ROM及びRAMすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 The receiver control device 61 includes a processor 62 and a storage section 63 . Processors 62 may include, for example, MPUs, CPUs, and DSPs. The storage unit 63 includes ROM and RAM. Storage unit 63 stores program code or instructions configured to cause processor 62 to perform processing. The receiver control device 61 may be configured by a hardware circuit such as ASIC or FPGA. The processing circuitry, receiver controller 61, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs or FPGAs, or a combination thereof. ROM and RAM or computer-readable media include any available media that can be accessed by a general purpose or special purpose computer.
 受信アンテナ65は、各温度測定装置20から送信された無線信号を受信する。受信回路64は、受信アンテナ65を介して受信された無線信号を復調して、フレームに含まれるデータを得る。受信回路64は、データを受信機用制御装置61に出力する。これにより、受信機用制御装置61は、温度センサ34の測定結果を取得する。受信機60は、温度測定装置20から送信された無線信号を受信することで、温度センサ34の測定結果を受信している。 The receiving antenna 65 receives the radio signal transmitted from each temperature measuring device 20 . The receiving circuit 64 demodulates the radio signal received via the receiving antenna 65 to obtain the data contained in the frame. The receiving circuit 64 outputs data to the receiver control device 61 . Thereby, the receiver control device 61 acquires the measurement result of the temperature sensor 34 . The receiver 60 receives the measurement result of the temperature sensor 34 by receiving the wireless signal transmitted from the temperature measuring device 20 .
 通信装置66は、通信制御部やポート等を備え、通信網NWを通じて情報の送受信を行うことができるネットワーク機器である。通信装置66は、通信網NWを介してサーバー70に接続されている。 The communication device 66 is a network device that includes a communication control unit, ports, etc., and can transmit and receive information through the communication network NW. The communication device 66 is connected to the server 70 via the communication network NW.
 図1に示すように、受信機60は、温度測定装置20からの無線信号を受信できるように配置されている。受信機60は、例えば、道路R1に沿って設けられた構造物UP1に取り付けられている。この種の構造物UP1としては、例えば、ガードレール、及び電柱が挙げられる。図1に示す例では、受信機60は、電柱に取り付けられている。 As shown in FIG. 1, the receiver 60 is arranged so that it can receive wireless signals from the temperature measuring device 20 . The receiver 60 is attached, for example, to a structure UP1 provided along the road R1. Examples of this type of structure UP1 include guardrails and utility poles. In the example shown in FIG. 1, the receiver 60 is attached to a utility pole.
 図4に示すように、サーバー70は、データベースDB1を備える。サーバー70は、複数台であってもよいし、1台であってもよい。データベースDB1は、温度測定装置20によって測定された測定温度に関するデータの集合である。受信機60及びサーバー70は、外部機器である。 As shown in FIG. 4, the server 70 has a database DB1. The number of servers 70 may be plural or may be one. The database DB1 is a set of data regarding the measured temperature measured by the temperature measuring device 20 . Receiver 60 and server 70 are external devices.
 図5に示すように、サーバー70が作成するデータベースDB1は、測定温度に、測定時刻、及び測定位置を対応付けたものである。測定時刻は、温度センサ34が路面RS1の温度を測定した時刻である。測定位置は、各温度測定装置20が設けられた位置である。各温度測定装置20の位置は、例えば、地球上の絶対位置を表す座標系の座標で表現される。この種の座標系としては、例えば、地理座標系を挙げることができる。各温度測定装置20の位置は、無線信号に含まれるIDコードから特定されてもよい。これを実現するために、各温度測定装置20のIDコードに各温度測定装置20の座標を対応付けた情報が、サーバー70、あるいは、受信機60に予め記憶される。この場合、受信機60、又はサーバー70が各温度測定装置20の位置を特定する。また、各温度測定装置20の位置を示す情報を含む無線信号を各温度測定装置20が送信するようにしてもよい。 As shown in FIG. 5, the database DB1 created by the server 70 associates the measured temperature with the measurement time and the measurement position. The measurement time is the time when the temperature sensor 34 measures the temperature of the road surface RS1. A measurement position is a position where each temperature measurement device 20 is provided. The position of each temperature measuring device 20 is represented, for example, by coordinates of a coordinate system representing absolute positions on the earth. A coordinate system of this kind can be, for example, a geographic coordinate system. The position of each temperature measuring device 20 may be specified from the ID code included in the radio signal. To achieve this, information in which the ID code of each temperature measuring device 20 is associated with the coordinates of each temperature measuring device 20 is pre-stored in the server 70 or the receiver 60 . In this case, the receiver 60 or server 70 identifies the location of each temperature measurement device 20 . Alternatively, each temperature measurement device 20 may transmit a radio signal including information indicating the position of each temperature measurement device 20 .
 サーバー70は、ユーザーに対してサービスを提供する。サービスは、クラウドとして提供される。クラウドは、データを蓄積したり、サービスを提供したりするコンピュータの利用形態の1つである。サービスとしては、例えば、データベースDB1の提供を挙げることができる。また、サーバー70は、データベースDB1に基づいて導出された路面RS1に関する情報をユーザーに提供してもよい。データベースDB1に基づいて導出された路面RS1に関する情報は、例えば、路面RS1の凍結情報を含む。路面RS1が凍結しているか否かは、測定温度と、測定位置から推定することができる。測定温度が0度以下の場合、当該測定温度に対応付けられた測定位置は凍結していると推定することができる。路面RS1が凍結しているか否かの推定は、サーバー70、又はサーバー70に接続された管理コンピュータによって行われる。そして、サーバー70は、クラウドによって路面RS1に関する情報をユーザーに提供する。サーバー70は、ユーザーに対してウェブブラウザ及びアプリケーションの少なくとも一方で、路面RS1に関する情報を提供する。路面RS1に関する情報は、テキストで提供されてもよいし、画像で提供されてもよい。これにより、測定温度が0度以下の場合、路面RS1が凍結している可能性があることをユーザーに対して注意喚起することができる。 The server 70 provides services to users. Services are provided as a cloud. A cloud is one form of computer usage that accumulates data and provides services. As a service, for example, provision of the database DB1 can be mentioned. The server 70 may also provide the user with information regarding the road surface RS1 derived based on the database DB1. The information on the road surface RS1 derived based on the database DB1 includes, for example, information on the freezing of the road surface RS1. Whether or not the road surface RS1 is frozen can be estimated from the measured temperature and the measured position. If the measured temperature is 0 degrees or less, it can be estimated that the measurement position associated with the measured temperature is frozen. The server 70 or a management computer connected to the server 70 estimates whether the road surface RS1 is frozen. The server 70 then provides information on the road surface RS1 to the user via the cloud. The server 70 provides information on the road surface RS1 to the user through at least one of a web browser and an application. Information about the road surface RS1 may be provided as text or as an image. Accordingly, when the measured temperature is 0 degrees or less, it is possible to alert the user that the road surface RS1 may be frozen.
 本実施形態の作用について説明する。 The action of this embodiment will be described.
 路面RS1の温度が温度センサ34に伝導することで、温度センサ34は路面RS1の温度を測定する。温度センサ34と路面RS1との間に熱伝導材料51を設けていることで、路面RS1の温度は、熱伝導材料51を介して温度センサ34に伝導する。熱伝導材料51の熱伝導率は、空気の熱伝導率よりも高い。このため、熱伝導材料51に代えて空間を設けた場合に比べて、路面RS1の温度が温度センサ34に伝導しやすい。 The temperature of the road surface RS1 is transmitted to the temperature sensor 34, so that the temperature sensor 34 measures the temperature of the road surface RS1. By providing the thermally conductive material 51 between the temperature sensor 34 and the road surface RS1, the temperature of the road surface RS1 is conducted to the temperature sensor 34 via the thermally conductive material 51. The thermal conductivity of the thermally conductive material 51 is higher than that of air. Therefore, the temperature of the road surface RS1 is more easily conducted to the temperature sensor 34 than when a space is provided instead of the heat conductive material 51 .
 本実施形態の効果について説明する。 The effect of this embodiment will be explained.
 (1)熱伝導材料51は、温度センサ34と路面RS1との間に設けられている。路面RS1の温度が温度センサ34に伝導しやすくなるため、温度センサ34によって測定される測定温度が路面RS1の温度に追従しやすい。従って、温度測定装置20は、路面RS1の温度を精度良く測定することができる。 (1) The thermally conductive material 51 is provided between the temperature sensor 34 and the road surface RS1. Since the temperature of the road surface RS1 is easily conducted to the temperature sensor 34, the temperature measured by the temperature sensor 34 easily follows the temperature of the road surface RS1. Therefore, the temperature measuring device 20 can accurately measure the temperature of the road surface RS1.
 (2)熱伝導材料51は、第2部位53を備える。第2部位53は、温度センサ34と画定面25との間に設けられている。路面RS1の温度は、第2部位53を介しても温度センサ34に伝導する。路面RS1の温度が温度センサ34に伝導する経路を増加させることができる。従って、温度センサ34の測定温度が路面RS1の温度に更に追従しやすくなる。 (2) The thermally conductive material 51 has a second portion 53 . The second portion 53 is provided between the temperature sensor 34 and the defining surface 25 . The temperature of the road surface RS1 is also transmitted to the temperature sensor 34 via the second portion 53 . The path through which the temperature of the road surface RS1 is conducted to the temperature sensor 34 can be increased. Therefore, it becomes easier for the temperature measured by the temperature sensor 34 to follow the temperature of the road surface RS1.
 (3)温度測定装置20は、送信回路38を備える。送信回路38は、外部機器に温度センサ34の測定結果を送信することができる。温度センサ34の測定結果を外部機器に提供することができる。 (3) The temperature measurement device 20 has a transmission circuit 38 . The transmission circuit 38 can transmit the measurement result of the temperature sensor 34 to an external device. A measurement result of the temperature sensor 34 can be provided to an external device.
 (4)外部機器は、受信機60及びサーバー70である。温度センサ34の測定結果は、受信機60に送信され、更に受信機60からサーバー70に送信される。複数の温度測定装置20の測定結果を受信機60が受信し、受信機60がサーバー70に測定結果を送信することで、受信機60にのみ通信装置66を設ければよい。このため、温度測定装置20毎に通信装置66を設ける場合に比べて、温度測定装置20の製造コストを低減することができる。また、温度測定装置20毎に通信装置66を設ける場合に比べて、サーバー70との通信による通信コストを低減することができる。 (4) External devices are the receiver 60 and the server 70 . A measurement result of the temperature sensor 34 is transmitted to the receiver 60 and further transmitted from the receiver 60 to the server 70 . The receiver 60 receives the measurement results of the plurality of temperature measurement devices 20 and transmits the measurement results to the server 70 , so that the communication device 66 may be provided only in the receiver 60 . Therefore, compared to the case where the communication device 66 is provided for each temperature measurement device 20, the manufacturing cost of the temperature measurement device 20 can be reduced. In addition, compared to the case where the communication device 66 is provided for each temperature measurement device 20, communication costs for communication with the server 70 can be reduced.
 (5)温度センサ34を道路R1に埋め込むことで、温度センサ34によって道路R1の温度を測定することも考えられる。発明者らが実験を行った結果、温度センサ34を道路R1に埋め込むと、道路R1の温度変化に対する温度センサ34の温度変化の追従性が低下するという知見が得られた。また、路面RS1の凍結情報のように、路面RS1に関する情報を得ようとする場合、路面RS1の温度を測定するように温度センサ34を設けることが好ましい。そこで、本実施形態では路面RS1の温度を測定するように温度センサ34を設けて、温度センサ34と路面RS1との間に熱伝導材料51が介在するようにしている。これにより、路面RS1の温度変化に対する温度センサ34の温度変化の追従性を向上させつつ、路面RS1の温度を測定することができる。 (5) By embedding the temperature sensor 34 in the road R1, the temperature of the road R1 may be measured by the temperature sensor 34. As a result of experiments conducted by the inventors, it was found that if the temperature sensor 34 is embedded in the road R1, the ability of the temperature sensor 34 to follow the temperature change of the road R1 deteriorates. When trying to obtain information about the road surface RS1, such as information about freezing of the road surface RS1, it is preferable to provide the temperature sensor 34 so as to measure the temperature of the road surface RS1. Therefore, in this embodiment, the temperature sensor 34 is provided so as to measure the temperature of the road surface RS1, and the heat conductive material 51 is interposed between the temperature sensor 34 and the road surface RS1. This makes it possible to measure the temperature of the road surface RS1 while improving the ability of the temperature sensor 34 to follow the temperature change of the road surface RS1.
 実施形態は、以下のように変更して実施することができる。各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 The embodiment can be changed and implemented as follows. Each embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
 ・温度センサ34と路面RS1との間に熱伝導材料51が設けられていればよく、熱伝導材料51は路面RS1に接していなくてもよい。この場合、熱伝導材料51と路面RS1との間、あるいは、熱伝導材料51と温度センサ34との間には、空間が存在する場合がある。この場合であっても、熱伝導材料51を設けることで温度センサ34と路面RS1との間に存在する空間の体積が少なくなるため、路面RS1の温度が温度センサ34に伝導しやすくなる。 · It is sufficient that the thermally conductive material 51 is provided between the temperature sensor 34 and the road surface RS1, and the thermally conductive material 51 does not have to be in contact with the road surface RS1. In this case, a space may exist between the thermally conductive material 51 and the road surface RS1 or between the thermally conductive material 51 and the temperature sensor 34 . Even in this case, the provision of the thermally conductive material 51 reduces the volume of the space existing between the temperature sensor 34 and the road surface RS1, so that the temperature of the road surface RS1 is easily conducted to the temperature sensor 34.
 ・熱伝導材料51は、少なくとも温度センサ34と路面RS1との間に設けられていればよい。即ち、熱伝導材料51は第2部位53を備えていなくてもよい。 · The heat conductive material 51 may be provided at least between the temperature sensor 34 and the road surface RS1. That is, the heat-conducting material 51 may not have the second portion 53 .
 ・第2部位53は、センサユニット30と第1画定面26との間、及びセンサユニット30と第2画定面27との間の一方にのみ設けられていてもよい。 · The second portion 53 may be provided only between the sensor unit 30 and the first defining surface 26 and between the sensor unit 30 and the second defining surface 27 .
 ・温度測定装置20は、舗装されていない地面に設けられていてもよい。 · The temperature measurement device 20 may be provided on the unpaved ground.
 ・温度測定装置20は、圧力センサを備えていてもよい。この場合、圧力センサは、大気圧を測定するように設けられる。圧力センサの測定結果は、サーバー70に送信されてもよい。圧力センサの測定結果は、例えば、気象予報に用いることができる。 · The temperature measurement device 20 may include a pressure sensor. In this case, a pressure sensor is provided to measure the atmospheric pressure. The pressure sensor measurement results may be sent to the server 70 . The measurement results of the pressure sensor can be used, for example, for weather forecasting.
 ・温度測定装置20は、送信回路38を備えていなくてもよい。この場合、温度測定装置20は、温度センサ34によって測定された測定温度を測定時刻に対応付けて記憶するように構成されていてもよい。即ち、温度測定装置20は、データロガーとして用いられてもよい。 · The temperature measurement device 20 does not have to include the transmission circuit 38 . In this case, the temperature measurement device 20 may be configured to store the measured temperature measured by the temperature sensor 34 in association with the measurement time. That is, the temperature measuring device 20 may be used as a data logger.
 ・温度測定システム10は、表示部及び発光部の少なくとも一方を備えていてもよい。表示部及び発光部の少なくとも一方は、温度測定装置20が備えていてもよい。表示部及び発光部の少なくとも一方を温度測定装置20に設ける場合、表示部及び発光部の少なくとも一方は、例えば、設置体21の外面に設けられる。制御装置35は、温度センサ34の測定結果から路面RS1が凍結しているか否かを推定してもよい。例えば、制御装置35は、温度センサ34の測定結果が0度以下の場合には、路面RS1が凍結していると推定してもよい。そして、制御装置35は、路面RS1が凍結していると推定した場合には、表示部への表示や発光部の発光を行う。これにより、設置体21の周囲の人に対して警報を行ってもよい。表示部及び発光部の少なくとも一方は、受信機60が備えていてもよいし、受信機60とは別体として設けられていてもよい。この場合、受信機用制御装置61は、温度センサ34の測定結果から路面RS1が凍結しているか否かを推定してもよい。そして、受信機用制御装置61は、路面RS1が凍結していると推定した場合には、表示部への表示や発光部の発光を行う。これにより、受信機60の周囲の人に対して、注意喚起を行うことができる。 · The temperature measurement system 10 may include at least one of a display unit and a light emitting unit. At least one of the display section and the light emitting section may be provided in the temperature measurement device 20 . When at least one of the display section and the light emitting section is provided in the temperature measurement device 20, at least one of the display section and the light emitting section is provided on the outer surface of the installation body 21, for example. The control device 35 may estimate whether the road surface RS1 is frozen from the measurement result of the temperature sensor 34 . For example, the control device 35 may estimate that the road surface RS1 is frozen when the measurement result of the temperature sensor 34 is 0 degrees or less. Then, when the control device 35 estimates that the road surface RS1 is frozen, it performs display on the display unit and light emission from the light emitting unit. As a result, a warning may be given to people around the installation body 21 . At least one of the display unit and the light emitting unit may be included in the receiver 60 or may be provided separately from the receiver 60 . In this case, the receiver control device 61 may estimate whether the road surface RS1 is frozen from the measurement result of the temperature sensor . Then, when the receiver control device 61 estimates that the road surface RS1 is frozen, it performs display on the display unit and light emission from the light emitting unit. As a result, the attention of people around the receiver 60 can be called.
 ・温度測定装置20は、加速度センサを備えていてもよい。加速度センサは、加速度センサに加わる加速度を測定する。車両V1が設置体21の上を通過した場合には、設置体21に衝撃が加わる。これにより、車両V1が設置体21の上を通過していない場合に比べて、加速度センサに大きな加速度が加わる。従って、事故が発生した場合に、事故が発生した時刻での加速度センサの測定結果を確認することで、車両V1が通過した経路の把握に役立てることができる。 · The temperature measurement device 20 may include an acceleration sensor. The acceleration sensor measures acceleration applied to the acceleration sensor. When the vehicle V1 passes over the installation body 21, an impact is applied to the installation body 21. - 特許庁As a result, a larger acceleration is applied to the acceleration sensor than when the vehicle V1 does not pass over the installation body 21 . Therefore, when an accident occurs, checking the measurement result of the acceleration sensor at the time when the accident occurred can be useful for grasping the route that the vehicle V1 has passed.
 ・温度測定装置20は、通信装置を備えていてもよい。通信装置は、通信制御部やポート等を備え、通信網NWを通じて情報の送受信を行うことができるネットワーク機器である。通信装置は、通信網NWを介してサーバー70に接続されている。制御装置35は、通信装置を介して温度センサ34の測定結果をサーバー70に送信してもよい。この場合、温度測定システム10は、受信機60を備えていなくてもよい。即ち、温度センサ34の測定結果は、温度測定装置20から直接サーバー70に送信されるようにしてもよいし、受信機60を介してサーバー70に送信されるようにしてもよい。外部機器は、サーバー70のみであってもよいし、受信機60及びサーバー70であってもよいといえる。 · The temperature measurement device 20 may include a communication device. A communication device is a network device that includes a communication control unit, a port, and the like, and can transmit and receive information through a communication network NW. The communication device is connected to the server 70 via the communication network NW. The control device 35 may transmit the measurement result of the temperature sensor 34 to the server 70 via the communication device. In this case, temperature measurement system 10 may not include receiver 60 . That is, the measurement result of the temperature sensor 34 may be directly transmitted from the temperature measuring device 20 to the server 70 or may be transmitted to the server 70 via the receiver 60 . It can be said that the external device may be only the server 70 or may be the receiver 60 and the server 70 .
 ・外部機器は、受信機60のみであってもよい。この場合、受信機60は、複数の温度測定装置20から送信された測定結果を受信して、当該測定結果を記憶する。この場合、温度測定システム10は、データロガーとして用いられる。 · The external device may be only the receiver 60 . In this case, the receiver 60 receives the measurement results transmitted from the plurality of temperature measurement devices 20 and stores the measurement results. In this case the temperature measurement system 10 is used as a data logger.
 ・設置体21としては、車線分離標を用いてもよい。また、設置体21としては、電柱、標識等を用いてもよい。設置体21が無線信号を通過させにくい材料で製造されている場合、受信機60の受信アンテナ65を設置体21の外部に設けてもよい。また、設置体21は、既存のものに限られず、温度測定装置20に専用のものであってもよい。 · A lane separator may be used as the installation body 21 . Moreover, as the installation body 21, a utility pole, a sign, or the like may be used. The receiving antenna 65 of the receiver 60 may be provided outside the installation body 21 if the installation body 21 is made of a material that does not easily transmit radio signals. Moreover, the installation body 21 is not limited to an existing one, and may be one dedicated to the temperature measurement device 20 .
 ・設置体21の形状は適宜変更してもよい。 · The shape of the installation body 21 may be changed as appropriate.
 ・センサユニット30は、ハウジング31を備えていなくてもよい。この場合、温度センサ34、制御装置35、送信回路38、及び送信アンテナ39を収容領域S1に収容し、収容領域S1に熱伝導材料51を充填すればよい。 · The sensor unit 30 may not include the housing 31 . In this case, the temperature sensor 34, the control device 35, the transmission circuit 38, and the transmission antenna 39 may be accommodated in the accommodation area S1, and the accommodation area S1 may be filled with the thermally conductive material 51. FIG.
 ・温度測定装置20は、1つのみであってもよい。 · There may be only one temperature measuring device 20 .
 DB1…データベース、RS1…地面としての路面、S1…収容領域、10…温度測定システム、20…温度測定装置、21…設置体、22…底面、25…画定面、34…温度センサ、51…熱伝導材料、60…外部機器としての受信機、66…通信装置、70…外部機器としてのサーバー。 DB1...Database, RS1...Road surface as the ground, S1...Accommodation area, 10...Temperature measurement system, 20...Temperature measurement device, 21...Installation body, 22...Bottom surface, 25...Definition surface, 34...Temperature sensor, 51...Heat Conductive material 60 -- Receiver as external equipment 66 -- Communication device 70 -- Server as external equipment.

Claims (6)

  1.  地面に設置されるように構成された設置体と、
     前記地面の温度を測定するように構成された温度センサと、を備えた温度測定装置であって、
     前記設置体は、
     前記地面に接する底面と、
     前記底面に開口する収容領域を画定する画定面と、を備え、
     前記温度センサは、前記収容領域に収容されており、
     前記温度測定装置はさらに、空気の熱伝導率よりも熱伝導率の高い熱伝導材料を備え、
     前記熱伝導材料は、前記温度センサと前記地面との間に設けられている、温度測定装置。
    an installation body configured to be installed on the ground;
    a temperature sensor configured to measure the temperature of the ground,
    The installation body is
    a bottom surface in contact with the ground;
    a defining surface that defines an accommodation area that opens to the bottom surface;
    The temperature sensor is housed in the housing area,
    the temperature measuring device further comprising a thermally conductive material having a thermal conductivity higher than that of air;
    The temperature measuring device, wherein the thermally conductive material is provided between the temperature sensor and the ground.
  2.  前記熱伝導材料は、前記温度センサと前記画定面との間に設けられている、請求項1に記載の温度測定装置。 The temperature measuring device according to claim 1, wherein the thermally conductive material is provided between the temperature sensor and the defining surface.
  3.  前記温度センサの測定結果を外部機器に送信するように構成された送信回路をさらに備える、請求項1又は請求項2に記載の温度測定装置。 The temperature measurement device according to claim 1 or 2, further comprising a transmission circuit configured to transmit the measurement result of the temperature sensor to an external device.
  4.  温度測定装置と、
     外部機器と、を備えた温度測定システムであって、
     前記温度測定装置は、
     地面に設置されるように構成された設置体と、
     前記地面の温度を測定するように構成された温度センサと、を備え、
     前記設置体は、
     前記地面に接する底面と、
     前記底面に開口する収容領域を画定する画定面と、を備え、
     前記温度センサは、前記収容領域に収容されており、
     前記温度測定装置はさらに、
     空気の熱伝導率よりも熱伝導率の高い熱伝導材料と、
     前記温度センサによる温度の測定結果を前記外部機器に送信するように構成された送信回路と、を備え、
     前記熱伝導材料は、前記温度センサと前記地面との間に設けられている、温度測定システム。
    a temperature measuring device;
    A temperature measurement system comprising an external device,
    The temperature measuring device
    an installation body configured to be installed on the ground;
    a temperature sensor configured to measure the temperature of the ground;
    The installation body is
    a bottom surface in contact with the ground;
    a defining surface that defines an accommodation area that opens to the bottom surface;
    The temperature sensor is housed in the housing area,
    The temperature measuring device further comprises:
    a thermally conductive material having a thermal conductivity higher than that of air;
    a transmission circuit configured to transmit the result of temperature measurement by the temperature sensor to the external device;
    A temperature measurement system, wherein the thermally conductive material is provided between the temperature sensor and the ground.
  5.  前記温度測定装置を複数備え、
     前記外部機器は、複数の前記温度測定装置の前記測定結果を受信するように構成された受信機を含む、請求項4に記載の温度測定システム。
    A plurality of the temperature measuring devices,
    5. The temperature measurement system of Claim 4, wherein the external device includes a receiver configured to receive the measurements of the plurality of temperature measurement devices.
  6.  前記外部機器は、サーバーを備え、
     前記受信機は、前記測定結果を前記サーバーに送信するように構成された通信装置を備え、
     前記サーバーは、前記測定結果に関するデータベースを備える、請求項5に記載の温度測定システム。
    the external device comprises a server;
    the receiver comprises a communication device configured to transmit the measurement results to the server;
    6. The temperature measurement system of claim 5, wherein said server comprises a database of said measurements.
PCT/JP2021/024328 2021-06-28 2021-06-28 Temperature measurement device and temperature measurement system WO2023275924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024328 WO2023275924A1 (en) 2021-06-28 2021-06-28 Temperature measurement device and temperature measurement system
JP2023531142A JPWO2023275924A1 (en) 2021-06-28 2021-06-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024328 WO2023275924A1 (en) 2021-06-28 2021-06-28 Temperature measurement device and temperature measurement system

Publications (1)

Publication Number Publication Date
WO2023275924A1 true WO2023275924A1 (en) 2023-01-05

Family

ID=84690994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024328 WO2023275924A1 (en) 2021-06-28 2021-06-28 Temperature measurement device and temperature measurement system

Country Status (2)

Country Link
JP (1) JPWO2023275924A1 (en)
WO (1) WO2023275924A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248031A (en) * 1988-03-29 1989-10-03 Agency Of Ind Science & Technol Ground surface temperature sensor
JPH0447636U (en) * 1990-08-28 1992-04-22
JP2010071955A (en) * 2008-09-22 2010-04-02 Kictec Inc Road attachment and temperature observation system using same
JP2014528035A (en) * 2011-09-11 2014-10-23 ソーラー ブライト リミテッドSolar Bright Limited Road marker or light warning device
US20200199832A1 (en) * 2017-04-25 2020-06-25 MZC Foundation, Inc. Apparatus, system, and method for smart roadway stud control and signaling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248031A (en) * 1988-03-29 1989-10-03 Agency Of Ind Science & Technol Ground surface temperature sensor
JPH0447636U (en) * 1990-08-28 1992-04-22
JP2010071955A (en) * 2008-09-22 2010-04-02 Kictec Inc Road attachment and temperature observation system using same
JP2014528035A (en) * 2011-09-11 2014-10-23 ソーラー ブライト リミテッドSolar Bright Limited Road marker or light warning device
US20200199832A1 (en) * 2017-04-25 2020-06-25 MZC Foundation, Inc. Apparatus, system, and method for smart roadway stud control and signaling

Also Published As

Publication number Publication date
JPWO2023275924A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN102483456B (en) Secondary surveillance radar system for air traffic control
US7050787B2 (en) Cooperative element location system
US8462697B2 (en) Sensor node having self localization function and self localization method thereof
US8077082B1 (en) Enhancing reception of signals in global positioning system (GPS) receiver module
EP2415324B1 (en) Method and system for a traffic management network
US8041469B2 (en) Determining relative spatial information between vehicles
US20040087316A1 (en) Method and apparatus for locating a wireless device
US20100004863A1 (en) Mobile environmental detector
US20080120032A1 (en) Methods and systems of determining bearing when ads-b data is unavailable
KR101476663B1 (en) Location tracking system
US8405484B2 (en) Monitoring responsive objects in vehicles
US20060023655A1 (en) System and method for detection of signal tampering
US20080306969A1 (en) method and system for improving applications based on location information of objects
WO2008004250A2 (en) Vehicle tracking and security using an ad-hoc wireless mesh and method thereof
Soni et al. Internet of Vehicles based approach for road safety applications using sensor technologies
US11043124B2 (en) Roadway information detection system consists of sensors on the autonomous vehicles and devices for the road
US9581727B1 (en) Severe weather situational awareness system and related methods
WO2023275924A1 (en) Temperature measurement device and temperature measurement system
US20100004862A1 (en) Mobile environmental detector
US20060273890A1 (en) Tire pressure monitoring system
JP2010130520A (en) System and method of managing database, system and method of detecting reception environment change
CN102176040A (en) Dual-GPS (Global Positioning System) positioned interface device of high-precision beacon
CA2639015A1 (en) Method and system for location determination of portable radio transponders within a defined area
US20160373889A1 (en) Location accuracy improvement method and system using network elements relations and scaling methods
ES2727483T3 (en) Method for determining indoor locations of mobile receiver units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948238

Country of ref document: EP

Kind code of ref document: A1