WO2023275922A1 - Area design assistance method, area design assistance device, and program - Google Patents

Area design assistance method, area design assistance device, and program Download PDF

Info

Publication number
WO2023275922A1
WO2023275922A1 PCT/JP2021/024323 JP2021024323W WO2023275922A1 WO 2023275922 A1 WO2023275922 A1 WO 2023275922A1 JP 2021024323 W JP2021024323 W JP 2021024323W WO 2023275922 A1 WO2023275922 A1 WO 2023275922A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
determination
sight
line
mesh
Prior art date
Application number
PCT/JP2021/024323
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 坪井
秀紀 俊長
和人 後藤
直樹 北
武 鬼沢
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/024323 priority Critical patent/WO2023275922A1/en
Priority to JP2023531140A priority patent/JPWO2023275922A1/ja
Publication of WO2023275922A1 publication Critical patent/WO2023275922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to an area design assistance method, an area design assistance device, and a program.
  • point cloud data In area design for wireless communication in the millimeter wave band, it is possible to use point cloud data to determine whether or not there is a line of sight between wireless stations (for example, Patent Document 1 and Non-Patent Document 1). .
  • a first Fresnel zone is assumed between a base station apparatus and a terminal station apparatus, and point cloud data in a plurality of areas within the assumed first Fresnel zone are scanned and detected.
  • the ratio of the total area of the area where the point cloud data is detected to the area of the area constructed by the first Fresnel zone itself is calculated, and the calculated value is taken as the shielding rate.
  • the technique of obtaining the shielding rate between wireless stations by utilizing these point cloud data can also be used to determine the positions where millimeter-wave band wireless base stations are installed.
  • the judgment range in which a mobile terminal station can wirelessly communicate with a base station that is a fixed station with a mesh For example, as shown in FIG. 8, it is conceivable to partition the determination range with a grid-like mesh. For example, by calculating the shielding rate between the base station and terminal stations assumed to be in each mesh and comparing the calculated shielding rate with a predetermined threshold, there is a line of sight between each mesh and the base station. It is determined whether or not For example, the colored meshes in FIG. 9 are the meshes determined to have line of sight.
  • FIG. 10 is a diagram showing the travel locus of MMS and the range in which point cloud data can be collected. In FIG. 10, the range over which point cloud data can be collected is shown in gray.
  • MMS generally emits a measurement radar in a direction perpendicular to the direction of travel, and collects point cloud data by receiving reflected signals from the same direction.
  • MMS can collect point cloud data in a different range than when the measurement radar is emitted in the horizontal direction that is perpendicular to the traveling direction (for example, Patent Document 2 and Non-Patent Document 2).
  • point cloud data cannot be collected, such as points blocked by walls of buildings.
  • FIG. 11 is a diagram showing an area design when a base station is installed in a range where point cloud data is not collected. If there is a range where point cloud data is not collected between the mesh where the terminal station is supposed to be and the base station, the point cloud data will not be included when calculating the shielding rate between the base station and the mesh. The calculated results may be unreliable because there are some parts that are not
  • FIG. 12 is a diagram showing area design when neither the base station nor the terminal station is included in the range where the point cloud data is collected.
  • the calculated shielding rate may be meaningless. Therefore, when point cloud data cannot be collected, it may not be possible to appropriately determine visibility.
  • the present invention provides an area design assistance method, an area design assistance device, and a program capable of performing visibility determination even when there is a range in which point cloud data is not collected.
  • a determination range determination step of determining a determination range on a map generated from map information, a mesh creation step of creating a mesh group dividing the determination range, and the map information or the outdoor facility information a base station candidate position generation step of generating a base station candidate position based on the map information; a line-of-sight determination step; and a base station extraction step of extracting base station candidate positions for line-of-sight determination using point cloud data from the base station candidate positions based on the line-of-sight determined by the first line-of-sight determination step.
  • a determination range determination unit that determines a determination range on a map generated from map information, a mesh creation unit that creates a mesh group that divides the determination range, and a base station candidate position that is generated.
  • a base station candidate position generation unit a first line of sight determination unit that determines a line of sight between the base station candidate position and meshes that make up the mesh group; a base station extraction unit for extracting the candidate positions of the base stations; and a second outlook for determining the candidate positions of the base stations extracted by the base station extraction unit from point cloud data in the area corresponding to the map information. and a determination unit.
  • One aspect of the present invention is a program for causing a computer to function the area design assistance method described above.
  • visibility can be determined even when there is a range in which point cloud data has not been collected.
  • FIG. 10 is an example of a table showing candidate positions of a base station and numbers assigned to meshes determined to be “line-of-sight” at the candidate positions;
  • FIG. 4 is a flowchart showing the operation of the map determination device 2; It is an example of the result determined by the point cloud data prospect determination unit 40 .
  • 4 is a flowchart showing the operation of the point group determination device 3;
  • FIG. 10 is a diagram showing a map determination device 2 according to a second embodiment;
  • FIG. It is a figure which shows the point cloud determination apparatus 3 which concerns on 3rd Embodiment. This is a judgment range divided by a grid-like mesh.
  • FIG. 10 is an example of a table showing candidate positions of a base station and numbers assigned to meshes determined to be “line-of-sight” at the candidate positions;
  • FIG. 4 is a flowchart showing the operation of the map determination device 2; It is an example of the result determined by the point cloud data prospect determination unit 40 . 4 is a
  • FIG. 4 is a diagram showing meshes determined to be communicable; It is a figure which shows the range which can collect the travel locus
  • FIG. 10 is a diagram showing an area design when a base station is installed in a range where point cloud data is not collected;
  • FIG. 10 is a diagram showing area design when neither the base station nor the terminal station is included in the range where the point cloud data is collected;
  • FIG. 1 is a diagram showing the configuration of an area design assisting device 1 according to the first embodiment.
  • the area design assisting device 1 provides information for assisting in designing a communication area based on input map information and the like.
  • the area design assistance device 1 includes a map determination device 2 and a point cloud determination device 3 .
  • the map determination device 2 determines the outlook of a given range based on input map information and the like.
  • the point cloud determination device 3 determines the outlook of a given range using point cloud data based on the determination result by the map determination device 2 .
  • the map determination device 2 and the point cloud determination device 3 are separate devices for the convenience of the following description, and the map determination device 2 and the point cloud determination device 3 may be realized by one device.
  • the map determination device 2 includes a map information acquisition unit 10, an outdoor facility information acquisition unit 12, a determination range determination unit 14, a mesh creation unit 16, a representative point determination unit 18, a number assignment unit 20, a base station candidate position generation unit 22, a line of sight A determination unit 24 and a determination result output unit 26 are provided.
  • the map information acquisition unit 10 acquires map information.
  • the map information includes, for example, information on outlines of buildings on the map.
  • the outline of a building on the map is, for example, the shape of the walls of an office, factory, residence, or the like on the map.
  • the map information may be information about a two-dimensional map or information about a three-dimensional map. If the map information is information about a three-dimensional map, it may also include information about the height of buildings on the map.
  • the map information acquisition unit 10 acquires map information input by a user, for example.
  • the outdoor equipment information acquisition unit 12 acquires outdoor equipment information.
  • the outdoor equipment information includes information about the location of outdoor communication equipment such as utility poles and communication cables.
  • the outdoor facility information acquisition unit 12 acquires outdoor facility information input by a user, for example.
  • the determination range determination unit 14 determines the determination range on the map generated from the map information.
  • the judgment range is the range for area design.
  • the determination range is specified by, for example, enclosing the location for which the user wants to determine the outlook on the screen displaying the map acquired by the map information acquisition unit 10, and is determined by the determination range determination unit 14 based on the specified range. be done.
  • the mesh creation unit 16 creates a mesh that divides the determination range determined by the determination range determination unit 14 .
  • the mesh creation unit 16 creates a mesh group that partitions the determination range by, for example, using meshes of a predetermined size to cover the determination range. Note that the mesh creation unit 16 may adjust the size of a predetermined number of meshes, for example, and create a mesh group that divides the determination range.
  • the representative point determination unit 18 determines a representative point for each mesh. For example, when the mesh is a square, the representative point determination unit 18 determines the center of the mesh as the representative point. Also, for example, when a map is represented by two-dimensional XY coordinates, the representative point determining unit 18 may determine the smallest X coordinate and Y coordinate included in the mesh as the representative point.
  • the number assigning unit 20 assigns numbers to meshes. Since the number of the mesh is for distinguishing it from other meshes, for example, a symbol or a representative point of the mesh may be used instead of the number.
  • the base station candidate position generator 22 generates base station candidate positions.
  • the candidate positions of the base station are, for example, the positions of utility poles based on the outdoor facility information. Further, the candidate position of the base station may be, for example, the position of a building having a height equal to or higher than a certain value among the heights of buildings based on map information.
  • the line-of-sight determination unit 24 determines the line-of-sight between the candidate positions of the base station and the mesh.
  • the line-of-sight determination unit 24 connects, for example, a line segment between the candidate position of the base station and the representative point of the mesh, and when the line segment intersects the outline of the building, the line of sight between the candidate position of the base station and the mesh is determined. If the line segment does not intersect the outline of the building, it is determined to be "line of sight”.
  • the outlook determination unit 24 considers the candidate positions of the base stations and the height of the representative point of the mesh to determine the candidate positions of the base stations. may determine the line-of-sight to the mesh.
  • the line-of-sight determination unit 24 is an example of a first line-of-sight determination unit.
  • the judgment result output unit 26 outputs the judgment result by the visibility judgment unit 24.
  • the determination result is, for example, a map that differs depending on the candidate position of the base station, and is a map in which meshes determined to be "line-of-sight" are colored.
  • the determination result is, for example, a table showing the candidate positions of the base station and the numbers assigned to the meshes determined to be "line-of-sight" at the candidate positions (an example of the table is shown in FIG. 2).
  • the candidate position of each base station is denoted by C1 and so on by adding a C to the number.
  • Each mesh determined to have line of sight is numbered with an M and represented as M1, and so on.
  • FIG. 3 is a flow chart showing the operation of the map determination device 2.
  • the map information acquisition unit 10 acquires map information (step S101).
  • the outdoor equipment information acquisition unit 12 acquires outdoor equipment information (step S102).
  • the determination range determination unit 14 determines the determination range (step S103).
  • the mesh creation unit 16 creates a mesh (step S104).
  • the representative point determination unit 18 determines a representative point for each mesh (step S105).
  • the number assigning unit 20 assigns numbers to the meshes (step S106).
  • the base station candidate position generator 22 generates base station candidate positions (step S107).
  • the line-of-sight determination unit 24 repeats steps S109 to S113 for the candidate positions of each base station (step S108).
  • the line-of-sight determination unit 24 repeats steps S110 to S113 for each mesh (step S109).
  • the line-of-sight determination unit 24 determines the line-of-sight to all meshes from the candidate positions of all base stations in steps S108 and S109.
  • the line-of-sight determination unit 24 draws a line segment between the candidate position of the base station and the mesh (step S110).
  • the line of sight determination unit 24 determines whether or not the line segment intersects with the outline of the building (step S111). If the line segment intersects with the outline of the building (step S111: YES), the line-of-sight determining unit 24 determines that there is "no line-of-sight" between the candidate position of the base station and the mesh (step S112). If the line segment does not intersect with the outline of the building (step S111: NO), the line-of-sight determination unit 24 determines that there is "line-of-sight" between the candidate position of the base station and the mesh (step S113). After that, the determination result output unit 26 outputs the determination result (step S114).
  • the point cloud determination device 3 includes a point cloud data acquisition unit 30, a determination candidate position determination unit 32, a base station extraction method determination unit 34, a first base station extraction unit 36, a second base station extraction unit 38, and a point cloud data prospect determination.
  • a point cloud data determination result output unit 42 is provided.
  • the point cloud data acquisition unit 30 acquires the point cloud data collected in the area corresponding to the map information acquired by the map information acquisition unit 10 from the MMS travel trajectory and MMS.
  • the area corresponding to the map information is the actual area indicated by the map created from the map information.
  • the determination candidate position determination unit 32 determines the candidate positions of the base station that performs the determination.
  • the determination candidate position determination unit 32 determines candidate positions of the base station to be determined based on selection by the user, for example.
  • the base station extraction method determination unit 34 determines a method for extracting candidate positions of base stations.
  • the base station extraction method determination unit 34 determines a method for extracting candidate positions of base stations based on selection by the user, for example.
  • the first base station extraction unit 36 extracts candidate positions of base stations.
  • the second base station extraction unit 38 extracts candidate positions of base stations.
  • the first base station extraction unit 36 extracts base station candidate positions based on the determination result of the line-of-sight determination unit 24 so that the area coverage ratio of the base station is maximized. Specifically, the first base station extraction unit 36 confirms, for example, the candidate position of the base station determined to be determined by the determination candidate position determination unit 32 and the number of the mesh with line of sight corresponding thereto. After that, the first base station extracting unit 36 determines whether all of the corresponding line-of-sight mesh numbers among the base station candidate positions are included in the line-of-sight mesh numbers corresponding to the other base station candidate positions. Delete the candidate position of the base station that is
  • the base station candidate position C1 is included in the line-of-sight mesh numbers corresponding to the base station candidate positions C2-5, which are the candidate positions of the other base stations. can't Therefore, the base station candidate position C1 is not deleted.
  • Base station candidate location C2 is included in the line-of-sight meshes corresponding to base station candidate locations C1 and C3-5 whose corresponding line-of-sight meshes are all candidate locations for other base stations. Therefore, the base station candidate position C2 is deleted.
  • the second base station extraction unit 38 extracts base station candidate positions based on the determination result of the line-of-sight determination unit 24 so that the base station can efficiently cover the area.
  • "effective area coverage” means that there is little duplication of areas covered by the base stations.
  • the second base station extraction unit 38 confirms, for example, the candidate position of the base station determined to be determined by the determination candidate position determination unit 32 and the number of the mesh with line of sight corresponding thereto. After that, when there is a candidate position of a base station whose corresponding meshes with line-of-sight overlap, the second base station extraction unit 38 deletes candidate positions of base stations with a small number of corresponding meshes with line-of-sight.
  • the operation of the second base station extraction unit 38 will be explained using the table in FIG.
  • meshes M2, 3, 4, 6, 10, and 12 overlap meshes M2, 3, 4, 6, 10, and 12 with line-of-sight meshes corresponding to the base station candidate position C1 and the base station candidate position C2. Therefore, the candidate position C2 of the base station with a small number of corresponding line-of-sight meshes is deleted.
  • the meshes M1, 2, 4, 5, 6, and 10 overlap with the meshes with line of sight corresponding to the candidate position C1 of the base station and the candidate position C4 of the base station. Therefore, the candidate position C4 of the base station with a small number of corresponding line-of-sight meshes is deleted.
  • the line-of-sight meshes corresponding to the base station candidate positions C3 and C5 are not deleted because they do not overlap with the line-of-sight meshes corresponding to the other base station candidate positions.
  • the point cloud data outlook determination unit 40 corresponds to the base station candidate positions and the base station candidate positions extracted by the first base station extraction unit 36 or the second base station extraction unit 38, and the outlook determination unit 24 determines " The line-of-sight to the mesh determined as "line-of-sight" is determined using the point cloud data.
  • a method for determining the line of sight using point cloud data is the method described in Patent Document 1 and Non-Patent Document 1, for example.
  • the point cloud data outlook determination unit 40 is an example of a second outlook determination unit.
  • FIG. 4 is an example of the result determined by the point cloud data prospect determination unit 40.
  • FIG. A mesh with a line of sight is a mesh determined to have a line of sight by the point cloud data, among the meshes determined to have a line of sight by the line of sight determining unit 24 .
  • the meshes for which the "point cloud determination result is NG" are the meshes determined to have no visibility based on the point cloud data, among the meshes determined to have visibility by the visibility determining unit 24. be.
  • the meshes for which "point cloud determination is not possible” include a range in which point cloud data is not collected in the meshes between the candidate positions of the base station and the meshes. , are meshes that cannot be determined by the point cloud data.
  • a mesh that is "unexecuted point cloud determination” is a mesh that is not determined because the same mesh is determined to have a line of sight at the candidate position of another base station based on the point cloud data.
  • the point cloud data determination result output unit 42 outputs the result determined by the point cloud data prospect determination unit 40.
  • the point cloud data determination result is, for example, a map that differs depending on the candidate position of the base station, and includes "line of sight (point cloud data)", “point cloud determination result is NG", “point cloud determination not possible”, “point cloud determination It is a map in which the meshes determined as "not implemented” are colored in different colors.
  • the determination result is, for example, a table showing the candidate positions of the base station shown in FIG. 4 and the numbers assigned to the meshes determined to be "line-of-sight" at the candidate positions.
  • FIG. 5 is a flow chart showing the operation of the point group determination device 3.
  • the point cloud data acquisition unit 30 acquires point cloud data (step S201).
  • the candidate positions to be judged by the judgment candidate position deciding unit 32 are decided (step S202).
  • the base station extraction method determining unit 34 acquires the base station extraction method (step S203).
  • the base station extraction method determination unit 34 determines the base station extraction method based on the acquired base station extraction method (step S204).
  • the base station extraction method acquired by the base station extraction method determination unit 34 is the first base station extraction method (step S204: YES)
  • the first base station extraction unit 36 extracts candidate positions of base stations (step S205).
  • the second base station extraction unit 38 extracts candidate positions of base stations (step S206). ).
  • the point cloud data outlook determining unit 40 uses the point cloud data to determine the candidate positions and meshes of the extracted base stations (step S207).
  • the point cloud data determination result output unit 42 outputs the point cloud data determination result (step S208).
  • the determination range determination unit 14 determines the determination range on the map
  • the mesh creation unit 16 creates a mesh group dividing the determination range
  • a base station candidate position generator 22 generates base station candidate positions.
  • the line-of-sight determination unit 24 determines the line-of-sight between the base station candidate positions and the meshes that make up the mesh group
  • the first base station extraction unit 36 or the second base station extraction unit 38 determines the line-of-sight based on the determined line-of-sight
  • the point cloud data is used to extract candidate base station locations for which line of sight is determined.
  • the line of sight between the base station candidate position extracted by the point cloud data line of sight determination unit 40 and the mesh determined to have line of sight by the line of sight determination unit 24 is determined by the point cloud data. Since the point cloud data is not used for the judgment of the outlook by the outlook judgment unit 24, the outlook judgment is performed including the range where the point cloud data is not collected by the outlook judgment unit 24, and the range where the point cloud data is collected. is determined by the point cloud data outlook determining unit 40 based on the point cloud data. As a result, visibility can be determined even when there is a range in which point cloud data is not collected.
  • the area design assisting device 1 when there is a range in which point cloud data is not collected between the mesh and the candidate positions of the base station, the area design assisting device 1 according to the first embodiment does not collect the point cloud data. For areas where point cloud data is collected, the visibility is determined using point cloud data, and for areas where point cloud data is not collected, visibility is determined using map information, resulting in more reliable determination. You can get results.
  • the area design assisting device 1 when point cloud data is not collected at all between the mesh and the candidate positions of the base station, the area design assisting device 1 according to the first embodiment performs visibility determination using map information. By doing so, more reliable determination results can be obtained.
  • the judgment result using the point cloud data includes information such as "point cloud judgment result is NG" or "point cloud judgment is not possible", and whether the judgment result is based on the point cloud data or not depends on the map information. based or partially based on point cloud data.
  • the person who designs the area of the base station can newly determine the area for collecting the point cloud data. For example, a person who designs a base station area can improve reliability by changing the angle of the radar installed in the MMS and performing new collection work for areas where point cloud data is insufficient. It can be dealt with to get high results.
  • a person who designs the area of the base station can select the position to install the base station from the candidate positions of the base station.
  • a person who designs the area of a base station can preferentially adopt a candidate position of a base station that has obtained a result with a certain degree of reliability determined by, for example, point cloud data, and install a base station.
  • the area design assisting device 1 may operate only the map determining device 2 without operating the point cloud determining device 3 when point cloud data is not collected in any of the meshes that divide the determination range.
  • FIG. 6 is a diagram showing a map determination device 2 according to the second embodiment.
  • a map determination device 2 according to the second embodiment includes a mesh deletion unit 28 in addition to the map determination device 2 according to the first embodiment.
  • the mesh deletion unit 28 deletes the mesh inside the building.
  • the fact that the mesh is inside the building means, for example, that the representative point of the mesh is inside the building.
  • Whether or not the representative point is inside the building is determined by, for example, the following method. Taking two-dimensional coordinates on a map, let the four corners of the building outline be points A, B, C, and D clockwise. Similarly, let P be a representative point of the mesh. At this time, it is determined that the point P is inside the building when all of the following four equations hold.
  • the deletion of the mesh inside the building by the mesh deletion unit 28 eliminates the necessity of determining the visibility of the mesh inside the building, leading to efficiency. .
  • FIG. 7 is a diagram showing a point group determination device 3 according to the third embodiment.
  • the point cloud determination device 3 according to the third embodiment includes a determination candidate mesh deletion unit 44 in addition to the point cloud determination device 3 according to the first embodiment.
  • the determination candidate mesh deletion unit 44 deletes meshes that have been determined to have visibility by the visibility determination unit 24 based on the outline of the building and the running trajectory of the MMS. For example, the determination candidate mesh deletion unit 44 first determines the range in which point cloud data can be collected based on the outline of the building and the running trajectory of the MMS. After that, it is determined whether point cloud data can be collected between the candidate positions of the base station and the corresponding mesh. , and determine that "point cloud determination is not possible”. Note that, in the third embodiment, the point cloud data prospect determination unit 40 does not have to determine that the mesh is "point cloud undeterminable".
  • the number of meshes to be considered in the operation by the first base station extraction unit 36 or the second base station extraction unit 38 is reduced by determining in advance that the meshes are "point cloud undeterminable". can be done, leading to efficiency.
  • the first to third embodiments have been described above.
  • the relationship between the point cloud data acquired by the area design assisting device 1 according to these embodiments and the determination range can be broadly divided into three types. One is when point cloud data is collected in the entire judgment range, the other is when point cloud data is collected in a part of the judgment range, and the other is when point cloud data is collected in the judgment range. This is the case when it is not collected.
  • the area design assisting device 1 can determine the outlook based on the point cloud data in the entire determination range.
  • point cloud data is collected in a part of the determination range
  • the area design assisting device 1 can perform visibility determination using the point cloud data in the range where the point cloud data is collected.
  • the area design assisting device 1 can determine the outlook based on map information. Thus, according to the above-described embodiment, the area design assisting device 1 can appropriately determine the visibility in any of the three cases.
  • a part or all of the area design assistance device 1 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • 1 Area design auxiliary device 2 Map determination device, 3 Point group determination device, 10 Map information acquisition unit, 12 Outdoor facility information acquisition unit, 14 Judgment range determination unit, 16 Mesh creation unit, 18 Representative point determination unit, 20 Number assignment 22 base station candidate position generation unit 24 line of sight determination unit 26 determination result output unit 28 mesh deletion unit 30 point cloud data acquisition unit 32 determination candidate position determination unit 34 base station extraction method determination unit 36 th 1 base station extraction unit, 38 second base station extraction unit, 40 point cloud data outlook determination unit, 42 point cloud data determination result output unit, 44 determination candidate mesh deletion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This area design assistance method has: an assessment range determination step for determining an assessment range on a map generated from map information; a mesh creation step for creating a mesh group for demarcating the assessment range; a base station candidate position generation step for generating base station candidate positions on the basis of the map information or outdoor facility information; a first visibility assessment step for using the map information to assess visibility between the base station candidate positions and meshes constituting the mesh group; a base station extraction step for extracting, from the base station candidate positions on the basis of the assessed visibility, a base station candidate position for assessing visibility using point cloud data; and, a second visibility assessment step for using point cloud data in a region that corresponds to the map information to assess visibility between the extracted base station candidate position and a mesh assessed in the first visibility assessment step to have visibility.

Description

エリア設計補助方法、エリア設計補助装置及びプログラムAREA DESIGN ASSISTANT METHOD, AREA DESIGN ASSISTANT DEVICE AND PROGRAM
 本発明は、エリア設計補助方法、エリア設計補助装置及びプログラムに関する。 The present invention relates to an area design assistance method, an area design assistance device, and a program.
 無線通信の分野において、これまでの通信容量を超える大容量化が求められている。大容量の無線通信として、ミリ波帯などの高い周波数の電波が利用される無線通信が想定されている。 In the field of wireless communication, there is a demand for increased communication capacity that exceeds conventional communication capacity. As large-capacity wireless communication, wireless communication using high-frequency radio waves such as millimeter waveband is assumed.
 ミリ波帯の無線通信のエリア設計において、点群データを活用して無線局間に見通しがあるか否かを判定する手法を利用することができる(例えば、特許文献1及び非特許文献1)。特許文献1に記載の発明において、基地局装置と端末局装置間での第1フレネルゾーンを想定し、想定される第1フレネルゾーン内の複数の領域にある点群データを走査し検出する。その後、点群データが検出された領域を総和した面積と第1フレネルゾーン自体が構築する領域の面積の比率を算出し、算出された値を遮蔽率とする。これらの点群データを活用して無線局間の遮蔽率を求める手法は、ミリ波帯の無線基地局を設置する位置を決定するためにも使用することができる。 In area design for wireless communication in the millimeter wave band, it is possible to use point cloud data to determine whether or not there is a line of sight between wireless stations (for example, Patent Document 1 and Non-Patent Document 1). . In the invention described in Patent Document 1, a first Fresnel zone is assumed between a base station apparatus and a terminal station apparatus, and point cloud data in a plurality of areas within the assumed first Fresnel zone are scanned and detected. After that, the ratio of the total area of the area where the point cloud data is detected to the area of the area constructed by the first Fresnel zone itself is calculated, and the calculated value is taken as the shielding rate. The technique of obtaining the shielding rate between wireless stations by utilizing these point cloud data can also be used to determine the positions where millimeter-wave band wireless base stations are installed.
 無線通信のエリア設計において、例えば、移動体である端末局が固定局である基地局と無線通信できる判定範囲をメッシュで区切ることが考えられる。例えば図8に示すように判定範囲を格子状のメッシュで区切ることが考えられる。例えば、基地局と各メッシュにあると想定される端末局間の遮蔽率が算出され、算出される遮蔽率を所定の閾値と比較することで、各メッシュと基地局との間に見通しがあるか否かが判定される。例えば図9において色付きで示されたメッシュが、見通しがあると判定されたメッシュである。 In the area design for wireless communication, for example, it is conceivable to divide the judgment range in which a mobile terminal station can wirelessly communicate with a base station that is a fixed station with a mesh. For example, as shown in FIG. 8, it is conceivable to partition the determination range with a grid-like mesh. For example, by calculating the shielding rate between the base station and terminal stations assumed to be in each mesh and comparing the calculated shielding rate with a predetermined threshold, there is a line of sight between each mesh and the base station. It is determined whether or not For example, the colored meshes in FIG. 9 are the meshes determined to have line of sight.
 他方、特許文献1に示す方法は、点群データを収集する必要がある。点群データの収集には例えば、MMS(Mobile Mapping System)が使用される。図10は、MMSの走行軌跡と点群データを収集できる範囲を示す図である。図10には、点群データを収集することができる範囲が灰色で示されている。MMSは一般的に走行方向に対し直交する方向に測定用のレーダを照射し、同じ方向からの反射信号を受信することで点群データを収集する。MMSは走行方向に対し直角ではない角度方向に測定用のレーダを照射することで、直角となる左右方向に測定用のレーダを照射する場合と異なる範囲の点群データを収集することができる(例えば、特許文献2及び非特許文献2)。しかしながら、建物の壁面などに遮られる地点など、点群データを収集することができない地点は存在する。 On the other hand, the method shown in Patent Document 1 requires collection of point cloud data. For example, MMS (Mobile Mapping System) is used to collect point cloud data. FIG. 10 is a diagram showing the travel locus of MMS and the range in which point cloud data can be collected. In FIG. 10, the range over which point cloud data can be collected is shown in gray. MMS generally emits a measurement radar in a direction perpendicular to the direction of travel, and collects point cloud data by receiving reflected signals from the same direction. By irradiating the measurement radar in an angle direction that is not perpendicular to the running direction, MMS can collect point cloud data in a different range than when the measurement radar is emitted in the horizontal direction that is perpendicular to the traveling direction ( For example, Patent Document 2 and Non-Patent Document 2). However, there are points where point cloud data cannot be collected, such as points blocked by walls of buildings.
特開2020-107955号公報JP 2020-107955 A 特開2017-156179号公報JP 2017-156179 A
 図11は、点群データが収集されていない範囲に基地局を設置した場合のエリア設計を示す図である。端末局があると想定されているメッシュと基地局の間に点群データが収集されていない範囲が含まれる場合、基地局とメッシュ間の遮蔽率を算出する際に、点群データが含まれていない部分があることから、算出される結果の信頼性が劣ることがある。 FIG. 11 is a diagram showing an area design when a base station is installed in a range where point cloud data is not collected. If there is a range where point cloud data is not collected between the mesh where the terminal station is supposed to be and the base station, the point cloud data will not be included when calculating the shielding rate between the base station and the mesh. The calculated results may be unreliable because there are some parts that are not
 図12は、基地局と端末局とがともに点群データが収集された範囲に含まれていない場合のエリア設計を示す図である。この場合、基地局とメッシュ間には収集した点群データがほとんど又は全く存在しないため、算出される遮蔽率の意味がほとんどないことがある。そのため、点群データが収集できない場合に、適切に見通し判定が行えない場合がある。
 本発明は、点群データが収集されていない範囲がある場合にも、見通し判定を行うことができるエリア設計補助方法、エリア設計補助装置及びプログラムを提供する。
FIG. 12 is a diagram showing area design when neither the base station nor the terminal station is included in the range where the point cloud data is collected. In this case, since little or no collected point cloud data exists between the base station and the mesh, the calculated shielding rate may be meaningless. Therefore, when point cloud data cannot be collected, it may not be possible to appropriately determine visibility.
The present invention provides an area design assistance method, an area design assistance device, and a program capable of performing visibility determination even when there is a range in which point cloud data is not collected.
 本発明の一態様は、地図情報から生成される地図上の判定範囲を決定する判定範囲決定ステップと、前記判定範囲を区切るメッシュ群を作成するメッシュ作成ステップと、前記地図情報又は屋外設備情報に基づいて、基地局の候補位置を生成する基地局候補位置生成ステップと、前記基地局の候補位置と前記メッシュ群を構成するメッシュとの間の見通しを、前記地図情報を用いて判定する第1見通し判定ステップと、前記第1見通し判定ステップにより判定された見通しに基づいて、前記基地局の候補位置から点群データを使用して見通しを判定する基地局の候補位置を抽出する基地局抽出ステップと、前記基地局抽出ステップにより抽出された基地局の候補位置と、前記見通し判定ステップにより見通しありと判定されたメッシュとの間の見通しを、前記地図情報に対応する地域における点群データを用いて判定する第2見通し判定ステップと、を有するエリア設計補助方法である。 According to one aspect of the present invention, a determination range determination step of determining a determination range on a map generated from map information, a mesh creation step of creating a mesh group dividing the determination range, and the map information or the outdoor facility information a base station candidate position generation step of generating a base station candidate position based on the map information; a line-of-sight determination step; and a base station extraction step of extracting base station candidate positions for line-of-sight determination using point cloud data from the base station candidate positions based on the line-of-sight determined by the first line-of-sight determination step. and a line of sight between the base station candidate position extracted by the base station extraction step and the mesh determined to have line of sight by the line of sight determination step, using point cloud data in the area corresponding to the map information and a second outlook determination step of determining the area design assistance method.
 本発明の一態様は、地図情報から生成される地図上の判定範囲を決定する判定範囲決定部と、前記判定範囲を区切るメッシュ群を作成するメッシュ作成部と、基地局の候補位置を生成する基地局候補位置生成部と、前記基地局の候補位置と前記メッシュ群を構成するメッシュとの間の見通しを判定する第1見通し判定部と、前記第1見通し判定部により判定された見通しに基づいて、前記基地局の候補位置を抽出する基地局抽出部と、前記基地局抽出部により抽出された基地局の候補位置を、前記地図情報に対応する地域における点群データにより判定する第2見通し判定部と、を備えるエリア設計補助装置である。 According to one aspect of the present invention, a determination range determination unit that determines a determination range on a map generated from map information, a mesh creation unit that creates a mesh group that divides the determination range, and a base station candidate position that is generated. a base station candidate position generation unit; a first line of sight determination unit that determines a line of sight between the base station candidate position and meshes that make up the mesh group; a base station extraction unit for extracting the candidate positions of the base stations; and a second outlook for determining the candidate positions of the base stations extracted by the base station extraction unit from point cloud data in the area corresponding to the map information. and a determination unit.
 本発明の一態様は、コンピュータに上記のエリア設計補助方法を機能させるためのプログラムである。 One aspect of the present invention is a program for causing a computer to function the area design assistance method described above.
 本発明により、点群データが収集されていない範囲がある場合にも、見通し判定を行うことができる。 According to the present invention, visibility can be determined even when there is a range in which point cloud data has not been collected.
第1の実施形態に係るエリア設計補助装置1の構成を示す図である。It is a figure which shows the structure of the area design assistance apparatus 1 which concerns on 1st Embodiment. 基地局の候補位置と当該候補位置における「見通しあり」と判定されたメッシュに付された番号を示す表の一例である。FIG. 10 is an example of a table showing candidate positions of a base station and numbers assigned to meshes determined to be “line-of-sight” at the candidate positions; FIG. 地図判定装置2の動作を示すフローチャートである。4 is a flowchart showing the operation of the map determination device 2; 点群データ見通し判定部40により判定された結果の一例である。It is an example of the result determined by the point cloud data prospect determination unit 40 . 点群判定装置3の動作を示すフローチャートである。4 is a flowchart showing the operation of the point group determination device 3; 第2の実施形態に係る地図判定装置2を示す図である。FIG. 10 is a diagram showing a map determination device 2 according to a second embodiment; FIG. 第3の実施形態に係る点群判定装置3を示す図である。It is a figure which shows the point cloud determination apparatus 3 which concerns on 3rd Embodiment. 格子状のメッシュで区切った判定範囲である。This is a judgment range divided by a grid-like mesh. 通信可能であると判定されたメッシュを示す図である。FIG. 4 is a diagram showing meshes determined to be communicable; MMSの走行軌跡と点群データを収集できる範囲を示す図である。It is a figure which shows the range which can collect the travel locus|trajectory and point cloud data of MMS. 点群データが収集されていない範囲に基地局を設置した場合のエリア設計を示す図である。FIG. 10 is a diagram showing an area design when a base station is installed in a range where point cloud data is not collected; 基地局と端末局とがともに点群データが収集された範囲に含まれていない場合のエリア設計を示す図である。FIG. 10 is a diagram showing area design when neither the base station nor the terminal station is included in the range where the point cloud data is collected;
 図1は第1の実施形態に係るエリア設計補助装置1の構成を示す図である。エリア設計補助装置1は、入力される地図情報などに基づいて通信エリアを設計することを補助する情報を提供する。
 エリア設計補助装置1は、地図判定装置2及び点群判定装置3を備える。地図判定装置2は、入力される地図情報などに基づいて、所与の範囲の見通しを判定する。点群判定装置3は、地図判定装置2による判定結果に基づいて点群データを用いて所与の範囲の見通しを判定する。なお、地図判定装置2及び点群判定装置3は以下の説明の便宜上分けた装置であり、地図判定装置2及び点群判定装置3が1つの装置により実現されてもよい。
FIG. 1 is a diagram showing the configuration of an area design assisting device 1 according to the first embodiment. The area design assisting device 1 provides information for assisting in designing a communication area based on input map information and the like.
The area design assistance device 1 includes a map determination device 2 and a point cloud determination device 3 . The map determination device 2 determines the outlook of a given range based on input map information and the like. The point cloud determination device 3 determines the outlook of a given range using point cloud data based on the determination result by the map determination device 2 . Note that the map determination device 2 and the point cloud determination device 3 are separate devices for the convenience of the following description, and the map determination device 2 and the point cloud determination device 3 may be realized by one device.
〈地図判定装置の処理〉
 地図判定装置2は、地図情報取得部10、屋外設備情報取得部12、判定範囲決定部14、メッシュ作成部16、代表点決定部18、番号付与部20、基地局候補位置生成部22、見通し判定部24、判定結果出力部26を備える。
<Processing of map determination device>
The map determination device 2 includes a map information acquisition unit 10, an outdoor facility information acquisition unit 12, a determination range determination unit 14, a mesh creation unit 16, a representative point determination unit 18, a number assignment unit 20, a base station candidate position generation unit 22, a line of sight A determination unit 24 and a determination result output unit 26 are provided.
 地図情報取得部10は、地図情報を取得する。地図情報は、例えば、地図上の建物の外郭に関する情報を含む。地図上の建物の外郭は、例えば地図上にある事務所、工場、住居などの壁面の形状である。地図情報は、2次元の地図に関する情報であってもよいし、3次元の地図に関する情報であってもよい。地図情報が3次元の地図に関する情報である場合、地図上の建物の高さに関する情報を含んでもよい。地図情報取得部10は、例えば利用者により入力された地図情報を取得する。 The map information acquisition unit 10 acquires map information. The map information includes, for example, information on outlines of buildings on the map. The outline of a building on the map is, for example, the shape of the walls of an office, factory, residence, or the like on the map. The map information may be information about a two-dimensional map or information about a three-dimensional map. If the map information is information about a three-dimensional map, it may also include information about the height of buildings on the map. The map information acquisition unit 10 acquires map information input by a user, for example.
 屋外設備情報取得部12は、屋外設備情報を取得する。屋外設備情報は、電柱や通信ケーブルなど屋外にある通信設備の場所に関する情報を含む。屋外設備情報取得部12は、例えば利用者により入力された屋外設備情報を取得する。 The outdoor equipment information acquisition unit 12 acquires outdoor equipment information. The outdoor equipment information includes information about the location of outdoor communication equipment such as utility poles and communication cables. The outdoor facility information acquisition unit 12 acquires outdoor facility information input by a user, for example.
 判定範囲決定部14は、地図情報により生成される地図上の判定範囲を決定する。判定範囲はエリア設計を行う範囲である。判定範囲は例えば、地図情報取得部10により取得された地図が表示された画面に利用者が見通しを判定したい場所を囲むことで指定され、指定された範囲に基づいて判定範囲決定部14により決定される。 The determination range determination unit 14 determines the determination range on the map generated from the map information. The judgment range is the range for area design. The determination range is specified by, for example, enclosing the location for which the user wants to determine the outlook on the screen displaying the map acquired by the map information acquisition unit 10, and is determined by the determination range determination unit 14 based on the specified range. be done.
 メッシュ作成部16は、判定範囲決定部14により決定された判定範囲を区切るメッシュを作成する。メッシュ作成部16は、例えば予め定められた大きさのメッシュを使用して判定範囲を敷き詰めることで、判定範囲を区切るメッシュ群を作成する。なお、メッシュ作成部16は、例えば予め定められた数のメッシュの大きさを調整し、判定範囲を区切るメッシュ群を作成してもよい。 The mesh creation unit 16 creates a mesh that divides the determination range determined by the determination range determination unit 14 . The mesh creation unit 16 creates a mesh group that partitions the determination range by, for example, using meshes of a predetermined size to cover the determination range. Note that the mesh creation unit 16 may adjust the size of a predetermined number of meshes, for example, and create a mesh group that divides the determination range.
 代表点決定部18は、メッシュごとに代表点を決定する。例えばメッシュが正方形である場合、代表点決定部18は、メッシュの中心を代表点と決定する。また、例えば地図が2次元のXY座標で表される場合、代表点決定部18は、メッシュに含まれる最も小さいX座標及びY座標を代表点と決定してもよい。 The representative point determination unit 18 determines a representative point for each mesh. For example, when the mesh is a square, the representative point determination unit 18 determines the center of the mesh as the representative point. Also, for example, when a map is represented by two-dimensional XY coordinates, the representative point determining unit 18 may determine the smallest X coordinate and Y coordinate included in the mesh as the representative point.
 番号付与部20は、メッシュに番号を付与する。メッシュの番号は他のメッシュと区別するためのものであるため、番号ではなく例えば記号又は当該メッシュの代表点などであってもよい。 The number assigning unit 20 assigns numbers to meshes. Since the number of the mesh is for distinguishing it from other meshes, for example, a symbol or a representative point of the mesh may be used instead of the number.
 基地局候補位置生成部22は、基地局の候補位置を生成する。基地局の候補位置は、例えば屋外設備情報に基づく電柱の位置である。また、基地局の候補位置は例えば地図情報に基づく建物の高さのうち、一定値以上の高さを有する建物の位置であってもよい。 The base station candidate position generator 22 generates base station candidate positions. The candidate positions of the base station are, for example, the positions of utility poles based on the outdoor facility information. Further, the candidate position of the base station may be, for example, the position of a building having a height equal to or higher than a certain value among the heights of buildings based on map information.
 見通し判定部24は、基地局の候補位置とメッシュとの間の見通しを判定する。見通し判定部24は、例えば基地局の候補位置とメッシュの代表点とを線分で結び、線分が建物の外郭と交差する場合に当該基地局の候補位置と当該メッシュとの間を「見通しなし」と判定し、線分が建物の外郭と交差しない場合に「見通しあり」と判定する。地図情報取得部10が取得する地図情報が3次元の地図に関する情報である場合、見通し判定部24は、基地局の候補位置とメッシュの代表点の高さを考慮して、基地局の候補位置からメッシュへの見通しを判定してもよい。見通し判定部24は、第1見通し判定部の一例である。 The line-of-sight determination unit 24 determines the line-of-sight between the candidate positions of the base station and the mesh. The line-of-sight determination unit 24 connects, for example, a line segment between the candidate position of the base station and the representative point of the mesh, and when the line segment intersects the outline of the building, the line of sight between the candidate position of the base station and the mesh is determined. If the line segment does not intersect the outline of the building, it is determined to be "line of sight". When the map information acquired by the map information acquisition unit 10 is information related to a three-dimensional map, the outlook determination unit 24 considers the candidate positions of the base stations and the height of the representative point of the mesh to determine the candidate positions of the base stations. may determine the line-of-sight to the mesh. The line-of-sight determination unit 24 is an example of a first line-of-sight determination unit.
 判定結果出力部26は、見通し判定部24による判定結果を出力する。判定結果は例えば、基地局の候補位置により異なる地図であって、「見通しあり」と判定されたメッシュを着色した地図である。判定結果は例えば、基地局の候補位置と当該候補位置における「見通しあり」と判定されたメッシュに付された番号を示す表である(図2に表の例を示す)。個々の基地局の候補位置は番号にCをつけて、C1などと表す。個々の「見通しあり」と判定されたメッシュは、番号にMをつけてM1などと表す。 The judgment result output unit 26 outputs the judgment result by the visibility judgment unit 24. The determination result is, for example, a map that differs depending on the candidate position of the base station, and is a map in which meshes determined to be "line-of-sight" are colored. The determination result is, for example, a table showing the candidate positions of the base station and the numbers assigned to the meshes determined to be "line-of-sight" at the candidate positions (an example of the table is shown in FIG. 2). The candidate position of each base station is denoted by C1 and so on by adding a C to the number. Each mesh determined to have line of sight is numbered with an M and represented as M1, and so on.
 図3は、地図判定装置2の動作を示すフローチャートである。
 地図情報取得部10は、地図情報を取得する(ステップS101)。屋外設備情報取得部12は、屋外設備情報を取得する(ステップS102)。判定範囲決定部14は判定範囲を決定する(ステップS103)。メッシュ作成部16は、メッシュを作成する(ステップS104)。代表点決定部18は、メッシュごとに代表点を決定する(ステップS105)。番号付与部20は、メッシュに番号を付与する(ステップS106)。基地局候補位置生成部22は、基地局の候補位置を生成する(ステップS107)。
FIG. 3 is a flow chart showing the operation of the map determination device 2. As shown in FIG.
The map information acquisition unit 10 acquires map information (step S101). The outdoor equipment information acquisition unit 12 acquires outdoor equipment information (step S102). The determination range determination unit 14 determines the determination range (step S103). The mesh creation unit 16 creates a mesh (step S104). The representative point determination unit 18 determines a representative point for each mesh (step S105). The number assigning unit 20 assigns numbers to the meshes (step S106). The base station candidate position generator 22 generates base station candidate positions (step S107).
 見通し判定部24は、各基地局の候補位置に対してステップS109からステップS113を繰り返す(ステップS108)。見通し判定部24は、各メッシュに対してステップS110からステップS113を繰り返す(ステップS109)。見通し判定部24は、ステップS108及びステップS109により全ての基地局の候補位置から全てのメッシュに対する見通しを判定する。 The line-of-sight determination unit 24 repeats steps S109 to S113 for the candidate positions of each base station (step S108). The line-of-sight determination unit 24 repeats steps S110 to S113 for each mesh (step S109). The line-of-sight determination unit 24 determines the line-of-sight to all meshes from the candidate positions of all base stations in steps S108 and S109.
 見通し判定部24は、基地局の候補位置とメッシュとの間に線分を引く(ステップS110)。見通し判定部24は、線分と建物の外郭とが交差するか否かを判定する(ステップS111)。線分と建物の外郭とが交差する場合(ステップS111:YES)、見通し判定部24は、基地局の候補位置とメッシュ間を「見通しなし」と判定する(ステップS112)。線分と建物の外郭とが交差しない場合(ステップS111:NO)、見通し判定部24は、基地局の候補位置とメッシュ間を「見通しあり」と判定する(ステップS113)。その後、判定結果出力部26が判定結果を出力する(ステップS114)。 The line-of-sight determination unit 24 draws a line segment between the candidate position of the base station and the mesh (step S110). The line of sight determination unit 24 determines whether or not the line segment intersects with the outline of the building (step S111). If the line segment intersects with the outline of the building (step S111: YES), the line-of-sight determining unit 24 determines that there is "no line-of-sight" between the candidate position of the base station and the mesh (step S112). If the line segment does not intersect with the outline of the building (step S111: NO), the line-of-sight determination unit 24 determines that there is "line-of-sight" between the candidate position of the base station and the mesh (step S113). After that, the determination result output unit 26 outputs the determination result (step S114).
〈点群判定装置の処理〉
 点群判定装置3は、点群データ取得部30、判定候補位置決定部32、基地局抽出方法決定部34、第1基地局抽出部36、第2基地局抽出部38、点群データ見通し判定部40、点群データ判定結果出力部42を備える。
<Processing of point cloud determination device>
The point cloud determination device 3 includes a point cloud data acquisition unit 30, a determination candidate position determination unit 32, a base station extraction method determination unit 34, a first base station extraction unit 36, a second base station extraction unit 38, and a point cloud data prospect determination. A point cloud data determination result output unit 42 is provided.
 点群データ取得部30は、MMSによる走行軌跡とMMSにより、地図情報取得部10により取得される地図情報に対応する地域において収集された点群データを取得する。地図情報に対応する地域とは、地図情報により作成される地図が示す現実の地域である。 The point cloud data acquisition unit 30 acquires the point cloud data collected in the area corresponding to the map information acquired by the map information acquisition unit 10 from the MMS travel trajectory and MMS. The area corresponding to the map information is the actual area indicated by the map created from the map information.
 判定候補位置決定部32は、判定を行う基地局の候補位置を決定する。判定候補位置決定部32は、例えば利用者による選択に基づいて判定を行う基地局の候補位置を決定する。 The determination candidate position determination unit 32 determines the candidate positions of the base station that performs the determination. The determination candidate position determination unit 32 determines candidate positions of the base station to be determined based on selection by the user, for example.
 基地局抽出方法決定部34は、基地局の候補位置を抽出する方法を決定する。基地局抽出方法決定部34は、例えば利用者による選択に基づいて基地局の候補位置を抽出する方法を決定する。利用者が第1基地局抽出方法を選択した場合には、第1基地局抽出部36が基地局の候補位置を抽出する。利用者が第2基地局抽出方法を選択した場合には、第2基地局抽出部38が基地局の候補位置を抽出する。 The base station extraction method determination unit 34 determines a method for extracting candidate positions of base stations. The base station extraction method determination unit 34 determines a method for extracting candidate positions of base stations based on selection by the user, for example. When the user selects the first base station extraction method, the first base station extraction unit 36 extracts candidate positions of base stations. When the user selects the second base station extraction method, the second base station extraction unit 38 extracts candidate positions of base stations.
 第1基地局抽出部36は、見通し判定部24による判定結果に基づいて、基地局によるエリアカバー率が最大になるように基地局の候補位置を抽出する。具体的には、第1基地局抽出部36は、例えば判定候補位置決定部32により判定を行うと決定された基地局の候補位置と対応する見通しありのメッシュの番号を確認する。その後、第1基地局抽出部36は、基地局の候補位置のうち、その対応する見通しありのメッシュの番号が全て他の基地局の候補位置に対応する見通しありのメッシュの番号に含まれている基地局の候補位置を削除する。 The first base station extraction unit 36 extracts base station candidate positions based on the determination result of the line-of-sight determination unit 24 so that the area coverage ratio of the base station is maximized. Specifically, the first base station extraction unit 36 confirms, for example, the candidate position of the base station determined to be determined by the determination candidate position determination unit 32 and the number of the mesh with line of sight corresponding thereto. After that, the first base station extracting unit 36 determines whether all of the corresponding line-of-sight mesh numbers among the base station candidate positions are included in the line-of-sight mesh numbers corresponding to the other base station candidate positions. Delete the candidate position of the base station that is
 図2の表を使用して、第1基地局抽出部36の動作を説明する。例えば、基地局の候補位置C1は、対応する見通しありのメッシュのうち、メッシュM8は他の基地局の候補位置である基地局の候補位置C2-5に対応する見通しありのメッシュの番号に含まれない。そのため、基地局の候補位置C1は削除されない。基地局の候補位置C2は、対応する見通しありのメッシュ全てが他の基地局の候補位置である基地局の候補位置C1及びC3-5に対応する見通しありのメッシュに含まれる。そのため、基地局の候補位置C2は削除される。 The operation of the first base station extraction unit 36 will be explained using the table in FIG. For example, among the corresponding line-of-sight meshes, the base station candidate position C1 is included in the line-of-sight mesh numbers corresponding to the base station candidate positions C2-5, which are the candidate positions of the other base stations. can't Therefore, the base station candidate position C1 is not deleted. Base station candidate location C2 is included in the line-of-sight meshes corresponding to base station candidate locations C1 and C3-5 whose corresponding line-of-sight meshes are all candidate locations for other base stations. Therefore, the base station candidate position C2 is deleted.
 第2基地局抽出部38は、見通し判定部24による判定結果に基づいて、基地局によるエリアカバーが効率的に行われるように基地局の候補位置を抽出する。ここで「エリアカバーが効率的」とは、基地局がカバーする領域の重複が少ないことである。第2基地局抽出部38は、例えば判定候補位置決定部32により判定を行うと決定された基地局の候補位置と対応する見通しありのメッシュの番号を確認する。その後、第2基地局抽出部38は、対応する見通しありのメッシュが重複する基地局の候補位置がある場合に、対応する見通しありのメッシュの数が少ない基地局の候補位置を削除する。 The second base station extraction unit 38 extracts base station candidate positions based on the determination result of the line-of-sight determination unit 24 so that the base station can efficiently cover the area. Here, "effective area coverage" means that there is little duplication of areas covered by the base stations. The second base station extraction unit 38 confirms, for example, the candidate position of the base station determined to be determined by the determination candidate position determination unit 32 and the number of the mesh with line of sight corresponding thereto. After that, when there is a candidate position of a base station whose corresponding meshes with line-of-sight overlap, the second base station extraction unit 38 deletes candidate positions of base stations with a small number of corresponding meshes with line-of-sight.
 図2の表を使用して、第2基地局抽出部38の動作を説明する。例えば、基地局の候補位置C1と基地局の候補位置C2とに対応する見通しありのメッシュは、メッシュM2、3、4、6、10、12が重複する。そのため、対応する見通しありのメッシュの数が少ない基地局の候補位置C2が削除される。また、基地局の候補位置C1と基地局の候補位置C4とに対応する見通しありのメッシュは、メッシュM1、2、4、5、6、10が重複する。そのため、対応する見通しありのメッシュの数が少ない基地局の候補位置C4が削除される。基地局の候補位置C3及びC5に対応する見通しありのメッシュは、他の基地局の候補位置に対応する見通しありのメッシュと重複しないため削除されない。 The operation of the second base station extraction unit 38 will be explained using the table in FIG. For example, meshes M2, 3, 4, 6, 10, and 12 overlap meshes M2, 3, 4, 6, 10, and 12 with line-of-sight meshes corresponding to the base station candidate position C1 and the base station candidate position C2. Therefore, the candidate position C2 of the base station with a small number of corresponding line-of-sight meshes is deleted. In addition, the meshes M1, 2, 4, 5, 6, and 10 overlap with the meshes with line of sight corresponding to the candidate position C1 of the base station and the candidate position C4 of the base station. Therefore, the candidate position C4 of the base station with a small number of corresponding line-of-sight meshes is deleted. The line-of-sight meshes corresponding to the base station candidate positions C3 and C5 are not deleted because they do not overlap with the line-of-sight meshes corresponding to the other base station candidate positions.
 点群データ見通し判定部40は、第1基地局抽出部36又は第2基地局抽出部38により抽出された基地局の候補位置と当該基地局の候補位置に対応し、見通し判定部24により「見通しあり」と判定されたメッシュとの間の見通しを、点群データを使用して判定する。点群データを使用して見通しを判定する方法は、例えば特許文献1及び非特許文献1に記載されている方法である。点群データ見通し判定部40は、第2見通し判定部の一例である。 The point cloud data outlook determination unit 40 corresponds to the base station candidate positions and the base station candidate positions extracted by the first base station extraction unit 36 or the second base station extraction unit 38, and the outlook determination unit 24 determines " The line-of-sight to the mesh determined as "line-of-sight" is determined using the point cloud data. A method for determining the line of sight using point cloud data is the method described in Patent Document 1 and Non-Patent Document 1, for example. The point cloud data outlook determination unit 40 is an example of a second outlook determination unit.
 図4は、点群データ見通し判定部40により判定された結果の一例である。見通しありのメッシュ(点群データ)は、見通し判定部24により見通しありと判定されたメッシュのうち、点群データにより見通しありと判定されたメッシュである。見通しありのメッシュ(地図)のうち、「点群判定結果がNG」であるメッシュは、見通し判定部24により見通しありと判定されたメッシュのうち、点群データにより見通しなしと判定されたメッシュである。「点群判定不可」であるメッシュは、見通し判定部24により見通しありと判定されたメッシュのうち、基地局の候補位置とメッシュの間のメッシュに点群データが収集されていない範囲が含まれ、点群データにより判定することができないメッシュである。「点群判定を未実施」であるメッシュは、他の基地局の候補位置において同じメッシュが点群データにより見通しありと判定されているため、判定されないメッシュである。 FIG. 4 is an example of the result determined by the point cloud data prospect determination unit 40. FIG. A mesh with a line of sight (point cloud data) is a mesh determined to have a line of sight by the point cloud data, among the meshes determined to have a line of sight by the line of sight determining unit 24 . Of the meshes (maps) with visibility, the meshes for which the "point cloud determination result is NG" are the meshes determined to have no visibility based on the point cloud data, among the meshes determined to have visibility by the visibility determining unit 24. be. Among the meshes determined to have a line of sight by the line of sight determination unit 24, the meshes for which "point cloud determination is not possible" include a range in which point cloud data is not collected in the meshes between the candidate positions of the base station and the meshes. , are meshes that cannot be determined by the point cloud data. A mesh that is "unexecuted point cloud determination" is a mesh that is not determined because the same mesh is determined to have a line of sight at the candidate position of another base station based on the point cloud data.
 点群データ判定結果出力部42は、点群データ見通し判定部40により判定された結果を出力する。点群データ判定結果は例えば、基地局の候補位置により異なる地図であって、「見通しあり(点群データ)」、「点群判定結果がNG」、「点群判定不可」、「点群判定を未実施」と判定されたメッシュがそれぞれ異なる色で着色された地図である。判定結果は例えば、図4に示す基地局の候補位置と当該候補位置における「見通しあり」と判定されたメッシュに付された番号を示す表である。 The point cloud data determination result output unit 42 outputs the result determined by the point cloud data prospect determination unit 40. The point cloud data determination result is, for example, a map that differs depending on the candidate position of the base station, and includes "line of sight (point cloud data)", "point cloud determination result is NG", "point cloud determination not possible", "point cloud determination It is a map in which the meshes determined as "not implemented" are colored in different colors. The determination result is, for example, a table showing the candidate positions of the base station shown in FIG. 4 and the numbers assigned to the meshes determined to be "line-of-sight" at the candidate positions.
 図5は、点群判定装置3の動作を示すフローチャートである。
 初めに点群データ取得部30が点群データを取得する(ステップS201)。その後、判定候補位置決定部32が判定する候補位置を決定する(ステップS202)。基地局抽出方法決定部34が基地局抽出方法を取得する(ステップS203)。基地局抽出方法決定部34は、取得した基地局抽出方法に基づいて基地局抽出方法を決定する(ステップS204)。基地局抽出方法決定部34が取得した基地局抽出方法が第1基地局抽出方法であるとき(ステップS204:YES)、第1基地局抽出部36は、基地局の候補位置を抽出する(ステップS205)。基地局抽出方法決定部34が取得した基地局抽出方法が第1基地局抽出方法でないとき(ステップS204:NO)、第2基地局抽出部38は、基地局の候補位置を抽出する(ステップS206)。
FIG. 5 is a flow chart showing the operation of the point group determination device 3. As shown in FIG.
First, the point cloud data acquisition unit 30 acquires point cloud data (step S201). After that, the candidate positions to be judged by the judgment candidate position deciding unit 32 are decided (step S202). The base station extraction method determining unit 34 acquires the base station extraction method (step S203). The base station extraction method determination unit 34 determines the base station extraction method based on the acquired base station extraction method (step S204). When the base station extraction method acquired by the base station extraction method determination unit 34 is the first base station extraction method (step S204: YES), the first base station extraction unit 36 extracts candidate positions of base stations (step S205). When the base station extraction method acquired by the base station extraction method determination unit 34 is not the first base station extraction method (step S204: NO), the second base station extraction unit 38 extracts candidate positions of base stations (step S206). ).
 その後、点群データ見通し判定部40が点群データを使用して、抽出された基地局の候補位置とメッシュを判定する(ステップS207)。点群データ判定結果出力部42が点群データ判定結果を出力する(ステップS208)。 After that, the point cloud data outlook determining unit 40 uses the point cloud data to determine the candidate positions and meshes of the extracted base stations (step S207). The point cloud data determination result output unit 42 outputs the point cloud data determination result (step S208).
 以上説明したように、第1の実施形態に係るエリア設計補助装置1は、判定範囲決定部14が地図上の判定範囲を決定し、メッシュ作成部16が判定範囲を区切るメッシュ群を作成し、基地局候補位置生成部22が基地局の候補位置を生成する。見通し判定部24が基地局の候補位置とメッシュ群を構成するメッシュとの間の見通しを判定し、第1基地局抽出部36又は第2基地局抽出部38が判定された見通しに基づいて、基地局の候補位置から点群データを使用して見通しを判定する基地局の候補位置を抽出する。点群データ見通し判定部40が抽出された基地局の候補位置と見通し判定部24により見通しありと判定されたメッシュとの間の見通しを、点群データにより判定する。見通し判定部24による見通しの判定には点群データが使用されないことから、見通し判定部24により点群データが収集されていない範囲も含めて見通し判定が行われ、点群データが収集される範囲は点群データ見通し判定部40により点群データに基づいて見通し判定が行われる。これにより、点群データが収集されていない範囲がある場合にも、見通し判定を行うことができる。 As described above, in the area design assisting device 1 according to the first embodiment, the determination range determination unit 14 determines the determination range on the map, the mesh creation unit 16 creates a mesh group dividing the determination range, A base station candidate position generator 22 generates base station candidate positions. The line-of-sight determination unit 24 determines the line-of-sight between the base station candidate positions and the meshes that make up the mesh group, and the first base station extraction unit 36 or the second base station extraction unit 38 determines the line-of-sight based on the determined line-of-sight, From the candidate base station locations, the point cloud data is used to extract candidate base station locations for which line of sight is determined. The line of sight between the base station candidate position extracted by the point cloud data line of sight determination unit 40 and the mesh determined to have line of sight by the line of sight determination unit 24 is determined by the point cloud data. Since the point cloud data is not used for the judgment of the outlook by the outlook judgment unit 24, the outlook judgment is performed including the range where the point cloud data is not collected by the outlook judgment unit 24, and the range where the point cloud data is collected. is determined by the point cloud data outlook determining unit 40 based on the point cloud data. As a result, visibility can be determined even when there is a range in which point cloud data is not collected.
図11に示すように、メッシュと基地局の候補位置の間に点群データが収集されていない範囲が含まれる場合、第1の実施形態に係るエリア設計補助装置1が、点群データが収集されている範囲に対しては点群データを使用した見通し判定を行い、点群データが収集されていない範囲に対しては地図情報を用いた見通し判定を行うことで、より信頼性の高い判定結果を得ることができる。 As shown in FIG. 11, when there is a range in which point cloud data is not collected between the mesh and the candidate positions of the base station, the area design assisting device 1 according to the first embodiment does not collect the point cloud data. For areas where point cloud data is collected, the visibility is determined using point cloud data, and for areas where point cloud data is not collected, visibility is determined using map information, resulting in more reliable determination. You can get results.
 図12に示すように、メッシュと基地局の候補位置の間で点群データが全く収集されていない場合、第1の実施形態に係るエリア設計補助装置1が、地図情報を用いた見通し判定を行うことで、より信頼性の高い判定結果を得ることができる。 As shown in FIG. 12, when point cloud data is not collected at all between the mesh and the candidate positions of the base station, the area design assisting device 1 according to the first embodiment performs visibility determination using map information. By doing so, more reliable determination results can be obtained.
 また、点群データを用いた判定結果は、「点群判定結果がNG」や「点群判定不可」などの情報を含み、当該判定結果が点群データに基づくものであるのか、地図情報に基づくものであるのか、または部分的に点群データに基づくものであるのかを示す。基地局のエリア設計を行う者はこの情報に基づいて、新たに点群データを収集するエリアを決定することができる。例えば、基地局のエリア設計を行う者は、点群データが不足している範囲に対しては、MMSに搭載されているレーダの角度を変えて新たに収集作業をすることで信頼性がより高い結果を得るように対処することができる。基地局のエリア設計を行う者はこの情報に基づいて基地局の候補位置から基地局を設置する位置を選択することができる。基地局のエリア設計を行う者は、例えば点群データにより判定され信頼性がある程度高い結果が得られている基地局の候補位置を優先して採用し、基地局を設置することができる。 In addition, the judgment result using the point cloud data includes information such as "point cloud judgment result is NG" or "point cloud judgment is not possible", and whether the judgment result is based on the point cloud data or not depends on the map information. based or partially based on point cloud data. Based on this information, the person who designs the area of the base station can newly determine the area for collecting the point cloud data. For example, a person who designs a base station area can improve reliability by changing the angle of the radar installed in the MMS and performing new collection work for areas where point cloud data is insufficient. It can be dealt with to get high results. Based on this information, a person who designs the area of the base station can select the position to install the base station from the candidate positions of the base station. A person who designs the area of a base station can preferentially adopt a candidate position of a base station that has obtained a result with a certain degree of reliability determined by, for example, point cloud data, and install a base station.
 エリア設計補助装置1は、判定範囲を区切るメッシュのいずれにおいても点群データが収集されていない場合には、点群判定装置3は動作せず、地図判定装置2のみが動作してもよい。 The area design assisting device 1 may operate only the map determining device 2 without operating the point cloud determining device 3 when point cloud data is not collected in any of the meshes that divide the determination range.
〈第2の実施形態〉
 図6は、第2の実施形態に係る地図判定装置2を示す図である。
 第2の実施形態に係る地図判定装置2は、第1の実施形態に係る地図判定装置2に加えてメッシュ削除部28を備える。
<Second embodiment>
FIG. 6 is a diagram showing a map determination device 2 according to the second embodiment.
A map determination device 2 according to the second embodiment includes a mesh deletion unit 28 in addition to the map determination device 2 according to the first embodiment.
 メッシュ削除部28は、建物の内部にあるメッシュを削除する。メッシュが建物の内部にあることは、例えばメッシュの代表点が建物の内部にあることである。 The mesh deletion unit 28 deletes the mesh inside the building. The fact that the mesh is inside the building means, for example, that the representative point of the mesh is inside the building.
 代表点が建物の内部にあるか否かは、例えば次に示す方法により判定される。
 地図に二次元座標をとり、建物の外郭の4つの隅を、時計回りに点A、B、C、Dとする。また、同じくメッシュの代表点を点Pとする。このとき、次に示す4式が全て成立するときに、点Pは当該建物の内部にあると判定される。
Whether or not the representative point is inside the building is determined by, for example, the following method.
Taking two-dimensional coordinates on a map, let the four corners of the building outline be points A, B, C, and D clockwise. Similarly, let P be a representative point of the mesh. At this time, it is determined that the point P is inside the building when all of the following four equations hold.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 つまり、建物の外郭の4つの隅にとった点において、当該点から時計周りの次の点へのベクトルと、当該点から代表点へのベクトルの外積が4つ算出され、4つの外積が全て0より小さいとき、点Pは当該建物の内部にあると判定される。 In other words, at the four corner points of the outer wall of the building, four outer products of the vector from the point to the next point in the clockwise direction and the vector from the point to the representative point are calculated, and all the four outer products are When less than 0, the point P is determined to be inside the building.
 建物の内部のメッシュは見通し判定をする必要がないため、メッシュ削除部28により建物の内部のメッシュが削除されることで建物の内部のメッシュの見通し判定を行わなくてよくなり、効率化につながる。 Since it is not necessary to determine the visibility of the mesh inside the building, the deletion of the mesh inside the building by the mesh deletion unit 28 eliminates the necessity of determining the visibility of the mesh inside the building, leading to efficiency. .
〈第3の実施形態〉
 図7は、第3の実施形態に係る点群判定装置3を示す図である。第3の実施形態に係る点群判定装置3は、第1の実施形態に係る点群判定装置3に加え判定候補メッシュ削除部44を備える。
<Third embodiment>
FIG. 7 is a diagram showing a point group determination device 3 according to the third embodiment. The point cloud determination device 3 according to the third embodiment includes a determination candidate mesh deletion unit 44 in addition to the point cloud determination device 3 according to the first embodiment.
 判定候補メッシュ削除部44は、見通し判定部24により見通しありと判定されたメッシュを建物の外郭及びMMSの走行軌跡に基づいて削除する。例えば、判定候補メッシュ削除部44は初めに建物の外郭及びMMSの走行軌跡に基づいて点群データを収集することができる範囲を決定する。その後、基地局の候補位置と対応するメッシュ間において点群データを収集することができるか否かを判定し、点群データを収集することができない場合、当該メッシュを見通しありと判定されたメッシュから削除し、「点群判定不可」と判定する。なお、第3の実施形態においては、点群データ見通し判定部40はメッシュを「点群判定不可」と判定しなくてもよい。 The determination candidate mesh deletion unit 44 deletes meshes that have been determined to have visibility by the visibility determination unit 24 based on the outline of the building and the running trajectory of the MMS. For example, the determination candidate mesh deletion unit 44 first determines the range in which point cloud data can be collected based on the outline of the building and the running trajectory of the MMS. After that, it is determined whether point cloud data can be collected between the candidate positions of the base station and the corresponding mesh. , and determine that "point cloud determination is not possible". Note that, in the third embodiment, the point cloud data prospect determination unit 40 does not have to determine that the mesh is "point cloud undeterminable".
 第3の実施形態において、事前にメッシュを「点群判定不可」と判定することで、第1基地局抽出部36又は第2基地局抽出部38による動作の際に考慮するメッシュの数を削減することができ、効率化につながる。 In the third embodiment, the number of meshes to be considered in the operation by the first base station extraction unit 36 or the second base station extraction unit 38 is reduced by determining in advance that the meshes are "point cloud undeterminable". can be done, leading to efficiency.
 以上、第1の実施形態から第3の実施形態について説明した。これらの実施形態に係るエリア設計補助装置1が取得する点群データと判定範囲との関係は大きく3つに分けることができる。1つは判定範囲全てにおいて点群データが収集されている場合、もう1つは、判定範囲の一部において点群データが収集されている場合、もう1つは、判定範囲において点群データが収集されていない場合である。判定範囲全てにおいて点群データが収集されている場合、エリア設計補助装置1は判定範囲全てにおいて点群データによる見通し判定をすることができる。判定範囲の一部において点群データが収集されている場合、エリア設計補助装置1は点群データが収集されている範囲において点群データによる見通し判定を行うことができ、点群データが収集されていない範囲においては地図情報による見通し判定を行うことができる。判定範囲において点群データが収集されていない場合、エリア設計補助装置1は地図情報による見通し判定を行うことができる。このように、上述した実施形態によれば、エリア設計補助装置1は、3つの何れの場合にも適切に見通し判定をすることができる。 The first to third embodiments have been described above. The relationship between the point cloud data acquired by the area design assisting device 1 according to these embodiments and the determination range can be broadly divided into three types. One is when point cloud data is collected in the entire judgment range, the other is when point cloud data is collected in a part of the judgment range, and the other is when point cloud data is collected in the judgment range. This is the case when it is not collected. When the point cloud data is collected in the entire determination range, the area design assisting device 1 can determine the outlook based on the point cloud data in the entire determination range. When point cloud data is collected in a part of the determination range, the area design assisting device 1 can perform visibility determination using the point cloud data in the range where the point cloud data is collected. In areas not covered by the map, visibility can be determined based on map information. If point cloud data has not been collected in the determination range, the area design assisting device 1 can determine the outlook based on map information. Thus, according to the above-described embodiment, the area design assisting device 1 can appropriately determine the visibility in any of the three cases.
 以上、この発明の一実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although one embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design etc. within the scope of the gist of the present invention.
 上述した実施形態におけるエリア設計補助装置1の一部または全部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 A part or all of the area design assistance device 1 in the above-described embodiment may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
1 エリア設計補助装置、2 地図判定装置、3 点群判定装置、10 地図情報取得部、12 屋外設備情報取得部、14 判定範囲決定部、16 メッシュ作成部、18 代表点決定部、20 番号付与部、22 基地局候補位置生成部、24 見通し判定部、26 判定結果出力部、28 メッシュ削除部、30 点群データ取得部、32 判定候補位置決定部、34 基地局抽出方法決定部、36 第1基地局抽出部、38 第2基地局抽出部、40 点群データ見通し判定部、42 点群データ判定結果出力部、44 判定候補メッシュ削除部 1 Area design auxiliary device, 2 Map determination device, 3 Point group determination device, 10 Map information acquisition unit, 12 Outdoor facility information acquisition unit, 14 Judgment range determination unit, 16 Mesh creation unit, 18 Representative point determination unit, 20 Number assignment 22 base station candidate position generation unit 24 line of sight determination unit 26 determination result output unit 28 mesh deletion unit 30 point cloud data acquisition unit 32 determination candidate position determination unit 34 base station extraction method determination unit 36 th 1 base station extraction unit, 38 second base station extraction unit, 40 point cloud data outlook determination unit, 42 point cloud data determination result output unit, 44 determination candidate mesh deletion unit

Claims (7)

  1.  地図情報から生成される地図上の判定範囲を決定する判定範囲決定ステップと、
     前記判定範囲を区切るメッシュ群を作成するメッシュ作成ステップと、
     前記地図情報又は屋外設備情報に基づいて、基地局の候補位置を生成する基地局候補位置生成ステップと、
     前記基地局の候補位置と前記メッシュ群を構成するメッシュとの間の見通しを、前記地図情報を用いて判定する第1見通し判定ステップと、
     前記第1見通し判定ステップにより判定された見通しに基づいて、前記基地局の候補位置から点群データを使用して見通しを判定する基地局の候補位置を抽出する基地局抽出ステップと、
     前記基地局抽出ステップにより抽出された基地局の候補位置と、前記第1見通し判定ステップにより見通しありと判定されたメッシュとの間の見通しを、前記地図情報に対応する地域における点群データを用いて判定する第2見通し判定ステップと、
     を有するエリア設計補助方法。
    a determination range determination step of determining a determination range on a map generated from map information;
    a mesh creation step of creating a mesh group that separates the determination range;
    a base station candidate position generation step of generating base station candidate positions based on the map information or the outdoor facility information;
    a first view determination step of determining, using the map information, a view between the candidate position of the base station and the meshes forming the mesh group;
    a base station extraction step of extracting base station candidate positions for determining the line of sight using point cloud data from the base station candidate positions based on the line of sight determined by the first line of sight determining step;
    The line of sight between the base station candidate position extracted by the base station extraction step and the mesh determined to have line of sight by the first line of sight determination step is determined using point cloud data in the area corresponding to the map information. A second outlook determination step of determining by
    Area design assistance method having
  2.  前記第1見通し判定ステップは、前記判定範囲に含まれる建物の外郭に基づいて前記基地局の候補位置と前記メッシュとの間の見通しを判定する、
     請求項1に記載のエリア設計補助方法。
    The first line-of-sight determination step determines line-of-sight between the candidate position of the base station and the mesh based on building outlines included in the determination range.
    The area design assistance method according to claim 1.
  3.  前記基地局抽出ステップは、
     基地局によるエリアカバー率が最大になるように、又は基地局によるエリアカバーが効率的に行われるように基地局の候補位置を抽出するステップである、
     請求項1又は2に記載のエリア設計補助方法。
    The base station extraction step includes:
    extracting candidate locations of the base station so that the area coverage rate by the base station is maximized or the area coverage by the base station is efficiently performed;
    The area design assistance method according to claim 1 or 2.
  4.  建物の内部にあるメッシュを削除するメッシュ削除ステップをさらに有する、請求項1から3のいずれか一項に記載のエリア設計補助方法。 The area design assistance method according to any one of claims 1 to 3, further comprising a mesh deletion step of deleting meshes inside the building.
  5.  前記第1見通し判定ステップにより見通しありと判定されたメッシュを、建物の外郭及び前記点群データを収集したMMSの走行軌跡に基づいて削除する判定候補メッシュ削除ステップと、
     をさらに有する請求項1から4のいずれか一項に記載のエリア設計補助方法。
    a determination candidate mesh deletion step of deleting the meshes determined to have visibility in the first visibility determination step based on the outline of the building and the running trajectory of the MMS that collected the point cloud data;
    The area design assistance method according to any one of claims 1 to 4, further comprising:
  6.  地図情報から生成される地図上の判定範囲を決定する判定範囲決定部と、
     前記判定範囲を区切るメッシュ群を作成するメッシュ作成部と、
     基地局の候補位置を生成する基地局候補位置生成部と、
     前記基地局の候補位置と前記メッシュ群を構成するメッシュとの間の見通しを判定する第1見通し判定部と、
     前記第1見通し判定部により判定された見通しに基づいて、前記基地局の候補位置を抽出する基地局抽出部と、
     前記基地局抽出部により抽出された基地局の候補位置を、前記地図情報に対応する地域における点群データにより判定する第2見通し判定部と、
     を備えるエリア設計補助装置。
    a determination range determination unit that determines a determination range on a map generated from map information;
    a mesh creation unit that creates a mesh group that separates the determination range;
    a base station candidate position generation unit that generates base station candidate positions;
    a first line-of-sight determination unit that determines a line-of-sight between the candidate position of the base station and the meshes that make up the mesh group;
    a base station extraction unit that extracts candidate positions of the base station based on the line of sight determined by the first line of sight determination unit;
    a second outlook determining unit that determines the base station candidate positions extracted by the base station extracting unit from point cloud data in the area corresponding to the map information;
    Area design aid comprising:
  7.  コンピュータに、
     請求項1から5のいずれか一項に記載のエリア設計補助方法を機能させるためのプログラム。
    to the computer,
    A program for functioning the area design assistance method according to any one of claims 1 to 5.
PCT/JP2021/024323 2021-06-28 2021-06-28 Area design assistance method, area design assistance device, and program WO2023275922A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/024323 WO2023275922A1 (en) 2021-06-28 2021-06-28 Area design assistance method, area design assistance device, and program
JP2023531140A JPWO2023275922A1 (en) 2021-06-28 2021-06-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024323 WO2023275922A1 (en) 2021-06-28 2021-06-28 Area design assistance method, area design assistance device, and program

Publications (1)

Publication Number Publication Date
WO2023275922A1 true WO2023275922A1 (en) 2023-01-05

Family

ID=84690998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024323 WO2023275922A1 (en) 2021-06-28 2021-06-28 Area design assistance method, area design assistance device, and program

Country Status (2)

Country Link
JP (1) JPWO2023275922A1 (en)
WO (1) WO2023275922A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234091A (en) * 2010-04-27 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Station establishment design method, station establishment design device, and station establishment design program
JP2019198051A (en) * 2018-05-13 2019-11-14 Necネッツエスアイ株式会社 Station installation place candidate selection system
JP2020113826A (en) * 2019-01-08 2020-07-27 日本電信電話株式会社 Installation candidate presentation method, installation candidate presentation device, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234091A (en) * 2010-04-27 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Station establishment design method, station establishment design device, and station establishment design program
JP2019198051A (en) * 2018-05-13 2019-11-14 Necネッツエスアイ株式会社 Station installation place candidate selection system
JP2020113826A (en) * 2019-01-08 2020-07-27 日本電信電話株式会社 Installation candidate presentation method, installation candidate presentation device, and program

Also Published As

Publication number Publication date
JPWO2023275922A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
EP2712488B1 (en) Prediction of indoor level and location using a three stage process
US6850946B1 (en) Method and system for a building database manipulator
US10909712B2 (en) Precision mapping using autonomous devices
US8639640B1 (en) Prediction of indoor location using decision trees
Geok et al. A comprehensive review of efficient ray-tracing techniques for wireless communication
JP5074333B2 (en) Radio wave propagation characteristic estimation apparatus and computer program
JPWO2008099927A1 (en) Radio wave propagation characteristic estimation system, method and program
JPWO2003012740A1 (en) Automatic three-dimensional structure shape generating apparatus, automatic generating method, program thereof, and recording medium storing the program
KR102661849B1 (en) Autonomous robot, method for generation of hierarchical costmap and method for generating driving path using the same
JP4295746B2 (en) Line-of-sight determination method and apparatus between radio stations, line-of-sight determination program, and recording medium recording the program
King et al. Deployment, calibration, and measurement factors for position errors in 802.11-based indoor positioning systems
JP2020113826A (en) Installation candidate presentation method, installation candidate presentation device, and program
JPH09135475A (en) Device and method for arranging base station
US8812022B2 (en) Method and apparatus for indoor location measurement
JP7252495B2 (en) Station placement support method and station placement support device
WO2023275922A1 (en) Area design assistance method, area design assistance device, and program
Ban et al. Topology dependent space filling curves for sensor networks and applications
CN109238296B (en) High-precision indoor navigation method and device
JP7260837B2 (en) Station setting support method, station setting support device, and station setting support program
KR102277974B1 (en) System and method for indoor positioning based on image
KR20230116513A (en) Method and apparatus for determining installation location of base station
JP2006286019A (en) Automatic generation apparatus and automatic generation method of three-dimensional structure shape, program therefor, and recording medium recording the program
CN111143918B (en) Radio wave path prediction method and apparatus
Qi et al. Fast floor identification method based on confidence interval of Wi-Fi signals
EP4366356A1 (en) Area designing assistance method, area designing assistance device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531140

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE