WO2023273609A1 - 一种无源互调源数目确定方法及相关设备 - Google Patents

一种无源互调源数目确定方法及相关设备 Download PDF

Info

Publication number
WO2023273609A1
WO2023273609A1 PCT/CN2022/091456 CN2022091456W WO2023273609A1 WO 2023273609 A1 WO2023273609 A1 WO 2023273609A1 CN 2022091456 W CN2022091456 W CN 2022091456W WO 2023273609 A1 WO2023273609 A1 WO 2023273609A1
Authority
WO
WIPO (PCT)
Prior art keywords
passive intermodulation
matrix
sources
values
singular
Prior art date
Application number
PCT/CN2022/091456
Other languages
English (en)
French (fr)
Inventor
杨智
霍强
朱艳青
邹志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22831436.5A priority Critical patent/EP4317999A1/en
Publication of WO2023273609A1 publication Critical patent/WO2023273609A1/zh
Priority to US18/505,205 priority patent/US20240080116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/201Monitoring; Testing of receivers for measurement of specific parameters of the receiver or components thereof
    • H04B17/204Monitoring; Testing of receivers for measurement of specific parameters of the receiver or components thereof of interfering signals, e.g. passive intermodulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a method for determining the number of passive intermodulation sources and related equipment.
  • Nonlinear interference sources are an important factor limiting the capacity of communication systems, and passive intermodulation (PIM) interference is a typical nonlinear interference.
  • PIM passive intermodulation
  • the passive intermodulation index has become an important index of product quality, and the information on the number of passive intermodulation sources is an important factor to determine whether the product is qualified.
  • the near-field scanning method can be used. Specifically, the passive intermodulation signal appears after the device to be tested is turned on. When the frequency of the passive intermodulation is known, the receiving frequency of the probe is adjusted to For the frequency of passive intermodulation, the probe scans the equipment at close range. After the probe receives the passive intermodulation signal, the number of passive intermodulation sources can be obtained by analyzing the power or phase of the passive intermodulation signal.
  • the staff uses external equipment. If the equipment to be tested is a closed structure, such as a cable and a cavity filter, it is difficult for the staff to bring the external equipment close to the equipment to be tested, and the external equipment may also become passive interaction. The possibility of source adjustment. In addition, the equipment to be tested works in a high-power scene, and the staff are exposed to strong radiation. The operation will also affect the health of the staff. Therefore, how to detect multi-channel passive intermodulation conveniently, accurately and safely The number of sources of information has become an urgent problem to be solved.
  • Embodiments of the present application provide a method for determining the number of passive intermodulation sources and related equipment, which are used to conveniently, accurately and safely detect information on the number of passive intermodulation sources of a multi-antenna device.
  • Embodiments of the present application also provide corresponding devices, communication devices, computer-readable storage media, chip systems, and computer program products.
  • the first aspect of the present application provides a method for determining the number of passive intermodulation sources, the method may be performed by a multi-antenna device, or may be performed by a communication antenna, a processor, a chip, or a chip system of a multi-antenna device, or may be performed by an energy Logic modules or software implementations that realize all or part of communication functions, control functions, and computing functions.
  • the method is performed by a multi-antenna device, and the method includes:
  • the first matrix may be a matrix corresponding to the interference signal, or may be a covariance matrix of the matrix corresponding to the interference signal, and eigenvalue decomposition may also be performed on the first matrix.
  • the multi-antenna device can determine the number of passive intermodulation sources according to the numerical change trend of multiple singular values. When the numerical changes of multiple singular values jump, the number of singular values after the jump is determined as passive intermodulation the number of sources.
  • the multi-antenna device by controlling the multi-antenna device to transmit the detection signal used to stimulate passive intermodulation, so that the multi-antenna device receives the interference signal generated based on the detection signal, and then perform singular value decomposition on the first matrix corresponding to the interference signal , based on the results of singular value decomposition to determine the number of passive intermodulation sources, not only can detect the number of multi-channel passive intermodulation sources, but also does not need to use external equipment, avoiding the generation of additional passive intermodulation sources, multi-antenna There will be no problem if the device is a closed structure or works in a high-power scene, thereby realizing convenient, accurate and safe detection of the number information of multi-channel passive intermodulation sources.
  • the result of the singular value decomposition includes a plurality of singular values
  • the above step: determining the number of passive intermodulation sources based on the result of the singular value decomposition specifically includes: based on the number of singular values satisfying the first condition among the plurality of singular values Determine the number of passive intermodulation sources.
  • the user can preset the first condition, so that the multi-antenna device can directly determine the number of singular values satisfying the first condition, thereby determining the number of passive intermodulation sources, which improves the feasibility of the solution.
  • the above step: determining the number of passive intermodulation sources based on the number of singular values satisfying the first condition among the plurality of singular values specifically includes: determining the number N of singular values satisfying the first condition among the plurality of singular values is the number of passive intermodulation sources, the singular value satisfying the first condition is greater than the first preset threshold, and the number N is an integer greater than or equal to 0.
  • the user can preset the first condition to be greater than the first preset threshold value, so that the multi-antenna device can directly determine the number N of singular values satisfying the first condition, thereby determining the number of passive intermodulation sources and improving the feasibility of the scheme.
  • the interference signal includes a noise signal
  • the first preset threshold is related to noise power of the noise signal
  • the multi-antenna device can determine the first preset threshold based on the received noise signal, which eliminates the interference of the noise signal, and does not consider the passive intermodulation source lower than the power of the noise signal. On the basis of feasibility, it meets the needs of users.
  • the first matrix is a matrix or a covariance matrix corresponding to some of the interference signals in the interference signal.
  • performing singular value decomposition on the first matrix corresponding to the interference signal specifically includes: performing singular value decomposition on the first matrix to obtain Eigenvector; determining the number of passive intermodulation sources based on the results of the singular value decomposition includes: determining the number of passive intermodulation sources based on the second matrix and the eigenvector, the second matrix being interference signals other than some interference signals in the interference signal The corresponding matrix or covariance matrix.
  • the multi-antenna device can also divide the interference signal into two parts to determine the number of passive intermodulation sources, which improves the feasibility of the solution.
  • determining the number of passive intermodulation sources based on the second matrix and eigenvectors specifically includes: determining multiple values based on the second matrix and eigenvectors; The number of values determines the number of passive intermodulation sources.
  • the multi-antenna device can project the second matrix on the eigenvector to obtain multiple values, and the user can pre-set the second condition, so that the multi-antenna device can directly determine the number of singular values that meet the second condition, thereby determining The number of passive intermodulation sources improves the feasibility of the solution.
  • the above step: determining the number of passive intermodulation sources based on the number of values satisfying the second condition among the multiple values specifically includes: determining the number M of values satisfying the second condition among the multiple values is the number of passive intermodulation sources, the value satisfying the second condition is greater than the second preset threshold, and the number M is an integer greater than or equal to 0.
  • the user can pre-set the second condition to be greater than the second preset threshold value, so that the multi-antenna device can directly determine the number M of values that meet the second condition, thereby determining the number of passive intermodulation sources and improving the feasibility of the scheme.
  • the interference signal includes a noise signal
  • the second preset threshold is related to noise power of the noise signal
  • the multi-antenna device can determine the second preset threshold based on the received noise signal, which excludes the interference of the noise signal, and does not consider the passive intermodulation source lower than the power of the noise signal. On the basis of feasibility, it meets the needs of users.
  • a method for determining the number of passive intermodulation sources is provided.
  • the method can be performed by a multi-antenna device, or by a communication antenna, a processor, a chip, or a chip system of a multi-antenna device. It can also be It is realized by a logic module or software that can realize all or part of the communication function, control function and calculation function.
  • the method is performed by a multi-antenna device, and the method includes:
  • the multi-antenna device by controlling the multi-antenna device to transmit the probing signal used to stimulate passive intermodulation, so that the multi-antenna device receives the interference signal generated based on the probing signal, and then group the antennas receiving the interfering signal to determine the After receiving the peak power set of the received power of the interference signal, the number of passive intermodulation sources can be determined based on the peak power set. Additional passive intermodulation sources are generated, and the multi-antenna equipment will not cause problems if it is a closed structure or works in a high-power scene, thereby realizing convenient, accurate and safe detection of the number information of multi-channel passive intermodulation sources.
  • the third aspect of the present application provides a multi-antenna device inspection method, the method can be executed by the multi-antenna device, or can be executed by the communication antenna, processor, chip, or chip system of the multi-antenna device, or can be performed by Logic modules or software implementations that realize all or part of communication functions, control functions, and computing functions.
  • the method is performed by a multi-antenna device, and the method includes:
  • the multi-antenna device obtains the number of passive intermodulation sources through the method in the above first aspect or any possible implementation of the first aspect, and based on this, the factory inspection of the multi-antenna device can be convenient, accurate and safe. Check the passive intermodulation index of multi-antenna equipment.
  • a method for locating passive intermodulation sources is provided.
  • the method may be performed by a multi-antenna device, or may be performed by a communication antenna, a processor, a chip, or a chip system of a multi-antenna device, or may be performed by A logic module or software implementation that can realize all or part of the communication function, control function and calculation function.
  • the method is performed by a multi-antenna device, and the method includes:
  • the multi-antenna device obtains the number of passive intermodulation sources through the method in the above first aspect or any possible implementation of the first aspect, and based on this, it can conveniently locate the passive intermodulation source for the multi-antenna device , Accurately and safely locate the passive intermodulation source of multi-antenna equipment.
  • the fifth aspect of the present application provides a passive intermodulation source suppression method, which can be performed by a multi-antenna device, or by a communication antenna, a processor, a chip, or a chip system of a multi-antenna device, or by A logic module or software implementation that can realize all or part of the communication function, control function and calculation function.
  • the method is performed by a multi-antenna device, and the method includes:
  • the multi-antenna device obtains the number of passive intermodulation sources through the method in the above first aspect or any possible implementation of the first aspect, and accordingly suppresses the passive intermodulation sources for the multi-antenna device, which can be convenient , Accurate and safe suppression of passive intermodulation sources of multi-antenna equipment.
  • a passive intermodulation source suppression inspection method is provided.
  • the method can be executed by a multi-antenna device, or by a communication antenna, a processor, a chip, or a chip system of a multi-antenna device. It can also be It is realized by a logic module or software that can realize all or part of the communication function, control function and calculation function.
  • the method is performed by a multi-antenna device, and the method includes:
  • the first number of passive intermodulation sources suppress the second number of passive intermodulation sources of multi-antenna equipment; obtain the third number of passive intermodulation sources after multi-antenna equipment suppression; determine whether the third number is equal to the first number difference with the second number; if equal, it is determined that the suppression of the passive intermodulation source was successful.
  • the multi-antenna device obtains the number of passive intermodulation sources through the method in the above first aspect or any possible implementation of the first aspect, and based on this, the passive intermodulation source suppression test is performed on the multi-antenna device, which can Convenient, accurate and safe verification of the effect of suppressing passive intermodulation sources of multi-antenna devices.
  • an apparatus for determining the number of passive intermodulation sources configured to perform the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the device for determining the number of passive intermodulation sources includes modules or units for performing the method in the first aspect or any possible implementation of the first aspect, such as: a transceiver unit and a processing unit.
  • the transceiver unit is used to send the detection signal; the transceiver unit is also used to receive the interference signal from the passive intermodulation source, the interference signal is excited by the detection signal; the processing unit is used to perform singular value decomposition on the first matrix corresponding to the interference signal; The processing unit is also used to determine the number of passive intermodulation sources based on the results of the singular value decomposition.
  • the singular value decomposition result includes a plurality of singular values
  • the processing unit is specifically configured to determine the number of passive intermodulation sources based on the number of singular values satisfying the first condition among the plurality of singular values.
  • the processing unit is further configured to determine the number N of singular values satisfying the first condition among the plurality of singular values as the number of passive intermodulation sources, and the singular values satisfying the first condition are greater than the first preset threshold Value, the number N is an integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the preset threshold is generated based on noise power of the noise signal.
  • the first matrix is a matrix or a covariance matrix corresponding to a part of the interference signal in the interference signal
  • the processing unit is further configured to perform singular value decomposition on the first matrix to obtain an eigenvector
  • the processing unit is specifically configured to obtain an eigenvector based on the second matrix
  • the sum of the eigenvectors determines the number of passive intermodulation sources
  • the second matrix is a matrix or a covariance matrix corresponding to the interference signals except some interference signals in the interference signal.
  • the processing unit is further configured to determine multiple values based on the second matrix and the eigenvector; the processing unit is specifically further configured to determine the passive intermodulation source based on the number of values satisfying the second condition among the multiple values Number of.
  • the processing unit is specifically further configured to determine the number M of values satisfying the second condition among the plurality of values as the number of passive intermodulation sources, and the values satisfying the second condition are greater than the second preset threshold Value, the number M is an integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the second preset threshold is related to noise power of the noise signal
  • the eighth aspect of the present application provides a communication device, the communication device includes a processor and a memory, the processor is coupled to the memory, and the memory is used to store programs or instructions executed by the processor, or to store input data required by the processor to run instructions, Or store the data generated after the processor executes the instruction, and when the program or the instruction is executed by the processor, the communication device executes the method of the above-mentioned first aspect or any possible implementation manner of the first aspect.
  • the communication device further includes an interface, and the processor is coupled to the interface. Interfaces are used to communicate with other devices.
  • the interface can be a transceiver or an input-output interface.
  • the interface can be, for example, an interface circuit.
  • the ninth aspect of the present application provides a computer-readable storage medium storing instructions, and when the instructions are run on the computer, the method according to the above-mentioned first aspect or any possible implementation manner of the first aspect is executed.
  • the tenth aspect of the present application provides a chip system, the chip system includes at least one processor and an interface, the interface is used to receive data and/or signals, and at least one processor is used to support the computer device to implement the above first aspect or the first Functions involved in any possible implementation of the aspect.
  • the system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the eleventh aspect of the present application provides a computer program product storing a computer program.
  • the computer program When the computer program is executed, the first aspect or the method of any possible implementation manner of the first aspect can be realized.
  • FIG. 1 is a schematic diagram of a frame of a multi-antenna device
  • Figures 2-6 are schematic diagrams of several embodiments of the method for determining the number of passive intermodulation sources provided by the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an antenna in a multi-antenna device provided in an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of an antenna in a multi-antenna device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of a method for inspecting a multi-antenna device provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an embodiment of a passive intermodulation source locating method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a passive intermodulation source suppression method provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of an embodiment of a passive intermodulation source suppression inspection method provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a device for determining the number of passive intermodulation sources provided by an embodiment of the present application
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the present application provides a method for determining the number of passive intermodulation sources, which is used to conveniently, accurately and safely detect the number information of multi-channel passive intermodulation sources.
  • Embodiments of the present application also provide corresponding devices, communication devices, computer-readable storage media, computer program products, chip systems, and the like. Each will be described in detail below.
  • a multi-antenna device can also be called a multi-channel device, and can be a base station, a mobile terminal, or other wireless communication devices with multiple antennas.
  • a multi-antenna device includes multiple antennas, an active antenna unit (AAU) ), radio remote unit (remote radio unit, RRU) and baseband unit (baseband unit, BBU), etc.
  • the multi-antenna device can be an antenna-RRU-BBU architecture, the antenna transmits radio frequency signals, the RRU completes the signal conversion and transmission between the antenna and the BBU, and the BBU processes the baseband signal.
  • the multi-antenna device can also be an AAU -BBU architecture, the AAU includes the functions of the above-mentioned antenna and RRU, and the BBU processes the baseband signal.
  • passive intermodulation is caused due to the nonlinearity of the device itself, resulting in interference.
  • Multi-antenna equipment is normal Working passive intermodulation signals, these devices that generate passive intermodulation signals are called passive intermodulation sources. In order to eliminate the influence of passive intermodulation sources, it is necessary to determine the number of passive intermodulation sources.
  • the multi-antenna device can send a detection signal.
  • the detection signal can be a high-power signal of the above-mentioned multiple frequencies.
  • the passive intermodulation sources of the multi-antenna device are all excited to generate interference signals.
  • the multi-antenna device can received these interfering signals.
  • the signal can be expressed as a matrix, and the matrix can sometimes be considered as a linear transformation, including three types of effects: rotation, scaling, and projection.
  • an embodiment of the method for determining the number of passive intermodulation sources provided by the embodiment of the present application includes:
  • the multi-antenna device sends a detection signal, and the detection signal is a random signal. More specifically, all the multi-antenna devices will stimulate passive intermodulation carriers to send the detection signal.
  • the sounding signal sent by it is denoted as X
  • X is a matrix of N ⁇ N pt1 , where N is the number of transmitting antennas, that is, the number of transmitting antennas in the multi-antenna device; if X is a frequency domain signal, then N pt1 is the number of subcarriers, and if X is a time domain signal, then N pt1 is the number of sampling points.
  • X can be a full-rank random signal, or a multi-stream signal.
  • the multi-antenna device After the multi-antenna device sends a detection signal, it will receive an interference signal from a passive intermodulation source, where the interference signal is excited by the detection signal.
  • the interference signal is recorded as Y, Y is a matrix of M ⁇ N pt2 , where M is the number of receiving antennas, that is, the number of receiving antennas in a multi-antenna device, if Y is a frequency domain signal, then N pt2 is the number of subcarriers, If Y is a time-domain signal, then N pt2 is the number of sampling points, because the detection signal is sent by all the carriers that will stimulate passive intermodulation in the multi-antenna device, and the interference signal includes all the passive intermodulation source signals of the multi-antenna device .
  • the carrier of the multi-antenna device sends the detection signal with frequency f 1 and frequency f 2 , then the multi-antenna device will receive the interference signal with frequency 2f 1 -f 2 .
  • the multi-antenna device after the multi-antenna device obtains the interference signal, it can perform singular value decomposition on the first matrix, where the first matrix corresponds to the interference signal, that is, the first matrix is a matrix Y of M ⁇ N pt2 , for A singular value decomposition is performed on the first matrix to obtain a singular value decomposition result.
  • the first matrix corresponding to the interference signal can also be the covariance matrix of the matrix Y
  • the covariance matrix R YY is a Hermitian matrix
  • the singular value decomposition of R YY can be regarded as the eigenvalue decomposition of R YY to obtain the result of the eigenvalue decomposition. That is, when the first matrix is a Hermitian matrix, performing singular value decomposition on the first matrix can be regarded as performing eigenvalue decomposition on the first matrix to obtain the result of eigenvalue decomposition.
  • Eigenvalue decomposition can be viewed as a special case of singular value decomposition.
  • Carrying out singular value decomposition can be to carry out singular value decomposition to matrix Y, also can be to carry out singular value decomposition or eigenvalue decomposition to the covariance matrix of matrix Y, those skilled in the art can understand that singular value decomposition includes above-mentioned situation, the application implementation The example will not be repeated hereafter.
  • the number of passive intermodulation sources can be determined based on the result of singular value decomposition or eigenvalue decomposition.
  • the result of the singular value decomposition is multiple singular values
  • the result of the eigenvalue decomposition is multiple eigenvalues.
  • the multi-antenna device can determine the passive intermodulation source according to the numerical variation trends of multiple singular values or multiple eigenvalues. number.
  • the multi-antenna device by controlling the multi-antenna device to transmit the detection signal used to stimulate passive intermodulation, so that the multi-antenna device receives the interference signal generated based on the detection signal, and then perform singular Value decomposition, based on the results of singular value decomposition to determine the number of passive intermodulation sources, not only can detect the number information of multi-channel passive intermodulation sources, but also does not need to use external equipment, avoiding the generation of additional passive intermodulation sources, There will be no problem if the multi-antenna device is a closed structure or works in a high-power scene, thereby realizing convenient, accurate and safe detection of the number information of multi-channel passive intermodulation sources.
  • the singular value decomposition of the first matrix corresponding to the interference signal can be in various forms, which are described below:
  • FIG. 3 Another embodiment of the method for determining the number of passive intermodulation sources in the embodiment of the present application includes:
  • the user can set the receiving frequency of the multi-antenna device to a specified frequency, that is, the user can only detect the number of passive intermodulation sources of the specified frequency according to his own needs.
  • the number of passive intermodulation sources that are only detected at specified frequencies can be well adapted to the situation of suppression inspection.
  • the singular value satisfying the first condition is greater than the first preset threshold value, that is, the first condition previously set by the user in the multi-antenna device is the first preset threshold value, and the multi-antenna device
  • the number N of singular values greater than the first preset threshold value in a plurality of singular values is determined as the number of passive intermodulation sources, wherein the number N is an integer greater than or equal to 0, that is, the number of passive intermodulation sources is An integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the first preset threshold is related to noise power of the noise signal.
  • the interference signal received by the multi-antenna device includes all passive intermodulation source signals and noise signals of the multi-antenna device.
  • the multi-antenna device can generate a first preset based on the power of the noise signal.
  • the number of singular values or eigenvalues greater than the first preset threshold value is used as the number of passive intermodulation sources of the multi-antenna device.
  • the first matrix corresponding to the interference signal is Y, and performing singular value decomposition on the first matrix to obtain multiple singular values
  • the first preset threshold value Th is generated based on the power of the noise signal, and the first preset threshold value Then there are 2 singular values greater than the first preset threshold, that is, the number of passive intermodulation sources in the multi-antenna device is 2.
  • the first preset threshold also needs to be adaptively adjusted when the first matrix is matrix Y or matrix R YY .
  • the noise signal is a matrix C of M ⁇ N pt , and its noise power is P
  • the average value of multiple singular values obtained by performing singular value decomposition on the matrix C is about Then for the matrix
  • the average value of multiple singular values obtained by singular value decomposition is about Then for the covariance matrix of matrix C
  • the average value of multiple singular values obtained by singular value decomposition is about P
  • the first preset threshold value can be set to be or slightly greater than
  • the first preset threshold can be set to P or slightly greater than P.
  • the first condition can be set according to user requirements, for example, the first preset condition is generated based on the power of the noise signal. Threshold value is set, the number of singular values satisfying the first condition is determined as the number of passive intermodulation sources, the interference of noise signals is eliminated, and the passive intermodulation sources lower than the power of noise signals are not considered.
  • the embodiment satisfies the needs of users on the basis of practicability.
  • the multi-antenna device After obtaining the matrix Y corresponding to the interference signal, the multi-antenna device divides the matrix Y into two parts Y 1 and Y 2 , where Y 1 is The matrix of Y2 is matrix.
  • Y 1 is The matrix of Y2 is matrix.
  • the ways of dividing the matrix Y into two parts include but are not limited to the following:
  • Method 1 Divide by interval, take one column every N columns, assign it to Y 1 , and assign the rest to Y 2 , or vice versa, for example, the odd-numbered column of Y is assigned to Y 1 , and the even-numbered column is assigned to Y 2 ;
  • Method 2 sort in order, divide the first N columns into Y 1 , and the last N pt2 -N columns into Y 2 , or vice versa;
  • Method 3 Randomly assign, randomly select N columns, assign to Y 1 , and assign the rest to Y 2 , or vice versa.
  • the first matrix is the matrix or covariance matrix corresponding to part of the interference signal in the interference signal, that is, the first matrix is Y 1
  • the second matrix is the matrix or covariance matrix corresponding to the interference signal except some interference signals in the interference signal, that is, the second matrix is Y 2 , or
  • the multi-antenna device performs singular value decomposition on the first matrix to obtain eigenvectors, for example, the covariance matrix of Y 1 That is, the singular value decomposition of the first matrix is performed, that is, the eigenvalue decomposition, where Get the eigenvectors U and V.
  • the number of passive intermodulation sources in the multi-antenna device can be determined based on the second matrix, the eigenvector U, and the eigenvector V.
  • the multi-antenna device may also perform singular value decomposition on some interference signals, which improves the selectivity and realizability of the embodiment of the present application.
  • the multi-antenna device After the multi-antenna device obtains the second matrix Y 2 and the eigenvectors U and V, it can determine multiple values.
  • the multi-antenna device will Y 2 's covariance matrix That is, the second matrix is projected on the eigenvector U and the eigenvector V, and the diagonal elements are taken, that is Thus, a set ⁇ of multiple values is determined, wherein the unit of each value ⁇ is the same as the unit of power.
  • the value satisfying the second condition is greater than the second preset threshold value, that is, the second condition previously set by the user in the multi-antenna device is the second preset threshold value, and the multi-antenna device
  • the number M of the values greater than the second preset threshold value in the plurality of values is determined as the number of passive intermodulation sources, wherein the number M is an integer greater than or equal to 0, that is, the number of passive intermodulation sources is An integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the second preset threshold is related to noise power of the noise signal.
  • the interference signal received by the multi-antenna device includes all passive intermodulation source signals and noise signals of the multi-antenna device.
  • the second condition can be set according to user requirements, for example, generating a second preset threshold based on the power of the noise signal, which will satisfy the first
  • the number of singular values of the two conditions determines the number of passive intermodulation sources, eliminates the interference of noise signals, and does not consider passive intermodulation sources lower than the noise signal power, on the basis of improving the realizability of the embodiments of the present application Meet user needs.
  • the embodiment of the present application also provides a method for determining the number of passive intermodulation sources, which specifically includes the following:
  • Group antennas that receive interference signals to obtain multiple groups of antennas.
  • the multi-antenna device includes antenna groups, that is, multiple antennas.
  • One antenna can be 1 x 6 antennas, specifically +45° polarized antennas or -45° polarized antennas, at the same position
  • Two antennas with different polarizations may also exist simultaneously to form a dual-polarized antenna, and the dual-polarized antenna may be regarded as a group of antennas.
  • the antenna group of this multi-antenna device is composed of 16 groups of dual-polarized antennas, but the upper and lower scales are much larger than the left and right scales. Therefore, it is necessary to decouple the antenna group from top to bottom and regroup to obtain 32 groups of dual-polarized antennas.
  • the lower 8 groups of antennas are marked as 1, 2, 3, 4, 5, 6, 7, 8, and the upper 8 groups of antennas are marked as 9, 10, 11, 12, 13, 14, 15, 16.
  • Antenna groups 1 and 9 are left edge groups, antenna groups 8 and 16 are right edge groups, and the others are middle groups.
  • each group of antennas includes two antennas with different polarizations
  • the received power of each group of antennas must be determined first.
  • the average of all antennas in the group is taken, that is, the received power of each group of antennas receiving interference signals
  • P(i,j) represents the received power of the jth antenna in the i-th group of antennas
  • j is the serial number of the antenna in the group
  • N 0 is the number of antennas in a group of antennas.
  • the received power of the antenna is the received power of the group of antennas.
  • the determination of the number of passive intermodulation sources based on a set in the embodiment of the present application can be understood by referring to the corresponding content in the embodiment of the method for determining the number of passive intermodulation sources in FIGS. 2 to 5 , and details are not repeated here.
  • the embodiment of the present application also provides a multi-antenna device inspection method, which specifically includes the following:
  • the number of passive intermodulation sources can be obtained through the method for determining the number of passive intermodulation sources described in some embodiments in Figure 2 to Figure 8 of the embodiment of this application , and obtain the passive intermodulation index of the multi-antenna device.
  • the number of passive intermodulation sources is 1, and the passive intermodulation index of the multi-antenna device is that the number of passive intermodulation sources is less than 2, then judge The number of passive intermodulation sources meets the passive intermodulation index, and the multi-antenna equipment is determined to be qualified.
  • the number of passive intermodulation sources is obtained through the method for determining the number of passive intermodulation sources described in some embodiments in Fig. Convenient, accurate and safe inspection of passive intermodulation indicators of multi-antenna equipment.
  • the embodiment of the present application also provides a method for locating passive intermodulation sources, which specifically includes the following:
  • the passive intermodulation source of a multi-antenna device When locating the passive intermodulation source of a multi-antenna device, it is necessary to obtain the number of passive intermodulation sources of the multi-antenna device first, which is not only convenient for positioning but also verifies the accuracy of positioning. Obtain the number of passive intermodulation sources through the method for determining the number of passive intermodulation sources described in some embodiments in FIGS. Accurately and safely locate PIM sources for multi-antenna devices.
  • the embodiment of the present application also provides a passive intermodulation source suppression method, which specifically includes the following:
  • the embodiment of the present application also provides a passive intermodulation source suppression inspection method, which specifically includes the following:
  • the first number of passive intermodulation sources can be obtained through the method for determining the number of passive intermodulation sources described in some embodiments in Figure 2 to Figure 8 of the embodiment of this application. number, and then suppress the second number of passive intermodulation sources for multi-antenna equipment, and obtain the suppressed multi-antenna
  • the third number of passive intermodulation sources of equipment and finally judge whether the third number is equal to the difference between the first number and the second number, and if so, it is determined that the suppression of passive intermodulation sources is successful.
  • the number of passive intermodulation sources is obtained by the method for determining the number of passive intermodulation sources described in some embodiments in Figures 2 to 8 of the embodiment of the present application, and the passive intermodulation source suppression test for multi-antenna equipment can be performed conveniently. , Accurately and safely inspect the effect of suppressing passive intermodulation sources of multi-antenna equipment.
  • the device for determining the number of passive intermodulation sources in the embodiment of the present application.
  • FIG. 13 it is a schematic diagram of a device for determining the number of passive intermodulation sources provided in the embodiment of the present application.
  • the device for determining the number of passive intermodulation sources is used to implement various steps corresponding to multi-antenna devices in the above embodiments.
  • the device 1300 for determining the number of passive intermodulation sources includes a transceiver unit 1310 and a processing unit 1320 .
  • the device 1300 for determining the number of passive intermodulation sources is used to implement the steps corresponding to multi-antenna devices in the above embodiments:
  • the transceiver unit 1310 is used to send a detection signal; the transceiver unit 1310 is also used to receive an interference signal from a passive intermodulation source, and the interference signal is excited by the detection signal.
  • the transceiving unit 1310 may execute step 201 and step 202 in the foregoing method embodiments.
  • the processing unit 1320 is configured to perform singular value decomposition on the first matrix corresponding to the interference signal; the processing unit 1320 is also configured to determine the number of passive intermodulation sources based on the result of the singular value decomposition.
  • the processing unit 1320 may execute step 203 and step 204 in the foregoing method embodiments.
  • the processing unit 1320 by controlling the transceiver unit 1310 to transmit a detection signal for stimulating passive intermodulation, so that the transceiver unit 1310 receives the interference signal generated based on the detection signal, and then the processing unit 1320 performs a first step corresponding to the interference signal Singular value decomposition is performed on the matrix, and the processing unit 1320 also determines the number of passive intermodulation sources based on the results of the singular value decomposition, which not only can detect the number information of multi-channel passive intermodulation sources, but also does not need to use external devices, avoiding additional Passive intermodulation source, multi-antenna equipment will not cause problems if it is a closed structure or works in a high-power scene, thus realizing convenient, accurate and safe detection of the number information of multi-channel passive intermodulation sources.
  • the singular value decomposition result includes multiple singular values
  • the processing unit 1320 is specifically configured to determine the number of passive intermodulation sources based on the number of singular values satisfying the first condition among the multiple singular values.
  • the processing unit 1320 is further configured to determine the number N of singular values satisfying the first condition among the plurality of singular values as the number of passive intermodulation sources, and the singular values satisfying the first condition are greater than the first preset gate Limit value, the number N is an integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the preset threshold is generated based on noise power of the noise signal.
  • the first matrix is a matrix or a covariance matrix corresponding to some of the interference signals in the interference signal
  • the processing unit 1320 is further configured to perform singular value decomposition on the first matrix to obtain an eigenvector
  • the processing unit 1320 is specifically further configured to determine the number of passive intermodulation sources based on the second matrix and the eigenvector, and the second matrix is a matrix or a covariance matrix corresponding to interference signals other than some interference signals in the interference signals.
  • processing unit 1320 is further configured to determine multiple values based on the second matrix and the eigenvector;
  • the processing unit 1320 is specifically further configured to determine the number of passive intermodulation sources based on the number of values satisfying the second condition among the multiple values.
  • the processing unit 1320 is specifically further configured to determine the number M of values that meet the second condition among the multiple values as the number of passive intermodulation sources, and the values that meet the second condition are greater than the second preset threshold Limit value, the number M is an integer greater than or equal to 0.
  • the interference signal includes a noise signal
  • the second preset threshold is related to noise power of the noise signal
  • the device 1300 for determining the number of passive intermodulation sources provided in the embodiment of the present application can be understood by referring to the corresponding content in the embodiment of the method for determining the number of passive intermodulation sources, and will not be repeated here.
  • the above-mentioned device 1300 for determining the number of passive intermodulation sources may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit, To realize the corresponding method or function.
  • the processing unit 1320 may read data or instructions in the storage unit, so that the apparatus 1300 for determining the number of passive intermodulation sources implements the methods in the foregoing embodiments.
  • each unit in the device for determining the number of passive intermodulation sources 1300 is only a division of logical functions, and may be fully or partially integrated into one physical entity or physically separated during actual implementation.
  • the units in the device 1300 for determining the number of passive intermodulation sources can all be implemented in the form of calling by software through processing elements; they can also be realized in the form of hardware; some units can also be realized in the form of calling by software through processing elements, and some units Implemented in the form of hardware.
  • each unit can be a separate processing element, and can also be integrated in a certain chip of the device for determining the number of passive intermodulation sources 1300.
  • it can also be stored in a memory in the form of a program.
  • a certain processing element of the source number determining device 1300 invokes and executes the function of the unit.
  • all or part of these units can be integrated together, or implemented independently.
  • the processing element mentioned here may also be a processor, which may be an integrated circuit with signal processing capability.
  • each step of the above method or each unit above may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software called by the processing element.
  • the units in any of the above devices 1300 for determining the number of passive intermodulation sources may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit , ASIC), or, one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), or at least two of these integrated circuit forms The combination.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the units in the device 1300 for determining the number of passive intermodulation sources can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other capable The handler for the calling program.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the communication device 1400 includes: a processor 1410 and an interface 1430 , and the processor 1410 is coupled to the interface 1430 .
  • the interface 1430 is used to communicate with other devices.
  • Interface 1430 may be a transceiver or an input-output interface.
  • Interface 1430 may be, for example, an interface circuit.
  • the communication device 1400 further includes a memory 1420, the processor 1410 is coupled to the memory 1420, and the memory 1420 is used to store the instructions executed by the processor 1410 or store the input data required by the processor 1410 to run the instructions or store the processor 1410 to run Data generated after the command.
  • the method performed by the multi-antenna device in the above embodiments may be implemented by calling a program stored in a memory (which may be the memory 1420 of the multi-antenna device or an external memory) by the processor 1410 .
  • the multi-antenna device may include a processor 1410, and the processor 1410 executes the method performed by the multi-antenna device in the above method embodiments by calling a program in the memory.
  • the processor here may be an integrated circuit with signal processing capabilities, such as a CPU.
  • a multi-antenna device may be implemented by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or one or more microprocessors DSP, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementation manners may be combined.
  • the functions/implementation process of the transceiver unit 1310 and the processing unit 1320 in FIG. 13 can be realized by calling the computer-executable instructions stored in the memory 1420 by the processor 1410 in the communication device 1400 shown in FIG. 14 .
  • the function/implementation process of the processing unit 1320 in FIG. 13 can be realized by the processor 1410 in the communication device 1400 shown in FIG.
  • The/implementation process can be realized through the interface 1430 in the communication device 1400 shown in FIG.
  • the terminal device chip When the communication device 1400 is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is from other terminal devices or network devices; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules) or antenna) to send information, which is sent by a terminal device to other terminal devices or network devices.
  • the network device chip When the communication apparatus 1400 is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is from other network devices or terminal devices; or, the network device chip sends information to other modules in the network device (such as radio frequency modules) or antenna) to send information, which is sent by network devices to other network devices or terminal devices.
  • a computer-readable storage medium is also provided, and computer-executable instructions are stored in the computer-readable storage medium.
  • the device executes the above-mentioned diagram. 2 to the method for determining the number of passive intermodulation sources described in some embodiments in FIG. 5 .
  • a computer program product in another embodiment, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; Reading the storage medium reads the computer-executed instructions, and at least one processor executes the computer-executed instructions so that the device executes the method for determining the number of passive intermodulation sources described in some embodiments in FIG. 2 to FIG. 5 above.
  • a chip system in another embodiment, includes at least one processor and an interface, the interface is used to receive data and/or signals, at least one processor is used to support the implementation of the above-mentioned Figure 2 to The method for determining the number of passive intermodulation sources described in some embodiments in FIG. 5 .
  • the system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the computer device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Noise Elimination (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例公开了一种无源互调源数目确定方法,应用于获取多天线设备的无源互调源的数目的场景,具体包括:接收由探测信号激发的来自无源互调源的干扰信号,对与干扰信号对应的第一矩阵进行奇异值分解,基于奇异值分解的结果确定无源互调源的数目。这样可以直接通过多天线设备的收发信号和计算的操作确定出自身无源互调源的数目,从而实现了便捷、准确并安全的检测多天线设备的无源互调源的数目信息。

Description

一种无源互调源数目确定方法及相关设备
本申请要求于2021年6月28日提交中国专利局、申请号为202110723293.6、发明名称为“一种无源互调源数目确定方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种无源互调源数目确定方法及相关设备。
背景技术
非线性干扰源是限制通信系统容量的一个重要因素,无源互调(passive inter-modulation,PIM)干扰是一种典型的非线性干扰。
在生产线中,无源互调指标已成为产品质量的一个重要指标,无源互调源的数目信息是产品是否合格的一个重要因素。为了获取无源互调源的数目信息,可以使用近场扫描法,具体的,开启待检测设备后出现无源互调信号,当知道无源互调的频率后,把探头的接收频率调节为无源互调的频率,通过探头对设备近距离扫描,探头接收到无源互调信号后,通过分析无源互调信号的功率或相位得到无源互调源的数目。
但是使用近场扫描法需要工作人员使用外接设备,若待检测设备为封闭结构,例如电缆和腔体滤波器,工作人员很难将外接设备靠近这些待检测设备,而且外接设备也有成为无源互调源的可能,此外,待检测设备工作于高功率场景,工作人员暴露在强辐射环境下操作也会对工作人员的身体造成影响,因此如何便捷、准确并安全的检测多通道无源互调源的数目信息成为目前亟待解决的问题。
发明内容
本申请实施例提供一种无源互调源数目确定方法及相关设备,用于便捷、准确并安全的检测多天线设备的无源互调源的数目信息。本申请实施例还提供了相应的装置、通信装置、计算机可读存储介质、芯片系统和计算机程序产品。
本申请第一方面提供一种无源互调源数目确定方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
发送探测信号;接收来自无源互调源的干扰信号,干扰信号由探测信号激发;对与干扰信号对应的第一矩阵进行奇异值分解;基于奇异值分解的结果确定无源互调源的数目。
本申请中第一矩阵可以为与干扰信号对应的矩阵,也可以为与干扰信号对应的矩阵的协方差矩阵,对第一矩阵还可以进行特征值分解。多天线设备可以根据多个奇异值的数值变化趋势确定无源互调源的数目,当多个奇异值的数值变化出现跳变时,将跳变后的奇异值的数目确定为无源互调源的数目。
本申请中,通过控制多天线设备发射用于激发无源互调的探测信号,以使多天线设备接收到基于探测信号生成的干扰信号,然后对与干扰信号对应的第一矩阵进行奇异值分解,基于奇异值分解的结果确定无源互调源的数目,不仅可以检测多通道无源互调源的数目信息,还不需要使用外接设备,避免了产生额外的无源互调源,多天线设备为封闭结构或工作于高功率场景也不会产生问题,从而实现了便捷、准确并安全的检测多通道无源互调源的数目信息。
可选的,奇异值分解的结果包括多个奇异值,上述步骤:基于奇异值分解的结果确定无源互调源的数目具体包括:基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目。
本申请中,用户可以预先设置第一条件,使得多天线设备可以直接确定满足第一条件的奇异值的数目,从而确定无源互调源的数目,提升了方案的可实现性。
可选的,上述步骤:基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目具体包括:将多个奇异值中满足第一条件的奇异值的数目N确定为无源互调源的数目,满足第一条件的奇异值大于第一预设门限值,数目N为大于或等于0的整数。
本申请中,用户可以预先设置第一条件为大于第一预设门限值,使得多天线设备可以直接确定满足第一条件的奇异值的数目N,从而确定无源互调源的数目,提升了方案的可实现性。
可选的,干扰信号包括噪声信号,第一预设门限值与噪声信号的噪声功率相关。
本申请中,多天线设备可以基于接收到的噪声信号来确定第一预设门限值,排除了噪声信号的干扰,并且不考虑低于噪声信号功率的无源互调源,在提升方案的可实现性的基础上满足了用户需求。
可选的,第一矩阵为干扰信号中部分干扰信号对应的矩阵或协方差矩阵,上述步骤:对与干扰信号对应的第一矩阵进行奇异值分解具体包括:对第一矩阵进行奇异值分解得到特征向量;基于奇异值分解的结果确定无源互调源的数目包括:基于第二矩阵和特征向量确定无源互调源的数目,第二矩阵为干扰信号中除部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵。
本申请中,多天线设备还可以将干扰信号分为两部分来确定无源互调源的数目,提升了方案的可实现性。
可选的,上述步骤:基于第二矩阵和特征向量确定无源互调源的数目具体包括:基于第二矩阵和特征向量确定多个取值;基于多个取值中满足第二条件的取值的数目确定无源互调源的数目。
本申请中,多天线设备可以将第二矩阵在特征向量上投影得到多个取值,用户可以预先设置第二条件,使得多天线设备可以直接确定满足第二条件的奇异值的数目,从而确定无源互调源的数目,提升了方案的可实现性。
可选的,上述步骤:基于多个取值中满足第二条件的取值的数目确定无源互调源的数目具体包括:将多个取值中满足第二条件的取值的数目M确定为无源互调源的数目,满足第二条件的取值大于第二预设门限值,数目M为大于或等于0的整数。
本申请中,用户可以预先设置第二条件为大于第二预设门限值,使得多天线设备可以直接确定满足第二条件的取值的数目M,从而确定无源互调源的数目,提升了方案的可实现性。
可选的,干扰信号包括噪声信号,第二预设门限值与噪声信号的噪声功率相关。
本申请中,多天线设备可以基于接收到的噪声信号来确定第二预设门限值,排除了噪声信号的干扰,并且不考虑低于噪声信号功率的无源互调源,在提升方案的可实现性的基础上满足了用户需求。
本申请第二方面,提供了一种无源互调源数目确定方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
发送探测信号;接收来自无源互调源的干扰信号;对接收干扰信号的天线进行分组,得到多组天线;确定每组天线接收干扰信号的接收功率的峰值功率集合;基于峰值功率集合确定无源互调源的数目。
本申请中,通过控制多天线设备发射用于激发无源互调的探测信号,以使多天线设备接收到基于探测信号生成的干扰信号,然后对接收干扰信号的天线进行分组,确定每组天线接收干扰信号的接收功率的峰值功率集合后,就可以基于峰值功率集合确定无源互调源的数目,不仅可以检测多通道无源互调源的数目信息,还不需要使用外接设备,避免了产生额外的无源互调源,多天线设备为封闭结构或工作于高功率场景也不会产生问题,从而实现了便捷、准确并安全的检测多通道无源互调源的数目信息。
本申请第三方面,提供了一种多天线设备的检验方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
获取无源互调源的数目;获取多天线设备的无源互调指标;判断无源互调源的数目是否满足无源互调指标;若满足,确定多天线设备合格。
本申请中,多天线设备通过上述第一方面或第一方面的任意可能的实现方式中的方法获取无源互调源的数目,据此对多天线设备进行出厂检验,可以便捷、准确并安全的检验多天线设备的无源互调指标。
本申请第四方面,提供了一种无源互调源定位方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
获取无源互调源的数目;基于无源互调源的数目定位多天线设备的无源互调源。
本申请中,多天线设备通过上述第一方面或第一方面的任意可能的实现方式中的方法获取无源互调源的数目,据此对多天线设备进行无源互调源定位,可以便捷、准确并安全的定位多天线设备的无源互调源。
本申请第五方面,提供了一种无源互调源抑制方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
获取无源互调源的数目;基于无源互调源的数目抑制多天线设备的无源互调源。
本申请中,多天线设备通过上述第一方面或第一方面的任意可能的实现方式中的方法获取无源互调源的数目,据此对多天线设备进行无源互调源抑制,可以便捷、准确并安全的抑制多天线设备的无源互调源。
本申请第六方面,提供了一种无源互调源抑制检验方法,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。示例性的,该方法由多天线设备执行,该方法包括:
获取无源互调源的第一数目;抑制多天线设备第二数目的无源互调源;获取多天线设备抑制后无源互调源的第三数目;判断第三数目是否等于第一数目与第二数目的差值;若等于,确定无源互调源的抑制成功。
本申请中,多天线设备通过上述第一方面或第一方面的任意可能的实现方式中的方法获取无源互调源的数目,据此对多天线设备进行无源互调源抑制检验,可以便捷、准确并安全的检验抑制多天线设备的无源互调源的效果。
本申请第七方面,提供了一种无源互调源数目确定装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该无源互调源数目确定装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块或单元,如:收发单元和处理单元。
其中收发单元用于发送探测信号;收发单元还用于接收来自无源互调源的干扰信号,干扰信号由探测信号激发;处理单元用于对与干扰信号对应的第一矩阵进行奇异值分解;处理单元还用于基于奇异值分解的结果确定无源互调源的数目。
可选的,奇异值分解的结果包括多个奇异值,处理单元具体用于基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目。
可选的,处理单元具体还用于将多个奇异值中满足第一条件的奇异值的数目N确定为无源互调源的数目,满足第一条件的奇异值大于第一预设门限值,数目N为大于或等于0的整数。
可选的,干扰信号包括噪声信号,预设门限值基于噪声信号的噪声功率生成。
可选的,第一矩阵为干扰信号中部分干扰信号对应的矩阵或协方差矩阵,处理单元具体还用于对第一矩阵进行奇异值分解得到特征向量;处理单元具体还用于基于第二矩阵和特征向量确定无源互调源的数目,第二矩阵为干扰信号中除部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵。
可选的,处理单元具体还用于基于第二矩阵和特征向量确定多个取值;处理单元具体还用于基于多个取值中满足第二条件的取值的数目确定无源互调源的数目。
可选的,处理单元具体还用于将多个取值中满足第二条件的取值的数目M确定为无源互调源的数目,满足第二条件的取值大于第二预设门限值,数目M为大于或等于0的整数。
可选的,干扰信号包括噪声信号,第二预设门限值与噪声信号的噪声功率相关。
本申请第八方面提供一种通信装置,该通信装置包括处理器和存储器,处理器与存储器耦合,存储器用于存储处理器执行的程序或指令,或存储处理器运行指令所需要的输入数据,或存储处理器运行指令后产生的数据,当程序或指令被处理器执行时,使得通信装置执行上述第一方面或第一方面任意一种可能的实现方式的方法。可选的,该通信装置还包括接口,处理器与接口耦合。接口用于实现与其他设备进行通信。接口可以为收发器或输入输出接口。接口例如可以是接口电路。
本申请第九方面提供一种存储有指令的计算机可读存储介质,当指令在计算机上运行时,执行如上述第一方面或第一方面任意一种可能的实现方式的方法。
本申请第十方面提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,该接口用于接收数据和/或信号,至少一个处理器用于支持计算机设备实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请第十一方面提供一种存储有计算机程序的计算机程序产品,当计算机程序被执行时,实现如上述第一方面或第一方面任意一种可能的实现方式的方法。
附图说明
图1为一种多天线设备的框架示意图;
图2-图6为本申请实施例提供的无源互调源数目确定方法的几种实施例示意图;
图7为本申请实施例提供的多天线设备中天线的一结构示意图;
图8为本申请实施例提供的多天线设备中天线的另一结构示意图;
图9为本申请实施例提供的多天线设备的检验方法的一实施例示意图;
图10为本申请实施例提供的无源互调源定位方法的一实施例示意图;
图11为本申请实施例提供的无源互调源抑制方法的一实施例示意图;
图12为本申请实施例提供的无源互调源抑制检验方法的一实施例示意图;
图13为本申请实施例提供的无源互调源数目确定装置的一结构示意图;
图14为本申请实施例提供的通信装置的一结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况 下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
本申请实施例提供了一种无源互调源数目确定方法,用于便捷、准确并安全的检测多通道无源互调源的数目信息。本申请实施例还提供了相应的装置、通信装置、计算机可读存储介质、计算机程序产品及芯片系统等。以下分别进行详细说明。
多天线设备也可以称为多通道设备,可以为基站、移动终端或其他具有多个天线的无线通信设备,具体的,多天线设备包括多个天线、有源天线处理单元(active antenna unit,AAU)、射频拉远单元(remote radio unit,RRU)和基带单元(baseband unit,BBU)等。更具体的,多天线设备可以是天线-RRU-BBU架构,天线发射射频信号,RRU完成天线与BBU之间的信号转换与传输,BBU处理基带信号,可选的,多天线设备也可以是AAU-BBU架构,AAU包含上述天线和RRU的功能,BBU处理基带信号。
当多天线设备中的接头、馈线、天线和滤波器等无源器件工作在多个频率的高功率信号条件下时,由于器件本身存在非线性而引起无源互调,产生干扰多天线设备正常工作的无源互调信号,这些产生无源互调信号的器件被称为无源互调源,为了消除无源互调源的影响,确定出无源互调源的数目是必要的。
请参阅图1,多天线设备可以发送出探测信号,探测信号可以为上述多个频率的高功率信号,此时多天线设备的无源互调源都被激发,产生干扰信号,多天线设备可以接收到这些干扰信号。
信号可以表现为矩阵,矩阵有时可以被认为是一种线性变换,包含旋转、缩放和投影三种类型的效应,奇异值分解(singular value decomposition,SVD)正是对线性变换这三种效应的一个析构,具体是对矩阵进行分解,假设矩阵A是一个m×n的矩阵,定义矩阵A的SVD为A=U∑V H,其中U是一个m×m的矩阵,∑是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都为一个奇异值,V是一个n×n的矩阵,U和V都是酉矩阵,H表示共轭转置。对于矩阵A,其奇异值为{λ 12,…,λ m},对于矩阵B=AA H,其奇异值为
Figure PCTCN2022091456-appb-000001
下面结合上述多天线设备的架构以及奇异值分解的概念对本申请实施例中的无源互调源数目确定方法进行描述,该方法可以由多天线设备执行,也可以由多天线设备的通信天线、处理器、芯片、或芯片系统执行,还可以由能实现全部或部分通信功能、控制功能和计算功能的逻辑模块或软件实现。请参阅图2,本申请实施例提供的无源互调源数目确定方 法的一个实施例包括:
201、发送探测信号。
以多天线设备为例,具体的,多天线设备发送探测信号,该探测信号为随机信号,更具体的,多天线设备中全部会激发出无源互调的载波发送探测信号。
示例性的,在多天线设备的某一载波中,其发送的探测信号记为X,X为N×N pt1的矩阵,其中N是发射天线数,即多天线设备中发射天线的数量;若X是频域信号,则N pt1是子载波数,若X是时域信号,则N pt1是采样点数。进一步的,X可以是满秩随机信号,也可以是多流信号。
202、接收来自无源互调源的干扰信号。
以多天线设备为例,多天线设备发送探测信号后,就会接收来自无源互调源的干扰信号,其中干扰信号是由探测信号激发的。具体的,干扰信号记为Y,Y是M×N pt2的矩阵,其中M是接收天线数,即多天线设备中接收天线的数量,若Y是频域信号,则N pt2是子载波数,若Y是时域信号,则N pt2是采样点数,因探测信号是多天线设备中全部会激发出无源互调的载波发送的,干扰信号包括该多天线设备全部的无源互调源信号。
示例性的,多天线设备的载波发送了频率为f 1和频率为f 2的探测信号,那么多天线设备会接收到频率为2f 1-f 2的干扰信号。
203、对与干扰信号对应的第一矩阵进行奇异值分解。
以多天线设备为例,多天线设备获取到干扰信号后,就可以对第一矩阵进行奇异值分解,其中第一矩阵与干扰信号对应,即第一矩阵为M×N pt2的矩阵Y,对第一矩阵进行奇异值分解得到奇异值分解的结果。
需要说明的是,与干扰信号对应的第一矩阵还可以是矩阵Y的协方差矩阵
Figure PCTCN2022091456-appb-000002
Figure PCTCN2022091456-appb-000003
因协方差矩阵R YY为厄米矩阵,对R YY进行奇异值分解可以看作是对R YY进行特征值分解,得到特征值分解的结果。即当第一矩阵为厄米矩阵时,对第一矩阵进行奇异值分解可以看作是对第一矩阵进行特征值分解,得到特征值分解的结果。特征值分解可以视为奇异值分解的特殊情况。进行奇异值分解可以是对矩阵Y进行奇异值分解,也可以是对矩阵Y的协方差矩阵进行奇异值分解或特征值分解,本领域技术人员可以理解奇异值分解包含了上述情况,本申请实施例后续不再赘述。
204、基于奇异值分解的结果确定无源互调源的数目。
以多天线设备为例,多天线设备获取到奇异值分解的结果或特征值分解的结果后,就可以基于奇异值分解的结果或特征值分解的结果确定无源互调源的数目。具体的,奇异值分解的结果为多个奇异值,特征值分解的结果为多个特征值,多天线设备可以根据多个奇异值或多个特征值的数值变化趋势确定无源互调源的数目。
示例性的,奇异值分解的结果为Λ={4,3,0.15,0.1},显然从3到0.15中奇异值的数值变化趋势变大,存在跳变,那么确定Λ={4,3}为无源互调源的数目,即无源互调源的数目为2。
本申请实施例中,通过控制多天线设备发射用于激发无源互调的探测信号,以使多天线设备接收到基于探测信号生成的干扰信号,然后对与干扰信号对应的第一矩阵进行奇异值分解,基于奇异值分解的结果确定无源互调源的数目,不仅可以检测多通道无源互调源的数目信息,还不需要使用外接设备,避免了产生额外的无源互调源,多天线设备为封闭结构或工作于高功率场景也不会产生问题,从而实现了便捷、准确并安全的检测多通道无 源互调源的数目信息。
本申请实施例中,对与干扰信号对应的第一矩阵进行奇异值分解可以是多种形式,下面分别进行说明:
一、直接对干扰信号进行奇异值分解:
请参阅图3,本申请实施例中无源互调源数目确定方法另一实施例包括:
301、发送探测信号。
302、接收来自无源互调源的干扰信号。
在一种可能的实施例中,用户可以设置多天线设备的接收频率为指定频率,即用户可以根据自身需求只检测指定频率的无源互调源的数目。当用户抑制无源互调源时只抑制指定频率的无源互调源,那么只检测指定频率的无源互调源的数目可以很好的适配抑制检验的情况。
303、对与干扰信号对应的第一矩阵进行奇异值分解。
304、基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目。
以多天线设备为例,多天线设备对第一矩阵进行奇异值分解,得到的奇异值分解的结果包括多个奇异值或多个特征值,具体可以为Λ={λ 1,…,λ M}。用户可以根据自身需求设置第一条件,多天线设备可以基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目。
在一种可能的实施例中,满足第一条件的奇异值大于第一预设门限值,即用户预先在多天线设备中设置的第一条件为第一预设门限值,多天线设备将多个奇异值中大于第一预设门限值的奇异值的数目N确定为无源互调源的数目,其中数目N为大于或等于0的整数,即无源互调源的数目为大于或等于0的整数。
在一种可能的实施例中,干扰信号包括噪声信号,第一预设门限值与噪声信号的噪声功率相关。具体的,多天线设备接收到的干扰信号中包括该多天线设备全部的无源互调源信号和噪声信号,为了排除噪声信号的干扰,多天线设备可以基于噪声信号的功率生成第一预设门限值,多天线设备得到多个奇异值或多个特征值Λ={λ 1,…,λ M}后,从多个奇异值或多个特征值中获取大于第一预设门限值的奇异值或特征值,将大于第一预设门限值的奇异值或特征值的数目作为该多天线设备无源互调源的数目。
示例性的,与干扰信号对应的第一矩阵为Y,对第一矩阵进行奇异值分解得到多个奇异值
Figure PCTCN2022091456-appb-000004
第一预设门限值Th为基于噪声信号的功率生成的,第一预设门限值
Figure PCTCN2022091456-appb-000005
那么大于第一预设门限值的奇异值有2个,即该多天线设备无源互调源的数目为2。
示例性的,与干扰信号对应的第一矩阵为矩阵Y的协方差矩阵
Figure PCTCN2022091456-appb-000006
R YY为厄米矩阵,对第一矩阵进行奇异值分解,得到多个奇异值Λ 3={4,3,2,1},第一预设门限值Th为基于噪声信号的功率生成的,第一预设门限值Th=2,那么大于第一预设门限值的奇异值有2个,也就是表明该多天线设备无源互调源的数目为2。
示例性的,与干扰信号对应的第一矩阵为矩阵Y的协方差矩阵
Figure PCTCN2022091456-appb-000007
R YY为厄米矩阵,对第一矩阵进行特征值分解,得到多个特征值Λ 3={1,2,3,4},第一预设门限值Th为基于噪声信号的功率生成的,第一预设门限值Th=2,那么大于第一预设门限值的特征值 有2个,也就是表明该多天线设备无源互调源的数目为2。
其中,当第一矩阵为矩阵Y时,其奇异值为λ(Y)={λ 12,…,λ M},当第一矩阵为矩阵Y的协方差矩阵
Figure PCTCN2022091456-appb-000008
其奇异值
Figure PCTCN2022091456-appb-000009
因此第一预设门限值针对第一矩阵为矩阵Y或矩阵R YY也需要做出适应性调整。
示例性的,噪声信号为M×N pt的矩阵C,其噪声功率为P,对矩阵C进行奇异值分解得到的多个奇异值的平均值约为
Figure PCTCN2022091456-appb-000010
则对矩阵
Figure PCTCN2022091456-appb-000011
进行奇异值分解得到的多个奇异值的平均值约为
Figure PCTCN2022091456-appb-000012
则对矩阵C的协方差矩阵
Figure PCTCN2022091456-appb-000013
进行奇异值分解得到的多个奇异值的平均值约为P,当第一矩阵为矩阵Y时,可以设置第一预设门限值为
Figure PCTCN2022091456-appb-000014
或略大于
Figure PCTCN2022091456-appb-000015
当第一矩阵为矩阵Y的协方差矩阵
Figure PCTCN2022091456-appb-000016
时,可以设置第一预设门限值为P或略大于P。
本申请实施例中,通过基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目,可以根据用户需求设置第一条件,例如基于噪声信号的功率生成第一预设门限值,将满足第一条件的奇异值的数目确定无源互调源的数目,排除了噪声信号的干扰,并且不考虑低于噪声信号功率的无源互调源,在提升本申请实施例可实现性的基础上满足了用户需求。
二、对部分干扰信号进行奇异值分解:
请参阅图4,本申请实施例中无源互调源数目确定方法另一实施例包括:
401、发送探测信号。
402、接收来自无源互调源的干扰信号。
403、对第一矩阵进行奇异值分解得到特征向量。
以多天线设备为例,多天线设备获取到与干扰信号对应的矩阵Y后,将矩阵Y分为两部分Y 1和Y 2,其中Y 1
Figure PCTCN2022091456-appb-000017
的矩阵,Y 2
Figure PCTCN2022091456-appb-000018
的矩阵。具体的,将矩阵Y分成两部分的方式包括但不限于以下几种:
方式一:按间隔分,每隔N列取1列,分到Y 1,其余分到Y 2,或者反之,例如,Y的第奇数列分到Y 1,偶数列分到Y 2
方式二:按顺序分,将前N列分到Y 1,后N pt2-N列分到Y 2,或者反之;
方式三:随机分,随机挑选N列,分到Y 1,其余分到Y 2,或者反之。
此时第一矩阵为干扰信号中部分干扰信号对应的矩阵或协方差矩阵,即第一矩阵为Y 1,或
Figure PCTCN2022091456-appb-000019
第二矩阵为干扰信号中除部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵,即第二矩阵为Y 2,或
Figure PCTCN2022091456-appb-000020
多天线设备对第一矩阵进行奇异值分解得到特征向量,示例性的,对Y 1的协方差矩阵
Figure PCTCN2022091456-appb-000021
即第一矩阵做奇异值分解,即特征值分解,其中
Figure PCTCN2022091456-appb-000022
得到特征向量U和V。
404、基于第二矩阵和特征向量确定无源互调源的数目。
多天线设备得到特征向量U和V后,可以基于第二矩阵、特征向量U以及特征向量V确 定该多天线设备中无源互调源的数目。
本申请实施例中,多天线设备还可以对部分干扰信号进行奇异值分解,提升了本申请实施例的可选择性和可实现性。
请参阅图5,本申请实施例中无源互调源数目确定方法另一实施例包括:
501、发送探测信号。
502、接收来自无源互调源的干扰信号。
503、对第一矩阵进行奇异值分解得到特征向量。
504、基于第二矩阵和特征向量确定多个取值。
以多天线设备为例,多天线设备得到第二矩阵Y 2、特征向量U和V后,可以确定出多个取值。
示例性的,多天线设备将Y 2的协方差矩阵
Figure PCTCN2022091456-appb-000023
即第二矩阵在特征向量U以及特征向量V投影,取对角线元素,即
Figure PCTCN2022091456-appb-000024
从而确定出多个取值的集合Λ,其中每个取值λ的单位与功率的单位相同。
505、基于多个取值中满足第二条件的取值的数目确定无源互调源的数目。
多天线设备对第一矩阵进行奇异值分解得到特征向量,基于第二矩阵和特征向量确定多个取值,具体可以为Λ={λ 1,…,λ M}。用户可以根据自身需求设置第一条件,多天线设备可以基于多个取值中满足第二条件的取值的数目确定无源互调源的数目。
在一种可能的实施例中,满足第二条件的取值大于第二预设门限值,即用户预先在多天线设备中设置的第二条件为第二预设门限值,多天线设备将多个取值中大于第二预设门限值的取值的数目M确定为无源互调源的数目,其中数目M为大于或等于0的整数,即无源互调源的数目为大于或等于0的整数。
在一种可能的实施例中,干扰信号包括噪声信号,第二预设门限值与噪声信号的噪声功率相关。具体的,多天线设备接收到的干扰信号中包括该多天线设备全部的无源互调源信号和噪声信号,为了排除噪声信号的干扰,多天线设备可以基于噪声信号的功率生成第二预设门限值,多天线设备得到多个取值Λ={λ 1,…,λ M}后,从多个奇异值或多个特征值中获取大于第一预设门限值的奇异值或特征值,将大于第一预设门限值的奇异值或特征值的数目作为该多天线设备无源互调源的数目。
示例性的,多个取值的集合Λ={4,3,2,1},第二预设门限值Th为基于噪声信号的功率生成的,第二预设门限值Th=2,那么大于第二预设门限值的奇异值有2个,即该多天线设备无源互调源的数目为2。
本申请实施例中,通过将与干扰信号对应的矩阵划分为第一矩阵和第二矩阵,对第一矩阵进行奇异值分解得到特征向量,基于第二矩阵和特征向量确定多个取值,基于多个取值中满足第二条件的取值的数目确定无源互调源的数目,可以根据用户需求设置第二条件,例如基于噪声信号的功率生成第二预设门限值,将满足第二条件的奇异值的数目确定无源互调源的数目,排除了噪声信号的干扰,并且不考虑低于噪声信号功率的无源互调源,在提升本申请实施例可实现性的基础上满足了用户需求。
请参阅图6,本申请实施例中还提供了一种无源互调源数目确定方法,具体包括如下:
601、发送探测信号。
602、接收来自无源互调源的干扰信号。
本申请实施例中发送探测信号和接收干扰信号的实施方式可以参阅前述图2至图5无源互调源数目确定方法实施例部分的相应内容进行理解,此处不再重复赘述。
603、对接收干扰信号的天线进行分组,得到多组天线。
示例性的,请参阅图7,多天线设备包括天线组,即多个天线,一个天线可以为1驱6天线,具体可以为+45°极化天线或-45°极化天线,在相同位置还可以同时存在不同极化的两个天线,组成双极化天线,可以将双极化天线视为一组天线。请参阅图8,该多天线设备的天线组由16组双极化天线组成,但上下尺度远远大于左右尺度,因此需要将该天线组上下解耦,重新分组得到32组双极化天线,将下面的8组天线记为1、2、3、4、5、6、7、8,上面的8组天线记为9、10、11、12、13、14、15、16。天线组1和9是左边缘组,天线组8,16是右边缘组,其他都是中间组。
604、确定每组天线接收干扰信号的接收功率的峰值功率集合。
因每组天线包括两个不同极化的天线,首先要确定每组天线的接收功率,可选的,取组内所有天线的平均,即每组天线接收干扰信号的接收功率
Figure PCTCN2022091456-appb-000025
其中P(i,j)表示第i组天线内的第j个天线的接收功率,j为组内天线的编号,N 0为一组天线内的天线个数。可选的,取组内接收功率的最大值,即P(i)=max j{P(i,j)}。
需要说明的是,当上下天线不由双极化天线组成,即相同位置只存在一个天线,天线数和组数相同,则该天线的接收功率就是该组天线的接收功率。
获取峰值功率集合时,将P(i)按照天线阵列的结构,找出{P(i),i=1,…,N set}的所有峰值,记为峰值集合Λ={P peak(i),i=1,…,N set},其中N set为天线分组数,P peak为功率峰值。
示例性的,一并参阅图8,在左天线组的功率左边添加0,右天线组的右边添加0,即取数组[0,P(1),…,P(8),0]的峰值和数组[0,P(9),…,P(16),0]的峰值,将两个数组的峰值合并,记为峰值集合Λ={P peak(i),i=1,…,N set}。
605、基于峰值功率集合确定无源互调源的数目。
本申请实施例中基于集合确定无源互调源的数目可以参阅前述图2至图5无源互调源数目确定方法实施例部分的相应内容进行理解,此处不再重复赘述。
参阅图9,本申请实施例中还提供了一种多天线设备的检验方法,具体包括如下:
901、获取无源互调源的数目。
902、获取多天线设备的无源互调指标。
903、判断无源互调源的数目是否满足无源互调指标。
904、若满足,确定多天线设备合格。
在多天线设备产品出厂时,可以对其进行检验,具体的,可以通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取无源互调源的数目,并获取多天线设备的无源互调指标,示例性的,无源互调源的数目为1个,多天线设备的无源互调指标为无源互调源的数目小于2,则判断无源互调源的数目满足无源互调指标,确定多天线设备合格。
本申请实施例中,通过本申请实施例图2至图8部分实施例所描述的无源互调源数目 确定方法获取无源互调源的数目,据此对多天线设备进行出厂检验,可以便捷、准确并安全的检验多天线设备的无源互调指标。
参阅图10,本申请实施例中还提供了一种无源互调源定位方法,具体包括如下:
1001、获取无源互调源的数目。
1002、基于无源互调源的数目定位多天线设备的无源互调源。
在对多天线设备的无源互调源进行定位时,需要先获取到该多天线设备无源互调源的数目,不仅方便定位还可以检验定位的准确性。通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取无源互调源的数目,据此对多天线设备进行无源互调源定位,可以便捷、准确并安全的定位多天线设备的无源互调源。
参阅图11,本申请实施例中还提供了一种无源互调源抑制方法,具体包括如下:
1101、获取无源互调源的数目。
1102、基于无源互调源的数目抑制多天线设备的无源互调源。
在对多天线设备的无源互调源进行抑制时,需要先获取到该多天线设备无源互调源的数目,不仅方便抑制还可以检验抑制的成功率。通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取无源互调源的数目,据此对多天线设备进行无源互调源抑制,可以便捷、准确并安全的抑制多天线设备的无源互调源。
参阅图12,本申请实施例中还提供了一种无源互调源抑制检验方法,具体包括如下:
1201、获取无源互调源的第一数目。
1202、抑制多天线设备第二数目的无源互调源。
1203、获取多天线设备抑制后无源互调源的第三数目。
1204、判断第三数目是否等于第一数目与第二数目的差值。
1205、若等于,确定无源互调源的抑制成功。
在对多天线设备的无源互调源进行抑制时,可以先通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取无源互调源的第一数目,然后再对多天线设备抑制第二数目的无源互调源,并通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取抑制后该多天线设备无源互调源的第三数目,最后判断第三数目是否等于第一数目与第二数目的差值,若等于,则确定无源互调源的抑制成功。
示例性的,首先获取多天线设备的无源互调源的数目为10,然后抑制该多天线设备8个无源互调源,抑制后再重新获取该多天线设备的无源互调源的数目为2,此时2=10-8,确定无源互调源的抑制成功。
在对多天线设备的无源互调源进行抑制检验时,需要多次获取到该多天线设备无源互调源的数目。通过本申请实施例图2至图8部分实施例所描述的无源互调源数目确定方法获取无源互调源的数目,据此对多天线设备进行无源互调源抑制检验,可以便捷、准确并安全的检验抑制多天线设备的无源互调源的效果。
下面对本申请实施例中的无源互调源数目确定装置进行描述,参考图13,为本申请实施例提供的一种无源互调源数目确定装置示意图。该无源互调源数目确定装置用于实现上述各实施例中对应多天线设备的各个步骤,如图13所示,该无源互调源数目确定装置1300 包括收发单元1310和处理单元1320。
在一个实施例中,该无源互调源数目确定装置1300用于实现上述各实施例中对应多天线设备的各个步骤:
收发单元1310用于发送探测信号;收发单元1310还用于接收来自无源互调源的干扰信号,干扰信号由探测信号激发。该收发单元1310可以执行上述方法实施例中的步骤201和步骤202。
处理单元1320用于对与干扰信号对应的第一矩阵进行奇异值分解;处理单元1320还用于基于奇异值分解的结果确定无源互调源的数目。该处理单元1320可以执行上述方法实施例中的步骤203和步骤204。
本申请实施例中,通过控制收发单元1310发射用于激发无源互调的探测信号,以使收发单元1310接收到基于探测信号生成的干扰信号,然后处理单元1320对与干扰信号对应的第一矩阵进行奇异值分解,处理单元1320还基于奇异值分解的结果确定无源互调源的数目,不仅可以检测多通道无源互调源的数目信息,还不需要使用外接设备,避免了产生额外的无源互调源,多天线设备为封闭结构或工作于高功率场景也不会产生问题,从而实现了便捷、准确并安全的检测多通道无源互调源的数目信息。
可选的,奇异值分解的结果包括多个奇异值,处理单元1320具体用于基于多个奇异值中满足第一条件的奇异值的数目确定无源互调源的数目。
可选的,处理单元1320具体还用于将多个奇异值中满足第一条件的奇异值的数目N确定为无源互调源的数目,满足第一条件的奇异值大于第一预设门限值,数目N为大于或等于0的整数。
可选的,干扰信号包括噪声信号,预设门限值基于噪声信号的噪声功率生成。
可选的,第一矩阵为干扰信号中部分干扰信号对应的矩阵或协方差矩阵,处理单元1320具体还用于对第一矩阵进行奇异值分解得到特征向量;
处理单元1320具体还用于基于第二矩阵和特征向量确定无源互调源的数目,第二矩阵为干扰信号中除部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵。
可选的,处理单元1320具体还用于基于第二矩阵和特征向量确定多个取值;
处理单元1320具体还用于基于多个取值中满足第二条件的取值的数目确定无源互调源的数目。
可选的,处理单元1320具体还用于将多个取值中满足第二条件的取值的数目M确定为无源互调源的数目,满足第二条件的取值大于第二预设门限值,数目M为大于或等于0的整数。
可选的,干扰信号包括噪声信号,第二预设门限值与噪声信号的噪声功率相关。
本申请实施例提供的无源互调源数目确定装置1300可以参阅前述无源互调源数目确定方法实施例部分的相应内容进行理解,此处不再重复赘述。
可选的,上述无源互调源数目确定装置1300还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元1320可以读取存储单元中的数据或者指令, 使得无源互调源数目确定装置1300实现上述实施例中的方法。
应理解以上无源互调源数目确定装置1300中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且无源互调源数目确定装置1300中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在无源互调源数目确定装置1300的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由无源互调源数目确定装置1300的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一无源互调源数目确定装置1300中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当无源互调源数目确定装置1300中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图14,为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中多天线设备的操作。如图14所示,该通信装置1400包括:处理器1410和接口1430,处理器1410与接口1430耦合。接口1430用于实现与其他设备进行通信。接口1430可以为收发器或输入输出接口。接口1430例如可以是接口电路。可选地,该通信装置1400还包括存储器1420,处理器1410与存储器1420耦合,存储器1420用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。
以上实施例中多天线设备执行的方法可以通过处理器1410调用存储器(可以是多天线设备的存储器1420,也可以是外部存储器)中存储的程序来实现。即,多天线设备可以包括处理器1410,该处理器1410通过调用存储器中的程序,以执行以上方法实施例中多天线设备执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。多天线设备可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图13中的收发单元1310和处理单元1320的功能/实现过程可以通过图14所示的通信装置1400中的处理器1410调用存储器1420中存储的计算机可执行指令来实现。或者,图13中的处理单元1320的功能/实现过程可以通过图14所示的通信装置1400中的 处理器1410调用存储器1420中存储的计算机执行指令来实现,图13中的收发单元1310的功能/实现过程可以通过图14中所示的通信装置1400中的接口1430来实现,示例性的,收发单元1310的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口1430来实现。
当上述通信装置1400为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他终端设备或网络设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给其他终端设备或网络设备的。
当上述通信装置1400为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他网络设备或终端设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给其他网络设备或终端设备的。
在本申请的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的至少一个处理器执行该计算机执行指令时,设备执行上述图2至图5部分实施例所描述的无源互调源数目确定方法。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备执行上图2至图5部分实施例所描述的无源互调源数目确定方法。
在本申请的另一实施例中,还提供一种芯片系统,该芯片系统包括至少一个处理器和接口,该接口用于接收数据和/或信号,至少一个处理器用于支持实现上述图2至图5部分实施例所描述的无源互调源数目确定方法。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存计算机设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (20)

  1. 一种无源互调源数目确定方法,其特征在于,包括:
    发送探测信号;
    接收来自无源互调源的干扰信号,所述干扰信号由所述探测信号激发;
    对与所述干扰信号对应的第一矩阵进行奇异值分解;
    基于所述奇异值分解的结果确定所述无源互调源的数目。
  2. 根据权利要求1所述的方法,其特征在于,所述奇异值分解的结果包括多个奇异值,所述基于所述奇异值分解的结果确定所述无源互调源的数目包括:
    基于所述多个奇异值中满足第一条件的奇异值的数目确定所述无源互调源的数目。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述多个奇异值中满足第一条件的奇异值的数目确定所述无源互调源的数目包括:
    将所述多个奇异值中满足第一条件的奇异值的数目N确定为所述无源互调源的数目,所述满足第一条件的奇异值大于第一预设门限值,所述数目N为大于或等于0的整数。
  4. 根据权利要求3所述的方法,其特征在于,所述干扰信号包括噪声信号,所述第一预设门限值与所述噪声信号的噪声功率相关。
  5. 根据权利要求1所述的方法,其特征在于,所述第一矩阵为所述干扰信号中部分干扰信号对应的矩阵或协方差矩阵;
    所述对与所述干扰信号对应的第一矩阵进行奇异值分解包括:
    对所述第一矩阵进行奇异值分解得到特征向量;
    所述基于所述奇异值分解的结果确定所述无源互调源的数目包括:
    基于第二矩阵和所述特征向量确定所述无源互调源的数目,所述第二矩阵为所述干扰信号中除所述部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵。
  6. 根据权利要求5所述的方法,其特征在于,所述基于第二矩阵和所述特征向量确定所述无源互调源的数目包括:
    基于所述第二矩阵和所述特征向量确定多个取值;
    基于所述多个取值中满足第二条件的取值的数目确定所述无源互调源的数目。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述多个取值中满足第二条件的取值的数目确定所述无源互调源的数目包括:
    将所述多个取值中满足第二条件的取值的数目M确定为所述无源互调源的数目,所述满足第二条件的取值大于第二预设门限值,所述数目M为大于或等于0的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述干扰信号包括噪声信号,所述第二预设门限值与所述噪声信号的噪声功率相关。
  9. 一种无源互调源数目确定装置,其特征在于,包括:
    收发单元,用于发送探测信号;
    所述收发单元还用于接收来自无源互调源的干扰信号,所述干扰信号由所述探测信号激发;
    处理单元,用于对与所述干扰信号对应的第一矩阵进行奇异值分解;
    所述处理单元还用于基于所述奇异值分解的结果确定所述无源互调源的数目。
  10. 根据权利要求9所述的装置,其特征在于,所述奇异值分解的结果包括多个奇异值,所述处理单元具体用于基于所述多个奇异值中满足第一条件的奇异值的数目确定所述无源互调源的数目。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元具体还用于将所述多个奇异值中满足第一条件的奇异值的数目N确定为所述无源互调源的数目,所述满足第一条件的奇异值大于第一预设门限值,所述数目N为大于或等于0的整数。
  12. 根据权利要求11所述的装置,其特征在于,所述干扰信号包括噪声信号,所述预设门限值基于所述噪声信号的噪声功率生成。
  13. 根据权利要求9所述的装置,其特征在于,所述第一矩阵为所述干扰信号中部分干扰信号对应的矩阵或协方差矩阵,所述处理单元具体还用于对所述第一矩阵进行奇异值分解得到特征向量;
    所述处理单元具体还用于基于所述第二矩阵和所述特征向量确定所述无源互调源的数目,所述第二矩阵为所述干扰信号中除所述部分干扰信号以外的干扰信号对应的矩阵或协方差矩阵。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元具体还用于基于第二矩阵和所述特征向量确定多个取值;
    所述处理单元具体还用于基于所述多个取值中满足第二条件的取值的数目确定所述无源互调源的数目。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体还用于将所述多个取值中满足第二条件的取值的数目M确定为所述无源互调源的数目,所述满足第二条件的取值大于第二预设门限值,所述数目M为大于或等于0的整数。
  16. 根据权利要求15所述的装置,其特征在于,所述干扰信号包括噪声信号,所述第二预设门限值与所述噪声信号的噪声功率相关。
  17. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其上存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
  19. 一种芯片系统,其特征在于,包括至少一个处理器和接口,所述接口用于接收数据和/或信号,所述至少一个处理器被配置为用于执行如权利要求1至8中任意一项所述的方法。
  20. 一种计算机程序产品,其上存储有计算机程序,其特征在于,所述计算机程序被执行时实现如权利要求1至8中任一项所述的方法。
PCT/CN2022/091456 2021-06-28 2022-05-07 一种无源互调源数目确定方法及相关设备 WO2023273609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22831436.5A EP4317999A1 (en) 2021-06-28 2022-05-07 Method for determining number of passive intermodulation sources and related device
US18/505,205 US20240080116A1 (en) 2021-06-28 2023-11-09 Method for determining quantity of passive intermodulation source and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110723293.6A CN115604744A (zh) 2021-06-28 2021-06-28 一种无源互调源数目确定方法及相关设备
CN202110723293.6 2021-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/505,205 Continuation US20240080116A1 (en) 2021-06-28 2023-11-09 Method for determining quantity of passive intermodulation source and related device

Publications (1)

Publication Number Publication Date
WO2023273609A1 true WO2023273609A1 (zh) 2023-01-05

Family

ID=84692459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091456 WO2023273609A1 (zh) 2021-06-28 2022-05-07 一种无源互调源数目确定方法及相关设备

Country Status (4)

Country Link
US (1) US20240080116A1 (zh)
EP (1) EP4317999A1 (zh)
CN (1) CN115604744A (zh)
WO (1) WO2023273609A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119845A (zh) * 2010-07-21 2013-05-22 凯镭思有限公司 用于定位通信网络中的故障的方法和设备
CN103547933A (zh) * 2011-03-21 2014-01-29 凯镭思有限公司 用于对电缆网络中的故障进行定位的系统和设备
CN106093645A (zh) * 2016-06-17 2016-11-09 西安空间无线电技术研究所 确定微波部件宽功率变化范围高阶无源互调电平的方法
CN111465042A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 调度方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119845A (zh) * 2010-07-21 2013-05-22 凯镭思有限公司 用于定位通信网络中的故障的方法和设备
CN103547933A (zh) * 2011-03-21 2014-01-29 凯镭思有限公司 用于对电缆网络中的故障进行定位的系统和设备
CN106093645A (zh) * 2016-06-17 2016-11-09 西安空间无线电技术研究所 确定微波部件宽功率变化范围高阶无源互调电平的方法
CN111465042A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 调度方法及装置

Also Published As

Publication number Publication date
US20240080116A1 (en) 2024-03-07
EP4317999A1 (en) 2024-02-07
CN115604744A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US10327221B1 (en) Super-resolution technique for time-of-arrival estimation
CN113196681A (zh) 用于5g毫米波系统的波束跟踪
CN106464333B (zh) 使用天线布置的波束形成
WO2021008477A1 (zh) 预编码处理方法和装置
WO2019047827A9 (zh) 一种指示及确定预编码矩阵的方法和设备
US20170141825A1 (en) Beam-based information transmission method and apparatus and communications system
US10466345B1 (en) Time-of-arrival estimation with subspace methods
CN111342913B (zh) 一种信道测量方法和通信装置
JP2020506586A (ja) チャネル状態情報フィードバックの方法、ユーザ機器、および基地局
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
CN111756415B (zh) 通信方法及装置
WO2019174743A1 (en) Receiver and transmitter for multipath angle estimation
TW201817181A (zh) 在多輸入多輸出系統中預編碼選擇的裝置以及方法、製造預編碼選擇的裝置的方法以及構造具有預編碼選擇的裝置的積體電路的方法
CN115053465B (zh) 一种信息传输方法及装置
WO2016180187A1 (zh) 一种混合波束赋形上行多用户配对方法及其装置
US20230283337A1 (en) Beam Training Method and Apparatus
CN108282204B (zh) 通信方法、装置及系统
WO2023273609A1 (zh) 一种无源互调源数目确定方法及相关设备
US10135554B1 (en) Robust super-resolution processing for wireless ranging
CN111669206A (zh) 一种信号检测方法及装置
WO2020010915A1 (zh) 一种天线连接检测方法及装置
WO2016023410A1 (zh) 下行信道预编码方法与装置
CN110875768B (zh) 一种信道状态信息的反馈方法及装置、网络设备和终端
JP2023500276A (ja) 信号処理方法及び関連する装置
CN109842580B (zh) 一种信道估计方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831436

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022831436

Country of ref document: EP

Effective date: 20231103

NENP Non-entry into the national phase

Ref country code: DE