WO2023274080A1 - 一种状态检测方法、耳机及计算机可读存储介质 - Google Patents

一种状态检测方法、耳机及计算机可读存储介质 Download PDF

Info

Publication number
WO2023274080A1
WO2023274080A1 PCT/CN2022/101221 CN2022101221W WO2023274080A1 WO 2023274080 A1 WO2023274080 A1 WO 2023274080A1 CN 2022101221 W CN2022101221 W CN 2022101221W WO 2023274080 A1 WO2023274080 A1 WO 2023274080A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
earphone
difference
detection
real
Prior art date
Application number
PCT/CN2022/101221
Other languages
English (en)
French (fr)
Inventor
乔爱国
庞新洁
Original Assignee
芯海科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯海科技(深圳)股份有限公司 filed Critical 芯海科技(深圳)股份有限公司
Publication of WO2023274080A1 publication Critical patent/WO2023274080A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of electronic technology, and in particular to a state detection method, an earphone and a computer-readable storage medium.
  • earphones In daily life and work, users often use earphones to listen to audio played by connected electronic devices, and the use of earphones often involves the detection of earphone usage status, which can assist in controlling audio pause and playback, etc. .
  • a single sensor is usually set at a specific position of the headphone, and the use state of the headphone is determined based on the detection data of a single sensor.
  • the detection data is relatively single, which leads to the accuracy of the headphone use state detection results. Poor.
  • the embodiment of the present application provides a state detection method, an earphone and a computer-readable storage medium, which can at least solve the problem in the related art that the accuracy of the detection result is not good when detecting the state of use of the earphone.
  • the first aspect of the present application provides a state detection method, which is applied to earphones.
  • the earphone is provided with a first sensor, and the hand-held part of the earphone is provided with a second sensor.
  • the state detection method includes: acquiring the A first detection value corresponding to the first sensor, and obtaining a second detection value corresponding to the second sensor; obtaining a difference evaluation index between the first detection value and the second detection value; based on the difference The performance evaluation index determines the real-time use state of the earphone.
  • the second aspect of the present application provides an earphone, including: a memory, a processor, and a bus, the bus is used to realize the connection and communication between the memory and the processor; the processor is used to execute the A computer program, when the processor executes the computer program, implements the steps in the state detection method provided in the first aspect of the present application.
  • the third aspect of the present application provides a computer-readable storage medium, on which a computer program is stored, wherein, when the computer program is executed by a processor, the above-mentioned steps in the state detection method provided by the first aspect of the present application are implemented .
  • the first detection value corresponding to the first sensor provided on the earphone in-ear part is obtained, and the corresponding first detection value of the second sensor provided on the hand-held part of the earphone is obtained.
  • the second detection value obtain the difference evaluation index between the first detection value and the second detection value; determine the real-time use state of the earphone based on the difference evaluation index.
  • the detection values of the sensors set at different positions of the earphones are compared to determine the use status of the earphones. Since the detection data comes from multiple sensors set at different positions of the earphones, it is possible to avoid the use of a single sensor affected by objective factors. There are occasional errors in the detection data caused by the impact, which effectively improves the accuracy of the headset use status detection.
  • FIG. 1 is a schematic structural diagram of an earphone facing the ear side provided by the first embodiment of the present application;
  • FIG. 2 is a schematic flow chart of the state detection method provided in the first embodiment of the present application.
  • FIG. 3 is a structural schematic diagram of another earphone facing the ear side provided by the first embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a detailed state detection method provided in the second embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a detailed state detection method provided by the third embodiment of the present application.
  • FIG. 6 is a schematic diagram of functional modules of an earphone provided by a fourth embodiment of the present application.
  • the first embodiment of the present application provides a state detection method, which is applied to the earphone, and the earphone is equipped with a first sensor.
  • the second sensor is provided on the hand-held part of the earphone, as shown in Figure 1, which is a structural schematic diagram of an earphone provided by this embodiment.
  • the ear part of this embodiment is the part where the earphone contacts the user's ear canal on the ear side, that is, the part of the earplug shown in A in Figure 1, and the handle part is where the user's finger touches the earphone when the user holds the earphone.
  • the part of the earphone that is in contact that is, the part of the earphone handle shown in B in Figure 1.
  • the earphone shown in FIG. 1 of this embodiment is only one of the applicable appearance forms. In practical applications, the state detection method of this embodiment can also be applied to headphones and earphones. Etc., no unique limitation is made here.
  • FIG. 2 is the basic flowchart of the state detection method provided in this embodiment, the state detection method includes the following steps:
  • Step 201 Obtain a first detection value corresponding to the first sensor, and obtain a second detection value corresponding to the second sensor.
  • the sensors used in this embodiment may be capacitive sensors, temperature sensors, pressure sensors, etc.
  • the types of sensors provided at different positions of the earphones should be the same.
  • the detection value of the sensor will be different under different use states of the earphone, and the detection value of the sensor will increase when the user is in contact with the position where the sensor is located.
  • the number of the first sensor and the number of the second sensor is not uniquely limited in this embodiment, and both may be set as one or more.
  • Step 202 Obtain a difference evaluation index between the first detection value and the second detection value.
  • the difference evaluation is performed on the detection data of the sensors provided on different earphone parts, so as to perceive whether the user touches the earphone and the earphone part touched.
  • the difference evaluation index can be the value difference of the detection value, that is, the difference of the detection value, or the difference in the sequence of the change of the detection value, that is, the change between the first detection value and the second detection value time sequence.
  • Step 203 determine the real-time use state of the earphone based on the difference evaluation index.
  • the real-time usage status in this embodiment may include but not limited to a worn status, a handheld status, a placement status, and the like.
  • the worn state refers to the state that the earphone has been worn by the user
  • the hand-held state refers to the state that the user holds the earphone
  • the placed state refers to the state that the user does not have any contact with the earphone.
  • the detection of the use state of the earphone is realized based on the sensor detection data of two different parts, the user's contact behavior at two different parts can be sensed.
  • a single sensor senses the user's contact behavior of a single part, and this embodiment can effectively avoid accidental errors caused by objective factors, and significantly improve the accuracy of earphone usage state detection.
  • the difference evaluation index in this embodiment is the difference of detection values.
  • the above-mentioned step of obtaining the difference evaluation index between the first detection value and the second detection value specifically includes: subtracting the second detection value from the first detection value to obtain the difference of detection values.
  • the detected value difference is the difference between two detected values.
  • the difference between the two detected values can be evaluated by the difference between the detected values.
  • the first detected value is A and the second detected value is B as an example, and the difference between the detected values is (A-B ).
  • the specific implementation manners of determining the real-time usage state of the earphone based on the difference evaluation index include but are not limited to the following three:
  • Method 1 when the detected value difference is positive, compare the detected value difference with a preset first threshold; if the detected value difference is greater than the first threshold, then determine that the real-time use state of the earphone is already wearing status.
  • Method 2 When the detected value difference is a negative value, compare the detected value difference with the preset second threshold; if the detected value difference is smaller than the second threshold, determine that the real-time use state of the headset is handheld state.
  • Mode 3 when the value of the detected value difference is zero, it is determined that the real-time use state of the earphone is the placed state.
  • this embodiment is provided with a detection value difference comparison threshold, considering that the sensor detection value generated by the user accidentally touching the corresponding part of the earphone is usually smaller than that of consciously wearing the earphone or holding the earphone, so that the value is only taken in the difference of the detected value
  • a detection value difference comparison threshold considering that the sensor detection value generated by the user accidentally touching the corresponding part of the earphone is usually smaller than that of consciously wearing the earphone or holding the earphone, so that the value is only taken in the difference of the detected value
  • the detection value difference when the detection value difference is a positive value, the detection value of the first sensor is greater than that of the second sensor, indicating that the first sensor is in contact with the user, and the value is greater than the preset first threshold value, indicating that the first sensor is in contact with the user.
  • the contact between the sensor and the user is conscious.
  • the first sensor is usually in contact with the user's ear while the second sensor is not in contact with the user, so that the use state of the earphone can be determined as the worn state.
  • the detected value difference when the detected value difference is a negative value and less than the preset second threshold, usually the second sensor is in contact with the user's hand while the first sensor is not in contact with the user, so that the earphone use state can be determined as Handheld state.
  • the detected value difference when the detected value difference is zero, it means that neither of the two commonly used parts of the user is in contact with the user when using the earphone, and thus the earphone is in a placed state at this time.
  • the handheld state includes a state of being worn and a state of being taken out.
  • the step of determining that the real-time use state of the earphone is the hand-held state specifically includes: when the detected value difference is less than the second threshold, obtaining the latest Historical use state; if the latest historical use state is the worn state, then determine the real-time use state of the headset as being taken out; if the latest historical use state is the put state, then determine the real-time use state of the headset as the wearing state.
  • the user holds the headset there are generally two scenarios where the user holds the headset: the user is wearing the headset and the user is taking out the worn headset from the ear.
  • the earphone usage status at the corresponding moment is recorded, and when the user holds the headset in the subsequent time, the historical usage status at the previous moment can be referred to to determine the current more detailed In the handheld state, if the user has worn the headset before, then the current handheld headset should be in the state of being taken out; if the headset was put aside before, then the current handheld headset should be in the wearing state.
  • the above-mentioned step of subtracting the second detection value from the first detection value to obtain the detection value difference specifically includes: respectively subtracting the second detection value from the first detection values corresponding to the plurality of first sensors to obtain A plurality of detected value differences: the above-mentioned step of determining the real-time use state of the earphone based on the difference evaluation index specifically includes: determining the real-time use state of the earphone based on the plurality of detected value differences.
  • a plurality of first detection values are simultaneously collected by setting a plurality of first sensors.
  • the second detection value may be subtracted from the plurality of first detection values respectively, Obtain multiple detected value differences, and then compare the multiple detected value differences. If it is determined after the comparison that the multiple detected value differences meet the consistency standard, then the detected values collected by multiple first sensors set at the same position are mutually correlated. Consistent, it means that the current detection behavior is effective, so the accuracy of the real-time usage status determined based on the difference of detection values is higher.
  • step S201 If there is a difference or a large difference in the detection values collected by one sensor, it means that there are accidental error factors in the current detection behavior, so it is possible to return to step S201 and perform sensor data collection again. Therefore, the accuracy of the detection of the earphone use state can be effectively guaranteed.
  • the number of the first sensors is two, and the two first sensors are arranged on opposite sides of the in-ear portion.
  • the above-mentioned step of determining the real-time use state of the earphone based on a plurality of detected value differences includes: calculating the difference between two detected value differences; The state of use is loose wearing.
  • FIG. 3 it is a schematic diagram of the structure of another earphone provided by this embodiment toward the ear.
  • A shows the in-ear part
  • a and b are two first sensors arranged opposite to each other.
  • the two first sensors can also be arranged vertically or diagonally.
  • this embodiment it is considered that the user may loosen the earphones due to sports during the wearing of the earphones.
  • one side of the earphones usually has a slight contact with the user's ear, while the other side remains in contact with the user's ear. Normal contact, therefore, this embodiment can compare the detection values of the sensors on the opposite sides of the earphone in-ear part. If the difference between the two is large, it means that the contact behavior between the earphone in-ear part and the user's ear is different. Therefore, it can be effectively determined that the earphone is currently in a loose state.
  • the above-mentioned step of acquiring the difference evaluation index between the first detection value and the second detection value specifically includes: calculating two adjacent first detection values within a preset detection duration The first difference between, and the second difference between two adjacent second detection values; when it is determined based on the first difference that the first detection value changes, and the second detection is determined based on the second difference When the value changes, the order of the first detection value and the second detection value change is acquired.
  • adjacent means that the detection time/detection order corresponding to the detection values are adjacent.
  • the above-mentioned step of determining the real-time use state of the earphone based on the difference evaluation index specifically includes: determining the real-time use state of the earphone according to the order in which the first detection value and the second detection value change.
  • the difference in this embodiment is the difference between two adjacent detection values obtained by the same sensor.
  • the difference is greater than the preset threshold, it indicates that the detection value of the sensor has changed, so that the user can perceive The contact behavior with this sensor changes.
  • This embodiment takes into account that the user’s contact behavior with different parts will change in stages during the use of the earphone. For example, when the user needs to wear the earphone, the user will first hold the earphone handle to wear the earphone.
  • the earplugs of the earphones are inserted into the ears, and the sensor data of the earphones go from nothing to existence, and then, when the user releases the handle of the earphones, the sensor data of the handset of the earphones changes from existence to non-existence.
  • multiple changes in data detected by the sensor can also be used to effectively detect the state of use of the earphone.
  • the above-mentioned step of determining the real-time use status of the earphone according to the sequence when the first detection value and the second detection value change specifically includes: when the sequence is: the first When the second detection value, the first detection value, and the second detection value, obtain the latest historical use state of the earphone; if the latest historical use state is the worn state, then determine that the real-time use state of the earphone is the put state; If the use state is the put state, it is determined that the real-time use state of the earphone is the worn state.
  • the interaction mode of the user wearing the earphone is as follows: the user first touches the hand-held part of the earphone, then the in-ear part of the earphone contacts the user's ear, and finally the user releases the contact with the hand-held part;
  • the interaction method for taking out the earphone is as follows: the user first touches the hand-held part of the earphone, then the ear-in-ear part of the earphone releases the contact with the user's ear, and finally the user releases the contact with the hand-held part.
  • the second step in the two interaction methods is different, they are both reflected in the change of the detection value of the in-ear part, that is, the sequence of change of the detection value in the two use processes is substantially the same.
  • the last earphone usage state can be used as a reference. If it is caused by the behavior of the user, it is determined that the current state of use of the earphone is the put state. On the contrary, if it was in the state of rest before, then the change sequence of the current detection value is caused by the behavior of the user wearing the earphone, and the current state of use of the earphone is determined to be the worn state.
  • the first difference between two adjacent first detection values within the preset detection time period, and the difference between two adjacent second detection values After the step of the second difference value also specifically includes: when it is determined based on the first difference that the first detected value has changed, and when it is determined based on the second difference that the second detected value has not changed, combining the first difference with the predicted A threshold is set for comparison; if the first difference is less than the threshold, it is determined that the real-time use state of the earphone is a loose wearing state; if the first difference is greater than the threshold, then it is determined that the real-time use state of the earphone is an abnormal drop state.
  • the detection value of the sensor set on the earphone handle will not change, while the sensor in the earphone is affected by loose wearing or abnormal drop.
  • the detection value before and after it will change.
  • the difference between the two sensor detection values before and after is compared with the preset threshold to determine the change range of the sensor detection value.
  • the change range is relatively slight, it means that the earphone is only loose.
  • the change range is large, it usually occurs when the earbud part of the earphone is separated from the user's ear, which means that the earphone has been dropped abnormally.
  • the detection values of the sensors set at different positions of the earphones are compared to determine the use status of the earphones. Since the detection data comes from multiple sensors set at different positions of the earphones, it is possible to avoid the use of a single sensor affected by objective factors. There are occasional errors in the detection data caused by the impact, which effectively improves the accuracy of the headset use status detection.
  • the second embodiment of the present application provides a refined state detection method, as shown in Figure 4, a detailed flowchart of the state detection method provided in this embodiment, the state detection method includes:
  • Step 401 Obtain the first detection values corresponding to the two first sensors of the earphone in-ear part, and obtain the second detection value corresponding to the single second sensor of the earphone handle.
  • Step 402 respectively subtracting the second detection value from the first detection value corresponding to the two first sensors to obtain a difference between the two detection values.
  • Step 403 judging whether the value of the difference between the two detected values satisfies a preset consistency standard. If yes, execute step 404 , if not, return to step 401 .
  • Step 404 Comparing any detected value difference with a preset threshold.
  • Step 405 Determine the real-time usage status of the earphone based on the preset mapping relationship between the comparison result and the usage status.
  • the difference of the second detection value can be subtracted from the two first detection values respectively to obtain the difference between the two detection values, and then the difference between the two detection values can be compared. If the difference between the two detection values is determined after the comparison If the difference meets the consistency standard, then the detection values collected by the two first sensors set at the same part are consistent with each other, indicating that the current detection behavior is effective, so that the accuracy of the real-time usage status determined based on the difference of detection values is higher.
  • the consistency standard is the difference between the differences of each detected value. If the difference is small or there is no difference, the consistency standard is met. If the difference is large or there is a difference, the consistency standard is not satisfied.
  • the threshold value of this embodiment for comparison with the detected value difference can be 0.
  • the comparison result is greater than 0, the real-time use state of the earphone is the worn state; when the comparison result is less than 0, the real-time use state of the earphone is The state is the handheld state; when the comparison result is equal to 0, the real-time use state of the headset is the placed state.
  • the detection values of the sensors installed in different positions of the earphones are compared to determine the use status of the earphones. Since the detection data comes from multiple sensors set in different positions of the earphones, it is possible to avoid using a single sensor Occasional errors in detection data caused by objective factors effectively improve the accuracy of earphone usage status detection.
  • the third embodiment of the present application provides a refined state detection method, as shown in Figure 5, the refined flow chart of the state detection method provided in this embodiment, the state detection method includes:
  • Step 501 Obtain a first detection value corresponding to the first sensor, and obtain a second detection value corresponding to the second sensor.
  • Step 502. Calculate a first difference between two adjacent first detection values and a second difference between two adjacent second detection values within a preset detection time period.
  • Step 503 When it is determined based on the first difference that the first detected value has changed, and based on the second difference it has been determined that the second detected value has changed, acquire the order in which the first detected value and the second detected value change.
  • Step 504 when the sequence is: the second detection value, the first detection value, and the second detection value, acquire the latest historical usage status of the earphone.
  • Step 505 Determine the real-time usage status of the earphone based on the change sequence, the preset mapping relationship between the historical usage status and the real-time usage status.
  • the change order of the sensor detection values in the two cases is substantially the same.
  • the last usage status of the headset can be used as a reference. If it was in the worn state before, it is determined that the current headset usage status is the placed state. Conversely, if it was in the placed state before , then it is determined that the current headset usage status is the worn status.
  • the detection values of the sensors installed in different positions of the earphones are compared to determine the use status of the earphones. Since the detection data comes from multiple sensors set in different positions of the earphones, it is possible to avoid using a single sensor Occasional errors in detection data caused by objective factors effectively improve the accuracy of earphone usage status detection.
  • FIG. 6 is an earphone provided in a fourth embodiment of the present application.
  • the earphone can be used to implement the state detection method in any of the foregoing embodiments.
  • the headset mainly includes:
  • the memory 601 and the processor 602 are connected through the bus 603 .
  • the processor 602 executes the computer program, the state detection method in the foregoing embodiments is implemented.
  • the number of processors may be one or more.
  • the memory 601 may be a high-speed random access memory (RAM, Random Access Memory) memory, or a non-volatile memory (non-volatile memory), such as a disk memory.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory 601 is used to store executable program codes, and the processor 602 is coupled to the memory 601 .
  • the embodiment of the present application also provides a computer-readable storage medium, which can be set in the electronic device in each of the above-mentioned embodiments, and the computer-readable storage medium can be the above-mentioned FIG. 6 memory in the example embodiment.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the state detection method in the foregoing embodiments is implemented.
  • the computer storage medium may also be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), RAM, a magnetic disk or an optical disk, and other media that can store program codes.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • a module described as a separate component may or may not be physically separated, and a component shown as a module may or may not be a physical module, that is, it may be located in one place, or may also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the integrated modules are realized in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a readable memory
  • the medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods in various embodiments of the present application.
  • the above-mentioned readable storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)
  • Telephone Function (AREA)

Abstract

根据本申请提供的状态检测方法、耳机及计算机可读存储介质,获取耳机入耳部设置的第一传感器相应的第一检测值,以及获取耳机手持部设置的第二传感器相应的第二检测值;获取第一检测值与第二检测值之间的差异性评价指标;基于差异性评价指标确定耳机的实时使用状态。

Description

一种状态检测方法、耳机及计算机可读存储介质 技术领域
本申请涉及电子技术领域,尤其涉及一种状态检测方法、耳机及计算机可读存储介质。
背景技术
在日常生活与工作中,用户经常会使用耳机收听所连接的电子设备播放的音频,而在耳机使用过程中经常会涉及到耳机使用状态的检测,由此可以辅助控制例如音频的暂停与播放等。
目前,在常规的耳机使用状态检测方案中,通常是在耳机特定位置设置单个传感器,并基于单个传感器检测数据来确定耳机使用状态,由于检测数据较为单一,从而导致耳机使用状态检测结果的准确性欠佳。
技术问题
本申请实施例提供了一种状态检测方法、耳机及计算机可读存储介质,至少能够解决相关技术中进行耳机使用状态检测时的检测结果准确性欠佳的问题。
技术解决方案
本申请第一方面提供了一种状态检测方法,应用于耳机,所述耳机的入耳部设置有第一传感器,所述耳机的手持部设置有第二传感器,该状态检测方法包括:获取所述第一传感器相应的第一检测值,以及获取所述第二传感器相应的第二检测值;获取所述第一检测值与所述第二检测值之间的差异性评价指标;基于所述差异性评价指标确定所述耳机的实时使用状态。本申请第二方面提供了一种耳机,包括:存储器、处理器及总线,所述总线用于实现所述存储器、处理器之间的连接通信;所述处理器用于执行存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,实现上述本申请第一方面提供的状态检测方法中的各步骤。本申请第三方面提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时,实现上述本申请第一方面提供的状态检测方法中的各步骤。
有益效果
由上可见,根据本申请方案所提供的状态检测方法、耳机及计算机可读存储介质,获取耳机入耳部设置的第一传感器相应的第一检测值,以及获取耳机手持部设置的第二传感器相应的第二检测值;获取第一检测值与第二检测值之间的差异性评价指标;基于差异性评价指标确定耳机的实时使用状态。通过本申请方案的实施,将耳机不同位置所设置的传感器的检测值进行比较来确定耳机使用状态,由于检测数据来自于耳机不同位置所设置的多个传感器,从而可以避免采用单一传感器受客观因素影响所导致的检测数据存在偶然误差,有效提升了耳机使用状态检测的准确性。
附图说明
图1为本申请第一实施例提供的一种耳机向耳侧的结构示意图;
图2为本申请第一实施例提供的状态检测方法的基本流程示意图;
图3为本申请第一实施例提供的另一种耳机向耳侧的结构示意图;
图4为本申请第二实施例提供的状态检测方法的细化流程示意图;
图5为本申请第三实施例提供的状态检测方法的细化流程示意图;
图6为本申请第四实施例提供的耳机的功能模块示意图。
本发明的实施方式
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决相关技术中进行耳机使用状态检测时的检测结果准确性欠佳的问题,本申请第一实施例提供了一种状态检测方法,应用于耳机,耳机的入耳部设置有第一传感器,耳机的手持部设置有第二传感器,如图1所示为本实施例提供的一种耳机向耳侧的结构示意图,在本实施例中,向耳侧是指耳机处于已佩戴状态时朝向用户耳道的一侧,本实施例的入耳部也即耳机向耳侧与用户耳道接触的部位,也即图1中A所示的耳塞部位,而手持部则为用户手持耳机时与用户手指所接触的耳机部位,也即图1中B所示的耳机柄部位。应当理解的是,本实施例图1所示的耳机仅为其中一种可以适用的外观形态,在实际应用中,本实施例的状态检测方法还可以应用于头戴式耳机、挂耳式耳机等,在此不作唯一限定。
如图2为本实施例提供的状态检测方法的基本流程图,该状态检测方法包括以下的步骤:
步骤201、获取第一传感器相应的第一检测值,以及获取第二传感器相应的第二检测值。
作为一种实施方式,本实施例所采用的传感器可以为电容式传感器、温度传感器、压力传感器等,另外,耳机不同位置所设置的传感器类型应当相同。在实际应用中,在不同的耳机使用状态下,传感器的检测值会有所不同,其中,当用户与传感器所在位置接触时,传感器检测值增加。应当理解的是,在本实施例中,第一传感器和第二传感器的数量在本实施例中不作唯一限定,两者均可以设置为一个或多个。
步骤202、获取第一检测值与第二检测值之间的差异性评价指标。
作为一种实施方式,在本实施例中,对不同耳机部位所设置的传感器的检测数据进行差异性评价,以对用户是否接触耳机以及所接触的耳机部位进行感知。在实际应用中,差异性评价指标可以为检测值的取值差异,也即检测值差量,还可以为检测值取值变化的先后差异,也即第一检测值与第二检测值发生变化时的先后顺序。
步骤203、基于差异性评价指标确定耳机的实时使用状态。
作为一种实施方式,本实施例的实时使用状态可以包括但不限于已佩戴状态、手持状态、放置状态等。其中,已佩戴状态为耳机已经被用户佩戴于耳部的状态,手持状态为用户手持耳机的状态,放置状态则为用户未与耳机有任何接触的状态。
应当说明的是,在本实施例中,由于耳机使用状态的检测基于两处不同部位的传感器检测数据实现,从而可以对两处不同部位的用户接触行为进行感知,相对于现有技术中仅通过单个传感器对某个单一部位的用户接触行为进行感知,本实施例可以有效避免受客观因素影响所导致的偶然误差,显著提升了耳机使用状态检测的准确性。
在本实施例的一些实施方式中,本实施例差异性评价指标为检测值差量。相对应的,上述获取第一检测值与第二检测值之间的差异性评价指标的步骤,具体包括:将第一检测值减去第二检测值,得到检测值差量。
作为一种实施方式,检测值差量即两个检测值之间的差值。在实际应用中,可以通过检测值之差来对两个检测值进行差异性评价,本实施例以第一检测值为A、第二检测值为B为例,检测值差量则为(A-B)。
进一步地,在本实施例的一些实施方式中,上述基于差异性评价指标确定耳机的实时使用状态的具体实现方式包括但不限于如下三种:
方式一,当检测值差量的取值为正值时,将检测值差量与预设的第一阈值进行比较;若检测值差量大于第一阈值,则确定耳机的实时使用状态为已佩戴状态。
方式二,当检测值差量的取值为负值时,将检测值差量与预设的第二阈值进行比较;若检测值差量小于第二阈值,则确定耳机的实时使用状态为手持状态。
方式三,当检测值差量的取值为零时,确定耳机的实时使用状态为放置状态。
作为一种实施方式,在实际应用中,若仅凭检测值差量的取值正负来确定耳机使用状态,则会存在将用户偶然触碰耳机时的状态错误确认为已佩戴状态或手持状态,由此,本实施例设置有检测值差量比较阈值,考虑到用户偶然触碰耳机相应部位所产生的传感器检测值通常小于有意识的佩戴耳机和手持耳机,从而仅在检测值差量取值为正且相对较大时,确定耳机使用状态为已佩戴状态,以及在检测值差量取值为负且相对较小时,确定耳机使用状态为手持状态,以排除偶然误差的影响,提高耳机使用状态检测的准确性。
在本实施例中,当检测值差量为正值时,第一传感器的检测值大于第二传感器,说明第一传感器与用户发生接触,且该取值大于预设第一阈值,说明第一传感器与用户发生的接触是有意识的,在这种情况下通常为第一传感器与用户耳部发生接触而第二传感器未与用户接触,从而可以将耳机使用状态确定为已佩戴状态。同理,在检测值差量为负值且小于预设第二阈值的情况下,通常为第二传感器与用户手部发生接触而第一传感器未与用户接触,从而可以将耳机使用状态确定为手持状态。另外,当检测值差量为零时,说明用户使用耳机时的两个常用部位均未与用户接触,从而耳机此时处于放置状态。
更进一步地,在本实施例的一些实施方式中,手持状态包括正在佩戴状态和正在取出状态。相对应的,本实施例上述若检测值差量小于第二阈值,则确定耳机的实时使用状态为手持状态的步骤,具体包括:当检测值差量小于第二阈值时,获取耳机的最近一次历史使用状态;若最近一次历史使用状态为已佩戴状态,则确定耳机的实时使用状态为正在取出状态;若最近一次历史使用状态为放置状态,则确定耳机的实时使用状态为正在佩戴状态。
作为一种实施方式,在实际应用中,用户手持耳机的发生场景通常包括两种:用户正在佩戴耳机的过程中以及用户正在从耳部取出已佩戴的耳机的过程中。在本实施例中,对每次检测到耳机使用状态后,均对相应时刻的耳机使用状态进行记录,而在后续用户手持耳机时,可以参考上一时刻的历史使用状态来确定当前更细化的手持状态,其中,若此前用户已佩戴耳机,那么当前手持耳机应当为正在取出状态,若此前耳机被放置一旁,那么当前手持耳机应当为正在佩戴状态。
进一步地,在本实施例的另一些实施方式中,第一传感器的数量有多个。相对应的,上述将第一检测值减去第二检测值,得到检测值差量的步骤,具体包括:将与多个第一传感器相应的第一检测值分别减去第二检测值,得到多个检测值差量;上述基于差异性评价指标确定耳机的实时使用状态的步骤,具体包括:基于多个检测值差量确定耳机的实时使用状态。
作为一种实施方式,本实施例通过设置的多个第一传感器来同时采集多个第一检测值,在其中一种实现中,可以将多个第一检测值分别减去第二检测值,得到多个检测值差量,然后将多个检测值差量进行对比,若对比后确定多个检测值差量满足一致性标准,那么同一部位所设置的多个第一传感器采集的检测值相互一致,则说明当前检测行为有效,从而基于检测值差量所确定的实时使用状态的准确性更高,反之,若对比后确定多个检测值差量不满足一致性标准,也即多个第一传感器之间采集的检测值有所差别或差别较大,则说明当前检测行为有偶然误差因素存在,从而可以返回执行步骤S201,重新进行传感器数据采集。由此,可以有效保证耳机使用状态检测的准确性。
更进一步地,在本实施例的一些实施方式中,第一传感器的数量为两个,两个第一传感器设置于入耳部的相对侧。相对应的,上述基于多个检测值差量确定耳机的实时使用状态的步骤,包括:计算两个检测值差量之间的差值;若差值超出预设阈值范围,则确定耳机的实时使用状态为佩戴松动状态。
如图3所示为本实施例提供的另一种耳机向耳侧的结构示意图,图中A所示为入耳部,a和b为两个左右相对设置的第一传感器,当然在实际应用中两个第一传感器还可以上下相对设置、对角相对设置等。在本实施例中,考虑到用户佩戴耳机的过程中可能因为运动等而发生松动,而在耳机发生松动时,耳机入耳部通常有一侧与用户耳部的接触较为轻微,而另一侧则保持正常接触,由此,本实施例可以将耳机入耳部相对两侧的传感器的检测值进行比较,若两者的差值较大,则说明耳机入耳部相对两侧与用户耳部的接触行为有所不同,从而可以有效确定耳机当前处于佩戴松动状态。
在本实施例的另一些实施方式中,上述获取第一检测值与第二检测值之间的差异性评价指标的步骤,具体包括:计算预设检测时长内相邻的两个第一检测值之间的第一差值,以及相邻的两个第二检测值之间的第二差值;当基于第一差值确定第一检测值发生变化,以及基于第二差值确定第二检测值发生变化时,获取第一检测值与第二检测值发生变化时的先后顺序。其中,上述“相邻”指的是检测值对应的检测时间/检测顺序相邻。相对应的,上述基于差异性评价指标确定耳机的实时使用状态的步骤,具体包括:根据第一检测值与第二检测值发生变化时的先后顺序,确定耳机的实时使用状态。
作为一种实施方式,本实施例的差值为同一传感器相邻两次所获取的检测值之间的差值,当差值大于预设阈值时,说明传感器检测值发生变化,从而可以感知用户与该传感器的接触行为发生改变。本实施例考虑到用户使用耳机过程中与不同部位的接触行为会发生阶段性变化,例如当用户需要佩戴耳机时,用户首先会手持耳机柄佩戴耳机,则此刻耳机手持部的传感器数据从无到有,然后耳机的耳塞入耳,则耳机入耳部的传感器数据从无到有,再之后,用户松开耳机柄,则耳机手持部的传感器数据又从有到无。由此,通过感知传感器检测数据的多次变化也可以有效检测耳机使用状态。
进一步地,在本实施例的一些实施方式中,上述根据第一检测值与第二检测值发生变化时的先后顺序,确定耳机的实时使用状态的步骤,具体包括:当先后顺序依次为:第二检测值、第一检测值、第二检测值时,获取耳机的最近一次历史使用状态;若最近一次历史使用状态为已佩戴状态,则确定耳机的实时使用状态为放置状态;若最近一次历史使用状态为放置状态,则确定耳机的实时使用状态为已佩戴状态。
作为一种实施方式,在实际应用中,用户佩戴耳机的交互方式为:用户先接触耳机手持部,然后耳机入耳部与用户耳部接触,最后用户解除与手持部的接触;而用户从耳部取出耳机的交互方式为:用户先接触耳机手持部,然后耳机入耳部与用户耳部解除接触,最后用户解除与手持部的接触。虽然两种交互方式中的第二步有所不同,但是此处均体现为入耳部检测值发生变化,也即两种使用过程中的检测值变化顺序实质相同。由此,本实施例为了区分两种交互方式相对应的耳机使用状态,可以上一次的耳机使用状态为参考,若此前为已佩戴状态,那么当前检测值变化顺序是由于用户从耳部取出耳机的行为所导致,则确定当前耳机使用状态为放置状态,反之,若此前为放置状态,那么当前检测值变化顺序是由于用户佩戴耳机的行为所导致,则确定当前耳机使用状态为已佩戴状态。
进一步地,在本实施例的另一些实施方式中,在计算预设检测时长内相邻的两个第一检测值之间的第一差值,以及相邻的两个第二检测值之间的第二差值的步骤之后,还具体包括:当基于第一差值确定第一检测值发生变化,以及基于第二差值确定第二检测值未发生变化时,将第一差值与预设阈值进行比较;若第一差值小于阈值,则确定耳机的实时使用状态为佩戴松动状态;若第一差值大于阈值,则确定耳机的实时使用状态为异常掉落状态。
作为一种实施方式,在实际应用中,当耳机处于已佩戴状态之后,耳机手持部所设置的传感器检测值将不会发生变化,而耳机入耳部的传感器受佩戴松动或异常掉落的影响,其前后检测值则会发生变化。在本实例中,将前后两次传感器检测值的差值与预设阈值进行比较,以确定传感器检测值的变化幅度,当变化幅度较为轻微时,则说明耳机当前仅是发生了松动,而当变化幅度较大时,通常发生于耳机入耳部与用户耳部脱离,则说明耳机当前发生了异常掉落。
基于上述本申请实施例的技术方案,获取耳机入耳部设置的第一传感器相应的第一检测值,以及获取耳机手持部设置的第二传感器相应的第二检测值;获取第一检测值与第二检测值之间的差异性评价指标;基于差异性评价指标确定耳机的实时使用状态。通过本申请方案的实施,将耳机不同位置所设置的传感器的检测值进行比较来确定耳机使用状态,由于检测数据来自于耳机不同位置所设置的多个传感器,从而可以避免采用单一传感器受客观因素影响所导致的检测数据存在偶然误差,有效提升了耳机使用状态检测的准确性。
本申请第二实施例提供了一种细化的状态检测方法,如图4为本实施例提供的状态检测方法的细化流程图,该状态检测方法包括:
步骤401、获取耳机入耳部两个第一传感器相应的第一检测值,以及获取耳机手持部的单个第二传感器相应的第二检测值。
步骤402、将与两个第一传感器相应的第一检测值分别减去第二检测值,得到两个检测值差量。
步骤403、判断两个检测值差量的取值是否满足预设一致性标准。若是,则执行步骤404,若否,则返回步骤401。
步骤404、将任一检测值差量与预设阈值进行比较。
步骤405、基于预设的比较结果与使用状态的映射关系,确定耳机的实时使用状态。
在本实施例中,可以将两个第一检测值分别减去第二检测值差,得到两个检测值差量,然后将两个检测值差量进行对比,若对比后确定两个检测值差量满足一致性标准,那么同一部位所设置的两个第一传感器采集的检测值相互一致,则说明当前检测行为有效,从而基于检测值差量所确定的实时使用状态的准确性更高,其中,一致性标准为各个检测值差量之间的区别,若区别较小或无区别,则满足一致性标准,若区别较大或有区别,不满足一致性标准。
另外,本实施例与检测值差量进行比较的阈值可以取值为0,当比较结果为大于0时,耳机的实时使用状态为已佩戴状态;当比较结果为小于0时,耳机的实时使用状态为手持状态;当比较结果为等于0时,耳机的实时使用状态为放置状态。
应当理解的是,本实施例中各步骤的序号的大小并不意味着步骤执行顺序的先后,各步骤的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成唯一限定。
基于上述本申请实施例的技术方案,将耳机不同位置所设置的传感器的检测值进行比较来确定耳机使用状态,由于检测数据来自于耳机不同位置所设置的多个传感器,从而可以避免采用单一传感器受客观因素影响所导致的检测数据存在偶然误差有效提升了耳机使用状态检测的准确性。
本申请第三实施例提供了一种细化的状态检测方法,如图5为本实施例提供的状态检测方法的细化流程图,该状态检测方法包括:
步骤501、获取第一传感器相应的第一检测值,以及获取第二传感器相应的第二检测值。
步骤502、计算预设检测时长内相邻的两个第一检测值之间的第一差值,以及相邻的两个第二检测值之间的第二差值。
步骤503、当基于第一差值确定第一检测值发生变化,以及基于第二差值确定第二检测值发生变化时,获取第一检测值与第二检测值发生变化时的先后顺序。
步骤504、当先后顺序依次为:第二检测值、第一检测值、第二检测值时,获取耳机的最近一次历史使用状态。
步骤505、基于变化顺序、历史使用状态与实时使用状态之间预设的映射关系,确定耳机的实时使用状态。
在本实施例中,当同一传感器相邻两次所获取的检测值的差值大于预设阈值时,说明传感器检测值发生变化,从而可以感知用户与该传感器的接触行为发生改变。
在实际应用中,当用户佩戴耳机和用户从耳部取出耳机时,两种情况下的传感器检测值变化顺序实质相同。本实施例为了区分两种交互方式相对应的耳机使用状态,可以上一次的耳机使用状态为参考,若此前为已佩戴状态,则确定当前耳机使用状态为放置状态,反之,若此前为放置状态,那么则确定当前耳机使用状态为已佩戴状态。
应当理解的是,本实施例中各步骤的序号的大小并不意味着步骤执行顺序的先后,各步骤的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成唯一限定。
基于上述本申请实施例的技术方案,将耳机不同位置所设置的传感器的检测值进行比较来确定耳机使用状态,由于检测数据来自于耳机不同位置所设置的多个传感器,从而可以避免采用单一传感器受客观因素影响所导致的检测数据存在偶然误差有效提升了耳机使用状态检测的准确性。
请参阅图6,图6为本申请第四实施例提供的一种耳机。该耳机可用于实现前述任一实施例中的状态检测方法。如图6所示,该耳机主要包括:
存储器601、处理器602、总线603及存储在存储器601上并可在处理器602上运行的计算机程序,存储器601和处理器602通过总线603连接。处理器602执行该计算机程序时,实现前述实施例中的状态检测方法。其中,处理器的数量可以是一个或多个。
存储器601可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器601用于存储可执行程序代码,处理器602与存储器601耦合。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图6所示实施例中的存储器。
该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述实施例中的状态检测方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本申请所提供的状态检测方法、耳机及计算机可读存储介质的描述,对于本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种状态检测方法,应用于耳机,所述耳机的入耳部设置有第一传感器,所述耳机的手持部设置有第二传感器,其特征在于,包括:
    获取所述第一传感器相应的第一检测值,以及获取所述第二传感器相应的第二检测值;
    获取所述第一检测值与所述第二检测值之间的差异性评价指标;
    基于所述差异性评价指标确定所述耳机的实时使用状态。
  2. 根据权利要求1所述的状态检测方法,其特征在于,所述差异性评价指标为检测值差量;
    所述获取所述第一检测值与所述第二检测值之间的差异性评价指标,包括:
    将所述第一检测值减去所述第二检测值,得到所述检测值差量。
  3. 根据权利要求2所述的状态检测方法,其特征在于,所述基于所述差异性评价指标确定所述耳机的实时使用状态,包括:
    当所述检测值差量的取值为正值时,将所述检测值差量与预设的第一阈值进行比较;
    若所述检测值差量大于所述第一阈值,则确定所述耳机的实时使用状态为已佩戴状态;
    或,当所述检测值差量的取值为负值时,将所述检测值差量与预设的第二阈值进行比较;
    若所述检测值差量小于所述第二阈值,则确定所述耳机的实时使用状态为手持状态;
    或,当所述检测值差量的取值为零时,确定所述耳机的实时使用状态为放置状态。
  4. 根据权利要求3所述的状态检测方法,其特征在于,所述手持状态包括正在佩戴状态和正在取出状态;
    所述若所述检测值差量小于所述第二阈值,则确定所述耳机的实时使用状态为手持状态,包括:
    当所述检测值差量小于所述第二阈值时,获取所述耳机的最近一次历史使用状态;
    若所述最近一次历史使用状态为所述已佩戴状态,则确定所述耳机的实时使用状态为所述正在取出状态;
    若所述最近一次历史使用状态为所述放置状态,则确定所述耳机的实时使用状态为所述正在佩戴状态。
  5. 根据权利要求2所述的状态检测方法,其特征在于,所述第一传感器的数量有多个;
    所述将所述第一检测值减去所述第二检测值,得到检测值差量,包括:
    将与多个所述第一传感器相应的所述第一检测值分别减去所述第二检测值,得到多个检测值差量;
    所述基于所述差异性评价指标确定所述耳机的实时使用状态,包括:
    基于所述多个检测值差量确定所述耳机的实时使用状态。
  6. 根据权利要求5所述的状态检测方法,其特征在于,所述第一传感器的数量为两个,两个所述第一传感器设置于所述入耳部的相对侧;
    所述基于所述多个检测值差量确定所述耳机的实时使用状态,包括:
    计算两个所述检测值差量之间的差值;
    若所述差值超出预设阈值范围,则确定所述耳机的实时使用状态为佩戴松动状态。
  7. 根据权利要求1所述的状态检测方法,其特征在于,所述获取所述第一检测值与所述第二检测值之间的差异性评价指标,包括:
    计算预设检测时长内相邻的两个所述第一检测值之间的第一差值,以及相邻的两个所述第二检测值之间的第二差值;
    当基于所述第一差值确定所述第一检测值发生变化,以及基于所述第二差值确定所述第二检测值发生变化时,获取所述第一检测值与所述第二检测值发生变化时的先后顺序;
    所述基于所述差异性评价指标确定所述耳机的实时使用状态,包括:
    根据所述第一检测值与所述第二检测值发生变化时的先后顺序,确定所述耳机的实时使用状态。
  8. 根据权利要求7所述的状态检测方法,其特征在于,所述根据所述第一检测值与所述第二检测值发生变化时的先后顺序,确定所述耳机的实时使用状态,包括:
    当所述先后顺序依次为:所述第二检测值、所述第一检测值、所述第二检测值时,获取所述耳机的最近一次历史使用状态;
    若所述最近一次历史使用状态为所述已佩戴状态,则确定所述耳机的实时使用状态为放置状态;
    若所述最近一次历史使用状态为所述放置状态,则确定所述耳机的实时使用状态为已佩戴状态。
  9. 根据权利要求7所述的状态检测方法,其特征在于,所述计算预设检测时长内相邻的两个所述第一检测值之间的第一差值,以及相邻的两个所述第二检测值之间的第二差值之后,还包括:
    当基于所述第一差值确定所述第一检测值发生变化,以及基于所述第二差值确定所述第二检测值未发生变化时,将所述第一差值与预设阈值进行比较;
    若所述第一差值小于所述阈值,则确定所述耳机的实时使用状态为佩戴松动状态;
    若所述第一差值大于所述阈值,则确定所述耳机的实时使用状态为异常掉落状态。
  10. 一种耳机,其特征在于,包括:存储器、处理器及总线;
    所述总线用于实现所述存储器、处理器之间的连接通信;
    所述处理器用于执行存储在所述存储器上的计算机程序;
    所述处理器执行所述计算机程序时,实现权利要求1至9中任意一项所述方法中的步骤。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1至9中的任意一项所述方法中的步骤。
PCT/CN2022/101221 2021-06-29 2022-06-24 一种状态检测方法、耳机及计算机可读存储介质 WO2023274080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110728165.0A CN113473292B (zh) 2021-06-29 2021-06-29 一种状态检测方法、耳机及计算机可读存储介质
CN202110728165.0 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023274080A1 true WO2023274080A1 (zh) 2023-01-05

Family

ID=77873726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101221 WO2023274080A1 (zh) 2021-06-29 2022-06-24 一种状态检测方法、耳机及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113473292B (zh)
WO (1) WO2023274080A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473292B (zh) * 2021-06-29 2024-02-06 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质
CN114745651B (zh) * 2022-02-28 2023-04-25 潍坊歌尔电子有限公司 耳机状态检测方法、耳机以及计算机可读存储介质
CN114630242B (zh) * 2022-03-23 2024-04-09 歌尔股份有限公司 耳机佩戴检测方法、耳机及存储介质
CN115278431A (zh) * 2022-06-24 2022-11-01 维沃移动通信有限公司 状态确定方法和装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810788A (zh) * 2018-06-12 2018-11-13 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
EP3499910A1 (en) * 2017-12-14 2019-06-19 Vestel Elektronik Sanayi ve Ticaret A.S. Device and method for detecting removal of an in-the-ear headphone from a user's ear
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置
CN113473286A (zh) * 2021-06-23 2021-10-01 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质
CN113473292A (zh) * 2021-06-29 2021-10-01 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291975B2 (en) * 2016-09-06 2019-05-14 Apple Inc. Wireless ear buds
CN109792573B (zh) * 2018-12-26 2020-11-03 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、可穿戴设备及存储介质
CN110677765A (zh) * 2019-10-30 2020-01-10 歌尔股份有限公司 一种头戴式耳机的佩戴控制方法、装置及系统
CN111770407A (zh) * 2020-06-30 2020-10-13 歌尔科技有限公司 耳机状态检测方法、装置、耳机及可读存储介质
CN112492439B (zh) * 2020-11-17 2023-01-20 上海闻泰信息技术有限公司 耳机掉落的提醒方法、装置、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499910A1 (en) * 2017-12-14 2019-06-19 Vestel Elektronik Sanayi ve Ticaret A.S. Device and method for detecting removal of an in-the-ear headphone from a user's ear
CN108810788A (zh) * 2018-06-12 2018-11-13 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置
CN113473286A (zh) * 2021-06-23 2021-10-01 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质
CN113473292A (zh) * 2021-06-29 2021-10-01 芯海科技(深圳)股份有限公司 一种状态检测方法、耳机及计算机可读存储介质

Also Published As

Publication number Publication date
CN113473292A (zh) 2021-10-01
CN113473292B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2023274080A1 (zh) 一种状态检测方法、耳机及计算机可读存储介质
WO2020155102A1 (zh) 佩戴检测装置、方法和耳机
WO2020061761A1 (zh) 一种耳机及一种实现佩戴检测和触控操作的方法
US10721550B2 (en) Detection of headphone rotation
US11632621B2 (en) Method for controlling volume of wireless headset, and computer-readable storage medium
WO2019100378A1 (zh) 耳机、检测耳机的佩戴状态的方法和电子设备
TWI514256B (zh) 音頻播放裝置及其控制方法
WO2022000998A1 (zh) 耳机状态检测方法、装置、耳机及可读存储介质
WO2021016899A1 (zh) 一种无线耳机控制方法、装置及无线耳机和存储介质
WO2020108059A1 (zh) 一种耳机及其佩戴检测装置
JP2020503713A (ja) 聴覚保護方法、装置およびシステム
WO2020019820A1 (zh) 麦克风堵孔检测方法及相关产品
CN109257674B (zh) 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN107205187A (zh) 一种基于耳机控制音乐播放的方法、装置及终端设备
US10582290B2 (en) Earpiece with tap functionality
CN103974158A (zh) 音频输出装置
CN111464906A (zh) 一种头戴耳机及其左右声道切换装置、方法
WO2023178869A1 (zh) 耳机佩戴检测方法、耳机及存储介质
CN113473286A (zh) 一种状态检测方法、耳机及计算机可读存储介质
CN112040359A (zh) 耳机控制方法及耳机
CN109104658B (zh) 一种无线耳机的触摸识别方法、装置及无线耳机
CN112492439B (zh) 耳机掉落的提醒方法、装置、电子设备和存储介质
CN113709617A (zh) 无线耳机的控制方法、装置、无线耳机及存储介质
WO2022143268A1 (zh) 位置识别方法和耳机设备
CN108632713B (zh) 音量控制方法、装置、存储介质及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE