WO2023273888A1 - Image stitching method and apparatus, and computer device and storage medium - Google Patents

Image stitching method and apparatus, and computer device and storage medium Download PDF

Info

Publication number
WO2023273888A1
WO2023273888A1 PCT/CN2022/098918 CN2022098918W WO2023273888A1 WO 2023273888 A1 WO2023273888 A1 WO 2023273888A1 CN 2022098918 W CN2022098918 W CN 2022098918W WO 2023273888 A1 WO2023273888 A1 WO 2023273888A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical design
design parameter
value
group
target
Prior art date
Application number
PCT/CN2022/098918
Other languages
French (fr)
Chinese (zh)
Inventor
屈坤
Original Assignee
影石创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 影石创新科技股份有限公司 filed Critical 影石创新科技股份有限公司
Publication of WO2023273888A1 publication Critical patent/WO2023273888A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing

Definitions

  • the present application relates to the technical field of image processing, in particular to an image mosaic method, device, computer equipment and storage medium.
  • an additional mirror is usually added to the camera lens. Due to deviations in the accuracy of the hardware processing technology of the additional mirror, the lens processing technology mainly includes: the thickness of the lens and the curvature of the lens, etc. Therefore, in order to ensure that the deviation is within the specified range, it is usually necessary to test the additional mirror after the processing of the additional mirror is completed, but At present, there is no non-destructive testing for the deviation of the hardware processing technology of the additional mirror, and the existing detection method is used to detect the additional mirror, but the deviation of the processing technology of the additional mirror is larger. The above-mentioned reasons lead to poor stitching effect when shooting panoramic images with a camera equipped with an add-on mirror.
  • An image mosaic method comprising:
  • the second optical design parameter set determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
  • the optical design parameter group determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera equipped with a converter lens is used to shoot the same scene in two different orientations.
  • the first optical design parameter group includes a set of values for each of the m optical design parameters, and m is not less than 1 and not greater than the total number of optical design parameters in the first optical design parameter group. number of items;
  • determine the second optical design parameter set including:
  • a second optical design parameter group is determined.
  • the value set of each first target optical design parameter is obtained after adjustment according to the initial value of each first target optical design parameter; correspondingly, according to each first target optical design
  • the value interval of the parameter determines the second optical design parameter group, including:
  • the data source when determining the value in each sub-interval is the value set of each first target optical design parameter;
  • m is less than the total number of optical design parameters in the first optical design parameter group, then according to the value corresponding to each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group, Construct a plurality of third optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then construct a plurality of third optical designs according to the value corresponding to each first target optical design parameter parameter group;
  • each third optical design parameter group Calculating the parallax corresponding to each third optical design parameter group, and determining the first minimum value of all the calculated parallaxes, if the first minimum value does not meet the first preset condition, each first target optical design
  • the value interval of the parameter is updated to the sub-interval corresponding to the determined value of each first target optical design parameter in the third optical design parameter group corresponding to the first minimum value, repeating the above division of sub-intervals, determining the value, and constructing the third
  • the process of optical design parameter group, calculating parallax, determining the first minimum value and updating the value interval until the first minimum value obtained meets the first preset condition, and the first minimum value that will satisfy the first preset condition corresponds to
  • the third optical design parameter set serves as the second optical design parameter set.
  • n is greater than 1, and for the n first target optical design parameters among the m first target optical design parameters, each of the n first target optical design parameters is equal to as the second target optical design parameter;
  • each second target optical design parameter on parallax is greater than that of each first target optical design parameter, n is not less than 1 and less than m, and the historical values determined by each second target optical design parameter constitute each The value set of the second target optical design parameter, the value range of each second target optical design parameter is determined by the value set of each second target optical design parameter;
  • the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images, including:
  • the data source when determining the value in each sub-interval is the value set of each second target optical design parameter;
  • each first target optical design parameter in the second optical design parameter group is correspondingly determined value and the initial value of each other optical design parameter in the second optical design parameter group to construct a plurality of fourth optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then according to Each second target optical design parameter corresponds to a determined value and each first target optical design parameter in the second optical design parameter group corresponds to a determined value to construct a plurality of fourth optical design parameter groups;
  • each second target optical design Calculating the parallax corresponding to each fourth optical design parameter group, and determining the second minimum value of all the calculated parallaxes, if the second minimum value does not meet the second preset condition, each second target optical design
  • the value interval of the parameter is updated to the sub-interval corresponding to the determined value of each second target optical design parameter in the fourth optical design parameter group corresponding to the second minimum value, repeating the above division of sub-intervals, determining the value, and constructing the fourth
  • the fourth optical design parameter group is used as an optical design parameter group for the camera equipped with an additional mirror when stitching panoramic images.
  • the first optical design parameter set includes a value set of each optical design parameter; correspondingly, according to the first optical design parameter set, the second optical design parameter set is determined, including:
  • each optical design parameter determines the candidate value of each optical design parameter one by one, and form the second optical design parameter group by the candidate value of each optical design parameter; wherein, the candidate value of each optical design parameter is determined based on the optical design parameters for which candidate values have been determined.
  • the value range of each optical design parameter is determined by the value set of each target optical design parameter, the first optical design parameter set is formed by the optical design parameters whose candidate values have been determined, and the first optical design parameter set is formed by the undetermined candidate values.
  • the optical design parameters of the value constitute the second optical design parameter set, the total number of optical design parameters in the first optical design parameter set is not less than 0 and less than the total number of optical design parameters in the first optical design parameter group;
  • the candidate value of each optical design parameter is determined one by one, including:
  • the value interval of P is divided into multiple subintervals, and a value is determined in each subinterval of P; wherein, in each subinterval of P
  • the data source when determining the value is the value set of P, and the first preset condition includes the sub-preset condition corresponding to P;
  • the total number of optical design parameters in the first optical design parameter set is greater than 0, then according to the candidate value of each optical design parameter in the first optical design parameter set, each other except P in the second optical design parameter set The initial value of the optical design parameter and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups. If the total number of optical design parameters in the first optical design parameter set is 0, then according to the second optical design parameter set In addition to the initial value of each optical design parameter other than P and the correspondingly determined value of P, a plurality of fifth optical design parameter groups are constructed;
  • each of the t optical design parameters in the second optical design parameter group is used as the third target optical design parameter;
  • each third target optical design parameter on parallax is greater than that of other optical design parameters in the second optical design parameter group, and t is not less than 1 and less than the total number of optical design parameters in the second optical design parameter group
  • the historical value determined by each third target optical design parameter constitutes the value set of each third target optical design parameter, and each third target optical design is determined by the value set of each third target optical design parameter The value range of the parameter;
  • the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images, including:
  • the data source for determining the value in each sub-interval is the value set of each third target optical design parameter;
  • each third target optical design Calculating the parallax corresponding to each sixth optical design parameter group, and determining the fourth minimum value of all the calculated parallaxes, if the fourth minimum value does not meet the third preset condition, each third target optical design
  • the value interval of the parameter is updated to the sub-interval corresponding to the value corresponding to the determined value of each third target optical design parameter in the sixth optical design parameter group corresponding to the fourth minimum value, and the above-mentioned division of sub-intervals, determination of the value, and construction of the sixth optical design parameter group are repeated.
  • the process of optical design parameter group, calculation of parallax, determination of the fourth minimum value, and update of the value range until the determined fourth minimum value satisfies the third preset condition, and the fourth minimum value corresponding to the third preset condition will satisfy the
  • the sixth optical design parameter group is used as an optical design parameter group for the camera equipped with an additional mirror when stitching panoramic images.
  • An image stitching device comprising:
  • An acquisition module configured to acquire a first optical design parameter set, where at least one optical design parameter is included in the first optical design parameter set, and the first optical design parameter set is used for panorama stitching;
  • the first determining module is configured to determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set is the same as
  • the optical design parameters contained in the first optical design parameter group are of the same type and number of items;
  • the second determination module is used to determine the optical design parameter group adapted to the camera with the additional mirror when stitching panoramic images according to the second optical design parameter group;
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • a computer device including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the second optical design parameter set determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
  • the optical design parameter group determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the second optical design parameter set determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
  • the optical design parameter group determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • the image stitching method, device, computer equipment, and storage medium described above obtain the first optical design parameter set, determine the second optical design parameter set according to the first optical design parameter set, and determine the additional optical design parameter set according to the second optical design parameter set.
  • the desired optical design parameter set is provided.
  • the parallax calculated by the optical design parameter group determined in this way satisfies the preset conditions, so that the stitching effect of the captured panoramic images is better, and then it solves the reason why the accuracy of the hardware processing technology of the additional mirror is biased.
  • Fig. 1 is a schematic flow chart of an image stitching method in an embodiment
  • Fig. 2 is a schematic flow chart of an image stitching method in another embodiment
  • Fig. 3 is a schematic flow chart of an image stitching method in another embodiment
  • Fig. 4 is a schematic flow chart of an image stitching method in another embodiment
  • Fig. 5 is a schematic flow chart of an image stitching method in another embodiment
  • FIG. 6 is a schematic flow chart of an image stitching method in another embodiment
  • Fig. 7 is a structural block diagram of an image stitching device in an embodiment
  • Figure 8 is a diagram of the internal structure of a computer device in one embodiment.
  • the lens processing technology mainly includes: the thickness of the lens and the curvature of the lens, etc. Therefore, in order to ensure that the deviation is within the specified range, it is usually necessary to test the additional mirror after the processing of the additional mirror is completed, but At present, there is no non-destructive testing for the deviation of the hardware processing technology of the additional mirror, and the existing detection method is used to detect the additional mirror, but the deviation of the processing technology of the additional mirror is larger. The above-mentioned reasons lead to poor stitching effect when shooting panoramic images with a camera equipped with an add-on mirror.
  • the embodiment of the present invention provides an image mosaic method, which can be applied to a server, and the server can be realized by an independent server or a server cluster composed of multiple servers. It should be noted that the quantities such as “multiple” mentioned in various embodiments of the present application all refer to the quantity of "at least two", for example, “multiple” refers to "at least two”.
  • the image stitching method in the embodiment of the present invention is mainly applied to the application scene of shooting panoramic images, mainly by determining the optical design parameter group adapted by the camera system with additional mirrors when stitching panoramic images, effectively reducing the parallax of panoramic images , to enhance the stitching effect of the panoramic image, thereby improving the imaging experience of the panoramic image.
  • an image mosaic method is provided.
  • the method is applied to a server and the execution subject is a server as an example for illustration.
  • the method includes the following steps:
  • the optical design parameter group determines the optical design parameter group that the camera equipped with an additional mirror is suitable for stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • the first optical design parameter group may include one optical design parameter, or may include multiple optical design parameters, which is not specifically limited in this embodiment of the present invention.
  • each optical design parameter in the first optical design parameter group may be a coefficient, and the coefficient may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional mirror distortion curve drift coefficient.
  • “each optical design parameter may be a coefficient” means that each optical design parameter is a coefficient rather than composed of multiple coefficients.
  • the optical design parameter when the first optical design parameter group includes an optical design parameter, the optical design parameter may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional mirror distortion curve drift coefficient.
  • each optical design parameter in the multiple optical design parameters may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional lens distortion curve drift coefficient.
  • the first optical design parameter group includes optical design parameters P1-P3, and the types of P1-P3 are respectively: P1 is the lens optical parameter curve fitting 4th order polynomial coefficient, P2 is also the lens Optical parameter curve fitting 4th order polynomial coefficient, P3 is the additional mirror distortion curve drift coefficient, P4 is also an optical design parameter, and the type of P4 optical design parameter is the additional mirror distortion curve drift coefficient" as an example, for "Second The optical design parameter group is consistent with the type and number of items of the optical design parameters contained in the first optical design parameter group" to explain: Correspondingly, the second optical design parameter group also includes optical design parameters P1-P3, the first The only difference between the optical design parameter set and the second optical design parameter set is that the values of P1, P2 and P3 are different.
  • the first optical design parameter set includes the initial value of each optical design parameter; correspondingly, the embodiment of the present invention does not acquire the second optical design parameter set for calculating parallax according to the first optical design parameter set
  • the method is specifically defined, including but not limited to: adjusting the initial value of the y-item optical design parameter in the first optical design parameter group according to the tolerance variable, constructing the seventh optical design parameter group, and calculating the result of the seventh optical design parameter group
  • For the corresponding parallax repeat the process of adjusting the initial value, constructing the seventh optical design parameter group, and calculating the parallax until the calculated parallax satisfies the first preset condition, and y is not less than 1 and not greater than the optical value in the first optical design parameter group.
  • the seventh optical design parameter group corresponding to the parallax satisfying the first preset condition is used as the
  • the first optical design parameter group including 6 optical design parameters, 5 of which are 4th-order polynomial coefficients P1-P5 of lens optical parameter curve fitting, and 1 item is the drift coefficient P6 of the additional mirror distortion curve. variable, to explain the specific process of adjusting the initial value of the y-item optical design parameter in the first optical design parameter group:
  • the initial value of the optical design parameters P1-P6 can be obtained in the following way: the curvature of the additional mirror used in the actual shooting process Input the data such as the thickness of the additional mirror, the thickness of the additional mirror, and the air gap of the additional mirror into the camera with the additional mirror.
  • the camera with the additional mirror is based on the calculation results of the actual image height of the traced small-angle light and the actual image height of the calculated field of view, and the test field of view.
  • the tolerance variable can be the tolerance variable corresponding to the curvature of the lens of the additional mirror, the thickness of the lens of the additional mirror, and the air gap.
  • the values in the second column to the seventh column in the second row of Table 1 correspond to the initial values of P1-P6 respectively, and the values in the third row to the twelfth row of Table 1 are: change the tolerance variable, according to the changed tolerance variable, The value determined by adjusting the initial value of P1-P6.
  • the values in the second column to the seventh column in the third row are: add 0.01 to the value of the tolerance variable, that is, adjust the tolerance variable to 0.97.
  • the 6 optical design parameters in the first optical design parameter group The seventh optical design parameter set constructed by first adjusting the initial value of .
  • the values in the second column to the seventh column in the twelfth row are: the adjustment tolerance variable is 1.06, and the initial value of the six optical design parameters in the first optical design parameter group is adjusted for the tenth time according to the tolerance variable.
  • a seventh set of optical design parameters Since the parallax calculated by the seventh optical design parameter set constructed by the tenth adjustment satisfies the first preset condition, the above-mentioned process of adjusting the initial value according to the tolerance variable is completed, and the seventh optical design parameter set constructed by the tenth adjustment is The optical design parameter set serves as the second optical design parameter set.
  • the first optical design parameter set includes the value set of each optical design parameter, and correspondingly, according to the first optical design parameter set, the second optical design parameter set for calculating parallax is obtained, which may also include :
  • each optical design parameter as the fourth target optical design parameter, determining a value in the value set of each fourth target optical design parameter, and constructing the fourth target optical design parameter according to the corresponding determined value of each fourth target optical design parameter
  • Eight optical design parameter groups calculate the parallax corresponding to the eighth optical design parameter group, if the parallax does not meet the first preset condition, repeat the process of determining the value, constructing the eighth optical design parameter group and calculating the parallax until the calculated The parallax satisfies the first preset condition, and the eighth optical design parameter group corresponding to the parallax that satisfies the first preset condition is used as the second optical design parameter group.
  • the first optical design parameter group includes 6 optical design parameters, 5 of which are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 is the additional mirror distortion curve drift coefficient P6, constructing the eighth optical
  • the process of designing a parameter set can be:
  • the determined values may be randomly selected, and the above-mentioned process of determining the values of P1-P6 may be performed simultaneously, or sequentially in the manner shown above, which is not specifically limited in this embodiment of the present invention.
  • the display form of the panorama stitching effect may include: the imaging experience of the panorama image, the parallax of the panorama image, and the like.
  • the better the panoramic stitching effect is the better the imaging experience of the corresponding panoramic image is and the smaller the parallax of the panoramic image is.
  • the image mosaic method provided by the embodiment of the present invention obtains the first optical design parameter group, determines the second optical design parameter group according to the first optical design parameter group, and determines the camera with the additional mirror on the basis of the second optical design parameter group.
  • the set of optical design parameters to be adapted when stitching panoramic images. Because, when the camera is equipped with different add-on mirrors to shoot panoramic images, the written optical design parameters are no longer fixed, but based on the camera with add-on mirrors, so as to determine the actual parameters of the camera with different add-on mirrors when shooting panoramic images.
  • the desired optical design parameter set is not limited to determine the actual parameters of the camera with different add-on mirrors when shooting panoramic images.
  • the parallax calculated by the optical design parameter group determined in this way satisfies the preset conditions, so that the stitching effect of the captured panoramic images is better, and then it solves the reason why the accuracy of the hardware processing technology of the additional mirror is biased.
  • the first optical design parameter group includes a set of values for each of the m optical design parameters, and m is not less than 1 and not greater than the first optical design parameter group The total number of optical design parameters in;
  • determine the second optical design parameter group including:
  • the value range of each first target optical design parameter is determined, including:
  • the value range of each first target optical design parameter is determined according to the maximum and minimum values of each first target optical design parameter.
  • P1 is the first target optical design parameter
  • the value set of P1 is shown in the first column in Table 1. It can be seen that in the value set of P1, the maximum value of P1 is -1.403, and the minimum value is -1.428, corresponding to Therefore, according to the fact that the maximum value of P1 is -1.403 and the minimum value is -1.428, the determined value range of P1 can be shown in Table 2 below:
  • the first optical design parameter group also includes the initial value of each optical design parameter, and accordingly, according to the value range of each first target optical design parameter, the second optical design parameter group is determined, including:
  • a numerical value is determined in the value range of each first target optical design parameter; wherein, the data source for determining the value in the value range of each first target optical design parameter is the value of each first target optical design parameter Take a value set; and construct a ninth optical design parameter group according to the correspondingly determined values of each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group; calculate the ninth optical design parameter If the parallax corresponding to the group does not meet the first preset condition, repeat the process of determining the value, constructing the ninth optical design parameter group, and calculating the parallax until the calculated parallax satisfies the first preset condition, and will satisfy the second A ninth optical design parameter group corresponding to a parallax of a preset condition is used as a second optical design parameter group.
  • the first optical design parameter group includes 6 optical design parameters, among which 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional lens distortion curve drift coefficient P6, and the first optical
  • the design parameter group includes the value sets of P1 and P3 and the initial values of P1-P6; a value is determined in the value range of P1, a value is determined in the value range of P3, and according to the determined two values and
  • the initial values of P2, P4, P5, and P6 are used to construct the ninth optical design parameter group, and calculate the parallax corresponding to the ninth optical design parameter group.
  • the optical design parameter set and the process of calculating parallax until the calculated parallax satisfies the first preset condition, and the ninth optical design parameter set corresponding to the parallax satisfying the first preset condition is used as the second optical design parameter set. It should be noted that determining a value in the value range of P1 may be randomly selected, and determining a value in the value range of P3 may also be randomly selected, which is not specifically limited in this embodiment of the present invention.
  • the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to arrange and combine all the values in the value range of each first target optical design parameter, Thereby forming a plurality of ninth optical design parameter groups; instead, a numerical value is determined in the value range of each first target optical design parameter, and according to the determined numerical value and other optical design parameters in the first optical design parameter group
  • the initial value is to construct the ninth optical design parameter group, the number of the ninth optical design parameter group constructed in this way is less than that of the ninth optical design parameter group constructed by traversal, so as to participate in the calculation of the ninth optical design parameter group of parallax
  • the second optical design parameter set can be quickly determined, that is, the optical design parameter set that the camera equipped with an additional mirror is adapted to when stitching panoramic images can be quickly determined.
  • the value set of each first target optical design parameter is obtained after adjustment according to the initial value of each first target optical design parameter; correspondingly, as shown in 3, according to the value interval of each first target optical design parameter, determine the second optical design parameter group, including:
  • each first target optical design parameter Divides the value interval of each first target optical design parameter into a plurality of sub-intervals, and determine a value in each sub-interval of each first target optical design parameter; wherein, in each first target optical design parameter
  • the data source for determining the value in each sub-interval of the parameter is the value set of each first target optical design parameter;
  • m is less than the total number of optical design parameters in the first optical design parameter group, then according to the value corresponding to each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group value, constructing a plurality of third optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then constructing a plurality of third Optical design parameter set;
  • the corresponding third optical design parameter set serves as the second optical design parameter set.
  • each first target optical design parameter is adjusted according to the initial value of each first target optical design parameter
  • the initial value of each first target optical design parameter can be adjusted based on the tolerance variables corresponding to the curvature of the add-on mirror sheet, the thickness of the add-on mirror sheet, and the air gap.
  • the values in the second column in Table 1 correspond to the value set of one of the first target optical design parameters.
  • Table 1 only the value of the tolerance variable is adjusted to 1.06, in order to make each first target optical design
  • the parameter obtains more value sets, and the tolerance variable can be adjusted to 100 or even higher; the embodiment of the present invention does not specifically limit this.
  • the value interval of each first target optical design parameter is divided into a plurality of sub-intervals, wherein, the number of divisions of the sub-intervals can be two or multiple; the number of divisions of the sub-intervals
  • the number of divisions of the sub-intervals can be two or multiple; the number of divisions of the sub-intervals
  • the first optical design parameter group includes 6 optical design parameters, of which 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional mirror distortion curve
  • the drift coefficient P6 explains the specific process of constructing multiple third optical design parameter groups:
  • m is 1, and the multiple sub-intervals are 2; wherein, m is 1, that is, the first optical design parameter group includes a value set of an optical design parameter, and the optical design parameter can be one of P1-P6 Any optical design parameter, the embodiment of the present invention does not specifically limit it, including but not limited to: the optical design parameter is P1, that is, P1 is used as the first target optical design parameter, at this time, m is less than the first optical design parameter The total number of items of optical design parameters in the parameter group.
  • the specific process of constructing multiple third optical design parameter groups may be as follows: divide the value range of P1 into two sub-ranges, randomly select a value in one of the sub-ranges of P1, and according to the correspondingly selected value of P1 and
  • the initial values corresponding to P2-P6 constitute a third optical design parameter group, a value is randomly selected in another sub-interval of P1, and another third optical design parameter group is formed according to the selected value corresponding to P1 and the initial value corresponding to P2-P6
  • the optical design parameter groups constitute two third optical design parameter groups in total.
  • m is 2, and multiple sub-intervals are 2, wherein m is 2, that is, the first optical design parameter group includes a value set of each optical design parameter in the 2 optical design parameters, and the 2 optical design parameters
  • P1-P6 can be any two optical design parameters in P1-P6, which is not specifically limited in the embodiment of the present invention, including but not limited to: these two optical design parameters are P1 and P2, that is, the two optical design parameters of P1 and P2
  • the parameters are all used as the first target optical design parameters.
  • m is smaller than the total number of items of optical design parameters in the first optical design parameter group.
  • the specific process of constructing multiple third optical design parameter groups can be as follows: divide the value intervals of P1 and P2 into two subintervals, randomly select a value in each subinterval of P1, and select a value in each subinterval of P2. A numerical value is also randomly selected in the interval, and a total of 4 third optical design parameter groups are formed according to the 4 corresponding selected values of the two first target optical design parameters and the initial values corresponding to P3-P6 in the first optical design parameter group .
  • m 3 a plurality of sub-intervals is 2, wherein m is 3, that is, the first optical design parameter group includes a value set of each optical design parameter in the 3 optical design parameters, these 3
  • the optical design parameter can be any three optical design parameters in P1-P6, which is not specifically limited in the embodiment of the present invention, including but not limited to: these three optical design parameters are P1, P2 and P4, that is, P1,
  • the three optical design parameters P2 and P4 are all used as the first target optical design parameters.
  • m is smaller than the total number of items of optical design parameters in the first optical design parameter group.
  • the specific process of constructing multiple third optical design parameter groups can be as follows: randomly select a value in each sub-interval of P1, P2, and P4, and then select 6 correspondingly selected according to the 3 first target optical design parameters
  • the numerical values and the initial values corresponding to P3, P5, and P6 in the first optical design parameter group form 2 to 3 third optical design parameter groups, that is, eight third optical design parameter groups.
  • m is 6, and multiple sub-intervals are 2, wherein m is 6, that is, the first optical design parameter group includes a value set of each optical design parameter in the 6 optical design parameters, and the 6 optical design parameters That is, P1-P6, that is, the six optical design parameters of P1-P6 are all used as the first target optical design parameters.
  • m is equal to the total number of optical design parameters in the first optical design parameter group.
  • the specific process of constructing multiple third optical design parameter groups can be as follows: divide the value interval of P1-P6 into two sub-intervals, randomly select a value in each sub-interval of P1-P6, and finally There are 12 determined numerical values in total, and according to the 12 determined numerical values corresponding to the 6 first target optical design parameters, 26 third optical design parameter groups can finally be formed.
  • the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to arrange and combine all the values in the value range of each first target optical design parameter, Thus forming a plurality of third optical design parameter groups; instead, the value range of each first target optical design parameter is divided into a plurality of sub-intervals, and one is determined in each sub-interval of each first target optical design parameter value, thereby constructing a plurality of third optical design parameter groups, and calculating the parallax corresponding to each third optical design parameter, and using the third optical design parameter whose parallax satisfies the first preset condition as the second optical design parameter group, by Compared with the third optical design parameter set constructed by traversal, the third optical design parameter set constructed in this way is less, so the third optical design parameter set involved in the calculation of parallax is less, and the second optical design can be quickly determined
  • the parameter set that is, the optical design parameter set that can be quickly determined when the camera with the
  • m is greater than 1, and for the n items of the first target optical design parameters among the m items of the first target optical design parameters, each of the n items of the first target optical design parameters A target optical design parameter is used as a second target optical design parameter;
  • each second target optical design parameter on parallax is greater than that of each first target optical design parameter, n is not less than 1 and less than m, and the historical values determined by each second target optical design parameter constitute each The value set of the second target optical design parameter, the value range of each second target optical design parameter is determined by the value set of each second target optical design parameter;
  • determine the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images including:
  • each second target optical design parameter Divides the value interval of each second target optical design parameter into a plurality of sub-intervals, and determine a value in each sub-interval of each second target optical design parameter; wherein, in each second target optical design parameter
  • the data source for determining the value in each sub-interval of the parameter is the value set of each second target optical design parameter;
  • each first target optical design parameter in the second optical design parameter group Corresponding to the determined value and the initial value of each other optical design parameter in the second optical design parameter group, construct a plurality of fourth optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, Then construct multiple fourth optical design parameter groups according to the correspondingly determined value of each second target optical design parameter and the corresponding determined value of each first target optical design parameter in the second optical design parameter group;
  • each fourth optical design parameter group calculates the parallax corresponding to each fourth optical design parameter group, and determine the second minimum value among all the calculated parallaxes. If the second minimum value does not meet the second preset condition, set each second target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each second target optical design parameter in the fourth optical design parameter group corresponding to the second minimum value, and the above-mentioned division of the sub-interval, determination of the value, and construction are repeated.
  • the process of the fourth optical design parameter group, calculating the parallax, determining the second minimum value, and updating the value interval until the second minimum value is determined to meet the second preset condition, and the second minimum value that will meet the second preset condition The corresponding fourth optical design parameter set is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
  • the determined historical value of each second target optical design parameter is the value of each second target optical design parameter in the plurality of third optical design parameter groups constructed.
  • the number of sub-intervals is 2, and the degree of influence of P6 on parallax is greater than that of P1-P5, that is, the optical design parameter of P6 is taken as the second target optical design parameter.
  • the value set of the second target optical design parameter P6 is all values of P6 in the plurality of third optical design parameter groups constructed when "m is 6 and the plurality of sub-intervals is 2".
  • the value interval of the second target optical design parameter P6 is divided into two sub-intervals, and a value is randomly selected in each sub-interval of the second target optical design parameter P6, then according to the corresponding selected value of the second target optical design parameter P6 and P1-P5 in the second optical design parameter set correspond to the determined values, and finally two fourth optical design parameter sets are constructed.
  • the randomly selected values in each sub-interval of the second target optical design parameter P6 are values in the value set of the second target optical design parameter P6.
  • the parallax corresponding to the two constructed fourth optical design parameter groups is calculated, and the second minimum value of the two calculated parallaxes is determined, if the second minimum value does not meet the second predetermined If the condition is set, the value range of the second target optical design parameter P6 is updated to the sub-range corresponding to the determined value of the second target optical design parameter P6 in the fourth optical design parameter group corresponding to the second minimum value.
  • the relevant explanation of the second preset condition can be as follows, the second preset condition can be consistent with the first preset condition; wherein, the parallax preset range in the second preset condition is lower than the first preset condition , that is, the second expected panoramic stitching effect has higher requirements than the first expected panoramic stitching effect.
  • the image mosaic method provided by the embodiment of the present invention, after determining the second optical design parameter group that satisfies the first preset condition, according to the n first target optical design parameters that have a high degree of influence on parallax, again in each of the first The value of each second target optical design parameter is determined in the value set of the second target optical design parameter, so that the final determined second optical design parameter group is more accurate.
  • the panoramic image is stitched according to the optical design parameter, the panoramic image The splicing effect is better.
  • the first optical design parameter group includes a value set of each optical design parameter; correspondingly, according to the first optical design parameter group, determine the second optical design parameter group, include:
  • each optical design parameter determines the candidate value of each optical design parameter one by one, and form the second optical design parameter group by the candidate value of each optical design parameter; wherein, the candidate value of each optical design parameter is determined based on the optical design parameters for which candidate values have been determined.
  • the image stitching method provided by the embodiment of the present invention is not based on the value set of each optical design parameter in the first optical design parameter group to determine the second optical design parameter group, but by determining the candidate of each optical design parameter value, the optical design parameters whose candidate values have been determined are brought into the process of calculating the parallax, thereby reducing the number of times of calculating the parallax, thereby reducing the time spent in determining the second set of optical design parameters.
  • the value range of each optical design parameter is determined by the value set of each target optical design parameter, and the optical design parameters whose candidate values have been determined constitute the first optical design parameter Set, the second set of optical design parameters is composed of optical design parameters whose candidate values have not been determined, the total number of optical design parameters in the first optical design parameter set is not less than 0 and less than the total number of optical design parameters in the first optical design parameter group number of items;
  • the candidate value of each optical design parameter is determined one by one, including:
  • any optical design parameter P in the second set of optical design parameters divide the value interval of P into multiple subintervals, and determine a value in each subinterval of P; wherein, in each subinterval of P
  • the data source when determining the value in the interval is the value set of P, and the first preset condition includes the sub-preset condition corresponding to P;
  • the total number of optical design parameters in the first optical design parameter set is greater than 0, then according to the candidate value of each optical design parameter in the first optical design parameter set, the value other than P in the second optical design parameter set The initial value of each other optical design parameter and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups. If the total number of optical design parameters in the first optical design parameter set is 0, then according to the second optical design parameter set The initial value of each optical design parameter other than P in the parameter set and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups;
  • the relevant explanation of the sub-preset condition corresponding to P can be as follows, the sub-preset condition corresponding to P can be consistent with the first preset condition; wherein, in the sub-preset condition corresponding to P The preset parallax range is lower than the first preset condition, so that the parallax corresponding to the formed second optical design parameter group satisfies the first preset condition.
  • first optical design parameter group including 6 optical design parameters
  • 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5
  • 1 item is the additional lens distortion curve drift coefficient P6 as an example, to determine one by one
  • the specific process of the candidate value of each optical design parameter is explained:
  • the first optical design parameter set includes the candidate value of P1
  • the second optical design parameter set includes the value set of P2-P6
  • the optical design parameter P is P2
  • the value range of P2 is into two subranges.
  • the total number of items of optical design parameters in the first optical design parameter set is greater than zero.
  • the specific process of determining the candidate values of each optical design parameter one by one can be as follows: randomly select a value in one of the sub-intervals of P2, according to the corresponding selected value of P2, the initial values of P3-P6 and the candidate value of P1, Constitute a fifth optical design parameter group, randomly select a value in another subinterval of P2, and form another fifth optical design parameter group according to the corresponding selected value of P2, the initial value of P3-P6 and the candidate value of P1 , forming two fifth optical design parameter groups in total.
  • the parallax corresponding to the two fifth optical design parameter groups is calculated, and the third minimum value of the two calculated parallaxes is determined, if the third minimum value does not satisfy the sub-prediction corresponding to P2 If the condition is set, the value interval of P2 is updated to the subinterval corresponding to the determined value of P2 in the fifth optical design parameter group corresponding to the third minimum value, and the above division of subintervals, determination of the value, and construction of the fifth optical design are repeated.
  • the first set of optical design parameters includes candidate values of P1 and P2
  • the second set of optical design parameters includes a set of values of P3-P6.
  • the first optical design parameter set is empty
  • the second optical design parameter set includes a value set of P1-P6, the optical design parameter P is P1, and the value range of P1 is divided into two a sub-interval.
  • the total number of items of optical design parameters in the first optical design parameter set is zero.
  • the specific process of determining the candidate values of each optical design parameter one by one can be as follows: randomly select a value in one of the sub-intervals of P1, and form a fifth optical To design a parameter group, randomly select a value in another sub-interval of P1, and form another fifth optical design parameter group according to the corresponding selected value of P1 and the initial values of P2-P6, forming two fifth optical design parameters in total Group.
  • the parallax corresponding to the two fifth optical design parameter groups is calculated, and the third minimum value of the two calculated parallaxes is determined, if the third minimum value does not satisfy the sub-prediction corresponding to P1 If the condition is set, the value range of P1 is updated to the sub-range corresponding to the determined value of P1 in the fifth optical design parameter group corresponding to the third minimum value, and the above-mentioned division of sub-ranges, determination of the value, and construction of the fifth optical design are repeated.
  • the first set of optical design parameters includes a candidate value of P1
  • the second set of optical design parameters includes a set of values of P2-P6.
  • the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to check all the values in the value range of each optical design parameter in the first optical design parameter group. Permutation and combination are carried out to form a plurality of fifth optical design parameter groups; instead, the first optical design parameter set is formed by the optical design parameters whose candidate values have been determined, and the second optical design parameter is formed by the optical design parameters whose candidate values have not been determined.
  • the fifth optical design parameter set constructed in this way is less, so the fifth optical design parameter set involved in the calculation of parallax is less, and the second optical design parameter set can be quickly determined.
  • the design parameter set that is, the optical design parameter set that can be quickly determined when the camera with the additional mirror is adapted when stitching panoramic images.
  • each of the t optical design parameters in the second optical design parameter group is used as the third target optical design parameter;
  • each third target optical design parameter on parallax is greater than that of other optical design parameters in the second optical design parameter group, and t is not less than 1 and less than the total number of optical design parameters in the second optical design parameter group
  • the historical value determined by each third target optical design parameter constitutes the value set of each third target optical design parameter, and each third target optical design is determined by the value set of each third target optical design parameter The value range of the parameter;
  • determine the optical design parameter group that the camera equipped with an additional mirror is suitable for stitching panoramic images including:
  • each third target optical design parameter Divides the value interval of each third target optical design parameter into multiple sub-intervals, and determine a value in each sub-interval of each third target optical design parameter; wherein, in each third target optical design parameter
  • the data source for determining the value in each sub-interval of the parameter is the value set of each third target optical design parameter;
  • each sixth optical design parameter group calculates the parallax corresponding to each sixth optical design parameter group, and determine the fourth minimum value among all the calculated parallaxes. If the fourth minimum value does not meet the third preset condition, set each third target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each third target optical design parameter in the sixth optical design parameter group corresponding to the fourth minimum value, repeating the above-mentioned sub-interval division, determination of the value, and construction The process of the sixth optical design parameter group, calculating the parallax, determining the fourth minimum value, and updating the value range until the fourth minimum value is determined to meet the third preset condition, and the fourth minimum value that will meet the third preset condition
  • the corresponding sixth optical design parameter set is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
  • the determined historical value of each third target optical design parameter is the value of each third target optical design parameter in the constructed plurality of fifth optical design parameter groups.
  • P1 and P2 have greater influence on parallax than P3-P6, that is, the two optical design parameters P1 and P2 are taken as the third target optical design parameters.
  • the value set of the third target optical design parameter P1 is all the values of P1 in the multiple fifth optical design parameter groups constructed when "the optical design parameter P is P1 and the multiple sub-intervals are 2";
  • the value set of the three-objective optical design parameter P2 is all values of P2 in the multiple fifth optical design parameter groups constructed when "the optical design parameter P is P2 and the multiple sub-intervals are 2".
  • the parallax corresponding to the four sixth optical design parameter groups constructed is calculated, and the fourth minimum value among all the calculated parallaxes is determined, if the fourth minimum value does not satisfy the third preset condition, update the value interval of the third target optical design parameter P1 to the sub-interval corresponding to the value determined by P1 in the sixth optical design parameter group corresponding to the fourth minimum value, and update the value interval of the third target optical design parameter P2 to The value interval is updated to the subinterval corresponding to the determined value of P2 in the sixth optical design parameter group corresponding to the fourth minimum value, repeating the above division of subintervals, determining the value, constructing the sixth optical design parameter group, calculating parallax, and determining The fourth minimum value and the process of updating the value interval until it is determined that the obtained fourth minimum value satisfies the third preset condition, and the sixth optical design parameter group corresponding to the fourth minimum value that meets the third preset condition is used as an additional The optical design parameter group that the camera
  • the relevant explanation of the third preset condition can be as follows, the third preset condition can be consistent with the first preset condition; wherein, the parallax preset range in the third preset condition is lower than that of the first preset condition , that is, the second expected panoramic stitching effect has higher requirements than the first expected panoramic stitching effect.
  • each third target optical design parameter is determined in the value set of the three target optical design parameters, so that the final determined second optical design parameter group is more accurate.
  • an image stitching device which includes:
  • An acquisition module configured to acquire a first optical design parameter set, where at least one optical design parameter is included in the first optical design parameter set, and the first optical design parameter set is used for panorama stitching;
  • the first determination module is configured to determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter The group is consistent with the type and number of items of the optical design parameters contained in the first optical design parameter group;
  • the second determination module is configured to determine an optical design parameter set adapted to the camera with an additional mirror when stitching panoramic images according to the second optical design parameter set;
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • Each module in the above-mentioned image splicing device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can call and execute the corresponding operations of the above modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure may be as shown in FIG. 8 .
  • the computer device includes a processor, memory and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer programs and databases.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store various performance indexes of retired batteries.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by a processor, an image splicing method is realized.
  • FIG. 8 is only a block diagram of a partial structure related to the solution of this application, and does not constitute a limitation on the computer equipment to which the solution of this application is applied.
  • the computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • a computer device including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the second optical design parameter set determines the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition contained in the second optical design parameter set and the first optical design parameter set.
  • the optical design parameter group determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the second optical design parameter set determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
  • the optical design parameter group determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images
  • the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image
  • the first panoramic image is obtained by panoramic stitching of the first panoramic image group
  • the second panoramic image It is obtained by panoramic stitching of the second panoramic image group
  • the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same
  • the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
  • any reference to memory, storage, database or other media used in the embodiments of the present invention may include at least one of non-volatile and volatile memory.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

The present application relates to an image stitching method and apparatus, and a computer device and a storage medium. The method comprises: acquiring a first optical design parameter group; determining a second optical design parameter group according to the first optical design parameter group; and according to the second optical design parameter group, determining an adapted optical design parameter group when a camera additionally equipped with a supplementary lens stitches panoramic images. On the basis of the camera additionally equipped with a supplementary lens, optical design parameter groups actually required when the camera additionally equipped with different supplementary lenses captures panoramic images are determined. A parallax calculated by means of the optical design parameter groups determined by means of the method meets a preset condition, such that the stitching effect of the captured panoramic images is better, thereby solving the problem of poor stitching effects of panoramic images captured by cameras additionally equipped with a supplementary lens, due to a deviation in the precision of a hardware machining process of the supplementary lens.

Description

图像拼接方法、装置、计算机设备和存储介质Image mosaic method, device, computer equipment and storage medium 技术领域technical field
本申请涉及图像处理技术领域,特别是涉及一种图像拼接方法、装置、计算机设备和存储介质。The present application relates to the technical field of image processing, in particular to an image mosaic method, device, computer equipment and storage medium.
背景技术Background technique
为了保护相机的镜头不被损坏,通常会在相机镜头上加装附加镜。由于附加镜的硬件加工工艺精度存在偏差,镜片加工工艺主要包括:镜片的厚度及镜片的曲率等,从而为了保证偏差在规定范围,通常在附加镜加工完毕之后,需要对附加镜进行检测,但是,目前还不存在对附加镜的硬件加工工艺偏差的无损检测,采用已有的检测方式对附加镜进行检测,反而使得附加镜的加工工艺偏差更大。上述原因导致加装附加镜的相机在拍摄全景图像时拼接效果不佳。In order to protect the lens of the camera from being damaged, an additional mirror is usually added to the camera lens. Due to deviations in the accuracy of the hardware processing technology of the additional mirror, the lens processing technology mainly includes: the thickness of the lens and the curvature of the lens, etc. Therefore, in order to ensure that the deviation is within the specified range, it is usually necessary to test the additional mirror after the processing of the additional mirror is completed, but At present, there is no non-destructive testing for the deviation of the hardware processing technology of the additional mirror, and the existing detection method is used to detect the additional mirror, but the deviation of the processing technology of the additional mirror is larger. The above-mentioned reasons lead to poor stitching effect when shooting panoramic images with a camera equipped with an add-on mirror.
相关技术中,为了解决附加镜的硬件加工工艺精度存在偏差导致加装附加镜的相机拍摄全景图像时拼接效果不佳的问题,通常,在相机增戴附加镜后,给相机写入一组固定的光学设计参数,然后再拍摄全景图像。采用写入固定光学设计参数的方式,能够提高相机加装某一附加镜拍摄全景图像时的全景拼接效果,也即上述的写入固定光学设计参数的方式只适用于不同附加镜的硬件加工工艺精度存在的偏差是完全相同的情况。In the related art, in order to solve the problem that the precision of the hardware processing of the additional lens is not good enough when the panoramic image is shot by the camera equipped with the additional lens, usually, after the camera is equipped with the additional lens, a set of fixed values is written to the camera. The optical design parameters of the camera, and then shoot the panoramic image. Using the method of writing fixed optical design parameters can improve the panorama stitching effect when the camera is equipped with an additional mirror to shoot panoramic images, that is, the above method of writing fixed optical design parameters is only applicable to the hardware processing technology of different additional mirrors The bias in precision is exactly the same.
技术问题technical problem
然而,不同附加镜的设计,制造,材质,加工精度及装配公差是不同的,也即不同附加镜的硬件加工工艺精度存在的偏差是不同的,采用写入固定光学设计参数进行全景拍摄的方式不能适用于不同的附加镜,当相机加装不同附加镜进行拍摄时,附加镜的硬件加工工艺精度存在的偏差还是会导致加装附加镜的相机拍摄全景图像时拼接效果不佳。However, the design, manufacture, material, processing accuracy and assembly tolerance of different additional mirrors are different, that is, the deviation of the hardware processing accuracy of different additional mirrors is different. The method of writing fixed optical design parameters for panoramic shooting It cannot be applied to different add-on mirrors. When the camera is equipped with different add-on mirrors for shooting, the deviation in the precision of the hardware processing technology of the add-on mirror will still lead to poor stitching effect when the camera with the add-on mirror is shooting panoramic images.
技术解决方案technical solution
基于此,有必要针对上述技术问题,提供一种能够满足增强全景图像的拼接效果的图像拼接方法、装置、计算机设备和存储介质。Based on this, it is necessary to provide an image stitching method, device, computer equipment and storage medium capable of enhancing the stitching effect of panoramic images in order to address the above technical problems.
一种图像拼接方法,该方法包括:An image mosaic method, the method comprising:
获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项 数一致;According to the first optical design parameter set, determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera equipped with a converter lens is used to shoot the same scene in two different orientations.
在其中一个实施例中,第一光学设计参数组中包括m项光学设计参数中每项光学设计参数的取值集合,m不小于1且不大于第一光学设计参数组中光学设计参数的总项数;In one of the embodiments, the first optical design parameter group includes a set of values for each of the m optical design parameters, and m is not less than 1 and not greater than the total number of optical design parameters in the first optical design parameter group. number of items;
相应地,根据第一光学设计参数组,确定第二光学设计参数组,包括:Correspondingly, according to the first optical design parameter set, determine the second optical design parameter set, including:
将m项光学设计参数中每项光学设计参数均作为第一目标光学设计参数,根据每项第一目标光学设计参数的取值集合,确定每项第一目标光学设计参数的取值区间;Taking each of the m optical design parameters as the first target optical design parameter, and determining the value interval of each first target optical design parameter according to the value set of each first target optical design parameter;
根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组。According to the value range of each first target optical design parameter, a second optical design parameter group is determined.
在其中一个实施例中,每项第一目标光学设计参数的取值集合是根据每项第一目标光学设计参数的初始值进行调整后所得到的;相应地,根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组,包括:In one of the embodiments, the value set of each first target optical design parameter is obtained after adjustment according to the initial value of each first target optical design parameter; correspondingly, according to each first target optical design The value interval of the parameter determines the second optical design parameter group, including:
将每项第一目标光学设计参数的取值区间分为多个子区间,在每项第一目标光学设计参数的每一子区间中确定一个数值;其中,在每项第一目标光学设计参数的每一子区间中确定数值时的数据来源为每项第一目标光学设计参数的取值集合;Dividing the value interval of each first target optical design parameter into a plurality of sub-intervals, and determining a value in each sub-interval of each first target optical design parameter; wherein, in each first target optical design parameter The data source when determining the value in each sub-interval is the value set of each first target optical design parameter;
若m小于第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计参数对应确定的数值以及第一光学设计参数组中其它每项光学设计参数的初始值,构建多个第三光学设计参数组,若m等于第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计参数对应确定的数值,构建多个第三光学设计参数组;If m is less than the total number of optical design parameters in the first optical design parameter group, then according to the value corresponding to each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group, Construct a plurality of third optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then construct a plurality of third optical designs according to the value corresponding to each first target optical design parameter parameter group;
计算每一第三光学设计参数组所对应的视差,并确定计算得到的所有视差中的第一最小值,若第一最小值不满足第一预设条件,则将每项第一目标光学设计参数的取值区间更新为第一最小值对应的第三光学设计参数组中每项第一目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第三光学设计参数组、计算视差、确定第一最小值以及更新取值区间的过程,直至确定得到的第一最小值满足第一预设条件,将满足第一预设条件的第一最小值对应的第三光学设计参数组作为第二光学设计参数组。Calculating the parallax corresponding to each third optical design parameter group, and determining the first minimum value of all the calculated parallaxes, if the first minimum value does not meet the first preset condition, each first target optical design The value interval of the parameter is updated to the sub-interval corresponding to the determined value of each first target optical design parameter in the third optical design parameter group corresponding to the first minimum value, repeating the above division of sub-intervals, determining the value, and constructing the third The process of optical design parameter group, calculating parallax, determining the first minimum value and updating the value interval until the first minimum value obtained meets the first preset condition, and the first minimum value that will satisfy the first preset condition corresponds to The third optical design parameter set serves as the second optical design parameter set.
在其中一个实施例中,m大于1,对于m项第一目标光学设计参数中的n项第一目标光学设计参数,将n项第一目标光学设计参数中每项第一目标光学设计参数均作为第二目标光学设计参数;In one of the embodiments, m is greater than 1, and for the n first target optical design parameters among the m first target optical design parameters, each of the n first target optical design parameters is equal to as the second target optical design parameter;
其中,每项第二目标光学设计参数对视差的影响程度均大于每项第一目标光学设计参数,n不小于1且小于m,每项第二目标光学设计参数所确定的历史数值构成每项第二目标光学设计参数的取值集合,由每项第二目标光学设计参数的取值集合确定每项第二目标光学设计参数的取值区间;Wherein, the degree of influence of each second target optical design parameter on parallax is greater than that of each first target optical design parameter, n is not less than 1 and less than m, and the historical values determined by each second target optical design parameter constitute each The value set of the second target optical design parameter, the value range of each second target optical design parameter is determined by the value set of each second target optical design parameter;
相应地,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, according to the second optical design parameter group, determine the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images, including:
将每项第二目标光学设计参数的取值区间分为多个子区间,在每项第二目标光学设计参数的每一子区间中确定一个数值;其中,在每项第二目标光学设计参数的每一子区间中确定数值时的数据来源为每项第二目标光学设计参数的取值集合;Dividing the value interval of each second target optical design parameter into a plurality of sub-intervals, and determining a value in each sub-interval of each second target optical design parameter; wherein, in each second target optical design parameter The data source when determining the value in each sub-interval is the value set of each second target optical design parameter;
若m小于第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值、第二光学设计参数组中每项第一目标光学设计参数对应确定的数值及第二光学设计参数组中其它每项光学设计参数的初始值,构建多个第四光学设计参数组,若m等于第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值及第二光学设计参数组中每项第一目标光学设计参数对应确定的数值,构建多个第四光学设计参数组;If m is less than the total number of optical design parameters in the first optical design parameter group, then according to the correspondingly determined value of each second target optical design parameter, each first target optical design parameter in the second optical design parameter group is correspondingly determined value and the initial value of each other optical design parameter in the second optical design parameter group to construct a plurality of fourth optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then according to Each second target optical design parameter corresponds to a determined value and each first target optical design parameter in the second optical design parameter group corresponds to a determined value to construct a plurality of fourth optical design parameter groups;
计算每一第四光学设计参数组所对应的视差,并确定计算得到的所有视差中的第二最小值,若第二最小值不满足第二预设条件,则将每项第二目标光学设计参数的取值区间更新为第二最小值对应的第四光学设计参数组中每项第二目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第四光学设计参数组、计算视差、确定第二最小值以及更新取值区间的过程,直至确定得到的第二最小值满足第二预设条件,将满足第二预设条件的第二最小值对应的第四光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。Calculating the parallax corresponding to each fourth optical design parameter group, and determining the second minimum value of all the calculated parallaxes, if the second minimum value does not meet the second preset condition, each second target optical design The value interval of the parameter is updated to the sub-interval corresponding to the determined value of each second target optical design parameter in the fourth optical design parameter group corresponding to the second minimum value, repeating the above division of sub-intervals, determining the value, and constructing the fourth The process of optical design parameter group, calculation of parallax, determination of the second minimum value, and update of the value range until the second minimum value is determined to meet the second preset condition, and the second minimum value corresponding to the second preset condition will satisfy the second preset condition The fourth optical design parameter group is used as an optical design parameter group for the camera equipped with an additional mirror when stitching panoramic images.
在其中一个实施例中,第一光学设计参数组中包括每项光学设计参数的取值集合;相应地,根据第一光学设计参数组,确定第二光学设计参数组,包括:In one of the embodiments, the first optical design parameter set includes a value set of each optical design parameter; correspondingly, according to the first optical design parameter set, the second optical design parameter set is determined, including:
根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,并由每项光学设计参数的候选值构成第二光学设计参数组;其中,每项光学设计参数的候选值是基于已确定候选值的光学设计参数的基础上所确定的。According to the value set of each optical design parameter, determine the candidate value of each optical design parameter one by one, and form the second optical design parameter group by the candidate value of each optical design parameter; wherein, the candidate value of each optical design parameter is determined based on the optical design parameters for which candidate values have been determined.
在其中一个实施例中,由每项目标光学设计参数的取值集合确定每项光学设计参数的取值区间,由已确定候选值的光学设计参数构成第一光学设计参数集合,由未确定候选值的光学设计参数构成第二光学设 计参数集合,第一光学设计参数集合中光学设计参数的总项数不小于0且小于第一光学设计参数组中光学设计参数的总项数;In one of the embodiments, the value range of each optical design parameter is determined by the value set of each target optical design parameter, the first optical design parameter set is formed by the optical design parameters whose candidate values have been determined, and the first optical design parameter set is formed by the undetermined candidate values. The optical design parameters of the value constitute the second optical design parameter set, the total number of optical design parameters in the first optical design parameter set is not less than 0 and less than the total number of optical design parameters in the first optical design parameter group;
相应地,根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,包括:Correspondingly, according to the value set of each optical design parameter, the candidate value of each optical design parameter is determined one by one, including:
对于第二光学设计参数集合中任一项光学设计参数P,将P的取值区间分为多个子区间,在P的每一子区间中确定一个数值;其中,在P的每一子区间中确定数值时的数据来源为P的取值集合,第一预设条件中包含P对应的子预设条件;For any optical design parameter P in the second set of optical design parameters, the value interval of P is divided into multiple subintervals, and a value is determined in each subinterval of P; wherein, in each subinterval of P The data source when determining the value is the value set of P, and the first preset condition includes the sub-preset condition corresponding to P;
若第一光学设计参数集合中光学设计参数的总项数大于0,则根据第一光学设计参数集合中每项光学设计参数的候选值、第二光学设计参数集合中除P之外的其它每项光学设计参数的初始值以及P对应确定的数值,构建多个第五光学设计参数组,若第一光学设计参数集合中光学设计参数的总项数为0,则根据第二光学设计参数集合中除P之外的其它每项光学设计参数的初始值以及P对应确定的数值,构建多个第五光学设计参数组;If the total number of optical design parameters in the first optical design parameter set is greater than 0, then according to the candidate value of each optical design parameter in the first optical design parameter set, each other except P in the second optical design parameter set The initial value of the optical design parameter and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups. If the total number of optical design parameters in the first optical design parameter set is 0, then according to the second optical design parameter set In addition to the initial value of each optical design parameter other than P and the correspondingly determined value of P, a plurality of fifth optical design parameter groups are constructed;
计算每一第五光学设计参数组所对应的视差,并确定计算得到的所有视差中的第三最小值,若第三最小值不满足P对应的子预设条件,则将P的取值区间更新为第三最小值对应的第五光学设计参数组中P对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第五光学设计参数组、计算视差、确定第三最小值以及更新取值区间的过程,直至确定得到的第三最小值满足P对应的子预设条件,将满足P对应的子预设条件的第三最小值对应的第五光学设计参数组中P对应确定的数值,作为P的候选值。Calculate the parallax corresponding to each fifth optical design parameter group, and determine the third minimum value among all the calculated parallaxes. If the third minimum value does not meet the sub-preset condition corresponding to P, set the value interval of P to Update to the subinterval corresponding to the determined value of P in the fifth optical design parameter group corresponding to the third minimum value, repeat the above division of subintervals, determine the value, construct the fifth optical design parameter group, calculate parallax, and determine the third minimum value and the process of updating the value interval until it is determined that the third minimum value obtained satisfies the sub-preset condition corresponding to P, and P in the fifth optical design parameter group corresponding to the third minimum value corresponding to the sub-preset condition corresponding to P Corresponding to the determined value, as a candidate value of P.
在其中一个实施例中,对于第二光学设计参数组中的t项光学设计参数,将t项光学设计参数中每项光学设计参数均作为第三目标光学设计参数;In one of the embodiments, for the t optical design parameters in the second optical design parameter group, each of the t optical design parameters is used as the third target optical design parameter;
其中,每项第三目标光学设计参数对视差的影响程度均大于第二光学设计参数组中其它每项光学设计参数,t不小于1且小于第二光学设计参数组中光学设计参数的总项数,每项第三目标光学设计参数所确定的历史数值构成每项第三目标光学设计参数的取值集合,由每项第三目标光学设计参数的取值集合确定每项第三目标光学设计参数的取值区间;Wherein, the degree of influence of each third target optical design parameter on parallax is greater than that of other optical design parameters in the second optical design parameter group, and t is not less than 1 and less than the total number of optical design parameters in the second optical design parameter group The historical value determined by each third target optical design parameter constitutes the value set of each third target optical design parameter, and each third target optical design is determined by the value set of each third target optical design parameter The value range of the parameter;
相应地,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, according to the second optical design parameter group, determine the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images, including:
将每项第三目标光学设计参数的取值区间分为多个子区间,在每项第三目标光学设计参数的每一子区间中确定一个数值;其中,在每项第三目标光学设计参数的每一子区间中确定数值时的数据来源为每项第三目标光学设计参数的取值集合;Dividing the value interval of each third target optical design parameter into a plurality of sub-intervals, and determining a numerical value in each sub-interval of each third target optical design parameter; wherein, in each third target optical design parameter The data source for determining the value in each sub-interval is the value set of each third target optical design parameter;
根据每项第三目标光学设计参数对应确定的数值及第二光学设计参数组中其它每项光学设计参数的 候选值,构建多个第六光学设计参数组;Construct a plurality of sixth optical design parameter groups according to the correspondingly determined values of each third target optical design parameter and the candidate values of other optical design parameters in the second optical design parameter group;
计算每一第六光学设计参数组所对应的视差,并确定计算得到的所有视差中的第四最小值,若第四最小值不满足第三预设条件,则将每项第三目标光学设计参数的取值区间更新为第四最小值对应的第六光学设计参数组中每项第三目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第六光学设计参数组、计算视差、确定第四最小值以及更新取值区间的过程,直至确定得到的第四最小值满足第三预设条件,将满足第三预设条件的第四最小值对应的第六光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。Calculating the parallax corresponding to each sixth optical design parameter group, and determining the fourth minimum value of all the calculated parallaxes, if the fourth minimum value does not meet the third preset condition, each third target optical design The value interval of the parameter is updated to the sub-interval corresponding to the value corresponding to the determined value of each third target optical design parameter in the sixth optical design parameter group corresponding to the fourth minimum value, and the above-mentioned division of sub-intervals, determination of the value, and construction of the sixth optical design parameter group are repeated. The process of optical design parameter group, calculation of parallax, determination of the fourth minimum value, and update of the value range until the determined fourth minimum value satisfies the third preset condition, and the fourth minimum value corresponding to the third preset condition will satisfy the The sixth optical design parameter group is used as an optical design parameter group for the camera equipped with an additional mirror when stitching panoramic images.
一种图像拼接装置,该装置包括:An image stitching device, the device comprising:
获取模块,用于获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;An acquisition module, configured to acquire a first optical design parameter set, where at least one optical design parameter is included in the first optical design parameter set, and the first optical design parameter set is used for panorama stitching;
第一确定模块,用于根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;The first determining module is configured to determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set is the same as The optical design parameters contained in the first optical design parameter group are of the same type and number of items;
第二确定模块,用于根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;The second determination module is used to determine the optical design parameter group adapted to the camera with the additional mirror when stitching panoramic images according to the second optical design parameter group;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现以下步骤:A computer device, including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;According to the first optical design parameter set, determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一 全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现以下步骤:A computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;According to the first optical design parameter set, determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
有益效果Beneficial effect
上述图像拼接方法、装置、计算机设备和存储介质,,获取第一光学设计参数组,根据第一光学设计参数组,确定第二光学设计参数组,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。由于,相机加装不同附加镜拍摄全景图像时,写入的光学设计参数不再是固定的,而是基于加装附加镜的相机,从而确定相机加装不同附加镜在拍摄全景图像时实际所需的光学设计参数组。由此确定的光学设计参数组所计算出的视差是满足预设条件的,从而拍摄出的全景图像的拼接效果更好,进而解决了附加镜的硬件加工工艺精度存在偏差的原因导致加装附加镜的相机拍摄全景图像时拼接效果不佳的问题。The image stitching method, device, computer equipment, and storage medium described above obtain the first optical design parameter set, determine the second optical design parameter set according to the first optical design parameter set, and determine the additional optical design parameter set according to the second optical design parameter set. The optical design parameter group that the mirror camera adapts to when stitching panoramic images. Because, when the camera is equipped with different add-on mirrors to shoot panoramic images, the written optical design parameters are no longer fixed, but based on the camera with add-on mirrors, so as to determine the actual parameters of the camera with different add-on mirrors when shooting panoramic images. The desired optical design parameter set. The parallax calculated by the optical design parameter group determined in this way satisfies the preset conditions, so that the stitching effect of the captured panoramic images is better, and then it solves the reason why the accuracy of the hardware processing technology of the additional mirror is biased. The problem of poor stitching effect when the mirror camera shoots panoramic images.
附图说明Description of drawings
图1为一个实施例中图像拼接方法的流程示意图;Fig. 1 is a schematic flow chart of an image stitching method in an embodiment;
图2为另一个实施例中图像拼接方法的流程示意图;Fig. 2 is a schematic flow chart of an image stitching method in another embodiment;
图3为另一个实施例中图像拼接方法的流程示意图;Fig. 3 is a schematic flow chart of an image stitching method in another embodiment;
图4为另一个实施例中图像拼接方法的流程示意图;Fig. 4 is a schematic flow chart of an image stitching method in another embodiment;
图5为另一个实施例中图像拼接方法的流程示意图;Fig. 5 is a schematic flow chart of an image stitching method in another embodiment;
图6为另一个实施例中图像拼接方法的流程示意图;FIG. 6 is a schematic flow chart of an image stitching method in another embodiment;
图7为一个实施例中图像拼接装置的结构框图;Fig. 7 is a structural block diagram of an image stitching device in an embodiment;
图8为一个实施例中计算机设备的内部结构图。Figure 8 is a diagram of the internal structure of a computer device in one embodiment.
本发明的实施方式Embodiments of the present invention
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
由于附加镜的硬件加工工艺精度存在偏差,镜片加工工艺主要包括:镜片的厚度及镜片的曲率等,从而为了保证偏差在规定范围,通常在附加镜加工完毕之后,需要对附加镜进行检测,但是,目前还不存在对附加镜的硬件加工工艺偏差的无损检测,采用已有的检测方式对附加镜进行检测,反而使得附加镜的加工工艺偏差更大。上述原因导致加装附加镜的相机在拍摄全景图像时拼接效果不佳。Due to deviations in the accuracy of the hardware processing technology of the additional mirror, the lens processing technology mainly includes: the thickness of the lens and the curvature of the lens, etc. Therefore, in order to ensure that the deviation is within the specified range, it is usually necessary to test the additional mirror after the processing of the additional mirror is completed, but At present, there is no non-destructive testing for the deviation of the hardware processing technology of the additional mirror, and the existing detection method is used to detect the additional mirror, but the deviation of the processing technology of the additional mirror is larger. The above-mentioned reasons lead to poor stitching effect when shooting panoramic images with a camera equipped with an add-on mirror.
相关技术中,为了解决附加镜的硬件加工工艺精度存在偏差导致加装附加镜的相机拍摄全景图像时拼接效果不佳的问题,通常,在相机增戴附加镜后,给相机写入一组固定的光学设计参数,然后再拍摄全景图像。采用写入固定光学设计参数的方式,能够提高相机加装某一附加镜拍摄全景图像时的全景拼接效果,也即上述的写入固定光学设计参数的方式只适用于不同附加镜的硬件加工工艺精度存在的偏差是完全相同的情况。然而,不同附加镜的设计,制造,材质,加工精度及装配公差是不同的,也即不同附加镜的硬件加工工艺精度存在的偏差是不同的,采用写入固定光学设计参数进行全景拍摄的方式不能适用于不同的附加镜,当相机加装不同附加镜进行拍摄时,附加镜的硬件加工工艺精度存在的偏差还是会导致加装附加镜的相机拍摄全景图像时拼接效果不佳。In the related art, in order to solve the problem that the precision of the hardware processing of the additional lens is not good enough when the panoramic image is shot by the camera equipped with the additional lens, usually, after the camera is equipped with the additional lens, a set of fixed values is written to the camera. The optical design parameters of the camera, and then shoot the panoramic image. Using the method of writing fixed optical design parameters can improve the panorama stitching effect when the camera is equipped with an additional mirror to shoot panoramic images, that is, the above method of writing fixed optical design parameters is only applicable to the hardware processing technology of different additional mirrors The bias in precision is exactly the same. However, the design, manufacture, material, processing accuracy and assembly tolerance of different additional mirrors are different, that is, the deviation of the hardware processing accuracy of different additional mirrors is different. The method of writing fixed optical design parameters for panoramic shooting It cannot be applied to different add-on mirrors. When the camera is equipped with different add-on mirrors for shooting, the deviation in the precision of the hardware processing technology of the add-on mirror will still lead to poor stitching effect when the camera with the add-on mirror is shooting panoramic images.
针对上述相关技术中存在的问题,本发明实施例提供了一种图像拼接方法,该方法可以应用于服务器中,服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。需要说明的是,本申请各实施例中提及的“多个”等的数量均指代“至少两个”的数量,比如,“多个”指“至少两个”。Aiming at the problems existing in the above-mentioned related technologies, the embodiment of the present invention provides an image mosaic method, which can be applied to a server, and the server can be realized by an independent server or a server cluster composed of multiple servers. It should be noted that the quantities such as "multiple" mentioned in various embodiments of the present application all refer to the quantity of "at least two", for example, "multiple" refers to "at least two".
在对本发明实施例的具体实施方式进行说明之前,先对本发明实施例的主要应用场景进行说明。本发明实施例中的图像拼接方法主要应用于拍摄全景图像的应用场景,主要是通过确定含附加镜的相机系统在拼接全景图像时所适配的光学设计参数组,有效降低全景图像的视差大小,增强全景图像的拼接效果,从而提高全景图像的成像体验。Before describing the specific implementation manner of the embodiment of the present invention, the main application scenarios of the embodiment of the present invention will be described first. The image stitching method in the embodiment of the present invention is mainly applied to the application scene of shooting panoramic images, mainly by determining the optical design parameter group adapted by the camera system with additional mirrors when stitching panoramic images, effectively reducing the parallax of panoramic images , to enhance the stitching effect of the panoramic image, thereby improving the imaging experience of the panoramic image.
结合上述实施例的内容,在一个实施例中,如图1所示,提供了一种图像拼接方法,以该方法应用于服务器,且执行主体为服务器为例进行说明,该方法包括如下步骤:In combination with the content of the above-mentioned embodiments, in one embodiment, as shown in FIG. 1 , an image mosaic method is provided. The method is applied to a server and the execution subject is a server as an example for illustration. The method includes the following steps:
101、获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计 参数组用于进行全景拼接;101. Obtain a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
102、根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;102. Determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of optical design parameters contained in the group are consistent;
103、根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;103. According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with an additional mirror is suitable for stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
在上述步骤101中,第一光学设计参数组可以包括一项光学设计参数,也可以包括多项光学设计参数,本发明实施例对此不作具体限定。具体地,第一光学设计参数组中的每项光学设计参数可以为系数,该系数可以为镜头光学参数曲线拟合4阶多项式系数或者附加镜畸变曲线漂移系数。其中,“每项光学设计参数可以为系数”指的是每项光学设计参数即为一项系数,而非是由多项系数组成的。其中,当第一光学设计参数组包括一项光学设计参数时,该项光学设计参数可以为镜头光学参数曲线拟合4阶多项式系数或者附加镜畸变曲线漂移系数。当第一光学设计参数组包括多项光学设计参数时,该多项光学设计参数中的每一项光学设计参数可以为镜头光学参数曲线拟合4阶多项式系数或者附加镜畸变曲线漂移系数。In the above step 101, the first optical design parameter group may include one optical design parameter, or may include multiple optical design parameters, which is not specifically limited in this embodiment of the present invention. Specifically, each optical design parameter in the first optical design parameter group may be a coefficient, and the coefficient may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional mirror distortion curve drift coefficient. Wherein, "each optical design parameter may be a coefficient" means that each optical design parameter is a coefficient rather than composed of multiple coefficients. Wherein, when the first optical design parameter group includes an optical design parameter, the optical design parameter may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional mirror distortion curve drift coefficient. When the first optical design parameter group includes multiple optical design parameters, each optical design parameter in the multiple optical design parameters may be a fourth-order polynomial coefficient of lens optical parameter curve fitting or an additional lens distortion curve drift coefficient.
另外,在上述步骤101中,以“第一光学设计参数组包括光学设计参数P1-P3,且P1-P3的类型分别为:P1为镜头光学参数曲线拟合4阶多项式系数、P2也为镜头光学参数曲线拟合4阶多项式系数、P3为附加镜畸变曲线漂移系数,P4也为光学设计参数,且P4这项光学设计参数的类型为附加镜畸变曲线漂移系数”为例,对“第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致”进行解释说明:相应地,第二光学设计参数组也包括光学设计参数P1-P3,第一光学设计参数组与第二光学设计参数组唯一不同的是,P1、P2及P3的取值不同。也即不存在第二光学设计参数组包含的光学设计参数为:P1、P2及P4。在上述步骤102中,第一光学设计参数组包括每项光学设计参数的初始值;相应地,本发明实施例不对根据第一光学设计参数组,获取用于计算视差的第二光学设计参数组的方式作具体限定,包括但不限于:根据公差变量,对第一光学设计参数组中y项光学设计参数的初始值进行调整,构建第七光学设计参数组,计算第七光学设计参数组所对应的视差,重复上述调整初始值、构建第七光学设计参数组及计算视差的过程,直至计算得到的视差满足第一预设条件,y不小于1且不大于第一光学设计参数组中光学设计参数的总项数,将满足第一预设条件的视差对应的第七光学设计参数组作为第二光学 设计参数组。In addition, in the above step 101, "the first optical design parameter group includes optical design parameters P1-P3, and the types of P1-P3 are respectively: P1 is the lens optical parameter curve fitting 4th order polynomial coefficient, P2 is also the lens Optical parameter curve fitting 4th order polynomial coefficient, P3 is the additional mirror distortion curve drift coefficient, P4 is also an optical design parameter, and the type of P4 optical design parameter is the additional mirror distortion curve drift coefficient" as an example, for "Second The optical design parameter group is consistent with the type and number of items of the optical design parameters contained in the first optical design parameter group" to explain: Correspondingly, the second optical design parameter group also includes optical design parameters P1-P3, the first The only difference between the optical design parameter set and the second optical design parameter set is that the values of P1, P2 and P3 are different. That is, there is no optical design parameter included in the second optical design parameter group: P1, P2 and P4. In the above step 102, the first optical design parameter set includes the initial value of each optical design parameter; correspondingly, the embodiment of the present invention does not acquire the second optical design parameter set for calculating parallax according to the first optical design parameter set The method is specifically defined, including but not limited to: adjusting the initial value of the y-item optical design parameter in the first optical design parameter group according to the tolerance variable, constructing the seventh optical design parameter group, and calculating the result of the seventh optical design parameter group For the corresponding parallax, repeat the process of adjusting the initial value, constructing the seventh optical design parameter group, and calculating the parallax until the calculated parallax satisfies the first preset condition, and y is not less than 1 and not greater than the optical value in the first optical design parameter group. For the total number of items of the design parameters, the seventh optical design parameter group corresponding to the parallax satisfying the first preset condition is used as the second optical design parameter group.
以第一光学设计参数组包括6项光学设计参数,且其中有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6为例,对根据公差变量,对第一光学设计参数组中y项光学设计参数的初始值进行调整的具体过程进行解释说明:Taking the first optical design parameter group including 6 optical design parameters, 5 of which are 4th-order polynomial coefficients P1-P5 of lens optical parameter curve fitting, and 1 item is the drift coefficient P6 of the additional mirror distortion curve. variable, to explain the specific process of adjusting the initial value of the y-item optical design parameter in the first optical design parameter group:
在对第一光学设计参数组中y项光学设计参数的初始值进行调整之前,光学设计参数P1-P6的初始值可以通过下述方式获取:将实际拍摄过程中需使用到的附加镜镜片曲率、附加镜镜片厚度及附加镜空气间隔等数据输入到加装附加镜的相机中,加装附加镜的相机根据追迹小角度光线实际像高与计算视场实际像高的计算结果、测试视场实际像高与小角度视场实际像高之间的差值、该差值与小角度视场实际像高之间的比值,确定光学设计参数P1-P6的初始值,并输出光学设计参数P1-P6的初始值。Before adjusting the initial value of the y-item optical design parameter in the first optical design parameter group, the initial value of the optical design parameters P1-P6 can be obtained in the following way: the curvature of the additional mirror used in the actual shooting process Input the data such as the thickness of the additional mirror, the thickness of the additional mirror, and the air gap of the additional mirror into the camera with the additional mirror. The camera with the additional mirror is based on the calculation results of the actual image height of the traced small-angle light and the actual image height of the calculated field of view, and the test field of view. The difference between the actual image height of the field and the actual image height of the small-angle field of view, the ratio between the difference and the actual image height of the small-angle field of view, determine the initial value of the optical design parameters P1-P6, and output the optical design parameters Initial values of P1-P6.
另外,公差变量的相关解释可如下,公差变量可以为附加镜镜片曲率、附加镜镜片厚度及空气间隔对应的公差变量。In addition, the relevant explanation of the tolerance variable can be as follows, the tolerance variable can be the tolerance variable corresponding to the curvature of the lens of the additional mirror, the thickness of the lens of the additional mirror, and the air gap.
根据空气间隔的公差变量对6项光学设计参数的初始值进行调整,调整后的第七光学设计参数组的结果样例可以如表1所示:Adjust the initial values of the six optical design parameters according to the tolerance variable of the air gap, and an example of the adjusted results of the seventh optical design parameter group can be shown in Table 1:
表1Table 1
Figure PCTCN2022098918-appb-000001
Figure PCTCN2022098918-appb-000001
表1第二行中第二列至第七列的数值分别对应为P1-P6的初始值,表1第三行至第十二行的数值为:改变公差变量,根据改变后的公差变量,对P1-P6的初始值进行调整所确定的数值。例如,第三行中第二列至第七列的数值为:将公差变量的数值加0.01,也即调整公差变量为0.97,根据公差变量,对第一光学设计参数组中6项光学设计参数的初始值进行第一次调整所构建的第七光学设计参数组。第十二行中第二列至第七列的数值为:调整公差变量为1.06,根据公差变量,对第一光学设计参数组中6项光学设计参数的初始值进行第十次调整所构建的第七光学设计参数组。由于,第十次调整所构建的第七光学设计参数组 计算得到的视差满足第一预设条件,因此,结束上述根据公差变量,调整初始值的过程,将第十次调整所构建的第七光学设计参数组作为第二光学设计参数组。The values in the second column to the seventh column in the second row of Table 1 correspond to the initial values of P1-P6 respectively, and the values in the third row to the twelfth row of Table 1 are: change the tolerance variable, according to the changed tolerance variable, The value determined by adjusting the initial value of P1-P6. For example, the values in the second column to the seventh column in the third row are: add 0.01 to the value of the tolerance variable, that is, adjust the tolerance variable to 0.97. According to the tolerance variable, the 6 optical design parameters in the first optical design parameter group The seventh optical design parameter set constructed by first adjusting the initial value of . The values in the second column to the seventh column in the twelfth row are: the adjustment tolerance variable is 1.06, and the initial value of the six optical design parameters in the first optical design parameter group is adjusted for the tenth time according to the tolerance variable. A seventh set of optical design parameters. Since the parallax calculated by the seventh optical design parameter set constructed by the tenth adjustment satisfies the first preset condition, the above-mentioned process of adjusting the initial value according to the tolerance variable is completed, and the seventh optical design parameter set constructed by the tenth adjustment is The optical design parameter set serves as the second optical design parameter set.
在上述步骤102中,第一光学设计参数组包括每项光学设计参数的取值集合,相应地,根据第一光学设计参数组,获取用于计算视差的第二光学设计参数组,还可以包括:In the above step 102, the first optical design parameter set includes the value set of each optical design parameter, and correspondingly, according to the first optical design parameter set, the second optical design parameter set for calculating parallax is obtained, which may also include :
将每项光学设计参数均作为第四目标光学设计参数,在每项第四目标光学设计参数的取值集合中确定一个数值,并根据每项第四目标光学设计参数对应确定的数值,构建第八光学设计参数组,计算第八光学设计参数组所对应的视差,若视差不满足第一预设条件,则重复上述确定数值、构建第八光学设计参数组及计算视差的过程,直至计算得到的视差满足第一预设条件,将满足第一预设条件的视差对应的第八光学设计参数组作为第二光学设计参数组。Taking each optical design parameter as the fourth target optical design parameter, determining a value in the value set of each fourth target optical design parameter, and constructing the fourth target optical design parameter according to the corresponding determined value of each fourth target optical design parameter Eight optical design parameter groups, calculate the parallax corresponding to the eighth optical design parameter group, if the parallax does not meet the first preset condition, repeat the process of determining the value, constructing the eighth optical design parameter group and calculating the parallax until the calculated The parallax satisfies the first preset condition, and the eighth optical design parameter group corresponding to the parallax that satisfies the first preset condition is used as the second optical design parameter group.
例如,第一光学设计参数组包括6项光学设计参数,其中,有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6,构建第八光学设计参数组的过程可以为:For example, the first optical design parameter group includes 6 optical design parameters, 5 of which are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 is the additional mirror distortion curve drift coefficient P6, constructing the eighth optical The process of designing a parameter set can be:
首先在P1的取值集合中确定P1的一个数值,然后在P2的取值集合中确定P2的一个数值,再按照上述方式依次确定P3-P6的数值,并根据对应确定的6个数值,构建第八光学设计参数组。其中,确定的数值可以是随机选取的,上述确定P1-P6的数值的过程可以同时进行,也可以采用上述所示的方式先后进行,本发明实施例对此不作具体限定。First determine a value of P1 in the value set of P1, then determine a value of P2 in the value set of P2, and then determine the values of P3-P6 in sequence according to the above method, and according to the corresponding determined 6 values, build An eighth set of optical design parameters. The determined values may be randomly selected, and the above-mentioned process of determining the values of P1-P6 may be performed simultaneously, or sequentially in the manner shown above, which is not specifically limited in this embodiment of the present invention.
另外,在上述步骤102中,全景拼接效果的表现形式可以包括:全景图像的成像体验及全景图像的视差等。其中,全景拼接效果越好,对应全景图像的成像体验越好且全景图像的视差越小。基于全景拼接效果的表现形式,且结合上述说明中关于第一预设条件的定义,视差位于预设范围即可认为达到第一预期全景拼接效果。In addition, in the above step 102, the display form of the panorama stitching effect may include: the imaging experience of the panorama image, the parallax of the panorama image, and the like. Wherein, the better the panoramic stitching effect is, the better the imaging experience of the corresponding panoramic image is and the smaller the parallax of the panoramic image is. Based on the expression form of the panorama stitching effect, and in combination with the definition of the first preset condition in the above description, it can be considered that the first expected panorama stitching effect is achieved if the parallax is within a preset range.
本发明实施例提供的图像拼接方法,获取第一光学设计参数组,根据第一光学设计参数组,确定第二光学设计参数组,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。由于,相机加装不同附加镜拍摄全景图像时,写入的光学设计参数不再是固定的,而是基于加装附加镜的相机,从而确定相机加装不同附加镜在拍摄全景图像时实际所需的光学设计参数组。由此确定的光学设计参数组所计算出的视差是满足预设条件的,从而拍摄出的全景图像的拼接效果更好,进而解决了附加镜的硬件加工工艺精度存在偏差的原因导致加装附加镜的相机拍摄全景图像时拼接效果不佳的问题。The image mosaic method provided by the embodiment of the present invention obtains the first optical design parameter group, determines the second optical design parameter group according to the first optical design parameter group, and determines the camera with the additional mirror on the basis of the second optical design parameter group. The set of optical design parameters to be adapted when stitching panoramic images. Because, when the camera is equipped with different add-on mirrors to shoot panoramic images, the written optical design parameters are no longer fixed, but based on the camera with add-on mirrors, so as to determine the actual parameters of the camera with different add-on mirrors when shooting panoramic images. The desired optical design parameter set. The parallax calculated by the optical design parameter group determined in this way satisfies the preset conditions, so that the stitching effect of the captured panoramic images is better, and then it solves the reason why the accuracy of the hardware processing technology of the additional mirror is biased. The problem of poor stitching effect when the mirror camera shoots panoramic images.
结合上述实施例的内容,在一个实施例中,第一光学设计参数组中包括m项光学设计参数中每项光学设计参数的取值集合,m不小于1且不大于第一光学设计参数组中光学设计参数的总项数;相应地,如图2所示,根据第一光学设计参数组,确定第二光学设计参数组,包括:In combination with the content of the above-mentioned embodiments, in one embodiment, the first optical design parameter group includes a set of values for each of the m optical design parameters, and m is not less than 1 and not greater than the first optical design parameter group The total number of optical design parameters in; Correspondingly, as shown in Figure 2, according to the first optical design parameter group, determine the second optical design parameter group, including:
201、将m项光学设计参数中每项光学设计参数均作为第一目标光学设计参数,根据每项第一目标光学设计参数的取值集合,确定每项第一目标光学设计参数的取值区间;201. Use each of the m optical design parameters as the first target optical design parameter, and determine the value range of each first target optical design parameter according to the value set of each first target optical design parameter ;
202、根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组。202. Determine a second optical design parameter group according to the value range of each first target optical design parameter.
在上述步骤201中,根据每项第一目标光学设计参数的取值集合,确定每项第一目标光学设计参数的取值区间,包括:In the above step 201, according to the value set of each first target optical design parameter, the value range of each first target optical design parameter is determined, including:
基于每项第一目标光学设计参数的取值集合,获取每项第一目标光学设计参数的最大值及最小值;Obtaining the maximum value and the minimum value of each first target optical design parameter based on the value set of each first target optical design parameter;
根据每项第一目标光学设计参数的最大值和最小值,确定每项第一目标光学设计参数的取值区间。The value range of each first target optical design parameter is determined according to the maximum and minimum values of each first target optical design parameter.
例如,P1为第一目标光学设计参数,P1的取值集合如表1中第一列所示,可知在P1的取值集合中,P1的最大值为-1.403、最小值为-1.428,对应地,根据P1的最大值为-1.403、最小值为-1.428,所确定的P1的取值区间可为下表2所示:For example, P1 is the first target optical design parameter, and the value set of P1 is shown in the first column in Table 1. It can be seen that in the value set of P1, the maximum value of P1 is -1.403, and the minimum value is -1.428, corresponding to Therefore, according to the fact that the maximum value of P1 is -1.403 and the minimum value is -1.428, the determined value range of P1 can be shown in Table 2 below:
表2Table 2
P1(E-08)P1(E-08)
-1.428-1.428
-1.424-1.424
-1.420-1.420
-1.417-1.417
-1.415-1.415
-1.413-1.413
-1.411-1.411
-1.410-1.410
-1.407-1.407
-1.405-1.405
-1.403-1.403
需要说明的是,表中P1的取值区间可以是按从低到高或者从高到低的顺序排列,本发明实施例对此不作具体限定。It should be noted that the range of values of P1 in the table may be arranged in an order from low to high or from high to low, which is not specifically limited in this embodiment of the present invention.
在上述步骤202中,第一光学设计参数组还包括每项光学设计参数的初始值,相应地,根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组,包括:In the above step 202, the first optical design parameter group also includes the initial value of each optical design parameter, and accordingly, according to the value range of each first target optical design parameter, the second optical design parameter group is determined, including:
在每项第一目标光学设计参数的取值区间中确定一个数值;其中,在每项第一目标光学设计参数的取值区间中确定数值时的数据来源为每项第一目标光学设计参数的取值集合;并根据每项第一目标光学设计参数对应确定的数值以及第一光学设计参数组中其它每项光学设计参数的初始值,构建第九光学设计参数组;计算第九光学设计参数组所对应的视差,若视差不满足第一预设条件,则重复上述确定数值、构建第九光学设计参数组及计算视差的过程,直至计算得到的视差满足第一预设条件,将满足第一预设条件的视差对应的第九光学设计参数组作为第二光学设计参数组。A numerical value is determined in the value range of each first target optical design parameter; wherein, the data source for determining the value in the value range of each first target optical design parameter is the value of each first target optical design parameter Take a value set; and construct a ninth optical design parameter group according to the correspondingly determined values of each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group; calculate the ninth optical design parameter If the parallax corresponding to the group does not meet the first preset condition, repeat the process of determining the value, constructing the ninth optical design parameter group, and calculating the parallax until the calculated parallax satisfies the first preset condition, and will satisfy the second A ninth optical design parameter group corresponding to a parallax of a preset condition is used as a second optical design parameter group.
例如,第一光学设计参数组包括6项光学设计参数,其中,有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6,且第一光学设计参数组包括P1、P3的取值集合及P1-P6的初始值;在P1的取值区间中确定一个数值,在P3的取值区间中确定一个数值,并根据所确定的两个数值及P2、P4、P5、P6的初始值,构建第九光学设计参数组,计算第九光学设计参数组所对应的视差,若视差不满足第一预设条件,则重复上述确定数值、构建第九光学设计参数组及计算视差的过程,直至计算得到的视差满足第一预设条件,将满足第一预设条件的视差对应的第九光学设计参数组作为第二光学设计参数组。需要说明的是,在P1的取值区间中确定一个数值可以是随机选取的,在P3的取值区间中确定一个数值也可以是随机选取的,本发明实施例对此不作具体限定。For example, the first optical design parameter group includes 6 optical design parameters, among which 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional lens distortion curve drift coefficient P6, and the first optical The design parameter group includes the value sets of P1 and P3 and the initial values of P1-P6; a value is determined in the value range of P1, a value is determined in the value range of P3, and according to the determined two values and The initial values of P2, P4, P5, and P6 are used to construct the ninth optical design parameter group, and calculate the parallax corresponding to the ninth optical design parameter group. The optical design parameter set and the process of calculating parallax until the calculated parallax satisfies the first preset condition, and the ninth optical design parameter set corresponding to the parallax satisfying the first preset condition is used as the second optical design parameter set. It should be noted that determining a value in the value range of P1 may be randomly selected, and determining a value in the value range of P3 may also be randomly selected, which is not specifically limited in this embodiment of the present invention.
本发明实施例提供的图像拼接方法,由于不是采用传统的遍历的方式确定第二光学设计参数组,不需要对每项第一目标光学设计参数的取值区间内的所有数值都进行排列组合,从而构成多个第九光学设计参数组;而是在每项第一目标光学设计参数的取值区间中确定一个数值,根据确定的数值及第一光学设计参数组中其它每项光学设计参数的初始值,构建第九光学设计参数组,通过此方式构建的第九光学设计参数组相比于遍历构建的第九光学设计参数组的数量更少,从而参与计算视差的第九光学设计参数组越少,进而能够快速的确定第二光学设计参数组,也即能够快速确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。In the image stitching method provided by the embodiment of the present invention, since the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to arrange and combine all the values in the value range of each first target optical design parameter, Thereby forming a plurality of ninth optical design parameter groups; instead, a numerical value is determined in the value range of each first target optical design parameter, and according to the determined numerical value and other optical design parameters in the first optical design parameter group The initial value is to construct the ninth optical design parameter group, the number of the ninth optical design parameter group constructed in this way is less than that of the ninth optical design parameter group constructed by traversal, so as to participate in the calculation of the ninth optical design parameter group of parallax The smaller the number, the second optical design parameter set can be quickly determined, that is, the optical design parameter set that the camera equipped with an additional mirror is adapted to when stitching panoramic images can be quickly determined.
结合上述实施例的内容,在一个实施例中,每项第一目标光学设计参数的取值集合是根据每项第一目标光学设计参数的初始值进行调整后所得到的;相应地,如图3所示,根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组,包括:Combining the content of the above-mentioned embodiments, in one embodiment, the value set of each first target optical design parameter is obtained after adjustment according to the initial value of each first target optical design parameter; correspondingly, as shown in 3, according to the value interval of each first target optical design parameter, determine the second optical design parameter group, including:
301、将每项第一目标光学设计参数的取值区间分为多个子区间,在每项第一目标光学设计参数的每一子区间中确定一个数值;其中,在每项第一目标光学设计参数的每一子区间中确定数值时的数据来源为每项第一目标光学设计参数的取值集合;301. Divide the value interval of each first target optical design parameter into a plurality of sub-intervals, and determine a value in each sub-interval of each first target optical design parameter; wherein, in each first target optical design parameter The data source for determining the value in each sub-interval of the parameter is the value set of each first target optical design parameter;
302、若m小于第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计参数对应确定的数值以及第一光学设计参数组中其它每项光学设计参数的初始值,构建多个第三光学设计参数组,若m等于第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计参数对应确定的数值,构建多个第三光学设计参数组;302. If m is less than the total number of optical design parameters in the first optical design parameter group, then according to the value corresponding to each first target optical design parameter and the initial value of each other optical design parameter in the first optical design parameter group value, constructing a plurality of third optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, then constructing a plurality of third Optical design parameter set;
303、计算每一第三光学设计参数组所对应的视差,并确定计算得到的所有视差中的第一最小值,若第一最小值不满足第一预设条件,则将每项第一目标光学设计参数的取值区间更新为第一最小值对应的第三光学设计参数组中每项第一目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、 确定数值、构建第三光学设计参数组、计算视差、确定第一最小值以及更新取值区间的过程,直至确定得到的第一最小值满足第一预设条件,将满足第一预设条件的第一最小值对应的第三光学设计参数组作为第二光学设计参数组。303. Calculate the parallax corresponding to each third optical design parameter group, and determine the first minimum value among all the calculated parallaxes. If the first minimum value does not meet the first preset condition, set each first target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each first target optical design parameter in the third optical design parameter group corresponding to the first minimum value, and the above-mentioned sub-interval division, determination of the value, and construction are repeated. The process of the third optical design parameter group, calculating the parallax, determining the first minimum value, and updating the value interval until the first minimum value determined to meet the first preset condition will meet the first minimum value of the first preset condition The corresponding third optical design parameter set serves as the second optical design parameter set.
上述每项第一目标光学设计参数的初始值的获取方式,可参考上述获取每项光学设计参数的初始值相关实施例的内容,此处不再赘述。For the manner of obtaining the initial value of each first target optical design parameter, reference may be made to the content of the above-mentioned embodiments related to obtaining the initial value of each optical design parameter, which will not be repeated here.
为了便于对本发明实施例进行理解,现对“每项第一目标光学设计参数的取值集合是根据每项第一目标光学设计参数的初始值进行调整后所得到的”进行解释说明,其中,对每项第一目标光学设计参数的初始值进行调整,可以基于附加镜镜片曲率、附加镜镜片厚度及空气间隔对应的公差变量对每项第一目标光学设计参数的初始值进行调整。调整的过程可参考上述基于空气间隔的公差变量对6项光学设计参数的初始值进行调整构建第七光学设计参数组的内容,此处不再赘述。需要说明的是,表1中第二列的数值对应就是其中一项第一目标光学设计参数的取值集合,表1中只调整公差变量的数值至1.06,为了使得每项第一目标光学设计参数获取到更多的取值集合,可以调整公差变量至100,甚至更高;本发明实施例对此不作具体限定。In order to facilitate the understanding of the embodiments of the present invention, "the value set of each first target optical design parameter is adjusted according to the initial value of each first target optical design parameter" is now explained, wherein, The initial value of each first target optical design parameter can be adjusted based on the tolerance variables corresponding to the curvature of the add-on mirror sheet, the thickness of the add-on mirror sheet, and the air gap. For the adjustment process, refer to the content of adjusting the initial values of the 6 optical design parameters based on the tolerance variable of the air gap to construct the seventh optical design parameter group, which will not be repeated here. It should be noted that the values in the second column in Table 1 correspond to the value set of one of the first target optical design parameters. In Table 1, only the value of the tolerance variable is adjusted to 1.06, in order to make each first target optical design The parameter obtains more value sets, and the tolerance variable can be adjusted to 100 or even higher; the embodiment of the present invention does not specifically limit this.
在上述步骤301中,将每项第一目标光学设计参数的取值区间分为多个子区间,其中,子区间的划分个数可以为两个,也可以为多个;子区间的划分个数越少,每次每项第一目标光学设计参数选取的数值越少,从而每次构成的第三光学设计参数组的数量越少,也即需要计算视差的第三光学设计参数组的数量越少,从而确定计算得到的所有视差中的第一最小值所需的时间越短,也即确定第二光学设计参数组所需的时长越短。In the above step 301, the value interval of each first target optical design parameter is divided into a plurality of sub-intervals, wherein, the number of divisions of the sub-intervals can be two or multiple; the number of divisions of the sub-intervals The less, the fewer the values selected for each first target optical design parameter each time, so that the number of third optical design parameter groups formed each time is smaller, that is, the number of third optical design parameter groups that need to calculate parallax is smaller. The less, so that the time required to determine the first minimum value among all the calculated parallaxes is shorter, that is, the time required to determine the second optical design parameter set is shorter.
在上述步骤301中,还是以第一光学设计参数组包括6项光学设计参数为例,其中,有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6,对构建多个第三光学设计参数组的具体过程进行解释说明:In the above step 301, it is still taken as an example that the first optical design parameter group includes 6 optical design parameters, of which 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional mirror distortion curve The drift coefficient P6 explains the specific process of constructing multiple third optical design parameter groups:
例如,m为1、多个子区间为2;其中,m为1,也即第一光学设计参数组中包括1项光学设计参数的取值集合,该项光学设计参数可以为P1-P6中的任一项光学设计参数,本发明实施例对此不作具体限定,包括但不限于:该项光学设计参数为P1,也即将P1作为第一目标光学设计参数,此时,m小于第一光学设计参数组中光学设计参数的总项数。对应地,构建多个第三光学设计参数组的具体过程可以为:将P1的取值区间分为两个子区间,在P1的其中一个子区间中随机选取一个数值,根据P1对应选取的数值以及P2-P6对应的初始值,构成一个第三光学设计参数组,在P1的另一个子区间中随机选取一个数值,根据P1对应选取的数值以及P2-P6对应的初始值,构成另一个第三光学设计参数组,一共构成两个第三光学设 计参数组。For example, m is 1, and the multiple sub-intervals are 2; wherein, m is 1, that is, the first optical design parameter group includes a value set of an optical design parameter, and the optical design parameter can be one of P1-P6 Any optical design parameter, the embodiment of the present invention does not specifically limit it, including but not limited to: the optical design parameter is P1, that is, P1 is used as the first target optical design parameter, at this time, m is less than the first optical design parameter The total number of items of optical design parameters in the parameter group. Correspondingly, the specific process of constructing multiple third optical design parameter groups may be as follows: divide the value range of P1 into two sub-ranges, randomly select a value in one of the sub-ranges of P1, and according to the correspondingly selected value of P1 and The initial values corresponding to P2-P6 constitute a third optical design parameter group, a value is randomly selected in another sub-interval of P1, and another third optical design parameter group is formed according to the selected value corresponding to P1 and the initial value corresponding to P2-P6 The optical design parameter groups constitute two third optical design parameter groups in total.
例如,m为2、多个子区间为2,其中,m为2,也即第一光学设计参数组中包括2项光学设计参数中每项光学设计参数的取值集合,这2项光学设计参数可以为P1-P6中的任意两项光学设计参数,本发明实施例对此不作具体限定,包括但不限于:这2项光学设计参数为P1、P2,也即将P1、P2这2项光学设计参数均作为第一目标光学设计参数。此时,m小于第一光学设计参数组中光学设计参数的总项数。对应地,构建多个第三光学设计参数组的具体过程可以为:将P1、P2的取值区间均分为两个子区间,在P1的每个子区间中随机选取一个数值,在P2的每个子区间中也随机选取一个数值,则根据两项第一目标光学设计参数对应选取的4个数值以及第一光学设计参数组中P3-P6对应的初始值,一共构成4个第三光学设计参数组。For example, m is 2, and multiple sub-intervals are 2, wherein m is 2, that is, the first optical design parameter group includes a value set of each optical design parameter in the 2 optical design parameters, and the 2 optical design parameters It can be any two optical design parameters in P1-P6, which is not specifically limited in the embodiment of the present invention, including but not limited to: these two optical design parameters are P1 and P2, that is, the two optical design parameters of P1 and P2 The parameters are all used as the first target optical design parameters. In this case, m is smaller than the total number of items of optical design parameters in the first optical design parameter group. Correspondingly, the specific process of constructing multiple third optical design parameter groups can be as follows: divide the value intervals of P1 and P2 into two subintervals, randomly select a value in each subinterval of P1, and select a value in each subinterval of P2. A numerical value is also randomly selected in the interval, and a total of 4 third optical design parameter groups are formed according to the 4 corresponding selected values of the two first target optical design parameters and the initial values corresponding to P3-P6 in the first optical design parameter group .
依此类推,例如,m为3、多个子区间为2,其中,m为3,也即第一光学设计参数组中包括3项光学设计参数中每项光学设计参数的取值集合,这3项光学设计参数可以为P1-P6中的任意三项光学设计参数,本发明实施例对此不作具体限定,包括但不限于:这三项光学设计参数为P1、P2及P4,也即将P1、P2、P4这3项光学设计参数均作为第一目标光学设计参数。此时,m小于第一光学设计参数组中光学设计参数的总项数。对应地,构建多个第三光学设计参数组的具体过程可以为:在P1、P2、P4的每个子区间中均随机选取一个数值,则根据3项第一目标光学设计参数对应选取的6个数值以及第一光学设计参数组中P3、P5、P6对应的初始值,构成2 3个第三光学设计参数组,也即构成8个第三光学设计参数组。 And so on, for example, m is 3, a plurality of sub-intervals is 2, wherein m is 3, that is, the first optical design parameter group includes a value set of each optical design parameter in the 3 optical design parameters, these 3 The optical design parameter can be any three optical design parameters in P1-P6, which is not specifically limited in the embodiment of the present invention, including but not limited to: these three optical design parameters are P1, P2 and P4, that is, P1, The three optical design parameters P2 and P4 are all used as the first target optical design parameters. In this case, m is smaller than the total number of items of optical design parameters in the first optical design parameter group. Correspondingly, the specific process of constructing multiple third optical design parameter groups can be as follows: randomly select a value in each sub-interval of P1, P2, and P4, and then select 6 correspondingly selected according to the 3 first target optical design parameters The numerical values and the initial values corresponding to P3, P5, and P6 in the first optical design parameter group form 2 to 3 third optical design parameter groups, that is, eight third optical design parameter groups.
例如,m为6、多个子区间为2,其中,m为6,也即第一光学设计参数组中包括6项光学设计参数中每项光学设计参数的取值集合,这6项光学设计参数即为P1-P6,也即将P1-P6这6项光学设计参数均作为第一目标光学设计参数,此时,m等于第一光学设计参数组中光学设计参数的总项数。对应地,构建多个第三光学设计参数组的具体过程可以为:将P1-P6的取值区间均分为两个子区间,在P1-P6的每个子区间中均随机选取一个数值,所最终确定的数值一共为12个,则根据这6项第一目标光学设计参数对应确定的12个数值,最终可构成2 6个第三光学设计参数组。 For example, m is 6, and multiple sub-intervals are 2, wherein m is 6, that is, the first optical design parameter group includes a value set of each optical design parameter in the 6 optical design parameters, and the 6 optical design parameters That is, P1-P6, that is, the six optical design parameters of P1-P6 are all used as the first target optical design parameters. At this time, m is equal to the total number of optical design parameters in the first optical design parameter group. Correspondingly, the specific process of constructing multiple third optical design parameter groups can be as follows: divide the value interval of P1-P6 into two sub-intervals, randomly select a value in each sub-interval of P1-P6, and finally There are 12 determined numerical values in total, and according to the 12 determined numerical values corresponding to the 6 first target optical design parameters, 26 third optical design parameter groups can finally be formed.
本发明实施例提供的图像拼接方法,由于不是采用传统的遍历的方式确定第二光学设计参数组,不需要对每项第一目标光学设计参数的取值区间内的所有数值都进行排列组合,从而构成多个第三光学设计参数组;而是采用将每项第一目标光学设计参数的取值区间分为多个子区间,在每项第一目标光学设计参数的每一子区间中确定一个数值,从而构建多个第三光学设计参数组,并计算每个第三光学设计参数所对应的视差,将视差满足第一预设条件的第三光学设计参数作为第二光学设计参数组,通过此方式构建的第三光学设计参数组相比于遍历构建的第三光学设计参数组的数量更少,从而参与计算视差的第三光学设计参 数组越少,进而能够快速的确定第二光学设计参数组,也即能够快速确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。In the image stitching method provided by the embodiment of the present invention, since the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to arrange and combine all the values in the value range of each first target optical design parameter, Thus forming a plurality of third optical design parameter groups; instead, the value range of each first target optical design parameter is divided into a plurality of sub-intervals, and one is determined in each sub-interval of each first target optical design parameter value, thereby constructing a plurality of third optical design parameter groups, and calculating the parallax corresponding to each third optical design parameter, and using the third optical design parameter whose parallax satisfies the first preset condition as the second optical design parameter group, by Compared with the third optical design parameter set constructed by traversal, the third optical design parameter set constructed in this way is less, so the third optical design parameter set involved in the calculation of parallax is less, and the second optical design can be quickly determined The parameter set, that is, the optical design parameter set that can be quickly determined when the camera with the additional mirror is adapted when stitching panoramic images.
结合上述实施例的内容,在一个实施例中,m大于1,对于m项第一目标光学设计参数中的n项第一目标光学设计参数,将n项第一目标光学设计参数中每项第一目标光学设计参数均作为第二目标光学设计参数;In combination with the content of the above-mentioned embodiments, in one embodiment, m is greater than 1, and for the n items of the first target optical design parameters among the m items of the first target optical design parameters, each of the n items of the first target optical design parameters A target optical design parameter is used as a second target optical design parameter;
其中,每项第二目标光学设计参数对视差的影响程度均大于每项第一目标光学设计参数,n不小于1且小于m,每项第二目标光学设计参数所确定的历史数值构成每项第二目标光学设计参数的取值集合,由每项第二目标光学设计参数的取值集合确定每项第二目标光学设计参数的取值区间;Wherein, the degree of influence of each second target optical design parameter on parallax is greater than that of each first target optical design parameter, n is not less than 1 and less than m, and the historical values determined by each second target optical design parameter constitute each The value set of the second target optical design parameter, the value range of each second target optical design parameter is determined by the value set of each second target optical design parameter;
相应地,如图4所示,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, as shown in FIG. 4, according to the second optical design parameter group, determine the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images, including:
401、将每项第二目标光学设计参数的取值区间分为多个子区间,在每项第二目标光学设计参数的每一子区间中确定一个数值;其中,在每项第二目标光学设计参数的每一子区间中确定数值时的数据来源为每项第二目标光学设计参数的取值集合;401. Divide the value interval of each second target optical design parameter into a plurality of sub-intervals, and determine a value in each sub-interval of each second target optical design parameter; wherein, in each second target optical design parameter The data source for determining the value in each sub-interval of the parameter is the value set of each second target optical design parameter;
402、若m小于第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值、第二光学设计参数组中每项第一目标光学设计参数对应确定的数值及第二光学设计参数组中其它每项光学设计参数的初始值,构建多个第四光学设计参数组,若m等于第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值及第二光学设计参数组中每项第一目标光学设计参数对应确定的数值,构建多个第四光学设计参数组;402. If m is less than the total number of optical design parameters in the first optical design parameter group, according to the correspondingly determined value of each second target optical design parameter, each first target optical design parameter in the second optical design parameter group Corresponding to the determined value and the initial value of each other optical design parameter in the second optical design parameter group, construct a plurality of fourth optical design parameter groups, if m is equal to the total number of optical design parameters in the first optical design parameter group, Then construct multiple fourth optical design parameter groups according to the correspondingly determined value of each second target optical design parameter and the corresponding determined value of each first target optical design parameter in the second optical design parameter group;
403、计算每一第四光学设计参数组所对应的视差,并确定计算得到的所有视差中的第二最小值,若第二最小值不满足第二预设条件,则将每项第二目标光学设计参数的取值区间更新为第二最小值对应的第四光学设计参数组中每项第二目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第四光学设计参数组、计算视差、确定第二最小值以及更新取值区间的过程,直至确定得到的第二最小值满足第二预设条件,将满足第二预设条件的第二最小值对应的第四光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。403. Calculate the parallax corresponding to each fourth optical design parameter group, and determine the second minimum value among all the calculated parallaxes. If the second minimum value does not meet the second preset condition, set each second target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each second target optical design parameter in the fourth optical design parameter group corresponding to the second minimum value, and the above-mentioned division of the sub-interval, determination of the value, and construction are repeated. The process of the fourth optical design parameter group, calculating the parallax, determining the second minimum value, and updating the value interval until the second minimum value is determined to meet the second preset condition, and the second minimum value that will meet the second preset condition The corresponding fourth optical design parameter set is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
为了便于对本发明实施例进行理解,现对“每项第二目标光学设计参数所确定的历史数值”进行解释说明。每项第二目标光学设计参数所确定的历史数值为所构建的多个第三光学设计参数组中每项第二目标光学设计参数的数值。In order to facilitate the understanding of the embodiments of the present invention, the "historical value determined for each second target optical design parameter" is now explained. The determined historical value of each second target optical design parameter is the value of each second target optical design parameter in the plurality of third optical design parameter groups constructed.
在上述步骤402中,构建多个第四光学设计参数组的具体过程可以如下:In the above step 402, the specific process of constructing multiple fourth optical design parameter groups may be as follows:
例如,第一光学设计参数组包括6项光学设计参数,其中,有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6,n=1,多个子区间为2,且P6对视差的影响程度大于P1-P5,也即将P6这一项光学设计参数作为第二目标光学设计参数。其中,第二目标光学设计参数P6的取值集合,是由“m为6、多个子区间为2”时,所构建的多个第三光学设计参数组中P6的所有数值。将第二目标光学设计参数P6的取值区间分为2个子区间,在第二目标光学设计参数P6的每个子区间内随机选取一个数值,则根据第二目标光学设计参数P6对应选取的数值以及第二光学设计参数组中P1-P5对应确定的数值,最终构建两个第四光学设计参数组。需要说明的是,在第二目标光学设计参数P6的每个子区间内所随机选取的数值为第二目标光学设计参数P6的取值集合中的数值。For example, the first optical design parameter group includes 6 optical design parameters, among which 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional lens distortion curve drift coefficient P6, n=1, The number of sub-intervals is 2, and the degree of influence of P6 on parallax is greater than that of P1-P5, that is, the optical design parameter of P6 is taken as the second target optical design parameter. Wherein, the value set of the second target optical design parameter P6 is all values of P6 in the plurality of third optical design parameter groups constructed when "m is 6 and the plurality of sub-intervals is 2". The value interval of the second target optical design parameter P6 is divided into two sub-intervals, and a value is randomly selected in each sub-interval of the second target optical design parameter P6, then according to the corresponding selected value of the second target optical design parameter P6 and P1-P5 in the second optical design parameter set correspond to the determined values, and finally two fourth optical design parameter sets are constructed. It should be noted that the randomly selected values in each sub-interval of the second target optical design parameter P6 are values in the value set of the second target optical design parameter P6.
相应地,在上述步骤403中,计算所构建两个第四光学设计参数组所对应的视差,并确定计算得到的两个视差中的第二最小值,若第二最小值不满足第二预设条件,则将第二目标光学设计参数P6的取值区间更新为第二最小值对应的第四光学设计参数组中第二目标光学设计参数P6对应确定的数值所对应的子区间。Correspondingly, in the above step 403, the parallax corresponding to the two constructed fourth optical design parameter groups is calculated, and the second minimum value of the two calculated parallaxes is determined, if the second minimum value does not meet the second predetermined If the condition is set, the value range of the second target optical design parameter P6 is updated to the sub-range corresponding to the determined value of the second target optical design parameter P6 in the fourth optical design parameter group corresponding to the second minimum value.
为了便于理解,第二预设条件的相关解释可如下,第二预设条件可以与第一预设条件一致;其中,第二预设条件中的视差预设范围较第一预设条件更低,也即第二预期全景拼接效果较第一预期全景拼接效果的要求更高。For ease of understanding, the relevant explanation of the second preset condition can be as follows, the second preset condition can be consistent with the first preset condition; wherein, the parallax preset range in the second preset condition is lower than the first preset condition , that is, the second expected panoramic stitching effect has higher requirements than the first expected panoramic stitching effect.
本发明实施例提供的图像拼接方法,由于在确定满足第一预设条件的第二光学设计参数组之后,根据对视差的影响程度高的n项第一目标光学设计参数,再次在每项第二目标光学设计参数的取值集合中确定每项第二目标光学设计参数的数值,从而使得最终确定的第二光学设计参数组更加精确,根据该光学设计参数对全景图像进行拼接时,全景图像的拼接效果更好。In the image mosaic method provided by the embodiment of the present invention, after determining the second optical design parameter group that satisfies the first preset condition, according to the n first target optical design parameters that have a high degree of influence on parallax, again in each of the first The value of each second target optical design parameter is determined in the value set of the second target optical design parameter, so that the final determined second optical design parameter group is more accurate. When the panoramic image is stitched according to the optical design parameter, the panoramic image The splicing effect is better.
结合上述实施例的内容,在一个实施例中,第一光学设计参数组中包括每项光学设计参数的取值集合;相应地,根据第一光学设计参数组,确定第二光学设计参数组,包括:In combination with the content of the above-mentioned embodiments, in one embodiment, the first optical design parameter group includes a value set of each optical design parameter; correspondingly, according to the first optical design parameter group, determine the second optical design parameter group, include:
根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,并由每项光学设计参数的候选值构成第二光学设计参数组;其中,每项光学设计参数的候选值是基于已确定候选值的光学设计参数的基础上所确定的。According to the value set of each optical design parameter, determine the candidate value of each optical design parameter one by one, and form the second optical design parameter group by the candidate value of each optical design parameter; wherein, the candidate value of each optical design parameter is determined based on the optical design parameters for which candidate values have been determined.
本发明实施例提供的图像拼接方法,由于不是基于第一光学设计参数组中每项光学设计参数的取值集合从而确定第二光学设计参数组,而是通过在确定每项光学设计参数的候选值时,将已确定候选值的光学设计参数带入计算视差的过程中,从而减少计算视差的次数,进而降低确定第二光学设计参数组所耗费的时长。The image stitching method provided by the embodiment of the present invention is not based on the value set of each optical design parameter in the first optical design parameter group to determine the second optical design parameter group, but by determining the candidate of each optical design parameter value, the optical design parameters whose candidate values have been determined are brought into the process of calculating the parallax, thereby reducing the number of times of calculating the parallax, thereby reducing the time spent in determining the second set of optical design parameters.
结合上述实施例的内容,在一个实施例中,由每项目标光学设计参数的取值集合确定每项光学设计参数的取值区间,由已确定候选值的光学设计参数构成第一光学设计参数集合,由未确定候选值的光学设计参数构成第二光学设计参数集合,第一光学设计参数集合中光学设计参数的总项数不小于0且小于第一光学设计参数组中光学设计参数的总项数;In combination with the content of the above-mentioned embodiments, in one embodiment, the value range of each optical design parameter is determined by the value set of each target optical design parameter, and the optical design parameters whose candidate values have been determined constitute the first optical design parameter Set, the second set of optical design parameters is composed of optical design parameters whose candidate values have not been determined, the total number of optical design parameters in the first optical design parameter set is not less than 0 and less than the total number of optical design parameters in the first optical design parameter group number of items;
相应地,如图5所示,根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,包括:Correspondingly, as shown in Figure 5, according to the value set of each optical design parameter, the candidate value of each optical design parameter is determined one by one, including:
501、对于第二光学设计参数集合中任一项光学设计参数P,将P的取值区间分为多个子区间,在P的每一子区间中确定一个数值;其中,在P的每一子区间中确定数值时的数据来源为P的取值集合,第一预设条件中包含P对应的子预设条件;501. For any optical design parameter P in the second set of optical design parameters, divide the value interval of P into multiple subintervals, and determine a value in each subinterval of P; wherein, in each subinterval of P The data source when determining the value in the interval is the value set of P, and the first preset condition includes the sub-preset condition corresponding to P;
502、若第一光学设计参数集合中光学设计参数的总项数大于0,则根据第一光学设计参数集合中每项光学设计参数的候选值、第二光学设计参数集合中除P之外的其它每项光学设计参数的初始值以及P对应确定的数值,构建多个第五光学设计参数组,若第一光学设计参数集合中光学设计参数的总项数为0,则根据第二光学设计参数集合中除P之外的其它每项光学设计参数的初始值以及P对应确定的数值,构建多个第五光学设计参数组;502. If the total number of optical design parameters in the first optical design parameter set is greater than 0, then according to the candidate value of each optical design parameter in the first optical design parameter set, the value other than P in the second optical design parameter set The initial value of each other optical design parameter and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups. If the total number of optical design parameters in the first optical design parameter set is 0, then according to the second optical design parameter set The initial value of each optical design parameter other than P in the parameter set and the value corresponding to P are determined to construct a plurality of fifth optical design parameter groups;
503、计算每一第五光学设计参数组所对应的视差,并确定计算得到的所有视差中的第三最小值,若第三最小值不满足P对应的子预设条件,则将P的取值区间更新为第三最小值对应的第五光学设计参数组中P对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第五光学设计参数组、计算视差、确定第三最小值以及更新取值区间的过程,直至确定得到的第三最小值满足P对应的子预设条件,将满足P对应的子预设条件的第三最小值对应的第五光学设计参数组中P对应确定的数值,作为P的候选值。503. Calculate the parallax corresponding to each fifth optical design parameter group, and determine the third minimum value among all the calculated parallaxes, and if the third minimum value does not meet the sub-preset condition corresponding to P, take the value of P The value interval is updated to the subinterval corresponding to the determined value of P in the fifth optical design parameter group corresponding to the third minimum value, repeating the above division of subintervals, determining the value, constructing the fifth optical design parameter group, calculating parallax, and determining the first Three minimum values and the process of updating the value interval until the third minimum value obtained is determined to meet the sub-preset condition corresponding to P, and the fifth optical design parameter group corresponding to the third minimum value corresponding to the sub-preset condition corresponding to P will be satisfied In P corresponding to the determined value, as a candidate value of P.
在上述步骤501中,为了便于理解,P对应的子预设条件的相关解释可如下,P对应的子预设条件可以与第一预设条件一致;其中,P对应的子预设条件中的视差预设范围较第一预设条件更低,使组成的第二光学设计参数组对应的视差大小满足第一预设条件。In the above step 501, in order to facilitate understanding, the relevant explanation of the sub-preset condition corresponding to P can be as follows, the sub-preset condition corresponding to P can be consistent with the first preset condition; wherein, in the sub-preset condition corresponding to P The preset parallax range is lower than the first preset condition, so that the parallax corresponding to the formed second optical design parameter group satisfies the first preset condition.
还是以第一光学设计参数组包括6项光学设计参数,且有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6为例,对逐一确定每项光学设计参数的候选值的具体过程进行解释说明:Or take the first optical design parameter group including 6 optical design parameters, and 5 items are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 item is the additional lens distortion curve drift coefficient P6 as an example, to determine one by one The specific process of the candidate value of each optical design parameter is explained:
在上述步骤502中,例如,第一光学设计参数集合中包括P1的候选值、第二光学设计参数集合中包括P2-P6的取值集合、光学设计参数P为P2、将P2的取值区间分为两个子区间。此时,第一光学设计参 数集合中光学设计参数的总项数大于0。逐一确定每项光学设计参数的候选值的具体过程可以如下所示:在P2的其中一个子区间中随机选取一个数值,根据P2对应选取的数值、P3-P6的初始值以及P1的候选值,构成一个第五光学设计参数组,在P2的另一个子区间中随机选取一个数值,根据P2对应选取的数值、P3-P6的初始值以及P1的候选值,构成另一个第五光学设计参数组,一共构成两个第五光学设计参数组。In the above step 502, for example, the first optical design parameter set includes the candidate value of P1, the second optical design parameter set includes the value set of P2-P6, the optical design parameter P is P2, and the value range of P2 is into two subranges. At this time, the total number of items of optical design parameters in the first optical design parameter set is greater than zero. The specific process of determining the candidate values of each optical design parameter one by one can be as follows: randomly select a value in one of the sub-intervals of P2, according to the corresponding selected value of P2, the initial values of P3-P6 and the candidate value of P1, Constitute a fifth optical design parameter group, randomly select a value in another subinterval of P2, and form another fifth optical design parameter group according to the corresponding selected value of P2, the initial value of P3-P6 and the candidate value of P1 , forming two fifth optical design parameter groups in total.
对应地,在上述步骤503中,计算两个第五光学设计参数组所对应的视差,并确定计算得到的两个视差中的第三最小值,若第三最小值不满足P2对应的子预设条件,则将P2的取值区间更新为第三最小值对应的第五光学设计参数组中P2对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第五光学设计参数组、计算视差、确定第三最小值以及更新取值区间的过程,直至确定得到的第三最小值满足P2对应的子预设条件,将满足P2对应的子预设条件的第三最小值对应的第五光学设计参数组中P2对应确定的数值,作为P2的候选值。此时,第一光学设计参数集合中包括P1、P2的候选值,第二光学设计参数集合中包括P3-P6的取值集合。Correspondingly, in the above step 503, the parallax corresponding to the two fifth optical design parameter groups is calculated, and the third minimum value of the two calculated parallaxes is determined, if the third minimum value does not satisfy the sub-prediction corresponding to P2 If the condition is set, the value interval of P2 is updated to the subinterval corresponding to the determined value of P2 in the fifth optical design parameter group corresponding to the third minimum value, and the above division of subintervals, determination of the value, and construction of the fifth optical design are repeated. The process of parameter grouping, calculating parallax, determining the third minimum value, and updating the value interval until the third minimum value is determined to meet the sub-preset condition corresponding to P2, and the third minimum value of the sub-preset condition corresponding to P2 will be satisfied P2 in the corresponding fifth optical design parameter group corresponds to a determined value, which is used as a candidate value of P2. At this time, the first set of optical design parameters includes candidate values of P1 and P2, and the second set of optical design parameters includes a set of values of P3-P6.
在上述步骤502中,例如,第一光学设计参数集合中为空、第二光学设计参数集合中包括P1-P6的取值集合、光学设计参数P为P1、将P1的取值区间分为两个子区间。此时,第一光学设计参数集合中光学设计参数的总项数为0。逐一确定每项光学设计参数的候选值的具体过程可以如下所示:在P1的其中一个子区间中随机选取一个数值,根据P1对应选取的数值以及P2-P6的初始值,构成一个第五光学设计参数组,在P1的另一个子区间中随机选取一个数值,根据P1对应选取的数值以及P2-P6的初始值,构成另一个第五光学设计参数组,一共构成两个第五光学设计参数组。In the above step 502, for example, the first optical design parameter set is empty, the second optical design parameter set includes a value set of P1-P6, the optical design parameter P is P1, and the value range of P1 is divided into two a sub-interval. At this time, the total number of items of optical design parameters in the first optical design parameter set is zero. The specific process of determining the candidate values of each optical design parameter one by one can be as follows: randomly select a value in one of the sub-intervals of P1, and form a fifth optical To design a parameter group, randomly select a value in another sub-interval of P1, and form another fifth optical design parameter group according to the corresponding selected value of P1 and the initial values of P2-P6, forming two fifth optical design parameters in total Group.
对应地,在上述步骤503中,计算两个第五光学设计参数组所对应的视差,并确定计算得到的两个视差中的第三最小值,若第三最小值不满足P1对应的子预设条件,则将P1的取值区间更新为第三最小值对应的第五光学设计参数组中P1对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第五光学设计参数组、计算视差、确定第三最小值以及更新取值区间的过程,直至确定得到的第三最小值满足P1对应的子预设条件,将满足P1对应的子预设条件的第三最小值对应的第五光学设计参数组中P1对应确定的数值,作为P1的候选值。此时,第一光学设计参数集合中包括P1的候选值,第二光学设计参数集合中包括P2-P6的取值集合。Correspondingly, in the above step 503, the parallax corresponding to the two fifth optical design parameter groups is calculated, and the third minimum value of the two calculated parallaxes is determined, if the third minimum value does not satisfy the sub-prediction corresponding to P1 If the condition is set, the value range of P1 is updated to the sub-range corresponding to the determined value of P1 in the fifth optical design parameter group corresponding to the third minimum value, and the above-mentioned division of sub-ranges, determination of the value, and construction of the fifth optical design are repeated. The process of parameter grouping, calculating parallax, determining the third minimum value, and updating the value interval until the third minimum value is determined to meet the sub-preset condition corresponding to P1, and the third minimum value of the sub-preset condition corresponding to P1 will be satisfied P1 in the corresponding fifth optical design parameter group corresponds to a determined value, which is used as a candidate value of P1. At this time, the first set of optical design parameters includes a candidate value of P1, and the second set of optical design parameters includes a set of values of P2-P6.
本发明实施例提供的图像拼接方法,由于不是采用传统的遍历的方式确定第二光学设计参数组,不需要对第一光学设计参数组中每项光学设计参数的取值区间内的所有数值都进行排列组合,从而构成多个第五光学设计参数组;而是采用由已确定候选值的光学设计参数构成第一光学设计参数集合,由未确定候选值的光学设计参数构成第二光学设计参数集合,将每项未确定候选值的光学设计参数的取值区间分为多个 子区间,在每项未确定候选值的光学设计参数的每一子区间中确定一个数值,从而构建多个第五光学设计参数组,计算所构建的每个第五光学设计参数组的视差,确定视差中的最小值,并判断最小值是否符合每项未确定候选值的光学设计参数对应的子预设条件,如果不符合,则将每项未确定候选值的光学设计参数的取值区间更新为第三最小值对应的第五光学设计参数组中每项未确定候选值的光学设计参数对应确定的数值所对应的子区间,从而缩减区间的范围,采用逼近的方式确定最终视差满足子预设条件的第五光学设计参数值组。通过此方式构建的第五光学设计参数组相比于遍历构建的第五光学设计参数组的数量更少,从而参与计算视差的第五光学设计参数组越少,进而能够快速的确定第二光学设计参数组,也即能够快速确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。In the image mosaic method provided by the embodiment of the present invention, since the second optical design parameter group is not determined by the traditional traversal method, it is not necessary to check all the values in the value range of each optical design parameter in the first optical design parameter group. Permutation and combination are carried out to form a plurality of fifth optical design parameter groups; instead, the first optical design parameter set is formed by the optical design parameters whose candidate values have been determined, and the second optical design parameter is formed by the optical design parameters whose candidate values have not been determined. set, dividing the value interval of each optical design parameter with undetermined candidate values into a plurality of subintervals, and determining a value in each subinterval of each optical design parameter with undetermined candidate values, thereby constructing multiple fifth An optical design parameter group, calculating the disparity of each fifth optical design parameter group constructed, determining the minimum value in the disparity, and judging whether the minimum value meets the sub-preset conditions corresponding to each optical design parameter whose candidate value has not been determined, If not, update the value interval of the optical design parameter of each undetermined candidate value to the value determined corresponding to the optical design parameter of each undetermined candidate value in the fifth optical design parameter group corresponding to the third minimum value The corresponding sub-intervals are used to reduce the range of the intervals, and an approximation method is used to determine the fifth optical design parameter value group whose final parallax satisfies the sub-preset conditions. Compared with the fifth optical design parameter set constructed by traversal, the fifth optical design parameter set constructed in this way is less, so the fifth optical design parameter set involved in the calculation of parallax is less, and the second optical design parameter set can be quickly determined. The design parameter set, that is, the optical design parameter set that can be quickly determined when the camera with the additional mirror is adapted when stitching panoramic images.
结合上述实施例的内容,在一个实施例中,对于第二光学设计参数组中的t项光学设计参数,将t项光学设计参数中每项光学设计参数均作为第三目标光学设计参数;Combining the content of the above embodiment, in one embodiment, for the t optical design parameters in the second optical design parameter group, each of the t optical design parameters is used as the third target optical design parameter;
其中,每项第三目标光学设计参数对视差的影响程度均大于第二光学设计参数组中其它每项光学设计参数,t不小于1且小于第二光学设计参数组中光学设计参数的总项数,每项第三目标光学设计参数所确定的历史数值构成每项第三目标光学设计参数的取值集合,由每项第三目标光学设计参数的取值集合确定每项第三目标光学设计参数的取值区间;Wherein, the degree of influence of each third target optical design parameter on parallax is greater than that of other optical design parameters in the second optical design parameter group, and t is not less than 1 and less than the total number of optical design parameters in the second optical design parameter group The historical value determined by each third target optical design parameter constitutes the value set of each third target optical design parameter, and each third target optical design is determined by the value set of each third target optical design parameter The value range of the parameter;
相应地,如图6所示,根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, as shown in FIG. 6, according to the second optical design parameter group, determine the optical design parameter group that the camera equipped with an additional mirror is suitable for stitching panoramic images, including:
601、将每项第三目标光学设计参数的取值区间分为多个子区间,在每项第三目标光学设计参数的每一子区间中确定一个数值;其中,在每项第三目标光学设计参数的每一子区间中确定数值时的数据来源为每项第三目标光学设计参数的取值集合;601. Divide the value interval of each third target optical design parameter into multiple sub-intervals, and determine a value in each sub-interval of each third target optical design parameter; wherein, in each third target optical design parameter The data source for determining the value in each sub-interval of the parameter is the value set of each third target optical design parameter;
602、根据每项第三目标光学设计参数对应确定的数值及第二光学设计参数组中其它每项光学设计参数的候选值,构建多个第六光学设计参数组;602. Construct multiple sixth optical design parameter groups according to the correspondingly determined value of each third target optical design parameter and the candidate value of each other optical design parameter in the second optical design parameter group;
603、计算每一第六光学设计参数组所对应的视差,并确定计算得到的所有视差中的第四最小值,若第四最小值不满足第三预设条件,则将每项第三目标光学设计参数的取值区间更新为第四最小值对应的第六光学设计参数组中每项第三目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第六光学设计参数组、计算视差、确定第四最小值以及更新取值区间的过程,直至确定得到的第四最小值满足第三预设条件,将满足第三预设条件的第四最小值对应的第六光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。603. Calculate the parallax corresponding to each sixth optical design parameter group, and determine the fourth minimum value among all the calculated parallaxes. If the fourth minimum value does not meet the third preset condition, set each third target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each third target optical design parameter in the sixth optical design parameter group corresponding to the fourth minimum value, repeating the above-mentioned sub-interval division, determination of the value, and construction The process of the sixth optical design parameter group, calculating the parallax, determining the fourth minimum value, and updating the value range until the fourth minimum value is determined to meet the third preset condition, and the fourth minimum value that will meet the third preset condition The corresponding sixth optical design parameter set is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
为了便于对本发明实施例进行理解,现对“每项第三目标光学设计参数所确定的历史数值”进行解释 说明。每项第三目标光学设计参数所确定的历史数值为所构建的多个第五光学设计参数组中每项第三目标光学设计参数的数值。In order to facilitate the understanding of the embodiments of the present invention, the "historical value determined for each third target optical design parameter" is now explained. The determined historical value of each third target optical design parameter is the value of each third target optical design parameter in the constructed plurality of fifth optical design parameter groups.
在上述步骤602中,构建多个第六光学设计参数组的具体过程可以如下:In the above step 602, the specific process of constructing multiple sixth optical design parameter groups may be as follows:
例如,第二光学设计参数组包括6项光学设计参数,其中,有5项是镜头光学参数曲线拟合4阶多项式系数P1-P5,1项是附加镜畸变曲线漂移系数P6,t=2,且P1、P2对视差的影响程度大于P3-P6,也即将P1、P2这两项光学设计参数均作为第三目标光学设计参数。其中,第三目标光学设计参数P1的取值集合,是由“光学设计参数P为P1、多个子区间为2”时,所构建的多个第五光学设计参数组中P1的所有数值;第三目标光学设计参数P2的取值集合,是由“光学设计参数P为P2、多个子区间为2”时,所构建的多个第五光学设计参数组中P2的所有数值。将P1、P2的取值区间均分为两个子区间,在P1的每个子区间中随机选取一个数值,在P2的每个子区间中也随机选取一个数值,则根据两项第三目标光学设计参数对应选取的4个数值以及第二光学设计参数组中P3-P6的候选值,一共构成4个第六光学设计参数组。需要说明的是,在第三目标光学设计参数P1的每个子区间内所随机选取的数值为第三目标光学设计参数P1的取值集合中的数值,在第三目标光学设计参数P2的每个子区间内所随机选取的数值为第三目标光学设计参数P2的取值集合中的数值。For example, the second optical design parameter group includes 6 optical design parameters, 5 of which are lens optical parameter curve fitting 4th order polynomial coefficients P1-P5, and 1 is the additional mirror distortion curve drift coefficient P6, t=2, In addition, P1 and P2 have greater influence on parallax than P3-P6, that is, the two optical design parameters P1 and P2 are taken as the third target optical design parameters. Among them, the value set of the third target optical design parameter P1 is all the values of P1 in the multiple fifth optical design parameter groups constructed when "the optical design parameter P is P1 and the multiple sub-intervals are 2"; The value set of the three-objective optical design parameter P2 is all values of P2 in the multiple fifth optical design parameter groups constructed when "the optical design parameter P is P2 and the multiple sub-intervals are 2". Divide the value intervals of P1 and P2 into two sub-intervals, randomly select a value in each sub-interval of P1, and randomly select a value in each sub-interval of P2, then according to the two third target optical design parameters Corresponding to the selected 4 numerical values and the candidate values of P3-P6 in the second optical design parameter group, a total of four sixth optical design parameter groups are formed. It should be noted that the randomly selected value in each sub-interval of the third target optical design parameter P1 is the value in the value set of the third target optical design parameter P1, and in each sub-interval of the third target optical design parameter P2 The randomly selected values in the interval are the values in the value set of the third target optical design parameter P2.
相应地,在上述步骤603中,计算所构建四个第六光学设计参数组所对应的视差,并确定计算得到的所有视差中的第四最小值,若第四最小值不满足第三预设条件,则将第三目标光学设计参数P1的取值区间更新为第四最小值对应的第六光学设计参数组中P1对应确定的数值所对应的子区间,将第三目标光学设计参数P2的取值区间更新为第四最小值对应的第六光学设计参数组中P2对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第六光学设计参数组、计算视差、确定第四最小值以及更新取值区间的过程,直至确定得到的第四最小值满足第三预设条件,将满足第三预设条件的第四最小值对应的第六光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。Correspondingly, in the above step 603, the parallax corresponding to the four sixth optical design parameter groups constructed is calculated, and the fourth minimum value among all the calculated parallaxes is determined, if the fourth minimum value does not satisfy the third preset condition, update the value interval of the third target optical design parameter P1 to the sub-interval corresponding to the value determined by P1 in the sixth optical design parameter group corresponding to the fourth minimum value, and update the value interval of the third target optical design parameter P2 to The value interval is updated to the subinterval corresponding to the determined value of P2 in the sixth optical design parameter group corresponding to the fourth minimum value, repeating the above division of subintervals, determining the value, constructing the sixth optical design parameter group, calculating parallax, and determining The fourth minimum value and the process of updating the value interval until it is determined that the obtained fourth minimum value satisfies the third preset condition, and the sixth optical design parameter group corresponding to the fourth minimum value that meets the third preset condition is used as an additional The optical design parameter group that the camera with the additional mirror is adapted to when stitching panoramic images.
为了便于理解,第三预设条件的相关解释可如下,第三预设条件可以与第一预设条件一致;其中,第三预设条件中的视差预设范围较第一预设条件更低,也即第二预期全景拼接效果较第一预期全景拼接效果的要求更高。For ease of understanding, the relevant explanation of the third preset condition can be as follows, the third preset condition can be consistent with the first preset condition; wherein, the parallax preset range in the third preset condition is lower than that of the first preset condition , that is, the second expected panoramic stitching effect has higher requirements than the first expected panoramic stitching effect.
本发明实施例提供的图像拼接方法,由于在确定满足第一预设条件的第二光学设计参数组之后,根据对视差的影响程度高的t项第一目标光学设计参数,再次在每项第三目标光学设计参数的取值集合中确定每项第三目标光学设计参数的数值,从而使得最终确定的第二光学设计参数组更加精确,根据该光学设计参数对全景图像进行拼接时,全景图像的拼接效果更好。In the image stitching method provided by the embodiment of the present invention, after determining the second optical design parameter group that satisfies the first preset condition, according to the t first target optical design parameters that have a high degree of influence on parallax, again in each item The value of each third target optical design parameter is determined in the value set of the three target optical design parameters, so that the final determined second optical design parameter group is more accurate. When the panoramic image is stitched according to the optical design parameters, the panoramic image The splicing effect is better.
应该理解的是,虽然图1-图6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-图6中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flow charts of FIGS. 1-6 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figures 1-6 may include multiple steps or multiple stages, these steps or stages are not necessarily executed at the same time, but may be executed at different times, these steps or stages The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
结合上述实施例的内容,在一个实施例中,如图7所示,提供了一种图像拼接装置,该装置包括:In combination with the content of the foregoing embodiments, in one embodiment, as shown in FIG. 7 , an image stitching device is provided, which includes:
701、获取模块,用于获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;701. An acquisition module, configured to acquire a first optical design parameter set, where at least one optical design parameter is included in the first optical design parameter set, and the first optical design parameter set is used for panorama stitching;
702、第一确定模块,用于根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;702. The first determination module is configured to determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter The group is consistent with the type and number of items of the optical design parameters contained in the first optical design parameter group;
703、第二确定模块,用于根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;703. The second determination module is configured to determine an optical design parameter set adapted to the camera with an additional mirror when stitching panoramic images according to the second optical design parameter set;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
关于图像拼接装置的具体限定可以参见上文中对于图像拼接方法的限定,在此不再赘述。上述图像拼接装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitations of the image stitching device, refer to the above definition of the image stitching method, which will not be repeated here. Each module in the above-mentioned image splicing device can be fully or partially realized by software, hardware and a combination thereof. The above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can call and execute the corresponding operations of the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储退役电池的各项性能指标。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种图像拼接方法。In one embodiment, a computer device is provided. The computer device may be a server, and its internal structure may be as shown in FIG. 8 . The computer device includes a processor, memory and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, computer programs and databases. The internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium. The database of the computer equipment is used to store various performance indexes of retired batteries. The network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by a processor, an image splicing method is realized.
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体地计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 8 is only a block diagram of a partial structure related to the solution of this application, and does not constitute a limitation on the computer equipment to which the solution of this application is applied. Specifically, the computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;According to the first optical design parameter set, determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition contained in the second optical design parameter set and the first optical design parameter set The types of optical design parameters and the number of items are consistent;
根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取第一光学设计参数组,第一光学设计参数组中至少包含一项光学设计参数,第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, where at least one optical design parameter is included in the first optical design parameter group, and the first optical design parameter group is used for panorama stitching;
根据第一光学设计参数组,确定第二光学设计参数组;其中,根据第二光学设计参数组计算得到的视差满足第一预设条件,第二光学设计参数组与第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;According to the first optical design parameter set, determine the second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies the first preset condition, and the second optical design parameter set and the first optical design parameter set The type and number of the included optical design parameters are consistent;
根据第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the additional mirror is adapted to when stitching panoramic images;
其中,视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,第一全景图像是由第一全景图像组进行全景拼接所得到的,第二全景图像是由第二全景图像组进行全景拼接所得到的,第一全景图像组与第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,第一全景图像组与第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to indicate the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, the first panoramic image is obtained by panoramic stitching of the first panoramic image group, and the second panoramic image It is obtained by panoramic stitching of the second panoramic image group, the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same, the first panoramic image group and the second panoramic image group The image group is obtained when the camera with the converter is installed and the same view is taken in two different orientations.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指 令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented through computer programs to instruct related hardware, and the computer programs can be stored in a non-volatile computer-readable memory In the medium, when the computer program is executed, it may include the processes of the embodiments of the above-mentioned methods. Wherein, any reference to memory, storage, database or other media used in the embodiments of the present invention may include at least one of non-volatile and volatile memory. Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc. Volatile memory can include Random Access Memory (RAM) or external cache memory. By way of illustration and not limitation, RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several implementation modes of the present application, and the description thereof is relatively specific and detailed, but it should not be construed as limiting the scope of the patent for the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.

Claims (10)

  1. 一种图像拼接方法,其特征在于,所述方法包括:An image stitching method, characterized in that the method comprises:
    获取第一光学设计参数组,所述第一光学设计参数组中至少包含一项光学设计参数,所述第一光学设计参数组用于进行全景拼接;Acquiring a first optical design parameter group, the first optical design parameter group includes at least one optical design parameter, and the first optical design parameter group is used for panorama stitching;
    根据所述第一光学设计参数组,确定第二光学设计参数组;其中,根据所述第二光学设计参数组计算得到的视差满足第一预设条件,所述第二光学设计参数组与所述第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;According to the first optical design parameter set, determine a second optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies a first preset condition, and the second optical design parameter set and the set The type and number of optical design parameters contained in the first optical design parameter group are consistent;
    根据所述第二光学设计参数组,确定加装附件镜的相机在拼接全景图像时所适配的光学设计参数组;According to the second optical design parameter group, determine the optical design parameter group that the camera equipped with the accessory mirror is adapted to when stitching panoramic images;
    其中,所述视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,所述第一全景图像是由第一全景图像组进行全景拼接所得到的,所述第二全景图像是由第二全景图像组进行全景拼接所得到的,所述第一全景图像组与所述第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,所述第一全景图像组与所述第二全景图像组是由加装附加镜的相机在两个不同方位下对相同取景进行拍摄时所得到的。Wherein, the parallax is used to represent the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, and the first panoramic image is obtained by panoramic stitching of the first panoramic image group, The second panoramic image is obtained by panoramic stitching of the second panoramic image group, and the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same , the first panoramic image group and the second panoramic image group are obtained when a camera equipped with an additional mirror shoots the same scene in two different orientations.
  2. 根据权利要求1所述的方法,其特征在于,所述第一光学设计参数组中包括m项光学设计参数中每项光学设计参数的取值集合,所述m不小于1且不大于所述第一光学设计参数组中光学设计参数的总项数;The method according to claim 1, wherein the first optical design parameter group includes a value set of each optical design parameter in the m optical design parameters, and the m is not less than 1 and not greater than the The total number of optical design parameters in the first optical design parameter group;
    相应地,所述根据所述第一光学设计参数组,确定第二光学设计参数组,包括:Correspondingly, the determining a second optical design parameter set according to the first optical design parameter set includes:
    将所述m项光学设计参数中每项光学设计参数均作为第一目标光学设计参数,根据每项第一目标光学设计参数的取值集合,确定每项第一目标光学设计参数的取值区间;Taking each of the m optical design parameters as the first target optical design parameter, and determining the value interval of each first target optical design parameter according to the value set of each first target optical design parameter ;
    根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组。According to the value range of each first target optical design parameter, a second optical design parameter group is determined.
  3. 根据权利要求2所述的方法,其特征在于,每项第一目标光学设计参数的取值集合是根据每项第一目标光学设计参数的初始值进行调整后所得到的;相应地,所述根据每项第一目标光学设计参数的取值区间,确定第二光学设计参数组,包括:The method according to claim 2, wherein the value set of each first target optical design parameter is obtained after adjustment according to the initial value of each first target optical design parameter; correspondingly, the According to the value interval of each first target optical design parameter, determine the second optical design parameter group, including:
    将每项第一目标光学设计参数的取值区间分为多个子区间,在每项第一目标光学设计参数的每一子区间中确定一个数值;其中,在每项第一目标光学设计参数的每一子区间中确定数值时的数据来源为每项第一目标光学设计参数的取值集合;Dividing the value interval of each first target optical design parameter into a plurality of sub-intervals, and determining a value in each sub-interval of each first target optical design parameter; wherein, in each first target optical design parameter The data source when determining the value in each sub-interval is the value set of each first target optical design parameter;
    若所述m小于所述第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计参数对应确定的数值以及所述第一光学设计参数组中其它每项光学设计参数的初始值,构建多个第三光学设计参数组,若所述m等于所述第一光学设计参数组中光学设计参数的总项数,则根据每项第一目标光学设计 参数对应确定的数值,构建多个第三光学设计参数组;If the m is less than the total number of optical design parameters in the first optical design parameter group, then according to the value corresponding to each first target optical design parameter and each other optical design parameter in the first optical design parameter group The initial value of the design parameter is to construct a plurality of third optical design parameter groups. If the m is equal to the total number of optical design parameters in the first optical design parameter group, then it is determined according to each first target optical design parameter to construct a plurality of third optical design parameter groups;
    计算每一第三光学设计参数组所对应的视差,并确定计算得到的所有视差中的第一最小值,若所述第一最小值不满足所述第一预设条件,则将每项第一目标光学设计参数的取值区间更新为所述第一最小值对应的第三光学设计参数组中每项第一目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第三光学设计参数组、计算视差、确定第一最小值以及更新取值区间的过程,直至确定得到的第一最小值满足所述第一预设条件,将满足所述第一预设条件的第一最小值对应的第三光学设计参数组作为所述第二光学设计参数组。Calculating the parallax corresponding to each third optical design parameter group, and determining the first minimum value of all the calculated parallaxes, if the first minimum value does not meet the first preset condition, each of the second The value interval of a target optical design parameter is updated to the sub-interval corresponding to the determined value of each first target optical design parameter in the third optical design parameter group corresponding to the first minimum value, repeating the above division of sub-intervals, The process of determining the value, constructing the third optical design parameter group, calculating the parallax, determining the first minimum value, and updating the value interval until the first minimum value is determined to satisfy the first preset condition will satisfy the first The third optical design parameter group corresponding to the first minimum value of the preset condition is used as the second optical design parameter group.
  4. 根据权利要求3所述的方法,其特征在于,所述m大于1,对于所述m项第一目标光学设计参数中的n项第一目标光学设计参数,将所述n项第一目标光学设计参数中每项第一目标光学设计参数均作为第二目标光学设计参数;The method according to claim 3, wherein the m is greater than 1, and for the n items of the first target optical design parameters in the m items of the first target optical design parameters, the n items of the first target optical design parameters are Each of the first target optical design parameters in the design parameters is used as the second target optical design parameter;
    其中,每项第二目标光学设计参数对视差的影响程度均大于每项第一目标光学设计参数,所述n不小于1且小于所述m,每项第二目标光学设计参数所确定的历史数值构成每项第二目标光学设计参数的取值集合,由每项第二目标光学设计参数的取值集合确定每项第二目标光学设计参数的取值区间;Wherein, the degree of influence of each second target optical design parameter on parallax is greater than that of each first target optical design parameter, said n is not less than 1 and less than said m, and the history determined by each second target optical design parameter The value constitutes a value set of each second target optical design parameter, and the value range of each second target optical design parameter is determined by the value set of each second target optical design parameter;
    相应地,所述根据所述第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, according to the second optical design parameter group, determining the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images includes:
    将每项第二目标光学设计参数的取值区间分为多个子区间,在每项第二目标光学设计参数的每一子区间中确定一个数值;其中,在每项第二目标光学设计参数的每一子区间中确定数值时的数据来源为每项第二目标光学设计参数的取值集合;Dividing the value interval of each second target optical design parameter into a plurality of sub-intervals, and determining a value in each sub-interval of each second target optical design parameter; wherein, in each second target optical design parameter The data source when determining the value in each sub-interval is the value set of each second target optical design parameter;
    若所述m小于所述第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值、所述第二光学设计参数组中每项第一目标光学设计参数对应确定的数值及所述第二光学设计参数组中其它每项光学设计参数的初始值,构建多个第四光学设计参数组,若所述m等于所述第一光学设计参数组中光学设计参数的总项数,则根据每项第二目标光学设计参数对应确定的数值及所述第二光学设计参数组中每项第一目标光学设计参数对应确定的数值,构建多个第四光学设计参数组;If the m is less than the total number of optical design parameters in the first optical design parameter group, then according to the corresponding determined value of each second target optical design parameter, the first of each item in the second optical design parameter group The target optical design parameter corresponds to the determined value and the initial value of each other optical design parameter in the second optical design parameter group, constructing a plurality of fourth optical design parameter groups, if the m is equal to the first optical design parameter The total number of optical design parameters in the group, according to the corresponding determined value of each second target optical design parameter and the corresponding determined value of each first target optical design parameter in the second optical design parameter group, construct multiple a fourth optical design parameter set;
    计算每一第四光学设计参数组所对应的视差,并确定计算得到的所有视差中的第二最小值,若所述第二最小值不满足第二预设条件,则将每项第二目标光学设计参数的取值区间更新为所述第二最小值对应的第四光学设计参数组中每项第二目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第四光学设计参数组、计算视差、确定第二最小值以及更新取值区间的过程,直至确定得到的第二最小值满足所述第二预设条件,将满足所述第二预设条件的第二最小值对应的第四光学设计 参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。calculating the parallax corresponding to each fourth optical design parameter group, and determining the second minimum value of all the calculated parallaxes, if the second minimum value does not meet the second preset condition, each second target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each second target optical design parameter in the fourth optical design parameter group corresponding to the second minimum value, and the above-mentioned division of sub-intervals and determination of the value are repeated. 1. The process of constructing the fourth optical design parameter group, calculating the parallax, determining the second minimum value, and updating the value range, until the second minimum value is determined to satisfy the second preset condition, the second preset will be satisfied The fourth optical design parameter set corresponding to the second minimum value of the condition is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
  5. 根据权利要求1所述的方法,其特征在于,所述第一光学设计参数组中包括每项光学设计参数的取值集合;相应地,所述根据所述第一光学设计参数组,确定第二光学设计参数组,包括:The method according to claim 1, wherein the first optical design parameter group includes a value set of each optical design parameter; correspondingly, according to the first optical design parameter group, determining the second Two sets of optical design parameters, including:
    根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,并由每项光学设计参数的候选值构成所述第二光学设计参数组;其中,每项光学设计参数的候选值是基于已确定候选值的光学设计参数的基础上所确定的。According to the value set of each optical design parameter, the candidate value of each optical design parameter is determined one by one, and the second optical design parameter group is formed by the candidate value of each optical design parameter; wherein, each optical design parameter Candidate values are determined based on optical design parameters for which candidate values have been determined.
  6. 根据权利要求5所述的方法,其特征在于,由每项目标光学设计参数的取值集合确定每项光学设计参数的取值区间,由已确定候选值的光学设计参数构成第一光学设计参数集合,由未确定候选值的光学设计参数构成第二光学设计参数集合,所述第一光学设计参数集合中光学设计参数的总项数不小于0且小于所述第一光学设计参数组中光学设计参数的总项数;The method according to claim 5, characterized in that the value range of each optical design parameter is determined by the value set of each target optical design parameter, and the first optical design parameter is formed by the optical design parameters whose candidate values have been determined A set of optical design parameters whose candidate values have not been determined constitutes a second optical design parameter set, the total number of optical design parameters in the first optical design parameter set is not less than 0 and less than the optical design parameters in the first optical design parameter set The total number of items of design parameters;
    相应地,所述根据每项光学设计参数的取值集合,逐一确定每项光学设计参数的候选值,包括:Correspondingly, according to the value set of each optical design parameter, the candidate value of each optical design parameter is determined one by one, including:
    对于所述第二光学设计参数集合中任一项光学设计参数P,将所述P的取值区间分为多个子区间,在所述P的每一子区间中确定一个数值;其中,在所述P的每一子区间中确定数值时的数据来源为所述P的取值集合,所述第一预设条件中包含所述P对应的子预设条件;For any optical design parameter P in the second set of optical design parameters, the value range of P is divided into multiple sub-intervals, and a value is determined in each sub-interval of P; wherein, in the The data source for determining the value in each sub-interval of P is the value set of P, and the first preset condition includes the sub-preset condition corresponding to P;
    若所述第一光学设计参数集合中光学设计参数的总项数大于0,则根据所述第一光学设计参数集合中每项光学设计参数的候选值、所述第二光学设计参数集合中除所述P之外的其它每项光学设计参数的初始值以及所述P对应确定的数值,构建多个第五光学设计参数组,若所述第一光学设计参数集合中光学设计参数的总项数为0,则根据所述第二光学设计参数集合中除所述P之外的其它每项光学设计参数的初始值以及所述P对应确定的数值,构建多个第五光学设计参数组;If the total number of optical design parameters in the first optical design parameter set is greater than 0, then according to the candidate value of each optical design parameter in the first optical design parameter set, the second optical design parameter set except The initial value of each optical design parameter other than the P and the correspondingly determined value of the P to construct a plurality of fifth optical design parameter groups, if the total number of optical design parameters in the first optical design parameter set If the number is 0, construct a plurality of fifth optical design parameter groups according to the initial value of each optical design parameter except the P in the second optical design parameter set and the correspondingly determined value of P;
    计算每一第五光学设计参数组所对应的视差,并确定计算得到的所有视差中的第三最小值,若所述第三最小值不满足所述P对应的子预设条件,则将所述P的取值区间更新为所述第三最小值对应的第五光学设计参数组中所述P对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第五光学设计参数组、计算视差、确定第三最小值以及更新取值区间的过程,直至确定得到的第三最小值满足所述P对应的子预设条件,将满足所述P对应的子预设条件的第三最小值对应的第五光学设计参数组中所述P对应确定的数值,作为所述P的候选值。Calculating the parallax corresponding to each fifth optical design parameter group, and determining the third minimum value among all the calculated parallaxes, if the third minimum value does not satisfy the sub-preset condition corresponding to the P, then the The value interval of P is updated to the sub-interval corresponding to the determined value of P in the fifth optical design parameter group corresponding to the third minimum value, and the above-mentioned division of sub-intervals, determination of values, and construction of the fifth optical design are repeated. The process of parameter grouping, calculating parallax, determining the third minimum value, and updating the value interval until the third minimum value is determined to meet the sub-preset condition corresponding to P will satisfy the sub-preset condition corresponding to P. The P corresponding to the determined value in the fifth optical design parameter group corresponding to the third minimum value is used as the candidate value of P.
  7. 根据权利要求6所述的方法,其特征在于,对于所述第二光学设计参数组中的t项光学设计参数,将所述t项光学设计参数中每项光学设计参数均作为第三目标光学设计参数;The method according to claim 6, wherein, for the t optical design parameters in the second optical design parameter group, each of the t optical design parameters is used as the third target optical design parameter. Design Parameters;
    其中,每项第三目标光学设计参数对视差的影响程度均大于所述第二光学设计参数组中其它每项光学 设计参数,所述t不小于1且小于所述第二光学设计参数组中光学设计参数的总项数,每项第三目标光学设计参数所确定的历史数值构成每项第三目标光学设计参数的取值集合,由每项第三目标光学设计参数的取值集合确定每项第三目标光学设计参数的取值区间;Wherein, the degree of influence of each third target optical design parameter on parallax is greater than that of each other optical design parameter in the second optical design parameter group, and the t is not less than 1 and less than that in the second optical design parameter group. The total number of optical design parameters, the historical value determined by each third target optical design parameter constitutes the value set of each third target optical design parameter, and is determined by the value set of each third target optical design parameter. The value interval of the third target optical design parameter;
    相应地,所述根据所述第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组,包括:Correspondingly, according to the second optical design parameter group, determining the optical design parameter group that the camera equipped with an additional mirror is adapted to when stitching panoramic images includes:
    将每项第三目标光学设计参数的取值区间分为多个子区间,在每项第三目标光学设计参数的每一子区间中确定一个数值;其中,在每项第三目标光学设计参数的每一子区间中确定数值时的数据来源为每项第三目标光学设计参数的取值集合;Dividing the value interval of each third target optical design parameter into a plurality of sub-intervals, and determining a numerical value in each sub-interval of each third target optical design parameter; wherein, in each third target optical design parameter The data source for determining the value in each sub-interval is the value set of each third target optical design parameter;
    根据每项第三目标光学设计参数对应确定的数值及所述第二光学设计参数组中其它每项光学设计参数的候选值,构建多个第六光学设计参数组;Constructing a plurality of sixth optical design parameter groups according to the correspondingly determined values of each third target optical design parameter and the candidate values of other optical design parameters in the second optical design parameter group;
    计算每一第六光学设计参数组所对应的视差,并确定计算得到的所有视差中的第四最小值,若所述第四最小值不满足第三预设条件,则将每项第三目标光学设计参数的取值区间更新为所述第四最小值对应的第六光学设计参数组中每项第三目标光学设计参数对应确定的数值所对应的子区间,重复上述划分子区间、确定数值、构建第六光学设计参数组、计算视差、确定第四最小值以及更新取值区间的过程,直至确定得到的第四最小值满足所述第三预设条件,将满足所述第三预设条件的第四最小值对应的第六光学设计参数组作为加装附加镜的相机在拼接全景图像时所适配的光学设计参数组。calculating the parallax corresponding to each sixth optical design parameter group, and determining the fourth minimum value among all the calculated parallaxes; if the fourth minimum value does not satisfy the third preset condition, each item of the third target The value interval of the optical design parameter is updated to the sub-interval corresponding to the determined value of each third target optical design parameter in the sixth optical design parameter group corresponding to the fourth minimum value, and the above-mentioned division of sub-intervals and determination of the value are repeated. . The process of constructing the sixth optical design parameter group, calculating the parallax, determining the fourth minimum value, and updating the value range, until the fourth minimum value is determined to meet the third preset condition, and the third preset will be satisfied The sixth optical design parameter set corresponding to the fourth minimum value of the condition is used as an optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images.
  8. 一种图像拼接装置,其特征在于,所述装置包括:An image stitching device, characterized in that the device comprises:
    获取模块,用于获取第一光学设计参数组,所述第一光学设计参数组中至少包含一项光学设计参数,所述第一光学设计参数组用于进行全景拼接;An acquisition module, configured to acquire a first optical design parameter set, the first optical design parameter set includes at least one optical design parameter, and the first optical design parameter set is used for panorama stitching;
    第一确定模块,用于根据所述第一光学设计参数组,确定第二光学设计参数组;其中,根据所述第二光学设计参数组计算得到的视差满足第一预设条件,所述第二光学设计参数组与所述第一光学设计参数组中包含的光学设计参数的类型一致及项数一致;The first determining module is configured to determine a second optical design parameter set according to the first optical design parameter set; wherein, the parallax calculated according to the second optical design parameter set satisfies a first preset condition, and the first optical design parameter set satisfies a first preset condition. The second optical design parameter group is consistent with the type and number of items of the optical design parameters contained in the first optical design parameter group;
    第二确定模块,用于根据所述第二光学设计参数组,确定加装附加镜的相机在拼接全景图像时所适配的光学设计参数组;The second determination module is used to determine the optical design parameter set adapted by the camera equipped with an additional mirror when stitching panoramic images according to the second optical design parameter set;
    其中,所述视差用于表示第一全景图像的全景拼接效果与第二全景图像的全景拼接效果之间的差异,所述第一全景图像是由第一全景图像组进行全景拼接所得到的,所述第二全景图像是由第二全景图像组进行全景拼接所得到的,所述第一全景图像组与所述第二全景图像组在进行全景拼接时所使用的第二光学设计参数组相同,所述第一全景图像组与所述第二全景图像组是由加装附加镜的相机在两个不同方位下对相 同取景进行拍摄时所得到的。Wherein, the parallax is used to represent the difference between the panoramic stitching effect of the first panoramic image and the panoramic stitching effect of the second panoramic image, and the first panoramic image is obtained by panoramic stitching of the first panoramic image group, The second panoramic image is obtained by panoramic stitching of the second panoramic image group, and the second optical design parameter group used in the panoramic stitching of the first panoramic image group and the second panoramic image group is the same , the first panoramic image group and the second panoramic image group are obtained when a camera equipped with an additional mirror shoots the same scene in two different orientations.
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的方法的步骤。A computer device, comprising a memory and a processor, the memory stores a computer program, wherein the processor implements the steps of the method according to any one of claims 1 to 7 when executing the computer program.
  10. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。A computer-readable storage medium storing a computer program, wherein when the computer program is executed by a processor, the steps of the method according to any one of claims 1 to 7 are implemented.
PCT/CN2022/098918 2021-06-30 2022-06-15 Image stitching method and apparatus, and computer device and storage medium WO2023273888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110741852.6A CN113570502B (en) 2021-06-30 2021-06-30 Image stitching method, device, computer equipment and storage medium
CN202110741852.6 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273888A1 true WO2023273888A1 (en) 2023-01-05

Family

ID=78163307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098918 WO2023273888A1 (en) 2021-06-30 2022-06-15 Image stitching method and apparatus, and computer device and storage medium

Country Status (2)

Country Link
CN (1) CN113570502B (en)
WO (1) WO2023273888A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113570502B (en) * 2021-06-30 2023-08-01 影石创新科技股份有限公司 Image stitching method, device, computer equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430375A (en) * 2015-11-11 2016-03-23 深圳进化动力数码科技有限公司 Method and device for detecting joint applicable distance of panoramic camera
CN109166152A (en) * 2018-07-27 2019-01-08 深圳六滴科技有限公司 Bearing calibration, system, computer equipment and the storage medium of panorama camera calibration
US20190014261A1 (en) * 2016-10-20 2019-01-10 Sky Light Electronic (Shenzhen) Limited Corporation Photographing method and photographing system compatible in air and water
CN112217986A (en) * 2020-09-08 2021-01-12 影石创新科技股份有限公司 Photographing mode setting method, device and equipment of photographing equipment and storage medium
CN113570502A (en) * 2021-06-30 2021-10-29 影石创新科技股份有限公司 Image splicing method and device, computer equipment and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430375A (en) * 2015-11-11 2016-03-23 深圳进化动力数码科技有限公司 Method and device for detecting joint applicable distance of panoramic camera
US20190014261A1 (en) * 2016-10-20 2019-01-10 Sky Light Electronic (Shenzhen) Limited Corporation Photographing method and photographing system compatible in air and water
CN109166152A (en) * 2018-07-27 2019-01-08 深圳六滴科技有限公司 Bearing calibration, system, computer equipment and the storage medium of panorama camera calibration
CN112217986A (en) * 2020-09-08 2021-01-12 影石创新科技股份有限公司 Photographing mode setting method, device and equipment of photographing equipment and storage medium
CN113570502A (en) * 2021-06-30 2021-10-29 影石创新科技股份有限公司 Image splicing method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
CN113570502A (en) 2021-10-29
CN113570502B (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2023273888A1 (en) Image stitching method and apparatus, and computer device and storage medium
JP4782899B2 (en) Parallax detection device, distance measuring device, and parallax detection method
US8723989B2 (en) Image distortion processing apparatus, and method of operating an image distortion processing apparatus
US20130121525A1 (en) Method and Apparatus for Determining Sensor Format Factors from Image Metadata
US9838614B1 (en) Multi-camera image data generation
CN109754434A (en) Camera calibration method, apparatus, user equipment and storage medium
CN106570907B (en) Camera calibration method and device
CN108419067B (en) White balance parameter recording and adjusting method and device, storage medium, terminal and camera
WO2017107865A1 (en) Image retrieval system, server, database, and related method
KR20160118948A (en) Method for determination of focal length for a zoom lens
WO2021077731A1 (en) Multi-distance calibration method and system based on depth camera
CN116645426A (en) Camera internal parameter calibration method and device, storage medium and electronic equipment
CN111435539A (en) Multi-camera system external parameter calibration method based on joint optimization
CN113902808A (en) Camera calibration method, device, equipment and storage medium
WO2017107866A1 (en) Image retrieval server and system, related retrieval and troubleshooting method
Cefalu et al. Structureless bundle adjustment with self-calibration using accumulated constraints
CN117612470A (en) Color lookup table generating method and color correcting method
US20200267297A1 (en) Image processing method and apparatus
US11043009B2 (en) Method and device for calibrating depth of 3D camera, and computer device
CN110555880B (en) Focal length unknown P6P camera pose estimation method
CN114764823A (en) Self-correcting depth calculation method, system, medium, and depth image processing apparatus
CN116818129A (en) Temperature estimation and thermal distortion correction method applied to structured light reconstruction
CN115272124A (en) Distorted image correction method and device
CN116009525A (en) Optimization method of two-dimensional code map and positioning method of mobile robot
CN117456012B (en) Virtual camera field angle calibration method and device, equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831707

Country of ref document: EP

Kind code of ref document: A1