WO2023274103A1 - 可穿戴设备的控制方法、可穿戴设备及可读存储介质 - Google Patents

可穿戴设备的控制方法、可穿戴设备及可读存储介质 Download PDF

Info

Publication number
WO2023274103A1
WO2023274103A1 PCT/CN2022/101382 CN2022101382W WO2023274103A1 WO 2023274103 A1 WO2023274103 A1 WO 2023274103A1 CN 2022101382 W CN2022101382 W CN 2022101382W WO 2023274103 A1 WO2023274103 A1 WO 2023274103A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
image rendering
display screen
eyeball
gaze point
Prior art date
Application number
PCT/CN2022/101382
Other languages
English (en)
French (fr)
Inventor
邱绪东
陶洪焰
张超
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023274103A1 publication Critical patent/WO2023274103A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements

Definitions

  • the present invention relates to the technical field of wearable devices, in particular to a control method of wearable devices, wearable devices and readable storage media.
  • Wearable devices such as AR (Augmented Reality) devices and VR (Virtual Reality) devices can pass physical information (such as vision, sound, taste, touch, etc.) that are difficult to experience in the real world within a certain time and space range through computers. Wait for science and technology, simulate and then superimpose, apply virtual information to the real world, and be perceived by human senses, so as to achieve a sensory experience beyond reality.
  • AR Augmented Reality
  • VR Virtual Reality
  • the main purpose of the present invention is to provide a control method of a wearable device, a wearable device and a readable storage medium, aiming at reducing the power consumption of the wearable device.
  • the present invention provides a control method of a wearable device, the control method of the wearable device includes:
  • At least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is adjusted according to the position of the gaze point.
  • the step of adjusting at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen according to the position of the gaze point includes:
  • At least one of an image rendering ratio of the display screen of the wearable device and an image rendering frequency of the display screen is reduced.
  • the step of adjusting at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen according to the position of the gaze point includes:
  • the position of the gaze point is located in the display area of the display screen of the wearable device, it is determined whether the position of the gaze point is located in the attention area of the display screen, wherein the attention area is located in the display area , the area of the attention area is smaller than the area of the display area;
  • At least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is reduced.
  • the step of adjusting at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen according to the position of the gaze point includes:
  • the focal length is not within the preset range, at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is reduced.
  • the step of reducing the image rendering ratio of the display screen of the wearable device includes:
  • the display area is divided into multiple display sub-areas
  • the step of scanning the eyeball of the user to determine the position of the fixation point of the eyeball includes:
  • the position of the gaze point of the eyeball is determined according to the gaze angle of the eyeball.
  • the step of determining the gaze angle of the eyeball according to the emission angle of the scanning signal comprises:
  • the gaze angle of the eyeball is determined according to the emission angle, the distance between the signal transmitter and the signal receiver, and the transmission distance.
  • the present invention also provides a wearable device, the wearable device includes a memory, a processor, and a control program of the wearable device stored in the memory and operable on the processor When the control program of the wearable device is executed by the processor, the steps of the control method for the wearable device described in any one of the above are implemented.
  • the wearable device further includes a signal transmitter and a signal receiver, the signal transmitter transmits a scanning signal to the eyeball, and the signal receiver receives the scanning signal reflected back by the eyeball.
  • the present invention also provides a computer-readable storage medium, on which a control program of a wearable device is stored, and when the control program of the wearable device is executed by a processor, the The steps of the control method of the wearable device described in any one of the above.
  • the present invention proposes a control method for a wearable device, a wearable device and a readable storage medium.
  • the position of the gaze point of the eyeball is determined, and the display of the wearable device is adjusted according to the position of the gaze point.
  • At least one of the image rendering ratio of the screen and the image rendering frequency of the display screen is adjusted.
  • This solution adjusts at least one of the image rendering ratio and the image rendering frequency of the display screen of the wearable device based on the gaze position of the eyeballs, which can effectively reduce the power consumption of the wearable device.
  • Fig. 1 is a schematic diagram of the hardware architecture of the wearable device involved in the solution of the embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a first embodiment of a control method for a wearable device of the present invention
  • FIG. 3 is a schematic flowchart of a second embodiment of a control method for a wearable device according to the present invention.
  • Fig. 4 is a schematic diagram of determining the position of the fixation point of the eyeball involved in the solution of the embodiment of the present invention.
  • the main solution of the embodiment of the present invention is: scan the eyeball of the user to determine the position of the gaze point of the eyeball; adjust the image rendering ratio and display of the display screen of the wearable device according to the position of the gaze point at least one of the image rendering frequencies of the screen.
  • This solution adjusts at least one of the image rendering ratio and the image rendering frequency of the display screen of the wearable device based on the gaze position of the eyeballs, which can effectively reduce the power consumption of the wearable device.
  • FIG. 1 is a schematic diagram of a hardware architecture of a wearable device involved in an embodiment of the present invention.
  • the wearable device may include a processor 101, such as a CPU, a memory 102, A communication bus 103 , a signal transmitter 104 and a signal receiver 105 , wherein the communication bus 103 is used to realize connection and communication between these components.
  • the memory 102 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory. As shown in FIG. 1, the memory 102 as a computer-readable storage medium may include a control program of the wearable device; and the processor 101 may be used to call the control program of the wearable device stored in the memory 102, and execute the following operate:
  • At least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is adjusted according to the position of the gaze point.
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • At least one of an image rendering ratio of the display screen of the wearable device and an image rendering frequency of the display screen is reduced.
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • the position of the gaze point is located in the display area of the display screen of the wearable device, it is determined whether the position of the gaze point is located in the attention area of the display screen, wherein the attention area is located in the display area , the area of the attention area is smaller than the area of the display area;
  • At least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is reduced.
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • the focal length is not within the preset range, at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is reduced.
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • the display area is divided into multiple display sub-areas
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • the position of the gaze point of the eyeball is determined according to the gaze angle of the eyeball.
  • the processor 101 can be used to call the control program of the wearable device stored in the memory 102, and perform the following operations:
  • the gaze angle of the eyeball is determined according to the emission angle, the distance between the signal transmitter and the signal receiver, and the transmission distance.
  • FIG. 2 is a schematic flowchart of a first embodiment of a control method of a wearable device according to the present invention, and the control method of the wearable device includes:
  • Step S10 scanning the eyeball of the user to determine the position of the fixation point of the eyeball
  • the execution subject is a wearable device, wherein the wearable device refers to a portable terminal device that can be directly worn on the user's body, or integrated into the user's clothes or accessories.
  • Wearable devices can be AR/VR devices, such as AR/VR glasses, etc.
  • wearable devices can also be other portable terminal devices, such as smart watches/smart bracelets, etc. Not limited.
  • wearable devices such as AR/VR can apply virtual information to the real world to be perceived by human senses and realize a sensory experience beyond reality.
  • Image rendering calculations will consume a lot of processor resources, which will undoubtedly increase the power consumption of wearable devices.
  • the control method of the wearable device proposed by the present invention is based on eye movement technology, and a MEMS (Micro-Electro-Mechanical System, Micro-Electro-Mechanical System) system is built on the wearable device, and the user's eyeball is scanned by the MEMS to determine the user's
  • the position of the gaze point of the eyeball adjusts the image rendering ratio and image rendering frequency of the display screen of the wearable device by judging the position of the gaze point of the user's eyeball, so as to reduce the image rendering power consumption of the wearable device.
  • the wearable device scans the eyeball of the user to determine the position of the gaze point, wherein the position of the gaze point refers to the gaze position of the user's eyeball on the display screen of the wearable device, and the position of the gaze point can be is the position where the direction of the pupil of the eye is mapped on the display of the wearable device.
  • the wearable device is provided with a signal transmitter and a plurality of signal receivers, the signal transmitter transmits a scanning signal to the eyeball, and the signal receiver receives the scanning signal reflected by the eyeball to complete the scanning of the eyeball And determine the position of the gaze point of the eyeball.
  • the signal transmitter refers to a device that can emit scanning signals.
  • the signal transmitter can be a scanner, a scanner or a scanning module, etc.
  • the scanning signal can be an infrared signal or other invisible light signals that are not harmful to the eyes and can be reflected
  • the signal receiver refers to a device that can receive scanning signals, for example, the signal receiver may be a detector, a detector, or a detection module. It should be noted that, in other embodiments, the signal transmitter, the signal receiver, and the scanning signal may be determined according to actual conditions, which is not limited in this embodiment.
  • the signal transmitter on the wearable device transmits a scanning signal to the eyeball at a preset frequency at a preset time interval
  • the signal receiver receives the scanning signal reflected by the eyeball to scan the entire eyeball
  • the wearable device obtains the reflection intensity
  • the weakest scanning signal determine the position of the eyeball fixation point according to the scanning signal with the weakest reflection intensity.
  • the range of the preset duration may be 2-5ms
  • the range of the preset frequency may be 200-500HZ.
  • the preset duration and the preset frequency can be set according to actual needs, which is not limited in this embodiment.
  • Step S20 adjusting at least one of an image rendering ratio of a display screen of the wearable device and an image rendering frequency of the display screen according to the position of the gaze point.
  • At least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is adjusted according to the position of the gaze point.
  • the display area is an area on the display screen of the wearable device, and the area of the display area is equal to or smaller than the area of the display screen.
  • the image rendering ratio of the display screen can be reduced, the image rendering frequency of the display screen can also be reduced, and the image rendering ratio of the display screen can also be reduced at the same time. and image rendering frequency.
  • reducing the image rendering ratio of the display screen may be to obtain the first image rendering ratio of the display sub-area where the gaze point is located, and the display area is divided into a plurality of display sub-areas; in the acquisition display area, except for the display sub-area where the gaze point is located The positional relationship between the other display sub-regions and the display sub-region where the gaze point is located; adjust the second image rendering scale of the other display sub-regions according to the positional relationship, wherein the second image rendering scale is smaller than the first image rendering scale.
  • the first image rendering ratio of the display sub-area where the gaze point is located can be set to 100% rendering, and the second image rendering scale of the display sub-area that is farther away from the display sub-area where the gaze point is located among other display sub-areas The smaller it is, that is, the second image rendering ratio of other display sub-regions decreases in turn according to the distance between them and the display sub-region where the gaze point is located;
  • reducing the image rendering frequency of the display screen can be to reduce the image rendering frequency of the display frequency from every 16.6ms to rendering
  • One adjustment is to render once every 100ms, and reducing the image rendering frequency of the display screen can also be achieved by adjusting the image frame rate, for example, adjusting the image frame rate from 60fps to 10fps.
  • the position of the gaze point of the eyeball when the position of the gaze point of the eyeball is not located in the display area of the display screen of the wearable device, it indicates that the user is not viewing the display area, and when the user is not viewing the display area, the image rendering ratio of the display screen of the wearable device is reduced And at least one of the image rendering frequency of the display screen can reduce the power consumption of the wearable device and increase the working hours of the wearable device.
  • the position of the gaze point when the position of the gaze point is located in the display area of the display screen of the wearable device, it is determined whether the position of the gaze point is located in the attention area of the display screen, wherein the attention area is located in the display area, and the area of the attention area is smaller than The area of the display area; when the gaze point is not located in the attention area, at least one of the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen is reduced.
  • the attention area of the display screen can be an effective area that the eyeball can focus on in the display area
  • the effective area that the eyeball can focus on in the display area can be determined by calibrating the eyeball through a preset eye calibration algorithm, specifically , by installing the eye-tracking camera and infrared fill light IR-Led on the wearable device, the focus state of the eyeball and the focus state of the eye muscles can be identified.
  • the wearable device guides the user to do calibration through the preset calibration program before use Action, according to the program prompts, the user respectively observes the four angles (up, down, left, right) and the position of the center point of the display area, and determines the attention area in the display area according to the calibration result; the attention area can also be based on the display of the display area
  • the area of interest can be the foreground area of the displayed content
  • the wearable device can automatically identify the foreground area and the background area of the displayed content in the display area to determine the area of interest of the display screen.
  • the wearable device detects that the position of the gaze point is located in the display area of the wearable device, it is determined whether the position of the gaze point is located in the attention area of the display screen, and when it is detected that the position of the gaze point is not located in the attention area of the display screen,
  • the image rendering ratio of the display screen can be reduced, the image rendering frequency of the display screen can also be reduced, and the image rendering ratio and image rendering frequency of the display screen can be reduced at the same time.
  • the position of the gaze point of the eyeball when the position of the gaze point of the eyeball is not located in the attention area, it indicates that the user does not pay attention to the display content in the display area.
  • the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen At least one can reduce the power consumption of the wearable device and increase the working time of the wearable device.
  • the focal length of the eyeball when the position of the gaze point is located in the display area of the display screen of the wearable device, the focal length of the eyeball is obtained; when the focal length is not within the preset range, the image rendering ratio and display at least one of the image rendering frequencies of the screen.
  • the focal length of the eyeball refers to the distance from the eyeball to the imaging focal plane, and the focal length of the eyeball can reflect whether the user can clearly see the display content in the display area or reflect whether the user is distracted when watching the display content in the display area.
  • the focal length of the eyeball when the focal length of the eyeball is within the preset range, it means that the user can clearly see the displayed content in the display area or that the user is not distracted when watching the displayed content in the display area; when the focal length of the eyeball is not within the preset range, it means that the user cannot see The displayed content of the display area is clear or the user is distracted while watching the displayed content in the display area.
  • the preset range may be (-0.2m, 0.2m). Of course, in other embodiments, the preset range may be determined according to actual conditions, which is not limited in this embodiment.
  • the wearable device when the wearable device detects that the position of the gaze point is located in the display area of the wearable device, it obtains the focal length of the eyeball and determines whether the focal length of the eyeball is within the preset range. When the focal length of the eyeball is not within the preset range, the display screen can be lowered.
  • the image rendering ratio of the display screen can also reduce the image rendering frequency of the display screen, and can also reduce the image rendering ratio and image rendering frequency of the display screen at the same time.
  • the focal length of the eyeball when the focal length of the eyeball is not within the preset range, it means that the user cannot clearly see the display content in the display area or the user is distracted while watching the display content in the display area.
  • By reducing the image rendering ratio of the display screen of the wearable device and At least one of the image rendering frequencies of the display screen can reduce the power consumption of the wearable device and increase the working hours of the wearable device.
  • the user's eyeball is scanned to determine the position of the gaze point of the eyeball, and the image rendering ratio of the display screen of the wearable device and the image rendering frequency of the display screen are adjusted according to the position of the gaze point. at least one of the .
  • This solution adjusts at least one of the image rendering ratio and the image rendering frequency of the display screen of the wearable device based on the gaze position of the eyeballs, which can effectively reduce the power consumption of the wearable device.
  • FIG. 3 is a schematic flowchart of the second embodiment of the control method of the wearable device of the present invention. Based on the first embodiment, the above-mentioned steps of S10 include:
  • Step S11 sending a scanning signal to the eyeball through the signal transmitter of the wearable device, and receiving the scanning signal reflected by the eyeball through the signal receiver;
  • the signal transmitter of the wearable device sends a scan signal to the eyeball, and the signal receiver receives the scan signal reflected back by the eyeball.
  • the signal transmitter refers to a device that can emit scanning signals.
  • the signal transmitter can be a scanner, scanner or scanning module, etc.
  • the scanning signal can be an infrared signal or an invisible light signal that does not damage the glasses
  • the signal receiver is Refers to a device that can receive scanning signals.
  • a signal receiver can be a detector, a detector, or a detection module, etc.
  • a wearable device includes at least one signal transmitter and multiple signal receivers. It should be noted that, in other embodiments, the signal transmitter, the signal receiver, and the scanning signal may be determined according to actual conditions, which is not limited in this embodiment.
  • the signal transmitter on the wearable device transmits a scanning signal to the eyeball at a preset frequency at a preset time interval
  • the signal receiver receives the scanning signal reflected by the eyeball to scan the entire eyeball to obtain the scan with the weakest reflection intensity.
  • Signal determine the position of the eyeball fixation point according to the scanning signal with the weakest reflection intensity.
  • the range of the preset duration may be 2-5 ms
  • the frequency range of the preset frequency may be 200-500 Hz.
  • the preset duration and the preset frequency can be set according to actual needs, which is not limited in this embodiment.
  • Step S12 acquiring the emission angle of the scanning signal
  • FIG. 4 is a schematic diagram of determining the position of the fixation point of the eyeball involved in the solution of the embodiment of the present invention.
  • the signal transmitter transmits a scanning signal
  • the scanning signal with the weakest eyeball reflection intensity is received by the signal receiver n
  • the wearable device obtains the scanning signal’s transmission angle, where the transmission angle refers to the distance between the signal transmitter and the eyeball.
  • Step S13 determining the gaze angle of the eyeball according to the emission angle of the scanning signal
  • the wearable device determines the gaze angle of the eyeball according to the emission angle of the scanning signal, wherein the gaze angle is the angle ⁇ formed by the ray from the eyeball to the signal transmitter and the ray from the eyeball to the signal receiver n.
  • the wearable device obtains the distance between the signal transmitter and the signal receiver, obtains the transmission distance of the scanning signal, and determines the gaze of the eyeball according to the transmission angle, the distance between the signal transmitter and the signal receiver, and the transmission distance angle.
  • the distance D between the signal transmitter and the signal receiver of the wearable device is known, which can be preset or stored;
  • the transmission distance L of the scanning signal can be determined by obtaining the transmission duration of the scanning signal and the transmission rate of the scanning signal.
  • Step S14 determining the position of the gaze point of the eyeball according to the gaze angle of the eyeball.
  • the position of the gaze point of the eyeball is determined according to the gaze angle of the eyeball.
  • the position of the fixation point of the eyeball is determined as follows: according to the law of cosines:
  • ⁇ 2 (L-m) ⁇ 2+
  • ⁇ 2 (L-m) ⁇ 2+
  • n/(D+n) D2/D1
  • n/(D+n) D2/
  • can obtain
  • the coordinate of point F is the position of eyeball fixation point.
  • the signal transmitter of the wearable device sends the scanning signal to the eyeball, and the signal receiver receives the scanning signal reflected by the eyeball, obtains the emission angle of the scanning signal, and according to the emission angle of the scanning signal
  • the gaze angle of the eyeball is determined, and the position of the gaze point of the eyeball is determined according to the gaze angle of the eyeball.
  • the present invention also provides a wearable device.
  • the above-mentioned wearable device may include a memory, a processor, and a control program of the wearable device stored on the above-mentioned memory and operable on the above-mentioned processor.
  • the above-mentioned processing When the controller executes the control program of the above-mentioned wearable device, the steps of the method for controlling the wearable device as described in any one of the above-mentioned embodiments are realized.
  • the above-mentioned wearable device further includes a signal transmitter and a signal receiver, the signal transmitter can transmit a scanning signal to the eyeball, and the signal receiver can receive the scanning signal reflected back by the eyeball.
  • the present invention also provides a computer-readable storage medium, on which is stored a control program of a wearable device. Steps of a control method for a wearable device.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

提供了一种可穿戴设备的控制方法,可穿戴设备及可读存储介质,可穿戴设备的控制方法包括:对用户的眼球进行扫描,以确定眼球的注视点的位置(S10);根据注视点的位置调整可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个(S20)。可穿戴设备的控制方法能够降低可穿戴设备的功耗。

Description

可穿戴设备的控制方法、可穿戴设备及可读存储介质
本申请要求于2021年6月29日提交中国专利局、申请号为202110732349.4、发明名称为“可穿戴设备的控制方法、可穿戴设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及可穿戴设备技术领域,尤其涉及一种可穿戴设备的控制方法、可穿戴设备及可读存储介质。
背景技术
AR(Augmented Reality)设备以及VR(Virtual Reality)设备等可穿戴设备可以把原本在现实世界的一定时间空间范围内很难体验到的实体信息(如视觉、声音、味道、触觉等信息)通过电脑等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。
当前,虚拟信息的叠加和锚定都是通过空间感知和图像渲染技术实现的,因此,需要做大量的图像渲染计算,消耗大量的处理器资源,导致可穿戴设备的功耗较大。
发明内容
本发明的主要目的在于提供一种可穿戴设备的控制方法、可穿戴设备及可读存储介质,旨在降低可穿戴设备的功耗。
为实现上述目的,本发明提供一种可穿戴设备的控制方法,所述可穿戴设备的控制方法包括:
对用户的眼球进行扫描,以确定所述眼球的注视点的位置;
根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
在所述注视点的位置不位于所述可穿戴设备的显示屏的显示区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,判断所述注视点的位置是否位于所述显示屏的关注区域,其中,所述关注区域位于所述显示区域内,所述关注区域的面积小于所述显示区域的面积;
在所述注视点的位置不位于所述关注区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,获取所述眼球的焦距;
在所述焦距不位于预设范围时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,所述降低所述可穿戴设备的显示屏的图像渲染比例的步骤包括:
获取所述注视点所在的显示子区域的第一图像渲染比例,所述显示区域分为多个显示子区域;
获取所述显示区域内除所述注视点所在的显示子区域之外的其他显示子区域与所述注视点所在的显示子区域的位置关系;
根据所述位置关系调整所述其他显示子区域的第二图像渲染比例,其中,所述第二图像渲染比例小于所述第一图像渲染比例。
在一实施例中,所述对用户的眼球进行扫描,以确定所述眼球的注视点的位置的步骤包括:
通过可穿戴设备的信号发射器向所述眼球发送扫描信号,并通过信号接收器接收经所述眼球反射回来的所述扫描信号;
获取所述扫描信号的发射角度;
根据所述扫描信号的发射角度确定所述眼球的注视角度;
根据所述眼球的注视角度确定所述眼球的注视点的位置。
在一实施例中,所述根据所述扫描信号的发射角度确定所述眼球的注视角度的步骤包括:
获取所述信号发射器与所述信号接收器之间的距离;
获取所述扫描信号的传输距离;
根据所述发射角度、所述信号发射器与所述信号接收器之间的距离以及所述传输距离确定所述眼球的注视角度。
此外,为实现上述目的,本发明还提供一种可穿戴设备,所述可穿戴设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的可穿戴设备的控制程序,所述可穿戴设备的控制程序被所述处理器执行时实现上述任一项所述的可穿戴设备的控制方法的步骤。
在一实施例中,所述可穿戴设备还包括信号发射器以及信号接收器,所述信号发射器向眼球发射扫描信号,所述信号接收器接收经所述眼球反射回来的所述扫描信号。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有可穿戴设备的控制程序,所述可穿戴设备的控制程序被处理器执行时实现上述任一项所述的可穿戴设备的控制方法的步骤。
本发明提出了一种可穿戴设备的控制方法、可穿戴设备及可读存储介质,通过对用户的眼球进行扫描,以确定眼球的注视点的位置,根据注视点的位置调整可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的 至少一个。本方案基于眼球注视的位置调整可穿戴设备显示屏的图像渲染比例以及图像渲染频率的至少一个,能有效降低可穿戴设备的功耗。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明实施例方案涉及的可穿戴设备的硬件架构示意图;
图2是本发明可穿戴设备的控制方法的第一实施例的流程示意图;
图3是本发明可穿戴设备的控制方法的第二实施例的流程示意图;
图4是本发明实施例方案涉及的确定眼球的注视点的位置的原理图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例的主要解决方案是:对用户的眼球进行扫描,以确定所述眼球的注视点的位置;根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。本方案基于眼球注视的位置调整可穿戴设备显示屏的图像渲染比例以及图像渲染频率的至少一个,能有效降低可穿戴设备的功耗。
作为一种实现方案,参照图1,图1为本发明实施例方案涉及的可穿戴设备的硬件架构示意图,如图1所示,该可穿戴设备可以包括处理器101,例如CPU,存储器102,通信总线103,信号发射器104以及信号接收器105,其中,通信总线103用于实现这些组件之间的连接通信。
存储器102可以是高速RAM存储器,也可以是稳定的存储器 (non-volatilememory),例如磁盘存储器。如图1所示,作为一种计算机可读存储介质的存储器102中可以包括可穿戴设备的控制程序;而处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
对用户的眼球进行扫描,以确定所述眼球的注视点的位置;
根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
在所述注视点的位置不位于所述可穿戴设备的显示屏的显示区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,判断所述注视点的位置是否位于所述显示屏的关注区域,其中,所述关注区域位于所述显示区域内,所述关注区域的面积小于所述显示区域的面积;
在所述注视点的位置不位于所述关注区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,获取所述眼球的焦距;
在所述焦距不位于预设范围时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
获取所述注视点所在的显示子区域的第一图像渲染比例,所述显示区域分为多个显示子区域;
获取所述显示区域内除所述注视点所在的显示子区域之外的其他显示子区域与所述注视点所在的显示子区域的位置关系;
根据所述位置关系调整所述其他显示子区域的第二图像渲染比例,其中,所述第二图像渲染比例小于所述第一图像渲染比例。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
通过可穿戴设备的信号发射器向所述眼球发送扫描信号,并通过信号接收器接收经所述眼球反射回来的所述扫描信号;
获取所述扫描信号的发射角度;
根据所述扫描信号的发射角度确定所述眼球的注视角度;
根据所述眼球的注视角度确定所述眼球的注视点的位置。
在一实施例中,处理器101可以用于调用存储器102中存储的可穿戴设备的控制程序,并执行以下操作:
获取所述信号发射器与所述信号接收器之间的距离;
获取所述扫描信号的传输距离;
根据所述发射角度、所述信号发射器与所述信号接收器之间的距离以及所述传输距离确定所述眼球的注视角度。
参照图2,图2是本发明可穿戴设备的控制方法的第一实施例的流程示意图,所述可穿戴设备的控制方法包括:
步骤S10,对用户的眼球进行扫描,以确定所述眼球的注视点的位置;
在本实施例中,执行主体是可穿戴设备,其中,可穿戴设备是指可以直接佩戴在用户身上,或是整合到用户的衣服或配件的一种便携式终端设备。可穿戴设备可以是AR/VR设备,例如AR/VR眼镜等,当然,在其他实施例中,可穿戴设备也可以是其他便携式终端设备,例如智能手表/智能手环等,本实施例对此不作限定。
在本实施例中,诸如AR/VR等可穿戴设备可以将虚拟信息应用到真实世界,以被人类感官所感知,实现超越现实的感官体验,但由于虚拟信息的叠加和锚定都需要做大量的图像渲染计算,会消耗大量的处理器资源,无疑会增加可穿戴设备的功耗。
针对该技术问题,本发明提出的可穿戴设备的控制方法基于眼动技术,在可穿戴设备上搭建MEMS(Micro-Electro-Mechanical System,微机电系统)系统,通过MEMS对用户的眼球扫描确定用户眼球的注视点的位置,通过判断用户眼球的注视点的位置调整可穿戴设备的显示屏的图像渲染比例以及图像渲染频率,以降低可穿戴设备的图像渲染功耗。
在本实施例中,可穿戴设备对用户的眼球进行扫描,以确定注视点的位置,其中,注视点的位置是指用户的眼球在可穿戴设备显示屏上的注视位置,注视点的位置可以是眼球瞳孔所在方向映射在可穿戴设备显示屏上的位置。
在本实施例中,可穿戴设备上设置有一个信号发射器和多个信号接收器,信号发射器向眼球发射扫描信号,信号接收器接收经眼球反射回来的扫描信号,以完成对眼球的扫描并确定眼球的注视点的位置。其中,信号发射器是指可以发射扫描信号的器件,例如,信号发射器可以是扫描仪、扫描器或者扫描模块等;扫描信号可以是红外信号或者其他不伤害眼睛、可反射的不可见光信号;信号接收器是指可以接收扫描信号的器件,例如,信号接收器可以是探测器、探测仪或者探测模块等。需要说明的是,在其他实施例中,信号发射器、信号接收器以及扫描信号可以根据实际情况确定,本实施例对此不作限定。
具体地,可穿戴设备上的信号发射器每隔预设时长按预设频率向眼球发射扫描信号,信号接收器接收经眼球反射回来的扫描信号以对整个眼球进行扫描,可穿戴设备获取反射强度最弱的扫描信号,根据反射强度最弱的扫描信号确定眼球注视点的位置。其中,预设时长的范围可以是2-5ms,预设频率的范围可以是200-500HZ。当然,在其他实施例中,预设时长以及预设频率可以根据实际需要设定,本实施例对此不作限定。
步骤S20,根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在本实施例中,可穿戴设备确定眼球的注视点的位置后,根据注视点的 位置调整可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
在一实施例中,在注视点的位置不位于可穿戴设备的显示屏的显示区域时,降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。其中,显示区域是可穿戴设备显示屏上的一个区域,显示区域的面积等于或者小于显示屏的面积。
具体地,可穿戴设备检测到注视点的位置不位于显示屏的显示区域时,可以降低显示屏的图像渲染比例,也可以降低显示屏的图像渲染频率,还可以同时降低显示屏的图像渲染比例和图像渲染频率。其中,降低显示屏的图像渲染比例可以是获取注视点所在的显示子区域的第一图像渲染比例,显示区域分为多个显示子区域;获取显示区域内除注视点所在的显示子区域之外的其他显示子区域与注视点所在的显示子区域的位置关系;根据位置关系调整其他显示子区域的第二图像渲染比例,其中,第二图像渲染比例小于第一图像渲染比例。例如,可以将注视点所在的显示子区域的第一图像渲染比例设置为100%渲染,其他显示子区域中,离注视点所在的显示子区域距离越远的显示子区域的第二图像渲染比例越小,即其他显示子区域的第二图像渲染比例根据其与注视点所在的显示子区域的距离依次递减;降低显示屏的图像渲染频率可以是将显示频的图像渲染频率从每16.6ms渲染一次调整为每100ms渲染一次,降低显示屏的图像渲染频率还可以通过调整图像帧率实现,例如,将图像帧率从60fps调整为10fps。
在本实施例中,眼球注视点的位置不位于可穿戴设备的显示屏的显示区域时,表明用户没有观看显示区域,在用户没有观看显示区域时,降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个可以降低可穿戴设备的功耗,增加可穿戴设备的工作时长。
在一实施例中,在注视点的位置位于可穿戴设备的显示屏的显示区域时,判断注视点的位置是否位于显示屏的关注区域,其中,关注区域位于显示区域内,关注区域的面积小于显示区域的面积;在注视点的位置不位于关注区域时,降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。其中,显示屏的关注区域可以是眼球在显示区域内可以关注到的有效区域,眼球在显示区域内可以关注到的有效区域可以通过预设的眼 部校准算法对眼球进行校准确定得到,具体地,通过在可穿戴设备上安装eye-tracking摄像头和红外补光灯IR-Led可以识别眼球的聚焦状态和眼部肌肉的对焦状态,可穿戴设备在使用前通过预置的校准程序引导用户做校准动作,根据程序提示,用户分别观察显示区域的四个角度(上、下、左、右)及中心点位置,根据校准结果确定显示区域内的关注区域;关注区域也可以是根据显示区域的显示内容确定,例如,关注区域可以是显示内容的前景区域,可穿戴设备可以自动识别出显示区域内显示内容的前景区域和背景区域以确定显示屏的关注区域。
具体地,可穿戴设备检测到注视点的位置位于可穿戴设备的显示区域时,判断注视点的位置是否位于显示屏的关注区域,在检测到注视点的位置不位于显示屏的关注区域时,可以降低显示屏的图像渲染比例,也可以降低显示屏的图像渲染频率,还可以同时降低显示屏的图像渲染比例和图像渲染频率。
在本实施例中,眼球的注视点的位置不位于关注区域时,表明用户并不关注显示区域的显示内容,通过降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个可以降低可穿戴设备的功耗,增加可穿戴设备的工作时长。
在一实施例中,在注视点的位置位于可穿戴设备的显示屏的显示区域时,获取眼球的焦距;在焦距不位于预设范围时,降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。其中,眼球的焦距是指眼球到成像焦平面的距离,眼球的焦距可以反映用户是否能看清楚显示区域的显示内容或者反映用户在观看显示区域中显示内容时是否走神。一般而言,眼球的焦距位于预设范围时,表明用户能看清楚显示区域的显示内容或者用户在观看显示区域中显示内容时未走神;眼球的焦距不位于预设范围时,表明用户不能看清楚显示区域的显示内容或者用户在观看显示区域中显示内容时走神。预设范围可以是(-0.2m,0.2m),当然,在其他实施例中,预设范围可以根据实际情况确定,本实施例对此不作限定。
具体地,可穿戴设备检测到注视点的位置位于可穿戴设备的显示区域时,获取眼球的焦距并判断眼球的焦距是否位于预设范围,在眼球的焦距不在预设范围时,可以降低显示屏的图像渲染比例,也可以降低显示屏的图像渲染频率,还可以同时降低显示屏的图像渲染比例和图像渲染频率。
在本实施例中,眼球的焦距不在预设范围时,表明用户不能看清楚显示区域的显示内容或者用户在观看显示区域中显示内容时走神,通过降低可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个可以降低可穿戴设备的功耗,增加可穿戴设备的工作时长。
本实施例提供的技术方案中,通过对用户的眼球进行扫描,以确定眼球的注视点的位置,根据注视点的位置调整可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。本方案基于眼球注视的位置调整可穿戴设备显示屏的图像渲染比例以及图像渲染频率的至少一个,能有效降低可穿戴设备的功耗。
参照图3,图3是本发明可穿戴设备的控制方法的第二实施例的流程示意图,基于第一实施例,上述S10的步骤包括:
步骤S11,通过可穿戴设备的信号发射器向所述眼球发送扫描信号,并通过信号接收器接收经所述眼球反射回来的所述扫描信号;
在本实施例中,通过可穿戴设备的信号发射器向眼球发送扫描信号,并通过信号接收器接收经所述眼球反射回来的所述扫描信号。其中,信号发射器是指可以发射扫描信号的器件,例如,信号发射器可以是扫描仪、扫描器或者扫描模块等;扫描信号可以是红外信号或者不伤害眼镜的不可见光信号;信号接收器是指可以接收扫描信号的器件,例如,信号接收器可以是探测器、探测仪或者探测模块等;可穿戴设备上至少包括一个信号发射器以及多个信号接收器。需要说明的是,在其他实施例中,信号发射器、信号接收器以及扫描信号可以根据实际情况确定,本实施例对此不作限定。
具体地,可穿戴设备上的信号发射器每隔预设时长按预设频率向眼球发射扫描信号,信号接收器接收经眼球反射回来的扫描信号以对整个眼球扫描,获取反射强度最弱的扫描信号,根据反射强度最弱的扫描信号确定眼球注视点的位置。其中,预设时长的范围可以是2-5ms,预设频率的频率范围可以是200-500HZ。当然,在其他实施例中,预设时长以及预设频率可以根据实际需要设定,本实施例对此不作限定。
步骤S12,获取所述扫描信号的发射角度;
在本实施例中,参照图4,图4是本发明实施例方案涉及的确定眼球的 注视点的位置的原理图。如图4所示,信号发射器发射扫描信号,眼球反射强度最弱的扫描信号被信号接收器n接收到,可穿戴设备获取扫描信号的发射角度,其中,发射角度是指信号发射器至眼球的射线与信号发射器至信号接收器n的射线所形成的角度α。
步骤S13,根据所述扫描信号的发射角度确定所述眼球的注视角度;
在本实施,可穿戴设备根据扫描信号的发射角度确定眼球的注视角度,其中,注视角度为眼球至信号发射器的射线与眼球至信号接收器n的射线所形成的角度β。
具体地,可穿戴设备获取信号发射器与信号接收器之间的距离,获取扫描信号的传输距离,根据发射角度、信号发射器与信号接收器之间的距离以及传输距离确定所述眼球的注视角度。其中,由于可穿戴设备的信号发射器与信号接收器在可穿戴设备上的位置已知,因此可穿戴设备的信号发射器与信号接收器之间的距离D已知,可以预先设置或者存储;扫描信号的传输距离L可以通过获取扫描信号的传输时长以及扫描信号的传输速率确定得到。眼球的注视角度按如下方式确定:假设发射角度α对应边长为m,那么根据余弦定理可知:m^2=D^2+(L-m)^2-2*D*(L-m)*Cosα可以求得m,同理可以求的β,β=arccos((m^2+(L-m)^2)/2*m*(L-m))。
步骤S14,根据所述眼球的注视角度确定所述眼球的注视点的位置。
在本实施例子中,可穿戴设备获取到眼球的注视角度后,根据眼球的注视角度确定眼球的注视点的位置。具体地,眼球的注视点的位置按如下方式确定:根据余弦定理:|AF|^2=(L-m)^2+|BF|^2-2*(L-m)*|BF|*Cosβ/2,|BF|^2=(L-m)^2+|AF|^2-2*(L-m)*|AF|*Cos(180-α-β/2),可以求得|AF|,|BF|值。根据相似三角形原理:n/(D+n)=D2/D1,n/(D+n)=D2/|x’F|可以求得|x’F|,同理可以求得|y’F|,所以F点的坐标为(x’,y’)。其中,F点的坐标为即为眼球注视点的位置。
本实施例提供的技术方案中,通过可穿戴设备的信号发射器向眼球发送扫描信号,并通过信号接收器接收经眼球反射回来的扫描信号,获取扫描信号的发射角度,根据扫描信号的发射角度确定眼球的注视角度,根据眼球的注视角度确定眼球的注视点的位置。本方案可以精准确定眼球的注视点的位置,提高可穿戴设备的控制准确性。
基于上述实施例,本发明还提供了一种可穿戴设备,上述可穿戴设备可以包括存储器、处理器及存储在上述存储器上并可在上述处理器上运行的可穿戴设备的控制程序,上述处理器执行上述可穿戴设备的控制程序时,实现如上述任一实施例所述的可穿戴设备的控制方法的步骤。
在一实施例中,上述可穿戴设备还包括信号发射器以及信号接收器,信号发射器可以向眼球发射扫描信号,信号接收器可以接收经眼球反射回来的扫描信号。
基于上述实施例,本发明还提供一种计算机可读存储介质,其上存储有可穿戴设备的控制程序,上述可穿戴设备的控制程序被处理器执行时实现如上述任一实施例所述的可穿戴设备的控制方法的步骤。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种可穿戴设备的控制方法,其特征在于,所述可穿戴设备的控制方法包括:
    对用户的眼球进行扫描,以确定所述眼球的注视点的位置;
    根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
  2. 如权利要求1所述的可穿戴设备的控制方法,其特征在于,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
    在所述注视点的位置不位于所述可穿戴设备的显示屏的显示区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
  3. 如权利要求1所述的可穿戴设备的控制方法,其特征在于,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
    在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,判断所述注视点的位置是否位于所述显示屏的关注区域,其中,所述关注区域位于所述显示区域内,所述关注区域的面积小于所述显示区域的面积;
    在所述注视点的位置不位于所述关注区域时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
  4. 如权利要求1所述的可穿戴设备的控制方法,其特征在于,所述根据所述注视点的位置调整所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个的步骤包括:
    在所述注视点的位置位于所述可穿戴设备的显示屏的显示区域时,获取所述眼球的焦距;
    在所述焦距不位于预设范围时,降低所述可穿戴设备的显示屏的图像渲染比例以及显示屏的图像渲染频率中的至少一个。
  5. 如权利要求2-4任一项所述的可穿戴设备的控制方法,其特征在于,所述降低所述可穿戴设备的显示屏的图像渲染比例的步骤包括:
    获取所述注视点所在的显示子区域的第一图像渲染比例,所述显示区域分为多个显示子区域;
    获取所述显示区域内除所述注视点所在的显示子区域之外的其他显示子区域与所述注视点所在的显示子区域的位置关系;
    根据所述位置关系调整所述其他显示子区域的第二图像渲染比例,其中,所述第二图像渲染比例小于所述第一图像渲染比例。
  6. 如权利要求1所述的可穿戴设备的控制方法,其特征在于,所述对用户的眼球进行扫描,以确定所述眼球的注视点的位置的步骤包括:
    通过可穿戴设备的信号发射器向所述眼球发送扫描信号,并通过信号接收器接收经所述眼球反射回来的所述扫描信号;
    获取所述扫描信号的发射角度;
    根据所述扫描信号的发射角度确定所述眼球的注视角度;
    根据所述眼球的注视角度确定所述眼球的注视点的位置。
  7. 如权利要求6所述的可穿戴设备的控制方法,其特征在于,所述根据所述扫描信号的发射角度确定所述眼球的注视角度的步骤包括:
    获取所述信号发射器与所述信号接收器之间的距离;
    获取所述扫描信号的传输距离;
    根据所述发射角度、所述信号发射器与所述信号接收器之间的距离以及所述传输距离确定所述眼球的注视角度。
  8. 一种可穿戴设备,其特征在于,所述可穿戴设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的可穿戴设备的控制程序,所述可穿戴设备的控制程序被所述处理器执行时实现如权利要求1-7中任一项所述的可穿戴设备的控制方法的步骤。
  9. 如权利要求8所述的可穿戴设备,其特征在于,所述可穿戴设备还包括信号发射器以及信号接收器,所述信号发射器向眼球发射扫描信号,所述信号接收器接收经所述眼球反射回来的所述扫描信号。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有可穿戴设备的控制程序,所述可穿戴设备的控制程序被处理器执行时实现如权利要求1-7中任一项所述的可穿戴设备的控制方法的步骤。
PCT/CN2022/101382 2021-06-29 2022-06-27 可穿戴设备的控制方法、可穿戴设备及可读存储介质 WO2023274103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110732349.4 2021-06-29
CN202110732349.4A CN113485546A (zh) 2021-06-29 2021-06-29 可穿戴设备的控制方法、可穿戴设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023274103A1 true WO2023274103A1 (zh) 2023-01-05

Family

ID=77936780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101382 WO2023274103A1 (zh) 2021-06-29 2022-06-27 可穿戴设备的控制方法、可穿戴设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN113485546A (zh)
WO (1) WO2023274103A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485546A (zh) * 2021-06-29 2021-10-08 歌尔股份有限公司 可穿戴设备的控制方法、可穿戴设备及可读存储介质
CN117148959A (zh) * 2023-02-27 2023-12-01 荣耀终端有限公司 眼动追踪的帧率调整方法及相关装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180075820A1 (en) * 2016-09-12 2018-03-15 Intel Corporation Enhanced rendering by a wearable display attached to a tethered computer
CN109613984A (zh) * 2018-12-29 2019-04-12 歌尔股份有限公司 Vr直播中视频图像的处理方法、设备及系统
US20190113970A1 (en) * 2013-03-04 2019-04-18 Tobii Ab Gaze and saccade based graphical manipulation
CN109766011A (zh) * 2019-01-16 2019-05-17 北京七鑫易维信息技术有限公司 一种图像渲染方法和装置
CN109885176A (zh) * 2019-03-27 2019-06-14 京东方科技集团股份有限公司 显示控制方法、装置、介质及电子设备
CN110347265A (zh) * 2019-07-22 2019-10-18 北京七鑫易维科技有限公司 渲染图像的方法及装置
CN110855972A (zh) * 2019-11-21 2020-02-28 Oppo广东移动通信有限公司 图像处理方法以及电子设备和存储介质
CN111556305A (zh) * 2020-05-20 2020-08-18 京东方科技集团股份有限公司 图像处理方法、vr设备、终端、显示系统和计算机可读存储介质
CN113485546A (zh) * 2021-06-29 2021-10-08 歌尔股份有限公司 可穿戴设备的控制方法、可穿戴设备及可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062479A1 (en) * 2008-11-02 2010-06-03 David Chaum System and apparatus for eyeglass appliance platform
CN111757090A (zh) * 2019-03-27 2020-10-09 北京传送科技有限公司 基于注视点信息的实时vr图像过滤方法、系统和存储介质
CN112164016A (zh) * 2020-09-23 2021-01-01 京东方科技集团股份有限公司 图像渲染方法及系统、vr设备、装置及可读存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190113970A1 (en) * 2013-03-04 2019-04-18 Tobii Ab Gaze and saccade based graphical manipulation
US20180075820A1 (en) * 2016-09-12 2018-03-15 Intel Corporation Enhanced rendering by a wearable display attached to a tethered computer
CN109613984A (zh) * 2018-12-29 2019-04-12 歌尔股份有限公司 Vr直播中视频图像的处理方法、设备及系统
CN109766011A (zh) * 2019-01-16 2019-05-17 北京七鑫易维信息技术有限公司 一种图像渲染方法和装置
CN109885176A (zh) * 2019-03-27 2019-06-14 京东方科技集团股份有限公司 显示控制方法、装置、介质及电子设备
CN110347265A (zh) * 2019-07-22 2019-10-18 北京七鑫易维科技有限公司 渲染图像的方法及装置
CN110855972A (zh) * 2019-11-21 2020-02-28 Oppo广东移动通信有限公司 图像处理方法以及电子设备和存储介质
CN111556305A (zh) * 2020-05-20 2020-08-18 京东方科技集团股份有限公司 图像处理方法、vr设备、终端、显示系统和计算机可读存储介质
CN113485546A (zh) * 2021-06-29 2021-10-08 歌尔股份有限公司 可穿戴设备的控制方法、可穿戴设备及可读存储介质

Also Published As

Publication number Publication date
CN113485546A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2023274103A1 (zh) 可穿戴设备的控制方法、可穿戴设备及可读存储介质
CN110187855B (zh) 近眼显示设备的避免全息影像阻挡视线的智能调节方法
US10271042B2 (en) Calibration of a head mounted eye tracking system
CN107272904B (zh) 一种图像显示方法及电子设备
CN106327584B (zh) 一种用于虚拟现实设备的图像处理方法及装置
US20180107274A1 (en) Display control device, control method thereof, and display control system
EP3026905A1 (en) Distance adaptive displaying method and device based on eyeball tracking
CN108463789B (zh) 信息处理设备、信息处理方法和程序
KR102056221B1 (ko) 시선인식을 이용한 장치 연결 방법 및 장치
CN111556305B (zh) 图像处理方法、vr设备、终端、显示系统和计算机可读存储介质
WO2013191120A1 (ja) 画像処理装置、方法、プログラム、および記録媒体
US11157073B2 (en) Gaze calibration for eye-mounted displays
US11983310B2 (en) Gaze tracking apparatus and systems
US20210382316A1 (en) Gaze tracking apparatus and systems
EP3945401A1 (en) Gaze tracking system and method
US11925412B2 (en) Gaze tracking apparatus and systems
CN106708249B (zh) 交互方法、交互装置及用户设备
Drakopoulos et al. Front camera eye tracking for mobile VR
WO2019095095A1 (zh) 头戴显示设备图像调整方法及头戴显示设备
US11520144B2 (en) Display device, display method thereof, and display system
US11270409B1 (en) Variable-granularity based image warping
CN113253829B (zh) 眼球跟踪校准方法及相关产品
EP3961572A1 (en) Image rendering system and method
EP4286994A1 (en) Electronic device that displays virtual objects
GB2613084A (en) Gaze tracking apparatus and systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE