WO2023273679A1 - 一种协作小区确定方法及装置 - Google Patents

一种协作小区确定方法及装置 Download PDF

Info

Publication number
WO2023273679A1
WO2023273679A1 PCT/CN2022/093778 CN2022093778W WO2023273679A1 WO 2023273679 A1 WO2023273679 A1 WO 2023273679A1 CN 2022093778 W CN2022093778 W CN 2022093778W WO 2023273679 A1 WO2023273679 A1 WO 2023273679A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
cell
serving cell
cells
wireless access
Prior art date
Application number
PCT/CN2022/093778
Other languages
English (en)
French (fr)
Inventor
秦彩
闫琦
王楠斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273679A1 publication Critical patent/WO2023273679A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method and device for determining a coordinated cell.
  • Massive MIMO Massive Multiple-input Multiple-output
  • Massive MIMO is the basic and key technology of 5G networks, because it achieves precise beamforming and multi-stream multi-user coverage by integrating more antennas.
  • Massive MIMO will lead to more complex wireless channel state information while achieving more accurate user coverage, especially for users at the edge of the cell, the interference between cells will become more serious. Therefore, how to reasonably configure a cooperating set for a serving cell of a user equipment (UE) so that different cells can cooperate with each other to reduce inter-cell interference and improve the transmission quality of the edge user equipment is an urgent technical problem to be solved.
  • UE user equipment
  • Embodiments of the present application provide a method and device for determining a coordinated cell, so as to determine an optimal coordinated cell for a UE and improve the quality of coordinated transmission.
  • a method for determining a coordinated cell divides each cell in the first plurality of cells covered by a beam space into multiple grids, and the beam space is based on the reference of multiple beams
  • the signal receiving power is determined, and the method includes: when any cell is used as a serving cell, the network device obtains the spectrum efficiency of each grid in the serving cell; The spectrum efficiency of each grid is obtained to obtain the total spectrum efficiency of each serving cell; the network device obtains a cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell, and the second A grid is a grid corresponding to the second plurality of cells in the serving cell, and the cells in the cooperation set provide transmission services for user equipment located in the grid; the network device corresponds the first grid to The cooperating set of the grid is sent to the wireless access device corresponding to the serving cell, so that the cooperating cell of the serving cell is determined in the cooperating set corresponding to the first grid.
  • the network device determines the beam space based on the reference signal received power of multiple beams, and divides each cell covered by the beam space into multiple grids.
  • the network device obtains the spectrum efficiency of each grid in the serving cell, and then obtains the total spectrum efficiency of each serving cell according to the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell. That is, the embodiment of the present application determines the cooperating set corresponding to each first grid in each serving cell based on the total spectrum efficiency of each serving cell, and considers the influence of the cell coordination of each grid on other cells, so as to provide user equipment with The optimal cooperative community improves service quality.
  • the network device obtains the total spectrum efficiency of each serving cell according to the spectrum efficiency of each grid in each serving cell, including: for any serving cell, the network device Obtain the total spectrum efficiency of the serving cell according to the spectrum efficiency of each grid in the serving cell and the spectrum efficiency parameter.
  • the network device obtains the cooperating set corresponding to the first grid in the serving cell according to the total spectrum efficiency of each of the serving cells, including: the network device according to each of the service The total spectral efficiency and the number of cells corresponding to the cell determine the average spectral efficiency of each of the serving cells, the number of cells is the number of cells covered by the beam space; the network device aims to maximize the average spectral efficiency, Determine the value of the spectrum efficiency parameter; the network device determines the cooperating set corresponding to the first grid in the serving cell according to the value of the spectrum efficiency parameter.
  • the network device obtaining the spectrum efficiency of each grid in the serving cell includes: for the first grid in the serving cell, the network device obtaining the The spectrum efficiency of each of the cells in the second plurality of cells on the first grid; the network device uses the average value of the spectrum efficiency of each of the cells in the second plurality of cells on the first grid as the Describe the spectral efficiency of the first grid.
  • the network device obtaining the spectrum efficiency of each grid in the serving cell includes: for the second grid in the serving cell, the network device obtaining Spectrum efficiency on the second grid, where the second grid is a grid corresponding only to the serving cell in the serving cell; the network device uses the frequency spectrum of the serving cell on the grid efficiency as the spectral efficiency of the second grid.
  • the obtaining, by the network device, the spectrum efficiency of each cell in the second plurality of cells on the first grid includes: each cell in the second plurality of cells is used as When serving a cell, the network device obtains the angular power spectrum from the serving cell to the grid, the transmit power of the serving cell, and the interference of the neighboring cell corresponding to the serving cell to the first grid; The network device obtains the spectrum efficiency of the serving cell on the first grid according to the angular power spectrum, the interference, and the transmission power.
  • the network acquires the spectral efficiency of the serving cell on the first grid according to the angular power spectrum, the interference, and the transmit power, including: the network device Inputting the power spectrum, the interference, and the transmission power into a pre-trained neural network model, the neural network model outputs the spectral efficiency of the serving cell on the first grid, and the neural network model is generated according to the training data and the spectral efficiency corresponding to the training data through pre-training.
  • the spectrum efficiency corresponding to the training data is determined according to the traffic of the serving cell on the grid and the number of scheduled resource blocks of the serving cell on the grid.
  • the network device obtaining the interference on the grid by the neighboring cell corresponding to the serving cell includes: for any neighboring cell, the network device obtaining the The reference signal received power of the downlink beam corresponding to the adjacent cell; the network device determines the interference of the adjacent cell to the grid according to the reference signal received power of the downlink beam corresponding to the adjacent cell and the effective traffic probability, the The effective traffic probability is the ratio of the effective traffic value of the adjacent cell within a preset time to the theoretical traffic value; the network device adds the interference of all the adjacent cells to the grid to obtain the cell corresponding to The interference of the neighboring cells of the grid to the grid.
  • the network device sends the cooperating set corresponding to the first grid to the wireless access device corresponding to the serving cell, including: the network device includes the first grid The identity corresponding to the grid and the corresponding relationship between the cell identifiers in the coordinated set are sent to the wireless access device corresponding to the serving cell.
  • a method for determining a coordinated cell is provided.
  • the first cell corresponds to the first wireless access device, and the serving cell corresponding to the user equipment is the first cell.
  • the method includes: the first cell A wireless access device receives the reference signal received power of multiple downlink beams sent by the user equipment; the first wireless access device determines the beam space of the user equipment according to the reference signal received power of the multiple downlink beams the target grid; the first wireless access device determines the first cooperating set corresponding to the target grid, and the first cooperating set corresponding to the target grid is determined according to the spectrum efficiency corresponding to the target grid , the first cooperating set includes one or more second cells, the second cells are neighbor cells of the serving cell; the first wireless access device corresponds to the one or more second cells
  • the second wireless access apparatus sends a cooperation message, so that the second wireless access apparatus performs coordinated transmission of the service of the user equipment.
  • the method further includes: the The first wireless access apparatus determines that the user equipment is not in a coordinated transmission state.
  • the method further includes: When the user equipment is already in the coordinated transmission state, the first wireless access apparatus determines that the second cooperating set in which the user equipment is in the coordinated transmission state is inconsistent with the first cooperating set.
  • the first wireless access device sends a cooperation message to the second wireless access devices corresponding to the one or more second cells, including: the first wireless access device Sending a cooperation message to a target second cell, where the target second cell is included in the first cooperating set and not included in the second cooperating set.
  • the method further includes: the first wireless access device sending a stop cooperation message to a third wireless access device corresponding to a third cell, where the third cell is included in the The second coordination set is not included in the first coordination set.
  • the first radio access apparatus determines the target grid of the user equipment in the beam space according to the reference signal received power of the plurality of downlink beams, including: the first radio access The input device obtains the distance between the user equipment and each grid according to the received power of the reference signal of the plurality of downlink beams and the center coordinate of each grid, and the center coordinate of the grid is received by the reference signal of the plurality of beams Power representation: the first wireless access apparatus determines the target grid of the user equipment in the beam space according to the distance between the user equipment and each grid.
  • the determining, by the first wireless access apparatus, the first cooperating set corresponding to the target grid includes: receiving, by the first wireless access apparatus, information sent by the network device to the target grid. The correspondence between the identifier and the first cooperating set; the first wireless access device according to the identifier of the target grid and the correspondence between the identifier of the target grid and the first cooperating set A first cooperating set corresponding to the target grid is determined.
  • the identifier of the target grid is the center coordinates of the target grid.
  • the first radio access apparatus determines the target grid of the user equipment in the beam space according to the reference signal received power of the plurality of downlink beams, including: the first radio access The access device determines that the time for receiving the reference signal received power of the plurality of downlink beams meets a preset period; the first wireless access device receives the reference signals of the plurality of downlink beams within the preset period The received power determines the target grid of the user equipment in the beam space.
  • the reference signal received power of the multiple downlink beams is the channel state information reference signal received power of the multiple downlink beams.
  • an apparatus for determining a coordinated cell which divides each cell in the first plurality of cells covered by the beam space into multiple grids, and the beam space is based on the The reference signal received power is determined, the device includes: a first obtaining unit, configured to obtain the spectral efficiency of each grid in the serving cell when any cell is used as a serving cell; The spectral efficiency of each grid in the serving cell is used to obtain the total spectral efficiency of each serving cell; the third obtaining unit is configured to obtain the first spectral efficiency of each serving cell according to the total spectral efficiency of each serving cell.
  • the second acquiring unit is specifically configured to, for any serving cell, obtain the total spectrum of the serving cell according to the spectrum efficiency and the spectrum efficiency parameter of each grid in the serving cell efficiency.
  • the third obtaining unit is specifically configured to determine the average spectral efficiency of each serving cell according to the total spectral efficiency corresponding to each serving cell and the number of cells, where the number of cells is the The number of cells covered by the beam space; aiming at maximizing the average spectral efficiency, determine the value of the spectral efficiency parameter; determine the value of the first grid corresponding to the serving cell according to the value of the spectral efficiency parameter collaboration set.
  • the first obtaining unit is specifically configured to target the first grid in the serving cell, and each cell in the second plurality of cells is in the first grid Spectrum efficiency on the first grid; taking the average value of the spectrum efficiency of each cell in the second plurality of cells on the first grid as the spectrum efficiency of the first grid.
  • the first obtaining unit is specifically configured to obtain, for the second grid in the serving cell, the spectral efficiency of the serving cell on the second grid, the
  • the second grid is a grid corresponding to only the serving cell among the serving cells; the spectrum efficiency of the serving cell on the grid is used as the spectrum efficiency of the second grid.
  • the first obtaining unit is specifically configured to obtain an angular power spectrum from the serving cell to the grid when each cell in the second plurality of cells serves as a serving cell, The transmit power of the serving cell and the interference of the neighboring cell corresponding to the serving cell to the first grid; according to the angular power spectrum, the interference and the transmit power, the Spectral efficiency on a grid.
  • the first obtaining unit is specifically configured to input the power spectrum, the interference, and the transmit power into a pre-trained neural network model, and output the Spectrum efficiency of the serving cell on the first grid, the neural network model is pre-trained and generated according to the training data and the spectrum efficiency corresponding to the training data.
  • the spectrum efficiency corresponding to the training data is determined according to the traffic of the serving cell on the grid and the number of scheduled resource blocks of the serving cell on the grid.
  • the first obtaining unit is specifically configured to obtain, for any neighboring cell, the reference signal received power of a downlink beam corresponding to the neighboring cell sent by the user equipment;
  • the reference signal received power of the downlink beam corresponding to the cell and the effective traffic probability determine the interference of the adjacent cell on the grid, and the effective traffic probability is the effective traffic value and the theoretical traffic value of the adjacent cell within a preset time
  • the ratio of the ratio add the interference of all the neighboring cells to the grid to obtain the interference of the neighboring cells corresponding to the cell to the grid.
  • the sending unit is specifically configured to send the corresponding relationship including the identifier corresponding to the first grid and the cell identifier in the coordinated set to the wireless access device corresponding to the serving cell .
  • an apparatus for determining a coordinated cell includes: a receiving unit configured to receive The reference signal received power of multiple downlink beams sent by the user equipment; a determining unit, configured to determine the target grid of the user equipment in beam space according to the reference signal received power of the multiple downlink beams; the determining unit , is also used to determine the first cooperating set corresponding to the target grid, the first cooperating set corresponding to the target grid is determined according to the spectral efficiency corresponding to the target grid, and the first cooperating set includes a or a plurality of second cells, where the second cell is a neighboring cell of the serving cell; a sending unit, configured to send a coordination message to a second wireless access device corresponding to each of the one or more second cells, to enabling the second wireless access apparatus to perform coordinated transmission of services of the user equipment.
  • the determining unit is further configured to determine that the user equipment is not in coordinated transmission before sending a coordination message to the second wireless access apparatus corresponding to the one or more second cells. state.
  • the determining unit is further configured to, before sending a cooperation message to the second wireless access apparatus corresponding to the one or more second cells, when the user equipment is in the When the coordinated transmission state is in the coordinated transmission state, it is determined that the second cooperative set in which the user equipment is already in the coordinated transmission state is inconsistent with the first coordinated set.
  • the sending unit sends a cooperation message to a target second cell, where the target second cell is included in the first cooperating set and is not included in the second cooperating set.
  • the sending unit is further configured to send a stop cooperation message to a third wireless access device corresponding to a third cell, where the third cell is included in the second coordination set and does not include in the first cooperating set.
  • the determining unit is further configured to obtain the distance between the user equipment and each grid according to the reference signal received power of the multiple downlink beams and the center coordinate of each grid,
  • the central coordinates of the grid are represented by reference signal received powers of multiple beams;
  • the target grid of the user equipment in the beam space is determined according to the distance between the user equipment and each grid.
  • the identifier of the target grid is the center coordinates of the target grid.
  • the determining unit is further configured to determine that the time for receiving the reference signal received power of the plurality of downlink beams satisfies a preset period; according to the The reference signal received power of the multiple downlink beams determines the target grid of the user equipment in the beam space.
  • the reference signal received power of the multiple downlink beams is the channel state information reference signal received power of the multiple downlink beams.
  • a communication device in the fifth aspect of the embodiment of the present application, includes: a processor and a memory; the memory is used to store instructions or computer programs; the processor is used to execute the The instruction or the computer program, so that the communication device executes the method described in the first aspect.
  • a communication device in the sixth aspect of the embodiment of the present application, includes: a processor and a memory; the memory is used to store instructions or computer programs; the processor is used to execute the The instruction or the computer program, so that the communication device executes the method described in the second aspect.
  • a computer-readable storage medium including instructions, which, when run on a computer, cause the computer to execute the method described in the first aspect above or execute the method described in the second aspect above. method.
  • the network device determines the beam space based on the received power of reference signals of multiple beams, and divides each cell covered by the beam space into multiple grids.
  • the network device obtains the spectrum efficiency of each grid in the serving cell, and then obtains the total spectrum efficiency of each serving cell according to the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell.
  • the embodiment of the present application determines the cooperating set corresponding to each first grid in each serving cell based on the total spectrum efficiency of each serving cell, and considers the influence of the cell coordination of each grid on other cells, so as to provide user equipment with The optimal cooperative community improves service quality.
  • FIG. 1 is a schematic diagram of a cooperative cell determination scenario
  • FIG. 2 is a schematic diagram of a beam space provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for determining a coordinated cell provided in an embodiment of the present application
  • FIG. 4 is a flow chart of another method for determining a coordinated cell provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of an apparatus for determining a coordinated cell provided in an embodiment of the present application.
  • FIG. 7 is a structural diagram of another apparatus for determining a coordinated cell provided in an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of another network device provided by the embodiment of the present application.
  • the cooperative transmission technology is mainly based on the instantaneous measurement of the SSB signal by the user equipment.
  • the UE when the UE is located at the edge of the cell, it can simultaneously measure the strength of the SSB signal sent by the corresponding Active Antenna Unit (AAU) of the two cells (cell 1 and cell 2), that is, the reference
  • the signal power (reference signal received power, RSRP) is RSPP1 of AAU1 and RSPP2 of AAU2 respectively.
  • the serving cell corresponding to the UE is cell 1, and the UE sends the measured RSPP1 and RSPP2 to AAU1, and when the AAU1 determines that the difference between the two signal strengths reported by the UE is less than the preset threshold, it determines that AAU1 and AAU2 meet the cooperative transmission conditions , then AAU1 notifies its corresponding base band unit (BBU), that is, BBU1 needs to cooperate with AAU2.
  • BBU base band unit
  • the primary serving cell only determines the cooperating set based on the SSB signal strength of the primary serving cell and neighboring cells measured by the UE, the impact on other neighboring cells after the cooperation of the cells in the cooperating set is not considered, resulting in increased channel interference and traffic load of other neighboring cells , affecting the transmission quality of other neighboring cells.
  • a coordinated cell determination method determines a beam space based on reference signal received power of multiple beams, and divides each cell covered by the beam space into multiple grids.
  • the network device obtains the spectrum efficiency of each grid in the serving cell, and then obtains the total spectrum efficiency of each serving cell according to the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell.
  • the first grid is a grid corresponding to multiple cells in the serving cell, and when the user equipment is located in any cell included in the cooperating set, the cell can provide the transmission service for the user equipment.
  • the embodiment of the present application determines the cooperating set corresponding to each first grid in each serving cell based on the total spectrum efficiency of each serving cell, and considers the influence of the cell coordination of each grid on other cells, so as to provide user equipment with The optimal cooperative community improves service quality.
  • Massive MIMO The antennas of traditional MIMO are 2 antennas, 4 antennas or 8 antennas, while the number of channels of Massive MIMO reaches 64/128/256.
  • traditional MIMO taking 8 antennas as an example, the actual signal moves in the horizontal direction in the coverage area and does not move in the vertical direction.
  • the Massive MIMO signal is introduced into the airspace of the vertical dimension on the basis of the horizontal dimension space for utilization.
  • Massive MIMO also has the advantages of providing rich spatial degrees of freedom, providing more possible arrival paths, and improving signal reliability.
  • wireless networks based on Massive MIMO technology for example, 4.5G and 5G, etc.
  • user equipment can use multiple beams (such as narrow beams) in the beam space to communicate during the interaction with the base station.
  • the beam space may be defined based on multiple static beams.
  • FIG. 2 is a schematic diagram of a possible beam space.
  • Static beams refer to beams formed using predefined weights during beamforming. For example, fixed beams are formed under a cell, where the number, width, and direction of the beams are all determined.
  • the static beam can include the beam carrying the Channel State Information Reference Signal (CSI-RS) and the beam carrying the synchronization signal block (Synchronization signal and PBCH block, SSB), the sending direction of which is determined by the physical radio frequency (radio frequency, RF) parameter decision.
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization signal block
  • the beam space may be defined based on multiple static beams carrying CSI-RS or static beams carrying SSB.
  • the n-dimensional beam space involved in the embodiment of the present application is defined based on n static beams.
  • the n-dimensional beam space is defined based on n beams carrying CSI-RS, where n beams are the number of beams received by the beam antenna, or the n-dimensional beam space is defined based on n beams carrying SSB, At this time, n beams are the number of beams received by the beam antenna.
  • the n-dimensional beams are multiple beams mentioned in the embodiment of the present application.
  • the information of multi-beams can be determined through measurement report (measurement report, MR).
  • MR can record the time when MR is generated, the level measurement value and flow measurement value of multiple beams, etc.
  • the level measurement value of a beam may be the RSRP obtained by the base station from measuring the bearer sounding reference signal (sounding reference signal, SRS) sent by the user equipment using the beam, or the level measurement value of a beam may be the user equipment measuring the RSRP adopted by the base station.
  • the RSRP obtained by the CSI-RS sent by the beam wherein, for the latter case, the user equipment needs to report the measured level measurement value of the beam to the base station.
  • MR can include CELLID, TIME, RSRP1-RSRPn, ULTHP, DLTHP and other information.
  • CELLID refers to a cell ID.
  • the cell ID is the ID of the serving cell corresponding to the user equipment
  • MR is the MR for the user equipment.
  • TIME refers to the time when the MR was generated.
  • RSRP1 to RSRPn refer to level measurement values of n beams, or may also be referred to as n-dimensional beam level measurement values.
  • RSRP1 to RSRPn refer to the n RSRPs obtained by the base station measuring the SRS transmitted by the user equipment using n beams respectively, or the n RSRPs obtained by the user equipment measuring the CSI-RS transmitted by the base station using n beams respectively.
  • n is the number of beams included in the beam space, for example, the value of n may be 32, or 64, etc. It can be understood that, taking RSRP1 as an example, RSRP1 is the average or cumulative value of the RSRP of the first beam measured within the time period determined by the generation time of the current MR and the generation time of the previous MR.
  • the MR may include level measurement values of n beams, or level measurement values of p beams, where p ⁇ n, and both p and n are positive integers.
  • the level measurement values of the p beams refer to p effective level measurement values.
  • the user equipment or the base station may not be able to measure the level measurement values of all n beams, for example, the user equipment can only measure the level measurement values of p beams in the n beams, at this time, the user equipment may only Report the level measurement values of p beams.
  • the level measurement values of p beams may be represented as level measurement values of n beams, for example, the level measurement values of other n-p beams except p beams are set to 0.
  • ULTHP uplink throughput
  • DLTHP downlink throughput
  • ULTHP uplink throughput
  • DLTHP downlink throughput
  • ULTHP is the sum of the accumulated uplink packet size in the time period determined by the generation time of the current MR and the generation time of the previous MR
  • DLTHP is the size determined by the generation time of the current MR and the generation time of the previous MR The sum of the size of downlink packets accumulated in the time period.
  • Wireless channel In wireless communication, the path between the sending end (antenna, which can be one antenna or one or more antenna arrays) and the receiving end (such as user equipment) can include multiple channels. A wireless channel may also be called a path.
  • the sending end may be an antenna (for example, one antenna, or one or more antenna arrays), and the receiving end may be a user equipment.
  • the sending end may also be a user equipment, and the receiving end may also be an antenna.
  • Path strength the power component on the path when the wireless signal of unit power propagates to the receiving end.
  • the path strength characterizes the ratio of the remaining power of the signal on the path after spatial propagation.
  • Target path strength is a matrix, and the dimension of the matrix is the same as the number of horizontal and vertical discretization angles of each beam of the angular power spectrum cell.
  • the elements in the matrix represent the path strengths of the horizontal and vertical paths after angle discretization.
  • the angular power spectrum is a description of the wireless channel from the antenna to the grid, including information such as the number of paths, path angles, and path strengths.
  • Angular power spectrum cell the cell where the user equipment located in the grid can receive the downlink beam.
  • the user equipment can receive the downlink beams sent by the cell 1 and the cell 2 respectively, and the cell 1 and the cell 2 are both angular power spectrum cells.
  • Serving cell the cell with the highest reference signal received power detected by the user equipment.
  • CSI-RS It is the downlink pilot signal sent by the base station to the UE, and its received power is called CSI-RSRP.
  • CSI-RSRP received power
  • NR new radio
  • the CSI-RS used for mobility management is taken as an example for description.
  • the mobility management CSI-RS can measure the beam-level CSI-RSRP of the serving cell and its neighboring cells.
  • the RSRP of the uplink beam includes demodulation reference signal (demodulation reference signal, DMRS) RSRP, SRS-RSRP and so on.
  • the RSRP of the downlink beam includes the RSRP of the CSI-RS, the SSB-RSRP, and the like.
  • the RSRP of the CSI-RS is taken as an example for illustration.
  • Grid Divide each cell into multiple virtual grids in the beam space, and one beam space can correspond to (or cover) one or more cells.
  • the user equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the user equipment can be UE, mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) user equipment, augmented reality (augmented reality, AR) user equipment, industrial control ( Wireless terminals in industrial control, vehicle user equipment, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Safety), wireless terminals in smart city, wireless terminals in smart home, wearable user equipment, etc.
  • User equipment may be fixed or mobile.
  • this figure is a flowchart of a method for determining a coordinated cell provided in an embodiment of the present application. As shown in FIG. 3, the method may include:
  • each of the first plurality of cells covered by the beam space is divided into multiple grids in advance. Since one base station may cover the first plurality of cells, there is an overlapping area between adjacent cells, and when cells are divided into multiple grids, overlapping grids may exist between adjacent cells. Therefore, there are cases where some grids correspond to multiple cells.
  • the one or more cells corresponding to the grid refers to the cells where the user equipment located in the grid can receive the downlink beam. When any cell in the beam space is used as a serving cell, the spectrum efficiency of each grid corresponding to the serving cell is obtained.
  • the beam space is determined according to the reference signal received power of multiple beams.
  • the network device acquires the spectrum efficiency of each cell in the second plurality of cells on the first grid, and calculates the spectrum efficiency of each cell in the second plurality of cells on the first grid. The average value of the spectral efficiencies above is taken as the spectral efficiency of the first grid.
  • the spectral efficiency of the grid is the average value of the spectral efficiencies of the serving cell and the cooperating cell on the grid;
  • P tj represents the transmit power of the wireless access device corresponding to the neighboring cell j, Indicates the angular power spectrum from the neighboring cell j to the kth grid.
  • the network device When acquiring the frequency efficiency of the second grid in the serving cell, acquires the frequency efficiency of the serving cell on the second grid, and uses the spectrum efficiency of the serving cell on the second grid as the spectrum efficiency of the second grid. That is, for the second grid corresponding only to the serving cell, it is only necessary to obtain the spectral efficiency of the serving cell on the second grid, and determine the spectral efficiency of the serving cell on the second grid as the second grid the spectral efficiency.
  • the network device may adopt, but not limited to, the following methods to obtain the spectrum efficiency of each cell in the first grid in the second plurality of cells:
  • the network device obtains the angular power spectrum from the serving cell to the first grid, the transmit power of the serving cell, and the angle of the adjacent cell corresponding to the serving cell to the first grid. interference.
  • the first grid corresponds to the second plurality of cells (including the serving cell and one or more neighboring cells)
  • the spectral efficiency of the first grid it is necessary to first obtain the Spectral efficiency on the first grid.
  • the angular power spectrum from the serving cell to the first grid, the transmit power of the serving cell, and the angle of the adjacent cell corresponding to the serving cell to the first grid are obtained. interference.
  • the second plurality of cells corresponding to the first grid k of the serving cell m includes cell m, cell a1, and cell a2.
  • the cell m When obtaining the spectral efficiency of each cell in the second plurality of cells on the first grid k, the cell m is used as the serving cell, and the network device obtains the angular power spectrum Xm(k) from the cell m to the first grid, and the cell m The transmit power Ptm of the cell m, and the interference ifm(k) of the adjacent cells a1 and a2 corresponding to the cell m on the first grid k, and obtain the cell m on the first grid according to Xm(k), Ptm, ifm(k) The spectral efficiency se(m,k) of .
  • the network device acquires the angular power spectrum Xa1(k) from cell a1 to the first grid, the transmit power Pta1 of cell a1, and the interference ifa1( k), and obtain the spectral efficiency se(a1,k) of the cell a1 on the first grid according to Xa1(k), Pta1, and ifa1(k).
  • the network device acquires the angular power spectrum Xa2(k) from cell a2 to the first grid, the transmit power Pta2 of cell a2, and the interference ifa2( k), and obtain the spectral efficiency se(a2,k) of the cell a2 on the first grid according to Xa2(k), Pta2, and ifa2(k).
  • Table 1 The second multiple cells corresponding to the first grid
  • the transmit power of the serving cell can be obtained through measurement.
  • the angular power spectrum is the wireless channel multipath information determined by the network equipment.
  • the angular power spectrum includes path angles and path strengths of the propagation paths from the antennas in the angular power spectrum cell to the grid.
  • the antenna in the angular power spectrum cell is an antenna for sending downlink beams, and the antenna may be an antenna array.
  • the interference of adjacent cells to the first grid can be obtained in the following manner: for any adjacent cell, the network device obtains the reference signal received power of the downlink beam sent by the adjacent cell; the network device obtains the reference signal received power of the downlink beam sent by the adjacent cell Received power and effective traffic probability determine the interference of neighboring cells to the grid.
  • the effective traffic probability is the ratio of the effective traffic value of the adjacent cell within the preset time to the theoretical traffic value; the network device adds the interference of all adjacent cells to the grid to obtain the interference of the adjacent cell corresponding to the serving cell to the grid .
  • the serving cell will be interfered only when there is a download service in the adjacent cell, and the received power of the reference signal of the downlink beam in the rest of the time is only the level of the reference signal, which will not interfere with the grid. Therefore, when calculating the interference of each adjacent cell to the grid, it will be determined according to the effective traffic probability, so as to obtain the effective interference of the adjacent cell to the grid. Specifically, you can refer to the formula (1), in which the serving cell m corresponds to L neighboring cells as an example for illustration:
  • m (k) is the interference generated by all neighboring cells on grid k
  • ⁇ l is the effective traffic probability
  • Thp eff_l is the effective traffic of adjacent cell l within the preset time
  • Thp beam_l is the theoretical traffic of adjacent cell l within the preset time
  • Detected CSI RSRP l is the reference signal received power of the cell l measured by the user equipment.
  • the preset time may be set according to actual applications, which is not limited in this embodiment.
  • the implementation of the network device in obtaining the spectrum efficiency of the serving cell on the second grid can refer to the above-mentioned acquisition by the network device of each cell on the first grid.
  • the relevant description of the spectrum efficiency of , this embodiment will not be repeated here.
  • the network device acquires the spectrum efficiency of the serving cell on the first grid according to the angular power spectrum, interference, and transmission power.
  • the transmission power of the serving cell, and the interference to the grid from the neighboring cells corresponding to the serving cell after obtaining the angular power spectrum from the serving cell to the grid, the transmission power of the serving cell, and the interference to the grid from the neighboring cells corresponding to the serving cell, according to the above angular power spectrum, transmission power and interference, the Spectral efficiency on the first grid.
  • the angular power spectrum, transmit power, and interference may be input into a pre-trained neural network model as input data, and the neural network model outputs the spectral efficiency of the cell on the grid.
  • the neural network device is pre-generated according to the training data and the spectral efficiency corresponding to the training data.
  • the training data includes the angular power spectrum of the serving cell on the grid, the transmit power of the serving cell, and the interference to the grid from neighboring cells corresponding to the serving cell.
  • the spectrum efficiency corresponding to the training data is determined according to the traffic on the grid and the number of cell resource banks scheduled by the grid. For example, taking the kth grid in cell m as an example, the flow of the kth grid is The number of resource pool RBs scheduled on the grid is Then the spectral efficiency of the cell on the grid is:
  • the training of the neural network model is to use the neural network model to fit the functional relationship between the input characteristics of the serving cell, such as transmit power, angular power spectrum, and interference, and the spectral efficiency, so as to obtain the neural network model after the loss function converges:
  • P tm is the transmit power of the wireless access device corresponding to the serving cell
  • X m (k) is the angular power spectrum of the serving cell
  • m (k) is the interference of neighboring cells on the grid
  • the network device can use the above neural network model to obtain the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the total spectrum efficiency of each serving cell according to the spectrum efficiency of each grid in each serving cell.
  • the total spectrum efficiency of the serving cell is obtained according to the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the total spectrum efficiency of the serving cell according to the spectrum efficiency of each grid in the serving cell and the spectrum efficiency parameter.
  • the network device obtains a cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell.
  • the cooperating set corresponding to the first grid in each serving cell is obtained according to the total spectral efficiency of each serving cell.
  • the first grid is a grid corresponding to multiple cells in the serving cell, and the cells in the cooperating set can provide transmission services for the user equipment.
  • the determined cooperating set corresponding to the first grid may only include the identity of the neighboring cell corresponding to the serving cell, or include both the identity of the serving cell and the identity of the neighboring cell.
  • the network device determines the average spectral efficiency of each serving cell according to the total spectral efficiency corresponding to each serving cell and the number of cells; the network device determines the spectral efficiency parameter with the goal of maximizing the average spectral efficiency; the network device determines the spectral efficiency parameter according to the value of the spectral efficiency parameter A cooperating set corresponding to the first grid in each serving cell is determined.
  • the number of cells is the number of cells covered by the beam space. Specifically, see formula (2);
  • y m, j is the spectrum efficiency parameter
  • y m, j ⁇ ⁇ 0,1 ⁇
  • M is the number of cells covered by the beam space
  • Thp gridm_k is the traffic of the kth grid corresponding to cell m.
  • Thpmin represents the minimum flow that the cell should meet
  • Thpmax represents the maximum flow that the cell should meet.
  • the network device sends the cooperating set corresponding to the first grid to the wireless access device of the serving cell.
  • the network device After determining the cooperating set corresponding to the first grid of the serving cell, send the cooperating set corresponding to the first grid to the wireless access device of the serving cell, so that the cooperating set corresponding to the first grid can determine the cooperating set of the serving cell Collaborative community.
  • the network device sends the identifier corresponding to the first grid and the corresponding relationship between the identifiers of the cells included in the cooperating set to the wireless access device corresponding to the serving cell.
  • the wireless access device corresponding to the serving cell may be an active antenna unit AAU corresponding to the serving cell.
  • the identifier corresponding to the first grid may be a central coordinate corresponding to the grid, and the central coordinate is represented by reference signal received powers of multiple beams.
  • the specific manifestations are as follows:
  • celllD i is the serving cell ID of the i-th virtual grid center point
  • the beam space is determined based on the reference signal received power of multiple beams, and each cell covered by the beam space is divided into multiple grids.
  • the network device obtains the spectrum efficiency of each grid in the serving cell, and then obtains the total spectrum efficiency of each serving cell based on the spectrum efficiency of each grid in the serving cell.
  • the network device obtains the cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell.
  • the first grid is a grid corresponding to multiple cells in the serving cell, and when the user equipment is located in any cell included in the cooperating set, the cell can provide the transmission service for the user equipment.
  • the embodiment of the present application determines the cooperating set corresponding to each first grid in each serving cell based on the total spectrum efficiency of each serving cell, and considers the influence of the cell coordination of each grid on other cells, so as to provide user equipment with The optimal cooperative community improves service quality.
  • the network device determines each of the multiple cells as the serving cell, its spectral efficiency on the first grid needs to acquire the angular power spectrum from the serving cell to the grid.
  • the angular power spectrum from the serving cell to the grid can be obtained in the following manner.
  • the network device acquires a plurality of first data, where the first data includes reference signal received power of multiple downlink beams, grid identifiers, serving cell identifiers, and angular power spectrum cell identifiers.
  • the network device acquires multiple pieces of first data from the wireless access device. For example, the network device obtains the multi-beam CSI-RSRP of each cell within a period of time from the MR data storage module of the wireless access device, and the grid identifiers (also called grid IDs) corresponding to the RSRPs of the downlink beams of each cell respectively. ), serving cell ID (also called serving cell ID) and angular power spectrum cell ID (also called angular power spectrum cell ID). That is to say, the RSRP of the downlink beam of each cell is associated with the grid ID, the serving cell ID and the angular power spectrum cell ID and stored in the MR data (that is, a plurality of first data).
  • the grid identifiers also called grid IDs
  • serving cell ID also called serving cell ID
  • angular power spectrum cell ID also called angular power spectrum cell ID
  • Table 1 is an MR data recording table provided in the embodiment of the present application.
  • the MR data record table includes user equipment number (indicating each user equipment), MR data number (indicating multiple pieces of MR data reported by user equipment), serving cell ID, grid ID, angular power spectrum cell ID and multiple downlink Beam RSRP.
  • a row of data in Table 2 (that is, a piece of MR data) is a piece of first data.
  • the network device acquires the multiple pieces of first data from the wireless access device, including multiple pieces of MR data measured by multiple user equipments.
  • the RSRP in Table 2 is a vector whose dimension is equal to the number of CSI-RS beams, that is, the RSRP shown in Table 2 includes the RSRP of each beam in the multiple beams.
  • UE1 is located in the area with grid ID 134, and the serving cell ID and angular power spectrum cell ID are 3924752.
  • UE1 acquires RSRPs of multiple CSI-RS beams in the current area.
  • the RSRP measurement value of each CSI-RS beam and the number of CSI-RS beams form a matrix RSRP (3924752, 134, 3924752) .
  • the grid ID corresponding to the RSRP of the downlink beam of each cell is the grid ID of the grid containing the beam space.
  • the beam space is determined according to the reference signal received power of multiple uplink beams.
  • the wireless access device periodically measures the multi-beam SRS-RSRP of each user equipment under the wireless access device.
  • the wireless access device determines grid IDs corresponding to each user equipment in the beam space according to the beam space and the multi-beam SRS-RSRP measurement value of each user equipment. That is to say, the beam space formed by the RSRPs of multiple uplink beams can be compared to the actual geographical space.
  • the beam space is divided into multiple grids, and each grid has its own grid ID.
  • each user equipment under the wireless access device also corresponds to each grid ID.
  • the network device acquires multiple pieces of first data from the drive test device. For example, the network device obtains the RSRP of multiple downlink beams measured by the user equipment within a period of time from the DT data recording module of the drive test device, and the serving cell ID and angular power spectrum cell ID corresponding to the measured RSRP of the multiple downlink beams respectively , and the latitude and longitude information of the user equipment at the time of measurement. That is to say, the RSRPs of multiple downlink beams measured by the user equipment are associated with the serving cell ID, the angular power spectrum cell ID, and the longitude and latitude information of the user equipment during measurement and stored in the DT data (that is, a plurality of first data).
  • Table 3 is a DT data record table provided in the embodiment of the present application.
  • the DT data record table includes user equipment number (indicating each user equipment), DT data number (indicating multiple pieces of DT data reported by user equipment), serving cell ID, angular power spectrum cell ID, RSRP of multiple downlink beams and Latitude and longitude information. It can be seen that, compared with the first data shown in Table 2, the first data shown in Table 3 has more latitude and longitude information, indicating the corresponding geographic grid. That is to say, the latitude and longitude information in Table 3 is equivalent to the grid ID indicating the geographic grid where the user equipment is located.
  • the drive test device may determine the grid ID corresponding to the user equipment during measurement according to the latitude and longitude information of the user equipment during measurement. That is to say, in the drive test scenario, the grid IDs corresponding to the RSRPs of multiple downlink beams are grid identifiers in geographic space.
  • geographic space is a three-dimensional space composed of longitude and latitude information.
  • the set of latitude and longitude information is mapped to a plane area of n meters*m meters (n and m are positive integers), and the plane area is a grid.
  • the network device determines a plurality of second data according to the plurality of first data.
  • the network device may further process the multiple pieces of first data to obtain the second data.
  • the second data refers to the characteristic value of the first data whose grid ID, serving cell ID, and angular power spectrum cell ID are all the same.
  • the first data includes the identity of the angular power spectrum cell to which the terminal belongs.
  • the angular power spectrum cell is the cell where the downlink beam received by the user equipment is located. That is to say, if the user equipment detects the downlink beam RSRP of the cell, the cell is the angular power spectrum cell of the user equipment.
  • the angular power spectrum cell may be a serving cell or a neighboring cell.
  • cell 1 is a serving cell of the user equipment
  • cell 2 is a neighboring cell.
  • the user equipment detects the downlink beam RSRP of cell 1 and the downlink beam RSRP of cell 2 .
  • cell 1 and cell 2 are both angular power spectrum cells of the user equipment.
  • the RSRP of the downlink beam of each cell is stored in association with the corresponding grid ID, serving cell ID, and angular power spectrum cell ID (that is, a plurality of first data).
  • the user equipment is located in an area with a grid ID of 134 and a serving cell ID of 3924752.
  • UE 1 acquires RSRPs of multiple CSI-RS beams in the current area.
  • the user equipment can measure the RSRP of the CSI-RS beam of the serving cell 3924752 and the RSRP of the CSI-RS beam of the adjacent cell 3924674.
  • the network device determines a plurality of second data according to the grid ID, serving cell ID, angular power spectrum cell ID and RSRP of a plurality of downlink beams contained in the plurality of first data, including the following steps:
  • the network device acquires RSRPs of multiple downlink beams whose grid ID, serving cell ID, and angular power spectrum cell ID are all the same in the multiple first data;
  • the network device determines RSRP eigenvalues of multiple downlink beams whose grid IDs, serving cell IDs, and angular power spectrum cell IDs are all the same in the multiple first data.
  • the characteristic value is any one of the average value of the RSRP of multiple downlink beams, the median of the RSRPs of multiple downlink beams, or the mode of the RSRPs of multiple downlink beams.
  • the network device acquires the characteristic value of the first data whose grid ID, serving cell ID, and angular power spectrum cell ID are all the same, so that the amount of data can be reduced.
  • the following describes the mean value of the feature value as an example.
  • Table 3 is a recording table of a plurality of first data provided in the embodiment of the present application.
  • the plurality of first data may include a plurality of first data having the same grid ID, serving cell ID, and angular power spectrum cell ID, as shown in Table 4.
  • Table 4 Record table of multiple first data
  • the network device determines the angular power spectrum from the antenna in the cell to the grid indicated by each grid identifier from the antenna in the cell indicated by each angular power spectrum cell identifier in the second data according to each second data.
  • the angular power spectrum is a form of expression of the wireless channel multipath information determined by the server.
  • the angular power spectrum includes path angles and path strengths of the propagation paths from the antennas in the angular power spectrum cell to the grid.
  • the antenna in the angular power spectrum cell is an antenna for sending downlink beams, and the antenna may be an antenna array.
  • step S3 includes the following processes:
  • the network device determines the beam gain of each beam of the angular power spectrum cell according to the antenna gain of the angular power spectrum cell and the antenna port weight of each beam of the angular power spectrum cell.
  • the network device determines the target path strength according to the beam gain of each beam of the angular power spectrum cell and the second data.
  • the network device determines an angular power spectrum from the angular power spectrum cell indicated by the angular power spectrum cell identifier to the grid indicated by the grid identifier according to the target path strength.
  • the antenna gain of the angular power spectrum cell and the antenna port weights of each beam of the angular power spectrum cell are all recorded in the antenna file of the wireless access network device.
  • the server can obtain the above information by obtaining the antenna file of the wireless access network device, and determine the beam gain of each beam of the angular power spectrum cell based on the above information.
  • the beam gain of each beam of the angular power spectrum cell in each angular direction may constitute a beam gain matrix.
  • the network device determines the target path strength, it actually solves the sparse optimization problem shown in formula (3).
  • the server can obtain the target path strength (that is, the path strength matrix in formula (3)).
  • the dimension of the path strength matrix is the same as the number of horizontal and vertical discretization angles of each beam of the angular power spectrum cell.
  • the element in row i and column j of X is X i,j , and X i,j represents the path strength (in dB) of the path in the horizontal i direction and vertical j direction after angle discretization, i ⁇ [0,359],j ⁇ [0,180].
  • is the coefficient of the regularization term
  • A is the beam gain matrix, which represents the beam gain of each beam in each angular direction.
  • RSRP is a vector, which is obtained by normalizing the statistical value of multi-beam RSRP in the linear domain so that its mean value is 1 watt.
  • one angular power spectrum cell corresponds to one path strength matrix X.
  • the path strength matrix X is also associated with serving cell ID, grid ID and angular power spectrum cell.
  • the server may determine the angular power spectrum from the angular power spectrum cell indicated by each angular power spectrum cell identifier to the grid indicated by each grid identifier in the second data according to X.
  • the specific implementation method is: the server obtains all non-zero elements in the path strength matrix X, and the total number of non-zero elements is the number of paths.
  • the server maps the horizontal i direction and the vertical i direction after discretizing the angle to the path horizontal dimension angle and the path vertical dimension angle (in radians respectively). That is to say, a set of path horizontal dimension angles and path vertical dimension angles characterizes a path.
  • Table 5 is an output table of angular power spectrum provided in the embodiment of the present application. Each row in Table 5 represents a path. An angular power spectrum number indicates an angular power spectrum, and one or more paths may be included in an angular power spectrum.
  • Table 5 An angular power spectrum output table
  • the network device may use but not limited to the following methods to obtain the traffic information corresponding to the corresponding grid:
  • the network device acquires a first data set, where the first data set includes a plurality of data collected in a first time period, and each data includes a traffic measurement value and level measurement values of n beams.
  • the first data set may include MRs collected during the first time period.
  • the first data set may include MRs collected within one week or two weeks, or the first data set may include MRs collected within one day, or the first data set may include MRs collected within one hour.
  • the network device may divide the collected data into data sets corresponding to multiple time periods according to the generation time in the MR to obtain multiple data sets, and the first data set may be one of the multiple data sets.
  • the first data set is MR collected for a cell within the first time period, and the cell corresponding to the first data set is the same cell as the cells corresponding to the multiple grids in the n-dimensional beam space.
  • the first data set includes K data
  • the first data set may be shown as ThpMat 1
  • the level matrix L 1 may be extracted through ThpMat 1 .
  • each row in ThpMat 1 may correspond to the generation time, flow measurement value (uplink flow measurement value and/or downlink flow measurement value) and level measurement value of n beams included in one MR, and K is the first data set includes the number of data.
  • Each row of the level matrix L1 is the level measurement value of n beams.
  • time 1,1 ...time K,1 all belong to the first time period.
  • the network device determines the second data set associated with the third grid in the first data set according to the level measurement values of n beams of each data and the central coordinates of the third grid, and the central coordinates of the third grid It is represented by the level value of n beams.
  • the third grid can be any one of the multiple grids in the n-dimensional beam space, or the third grid can be a specific grid among the multiple grids in the n-dimensional beam space .
  • the n beams in this embodiment are the multiple beams mentioned above.
  • the network device can determine multiple grids in the n-dimensional beam space and the center coordinates corresponding to each grid in the following manner:
  • Step 1 The network device acquires a training data set, and the training data set includes M samples.
  • the training data set may include MRs collected within a preset time period, for example, the training data set may include MRs collected within one week or two weeks. It should be noted that the training data set is MR collected for a cell within a preset time period. Therefore, the finally determined multiple grids in the n-dimensional beam space are multiple grids corresponding to the cell.
  • the training data set includes M samples, each sample includes level measurements of n beams.
  • the network device can determine the training data set shown in the level measurement value matrix L according to the M MRs. If an MR includes level measurement values of n beams (that is, RSRPs of n beams), the level measurement values of n beams are directly used as a row in the level measurement value matrix L. If an MR includes the level measurement values of p beams, it is necessary to write the level measurement values of p beams as the level measurement values of n beams. Specifically, the other n-p beams except p beams correspond to The measured level values of the beams are set to 0, and then the obtained measured level values of the n beams are used as a row in the level measured value matrix L.
  • each row in the level measurement value matrix L may correspond to the level measurement values of n beams in one MR, and the level measurement value matrix L indicates M groups of level measurement values.
  • the training data set includes M samples, and each sample includes flow measurement values and level measurement values of n beams, wherein the flow measurement values may include uplink flow measurement values and/or downlink flow measurement values .
  • the network device can determine the training data set shown in the traffic matrix ThpMat according to the M MRs.
  • each row in the flow matrix ThpMat may correspond to a flow measurement value in one MR and level measurement values of n beams. If the MR includes only dlthp but not ulthp, then ulthp can be set to 0. Similarly, if MR only includes ulthp but not dlthp, dlthp can be set to 0.
  • the traffic matrix ThpMat may also include a time value time, or may not include a time value time, which is not limited in this embodiment of the present application.
  • the level measurement value matrix L can also be extracted through the flow matrix ThpMat.
  • Step 2 The network device obtains a distance set corresponding to the training data set according to the training data set, and the distance set includes distances between level measurement values of n beams of any two samples in the M samples.
  • the distance matrix R is calculated with the level measurement value matrix L or the flow matrix ThpMat as input (the distance matrix R is M ⁇ M dimension), where,
  • R ij represents the distance between the level measurements of the n beams contained in the i-th sample in the level measurement matrix L or the flow matrix ThpMat and the level measurements of the n beams contained in the j-th sample, or It can also be described as the distance between the beam space position corresponding to the i-th sample and the beam space position corresponding to the j-th sample.
  • the distance dist may be defined as the Euclidean distance or other distances in the beam space, which is not limited in this embodiment of the present application.
  • the distance set corresponding to the training data set includes M(M-1)/2 distances in total, and the above-mentioned distance matrix R is only a form of representation of the distance set corresponding to the training data set, and the distance set corresponding to the training data set can also be Other expression forms are adopted, which are not limited in this embodiment of the present application.
  • L i, . refers to the level measurement value of the n beams in the i-th row in the level measurement value matrix L, that is, ⁇ rsrp i,1 ,rsrp i,2 ,...,rsrp i,n ⁇
  • L j, . refers to the level measurement value of the n beams in row j in the level measurement value matrix L, namely ⁇ rsrp j,1 ,rsrp j,2 ,...,rsrp j,n ⁇ .
  • n beams in the i-th row in the traffic matrix ThpMat refers to the level measurement value of n beams in the i-th row in the traffic matrix ThpMat, that is, ⁇ rsrp i,1 ,rsrp i,2 ,...,rsrp i,n ⁇ , L j, .
  • the level measurement value of the n beams in the jth row of the flow matrix ThpMat namely ⁇ rsrp j,1 ,rsrp j,2 ,...,rsrp j,n ⁇ .
  • Step 3 The network device determines the grid index corresponding to each sample in the M samples according to the distance set.
  • the grid index corresponding to each sample is determined by using a preset clustering algorithm according to the distance set corresponding to the training data set.
  • the preset clustering algorithm may refer to a distance clustering method (such as Kmeans, etc.), which is not limited in this embodiment of the present application.
  • the grid index corresponding to each sample can be determined by using a preset distance clustering algorithm according to the above distance matrix R. Specifically, it can be represented by the grid index matrix Label.
  • the grid index matrix Label can be a 1 ⁇ M dimensional matrix, label i refers to the grid index corresponding to the i-th sample, and the value of label i is an integer (1 ⁇ label i ⁇ m′), indicating the i-th sample Corresponding to the grid indicated by label i , where m' ⁇ M, the value of m' can be determined based on empirical values, or determined according to the size of the actual required grid range. It can be understood that the smaller the value of m', the larger the range of each grid, and the larger the value of m', the smaller the range of each grid.
  • the grid index matrix Label indicates the distribution of M samples in the m' grids.
  • the m' grids may be the finally determined multiple grids, that is, the number of the multiple grids may be m', or the m' grids may not be the final determined multiple grids.
  • the m' grids are m' candidate grids, which need to be further screened, and the number of finally determined multiple grids may be less than m'.
  • Step 4 The network device determines the center coordinates and radius of each grid.
  • the following describes how to determine the multiple grids included in the n-dimensional beam space, as well as the center coordinates and radius of each grid, in combination with Example 1 and Example 2 according to the specific content included in the training data set.
  • Example 1 If the training data set includes M samples, each sample includes level measurement values of n beams, excluding flow measurement values. After step 3, the m' grids determined by using the preset distance clustering algorithm according to the distance matrix R are the multiple grids included in the finally determined n-dimensional beam space.
  • the central coordinates of each grid may be determined according to level measurement values of n beams included in each sample in the samples corresponding to the grid.
  • a level measurement of n beams is calculated according to the level measurement values of n beams included in each sample in the sample corresponding to grid index i
  • the average value of the value, the average value of the level measurement values of the n beams is recorded as the center coordinate of the i-th grid.
  • the radius of each grid can be a preset value, for example, the preset value can be determined according to empirical values.
  • the radius of each grid may be determined according to the level measurement values of the n beams included in each sample corresponding to the grid and the center coordinates of the grid.
  • the radius of the i-th grid is determined according to the level measurement values of n beams included in each sample of the sample corresponding to the grid index i and the center coordinates of the i-th grid.
  • the radius of the i-th grid is determined from the maximum distance in the set of radii, which is the level measurement of the n beams included in each of the samples corresponding to the grid index i
  • the distance between the value and the center coordinates of the i-th grid is determined.
  • the radius of the i-th grid is the maximum distance in the radius set, or the radius of the i-th grid is the sum of the maximum distance in the radius set and the preset distance, or the radius of the i-th grid is The difference between the largest distance in the set of radii and the preset distance.
  • the solution is simple and easy to implement.
  • the center coordinate of each grid is the average value of the level measurement values of multiple samples, the spatial position of the flow rate is represented by the center coordinate of the grid, which can reduce the impact of noise and measurement errors on the space. Location is more statistically significant.
  • Example 2 If the training data set includes M samples, and each sample includes the flow measurement value and the level measurement value of n beams, after step 3, m′ determined by using the preset distance clustering algorithm according to the distance matrix R The grids are not the multiple grids included in the finally determined n-dimensional beam space.
  • the m' grids determined after step 3 are the m' candidate grids, and m ' Candidate grids are screened to obtain multiple grids included in the finally determined n-dimensional beam space.
  • the flow measurement value in each sample includes an uplink flow measurement value and/or a downlink flow measurement value.
  • the uplink flow statistical value of the i-th candidate grid is the sum of the uplink flow values of the samples that include uplink flow measurement values in the samples corresponding to the i-th candidate grid.
  • the statistical value of the downstream traffic of the i-th candidate grid is the sum of the downstream traffic values of the samples that include the measured value of the downstream traffic in the samples corresponding to the i-th candidate grid.
  • the uplink traffic statistic value of the i-th candidate grid is the average uplink traffic value corresponding to the sample corresponding to the i-th candidate grid.
  • the downlink traffic statistical value of the i-th candidate grid is the average downlink traffic value corresponding to the sample corresponding to the i-th candidate grid.
  • the fourth candidate grid includes 5 samples, where sample 1, sample 3, and sample 4 include measured values of downlink traffic, sample 2 includes measured values of uplink traffic, and sample 5 includes measured values of uplink traffic and downlink traffic, Then the statistical value of the uplink traffic of the fourth candidate grid is the sum of the measured value of uplink traffic included in sample 2 and the measured value of uplink traffic included in sample 5, and the statistical value of the downlink traffic of the fourth candidate grid is the downlink traffic included in sample 1 The sum of the flow measurement value, the downstream flow measurement value included in sample 3, the downstream flow measurement value included in sample 4, and the downstream flow measurement value included in sample 5.
  • the uplink traffic statistics value of the fourth candidate grid is divided by the sum of the uplink traffic measurement value included in sample 2 and the uplink traffic measurement value included in sample 5, and the downlink traffic statistic value of the fourth candidate grid is sample The sum of the downstream traffic measurement value included in 1, the downstream traffic measurement value included in sample 3, the downstream traffic measurement value included in sample 4, and the downstream traffic measurement value included in sample 5 is divided by 4.
  • the flow measurement values in the M samples are summarized according to the grid index matrix Label, and the flow statistics corresponding to the m' candidate grids are obtained.
  • the flow statistics of the m' candidate grids are respectively The value can be represented by the following uplink traffic statistic value ULTHP and/or downlink traffic statistic value DLTHP.
  • ulthp i and dlthp i respectively represent the statistical value of the upstream traffic of the ith candidate grid and the statistical value of the downstream traffic of the ith candidate grid.
  • the uplink traffic statistic value ULTHP includes m′ uplink traffic statistic values, that is, the uplink traffic statistic values corresponding to m′ candidate grids, and the downlink traffic statistic value DLTHP includes m′ downlink traffic statistic values, that is, m′ candidate grids corresponding uplink traffic statistics.
  • the m' candidate grids can be screened in the following manner, but not limited to, to obtain multiple grids included in the finally determined n-dimensional beam space:
  • Method 1 If the uplink traffic statistics of the i-th candidate grid meet the preset uplink traffic threshold, and/or the downlink traffic statistics of the i-th candidate grid meet the preset downlink traffic threshold, then the i-th candidate grid grid as the final grid.
  • the preset uplink traffic threshold and the preset downlink traffic threshold may be determined according to empirical values, or determined according to actual screening requirements. For example, when it is necessary to filter out candidate grids with a larger statistical value of uplink traffic, the preset uplink traffic threshold may be increased.
  • Method 2 According to the descending order of the m' uplink traffic statistics, k1 uplink traffic statistics are selected from the m' uplink traffic statistics, and the m' downlink traffic statistics are ordered from large to small Selecting k2 downlink traffic statistics values from the m′ downlink traffic statistics values.
  • the ratio of the sum of k1 uplink traffic statistics to the total uplink traffic statistics is greater than or equal to the first threshold, the ratio of the sum of k2 downlink traffic statistics to the total downlink traffic statistics is greater than or equal to the second threshold, k1 and k2 are positive integers , the statistical value of the total upstream traffic refers to the sum of the upstream traffic values of the samples including the measured value of the upstream traffic in the M samples, and the statistical value of the total downstream traffic refers to the downstream traffic value of the samples including the measured value of the downstream traffic in the M samples
  • the i-th uplink traffic statistic value among the m′ uplink traffic statistic values is the sum of the uplink traffic values of the samples including the uplink flow measurement value in the sample corresponding to the i-th candidate grid.
  • the i th downlink traffic statistic value among the m′ downlink traffic statistic values is the sum of the downlink traffic values of the samples including the downlink traffic measurement values in the sample corresponding to the i th candidate grid.
  • the plurality of grids is an intersection of candidate grids corresponding to k1 uplink traffic statistics values and k2 candidate grids corresponding to downlink traffic statistics values respectively. For example, if the k1 upstream traffic statistics include the upstream traffic statistics of the i-th candidate grid, and the k2 downlink traffic statistics include the i-th candidate grid’s downstream traffic statistics, then the i-th candidate grid as the finalized raster. For another example, if the k1 upstream traffic statistics include the upstream traffic statistics of the i-th candidate grid, and the k2 downlink traffic statistics do not include the i-th candidate grid’s downstream traffic statistics, then the i-th candidate grid Not a finalized raster.
  • the plurality of grids is a union set of candidate grids corresponding to k1 uplink traffic statistics values and k2 candidate grids corresponding to downlink traffic statistics values respectively. For example, if the k1 upstream traffic statistics include the upstream traffic statistics of the i-th candidate grid, or the k2 downlink traffic statistics include the i-th candidate grid’s downstream traffic statistics, then the i-th candidate grid as the finalized raster. For another example, if the k1 upstream traffic statistics do not include the upstream traffic statistics of the i-th candidate grid, and the k2 downlink traffic statistics do not include the i-th candidate grid’s downstream traffic statistics, then the i-th candidate grid raster is not the finalized raster.
  • the determined multiple grids may also be updated every preset time period, that is, step 1 to step 4 are performed periodically.
  • the multiple grids in the n-dimensional beam space are determined for the first time according to the collected MR, which can also be called the grid initialization process. It is not the first time to determine multiple grids in the n-dimensional beam space according to the collected MR, which can also be called the grid update process.
  • the network device may use, but not limited to, the following methods to determine the second data set associated with the third grid in the first data set:
  • Mode 1 The network device determines that the distance between the level measurement values of n beams included in any data in the first data set and the center coordinates of the third grid is less than or equal to the radius of the third grid, then the data is the second The data in the dataset.
  • the network device can sequentially calculate the center coordinate of a grid and the first The data includes the distance of the level measurements of the n beams.
  • the distance between the level measurement values of the n beams included in the first data and the center coordinates of the third grid is less than or equal to the radius of the i-th grid, it is determined that the first data is associated with the third grid, and at this time The distances between the center coordinates of other grids before the third grid and the level measurement values of the n beams included in the first data are greater than the corresponding radius.
  • the distance between the center coordinates of a grid and the level measurement values of the n beams included in the first data can be calculated sequentially according to the order of the grid indexes of the 10 grids .
  • the distance between the level measurement values of the n beams included in the first data and the center coordinates of the first grid is greater than the radius of the first grid, it is determined that the first data is not associated with the first grid, and Continue to calculate the distance between the level measurement values of the n beams included in the first data and the center coordinate of the second grid.
  • the distance between the level measurement values of the n beams included in the first data and the center coordinates of the second grid is greater than the radius of the second grid, it is determined that the first data is not associated with the second grid, and Continue to calculate the distance between the level measurement values of the n beams included in the first data and the center coordinate of the third grid.
  • the distance between the level measurement values of the n beams included in the first data and the center coordinates of the third grid is less than or equal to the radius of the third grid, it is determined that the first data is associated with the third grid, And stop continuing to calculate the distance between the level measurement values of the n beams included in the first data and the center coordinate of the fourth grid.
  • the network device can select any one of the N grids as the grid associated with the first data.
  • the distance between the level measurement values of the n beams included in the first data and the center coordinate of the first grid is smaller than the radius of the first grid, the n beams included in the first data
  • the distance between the level measurement value and the center coordinate of the fifth grid is smaller than the radius of the fifth grid, and the level measurement values of the n beams included in the first data are different from those of the eleventh grid
  • the distance between the center coordinates is less than the radius of the 11th grid, where any one of the 1st grid, the 5th grid and the 11th grid is selected as the grid with the first data The associated raster.
  • Method 2 The network device determines that the distance between the level measurement values of n beams included in any one of the data sets in the first data set and the center coordinate of the third grid is smaller than the distance between the level measurement values of the n beams and the grid coordinates in multiple grids. The distance between the center coordinates of other grids except the third grid, then the data is the data in the second data set.
  • the network device calculates the level measurement value of the n beams included in the first data and the center of each grid in the m grids Coordinate distances, m distances are obtained, and the grid corresponding to the smallest distance among the m distances is used as the grid associated with the first data. For example, if the grid corresponding to the smallest distance among the m distances is the i-th grid, then the i-th grid is used as the grid associated with the first data.
  • Method 3 The network device determines the third distance set, the third distance set includes the center coordinates of any one of the grid coordinates corresponding to the grids of the plurality of grids and the levels of the n beams included in the first data.
  • the distance of the measured value, the first data is the data in the first data set
  • the fourth distance set is determined according to the radius corresponding to each grid of the plurality of grids and the third distance set, and the minimum distance in the fourth distance set If it is the distance between the third grid and the level measurement values of the n beams included in the first data, then it is determined that the second data set includes the first data. Wherein, any distance in the fourth distance set is smaller than the radius of the grid corresponding to the distance.
  • the distances between the level measurement values of the n beams included in the first data and the central coordinates of N grids in the m grids are all smaller than the corresponding radius, 2 ⁇ N ⁇ n, and N is a positive integer, the grid corresponding to the minimum distance is selected as the grid associated with the first data.
  • the distance between the level measurement values of the n beams included in the first data and the center coordinate of the first grid is smaller than the radius of the first grid
  • the n beams included in the first data The distance between the level measurement value and the center coordinate of the fifth grid (denoted as distance 5) is smaller than the radius of the fifth grid, and the level measurement values of the n beams included in the first data are different from those of the eleventh grid
  • the distance of the center coordinates (denoted as distance 11) is less than the radius of the eleventh grid, among which, among distance 1, distance 5 and distance 11, distance 11 is the smallest, then the eleventh grid is the grid associated with the first data grid.
  • the network device determines the traffic statistical result corresponding to the third grid within the first time period according to the traffic measurement value included in each data in the second data set.
  • the traffic statistics result includes the uplink traffic statistics result and/or the downlink traffic statistics result.
  • the statistical result of the uplink traffic is determined according to the data including the measured value of the uplink traffic in the second data set
  • the statistical result of the downlink traffic is determined according to the data including the measured value of the downlink traffic in the second data set.
  • the network device may sum up the uplink traffic measurement values included in the second data set as the uplink traffic statistics result corresponding to the third grid within the first time period.
  • the network device may sum up the downlink traffic measurement values included in the second data set as the downlink traffic statistics result corresponding to the third grid within the first time period.
  • the serving cell can use the service cell of the user equipment according to the cooperating cell corresponding to the grid where the user equipment is located. Make collaborative transfers. For ease of understanding, the following will be described in conjunction with the accompanying drawings.
  • this figure is a flowchart of a method for determining a coordinated cell provided in an embodiment of the present application. As shown in FIG. 4, the method may include:
  • the first wireless access apparatus receives reference signal received power of multiple downlink beams sent by the user equipment.
  • the serving cell corresponding to the user equipment is the first cell, and the first cell corresponds to the first wireless access device, and the user equipment may periodically send multiple downlink beam reference signal reception to the first wireless access device power.
  • the reference signal received power of the multiple downlink beams refers to the reference signal received power of each downlink beam in the multiple downlink beams.
  • the downlink beam may be CSI.
  • the first wireless access apparatus determines a target grid of the user equipment in the beam space according to the reference signal received power of multiple downlink beams.
  • the first wireless access apparatus After receiving the reference signal received power of multiple downlink beams sent by the user equipment, the first wireless access apparatus determines the target grid where the user equipment is located in the beam space according to the multiple downlink beam reference signal received powers.
  • the first wireless access device obtains the distance between the user equipment and each grid according to the reference signal received power of multiple downlink beams and the center coordinates of each grid; the first wireless access device obtains the distance between the user equipment and each grid
  • the distance of the grid determines the target grid of the user equipment in the beam space.
  • the grid corresponding to the minimum distance may be determined as the target grid of the user equipment in the beam space.
  • the central coordinate of the grid is represented by the reference signal received power of multiple beams, and the reference signal received power of multiple beams may be the reference signal received power of multiple uplink beams, or the reference signal received power of multiple downlink beams. power.
  • the first wireless access device in order to reduce the overhead of the first wireless access device and prevent the first wireless access device from performing operations such as S402 each time it receives the reference signal reception power of multiple downlink beams reported by the user equipment, it may be A processing cycle is pre-configured on the first wireless access device, and only when the processing cycle is satisfied, the first wireless access device performs operations such as S402. Specifically, after receiving the reference signal received power of multiple uplink beams, the first wireless access device determines whether the time for receiving the reference signal received power of the multiple uplink beams meets a preset period; when the preset period is met, The first wireless access apparatus determines the target grid of the user equipment in the beam space according to the received power of the reference signals of the multiple uplink beams.
  • the period for the user equipment to report the reference signal received power of multiple downlink beams is pre-configured as N, and the first access device determines the target location of the user equipment only after receiving the multi-beam CSI RSRP reported by the user equipment for the tNth time.
  • grid, t is a positive integer.
  • the first wireless access device determines a first coordination set corresponding to the target grid.
  • the first wireless access device may, according to the identifier of the target grid and the The correspondence determines the first collaboration set corresponding to the target grid.
  • the first cooperating set corresponding to the target grid is determined according to the spectrum efficiency corresponding to the target grid, for details, refer to the embodiment shown in FIG. 3 .
  • the first cooperating set includes one or more second cells, where the second cells are neighboring cells of the serving cell.
  • the first wireless access apparatus may obtain in advance the correspondence between the identifier including the target grid and the first cooperating set from the network device.
  • the identifier of the target grid is the center coordinate of the target grid.
  • the first wireless access apparatus sends a cooperation message to the second wireless access apparatus corresponding to one or more second cells, so that the second wireless access apparatus performs coordinated transmission of services of the user equipment.
  • the first wireless access device will send a coordination message to the second wireless access devices corresponding to the second cells included in the first coordination set, so that all the second The cell performs coordinated transmission of services of the user equipment.
  • the first wireless device may first determine whether the user equipment is in the cooperative transmission state, and if it is already in the cooperative transmission state, the first wireless device needs to determine the second cooperative transmission state that makes the user equipment in the cooperative transmission state. Whether the cooperating set is consistent with the first cooperating set, and if so, the first wireless device does not need to send a cooperating message. If the second cooperating set is inconsistent with the first cooperating set, the first wireless access apparatus sends a cooperating message to the target second cell, where the target second cell is included in the first cooperating set and not included in the second cooperating set.
  • the first wireless access device also needs to send a stop cooperation message to the third wireless access device corresponding to the third cell, where the third cell is included in the second coordination set and is not included in the first coordination set.
  • the serving cell is cell m
  • the corresponding second cooperating set includes cells a2 and a3
  • the first cooperating set includes cells a1 and a2, then
  • the first wireless access apparatus sends a cooperation message to the cell a1, and sends a stop cooperation message to the cell a3.
  • the data storage module is used to store data such as the CSI RSRP of the serving cell, the CSI RSRP of the neighboring cell, the respective traffic and transmit power of the serving cell and the neighboring cell, which are fed back by the UE within a period of historical events measured by the base station.
  • the flow sensing module is used to determine the center coordinates corresponding to each grid in the n-dimensional beam space and the flow information of each grid.
  • the angular power spectrum calculation module is used to calculate the angular power spectrum of each cell in each grid in the n-dimensional beam space.
  • the network intelligent collaboration module is used to obtain the traffic information of each cell and each grid from the traffic perception module, obtain the angle power spectrum information of each cell and each grid from the angle power spectrum calculation module, and obtain the information of each cell in a certain period of time from the data storage module.
  • Data such as CSI-RSRP and PRB of multiple beams corresponding to the inside, CSI-RSRP of multiple beams of multiple neighboring cells, wireless access devices corresponding to the serving cell and wireless access devices corresponding to multiple neighboring cells, etc. .
  • the coordination set information corresponding to each grid of each cell (including the grid center point and one or more Cooperating Cell ID) is sent to the wireless access devices of each serving cell.
  • an embodiment of the present application provides an apparatus for determining a coordinated cell, which will be described below with reference to the accompanying drawings.
  • FIG. 6 this figure is a structural diagram of an apparatus for determining coordinated cells provided by an embodiment of the present application.
  • the apparatus is used to realize the function of network equipment, and the first plurality of cells covered by the beam space Each cell is divided into multiple grids, and the beam space is determined according to the received power of reference signals of multiple beams.
  • the device 600 includes: a first acquisition unit 601, a second acquisition unit 602, and a third acquisition unit 603 and sending unit 604 .
  • the first acquiring unit 601 is configured to acquire the spectrum efficiency of each grid in the serving cell when any cell is used as the serving cell.
  • the second obtaining unit 602 is configured to obtain the total spectral efficiency of each serving cell according to the spectral efficiency of each grid in each serving cell.
  • the third obtaining unit 603 is configured to obtain the cooperating set corresponding to the first grid in each serving cell according to the total spectrum efficiency of each serving cell, and the first grid is the corresponding second grid in the serving cell.
  • a grid of multiple cells, the cells in the cooperating set provide transmission services for user equipment located in the grid.
  • a sending unit 604 configured to send the cooperating set corresponding to the first grid to the wireless access device corresponding to the serving cell, so that the cooperating set of the serving cell is determined in the cooperating set corresponding to the first grid district.
  • the second acquiring unit 602 is specifically configured to, for any serving cell, obtain the total Spectral efficiency.
  • the third obtaining unit 603 is specifically configured to determine the average spectral efficiency of each serving cell according to the total spectral efficiency corresponding to each serving cell and the number of cells, the number of cells is The number of cells covered by the beam space; aiming to maximize the average spectral efficiency, determine the value of the spectral efficiency parameter; determine the corresponding value of the first grid in the serving cell according to the value of the spectral efficiency parameter collaboration set.
  • the first acquiring unit 601 is specifically configured to target the first grid in the serving cell, and each cell in the second plurality of cells is in the first Spectrum efficiency on the grid: taking the average value of the spectrum efficiencies of the cells in the second plurality of cells on the first grid as the spectrum efficiency of the first grid.
  • the first obtaining unit is specifically configured to obtain, for the second grid in the serving cell, the spectral efficiency of the serving cell on the second grid, the
  • the second grid is a grid corresponding to only the serving cell among the serving cells; the spectrum efficiency of the serving cell on the grid is used as the spectrum efficiency of the second grid.
  • the first obtaining unit 601 is specifically configured to obtain an angular power spectrum from the serving cell to the grid when each cell in the second plurality of cells serves as a serving cell , the transmit power of the serving cell, and the interference of the neighboring cell corresponding to the serving cell to the first grid; according to the angular power spectrum, the interference, and the transmit power, the power of the serving cell in the Spectral efficiency on the first grid.
  • the first acquiring unit 601 is specifically configured to input the power spectrum, the interference, and the transmit power into a pre-trained neural network model, and output the Spectrum efficiency of the serving cell on the first grid, the neural network model is pre-trained and generated according to training data and the spectrum efficiency corresponding to the training data.
  • the spectrum efficiency corresponding to the training data is determined according to the traffic of the serving cell on the grid and the number of scheduled resource blocks of the serving cell on the grid.
  • the first obtaining unit 601 is specifically configured to obtain, for any neighboring cell, the reference signal received power of the downlink beam corresponding to the neighboring cell sent by the user equipment; according to the The reference signal received power of the downlink beam corresponding to the neighboring cell and the effective traffic probability determine the interference of the neighboring cell to the grid, and the effective traffic probability is the effective traffic value and the theoretical traffic of the neighboring cell within a preset time The ratio of values; add the interference of all the neighboring cells to the grid to obtain the interference of the neighboring cells corresponding to the cell to the grid.
  • the sending unit 604 is specifically configured to send the corresponding relationship including the identifier corresponding to the first grid and the cell identifier in the coordinated set to the wireless access station corresponding to the serving cell. device.
  • this figure provides an apparatus 700 for determining a coordinated cell
  • the first cell corresponds to the apparatus, and the apparatus can implement the functions of the first wireless access apparatus in the above embodiment, and the serving cell corresponding to the user equipment is the described apparatus.
  • the apparatus 700 includes: a receiving unit 701 , a determining unit 702 , and a sending unit 703 .
  • the receiving unit 701 is configured to receive reference signal received power of multiple downlink beams sent by the user equipment.
  • the determining unit 702 is configured to determine the target grid of the user equipment in the beam space according to the reference signal received power of the multiple downlink beams.
  • the determining unit 702 is further configured to determine a first cooperating set corresponding to the target grid, where the first cooperating set corresponding to the target grid is determined according to the spectral efficiency corresponding to the target grid, and the first cooperating set corresponding to the target grid is determined according to the spectral efficiency corresponding to the target grid.
  • a cooperating set includes one or more second cells, where the second cells are neighbor cells of the serving cell.
  • the sending unit 703 is configured to send a cooperation message to the second wireless access apparatus corresponding to each of the one or more second cells, so that the second wireless access apparatus performs coordinated transmission of the service of the user equipment.
  • the determining unit 702 is further configured to determine that the user equipment is not in the coordinated transfer status.
  • the determining unit 702 is further configured to, before sending the cooperation message to the second wireless access apparatus corresponding to the one or more second cells, when the user equipment is already in the In the coordinated transmission state, it is determined that the second coordination set that the user equipment is in the coordinated transmission state is inconsistent with the first coordination set.
  • the sending unit 703 sends a cooperation message to a target second cell, where the target second cell is included in the first cooperating set and is not included in the second cooperating set.
  • the sending unit 703 is further configured to send a stop cooperation message to a third wireless access device corresponding to a third cell, where the third cell is included in the second coordination set and does not Included in the first collaboration set.
  • the determining unit 702 is further configured to obtain the distance between the user equipment and each grid according to the reference signal received power of the multiple downlink beams and the center coordinate of each grid , the center coordinates of the grid are represented by reference signal received powers of multiple beams; the target grid of the user equipment in the beam space is determined according to the distance between the user equipment and each grid.
  • the receiving unit 701 is further configured to receive the correspondence between the identifier of the target grid sent by the network device and the first cooperating set; the determining unit is further configured to Determine the first cooperating set corresponding to the target grid according to the identifier of the target grid and the correspondence between the identifier of the target grid and the first cooperating set.
  • the identifier of the target grid is the center coordinates of the target grid.
  • the determining unit 702 is further configured to determine that the time for receiving the reference signal received power of the multiple downlink beams satisfies a preset period; Determine the target grid of the user equipment in the beam space by using the reference signal received power of the plurality of downlink beams.
  • the reference signal received power of the multiple downlink beams is the channel state information reference signal received power of the multiple downlink beams.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device example can be configured as the first wireless access device or network device in the embodiments shown in FIGS. 3-4 , or it can also be the The equipment of the apparatus 600 in the embodiment shown in FIG. 6 or the equipment of the apparatus 700 in the embodiment shown in FIG. 7 are implemented. .
  • the network device 800 includes at least a processor 810 .
  • the network device 800 may also include a communication interface 820 and a memory 830 .
  • the number of processors 810 in the network device 800 may be one or more, and one processor is taken as an example in FIG. 8 .
  • the processor 810, the communication interface 820, and the memory 830 may be connected through a bus system or in other ways, where connection through a bus system 840 is taken as an example in FIG. 8 .
  • the processor 810 may be a CPU, an NP, or a combination of a CPU and an NP.
  • the processor 810 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the processor 810 may perform the above method embodiment to determine the target grid of the user equipment in the beam space according to the received power of reference signals of multiple uplink beams and determine the recommendation corresponding to the target grid. Access the community.
  • the communication interface 820 is used to receive and send packets, specifically, the communication interface 820 may include a receiving interface and a sending interface. Wherein, the receiving interface may be used to receive messages, and the sending interface may be used to send messages. There may be one or more communication interfaces 820 .
  • the memory 830 may include a volatile memory (English: volatile memory), such as a random-access memory (random-access memory, RAM); the memory 830 may also include a non-volatile memory (English: non-volatile memory), such as a fast Flash memory (English: flash memory), hard disk (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD); the memory 830 may also include a combination of the above types of memory.
  • the memory 830 may, for example, store the preceding first BGP route.
  • the memory 830 stores operating systems and programs, executable modules or data structures, or their subsets, or their extended sets, wherein the programs may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 810 can read the program in the memory 830 to implement the serving cell handover method or the serving cell determination method provided in the embodiment of the present application.
  • the memory 830 may be a storage device in the network device 800 , or may be a storage device independent of the network device 800 .
  • the bus system 840 may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus system 840 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 9 is a schematic structural diagram of another network device 900 provided by the embodiment of the present application.
  • the network device 800 can be configured as the first wireless access device or network device in the embodiments shown in FIGS. 3-4 , or can also be The equipment of the apparatus 600 in the embodiment shown in FIG. 6 or the equipment of the apparatus 700 in the embodiment shown in FIG. 7 are implemented.
  • the network device 900 includes: a main control board 910 and an interface board 930 .
  • the main control board 910 is also called a main processing unit (main processing unit, MPU) or a route processing card (route processor card). Equipment maintenance, protocol processing functions.
  • the main control board 910 includes: a CPU 911 and a memory 912 .
  • the interface board 930 is also called a line interface unit card (line processing unit, LPU), a line card (line card), or a service board.
  • the interface board 930 is used to provide various service interfaces and implement forwarding of data packets.
  • the service interface includes but is not limited to an Ethernet interface, a POS (Packet over SONET/SDH) interface, etc., and the Ethernet interface is, for example, a flexible Ethernet service interface (Flexible Ethernet Clients, FlexE Clients).
  • the interface board 930 includes: a central processing unit 931 , a network processor 932 , a forwarding entry storage 934 and a physical interface card (ph8sical interface card, PIC) 933 .
  • the CPU 931 on the interface board 930 is used to control and manage the interface board 930 and communicate with the CPU 911 on the main control board 910 .
  • the network processor 932 is configured to implement message forwarding processing.
  • the form of the network processor 932 may be a forwarding chip.
  • the processing of the uplink message includes: processing of the inbound interface of the message, lookup of the forwarding table; processing of the downlink message: lookup of the forwarding table, and so on.
  • the physical interface card 933 is used to realize the interconnection function of the physical layer.
  • the original traffic enters the interface board 930 through this, and the processed packets are sent out from the physical interface card 933 .
  • the physical interface card 933 includes at least one physical interface, which is also called a physical port.
  • the physical interface card 933 is also called a daughter card, which can be installed on the interface board 930, and is responsible for converting the photoelectric signal into a message, checking the validity of the message and forwarding it to the network processor 932 for processing.
  • the central processing unit 931 of the interface board 930 can also execute the functions of the network processor 932 , such as implementing software forwarding based on a general-purpose CPU, so that the physical interface card 933 does not need the network processor 932 .
  • the network device 900 includes multiple interface boards.
  • the network device 900 further includes an interface board 940 , and the interface board 940 includes: a central processing unit 941 , a network processor 942 , a forwarding entry storage 944 and a physical interface card 943 .
  • the network device 900 further includes a switching fabric unit 920 .
  • the SFU 920 may also be called a SFU (switch fabric unit, SFU).
  • SFU switch fabric unit
  • the switching fabric board 920 is used to complete the data exchange between the interface boards.
  • the interface board 930 and the interface board 940 may communicate through the switching fabric board 920 .
  • the main control board 910 is coupled to the interface board 930 .
  • the main control board 910, the interface board 930 and the interface board 940, and the switching fabric board 920 are connected to the system backplane through the system bus to realize intercommunication.
  • an inter-process communication protocol IPC
  • IPC inter-process communication
  • the network device 900 includes a control plane and a forwarding plane.
  • the control plane includes a main control board 910 and a central processing unit 931.
  • the forwarding plane includes various components for performing forwarding, such as a forwarding entry storage 934, a physical interface card 933, and a network processing device 932.
  • the control plane executes router functions, generates forwarding tables, processes signaling and protocol packets, configures and maintains device status, and other functions.
  • the control plane sends the generated forwarding tables to the forwarding plane.
  • the network processor 932 The issued forwarding table looks up and forwards the packets received by the physical interface card 933 .
  • the forwarding table issued by the control plane may be stored in the forwarding table item storage 934 . In some embodiments, the control plane and the forwarding plane can be completely separated and not on the same device.
  • the central processing unit 911 can determine the target grid of the user equipment in the beam space according to the received power of reference signals of multiple uplink beams, and determine the recommended access corresponding to the target grid district.
  • the network processor 932 may trigger the physical interface card 933 to send a switching instruction to the second wireless access device.
  • the central processor 911 may determine the target grid of the user equipment in the beam space according to the reference signal received power of the multiple downlink beams; the first wireless access device determines the The first collaboration set corresponding to the target raster.
  • the network processor 932 may send a cooperation message to the second wireless access apparatus corresponding to each of the one or more second cells through the physical interface 933 .
  • first obtaining unit 601 , the second obtaining unit 602 and the third obtaining unit 603 in the apparatus 600 may be equivalent to the physical interface card 933 or the physical interface card 943 in the network device 900 .
  • the determining unit 702 and the like in the apparatus 700 may be equivalent to the central processing unit 911 or the central processing unit 931 in the network device 900 .
  • the operations on the interface board 940 in the embodiment of the present application are consistent with the operations on the interface board 930 , and are not repeated for brevity.
  • the network device 900 in this embodiment may correspond to the controller or network device in each of the foregoing method embodiments, and the main control board 910, the interface board 930, and/or the interface board 940 in the network device 900 may implement the foregoing various methods.
  • the functions and/or various steps implemented by the first wireless access device or network device in the method embodiment are not described in detail here.
  • main control boards there may be one or more main control boards, and when there are multiple main control boards, it may include an active main control board and a standby main control board.
  • the network device can have at least one SFU, through which the data exchange between multiple interface boards can be realized, and large-capacity data exchange and processing capabilities can be provided. Therefore, the data access and processing capabilities of network devices with a distributed architecture are greater than those with a centralized architecture.
  • the form of the network device can also be that there is only one board, that is, there is no switching fabric board, and the functions of the interface board and the main control board are integrated on this board.
  • the central processing unit and the main control board on the interface board The central processing unit on the board can be combined into one central processing unit on the board to perform the superimposed functions of the two.
  • the data exchange and processing capabilities of this form of equipment are low (for example, low-end switches or routers and other network equipment). Which architecture to use depends on the specific networking deployment scenario.
  • the foregoing first wireless access device or network device may be implemented as a virtualization device.
  • the virtualization device may be a virtual machine (English: Virtual Machine, VM) running a program for sending packets, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • a virtual machine refers to a complete computer system that is simulated by software and has complete hardware system functions and runs in a completely isolated environment.
  • the virtual machine can be configured as a first wireless access device or a network device.
  • the first wireless access device or network device may be implemented based on a common physical server combined with a Network Functions Virtualization (Network Functions Virtualization, NFV) technology.
  • Network Functions Virtualization Network Functions Virtualization
  • the first wireless access device or network device is a virtual host, a virtual router or a virtual switch.
  • Those skilled in the art can combine the NFV technology to virtualize the wireless access device or network device with the above functions on a general physical server by reading this application, and details will not be repeated here.
  • the embodiment of the present application also provides a chip, including a processor and an interface circuit, and the interface circuit is used to receive instructions and transmit them to the processor;
  • the processor for example, may be a specific implementation form of the device 600 shown in FIG. 6 , which can be used to execute the above method for determining a serving cell.
  • the processor is coupled with a memory, and the memory is used to store a program or an instruction.
  • the system-on-a-chip implements the method in any one of the above method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be realized by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (central processor unit, CPU), it can also be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), it can also be a microcontroller (micro controller unit, MCU), and can also be a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • the embodiment of the present application also provides a computer-readable storage medium, including an instruction or a computer program, which, when run on a computer, causes the computer to execute the method for determining a coordinated cell provided in the above embodiment.
  • the embodiment of the present application also provides a computer program product including an instruction or a computer program, which, when run on a computer, causes the computer to execute the method for determining a coordinated cell provided in the above embodiments.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical business division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each business unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software business units.
  • the integrated unit is realized in the form of a software business unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the services described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the services may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种协作小区确定方法,具体为,网络设备基于多个波束的参考信号接收功率确定波束空间,并将波束空间所覆盖的每个小区划分为多个栅格。针对任一小区作为服务小区是,网络设备获取该服务小区中各栅格的频谱效率,进而根据该服务小区中各栅格的频谱效率,获得各服务小区的总频谱效率。网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。即,本申请实施例基于各服务小区的总频谱效率确定各服务小区中各个第一栅格所对应的协作集,考虑了每个栅格的小区协作时对其它小区的影响,以为用户设备提供最优的协作小区,提升服务质量。

Description

一种协作小区确定方法及装置
本申请要求于2021年6月29日提交的申请号为202110731258.9、申请名称为“一种协作小区确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种协作小区确定方法及装置。
背景技术
随着网络建设规模的扩大和不断成熟,5G网络的基站部署更加密集。大规模多输入多输出(Massive Multiple-input Multiple-output,Massive MIMO)作为5G网络的基本技术和关键技术,由于其通过集成更多的天线实现精准波束赋形和多流多用户覆盖。然而,Massive MIMO在实现更精准的用户覆盖的同时将导致更复杂的无线信道状态信息,尤其对于小区边缘的用户,小区间的干扰将变得更加严重。因此,如何合理地为用户设备(user equipment,UE)的服务小区配置协作集使得不同的小区之间可以相互协作降低小区间的干扰,以提高边缘用户设备的传输质量是急需解决的技术问题。
发明内容
本申请实施例提供了一种协作小区确定方法及装置,以为UE确定出最优协作小区,提高协作传输质量。
在本申请实施例的第一方面,一种协作小区确定方法,将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格,所述波束空间是根据多个波束的参考信号接收功率确定的,所述方法包括:针对任一小区作为服务小区时,所述网络设备获取所述服务小区中各栅格的频谱效率;所述网络设备根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率;所述网络设备根据各所述服务小区的总频谱效率,获得各所述服务小区中第一栅格对应的协作集,所述第一栅格为所述服务小区中对应第二多个小区的栅格,所述协作集中的小区为位于所述栅格的用户设备提供传输服务;所述网络设备将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,以使得在所述第一栅格对应的协作集中确定所述服务小区的协作小区。
在该实施例中,网络设备基于多个波束的参考信号接收功率确定波束空间,并将波束空间所覆盖的每个小区划分为多个栅格。针对任一小区作为服务小区是,网络设备获取该服务小区中各栅格的频谱效率,进而根据该服务小区中各栅格的频谱效率,获得各服务小区的总频谱效率。网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。即,本申请实施例基于各服务小区的总频谱效率确定各服务小区中各个第一栅格所对应的协作集,考虑了每个栅格的小区协作时对其它小区的影响,以为用户设备提供最优的协作小区,提升服务质量。
在一种可能的实现方式中,所述网络设备根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率,包括:针对任一服务小区,所述网络设备根据所述服务小区中各栅格的频谱效率以及频谱效率参数,获得所述服务小区的总频谱效率。
在一种可能的实现方式中,所述网络设备根据各所述服务小区的总频谱效率,获得所述服务小区中第一栅格对应的协作集,包括:所述网络设备根据各所述服务小区对应的总 频谱效率以及小区数量确定各所述服务小区的平均频谱效率,所述小区数量为所述波束空间所覆盖的小区数量;所述网络设备以最大化所述平均频谱效率为目标,确定所述频谱效率参数取值;所述网络设备根据所述频谱效率参数的取值确定所述服务小区中第一栅格对应的协作集。
在一种可能的实现方式中,所述网络设备获取所述服务小区中各栅格的频谱效率,包括:针对所述服务小区中的所述第一栅格,所述网络设备获取所述第二多个小区中各小区在所述第一栅格上的频谱效率;所述网络设备将所述第二多个小区中各小区在所述第一栅格上的频谱效率的平均值作为所述第一栅格的频谱效率。
在一种可能的实现方式中,所述网络设备获取所述服务小区中各栅格的频谱效率,包括:针对所述服务小区中的第二栅格,所述网络设备获取所述服务小区在所述第二栅格上的频谱效率,所述第二栅格为所述服务小区中只对应所述服务小区的栅格;所述网络设备将所述服务小区在所述栅格上的频谱效率作为所述第二栅格的频谱效率。
在一种可能的实现方式中,所述网络设备获取所述第二多个小区中各小区在所述第一栅格上的频谱效率,包括:在所述第二多个小区中各小区作为服务小区时,所述网络设备获取所述服务小区到所述栅格的角度功率谱、所述服务小区的发射功率以及所述服务小区对应的邻小区对所述第一栅格的干扰;所述网络设备根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率。
在一种可能的实现方式中,所述网络根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率,包括:所述网络设备将所述功率谱、所述干扰以及所述发射功率输入预先训练的神经网络模型,由所述神经网络模型输出所述服务小区在所述第一栅格上的频谱效率,所述神经网络模型是根据训练数据以及所述训练数据对应的频谱效率预先训练生成的。
在一种可能的实现方式中,所述训练数据对应的频谱效率是根据所述服务小区在所述栅格上的流量以及所述服务小区在所述栅格上的调度的资源块数量确定。
在一种可能的实现方式中,所述网络设备获取所述服务小区对应的邻小区对所述栅格的干扰,包括:针对任一邻小区,所述网络设备获取所述用户设备发送的所述邻小区对应的下行波束的参考信号接收功率;所述网络设备根据所述邻小区对应的下行波束的参考信号接收功率以及有效流量概率确定所述邻小区对所述栅格的干扰,所述有效流量概率为所述邻小区在预设时间内的有效流量值与理论流量值的比值;所述网络设备将所有所述邻小区对所述栅格的干扰进行相加,获得所述小区对应的邻小区对所述栅格的干扰。
在一种可能的实现方式中,所述网络设备将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,包括:所述网络设备将包括所述第一栅格对应的标识以及所述协作集中小区标识的对应关系发送给所述服务小区对应的无线接入装置。
在本申请实施例第二方面,提供了一种协作小区确定方法,第一小区对应第一无线接入装置,用户设备对应的服务小区为所述第一小区,所述方法包括:所述第一无线接入装置接收所述用户设备发送的多个下行波束的参考信号接收功率;所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格;所述 第一无线接入装置确定所述目标栅格对应的第一协作集,所述目标栅格对应的第一协作集是根据所述目标栅格对应的频谱效率确定的,所述第一协作集包括一个或多个第二小区,所述第二小区为所述服务小区的邻小区;所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得所述第二无线接入装置对所述用户设备的业务进行协作传输。
在一种可能的实现方式中,在所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,所述方法还包括:所述第一无线接入装置确定所述用户设备未处于协作传输状态。
在一种可能的实现方式中,在所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,所述方法还包括:在所述用户设备已处于所述协作传输状态时,所述第一无线接入装置确定使得所述用户设备已处于所述协作传输状态的第二协作集与所述第一协作集不一致。
在一种可能的实现方式中,所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,包括:所述第一无线接入装置向目标第二小区发送协作消息,所述目标第二小区包括在所述第一协作集且不包括在所述第二协作集中。
在一种可能的实现方式中,所述方法还包括:所述第一无线接入装置向第三小区对应的第三无线接入装置发送停止协作消息,所述第三小区包括在所述第二协作集且不包括在所述第一协作集中。
在一种可能的实现方式中,所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格,包括:所述第一无线接入装置根据所述多个下行波束的参考信号接收功率与每个栅格的中心坐标获得所述用户设备与每个栅格的距离,所述栅格的中心坐标由多个波束的参考信号接收功率表示;所述第一无线接入装置根据所述用户设备与每个栅格的距离确定所述用户设备在所述波束空间的目标栅格。
在一种可能的实现方式中,所述第一无线接入装置确定所述目标栅格对应的第一协作集,包括:所述第一无线接入装置接收网络设备发送所述目标栅格的标识与所述第一协作集之间的对应关系;所述第一无线接入装置根据所述目标栅格的标识以及所述目标栅格的标识与所述第一协作集之间的对应关系确定所述目标栅格对应的第一协作集。
在一种可能的实现方式中,所述目标栅格的标识为所述目标栅格的中心坐标。
在一种可能的实现方式中,所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格,包括:所述第一无线接入装置确定接收所述多个下行波束的参考信号接收功率的时间满足预设周期;所述第一无线接入装置根据在所述预设周期内接收到的所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
在一种可能的实现方式中,所述多个下行波束的参考信号接收功率为多个下行波束的信道状态信息参考信号接收功率。
在本申请实施例第三方面,提供了一种协作小区确定装置,将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格,所述波束空间是根据多个波束的参考信号接收功率 确定的,所述装置包括:第一获取单元,用于针对任一小区作为服务小区时,获取所述服务小区中各栅格的频谱效率;第二获取单元,用于根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率;第三获取单元,用于根据各所述服务小区的总频谱效率,获得各所述服务小区中第一栅格对应的协作集,所述第一栅格为所述服务小区中对应第二多个小区的栅格,所述协作集中的小区为位于所述栅格的用户设备提供传输服务;发送单元,用于将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,以使得在所述第一栅格对应的协作集中确定所述服务小区的协作小区。
在一种可能的实现方式中,所述第二获取单元,具体用于针对任一服务小区,根据所述服务小区中各栅格的频谱效率以及频谱效率参数,获得所述服务小区的总频谱效率。
在一种可能的实现方式中,所述第三获取单元,具体用于根据各所述服务小区对应的总频谱效率以及小区数量确定各所述服务小区的平均频谱效率,所述小区数量为所述波束空间所覆盖的小区数量;以最大化所述平均频谱效率为目标,确定所述频谱效率参数取值;根据所述频谱效率参数的取值确定所述服务小区中第一栅格对应的协作集。
在一种可能的实现方式中,所述第一获取单元,具体用于针对所述服务小区中的所述第一栅格,所述第二多个小区中各小区在所述第一栅格上的频谱效率;将所述第二多个小区中各小区在所述第一栅格上的频谱效率的平均值作为所述第一栅格的频谱效率。
在一种可能的实现方式中,所述第一获取单元,具体用于针对所述服务小区中的第二栅格,获取所述服务小区在所述第二栅格上的频谱效率,所述第二栅格为所述服务小区中只对应所述服务小区的栅格;将所述服务小区在所述栅格上的频谱效率作为所述第二栅格的频谱效率。
在一种可能的实现方式中,所述第一获取单元,具体用于在所述第二多个小区中各小区作为服务小区时,获取所述服务小区到所述栅格的角度功率谱、所述服务小区的发射功率以及所述服务小区对应的邻小区对所述第一栅格的干扰;根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率。
在一种可能的实现方式中,所述第一获取单元,具体用于将所述功率谱、所述干扰以及所述发射功率输入预先训练的神经网络模型,由所述神经网络模型输出所述服务小区在所述第一栅格上的频谱效率,所述神经网络模型是根据训练数据以及所述训练数据对应的频谱效率预先训练生成的。
在一种可能的实现方式中,所述训练数据对应的频谱效率是根据所述服务小区在所述栅格上的流量以及所述服务小区在所述栅格上的调度的资源块数量确定。
在一种可能的实现方式中,所述第一获取单元,具体用于针对任一邻小区,获取所述用户设备发送的所述邻小区对应的下行波束的参考信号接收功率;根据所述邻小区对应的下行波束的参考信号接收功率以及有效流量概率确定所述邻小区对所述栅格的干扰,所述有效流量概率为所述邻小区在预设时间内的有效流量值与理论流量值的比值;将所有所述邻小区对所述栅格的干扰进行相加,获得所述小区对应的邻小区对所述栅格的干扰。
在一种可能的实现方式中,所述发送单元,具体用于将包括所述第一栅格对应的标识以及所述协作集中小区标识的对应关系发送给所述服务小区对应的无线接入装置。
在本申请实施例第四方面,提供了一种协作小区确定装置,第一小区对应所述装置,用户设备对应的服务小区为所述第一小区,所述装置包括:接收单元,用于接收所述用户设备发送的多个下行波束的参考信号接收功率;确定单元,用于根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格;所述确定单元,还用于确定所述目标栅格对应的第一协作集,所述目标栅格对应的第一协作集是根据所述目标栅格对应的频谱效率确定的,所述第一协作集包括一个或多个第二小区,所述第二小区为所述服务小区的邻小区;发送单元,用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得所述第二无线接入装置对所述用户设备的业务进行协作传输。
在一种可能的实现方式中,所述确定单元,还用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,确定所述用户设备未处于协作传输状态。
在一种可能的实现方式中,所述确定单元,还用于在向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,在所述用户设备已处于所述协作传输状态时,确定使得所述用户设备已处于所述协作传输状态的第二协作集与所述第一协作集不一致。
在一种可能的实现方式中,所述发送单元,向目标第二小区发送协作消息,所述目标第二小区包括在所述第一协作集且不包括在所述第二协作集中。
在一种可能的实现方式中,所述发送单元,还用于向第三小区对应的第三无线接入装置发送停止协作消息,所述第三小区包括在所述第二协作集且不包括在所述第一协作集中。
在一种可能的实现方式中,所述确定单元,还用于根据所述多个下行波束的参考信号接收功率与每个栅格的中心坐标获得所述用户设备与每个栅格的距离,所述栅格的中心坐标由多个波束的参考信号接收功率表示;根据所述用户设备与每个栅格的距离确定所述用户设备在所述波束空间的目标栅格。
在一种可能的实现方式中,所述接收单元,还用于接收网络设备发送所述目标栅格的标识与所述第一协作集之间的对应关系;所述确定单元,还用于根据所述目标栅格的标识以及所述目标栅格的标识与所述第一协作集之间的对应关系确定所述目标栅格对应的第一协作集。
在一种可能的实现方式中,所述目标栅格的标识为所述目标栅格的中心坐标。
在一种可能的实现方式中,所述确定单元,还用于确定接收所述多个下行波束的参考信号接收功率的时间满足预设周期;根据在所述预设周期内接收到的所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
在一种可能的实现方式中,所述多个下行波束的参考信号接收功率为多个下行波束的信道状态信息参考信号接收功率。
在本申请实施例第五方面,提供了一种通信设备,所述设备包括:处理器和存储器;所述存储器,用于存储指令或计算机程序;所述处理器,用于执行所述存储器中的所述指令或计算机程序,以使得所述通信设备执行第一方面所述的方法。
在本申请实施例第六方面,提供了一种通信设备,所述设备包括:处理器和存储器;所述存储器,用于存储指令或计算机程序;所述处理器,用于执行所述存储器中的所述指令或计算机程序,以使得所述通信设备执行第二方面所述的方法。
在本申请实施例第七方面,提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上第一方面所述的方法或者执行以上第二方面所述的方法。
通过本申请实施例提供的技术方案,网络设备基于多个波束的参考信号接收功率确定波束空间,并将波束空间所覆盖的每个小区划分为多个栅格。针对任一小区作为服务小区是,网络设备获取该服务小区中各栅格的频谱效率,进而根据该服务小区中各栅格的频谱效率,获得各服务小区的总频谱效率。网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。即,本申请实施例基于各服务小区的总频谱效率确定各服务小区中各个第一栅格所对应的协作集,考虑了每个栅格的小区协作时对其它小区的影响,以为用户设备提供最优的协作小区,提升服务质量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种协作小区确定场景示意图;
图2为本申请实施例提供的一种波束空间示意图;
图3为本申请实施例提供的一种协作小区确定方法流程图;
图4为本申请实施例提供的另一种协作小区确定方法流程图;
图5为本申请实施例提供的一种系统架构示意图;
图6为本申请实施例提供的一种协作小区确定装置结构图;
图7为本申请实施例提供的另一种协作小区确定装置结构图;
图8为本申请实施例提供的一种网络设备结构图;
图9为本申请实施例提供的另一种网络设备结构图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
目前,协同传输技术主要是基于用户设备对SSB信号的瞬时测量进行的。如图1所示,当UE位于小区边缘时可以同时测量到两个小区(小区1和小区2)各自对应的有源天线单元(Active Antenna Unit,AAU)所发送的SSB信号的强度,即参考信号功率(reference signal received power,RSRP),分别为AAU1的RSPP1和AAU2的RSPP2。其中,UE对应的服务小区为小区1,UE将测量的RSPP1和RSPP2发送给AAU1,该AAU1确定UE上报的两个信号强度的差值小于预设阈值时,则确定AAU1和AAU2满足协作传输条件,则AAU1通知自身对应的基带处理单元(base band unite,BBU),即BBU1需要与AAU2进行协作。
由于主服务小区仅根据UE测量到的主服务小区和邻区的SSB信号强度确定协作集,未考虑协作集中小区协作后对其它邻小区的影响,导致其它邻小区的信道干扰增加和流量负载增加,影响其它邻小区的传输质量。
基于此,本申请实施例提供的一种协作小区确定方法,基于多个波束的参考信号接收功率确定波束空间,并将波束空间所覆盖的每个小区划分为多个栅格。针对任一小区作为服务小区是,网络设备获取该服务小区中各栅格的频谱效率,进而根据该服务小区中各栅格的频谱效率,获得各服务小区的总频谱效率。网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。其中,第一栅格为服务小区中对应多个小区的栅格,用户设备位于协作集所包括的任意小区时,该小区可以为用户设备提供传输服务。即,本申请实施例基于各服务小区的总频谱效率确定各服务小区中各个第一栅格所对应的协作集,考虑了每个栅格的小区协作时对其它小区的影响,以为用户设备提供最优的协作小区,提升服务质量。
为便于理解本申请实施例的具体实现,下面将对本申请实施例涉及的技术概念进行解释说明。
大规模MIMO:传统的MIMO的天线为2天线、4天线或8天线,而Massive MIMO的通道数达到64/128/256个。传统的MIMO,以8天线为例,实际信号在覆盖范围在水平方向移动,在垂直方向上不动。而Massive MIMO的信号在水平维度空间的基础上引入垂直维度的空域进行利用。此外,Massive MIMO还具有提供丰富的空间自由度,提供更多可能的到达路径,以及提升信号的可靠性等优点。对于基于Massive MIMO技术的无线网络(例如,4.5G与5G等),用户设备在与基站交互的过程中可以采用波束空间中的多个波束(比如窄波束)进行通信。
其中,波束空间可以基于多个静态波束定义。如图2所示为一种可能的波束空间的示意图。静态波束是指波束赋形时采用预定义的权值形成的波束。例如,在小区下形成固定的波束,其中,波束的数目、宽度、方向都是确定的。其中,静态波束可以包括承载信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)的波束和承载同步信号块(synchronization signal and PBCH block,SSB)的波束,其发送方向由物理射频(radio frequency,RF)参数决定。当物理RF参数确定时,可以基于多个承载CSI-RS的静态波束或承载SSB的静态波束定义波束空间。
本申请实施例中所涉及的n维波束空间是基于n个静态波束定义的。例如,n维波束空间是基于n个承载CSI-RS的波束定义的,此时n个波束为波束天线接收的波束的数量,或者,n维波束空间是基于n个承载SSB的波束定义的,此时n个波束为波束天线接收的波束的数量。其中,n维波束为本申请实施例所提及的多个波束。
多波束的信息可以通过测量报告(measurement report,MR)确定。其中,MR可以记录MR生成的时间、多个波束的电平测量值与流量测量值等。其中,一个波束的电平测量值可以是基站测量用户设备采用该波束发送的承载探测参考信号(sounding reference signal,SRS)获得的RSRP,或者一个波束的电平测量值可以是用户设备测量基站采用该波束发送的CSI-RS获得的RSRP。其中,针对后一种情况,用户设备需要将测得的该波束的电平测量值上报至基站。
MR中可以包括CELLID、TIME、RSRP1-RSRPn、ULTHP、DLTHP等信息。其中,CELLID是指小区ID。其中,小区ID为用户设备对应的服务小区的ID,MR为针对该用 户设备的MR。TIME是指该MR生成的时间。RSRP1至RSRPn是指n个波束的电平测量值,或者又可称为n维波束电平测量值。RSRP1至RSRPn是指基站测量用户设备采用n个波束分别发送的SRS获得的n个RSRP,或者用户设备测量基站采用n个波束分别发送的CSI-RS获得的n个RSRP。其中,n为波束空间包括的波束数目,例如n的取值可以为32,或64等。可以理解的是,以RSRP1为例,RSRP1为在当前MR的生成时间与前一个MR的生成时间所确定的时间段内测量得到的第1个波束的RSRP平均值或累计值。
此外,需要说明的是,MR可以包括n个波束的电平测量值,或者p个波束的电平测量值,p<n,p和n均为正整数。其中,p个波束的电平测量值是指p个有效的电平测量值。可以理解的是,用户设备或基站可能无法测量全部n个波束的电平测量值,例如,用户设备仅能测量n个波束中的p个波束的电平测量值,此时,用户设备可以仅上报p个波束的电平测量值。为了方便后续使用,可以将p个波束的电平测量值表示为n个波束的电平测量值,例如,将除p个波束外的其他n-p个波束的电平测量值置为0。
ULTHP(uplink throughput)表示上行流量测量值,DLTHP(downlink throughput)表示下行流量测量值。其中,MR中可以仅包括ULTHP或DLTHP。其中,ULTHP为在当前MR的生成时间与前一个MR的生成时间所确定的时间段内累计的上行报文大小之和,DLTHP为在当前MR的生成时间与前一个MR的生成时间所确定的时间段内累计的下行报文大小之和。
无线信道:无线通信中发送端(天线,可以为一个天线,也可以为一个或多个天线阵列)和接收端(比如用户设备)之间的通路,可以包含多条信道。无线信道也可称为路径。发送端可以为天线(比如一个天线,也可以为一个或多个天线阵列),接收端可以为用户设备。发送端也可以用户设备,接收端也可以为天线。
路径强度:单位功率的无线信号传播到接收端时,在路径上的功率分量。路径强度表征了路径上的信号在经过空间传播后剩余功率的比值。
目标路径强度:目标路径强度为一个矩阵,矩阵的维度与角度功率谱小区的各个波束的水平和垂直离散化角度个数相同。矩阵中的元素表示角度离散化后水平方向和垂直方向路径的路径强度。
角度功率谱:角度功率谱是从天线到栅格的无线信道的描述,包括路径的路径条数、路径角度和路径强度等信息。
角度功率谱小区:位于栅格的用户设备可以接收下行波束所在的小区。例如,用户设备能够接收小区1和小区2分别发送的下行波束,则小区1和小区2均为角度功率谱小区。
服务小区:用户设备检测到的参考信号接收功率最大的小区。
CSI-RS:为基站发送给UE的下行导频信号,其接收功率称为CSI-RSRP。新空口(new radio,NR)中有多种类型的CSI-RS,可用于信道测量、时频偏跟踪、波束管理及移动性管理。本申请实施例中将用于移动性管理的CSI-RS为例进行说明。其中,移动性管理CSI-RS可以测量服务小区、及其周边邻区的波束级CSI-RSRP。
其中,上行波束的RSRP包括解调参考信号(demodulation reference signal,DMRS)RSRP、SRS-RSRP等。下行波束的RSRP包括CSI-RS的RSRP、SSB-RSRP等。本申请实 施例中以CSI-RS的RSRP为例进行说明。
栅格:在波束空间将每个小区划分为多个虚拟栅格,一个波束空间可以对应(或覆盖)一个或多个小区。
其中,用户设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。用户设备可以是UE、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)用户设备、增强现实(augmented reality,AR)用户设备、工业控制(industrial control)中的无线终端、车载用户设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴用户设备等。用户设备可以是固定的或者移动的。
为便于理解,下面将结合附图对本申请实施例提供的协作小区确定方法进行说明。
参见图3,该图为本申请实施例提供的一种协作小区确定方法流程图,如图3所示,该方法可以包括:
S301:针对任一小区作为服务小区时,网络设备获取服务小区中各栅格的频谱效率。
本实施例中,预先将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格。由于一个基站可以覆盖第一多个小区,相邻小区之间存在重叠区域,在将小区划分为多个栅格时,相邻小区之间可能存在重叠的栅格。因此,存在一些栅格对应多个小区的情况。其中,栅格对应的一个或多个小区是指位于该栅格内的用户设备能接收到下行波束所在的小区。针对波束空间中的任一小区作为服务小区时,获取该服务小区对应的各个栅格的频谱效率。其中,波束空间是根据多个波束的参考信号接收功率确定的。
其中,服务小区所划分的栅格中存在一些栅格(第一栅格)对应第二多个小区(包括服务小区以及服务小区对应的邻小区),一些栅格(第二栅格)仅对应服务小区。在获取服务小区中第一栅格的频谱效率时,网络设备获取第二多个小区中各小区在第一栅格上的频谱效率,并将第二多个小区中各小区在第一栅格上的频谱效率的平均值作为该第一栅格的频谱效率。例如,服务小区m和邻小区j同时服务该栅格(小区m的第k个栅格)时,该栅格的频谱效率为服务小区和协作小区在该栅格上的频谱效率的平均值;
Figure PCTCN2022093778-appb-000001
P tj表示邻小区j对应的无线接入装置的发射功率,
Figure PCTCN2022093778-appb-000002
表示邻小区j到第k个栅格的角度功率谱。
在获取服务小区中第二栅格的频率效率时,网络设备获取服务小区在第二栅格上的频率效率,将服务小区在第二栅格上的频谱效率作为第二栅格的频谱效率。也就是,对于仅对应服务小区的第二栅格,只需获取服务小区在第二栅格上的频谱效率,并将该服务小区在第二栅格上的频谱效率确定为该第二栅格的频谱效率。
其中,网络设备获取第二多个小区中各小区在第一栅格的频谱效率可以采用但不限于 以下方式:
1)在第二多个小区中各小区作为服务小区时,网络设备获取该服务小区到第一栅格的角度功率谱、服务小区的发射功率以及服务小区对应的邻小区对第一栅格的干扰。
本实施例中,由于第一栅格对应第二多个小区(包括服务小区和一个或多个邻区),为获得第一栅格的频谱效率,需要先获得第二多个小区中各小区在第一栅格上的频谱效率。具体地,在第二多个小区中每个小区作为服务小区时,获取该服务小区到第一栅格的角度功率谱、服务小区的发射功率以及服务小区对应的邻小区对第一栅格的干扰。例如表1所示,服务小区m的第一栅格k对应的第二多个小区包括小区m、小区a1、小区a2。在获取第二多个小区中各小区在第一栅格k上的频谱效率时,将小区m作为服务小区,网络设备获取小区m到第一栅格的角度功率谱Xm(k)、小区m的发射功率Ptm、以及小区m对应的邻小区a1、a2对第一栅格k的干扰ifm(k),并根据Xm(k)、Ptm、ifm(k)获取小区m在第一栅格上的频谱效率se(m,k)。将小区a1作为服务小区,网络设备获取小区a1到第一栅格的角度功率谱Xa1(k)、小区a1的发射功率Pta1、以及小区a1对应的邻小区对第一栅格k的干扰ifa1(k),并根据Xa1(k)、Pta1、ifa1(k)获取小区a1在第一栅格上的频谱效率se(a1,k)。将小区a2作为服务小区,网络设备获取小区a2到第一栅格的角度功率谱Xa2(k)、小区a2的发射功率Pta2、以及小区a2对应的邻小区对第一栅格k的干扰ifa2(k),并根据Xa2(k)、Pta2、ifa2(k)获取小区a2在第一栅格上的频谱效率se(a2,k)。
表1 第一栅格对应的第二多个小区
Figure PCTCN2022093778-appb-000003
其中,服务小区的发射功率可以通过测量获得。角度功率谱为网络设备所确定的无线信道多径信息。角度功率谱包括从角度功率谱小区中的天线到栅格的传播路径的路径角度和路径强度。角度功率谱小区中的天线为发送下行波束的天线,该天线可以是天线阵列。其中,关于获取服务小区到栅格的角度功率谱的实现将在后续实施例进行说明。
其中,邻小区对第一栅格的干扰可以通过以下方式获得:针对任一邻小区,网络设备获取邻小区发送的下行波束的参考信号接收功率;网络设备根据邻小区发送的下行波束的参考信号接收功率以及有效流量概率确定邻小区对栅格的干扰。其中,有效流量概率为邻小区在预设时间内的有效流量值与理论流量值的比值;网络设备将所有邻小区对栅格的干扰相加,获得服务小区对应的邻小区对栅格的干扰。需要说明的是,由于只有当邻小区存在下载业务时才会对服务小区产生干扰,其余时间的下行波束的参考信号接收功率仅为参考信号的电平,不会对栅格产生干扰。因此,在计算每个邻小区对栅格的干扰时,将根据有效流量概率进行确定,从而获得邻小区对栅格的有效干扰。具体地,可以参见公式(1),在该公式中以服务小区m对应L个邻小区为例进行说明:
Figure PCTCN2022093778-appb-000004
其中
Figure PCTCN2022093778-appb-000005
其中,if m(k)为所有邻小区对栅格k所产生的干扰,
Figure PCTCN2022093778-appb-000006
为邻小区l对栅格k产生的干扰,ρ l为有效流量概率,Thp eff_l为预设时间内邻小区l的有效流量,Thp beam_l为预设时间内邻小区l的理论流量,Detected CSI RSRP l为用户设备测量得到小区l的参考信号接收功率。其中,预设时间可以根据实际应用进行设定,本实施例在此不进行限定。
需要说明的是,针对服务小区中的第二栅格,网络设备在获取服务小区在第二栅格上的频谱效率的实现可以参见上述网络设备获取多个小区中各小区在第一栅格上的频谱效率的相关描述,本实施例在此不再赘述。
2)网络设备根据角度功率谱、干扰以及发射功率获取该服务小区在第一栅格上的频谱效率。
本实施例中,在获取服务小区到栅格的角度功率谱、服务小区的发射功率以及服务小区对应的邻小区对栅格的干扰后,根据上述角度功率谱、发射功率以及干扰获得服务小区在第一栅格上的频谱效率。
具体地,可以将角度功率谱、发射功率以及干扰作为输入数据输入预先训练的神经网络模型中,由该神经网络模型输出小区在栅格上的频谱效率。其中,神经网络设备是根据训练数据以及训练数据对应的频谱效率预先生成的。训练数据包括服务小区在栅格的角度功率谱、服务小区的发射功率以及服务小区对应的邻小区对栅格的干扰。其中,训练数据对应的频谱效率是根据栅格上的流量以及该栅格调度该小区资源库的数量确定的。例如,以小区m中第k个栅格为例,第k个栅格的流量为
Figure PCTCN2022093778-appb-000007
栅格上调度的资源库RB数量为
Figure PCTCN2022093778-appb-000008
则小区在所述栅格上的频谱效率为:
Figure PCTCN2022093778-appb-000009
其中,训练神经网络模型即使用神经网络模型对服务小区的发射功率、角度功率谱、干扰等输入特征和频谱效率的函数关系进行拟合,从而获得损失函数收敛之后的神经网络模型:
Figure PCTCN2022093778-appb-000010
其中,P tm为服务小区对应的无线接入装置的发射功率、X m(k)为服务小区的角度功率谱、if m(k)为邻小区在栅格上的干扰、
Figure PCTCN2022093778-appb-000011
表示神经网络训练之后的参数模型。
在训练完成后,网络设备可以利用上述神经网络模型获取服务小区中各栅格的频谱效率。
S302:网络设备根据各服务小区中各栅格的频谱效率,获得各服务小区的总频谱效率。
本实施例中,针对任一服务小区,在获取该服务小区中各栅格的频谱效率后,根据该服务小区中各栅格的频谱效率获得该服务小区的总频谱效率。具体地,网络设备根据该服务小区中各栅格的频谱效率以及频谱效率参数获得服务小区的总频谱效率。
S303:网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。
本实施例中,在网络设备获取波束空间中各小区作为服务小区时对应的总频谱效率后, 根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。其中,第一栅格为服务小区中对应多个小区的栅格,位于协作集中的小区可以为用户设备提供传输服务。其中,所确定的第一栅格对应的协作集中可以仅包括服务小区对应的邻小区的标识,或者既包括服务小区的标识也包括邻小区的标识。
具体地,网络设备根据各服务小区对应的总频谱效率以及小区数量确定各服务小区的平均频谱效率;网络设备以最大化平均频谱效率为目标确定频谱效率参数;网络设备根据频谱效率参数的取值确定各服务小区中第一栅格对应的协作集。其中,小区数量为波束空间所覆盖的小区的数量。具体,参见公式(2);
Figure PCTCN2022093778-appb-000012
s.t.
Figure PCTCN2022093778-appb-000013
其中,y m,j为频谱效率参数,y m,j∈{0,1},M为波束空间所覆盖的小区数量,
Figure PCTCN2022093778-appb-000014
Figure PCTCN2022093778-appb-000015
标识小区m的流量,Thp gridm_k为小区m对应的第k个栅格的流量。Thpmin表示小区应满足的最小流量,Thpmax表示小区应满足的最大流量。在确定y m,j取值时,可以利用Branch and Cut算法、Branch and Bound算法、遗传算法等启发式算法进行求解。若y m,j=1,表明小区m和小区j存在协作关系。其中,关于获取栅格所对应流量的实现将在后续实施例进行说明。
S304:网络设备将第一栅格对应的协作集发送给服务小区的无线接入装置。
在确定服务小区的第一栅格对应的协作集后,将该第一栅格对应的协作集发送给服务小区的无线接入装置,以使得在第一栅格对应的协作集中确定服务小区的协作小区。具体地,网络设备将第一栅格对应的标识以及协作集所包括的各小区标识的对应关系发送给服务小区对应的无线接入装置。其中,服务小区对应的无线接入装置可以为服务小区对应的有源天线单元AAU。
其中,第一栅格对应的标识可以为栅格对应的中心坐标,该中心坐标由多个波束的参考信号接收功率表示。具体表现形式如下:
Figure PCTCN2022093778-appb-000016
其中,
Figure PCTCN2022093778-appb-000017
表示第i个栅格中心点坐标,celllD i是第i个虚拟栅格中心点的服务小区ID,
Figure PCTCN2022093778-appb-000018
表示第i个虚拟栅格上的第j个协作小区ID。
通过上述可知,基于多个波束的参考信号接收功率确定波束空间,并将波束空间所覆盖的每个小区划分为多个栅格。针对任一小区作为服务小区时,网络设备获取该服务小区中各栅格的频谱效率,进而根据该服务小区中各栅格的频谱效率,获得各服务小区的总频 谱效率。网络设备根据各服务小区的总频谱效率,获得各服务小区中第一栅格对应的协作集。其中,第一栅格为服务小区中对应多个小区的栅格,用户设备位于协作集所包括的任意小区时,该小区可以为用户设备提供传输服务。即,本申请实施例基于各服务小区的总频谱效率确定各服务小区中各个第一栅格所对应的协作集,考虑了每个栅格的小区协作时对其它小区的影响,以为用户设备提供最优的协作小区,提升服务质量。
(一)、获取服务小区到栅格的角度功率谱
在上述实施例中网络设备在确定多个小区中各小区作为服务小区时,其在第一栅格上的频谱效率将需要获取服务小区到栅格的角度功率谱。其中,服务小区到栅格的角度功率谱可以通过以下方式获得。
S1:网络设备获取多个第一数据,第一数据包括多个下行波束的参考信号接收功率、栅格标识、服务小区标识和角度功率谱小区标识。
一种实现方式中,网络设备从无线接入装置获取多个第一数据。例如,网络设备从无线接入装置的MR数据存储模块中获取一段时间内的各个小区的多波束CSI-RSRP,以及各个小区的下行波束的RSRP分别对应的栅格标识(也称为栅格ID)、服务小区标识(也称为服务小区ID)和角度功率谱小区标识(也称为角度功率谱小区ID)。也就是说,各个小区的下行波束的RSRP与栅格ID、服务小区ID和角度功率谱小区ID关联存储在MR数据中(即多个第一数据)。例如,表1为本申请实施例提供的一种MR数据记录表。其中,该MR数据记录表包括用户设备编号(指示各个用户设备)、MR数据编号(指示用户设备上报的多条MR数据)、服务小区ID、栅格ID、角度功率谱小区ID以及多个下行波束的RSRP。其中,表2中的一行数据(即一条MR数据)为一个第一数据。网络设备从无线接入装置获取多个第一数据包括多个用户设备测量的多条MR数据。
表2:一种MR数据记录表
Figure PCTCN2022093778-appb-000019
其中,表2中的RSRP为一个向量,维度等于CSI-RS波束个数,即表2所示的RSRP包括多个波束中各波束的RSRP。例如,UE1位于栅格ID为134的区域中,且服务小区ID和角度功率谱小区ID为3924752。UE1在当前区域获取多个CSI-RS波束的RSRP。每个 CSI-RS波束的RSRP测量值和CSI-RS波束个数构成矩阵RSRP (3924752,134,3924752)
其中,在非路测场景中,各个小区的下行波束的RSRP对应的栅格ID为波束空间包含栅格的栅格ID。其中,波束空间是根据多个上行波束的参考信号接收功率确定的。例如,无线接入装置周期性测量该无线接入装置下的各个用户设备的多波束SRS-RSRP。无线接入装置根据波束空间和各个用户设备的多波束SRS-RSRP测量值,确定各个用户设备分别对应波束空间中的栅格ID。也就是说,由多个上行波束的RSRP构成的波束空间可以类比于实际的地理空间。该波束空间被划分为多个栅格,每个栅格分别有各自的栅格ID。并且,无线接入装置下的各个用户设备也分别对应各个栅格ID。
另一种实现方式中,网络设备从路测设备获取多个第一数据。例如,网络设备从路测设备的DT数据记录模块中获取一段时间内用户设备测量的多个下行波束的RSRP,以及测量的多个下行波束的RSRP分别对应的服务小区ID、角度功率谱小区ID,以及测量时用户设备的经纬度信息。也就是说,用户设备测量的多个下行波束的RSRP与服务小区ID、角度功率谱小区ID以及测量时用户设备的经纬度信息关联存储在DT数据中(即多个第一数据)。例如,表3为本申请实施例提供的一种DT数据记录表。其中,该DT数据记录表包括用户设备编号(指示各个用户设备)、DT数据编号(指示用户设备上报的多条DT数据)、服务小区ID、角度功率谱小区ID、多个下行波束的RSRP以及经纬度信息。可见,相较于表2所示的第一数据,表3所示的第一数据多了经纬度信息,指示对应的地理栅格。也就是说,表3中的经纬度信息相当于指示了用户设备所在地理栅格的栅格ID。
表3:一种DT数据记录表
Figure PCTCN2022093778-appb-000020
其中,路测设备根据测量时用户设备的经纬度信息可以确定测量时用户设备对应的栅格ID。也就是说,在路测场景中,多个下行波束的RSRP对应的栅格ID为地理空间的栅格标识。例如,地理空间是由经纬度信息构成的三维空间。当给定一组经纬度信息时,该组经纬度信息被映射到n米*m米的平面区域(n和m为正整数),该平面区域为一个栅格。
S2:网络设备根据多个第一数据,确定多个第二数据。
由于网络设备获取的多个第一数据的数据量较大,为了去除随机干扰波动,网络设备可以进一步对多个第一数据进行处理,获得第二数据。其中,第二数据是指栅格ID、服务小区ID且角度功率谱小区ID均相同的第一数据的特征值。其中,第一数据中包含终端所属的 角度功率谱小区的标识。角度功率谱小区为用户设备接收的下行波束所在的小区。也就是说,若用户设备检测到小区的下行波束RSRP,该小区就是该用户设备的角度功率谱小区。其中,角度功率谱小区可以是服务小区,也可以是邻近小区。例如,在图1所示的网络场景中,小区1为用户设备的服务小区,小区2为邻近小区。其中,用户设备检测到小区1的下行波束RSRP,以及小区2的下行波束RSRP。那么小区1和小区2均为用户设备的角度功率谱小区。其中,各个小区的下行波束的RSRP与对应的栅格ID、服务小区ID以及角度功率谱小区ID关联存储(即多个第一数据)。例如,用户设备位于栅格ID为134的区域中,且服务小区ID为3924752。UE 1在当前区域获取多个CSI-RS波束的RSRP。其中,用户设备能够测量到服务小区3924752的CSI-RS波束的RSRP,以及邻近小区3924674的CSI-RS波束的RSRP。
一种实现方式中,网络设备根据多个第一数据中包含的栅格ID、服务小区ID和角度功率谱小区ID以及多个下行波束的RSRP,确定多个第二数据,包括以下步骤:
网络设备获取多个第一数据中栅格ID、服务小区ID以及角度功率谱小区ID均相同的多个下行波束的RSRP;
网络设备确定多个第一数据中栅格ID、服务小区ID以及角度功率谱小区ID均相同的多个下行波束的RSRP的特征值。其中,特征值为多个下行波束的参考信号接收功率的均值、多个下行波束的参考信号接收功率的中位数或多个下行波束的参考信号接收功率的众数中的任意一种。
也就是说,网络设备获取栅格ID、服务小区ID且角度功率谱小区ID均相同的第一数据的特征值,从而可以降低数据量。下面以特征值为均值为例进行描述。例如,表3为本申请实施例提供的多个第一数据的记录表。其中,多个第一数据可以包括多个栅格ID、服务小区ID且角度功率谱小区ID均相同的第一数据,如表4所示。
表4:多个第一数据的记录表
Figure PCTCN2022093778-appb-000021
Figure PCTCN2022093778-appb-000022
S3:网络设备根据各个第二数据,确定第二数据中各个角度功率谱小区标识所指示的角度功率谱小区中的天线到各个栅格标识所指示的栅格的角度功率谱。
其中,角度功率谱为服务器确定的无线信道多径信息的一种表现形式。角度功率谱包括从角度功率谱小区中的天线到栅格的传播路径的路径角度和路径强度。角度功率谱小区中的天线为发送下行波束的天线,该天线可以是天线阵列。
其中,网络设备针对多个第二数据中的各个第二数据,分别根据第二数据以及该第二数据对应的角度功率谱小区的小区配置信息,确定各个角度功率谱小区标识所指示的角度功率谱小区到各个栅格标识所指示的栅格的角度功率谱。具体的,步骤S3包括以下流程:
S31,网络设备根据角度功率谱小区的天线增益和角度功率谱小区的各个波束的天线端口权值,确定角度功率谱小区的各个波束的波束增益。
S32,网络设备根据角度功率谱小区的各个波束的波束增益以及第二数据,确定目标路径强度。
S33,网络设备根据目标路径强度,确定所述角度功率谱小区标识所指示的角度功率谱小区到所述栅格标识所指示的栅格的角度功率谱。
其中,角度功率谱小区的天线增益和角度功率谱小区的各个波束的天线端口权值(表征各个波束的垂直角度信息和水平角度信息)都记录在无线接入网设备的天线文件中。服务器通过获取无线接入网设备的天线文件,可以获取上述信息,并基于上述信息确定角度功率谱小区的各个波束的波束增益。角度功率谱小区的各个波束在各个角度方向(比如水平角度和垂直角度)上的波束增益可以构成一个波束增益矩阵。
其中,网络设备确定目标路径强度时,实际是求解如式(3)所示的稀疏优化问题。通过求解该稀疏优化问题,服务器可以得到目标路径强度(即式(3)中的路径强度矩阵)。
Figure PCTCN2022093778-appb-000023
其中,路径强度矩阵的维度与角度功率谱小区的各个波束的水平和垂直离散化角度个数相同。X的第i行第j列元素为X i,j,X i,j表示角度离散化后水平i方向和垂直j方向的路径的路径强度(单位为dB),i∈[0,359],j∈[0,180]。λ为正则项系数,A为波束增益矩阵,表示各个波束在各个角度方向上的波束增益。RSRP为一个向量,是将多波束RSRP的统计值在线性域归一化,使其均值为1瓦特得到的。可以理解的是,一个角度功率谱小区对应一个路径强度矩阵X。其中,由于RSRP与服务小区ID、栅格ID以及角度功率谱小区相关联,根据式(3)可知,路径强度矩阵X也与服务小区ID、栅格ID以及角度功率谱小区相关联。
其中,服务器获取路径强度矩阵X后,可以根据X确定第二数据中各个角度功率谱小区标识所指示的角度功率谱小区到各个栅格标识所指示的栅格的角度功率谱。具体实现方式为:服务器获取路径强度矩阵X中所有非零元素,非零元素总个数即路径条数。对每一个非零元素(即每条路径),服务器将角度离散化后水平i方向和垂直i方向分别映射为路径水平维角度和路径垂直维角度(分别以弧度为单位)。也就是说,一组路径水平维角度和 路径垂直维角度表征了一条路径。例如,表5为本申请实施例提供的一种角度功率谱输出表。表5中的每一行表示一条路径。一个角度功率谱编号指示一个角度功率谱,一个角度功率谱中可以包括一条或多条路径。
表5:一种角度功率谱输出表
Figure PCTCN2022093778-appb-000024
(二)、获取栅格的中心坐标和栅格的流量
其中,网络设备获取相应栅格对应的流量信息可以采用但不限于以下方式:
1)网络设备获取第一数据集合,该第一数据集合包括在第一时间段被采集的多个数据,每个数据包括流量测量值和n个波束的电平测量值。
其中,第一数据集合可以包括在第一时间段内收集的MR。例如,第一数据集合可以包括一周或两周内收集的MR,或者,第一数据集合可以包括一天内收集的MR,或者第一数据集合可以包括一个小时内收集的MR。网络设备可以根据MR中的生成时间将收集到的数据划分为多个时间段分别对应的数据集合,得到多个数据集,第一数据集合可以为多个数据集合中的一个。此外,第一数据集合为在第一时间段内针对一个小区收集的MR,第一数据集合对应的小区与上述n维波束空间中的多个栅格所对应的小区为同一个小区。
例如,第一数据集合包括K个数据,第一数据集合可以如ThpMat 1所示,通过ThpMat 1电可以提取电平矩阵L 1
Figure PCTCN2022093778-appb-000025
Figure PCTCN2022093778-appb-000026
其中,ThpMat 1中的每一行可以对应一个MR包括的生成时间、流量测量值(上行流量测量值和/或下行流量测量值)和n个波束的电平测量值,K为第一数据集合包括的数据数目。电平矩阵L 1的每一行即为n个波束的电平测量值。其中,time 1,1…time K,1均属于第一时间段。
2)网络设备根据每个数据的n个波束的电平测量值和第三栅格的中心坐标确定第一数据集合中与第三栅格关联的第二数据集合,第三栅格的中心坐标用n个波束的电平值表示。
其中,第三栅格可以为n维波束空间中的多个栅格中的任意一个栅格,或者,第三栅格可以为n维波束空间中的多个栅格中的一个特定的栅格。可以理解的是,本实施例中的n个波束为前述中的多个波束。其中,网络设备可以通过以下方式确定n维波束空间中的多个栅格以及每个栅格对应的中心坐标:
步骤1:网络设备获取训练数据集合,该训练数据集合包括M个样本。
其中,训练数据集合可以包括预设时间段内收集的MR,例如,训练数据集合可以包括一周或两周内收集的MR。需要说明的是,训练数据集合为预设时间段内针对一个小区收集的MR。因此,最终确定的n维波束空间中的多个栅格为与该小区对应的多个栅格。
在一种情况下,训练数据集合包括M个样本,每个样本包括n个波束的电平测量值。例如,网络设备根据M个MR可以确定如电平测量值矩阵L所示的训练数据集合。若一个MR包括n个波束的电平测量值(即n个波束的RSRP),则直接将该n个波束的电平测量值作为电平测量值矩阵L中的一行。若一个MR包括p个波束的电平测量值,则需要将p个波束的电平测量值写成n个波束的电平测量值,具体的,将除p个波束外的其他n-p个波束分别对应的电平测量值置为0,然后将获得的n个波束的电平测量值作为电平测量值矩阵L中的一行。
Figure PCTCN2022093778-appb-000027
其中,电平测量值矩阵L中的每一行可以对应一个MR中的n个波束的电平测量值,电平测量值矩阵L指示M组电平测量值。
在另一种情况下,训练数据集合包括M个样本,每个样本包括流量测量值和n个波束的电平测量值,其中,流量测量值可以包括上行流量测量值和/或下行流量测量值。例如,网络设备根据M个MR可以确定如流量矩阵ThpMat所示的训练数据集合。
Figure PCTCN2022093778-appb-000028
其中,流量矩阵ThpMat中的每一行可以对应一个MR中的流量测量值和n个波束的电平测量值。若MR仅包括dlthp,未包括ulthp,则可以将ulthp置为0。同理,若MR仅包括ulthp,未包括dlthp,则可以将dlthp置为0。流量矩阵ThpMat还可以包括时间值time,也可以不包括时间值time,本申请实施例对此不做限定。其中,通过流量矩阵ThpMat还可以提取出电平测量值矩阵L。
步骤2:网络设备根据训练数据集合获得训练数据集合对应的距离集合,该距离集合包括M个样本中任意两个样本的n个波束的电平测量值的距离。
例如,以电平测量值矩阵L或流量矩阵ThpMat作为输入计算距离矩阵R(距离矩阵R为M×M维),其中,
R ij=dist(L i,.,L j,.),
其中,R ij表示电平测量值矩阵L或流量矩阵ThpMat中的第i个样本包含的n个波束的电平测量值和第j个样本包含的n个波束的电平测量值的距离,或者又可以描述为第i条样本对应的波束空间位置与第j条样本对应的波束空间位置之间的距离。距离dist可以定义为波束空间的欧式距离或其他距离,本申请实施例对此不做限定。其中,距离矩阵R中包括一些重复的元素,例如,R ij=R ji,还包括一些由相同样本确定的距离,例如,R ii=0。其中,训练数据集合对应的距离集合共包括M(M-1)/2个距离,上述距离矩阵R仅为训练数据集合对应的距离集合的一种表现形式,训练数据集合对应的距离集合还可以采用其他表现形式,本申请实施例对此不做限定。
其中,L i,.是指电平测量值矩阵L中的第i行的n个波束的电平测量值,即{rsrp i,1,rsrp i,2,…,rsrp i,n},L j,.是指电平测量值矩阵L中的第j行的n个波束的电平测量值,即{rsrp j,1,rsrp j,2,…,rsrp j,n}。或者,L i,.是指流量矩阵ThpMat中的第i行的n个波束的电平测量值,即{rsrp i,1,rsrp i,2,…,rsrp i,n},L j,.是指流量矩阵ThpMat中的第j行的n个波束的电平测量值,即{rsrp j,1,rsrp j,2,…,rsrp j,n}。
步骤3:网络设备根据距离集合确定M个样本中每个样本对应的栅格索引。
在一些实施例中,根据训练数据集合对应的距离集合采用预设聚类算法确定每个样本对应的栅格索引。其中,预设聚类算法可以是指距离型聚类方法(如Kmeans等),本申请实施例对此不做限定。
具体的,根据上述距离矩阵R采用预设距离聚类算法可以确定每个样本对应的栅格索引。具体可以由栅格索引矩阵Label表示。栅格索引矩阵Label可以为一个1×M维矩阵,label i是指第i个样本对应的栅格索引,label i的取值为整数(1≤label i≤m′),表示第i个样本对应label i指示的栅格,其中,m′<M,m′的取值可以根据经验值确定,或者根据实际所需的栅格范围大小确定。可以理解的是,m′的取值越小,则每个栅格的范围越大,m′的取值越大,则每个栅格的范围越小。
Figure PCTCN2022093778-appb-000029
其中,具有相同栅格索引的样本归属于同一个栅格,例如,第2个样本,第5个样本,第10个样本分别对应的label 2、label 5、label 10取值相同,假设label 2=label 5=label 10=3,则第2个样本,第5个样本,第10个样本归属于栅格索引为3的栅格(即第3个栅格)。
可以理解的是,经过步骤3,由于1≤label i≤m′,因此,栅格索引矩阵Label指示了M个样本在m′个栅格中的分布情况。需要说明的是,m′个栅格可以为最终确定的多个栅格,即多个栅格的数目可以为m′,或者,m′个栅格可以不是最终确定的多个栅格,此时,m′个栅格为m′个候选栅格,还需要进一步地筛选,最终确定的多个栅格的数目可以小于m′。下文将对这两种情况分别进行介绍(具体可以参阅下文中的示例1和示例2),此处不再赘述。
步骤4:网络设备确定每个栅格的中心坐标和半径。
以下根据训练数据集合包括的具体内容不同,结合示例1和示例2说明如何确定n维波束空间包括的多个栅格,以及每个栅格的中心坐标和半径。
示例1:若训练数据集合包括M个样本,每个样本包括n个波束的电平测量值,不包括流量测量值。在步骤3之后,根据距离矩阵R采用预设距离聚类算法确定的m′个栅格即为最终确定的n维波束空间包括的多个栅格。
每个栅格的中心坐标可以根据该栅格对应的样本中的每个样本包括的n个波束的电平测量值确定。在一种示例中,以栅格索引i对应的栅格为例,根据栅格索引i对应的样本中的每个样本包括的n个波束的电平测量值计算一个n个波束的电平测量值的平均值,该n个波束的电平测量值的平均值记为第i个栅格的中心坐标。
每个栅格的半径可以为预设数值,例如,该预设数值可以根据经验值确定。或者,每个栅格的半径可以根据该栅格对应的样本中的每个样本包括的n个波束的电平测量值与该栅格的中心坐标确定的。在一种示例中,第i个栅格的半径是根据栅格索引i对应的样本中的每个样本包括的n个波束的电平测量值与第i个栅格的中心坐标确定的。在另一种示例中,第i个栅格的半径是根据半径集合中的最大距离确定的,半径集合是由栅格索引i对应的样本中的每个样本包括的n个波束的电平测量值与第i个栅格的中心坐标确定的距离构成的。例如,第i个栅格的半径为半径集合中的最大距离,或者,第i个栅格的半径为半径集合中的最大距离与预设距离之和,或者,第i个栅格的半径为半径集合中的最大距离与预设距离之差。
采用上述示例1所示的方法确定的n维波束空间包括的多个栅格,以及每个栅格的中心坐标和半径,方案简便容易实现。其中,由于每个栅格的中心坐标是多个样本的电平测量值的平均值,将流量的空间位置用栅格的中心坐标表示,可以减少噪声与测量误差对空间的影响,流量的空间位置更具有统计意义。
示例2:若训练数据集合包括M个样本,每个样本包括流量测量值和n个波束的电平测量值,在步骤3后,根据距离矩阵R采用预设距离聚类算法确定的m′个栅格不是最终确定的n维波束空间包括的多个栅格,在步骤3后确定的m′个栅格为m′个候选栅格,还需根据每个样本中包括的流量测量值对m′个候选栅格进行筛选,得到最终确定的n维波束空间包括的多个栅格。
其中,每个样本中的流量测量值包括上行流量测量值和/或下行流量测量值。第i个候 选栅格的上行流量统计值为第i个候选栅格对应的样本中包括上行流量测量值的样本的上行流量值之和。第i个候选栅格的下行流量统计值为第i个候选栅格对应的样本中包括下行流量测量值的样本的下行流量值之和。或者,第i个候选栅格的上行流量统计值为第i个候选栅格对应的样本对应的上行流量平均值。第i个候选栅格的下行流量统计值为第i个候选栅格对应的样本对应的下行流量平均值。
例如,第4个候选栅格包括5个样本,其中,样本1、样本3和样本4包括下行流量测量值,样本2包括上行流量测量值,样本5包括上行流量测量值和下行流量测量值,则第4个候选栅格的上行流量统计值为样本2包括的上行流量测量值与样本5包括的上行流量测量值之和,第4个候选栅格的下行流量统计值为样本1包括的下行流量测量值、样本3包括的下行流量测量值、样本4包括的下行流量测量值与样本5包括的下行流量测量值之和。或者,第4个候选栅格的上行流量统计值为样本2包括的上行流量测量值与样本5包括的上行流量测量值之和除以2,第4个候选栅格的下行流量统计值为样本1包括的下行流量测量值、样本3包括的下行流量测量值、样本4包括的下行流量测量值与样本5包括的下行流量测量值之和除以4。
示例性地,将M个样本中的流量测量值按照栅格索引矩阵Label进行汇总,得到m′个候选栅格分别对应的流量统计值,示例性地,m′个候选栅格分别的流量统计值可以采用下述上行流量统计值ULTHP和/或下行流量统计值DLTHP表示。
Figure PCTCN2022093778-appb-000030
其中,ulthp i、dlthp i分别代表第i个候选栅格的上行流量统计值、第i个候选栅格的下行流量统计值。
上行流量统计值ULTHP包括m′个上行流量统计值,即m′个候选栅格分别对应的上行流量统计值,下行流量统计值DLTHP包括m′个下行流量统计值,即m′个候选栅格分别对应的上行流量统计值。
具体的,可以采用但不限于以下方式对m′个候选栅格进行筛选,得到最终确定的n维波束空间包括的多个栅格:
方式1:若第i个候选栅格的上行流量统计值满足预设上行流量阈值,和/或第i个候选栅格的下行流量统计值满足预设下行流量阈值,则将第i个候选栅格作为最终确定的栅格。
其中,预设上行流量阈值和预设下行流量阈值可以根据经验值确定,或者根据实际筛选需要确定。例如,当需要筛选出具有较大上行流量统计值的候选栅格时,可以提高预设上行流量阈值。
因此,针对m′个候选栅格分别对应的上行流量统计值和/下行流量统计值分别与对应的阈值进行判断,确定最终n维波束空间包括的多个栅格。
方式2:根据m′个上行流量统计值从大到小的顺序,从m′个上行流量统计值中筛选k1个上行流量统计值,根据m′个下行流量统计值从大到小的顺序从m′个下行流量统计值中筛选k2个下行流量统计值。k1个上行流量统计值之和与上行总流量统计值的比值大于等于 第一阈值,k2个下行流量统计值之和与下行总流量统计值的比值大于等于第二阈值,k1和k2为正整数,上行总流量统计值是指M个样本中包括上行流量测量值的样本的上行流量值之和,其中,下行总流量统计值是指M个样本中包括下行流量测量值的样本的下行流量值之和,第一阈值可以与第二阈值相同或不同,例如,第一阈值=第二阈值=0.8。m′个上行流量统计值中的第i个上行流量统计值为第i个候选栅格对应的样本中包括上行流量测量值的样本的上行流量值之和。m′个下行流量统计值中的第i个下行流量统计值为第i个候选栅格对应的样本中包括下行流量测量值的样本的下行流量值之和。
在一些实施例中,多个栅格为k1个上行流量统计值分别对应的候选栅格与k2个下行流量统计值分别对应的候选栅格的交集。例如,若k1个上行流量统计值包括第i个候选栅格的上行流量统计值,且k2个下行流量统计值包括第i个候选栅格的下行流量统计值,则将第i个候选栅格作为最终确定的栅格。再例如,若k1个上行流量统计值包括第i个候选栅格的上行流量统计值,k2个下行流量统计值不包括第i个候选栅格的下行流量统计值,则第i个候选栅格不是最终确定的栅格。
在一些实施例中,多个栅格为k1个上行流量统计值分别对应的候选栅格与k2个下行流量统计值分别对应的候选栅格的并集。例如,若k1个上行流量统计值包括第i个候选栅格的上行流量统计值,或k2个下行流量统计值包括第i个候选栅格的下行流量统计值,则将第i个候选栅格作为最终确定的栅格。再例如,若k1个上行流量统计值不包括第i个候选栅格的上行流量统计值,k2个下行流量统计值不包括第i个候选栅格的下行流量统计值,则第i个候选栅格不是最终确定的栅格。
需要说明的是,在完成确定n维波束空间中的多个栅格之后,还可以每隔预设时间段对已确定的多个栅格进行更新,即定时执行一次步骤1至步骤4。其中,首次根据收集到的MR确定n维波束空间中的多个栅格,又可称为栅格初始化过程。非首次根据收集到的MR确定n维波束空间中的多个栅格,又可称为栅格更新过程。
具体地,网络设备确定第一数据集合中与第三栅格关联的第二数据集合可以采用但不限于以下方式:
方式1:网络设备确定第一数据集合中任意一个数据包括的n个波束的电平测量值与第三栅格的中心坐标的距离小于或等于第三栅格的半径,则该数据为第二数据集合中的数据。
一种情况是,假设n维波束空间包括m个栅格,第一数据集合包括第一数据,网络设备可以根据m个栅格的栅格索引的顺序依次计算一个栅格的中心坐标与第一数据包括的n个波束的电平测量值的距离。当第一数据包括的n个波束的电平测量值与第三栅格的中心坐标的距离小于或者等于第i个栅格的半径时,则确定第一数据与第三栅格关联,此时第三栅格之前的其他栅格的中心坐标与第一数据包括的n个波束的电平测量值的距离均大于相应的半径。例如,假设n维波束空间包括10个栅格,则可以根据10个栅格的栅格索引的顺序依次计算一个栅格的中心坐标与第一数据包括的n个波束的电平测量值的距离。当第一数据包括的n个波束的电平测量值与第1个栅格的中心坐标的距离大于第1个栅格的半径时,则确定第一数据不与第1个栅格关联,并继续计算第一数据包括的n个波束的电 平测量值与第2个栅格的中心坐标的距离。当第一数据包括的n个波束的电平测量值与第2个栅格的中心坐标的距离大于第2个栅格的半径时,则确定第一数据不与第2个栅格关联,并继续计算第一数据包括的n个波束的电平测量值与第3个栅格的中心坐标的距离。当第一数据包括的n个波束的电平测量值与第3个栅格的中心坐标的距离小于或等于第3个栅格的半径时,则确定第一数据与第3个栅格关联,并停止继续计算第一数据包括的n个波束的电平测量值与第4个栅格的中心坐标的距离。
另一种情况是,假设n维波束空间包括m个栅格,第一数据集合包括第一数据,第一数据包括的n个波束的电平测量值与m个栅格中的N个栅格的中心坐标所确定的距离均小于对应的半径,2≤N<n,N为正整数,则网络设备可以从N个栅格中选择任意一个栅格作为与第一数据关联的栅格。例如,第一数据包括的n个波束的电平测量值与第1个栅格的中心坐标的距离(记为距离1)小于第1个栅格的半径,第一数据包括的n个波束的电平测量值与第5个栅格的中心坐标的距离(记为距离5)小于第5个栅格的半径,第一数据包括的n个波束的电平测量值与第11个栅格的中心坐标的距离(记为距离11)小于第11个栅格的半径,其中,在第1个栅格、第5个栅格和第11个栅格中选择任意一个栅格作为与第一数据关联的栅格。
方式2:网络设备确定第一数据集合中任意一个数据包括的n个波束的电平测量值与第三栅格的中心坐标的距离小于该n个波束的电平测量值与多个栅格中除第三栅格之外的其它栅格的中心坐标的距离,则该数据为第二数据集合中的数据。
例如,假设n维波束空间包括m个栅格,第一数据集合包括第一数据,网络设备计算第一数据包括的n个波束的电平测量值与m个栅格中的各栅格的中心坐标的距离,得到m个距离,将m个距离中的最小距离所对应的栅格作为与第一数据关联的栅格。例如,m个距离中的最小距离所对应的栅格为第i个栅格,则第i个栅格作为与第一数据关联的栅格。
方式3:网络设备确定第三距离集合,第三距离集合包括多个栅格的各栅格分别对应的中心坐标中的任意一个栅格的中心坐标与第一数据包括的n个波束的电平测量值的距离,第一数据为第一数据集合中的数据,根据多个栅格的各栅格分别对应的半径和第三距离集合确定第四距离集合,在第四距离集合中的最小距离为第三栅格与第一数据包括的n个波束的电平测量值的距离的情况下,则确定第二数据集合包括第一数据。其中,第四距离集合中的任意一个距离小于该距离对应的栅格的半径。
例如,假设n维波束空间包括m个栅格,第一数据包括的n个波束的电平测量值与m个栅格中的N个栅格的中心坐标所确定的距离均小于对应的半径,2≤N<n,N为正整数,则选择最小距离对应的栅格作为与第一数据关联的栅格。例如,第一数据包括的n个波束的电平测量值与第1个栅格的中心坐标的距离(记为距离1)小于第1个栅格的半径,第一数据包括的n个波束的电平测量值与第5个栅格的中心坐标的距离(记为距离5)小于第5个栅格的半径,第一数据包括的n个波束的电平测量值与第11个栅格的中心坐标的距离(记为距离11)小于第11个栅格的半径,其中,在距离1、距离5和距离11中,距离11最小,则第11个栅格为与第一数据关联的栅格。
3)网络设备根据第二数据集合中每个数据包括的流量测量值确定在第一时间段内对应 于第三栅格的流量统计结果。
由于每个数据中的流量测量值包括上行流量测量值和/或下行流量测量值,流量统计结果包括上行流量统计结果和/或下行流量统计结果。上行流量统计结果是根据第二数据集合中包括上行流量测量值的数据确定的,下行流量统计结果是根据第二数据集合中包括下行流量测量值的数据确定的。例如,网络设备可以将第二数据集合中包括的上行流量测量值求和作为在第一时间段内对应于第三栅格的上行流量统计结果。网络设备可以将第二数据集合中包括的下行流量测量值求和作为在第一时间段内对应于第三栅格的下行流量统计结果。
在通过图3所示实施例确定出每个栅格对应的协作集后,当用户设备存在传输业务时,服务小区可以根据用户设备所处的栅格对应的协作小区,以对用户设备的业务进行协作传输。为便于理解,下面将结合附图进行说明。
参见图4,该图为本申请实施例提供的一种协作小区确定方法流程图,如图4所示,该方法可以包括:
S401:第一无线接入装置接收用户设备发送的多个下行波束的参考信号接收功率。
本实施例中,用户设备对应的服务小区为第一小区,该第一小区对应第一无线接入装置,用户设备可以周期性地向第一无线接入装置发送多个下行波束的参考信号接收功率。其中,多个下行波束的参考信号接收功率是指多个下行波束中各个下行波束的参考信号接收功率。例如,用户设备向第一无线接入装置发送n个下行波束的参考信号接收功率,则接收的是n个下行波束中每个下行波束的参考信号接收功率,即n个参考信号接收功率。其中,下行波束可以为CSI。
S402:第一无线接入装置根据多个下行波束的参考信号接收功率确定用户设备在波束空间的目标栅格。
第一无线接入装置在接收到用户设备发送的多个下行波束的参考信号接收功率后,将根据该多个下行波束的参考信号接收功率确定用户设备在波束空间所处的目标栅格。
具体地,第一无线接入装置根据多个下行波束的参考信号接收功率与每个栅格的中心坐标获得用户设备与每个栅格的距离;第一无线接入装置根据用户设备与每个栅格的距离确定用户设备在波束空间的目标栅格。具体地,可以将将最小距离对应的栅格确定为用户设备在波束空间的目标栅格。其中,栅格的中心坐标由多个波束的参考信号接收功率表示,该多个波束的参考信号接收功率可以为多个上行波束的参考信号接收功率,也可以为多个下行波束的参考信号接收功率。
在一种示例中,为降低第一无线接入装置的开销,避免第一无线接入装置在每次接收到用户设备上报的多个下行波束的参考信号接收功率后均执行S402等操作,可以预先在第一无线接入装置上配置处理周期,只有满足处理周期时,第一无线接入装置才执行S402等操作。具体为,第一无线接入装置在接收到多个上行波束的参考信号接收功率后,确定接收该多个上行波束的参考信号接收功率的时间是否满足预设周期;在满足预设周期时,第一无线接入装置根据多个上行波束的参考信号接收功率确定用户设备在波束空间的目标栅 格。例如,预先配置用户设备上报多个下行波束的参考信号接收功率的周期为N,第一接入装置只在第tN次接收到用户设备上报的多波束CSI RSRP后,确定用户设备所处的目标栅格,t为正整数。
S403:第一无线接入装置确定目标栅格对应的第一协作集。
本实施例中,第一无线接入装置在确定出用户设备在波束空间的目标栅格后,第一无线接入装置可以根据目标栅格的标识以及包括目标栅格标识和第一协作集的对应关系确定目标栅格对应的第一协作集。其中,目标栅格对应的第一协作集是根据目标栅格对应的频谱效率确定的,具体可以参见图3所示实施例。第一协作集包括一个或多个第二小区,该第二小区为服务小区的邻小区。其中,第一无线接入装置可以预先从网络设备获取包括目标栅格的标识和第一协作集之间的对应关系。其中,目标栅格的标识为目标栅格的中心坐标。
S404:第一无线接入装置向一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得第二无线接入装置对用户设备的业务进行协作传输。
本实施例中,在确定出第一协作集后,第一无线接入装置将向第一协作集所包括的各个第二小区对应的第二无线接入装置发送协作消息,以使得所有第二小区对用户设备的业务进行协作传输。
其中,第一无线装置在确定出第一协作集后,可以先判断用户设备是否处于协作传输状态,如果已处于协作传输状态,第一无线装置还需确定使得用户设备处于协作传输状态的第二协作集与第一协作集是否一致,如果一致,则第一无线装置无需再发送协作消息。如果第二协作集与第一协作集不一致,第一无线接入装置向目标第二小区发送协作消息,其中,目标第二小区包括在第一协作集且不包括在第二协作集中。同时,第一无线接入装置还需要向第三小区对应的第三无线接入装置发送停止协作消息,该第三小区包括在第二协作集且不包括在第一协作集中。例如,服务小区为小区m,在确定出第一协作集之前,用户设备已处于协作传输状态,其对应的第二协作集包括小区a2和a3,而第一协作集包括小区a1和a2,则第一无线接入装置向小区a1发送协作消息,向小区a3发送停止协作消息。
为便于理解本申请实施例的实现,参见图5所示的系统架构示意图,在该架构图中以网络设备流量感知模块、角度功率谱计算模块、网络智能协同模块和数据存储模块为例进行说明。
其中,数据存储模块用于存储基站测量到的一段历史事件内UE所反馈的服务小区的CSI RSRP、邻小区的CSI RSRP、服务小区和邻小区各自的流量和发射功率等数据。
流量感知模块用于确定n维波束空间中各个栅格对应的中心坐标以及各个栅格的流量信息。
角度功率谱计算模块用于计算n维波束空间中各个栅格中各个小区的角度功率谱。
网络智能协同模块用于从流量感知模块获得各个小区各个栅格的流量信息、从角度功率谱计算模块获取各个小区每个栅格的角度功率谱信息,从数据存储模块获取各个小区在 一定时间段内对应的多个波束的CSI-RSRP、PRB、多个邻区的多个波束的CSI-RSRP、服务小区对应的无线接入装置和多个邻区对应的无线接入装置的发射功率等数据。并根据各个小区各个栅格的流量信息、角度功率谱信息、各个小区在一定时间段内对应的多个波束的CSI-RSRP、PRB、各个小区对应的多个邻区的多个波束的CSI-RSRP、服务小区对应的无线接入装置的发射功率和多个邻区对应的无线接入装置的发射功率等数据得到波束空间上各个栅格的干扰和频谱效率模型。以保证多个小区的流量均衡和所有栅格的平均频谱效率最高为目标,根据干扰和频谱效率模型得到每个小区每个栅格对应的协作集信息(包含栅格中心点和一个或多个协作小区标识)发送给各个服务小区的无线接入装置。
基于上述实施例,本申请实施例提供了一种协作小区确定装置,下面将结合附图进行说明。
参见图6,该图为本申请实施例提供的一种协作小区确定装置结构图,如图6所示,该装置用于实现网络设备的功能,将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格,所述波束空间是根据多个波束的参考信号接收功率确定的,所述装置600包括:第一获取单元601、第二获取单元602、第三获取单元603和发送单元604。
第一获取单元601,用于针对任一小区作为服务小区时,获取所述服务小区中各栅格的频谱效率。
第二获取单元602,用于根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率。
第三获取单元603,用于根据各所述服务小区的总频谱效率,获得各所述服务小区中第一栅格对应的协作集,所述第一栅格为所述服务小区中对应第二多个小区的栅格,所述协作集中的小区为位于所述栅格的用户设备提供传输服务。
发送单元604,用于将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,以使得在所述第一栅格对应的协作集中确定所述服务小区的协作小区。
在一种可能的实现方式中,所述第二获取单元602,具体用于针对任一服务小区,根据所述服务小区中各栅格的频谱效率以及频谱效率参数,获得所述服务小区的总频谱效率。
在一种可能的实现方式中,所述第三获取单元603,具体用于根据各所述服务小区对应的总频谱效率以及小区数量确定各所述服务小区的平均频谱效率,所述小区数量为所述波束空间所覆盖的小区数量;以最大化所述平均频谱效率为目标,确定所述频谱效率参数取值;根据所述频谱效率参数的取值确定所述服务小区中第一栅格对应的协作集。
在一种可能的实现方式中,所述第一获取单元601,具体用用于针对所述服务小区中的所述第一栅格,所述第二多个小区中各小区在所述第一栅格上的频谱效率;将所述第二多个小区中各小区在所述第一栅格上的频谱效率的平均值作为所述第一栅格的频谱效率。
在一种可能的实现方式中,所述第一获取单元,具体用于针对所述服务小区中的第二栅格,获取所述服务小区在所述第二栅格上的频谱效率,所述第二栅格为所述服务小区中只对应所述服务小区的栅格;将所述服务小区在所述栅格上的频谱效率作为所述第二栅格的频谱效率。
在一种可能的实现方式中,所述第一获取单元601,具体用于在所述第二多个小区中各小区作为服务小区时,获取所述服务小区到所述栅格的角度功率谱、所述服务小区的发射功率以及所述服务小区对应的邻小区对所述第一栅格的干扰;根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率。
在一种可能的实现方式中,所述第一获取单元601,具体用于将所述功率谱、所述干扰以及所述发射功率输入预先训练的神经网络模型,由所述神经网络模型输出所述服务小区在所述第一栅格上的频谱效率,所述神经网络模型是根据训练数据以及所述训练数据对应的频谱效率预先训练生成的。
在一种可能的实现方式中,所述训练数据对应的频谱效率是根据所述服务小区在所述栅格上的流量以及所述服务小区在所述栅格上的调度的资源块数量确定。
在一种可能的实现方式中,所述第一获取单元601,具体用于针对任一邻小区,获取所述用户设备发送的所述邻小区对应的下行波束的参考信号接收功率;根据所述邻小区对应的下行波束的参考信号接收功率以及有效流量概率确定所述邻小区对所述栅格的干扰,所述有效流量概率为所述邻小区在预设时间内的有效流量值与理论流量值的比值;将所有所述邻小区对所述栅格的干扰进行相加,获得所述小区对应的邻小区对所述栅格的干扰。
在一种可能的实现方式中,所述发送单元604,具体用于将包括所述第一栅格对应的标识以及所述协作集中小区标识的对应关系发送给所述服务小区对应的无线接入装置。
需要说明的是,本实施例中各个单元的实现可以图3所示实施例中相关描述,本实施例在此不再赘述。
参见图7,该图提供了一种协作小区确定装置700,第一小区对应所述装置,该装置可以实现上述实施例中第一无线接入装置的功能,用户设备对应的服务小区为所述第一小区,所述装置700包括:接收单元701、确定单元702和发送单元703。
接收单元701,用于接收所述用户设备发送的多个下行波束的参考信号接收功率。
确定单元702,用于根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
所述确定单元702,还用于确定所述目标栅格对应的第一协作集,所述目标栅格对应的第一协作集是根据所述目标栅格对应的频谱效率确定的,所述第一协作集包括一个或多个第二小区,所述第二小区为所述服务小区的邻小区。
发送单元703,用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得所述第二无线接入装置对所述用户设备的业务进行协作传输。
在一种可能的实现方式中,所述确定单元702,还用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,确定所述用户设备未处于协作传输状态。
在一种可能的实现方式中,所述确定单元702,还用于在向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,在所述用户设备已处于所述协作传输状态时,确定使得所述用户设备已处于所述协作传输状态的第二协作集与所述第一协作集不一致。
在一种可能的实现方式中,所述发送单元703,向目标第二小区发送协作消息,所述目标第二小区包括在所述第一协作集且不包括在所述第二协作集中。
在一种可能的实现方式中,所述发送单元703,还用于向第三小区对应的第三无线接入装置发送停止协作消息,所述第三小区包括在所述第二协作集且不包括在所述第一协作集中。
在一种可能的实现方式中,所述确定单元702,还用于根据所述多个下行波束的参考信号接收功率与每个栅格的中心坐标获得所述用户设备与每个栅格的距离,所述栅格的中心坐标由多个波束的参考信号接收功率表示;根据所述用户设备与每个栅格的距离确定所述用户设备在所述波束空间的目标栅格。
在一种可能的实现方式中,所述接收单元701,还用于接收网络设备发送所述目标栅格的标识与所述第一协作集之间的对应关系;所述确定单元,还用于根据所述目标栅格的标识以及所述目标栅格的标识与所述第一协作集之间的对应关系确定所述目标栅格对应的第一协作集。
在一种可能的实现方式中,所述目标栅格的标识为所述目标栅格的中心坐标。
在一种可能的实现方式中,所述确定单元702,还用于确定接收所述多个下行波束的参考信号接收功率的时间满足预设周期;根据在所述预设周期内接收到的所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
在一种可能的实现方式中,所述多个下行波束的参考信号接收功率为多个下行波束的信道状态信息参考信号接收功率。
需要说明的是,本实施例中各个单元的实现可以参见图4所示实施例中相关描述,本实施例在此不再赘述。
图8为本申请实施例提供的一种网络设备的结构示意图,该网络设备例可以配置为图3-图4所示实施例中的第一无线接入装置或网络设备,或者也可以是图6所示实施例中的装置600的设备或图7所示实施例中的装置700的设备实现。。
请参阅图8所示,网络设备800至少包括处理器810。网络设备800还可以包括通信接口820和存储器830。其中网络设备800中的处理器810的数量可以一个或多个,图8中以一个处理器为例。本申请实施例中,处理器810、通信接口820和存储器830可通过总线系统或其它方式连接,其中,图8中以通过总线系统840连接为例。
处理器810可以是CPU、NP、或者CPU和NP的组合。处理器810还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
当网络设备为第一无线接入装置时,处理器810可以执行上述方法实施例中根据多个上行波束的参考信号接收功率确定用户设备在波束空间的目标栅格以及确定目标栅格对应的推荐接入小区。
通信接口820用于接收和发送报文,具体地,通信接口820可以包括接收接口和发送接口。其中,接收接口可以用于接收报文,发送接口可以用于发送报文。通信接口820的个数可以为一个或多个。
存储器830可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(random-access memory,RAM);存储器830也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器830还可以包括上述种类的存储器的组合。存储器830例如可以存储前文第一BGP路由。
可选地,存储器830存储有操作系统和程序、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,程序可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。处理器810可以读取存储器830中的程序,实现本申请实施例提供的服务小区切换方法或服务小区确定方法。
其中,存储器830可以为网络设备800中的存储器件,也可以为独立于网络设备800的存储装置。
总线系统840可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线系统840可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图9是本申请实施例提供的另一种网络设备900的结构示意图,网络设备800可以配置为图3-图4所示实施例中的第一无线接入装置或网络设备,或者也可以是图6所示实施例中的装置600的设备或图7所示实施例中的装置700的设备实现。
网络设备900包括:主控板910和接口板930。
主控板910也称为主处理单元(main processing unit,MPU)或路由处理卡(route processor card),主控板910对网络设备900中各个组件的控制和管理,包括路由计算、设备管理、设备维护、协议处理功能。主控板910包括:中央处理器911和存储器912。
接口板930也称为线路接口单元卡(line processing unit,LPU)、线卡(line card)或业务板。接口板930用于提供各种业务接口并实现数据包的转发。业务接口包括而不限于以太网接口、POS(Packet over SONET/SDH)接口等,以太网接口例如是灵活以太网业务接口(Flexible Ethernet Clients,FlexE Clients)。接口板930包括:中央处理器931、网络处理器932、转发表项存储器934和物理接口卡(ph8sical interface card,PIC)933。
接口板930上的中央处理器931用于对接口板930进行控制管理并与主控板910上的中央处理器911进行通信。
网络处理器932用于实现报文的转发处理。网络处理器932的形态可以是转发芯片。具体而言,上行报文的处理包括:报文入接口的处理,转发表查找;下行报文的处理:转发表查找等等。
物理接口卡933用于实现物理层的对接功能,原始的流量由此进入接口板930,以及处理后的报文从该物理接口卡933发出。物理接口卡933包括至少一个物理接口,物理接口也称物理口。物理接口卡933也称为子卡,可安装在接口板930上,负责将光电信号转换为报文并对报文进行合法性检查后转发给网络处理器932处理。在一些实施例中,接口板930的中央处理器931也可执行网络处理器932的功能,比如基于通用CPU实现软件转发,从而物理接口卡933中不需要网络处理器932。
可选地,网络设备900包括多个接口板,例如网络设备900还包括接口板940,接口板940包括:中央处理器941、网络处理器942、转发表项存储器944和物理接口卡943。
可选地,网络设备900还包括交换网板920。交换网板920也可以称为交换网板单元(switch fabric unit,SFU)。在网络设备有多个接口板930的情况下,交换网板920用于完成各接口板之间的数据交换。例如,接口板930和接口板940之间可以通过交换网板920通信。
主控板910和接口板930耦合。例如。主控板910、接口板930和接口板940,以及交换网板920之间通过系统总线与系统背板相连实现互通。在一种可能的实现方式中,主控板910和接口板930之间建立进程间通信协议(inter-process communication,IPC)通道,主控板910和接口板930之间通过IPC通道进行通信。
在逻辑上,网络设备900包括控制面和转发面,控制面包括主控板910和中央处理器931,转发面包括执行转发的各个组件,比如转发表项存储器934、物理接口卡933和网络处理器932。控制面执行路由器、生成转发表、处理信令和协议报文、配置与维护设备的状态等功能,控制面将生成的转发表下发给转发面,在转发面,网络处理器932基于控制面下发的转发表对物理接口卡933收到的报文查表转发。控制面下发的转发表可以保存在转发表项存储器934中。在一些实施例中,控制面和转发面可以完全分离,不在同一设备上。
如果网络设备900被配置为第一无线接入装置,中央处理器911可以根据多个上行波束的参考信号接收功率确定用户设备在波束空间的目标栅格,以及确定目标栅格对应的推荐接入小区。网络处理器932可以触发物理接口卡933向第二无线接入装置发送切换指令。
如果网络设备900被配置为网络设备,中央处理器911可以根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格;所述第一无线接入装置确定所述目标栅格对应的第一协作集。网络处理器932可以通过物理接口933向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息。
应理解,装置600中的第一获取单元601、第二获取单元602和第三获取单元603可以相当于网络设备900中的物理接口卡933或物理接口卡943。装置700中的确定单元702等可以相当于网络设备900中的中央处理器911或中央处理器931。
应理解,本申请实施例中接口板940上的操作与接口板930的操作一致,为了简洁,不再赘述。应理解,本实施例的网络设备900可对应于上述各个方法实施例中的控制器或网络设备,该网络设备900中的主控板910、接口板930和/或接口板940可以实现上述各个方法实施例中的第一无线接入装置或网络设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
应理解,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,网络设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,网络设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,网络设备可以有至少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。所以,分布式架构的网络设备的数据接入和处理能力要大于集中式架构的设备。可选地,网络设备的形态也可以是只有一块板卡,即没有交换网板,接口板和主控板的功能集成在该一块板卡上,此时接口板上的中央处理器和主控板上的中央处理器在该一块板卡上可以合并为一个中央处理器,执行两者叠加后的功能,这种形态设备的数据交换和处理能力较低(例如,低端交换机或路由器等网络设备)。具体采用哪种架构,取决于具体的组网部署场景。
在一些可能的实施例中,上述第一无线接入装置或网络设备可以实现为虚拟化设备。例如,虚拟化设备可以是运行有用于发送报文功能的程序的虚拟机(英文:Virtual Machine,VM),虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。可以将虚拟机配置为第一无线接入装置或网络设备。例如,可以基于通用的物理服务器结合网络功能虚拟化(Network Functions Virtualization,NFV)技术来实现第一无线接入装置或网络设备。第一无线接入装置或网络设备为虚拟主机、虚拟路由器或虚拟交换机。本领域技术人员通过阅读本申请即可结合NFV技术在通用物理服务器上虚拟出具有上述功能的无线接入装置或网络设备,此处不再赘述。
应理解,上述各种产品形态的网络设备,分别具有上述方法实施例中第一无线接入装置或网络设备的任意功能,此处不再赘述。
本申请实施例还提供了一种芯片,包括处理器和接口电路,接口电路,用于接收指令并传输至处理器;处理器,例如可以是图6示出的装置600的一种具体实现形式,可以用于执行上述服务小区确定方法。其中,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片 (system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上实施例提供的协作小区确定方法。
本申请实施例还提供了一种包含指令或计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行以上实施例提供的协作小区确定方法。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑业务划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各业务单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件业务单元的形式实现。
集成的单元如果以软件业务单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的业务可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些业务存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (43)

  1. 一种协作小区确定方法,其特征在于,将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格,所述波束空间是根据多个波束的参考信号接收功率确定的,所述方法包括:
    针对任一小区作为服务小区时,所述网络设备获取所述服务小区中各栅格的频谱效率;
    所述网络设备根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率;
    所述网络设备根据各所述服务小区的总频谱效率,获得各所述服务小区中第一栅格对应的协作集,所述第一栅格为所述服务小区中对应第二多个小区的栅格,所述协作集中的小区为位于所述栅格的用户设备提供传输服务;
    所述网络设备将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,以使得在所述第一栅格对应的协作集中确定所述服务小区的协作小区。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率,包括:
    针对任一服务小区,所述网络设备根据所述服务小区中各栅格的频谱效率以及频谱效率参数,获得所述服务小区的总频谱效率。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备根据各所述服务小区的总频谱效率,获得所述服务小区中第一栅格对应的协作集,包括:
    所述网络设备根据各所述服务小区对应的总频谱效率以及小区数量确定各所述服务小区的平均频谱效率,所述小区数量为所述波束空间所覆盖的小区数量;
    所述网络设备以最大化所述平均频谱效率为目标,确定所述频谱效率参数取值;
    所述网络设备根据所述频谱效率参数的取值确定所述服务小区中第一栅格对应的协作集。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述网络设备获取所述服务小区中各栅格的频谱效率,包括:
    针对所述服务小区中的所述第一栅格,所述网络设备获取所述第二多个小区中各小区在所述第一栅格上的频谱效率;
    所述网络设备将所述第二多个小区中各小区在所述第一栅格上的频谱效率的平均值作为所述第一栅格的频谱效率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述网络设备获取所述服务小区中各栅格的频谱效率,包括:
    针对所述服务小区中的第二栅格,所述网络设备获取所述服务小区在所述第二栅格上的频谱效率,所述第二栅格为所述服务小区中只对应所述服务小区的栅格;
    所述网络设备将所述服务小区在所述栅格上的频谱效率作为所述第二栅格的频谱效率。
  6. 根据权利要求4所述的方法,其特征在于,所述网络设备获取所述第二多个小区中各小区在所述第一栅格上的频谱效率,包括:
    在所述第二多个小区中各小区作为服务小区时,所述网络设备获取所述服务小区到所 述栅格的角度功率谱、所述服务小区的发射功率以及所述服务小区对应的邻小区对所述第一栅格的干扰;
    所述网络设备根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率。
  7. 根据权利要求6所述的方法,其特征在于,所述网络根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率,包括:
    所述网络设备将所述功率谱、所述干扰以及所述发射功率输入预先训练的神经网络模型,由所述神经网络模型输出所述服务小区在所述第一栅格上的频谱效率,所述神经网络模型是根据训练数据以及所述训练数据对应的频谱效率预先训练生成的。
  8. 根据权利要求7所述的方法,其特征在于,所述训练数据对应的频谱效率是根据所述服务小区在所述栅格上的流量以及所述服务小区在所述栅格上的调度的资源块数量确定。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述网络设备获取所述服务小区对应的邻小区对所述栅格的干扰,包括:
    针对任一邻小区,所述网络设备获取所述用户设备发送的所述邻小区对应的下行波束的参考信号接收功率;
    所述网络设备根据所述邻小区对应的下行波束的参考信号接收功率以及有效流量概率确定所述邻小区对所述栅格的干扰,所述有效流量概率为所述邻小区在预设时间内的有效流量值与理论流量值的比值;
    所述网络设备将所有所述邻小区对所述栅格的干扰进行相加,获得所述小区对应的邻小区对所述栅格的干扰。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述网络设备将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,包括:
    所述网络设备将包括所述第一栅格对应的标识以及所述协作集中小区标识的对应关系发送给所述服务小区对应的无线接入装置。
  11. 一种协作小区确定方法,其特征在于,第一小区对应第一无线接入装置,用户设备对应的服务小区为所述第一小区,所述方法包括:
    所述第一无线接入装置接收所述用户设备发送的多个下行波束的参考信号接收功率;
    所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格;
    所述第一无线接入装置确定所述目标栅格对应的第一协作集,所述目标栅格对应的第一协作集是根据所述目标栅格对应的频谱效率确定的,所述第一协作集包括一个或多个第二小区,所述第二小区为所述服务小区的邻小区;
    所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得所述第二无线接入装置对所述用户设备的业务进行协作传输。
  12. 根据权利要求11所述的方法,其特征在于,在所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,所述方法还包括:
    所述第一无线接入装置确定所述用户设备未处于协作传输状态。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,所述方法还包括:
    在所述用户设备已处于所述协作传输状态时,所述第一无线接入装置确定使得所述用户设备已处于所述协作传输状态的第二协作集与所述第一协作集不一致。
  14. 根据权利要求13所述的方法,其特征在于,所述第一无线接入装置向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,包括:
    所述第一无线接入装置向目标第二小区发送协作消息,所述目标第二小区包括在所述第一协作集且不包括在所述第二协作集中。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一无线接入装置向第三小区对应的第三无线接入装置发送停止协作消息,所述第三小区包括在所述第二协作集且不包括在所述第一协作集中。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格,包括:
    所述第一无线接入装置根据所述多个下行波束的参考信号接收功率与每个栅格的中心坐标获得所述用户设备与每个栅格的距离,所述栅格的中心坐标由多个波束的参考信号接收功率表示;
    所述第一无线接入装置根据所述用户设备与每个栅格的距离确定所述用户设备在所述波束空间的目标栅格。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述第一无线接入装置确定所述目标栅格对应的第一协作集,包括:
    所述第一无线接入装置接收网络设备发送所述目标栅格的标识与所述第一协作集之间的对应关系;
    所述第一无线接入装置根据所述目标栅格的标识以及所述目标栅格的标识与所述第一协作集之间的对应关系确定所述目标栅格对应的第一协作集。
  18. 根据权利要求17所述的方法,其特征在于,所述目标栅格的标识为所述目标栅格的中心坐标。
  19. 根据权利要求11-18任一项所述的方法,其特征在于,所述第一无线接入装置根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格,包括:
    所述第一无线接入装置确定接收所述多个下行波束的参考信号接收功率的时间满足预设周期;
    所述第一无线接入装置根据在所述预设周期内接收到的所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述多个下行波束的参考信号接收功率为多个下行波束的信道状态信息参考信号接收功率。
  21. 一种协作小区确定装置,其特征在于,将波束空间覆盖的第一多个小区中的每个小区划分为多个栅格,所述波束空间是根据多个波束的参考信号接收功率确定的,所述装置 包括:
    第一获取单元,用于针对任一小区作为服务小区时,获取所述服务小区中各栅格的频谱效率;
    第二获取单元,用于根据各所述服务小区中各栅格的频谱效率,获得各所述服务小区的总频谱效率;
    第三获取单元,用于根据各所述服务小区的总频谱效率,获得各所述服务小区中第一栅格对应的协作集,所述第一栅格为所述服务小区中对应第二多个小区的栅格,所述协作集中的小区为位于所述栅格的用户设备提供传输服务;
    发送单元,用于将所述第一栅格对应的协作集发送给所述服务小区对应的无线接入装置,以使得在所述第一栅格对应的协作集中确定所述服务小区的协作小区。
  22. 根据权利要求21所述的装置,其特征在于,所述第二获取单元,具体用于针对任一服务小区,根据所述服务小区中各栅格的频谱效率以及频谱效率参数,获得所述服务小区的总频谱效率。
  23. 根据权利要求22所述的装置,其特征在于,所述第三获取单元,具体用于根据各所述服务小区对应的总频谱效率以及小区数量确定各所述服务小区的平均频谱效率,所述小区数量为所述波束空间所覆盖的小区数量;以最大化所述平均频谱效率为目标,确定所述频谱效率参数取值;根据所述频谱效率参数的取值确定所述服务小区中第一栅格对应的协作集。
  24. 根据权利要求21-23任一项所述的装置,其特征在于,所述第一获取单元,具体用于针对所述服务小区中的所述第一栅格,所述第二多个小区中各小区在所述第一栅格上的频谱效率;将所述第二多个小区中各小区在所述第一栅格上的频谱效率的平均值作为所述第一栅格的频谱效率。
  25. 根据权利要求21-24任一项所述的装置,其特征在于,所述第一获取单元,具体用于针对所述服务小区中的第二栅格,获取所述服务小区在所述第二栅格上的频谱效率,所述第二栅格为所述服务小区中只对应所述服务小区的栅格;将所述服务小区在所述栅格上的频谱效率作为所述第二栅格的频谱效率。
  26. 根据权利要求24所述的装置,其特征在于,所述第一获取单元,具体用于在所述第二多个小区中各小区作为服务小区时,获取所述服务小区到所述栅格的角度功率谱、所述服务小区的发射功率以及所述服务小区对应的邻小区对所述第一栅格的干扰;根据所述角度功率谱、所述干扰以及所述发射功率获取所述服务小区在所述第一栅格上的频谱效率。
  27. 根据权利要求26所述的装置,其特征在于,所述第一获取单元,具体用于将所述功率谱、所述干扰以及所述发射功率输入预先训练的神经网络模型,由所述神经网络模型输出所述服务小区在所述第一栅格上的频谱效率,所述神经网络模型是根据训练数据以及所述训练数据对应的频谱效率预先训练生成的。
  28. 根据权利要求27所述的装置,其特征在于,所述训练数据对应的频谱效率是根据所述服务小区在所述栅格上的流量以及所述服务小区在所述栅格上的调度的资源块数量确定。
  29. 根据权利要求26-28任一项所述的装置,其特征在于,所述第一获取单元,具体用 于针对任一邻小区,获取所述用户设备发送的所述邻小区对应的下行波束的参考信号接收功率;根据所述邻小区对应的下行波束的参考信号接收功率以及有效流量概率确定所述邻小区对所述栅格的干扰,所述有效流量概率为所述邻小区在预设时间内的有效流量值与理论流量值的比值;将所有所述邻小区对所述栅格的干扰进行相加,获得所述小区对应的邻小区对所述栅格的干扰。
  30. 根据权利要求21-29任一项所述的装置,其特征在于,所述发送单元,具体用于将包括所述第一栅格对应的标识以及所述协作集中小区标识的对应关系发送给所述服务小区对应的无线接入装置。
  31. 一种协作小区确定装置,其特征在于,第一小区对应所述装置,用户设备对应的服务小区为所述第一小区,所述方法包括:
    接收单元,用于接收所述用户设备发送的多个下行波束的参考信号接收功率;
    确定单元,用于根据所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格;
    所述确定单元,还用于确定所述目标栅格对应的第一协作集,所述目标栅格对应的第一协作集是根据所述目标栅格对应的频谱效率确定的,所述第一协作集包括一个或多个第二小区,所述第二小区为所述服务小区的邻小区;
    发送单元,用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息,以使得所述第二无线接入装置对所述用户设备的业务进行协作传输。
  32. 根据权利要求31所述的装置,其特征在于,所述确定单元,还用于向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,确定所述用户设备未处于协作传输状态。
  33. 根据权利要求31或32所述的装置,其特征在于,所述确定单元,还用于在向所述一个或多个第二小区各自对应的第二无线接入装置发送协作消息之前,在所述用户设备已处于所述协作传输状态时,确定使得所述用户设备已处于所述协作传输状态的第二协作集与所述第一协作集不一致。
  34. 根据权利要求33所述的装置,其特征在于,所述发送单元,向目标第二小区发送协作消息,所述目标第二小区包括在所述第一协作集且不包括在所述第二协作集中。
  35. 根据权利要求34所述的装置,其特征在于,所述发送单元,还用于向第三小区对应的第三无线接入装置发送停止协作消息,所述第三小区包括在所述第二协作集且不包括在所述第一协作集中。
  36. 根据权利要求31-35任一项所述的方法,其特征在于,所述确定单元,还用于根据所述多个下行波束的参考信号接收功率与每个栅格的中心坐标获得所述用户设备与每个栅格的距离,所述栅格的中心坐标由多个波束的参考信号接收功率表示;根据所述用户设备与每个栅格的距离确定所述用户设备在所述波束空间的目标栅格。
  37. 根据权利要求31-36任一项所述的装置,其特征在于,所述接收单元,还用于接收网络设备发送所述目标栅格的标识与所述第一协作集之间的对应关系;
    所述确定单元,还用于根据所述目标栅格的标识以及所述目标栅格的标识与所述第一 协作集之间的对应关系确定所述目标栅格对应的第一协作集。
  38. 根据权利要求37所述的装置,其特征在于,所述目标栅格的标识为所述目标栅格的中心坐标。
  39. 根据权利要求31-38任一项所述的装置,其特征在于,所述确定单元,还用于确定接收所述多个下行波束的参考信号接收功率的时间满足预设周期;根据在所述预设周期内接收到的所述多个下行波束的参考信号接收功率确定所述用户设备在波束空间的目标栅格。
  40. 根据权利要求31-39任一项所述的装置,其特征在于,所述多个下行波束的参考信号接收功率为多个下行波束的信道状态信息参考信号接收功率。
  41. 一种通信设备,所述设备包括:处理器和存储器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述存储器中的所述指令或计算机程序,以使得所述通信设备执行权利要求1-10任意一项所述的方法。
  42. 一种通信设备,所述设备包括:处理器和存储器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述存储器中的所述指令或计算机程序,以使得所述通信设备执行权利要求11-20任意一项所述的方法。
  43. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上权利要求1-10任意一项所述的方法,或者执行以上权利要求11-20任意一项所述的方法。
PCT/CN2022/093778 2021-06-29 2022-05-19 一种协作小区确定方法及装置 WO2023273679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731258.9 2021-06-29
CN202110731258.9A CN115549728A (zh) 2021-06-29 2021-06-29 一种协作小区确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023273679A1 true WO2023273679A1 (zh) 2023-01-05

Family

ID=84690247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093778 WO2023273679A1 (zh) 2021-06-29 2022-05-19 一种协作小区确定方法及装置

Country Status (2)

Country Link
CN (1) CN115549728A (zh)
WO (1) WO2023273679A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117289669B (zh) * 2023-11-27 2024-02-02 青岛创新奇智科技集团股份有限公司 一种基于工业大模型的自动调整式生产线控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014393A (zh) * 2010-11-22 2011-04-13 西安电子科技大学 蜂窝通信系统中多点协同传输的频率分配方法
CN106888506A (zh) * 2015-12-15 2017-06-23 亿阳信通股份有限公司 一种lte的小区间受干扰程度信息确定方法及系统
CN112511198A (zh) * 2019-09-16 2021-03-16 诺基亚通信公司 用于波束图案优化的高效数据生成
CN112702746A (zh) * 2019-10-23 2021-04-23 诺基亚通信公司 动态频谱共享中的协调链路自适应和分组调度

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014393A (zh) * 2010-11-22 2011-04-13 西安电子科技大学 蜂窝通信系统中多点协同传输的频率分配方法
CN106888506A (zh) * 2015-12-15 2017-06-23 亿阳信通股份有限公司 一种lte的小区间受干扰程度信息确定方法及系统
CN112511198A (zh) * 2019-09-16 2021-03-16 诺基亚通信公司 用于波束图案优化的高效数据生成
CN112702746A (zh) * 2019-10-23 2021-04-23 诺基亚通信公司 动态频谱共享中的协调链路自适应和分组调度

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKYO INSTITUTE OF TECHNOLOGY, KDDI: "Distributed Dynamic CoMP for LTE-Advanced.", 3GPP DRAFT; R1-093608 DISTRIBUTED DYNAMIC COMP FOR LTE ADVANCED (REVISED FROM R1-093081), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Shenzhen, China; 20090824, 24 August 2009 (2009-08-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050388177 *

Also Published As

Publication number Publication date
CN115549728A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US10972167B2 (en) User apparatus, base station, and communication method
EP4170917A1 (en) Communication method and related apparatus
Wu et al. Cloud radio access network (C-RAN): a primer
Yau et al. Cognition-inspired 5G cellular networks: A review and the road ahead
US20160338033A1 (en) Acquisition method, beam sending method, communication node, system and storage medium
CN106488472B (zh) 一种信道信息上报方法及终端
CN105009640A (zh) 一种信道测量方法、小区切换方法、相关装置及系统
WO2022017012A1 (zh) 一种网络配置方法及装置
EP3079266B1 (en) Method, device and system for obtaining channel information
CN105900474B (zh) 一种资源配置的方法、用户设备及基站
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
Zakaria et al. Exploiting user-centric joint transmission–coordinated multipoint with a high altitude platform system architecture
Souiki et al. Geographic routing protocols for underwater wireless sensor networks: a survey
WO2023273679A1 (zh) 一种协作小区确定方法及装置
EP4158790A1 (en) Distributed coordinated downlink precoding for multi-cell mimo wireless network virtualization
CN112088555A (zh) 用于无线通信系统中的资源分配的协调器网络节点和接入网络节点
Sharma et al. Optimized cluster head selection & rotation for cooperative spectrum sensing in cognitive radio networks
CN115052296B (zh) 一种可用于6G的智能Rank下行速率优化的方法
WO2022262480A1 (zh) 一种服务小区切换方法、服务小区确定方法及装置
WO2019242524A1 (zh) 波束分配方法、装置、基站和计算机可读存储介质
CN115053585A (zh) 定位方法及装置
WO2022242475A1 (zh) 一种无线信道多径信息的确定方法、装置及相关设备
CN112929907B (zh) 天线参数的确定方法及装置
CN111642014B (zh) 一种波束确定方法、装置、基站及电子设备
Wu et al. Centralized and distributed schedulers for non-coherent joint transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831504

Country of ref document: EP

Kind code of ref document: A1