WO2023274110A1 - 一种x波段微带平面阵列天线 - Google Patents

一种x波段微带平面阵列天线 Download PDF

Info

Publication number
WO2023274110A1
WO2023274110A1 PCT/CN2022/101410 CN2022101410W WO2023274110A1 WO 2023274110 A1 WO2023274110 A1 WO 2023274110A1 CN 2022101410 W CN2022101410 W CN 2022101410W WO 2023274110 A1 WO2023274110 A1 WO 2023274110A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip
planar array
array antenna
antenna
feed network
Prior art date
Application number
PCT/CN2022/101410
Other languages
English (en)
French (fr)
Inventor
葛俊祥
汪洁
林海
方娟娟
祁博宇
Original Assignee
南京信息工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京信息工程大学 filed Critical 南京信息工程大学
Publication of WO2023274110A1 publication Critical patent/WO2023274110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the invention relates to an X-band microstrip planar array antenna, which belongs to the technical field of radio frequency.
  • Microstrip planar array antennas have been widely used in application scenarios such as wireless satellite communication, missile guidance, and ship navigation due to their advantages of low cost, small size, and light weight.
  • X-band is also a common frequency band for military fire control radars, broadcast satellite communications, ship navigation and weather radars. Taking ship navigation as an example, with the continuous development of fishing and navigation, my country's demand for small fishing boats is increasing year by year, and antennas are also showing a trend of miniaturization and low cost.
  • the serial-fed microstrip array antenna in the Chinese invention patent reduces the antenna side lobe level and cross-polarization level by adjusting the step impedance connecting line.
  • the power distribution of the two sub-arrays is realized through the L-shaped defect square power divider.
  • the structure of the array antenna is simple, the size of the antenna is reduced to a certain extent. In practical applications, it is usually required that the beam width of the main lobe of the antenna in the horizontal plane is within 5 degrees, but the beam width of the main lobe of this antenna is 7 degrees, which does not meet the index requirements in practical applications. For small and medium-sized fishing vessels, miniaturization and low cost are always potential requirements for marine equipment.
  • the invention proposes an X-band microstrip planar array antenna, which further reduces the size of the antenna, reduces the manufacturing cost of the antenna, and satisfies market development requirements while meeting the requirements of actual marine indicators.
  • An X-band microstrip planar array antenna includes a dielectric substrate, a feed network, a patch unit, a metal ground plate and a metal reflector, wherein the feed network and the patch unit are coplanarly placed, and the patch unit Symmetrically distributed on both sides of the feed network, both are located on the upper surface of the dielectric substrate, the metal grounding plate is located on the lower surface of the dielectric substrate, and the metal reflection surface is loaded on the metal grounding plate.
  • the feed network is divided into a coaxial to microstrip part and a microstrip power distribution feed network, wherein the coaxial to microstrip part passes through the dielectric substrate and the microstrip power distribution feed network through the probe of the radio frequency connector Connected, and a circular patch with a diameter larger than the width of the microstrip line is placed at the connection.
  • the microstrip power dividing and feeding network includes N-2 four-port non-equal power splitters and 2 three-port equal power splitters, and the microstrip with half the waveguide wavelength is passed between adjacent power splitters. line connected.
  • each patch unit is the same.
  • the bandwidth is 110MHz.
  • the stability of the antenna pattern curve within the bandwidth is good, and the measured cross-polarization levels are below -25dB on average.
  • the actual gain of the antenna at the center frequency is about 23.1dBi, the horizontal and vertical side lobe levels are -22.6dB and -35.8dB respectively, and the horizontal and vertical beam widths are 4.2° and 25.1° respectively. All parameters meet the requirements of marine radar Indicator requirements.
  • Fig. 1 is the top view of the X-band microstrip planar array antenna that does not comprise the metal reflector of the present invention, wherein: 1, dielectric substrate; 2, feed network; 3, patch unit; 22, microstrip power dividing and feeding network ; 212, circular patch; 221, four-port non-equal power splitter; 222, three-port equal power splitter; 224, upper port; 225, lower port.
  • FIG. 2 is a detailed view of the surface microstrip part of the top view of the X-band microstrip planar array antenna of the present invention, wherein: 31, the horizontal slot at the center of the patch; 223, the microstrip line of half the waveguide wavelength.
  • Fig. 3 is the side view of X-band microstrip planar array antenna of the present invention, wherein: 1, dielectric substrate; 4, metal grounding plate; 5, metal reflection surface; 21, coaxial turn microstrip part; 51, reflection surface sheet angle; 211, the probe of the radio frequency connector.
  • Fig. 4 is the S11 curve diagram of the feed network in the X-band microstrip planar array antenna of the present invention.
  • Fig. 5 is a power distribution diagram of each output port of the feed network in the X-band microstrip planar array antenna of the present invention.
  • Fig. 6 is a phase distribution diagram of each output port of the feed network in the X-band microstrip planar array antenna of the present invention.
  • Fig. 7 is the direction diagram of the feeding network at the center frequency in the X-band microstrip planar array antenna of the present invention.
  • Fig. 8 is the S curve diagram of the X-band microstrip planar array antenna of the present invention.
  • FIG. 9 is a directional diagram of the X-band microstrip planar array antenna at the center frequency point of the present invention.
  • the marine microstrip array antenna of the present invention mainly includes a dielectric substrate 1 , a feed network 2 , a patch unit 3 , a metal ground plate 4 and a metal reflection surface 5 .
  • FIG. 1 is a top view of an X-band microstrip planar array antenna without a metal reflector according to the present invention. It can be seen that the feed network 2 and the patch unit 3 are placed on the same plane, and both are located on the upper surface of the dielectric substrate 1 .
  • the feeding network 2 can be divided into a coaxial to microstrip part 21 and a microstrip power dividing feeding network 22 .
  • the coaxial-to-microstrip part 21 passes through the dielectric substrate 1 through the probe 211 of the SMA (radio frequency connector) and is connected to the microstrip power dividing and feeding network 22, and a circular sticker with a diameter greater than the width of the microstrip line is placed at the connection
  • the sheet 212 is used to prevent uneven soldering from affecting the microstrip power distribution and feeding network 22 .
  • the microstrip power dividing and feeding network 22 is composed of N-2 four-port non-equal power splitters 221 and two three-port equal power splitters 222, and the adjacent power splitters pass through half of the waveguide wavelength
  • the microstrip line 223 is connected.
  • the excitation distribution of the array is realized by adjusting the characteristic impedance of the microstrip line at each port of the power divider, and a low sidelobe design is realized.
  • the excitation amplitude and phase of the upper port 224 and the lower port 225 are the same, and the output power of the same-side feed port presents a Taylor distribution.
  • the microstrip power dividing and feeding network 22 is smaller in size and higher in space utilization.
  • Fig. 2 is a detailed view of the surface microstrip part of the top view of the X-band microstrip planar array antenna of the present invention.
  • the radiation patch units 3 have the same size and are symmetrically distributed on the upper and lower sides of the microstrip power dividing and feeding network 22, and the distance between adjacent patches is about one waveguide wavelength.
  • the cross-polarization characteristics of the antenna are improved by utilizing the symmetry of the spatial position and the cancellation of the vertical electric field components of the radiating elements.
  • the horizontal slit 31 at the center of the patch further blocks current flowing vertically on the surface of the patch, improving the polarization purity of the antenna.
  • Fig. 3 is a side view of the X-band microstrip planar array antenna of the present invention.
  • the metal reflecting surface 5 utilizes the reflection effect of the ideal conductor on the electromagnetic wave, effectively compressing the beam width of the vertical plane of the antenna, and improving the gain of the antenna to a certain extent. Holes are evenly opened at the corresponding positions of the metal reflective surface and the antenna, and the two are fixed by nylon screws, which strengthens the antenna structure and avoids the deformation of the dielectric substrate.
  • Fig. 4 is the S parameter curve of the input end of the X-band microstrip planar array antenna feed network of the present invention, it can be seen that when S ⁇ -20dB, the bandwidth is about 100MHz, and the impedance matching is good.
  • Fig. 5 is the power distribution of each output port of the X-band microstrip planar array antenna feeding network of the present invention, wherein: port1 is the output port at the center; port1 to port15 represent the output ports at the center to the outside in turn. It can be seen that within the bandwidth range, the power distribution of each output port is approximately Taylor distribution.
  • Fig. 6 is the phase distribution of each output port of the feed network in the X-band microstrip planar array antenna of the present invention.
  • Fig. 7 is the X-band microstrip planar array antenna feeding network pattern of the present invention, wherein: H_co-pol represents horizontal plane main polarization, H_x-pol represents horizontal plane cross polarization, V_co-pol represents vertical plane main polarization, V_x- pol means vertical plane cross polarization. It can be seen that the gain of the feed network is about 10dBi.
  • Fig. 8 is the actual measurement result of the port reflection coefficient of the X-band microstrip planar array antenna of the present invention.
  • the measured port reflection coefficients are all less than -14dB (that is, the standing wave ratio ⁇ 1.5).
  • Fig. 9 is the direction diagram of the X-band microstrip planar array antenna of the present invention at the central frequency point, wherein: measured H_co-pol is the horizontal plane main polarization of measured results; measured H_x-pol is the horizontal plane cross polarization of measured results; measured V_co-pol is the vertical plane main polarization of the actual measurement result; the actual measurement V_x-pol is the vertical plane cross polarization of the actual measurement result.
  • the gain is about 23.1dBi
  • the horizontal and vertical side lobe levels are -22.6dB and -35.8dB respectively
  • the horizontal and vertical beamwidths are 4.2° and 25.1° respectively
  • the cross-polarization level is below -25dB .
  • the X-band microstrip planar array antenna of the present invention is fed through cascaded power dividers, which effectively reduces the side lobe level of the antenna and makes array elements more compact.
  • the symmetrical spatial distribution structure of the array elements and the method of slits in the horizontal direction also effectively improve the cross-polarization characteristics of the antenna, and all parameters of the antenna meet the required indicators of the ship navigation radar.
  • the ship navigation radar is only one of the specific implementation application scenarios of the X-band microstrip planar array antenna of the present invention, but the scope of protection of the present invention is not limited thereto. Within the scope of protection, any equivalent replacement according to the technical solutions and concepts of the present invention shall be within the scope of protection.

Abstract

本发明公开了一种X波段微带平面阵列天线,属于射频技术领域。该天线包括介质基片(1)、馈电网络(2)、贴片单元(3)、金属接地板(4)和金属反射面(5),其中所述馈电网络(2)和贴片单元(3)共面放置,所述贴片单元(3)对称分布于馈电网络(2)两侧,均位于介质基片(1)的上表面,所述金属接地板(4)位于介质基片(1)的下表面,金属反射面(5)装载于金属接地板(4)处。本发明满足船用实际指标的要求下,进一步减小天线尺寸,降低天线制作成本,满足市场发展需求。

Description

一种X波段微带平面阵列天线 技术领域
本发明涉及一种X波段微带平面阵列天线,属于射频技术领域。
背景技术
微带平面阵列天线以成本低、体积小、重量轻等优势,在无线卫星通信、导弹制导和船舶导航等应用场景获得了广泛的使用。X波段也是军用火控雷达、广播卫星通讯、船舶导航和气象雷达的常用频段。以船舶导航为例,随着捕鱼及航海的不断发展,我国对小型渔船的需求量逐年递增,天线也呈现出小型化和低成本的发展趋势。
目前平面阵列天线多采用串馈式线阵作为子阵。经调研发现,船用天线的设计主要是改变贴片单元与馈电网络结构。文献《高隔离度的X波段船用雷达天线设计》中通过贴片单元非辐射边馈电、辐射边开短缝的方法,改变贴片表面电流流向,从而实现水平极化。该天线各项性能参数基本满足船用设计指标,但是天线尺寸较大,成本较高。中国发明专利(授权公告号CN 110165372 B,授权公告日2021.01.12)中的串馈微带阵列天线通过调节阶跃阻抗连接线降低天线旁瓣电平以及交叉极化电平。两个子阵通过L型缺陷方形功分器实现功率分配。虽然该阵列天线结构简单,一定程度上减小了天线尺寸。实际应用中通常要求天线水平面主瓣波束宽度在5度以内,但是该天线主瓣波束宽度为7度,并不满足实际应用中的指标要求。对于中小型渔船而言,小型化和低成本始终是船用设备的潜在需求。
发明内容
本发明提出了一种X波段微带平面阵列天线,满足船用实际指标的要求下,进一步减小天线尺寸,降低天线制作成本,满足市场发展需求。
本发明为解决其技术问题采用如下技术方案:
一种X波段微带平面阵列天线,包括介质基片、馈电网络、贴片单元、金属接地板和金属反射面,其中所述馈电网络和贴片单元共面放置,所述贴片单元对称分布于馈电网络两侧,均位于介质基片的上表面,所述金属接地板位于介质基片的下表面,金属反射面装载于金属接地板处。
所述馈电网络分为同轴转微带部分和微带功分馈电网络,其中,同轴转微带部分通过射频连接器的探针穿过介质基片与微带功分馈电网络相连,连接处放置直径大于微带线宽度的圆形贴片。
所述微带功分馈电网络包括N-2个四端口非等分功分器和2个三端口等分功分器,相邻功分器之间通过二分之一波导波长的微带线相连。
所述各个贴片单元尺寸相同。
本发明的有益效果如下:
本发明天线实测端口驻波比<1.5时带宽为110MHz。带宽内的天线方向图曲线稳定性较好,实测交叉极化电平均达到了-25dB以下。中心频点处天线实际增益约为23.1dBi,水平面与垂直面旁瓣电平分别为-22.6dB和-35.8dB,水平和垂直波束宽度分别为4.2°和25.1°,各项参数均满足船用雷达指标要求。
附图说明
图1为本发明不包含金属反射器的X波段微带平面阵列天线的俯视图,其中:1、介质基片;2、馈电网络;3、贴片单元;22、微带功分馈电网络;212、圆形贴片;221、四端口非等分功分器;222、三端口等分功分器;224、上侧端口;225、下侧端口。
图2为本发明X波段微带平面阵列天线俯视图表面微带部分细节图,其中:31、贴片中心处的水平缝隙;223、二分之一波导波长的微带线。
图3为本发明X波段微带平面阵列天线的侧视图,其中:1、介质基片;4、金属接地板;5、金属反射面;21、同轴转微带部分;51、反射面张角;211、射频连接器的探针。
图4为本发明X波段微带平面阵列天线中馈电网络的S 11曲线图。
图5为本发明X波段微带平面阵列天线中馈电网络各输出端口的功率分布图。
图6为本发明X波段微带平面阵列天线中馈电网络各输出端口的相位分布图。
图7为本发明X波段微带平面阵列天线中馈电网络在中心频率处的方向图。
图8为本发明X波段微带平面阵列天线的S 11曲线图。
图9为本发明X波段微带平面阵列天线在中心频点处的方向图。
具体实施方式
下面结合附图对本发明创造做进一步详细说明。
本发明船用微带阵列天线主要包含介质基片1、馈电网络2、贴片单元3、金属接地板4和金属反射面5。
图1为本发明不包含金属反射器的X波段微带平面阵列天线的俯视图。可以看出,馈电网络2与贴片单元3共面放置,均位于介质基片1的上表面。馈电网络2可分为同轴转微带部分21和微带功分馈电网络22。其中,同轴转微带部分21通过SMA(射频连 接器)的探针211穿过介质基片1与微带功分馈电网络22相连,连接处放置直径大于微带线宽度的圆形贴片212,防止焊锡不均匀对微带功分馈电网络22造成影响。
微带功分馈电网络22由N-2个四端口非等分功分器221和2个三端口等分功分器222构成,相邻功分器之间通过二分之一波导波长的微带线223相连。通过调节功分器各端口微带线特性阻抗实现阵列的激励分布,实现低旁瓣设计。上侧端口224与下侧端口225激励幅度与相位相同,同侧馈电端口输出功率呈泰勒分布。该微带功分馈电网络22尺寸更小,空间利用率更高。
图2为本发明X波段微带平面阵列天线俯视图表面微带部分细节图。为保证天线主极化为水平极化,各辐射贴片单元3尺寸相同,对称分布于微带功分馈电网络22上下两侧,相邻贴片间距约为一个波导波长。利用空间位置对称,辐射单元垂直电场分量相抵消的方法,改善天线交叉极化特性。另外,贴片中心处的水平缝隙31进一步阻断贴片表面垂直流向电流,提高了天线极化纯度。
图3为本发明X波段微带平面阵列天线的侧视图。通过装载金属反射面5,调节反射面张角51度数,从而改变天线垂直面波束宽度,一定程度增加了天线的增益。所述金属反射面5利用理想导体对电磁波的反射作用,有效地压缩了天线垂直面波束宽度,一定程度上也提高了天线增益。在金属反射面与天线对应位置均匀开孔,通过尼龙螺钉将两者固定,强化了天线结构,避免了介质基片的形变。
图4为本发明X波段微带平面阵列天线馈电网络输入端S参数曲线,可以看出当S 11<-20dB时,带宽约为100MHz,阻抗匹配度良好。图5为本发明X波段微带平面阵列天线馈电网络各输出端口功率分布情况,其中:port1为中心位置处的输出端;port1至port15依次表示中心处向外侧的输出端口。可以看出带宽范围内,各输出端口功率分布近似为泰勒分布。图6为本发明X波段微带平面阵列天线中馈电网络各输出端口的相位分布。可以看出,本发明X波段微带平面阵列天线馈电网络各输出端口相位在中心频点处基本相同,相位一致性较好。图7为本发明X波段微带平面阵列天线馈电网络方向图,其中:H_co-pol表示水平面主极化,H_x-pol表示水平面交叉极化,V_co-pol表示垂直面主极化,V_x-pol表示垂直面交叉极化。可知馈电网络增益约为10dBi。
图8为本发明X波段微带平面阵列天线端口反射系数实测结果,9.3GHz-9.41GHz内,实测端口反射系数均小于-14dB(即驻波比<1.5)。图9为本发明X波段微带平面阵列天线在中心频点处的方向图,其中:实测H_co-pol为实测结果的水平面主极化;实测H_x-pol为实测结果的水平面交叉极化;实测V_co-pol为实测结果的垂直面主极化; 实测V_x-pol为实测结果的垂直面交叉极化。可以看出,增益约为23.1dBi,水平面与垂直面旁瓣电平分别为-22.6dB和-35.8dB,水平和垂直波束宽度分别为4.2°和25.1°,交叉极化电平为-25dB以下。
综上所述,本发明X波段微带平面阵列天线通过各功分器级联馈电,有效降低了天线旁瓣电平,阵元排布更为紧凑。阵元对称式的空间分布结构以及水平方向开缝的方法也有效地改善了天线交叉极化特性,天线各项参数均满足了船舶导航雷达所需指标。
以上所述,船舶导航雷达仅为本发明X波段微带平面阵列天线具体实施应用场景之一,但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明设计技术范围内,根据本发明的技术方案及构思加以等同替换,都应在保护范围内。

Claims (4)

  1. 一种X波段微带平面阵列天线,其特征在于,包括介质基片(1)、馈电网络(2)、贴片单元(3)、金属接地板(4)和金属反射面(5),其中所述馈电网络(2)和贴片单元(3)共面放置,所述贴片单元(3)对称分布于馈电网络(2)两侧,均位于介质基片(1)的上表面,所述金属接地板(4)位于介质基片(1)的下表面,金属反射面(5)装载于金属接地板(4)处。
  2. 根据权利要求1所述的一种X波段微带平面阵列天线,其特征在于,所述馈电网络(2)分为同轴转微带部分(21)和微带功分馈电网络(22),其中,同轴转微带部分(21)通过射频连接器的探针(211)穿过介质基片(1)与微带功分馈电网络(22)相连,连接处放置直径大于微带线宽度的圆形贴片(212)。
  3. 根据权利要求2所述的一种X波段微带平面阵列天线,其特征在于,所述微带功分馈电网络(22)包括N-2个四端口非等分功分器(221)和2个三端口等分功分器(222),相邻功分器之间通过二分之一波导波长的微带线(223)相连。
  4. 根据权利要求1所述的一种X波段微带平面阵列天线,其特征在于,所述各个贴片单元(3)尺寸相同。
PCT/CN2022/101410 2021-06-30 2022-06-27 一种x波段微带平面阵列天线 WO2023274110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110734216.0A CN113644454A (zh) 2021-06-30 2021-06-30 一种x波段微带平面阵列天线
CN202110734216.0 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023274110A1 true WO2023274110A1 (zh) 2023-01-05

Family

ID=78416447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101410 WO2023274110A1 (zh) 2021-06-30 2022-06-27 一种x波段微带平面阵列天线

Country Status (2)

Country Link
CN (1) CN113644454A (zh)
WO (1) WO2023274110A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644454A (zh) * 2021-06-30 2021-11-12 南京信息工程大学 一种x波段微带平面阵列天线
CN115189151A (zh) * 2022-09-13 2022-10-14 广州中雷电科科技有限公司 微带天线单元、设计方法、微带天线及导航雷达天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097050A1 (en) * 2005-03-17 2006-09-21 The Chinese University Of Hong Kong Integrated mm-wave planar array antenna with low loss feeding network
CN104518282A (zh) * 2014-12-24 2015-04-15 西安电子科技大学 一种双极化宽频带高隔离度的微带天线
CN110165372A (zh) * 2019-05-31 2019-08-23 大连海事大学 一种x波段船用雷达微带天线阵
CN111987442A (zh) * 2020-08-10 2020-11-24 超讯通信股份有限公司 辐射贴片阵列及平面微带阵列天线
CN113644454A (zh) * 2021-06-30 2021-11-12 南京信息工程大学 一种x波段微带平面阵列天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160433A (ja) * 2006-12-22 2008-07-10 Samsung Electronics Co Ltd アンテナ装置
CN201966327U (zh) * 2010-11-24 2011-09-07 陕西中安机电有限公司 一种宽频低损耗的圆极化天线
CN106505312A (zh) * 2016-12-09 2017-03-15 安徽四创电子股份有限公司 一种毫米波微带阵列天线
CN206401491U (zh) * 2016-12-28 2017-08-11 西安雷通科技有限责任公司 天线阵子
CN208028208U (zh) * 2018-04-26 2018-10-30 国动科技南京有限公司 一种一体化振子天线
CN208272130U (zh) * 2018-05-31 2018-12-21 北京邮电大学 一种串联结构宽带双频偶极子基站天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097050A1 (en) * 2005-03-17 2006-09-21 The Chinese University Of Hong Kong Integrated mm-wave planar array antenna with low loss feeding network
CN104518282A (zh) * 2014-12-24 2015-04-15 西安电子科技大学 一种双极化宽频带高隔离度的微带天线
CN110165372A (zh) * 2019-05-31 2019-08-23 大连海事大学 一种x波段船用雷达微带天线阵
CN111987442A (zh) * 2020-08-10 2020-11-24 超讯通信股份有限公司 辐射贴片阵列及平面微带阵列天线
CN113644454A (zh) * 2021-06-30 2021-11-12 南京信息工程大学 一种x波段微带平面阵列天线

Also Published As

Publication number Publication date
CN113644454A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
CN106252858B (zh) S/x波段共口径宽带小型化平面天线
WO2023274110A1 (zh) 一种x波段微带平面阵列天线
CN113922101B (zh) 一种基于雷达吸波和散射相消技术的宽角度rcs减缩超表面
CN110350307A (zh) 一种顺序相馈圆极化的介质谐振天线阵列
CN109193171B (zh) 一种基于Van Atta阵列极化转换的低RCS微带天线
CN113644432B (zh) 一种双圆极化相控阵天线阵列
CN114883785B (zh) 一种薄型双极化超宽带宽角扫描阵列天线
Khan et al. A compact quadruple-band circular polarized MIMO antenna with low mutual coupling
Verma et al. High gain wideband circularly polarized microstrip antenna array
CN115084872B (zh) 一种超宽带宽扫描角紧耦合相控阵天线
Yan et al. Omnidirection vertically polarized antenna on unmanned aerial vehicle
Hua et al. CPW-fed printed antenna array with conical beam
Fartookzadeh et al. Dual-band circularly-polarized monopulse antenna system with single layer patches and separated feed networks
Wang et al. A broadband circularly polarized endfire loop antenna for millimeter-wave applications
CN112688057B (zh) 一种基于交叉偶极子的宽带圆极化微带天线
Chopra et al. Corner fed microstrip antenna array with reduced cross polarization and side lobe level
Long et al. Design of broadband dual-polarized conformal phased antenna
Liu et al. Dual-polarized Ku-band and single-polarized Ka-band shared-aperture phased array antenna
Nie et al. Design of a magnetoelectric dipole antenna for wideband wide-scanning phased array
Yu et al. A compact switched dual-beam antenna array with high gain
Jamal et al. A Novel Planar Dual CP MIMO Antenna with Polarization Diversity and High Isolation
Patanvariya et al. Design of two-element circularly polarized bubbled antenna for vehicular communication
CN212648491U (zh) 微带天线及微带天线组
CN220672851U (zh) 一种双极化磁电偶极子天线
CN216120732U (zh) 一种场馆赋型天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE