WO2023273359A1 - 无线数据传输方法、系统及无线接入点设备 - Google Patents

无线数据传输方法、系统及无线接入点设备 Download PDF

Info

Publication number
WO2023273359A1
WO2023273359A1 PCT/CN2022/076222 CN2022076222W WO2023273359A1 WO 2023273359 A1 WO2023273359 A1 WO 2023273359A1 CN 2022076222 W CN2022076222 W CN 2022076222W WO 2023273359 A1 WO2023273359 A1 WO 2023273359A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless access
access point
point device
module
virtual transmission
Prior art date
Application number
PCT/CN2022/076222
Other languages
English (en)
French (fr)
Inventor
周赟
赵望生
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273359A1 publication Critical patent/WO2023273359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • the present application relates to the field of wireless networks, and in particular to a wireless data transmission method, system and wireless access point device.
  • Wi-Fi Wireless network
  • AP Access Point
  • the wireless workstation Wi-Fi Station, STA
  • STA Wi-Fi Station
  • the embodiment of the present application provides a wireless data transmission method, system, and wireless access point device, which can improve the quality of service that requires low latency due to the high number of air interface interactions and high air interface delay overhead during service interaction. problems that cannot be guaranteed.
  • the embodiment of the present application provides a wireless data transmission method, which is applied to one of multiple sequentially cascaded wireless access point devices, and the wireless access point device includes a wireless access module, a first virtual transmission module and a second virtual transmission module.
  • the method includes:
  • the first virtual transmission module of the wireless access point device receives downlink data sent from the wireless access module of the upper-level wireless access point device.
  • the second virtual transmission module of the wireless access point device receives the uplink data sent by the wireless access module of the next-level wireless access point device.
  • the wireless access module of the wireless access point device simultaneously sends uplink data to the second virtual transmission module of the upper-level wireless access point device, and sends downlink data to the first virtual transmission module of the lower-level wireless access point device.
  • the wireless access point device may be a network device such as a wireless router, a wireless switch, or a wireless signal amplifier, and this application does not limit the type of the wireless access point device.
  • the downlink data from the upper-level wireless access point device is received through the first virtual transmission module in the wireless access point device, and the downlink data from the lower-level wireless access point device is received through the second virtual transmission module.
  • Uplink data and forward the received uplink data and downlink data through the wireless access module. Since the wireless access module sends uplink data and downlink data at the same time, the uplink and downlink air interfaces can be combined to effectively reduce the number of air interface interactions, thereby reducing the air interface interaction delay overhead and ensuring the quality of low-latency services.
  • the first virtual transmission module of the wireless access point device sends the received downlink data to the wireless access module of the wireless access point device.
  • the second virtual transmission module of the wireless access point device sends the received uplink data to the wireless access module of the wireless access point device.
  • the first virtual transmission module of the wireless access point device sends the received downlink data to the bridge module of the wireless access point device.
  • the second virtual transmission module of the wireless access point device sends the received uplink data to the bridge module.
  • the bridge module receives uplink data and downlink data, and sends the uplink data and downlink data to the wireless access module of the wireless access point device according to the preset bridge forwarding table, which includes the wireless access point device The forwarding relationship between the first virtual transmission module of the wireless access point device and the wireless access module of the wireless access point device, and the forwarding relationship between the second virtual transmission module of the wireless access point device and the wireless access module of the wireless access point device.
  • the method also includes:
  • a corresponding second virtual transmission module is created for the newly added wireless access point device in the wireless access point device.
  • the first virtual transmission module of the newly added wireless access point device determines, according to the configured first access information of the wireless access module of the wireless access point device, When connecting, in the wireless access point device, create a corresponding second virtual transmission module for the newly added wireless access point device, including:
  • the first virtual transmission module of the newly added wireless access point device connects with the wireless access module of the wireless access point device according to the configured first access information, and sends the newly added wireless access The second access information of the point device.
  • the device creates a second virtual transmission module in the wireless access point device.
  • the created second virtual transmission module is connected to the wireless access module of the newly added wireless access point device according to the second access information from the wireless access module of the wireless access point device.
  • a corresponding second Virtual transport module when the wireless access point device accesses multiple newly added wireless access point devices, in the wireless access point device, a corresponding second Virtual transport module.
  • the wireless access point device when the level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device, and the method further includes:
  • the lowest-level wireless access point device receives downlink data from the server device.
  • the lowest-level wireless access point device sends the downlink data from the server device to the first virtual transmission module of the next-level wireless access point device through the wireless access module of the wireless access point device.
  • the wireless access point device when the cascading level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device, and the method further includes:
  • the second virtual transmission module of the lowest-level wireless access point device receives uplink data sent from the wireless access module of the next-level wireless access point device.
  • the lowest-level wireless access point device sends the uplink data to the server device through the second virtual transmission module.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device, and the method further includes:
  • the highest-level wireless access point device receives uplink data from client devices.
  • the highest-level wireless access point device sends the uplink data from the client device to the second virtual transmission module of the upper-level wireless access point device through the wireless access module of the wireless access point device.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device, and the method further includes:
  • the first virtual transmission module of the highest-level wireless access point device receives downlink data sent by the wireless access module of the upper-level wireless access point device.
  • the most advanced wireless access point device sends downlink data to the client device through the wireless access module of the wireless access point device.
  • the embodiment of the present application provides a wireless data transmission system.
  • the wireless data transmission system includes a server device, a first wireless access point device, one or more second wireless access point devices, a third wireless access point device, and a client device.
  • the server device is connected to the first wireless access point device.
  • the first wireless access point device, one or more second wireless access point devices, and the third wireless access point device are cascaded in sequence.
  • the third wireless access point device is connected to the client, and the first wireless access point device, the second wireless access point device and the third wireless access point device all include a wireless access module, a first virtual transmission module and a second Virtual transport module.
  • the server device sends downlink data to the first wireless access point device.
  • the first wireless access point device receives the downlink data, and sends the downlink data to the second wireless access point device through the wireless access module.
  • the second wireless access point device receives the downlink data through the first virtual transmission module, and sends the downlink data to the third wireless access point device through the wireless access module.
  • the third wireless access point device receives the downlink data through the first virtual transmission module, and sends the downlink data to the client.
  • the client device sends uplink data to the wireless access module of the third wireless access point device.
  • the third wireless access point device receives the uplink data through the wireless access module, and sends the uplink data to the second virtual module of the second wireless access point device through the wireless access module.
  • the second wireless access point device receives the uplink data, and sends the uplink data to the second virtual transmission module of the first wireless access point device through the wireless access module.
  • the first wireless access point device receives the uplink data through the second virtual transmission module, and sends the uplink data to the server.
  • the first virtual transmission module of the wireless access point device sends the received downlink data to the wireless access module of the wireless access point device.
  • the second virtual transmission module of the wireless access point device sends the received uplink data to the wireless access module of the wireless access point device.
  • the second wireless access point device with the lowest cascading level is connected to the first wireless access point device.
  • the second wireless access point device with the highest cascading level is connected to the third wireless access point device.
  • Between two second wireless access point devices including:
  • the second virtual transmission module of the second wireless access point device at a lower cascade level receives the uplink data sent from the wireless access module of the second wireless access point device at the upper level.
  • the wireless access module of the second wireless access point device at a lower cascading level sends downlink data to the first virtual transmission module of the second wireless access point device at the upper level.
  • a corresponding second virtual transmission module is created for the newly added wireless access point device.
  • a wireless access point device when adding a wireless access point device to the wireless data transmission system, it includes:
  • the newly added wireless access point device determines the access location of the newly added wireless access point device according to the configured first access information.
  • the first virtual transmission module of the newly added wireless access point device is connected to the wireless access module of the wireless access point device corresponding to the access location according to the configured first access information, and the newly added wireless access point device
  • the second access information is sent to the wireless access point device corresponding to the access location.
  • the second virtual transmission module of the wireless access point device corresponding to the access location is connected to the wireless access module of the newly added wireless access point device according to the second access information.
  • a corresponding second virtual transmission module is created for each newly added wireless access point device.
  • the embodiment of the present application provides a wireless access point device, including a memory, a processor, a wireless network module, and a computer program stored in the memory and operable on the processor.
  • a wireless access module, a first virtual transmission module and a second virtual transmission module run on the processor.
  • the first virtual transmission module is configured to receive downlink data sent by the wireless access module of the upper-level wireless access point device through the wireless network module.
  • the second virtual transmission module is configured to receive uplink data sent by the wireless access module of the next-level wireless access point device through the wireless network module.
  • the wireless access module is configured to simultaneously send uplink data to the second virtual transmission module of the upper-level wireless access point device and send downlink data to the first virtual transmission module of the lower-level wireless access point through the wireless network module.
  • the first virtual transmission module is configured to send the received downlink data to the wireless access module of the wireless access point device through the wireless network module.
  • the second virtual transmission module is configured to send the received uplink data to the wireless access module of the wireless access point device through the wireless network module.
  • the device further includes a bridge module.
  • the first virtual transmission module is configured to send the received downlink data to the bridge module of the wireless access point device through the wireless network module.
  • the second virtual transmission module is configured to send the received uplink data to the bridge module through the wireless network module.
  • the bridge module is used to receive uplink data and downlink data through the wireless network module, and send the uplink data and downlink data to the wireless access module of the wireless access point device according to the preset bridge forwarding table, the preset bridge forwarding table The forwarding relationship between the first virtual transmission module including the wireless access point device and the wireless access module of the wireless access point device, and the wireless interface between the second virtual transmission module including the wireless access point device and the wireless access point device The forwarding relationship of the incoming module.
  • the device further includes a creating module, configured to create, in the wireless access point device, a corresponding The second virtual transport module of .
  • the first virtual transmission module of the newly added wireless access point device determines, according to the configured first access information of the wireless access module of the wireless access point device
  • the first virtual transmission module of the newly added wireless access point device connects with the wireless access module of the wireless access point device through the wireless network module of the wireless access point device according to the configured first access information, and Connecting and sending the second access information of the newly added wireless access point device to the wireless access module.
  • the creation module is specifically used to create a second virtual transmission module in the wireless access point device.
  • the created second virtual transmission module is connected to the wireless access module of the newly added wireless access point device through the wireless network module according to the second access information from the wireless access module of the wireless access point device.
  • the creating module is also used in the wireless access point device to create a new wireless access point device Create a corresponding second virtual transmission module.
  • the wireless access point device when the level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device.
  • the lowest-level wireless access point device receives downlink data from the server device through the wireless network module.
  • the lowest-level wireless access point device sends downlink data from the server device to the first virtual transmission module of the next-level wireless access point device through the wireless access module of the wireless network module wireless access point device.
  • the wireless access point device when the cascading level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device.
  • the second virtual transmission module of the lowest-level wireless access point device receives the uplink data sent by the wireless access module of the next-level wireless access point device through the wireless network module.
  • the lowest-level wireless access point device sends uplink data to the server device through the second virtual transmission module through the wireless network module.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device.
  • the most advanced wireless access point device receives the uplink data from the client device through the wireless network module.
  • the highest-level wireless access point device sends the uplink data from the client device to the second virtual transmission module of the upper-level wireless access point device through the wireless access module of the wireless access point device.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device.
  • the first virtual transmission module of the highest-level wireless access point device receives downlink data sent by the wireless access module of the upper-level wireless access point device through the wireless network module.
  • the most advanced wireless access point device sends downlink data to the client device through the wireless access module of the wireless access point device.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method as provided in the first aspect is implemented.
  • an embodiment of the present application provides a computer program product, which enables the terminal device to execute the method provided in the first aspect when the computer program product is run on the terminal device.
  • an embodiment of the present application provides a chip system, the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory to implement the method provided in the first aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to the computer-readable storage medium provided in the fourth aspect, and the processor executes the computer program stored in the computer-readable storage medium, To realize the method provided by the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of a wireless data transmission method provided by an embodiment of the present application
  • FIG. 2 is a structure of a multi-level Wi-Fi networking in the prior art
  • FIG. 3 is a schematic structural diagram of a wireless access point device provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a software structure of a wireless network device provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a wireless data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame when a wireless data transmission method is applied according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of data forwarding of each module in a wireless access point device provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of data forwarding of each module in another wireless access point device provided by an embodiment of the present application.
  • FIG. 9 is a schematic flow diagram of adding a wireless access point device to the wireless data transmission system provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another wireless access point device provided by an embodiment of the present application.
  • the term “if” may be construed, depending on the context, as “when” or “once” or “in response to determining” or “in response to detecting ".
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Fig. 1 shows a schematic diagram of an application scenario of a wireless data transmission method.
  • Fig. 1 in this scenario, including server (Server) 11, root wireless access point (Root AP) 12, repeater wireless access point 1 (Repeater AP1) 13, repeater wireless access point 2 (Repeater AP) AP2) 14, repeater wireless access point 3 (Repeater AP3) 15, wireless workstation (Wi-Fi Station, STA1) 16.
  • the root wireless access point 12 is connected to the server 11, and the server 11 may be a server providing services, a host, or a core network.
  • Root AP (Root AP) 12, Repeater AP 1 (Repeater AP1) 13, Repeater AP 2 (Repeater AP2) 14, Repeater AP 3 (Repeater AP3) 15
  • It may be a wireless network device, such as a wireless router, a wireless switch, a wireless signal amplifier, and the like.
  • the embodiment of the present application does not impose any limitation on the specific type of the wireless network device.
  • the wireless workstation 16 may be a user device capable of networking through a wireless network, such as a smart phone, a notebook computer, a tablet computer, etc., or may be a terminal device supporting wireless networking, etc., which is not limited here.
  • Fig. 2 shows a multi-level Wi-Fi networking architecture in the prior art.
  • the root wireless access point includes a wireless access module (AP0)
  • the relay wireless access point 1 includes a wireless access module (AP1) and a virtual wireless workstation (VSTA1)
  • the relay wireless access Point 2 includes a wireless access module (AP2) and a virtual wireless workstation (VSTA2)
  • relay wireless access point 3 includes a wireless access module (AP3) and a virtual wireless workstation (VSTA3).
  • AP0 is connected to VSTA1
  • AP1 is connected to VSTA2
  • AP2 is connected to VSTA3
  • AP3 is connected to STA1.
  • AP0 ⁇ relay wireless access point 1 (VSTA1 ⁇ AP1) ⁇ relay wireless access point 2 (VSTA2 ⁇ AP2) ⁇ relay wireless access point 3 (VSTA3 ⁇ AP3) ⁇ STA1.
  • VSTA1 ⁇ AP1 VSTA1 ⁇ AP1
  • VSTA2 ⁇ AP2 VSTA2 ⁇ AP2
  • VSTA3 ⁇ AP3 relay wireless access point 3
  • the uplink direction needs to go through:
  • each device When all devices are in a collision domain, each device has the same probability of obtaining an air interface, and an interaction between the Server and STA1 requires an average of 64 air interface interactions.
  • the present application provides a wireless data transmission method, which can be applied to one of multiple sequentially cascaded wireless access point devices.
  • the wireless access point device includes a wireless access module, a first virtual transmission module and a second virtual transmission module.
  • the wireless access module of the wireless access point device simultaneously sends uplink data to the second virtual transmission module of the upper-level wireless access point device, and sends downlink data to the first virtual transmission module of the lower-level wireless access point device.
  • the downlink data from the upper-level wireless access point device is received through the first virtual transmission module in the wireless access point device, and the uplink data from the lower-level wireless access point device is received through the second virtual transmission module.
  • the access module forwards the received uplink data and downlink data. Since the wireless access module sends uplink data and downlink data at the same time, the uplink and downlink air interfaces can be combined to effectively reduce the number of air interface interactions, thereby reducing the air interface interaction delay overhead and ensuring the quality of low-latency services.
  • FIG. 3 shows a schematic structural diagram of a wireless access point device.
  • the wireless access point device 200 may include a processor 210, an external memory interface 220, an internal memory 221, and a universal serial bus (universal serial bus, USB) interface 230 , charging management module 240 , power management module 241 , battery 242 , button 252 , indicator 251 , display screen 250 , antenna 1 , and wireless communication module 260 .
  • a universal serial bus universal serial bus, USB
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the wireless access point device 200 .
  • the wireless access point device 200 may include more or fewer components than shown in the figure, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the wireless access point device 200 when the wireless access point device 200 is a wireless router, it may include all the components shown in the figure, or may only include some of the components shown in the figure.
  • the processor 210 may include one or more processing units, for example: the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • graphics processing unit graphics processing unit
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the wireless access point device 200 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 210 for storing instructions and data.
  • the memory in processor 210 is a cache memory.
  • the memory may hold instructions or data that the processor 210 has just used or recycled. If the processor 210 needs to use the instruction or data again, it can be directly recalled from the memory. Repeated access is avoided, and the waiting time of the processor 210 is reduced, thereby improving the efficiency of the system.
  • processor 210 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 210 may include multiple sets of I2C buses.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transferred to and from parallel communication.
  • a UART interface is generally used to connect the processor 210 and the wireless communication module 260 .
  • the processor 210 communicates with the Bluetooth module in the wireless communication module 260 through the UART interface to realize the Bluetooth function.
  • the MIPI interface can be used to connect peripheral devices such as the processor 210 and the display screen 250 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 210 communicates with the display screen 250 through a DSI interface to realize the display function of the wireless access point device 200 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 210 with the display screen 250, the wireless communication module 260 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 230 is an interface conforming to the USB standard specification, specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 230 can be used to connect a charger to charge the wireless access point device 200, and can also be used to transmit data between the wireless access point device 200 and peripheral devices.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the wireless access point device 200 .
  • the wireless access point device 200 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 240 is configured to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 240 can receive the charging input of the wired charger through the USB interface 230 .
  • the charging management module 240 can receive wireless charging input through the wireless charging coil of the wireless access point device 200 . While the charging management module 240 is charging the battery 242 , it can also supply power to the electronic device through the power management module 241 .
  • the power management module 241 When the wireless access point device 200 supports battery power supply, the power management module 241 is used to connect the battery 242 , the charging management module 240 and the processor 210 .
  • the power management module 241 receives the input of the battery 242 and/or the charging management module 240, and supplies power for the processor 210, the internal memory 221, the external memory, the display screen 250 and the wireless communication module 260, etc.
  • the power management module 241 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 241 can also be set in the processor 210 . In some other embodiments, the power management module 241 and the charging management module 240 may also be set in the same device.
  • the wireless communication function of the wireless access point device 200 may be realized by the antenna 1, the wireless communication module 260, the modem processor, and the like.
  • the wireless communication module 260 can provide a system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), short-range wireless communication technology (near field communication, NFC), and infrared technology applied on the wireless access point device 200. (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 260 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 260 receives electromagnetic waves via the antenna 1 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 260 can also receive the signal to be transmitted from the processor 210 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 1 for radiation.
  • the antenna 1 of the wireless access point device 200 is coupled to the wireless communication module 260, so that the wireless access point device 200 can communicate with the network and other devices through wireless communication technology.
  • the display screen 250 is used to display images, videos and the like.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the wireless access point device 200 may include 1 or N display screens 250 , where N is a positive integer greater than 1.
  • the external memory interface 220 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the wireless access point device 200.
  • the external memory card communicates with the processor 210 through the external memory interface 220 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 221 may be used to store computer-executable program codes including instructions.
  • the processor 210 executes various functional applications and data processing of the wireless access point device 200 by executing instructions stored in the internal memory 221 .
  • the internal memory 221 may include an area for storing programs and an area for storing data.
  • the storage program area can store an operating system and an application program required by at least one function.
  • the storage data area can store data created during the use of the wireless access point device 200 .
  • the internal memory 221 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • a non-volatile memory such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the indicator 251 can be an indicator light, and can be used to indicate the charging status, the change of the battery capacity, and can also be used to indicate messages, missed calls, notifications, and the like.
  • Fig. 4 is a schematic diagram of a software structure of a wireless network device according to an embodiment of the present application.
  • the operating system in the wireless network device may be a Linus (Linux) system, an Android (Android) system, or a Harmony OS (Harmony OS).
  • the operating system of the wireless network device is Hongmeng OS as an example.
  • the Hongmeng system can be divided into four layers, including a kernel layer, a system service layer, a framework layer, and an application layer, and the layers communicate through software interfaces.
  • the kernel layer includes a Kernel Abstract Layer (KAL) and a driver subsystem.
  • KAL includes multiple kernels, such as the kernel Linux Kernel of the Linux system, the lightweight IoT system kernel LiteOS, etc.
  • the driver subsystem may include a Hardware Driver Foundation (HDF).
  • HDF Hardware Driver Foundation
  • the hardware driver framework can provide a unified peripheral access capability and a driver development and management framework.
  • the multi-core kernel layer can select the corresponding kernel for processing according to the requirements of the system.
  • the system service layer is a collection of core capabilities of the Hongmeng system, and the system service layer provides services to applications through the framework layer.
  • This layer can include:
  • System Basic Capabilities Subsystem Set Provides basic capabilities for the operation, scheduling, and migration of distributed applications on multiple devices in the Hongmeng system. It can include subsystems such as distributed soft bus, distributed data management, distributed task scheduling, Ark multilingual runtime, public basic library, multi-mode input, graphics, security, artificial intelligence (AI), user program framework, etc. .
  • the Ark multilingual runtime provides the C or C++ or JavaScript (JS) multilingual runtime and the basic system class library, and it can also be a static Java program using the Ark compiler (that is, Java is used in the application program or framework layer) part of the language development) provides the runtime.
  • Basic software service subsystem set provide public and general software services for Hongmeng system. It can include subsystems such as event notification, telephone, multimedia, Design For X (DFX), MSDP&DV, etc.
  • Enhanced software service subsystem set provide Hongmeng system with differentiated capability-enhanced software services for different devices. It can include smart screen proprietary services, wearable proprietary services, and Internet of Things (IoT) proprietary business subsystems.
  • IoT Internet of Things
  • Hardware service subsystem set provide hardware services for Hongmeng system. It can include subsystems such as location services, biometric identification, wearable dedicated hardware services, and IoT dedicated hardware services.
  • the framework layer provides Java, C, C++, JS and other multi-language user program frameworks and ability frameworks for Hongmeng system application development, and two user interface (UI) frameworks (including Java UI for the Java language) framework, a JS UI framework suitable for the JS language), and a multilingual framework application programming interface (Application Programming Interface, API) that is open to the outside world for various software and hardware services.
  • UI user interface
  • API Application Programming Interface
  • the application layer includes system applications and third-party non-system applications.
  • System applications may include applications installed by default on electronic devices such as desktops, control bars, settings, and phones.
  • Extended applications can be non-essential applications developed and designed by electronic device manufacturers, such as electronic device housekeeper, replacement and migration, memo, weather and other applications.
  • Third-party non-system applications can be developed by other manufacturers, but can run applications in the Hongmeng system, such as games, navigation, social or shopping applications.
  • the application of Hongmeng system consists of one or more meta-programs (Feature Ability, FA) or meta-services (Particle Ability, PA).
  • FA has a UI interface, which provides the ability to interact with users.
  • PA has no UI interface and provides the ability to run tasks in the background and a unified data access abstraction.
  • PA mainly provides support for FA, such as providing computing power as a background service, or providing data access capabilities as a data warehouse.
  • Applications developed based on FA or PA can realize specific business functions, support cross-device scheduling and distribution, and provide users with a consistent and efficient application experience.
  • HarmonyOS can realize hardware mutual assistance and resource sharing through distributed soft bus, distributed device virtualization, distributed data management and distributed task scheduling.
  • FIG. 5 shows a schematic flow chart of the wireless data transmission method provided by the present application
  • FIG. 6 shows a schematic framework diagram of the application of the wireless data transmission method provided by the present application.
  • the method may be applied to the wireless access point device 200 described above.
  • the method includes:
  • the first virtual transmission module of the wireless access point device receives downlink data sent from the wireless access module of the upper-level wireless access point device.
  • the second virtual transmission module of the wireless access point device receives uplink data sent from the wireless access module of the next-level wireless access point device.
  • the wireless access module of the wireless access point device simultaneously sends uplink data to the second virtual transmission module of the upper-level wireless access point device, and sends downlink data to the first virtual transmission module of the lower-level wireless access point device.
  • the first virtual transmission module is a virtual fronthaul STA (Virtual fronthaul STA, VFSTA), configured to receive downlink data sent by an upper-level wireless access point device.
  • the second virtual transmission module is a virtual backhaul STA (Virtual backhaul STA, VBSTA), which is used to receive uplink data sent by the next-level wireless access point device.
  • the wireless access (Access Point, AP) module is used for wireless connection with other wireless access point devices and STAs. When the AP module is connected to VFSTA and VBSTA, it can send downlink data to VFSTA and VBSTA, and send uplink data to VBSTA.
  • the wireless access point device is a Root AP.
  • the Root AP is connected to the server device.
  • the VBSTA of the Root AP receives the uplink data sent from the AP module (AP1) of the next-level wireless access point device (Repeater AP1), and forwards the uplink data to the AP module (AP0) of the Root AP.
  • the wireless access point device When the cascading level of the wireless access point device is the highest level, the wireless access point device is Repeater AP3 and is connected to the client device (STA1).
  • the AP module (AP3) of Repeater AP3 receives uplink data from STA1.
  • AP3 sends the uplink data from STA1 to the second virtual transmission module (VBSTA2) of the upper-level wireless access point device (Repeater AP2).
  • VBSTA2 virtual transmission module of the upper-level wireless access point device
  • the VFSTA of Repeater AP3 receives the downlink data sent from AP2. AP3 sends downlink data to the client device.
  • Fig. 7 shows a schematic diagram of data forwarding of various modules in a wireless access point device.
  • VFSTA and the VBSTA forward the received uplink data and downlink data to the AP, they may refer to the data flow shown in FIG. 7 .
  • VBSTA and VFSTA will not actively occupy the air interface to send data, but forward the received data to the AP through the bridge. Then, the uplink data and the downlink data are sent simultaneously through the AP.
  • the uplink data and downlink data can be integrated into one signal through Orthogonal Frequency Division Multiple Access (OFDMA), and sent to the upper-level VFSTA and the lower-level VBSTA at the same time.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the bridging may be configured with reference to the bridging forwarding table shown in Table 1.
  • the destination address of the uplink data may be the ip address of the server, and the destination address of the downlink data may be the ip address of the client, and the specific destination address shall be subject to the configuration of the application.
  • the bridge After the bridge is configured according to Table 1, if the source port of the message received by the bridge is VFSTA or VBSTA, the message is directly forwarded to the AP.
  • FIG. 8 is a schematic diagram of data forwarding of various modules in another wireless access point device provided by an embodiment of the present application.
  • Repeater AP2 and Repeater AP3 are connected to Repeater AP1 at the same time, wireless workstation 1 (STA1) is connected to AP2, and wireless workstation 2 (STA2) is connected to AP3.
  • STA1 can create a VBSTA1'.
  • AP2 sends the uplink data sent by STA1 to VBSTA1, and AP3 sends the uplink data sent by STA2 to VBSTA1'.
  • the bridging can be configured with reference to the bridging forwarding table shown in Table 2.
  • the bridge After the bridge is configured according to Table 2, if the source port of the message received by the bridge is VFSTA1, VBSTA1, and VBSTA1', the message will be directly forwarded to AP1.
  • the Server and STA1 need to experience 25 air interface interactions on average for one interaction. Compared with the prior art, the number of times of air interface interaction is significantly reduced, which can effectively reduce the delay overhead of air interface interaction and ensure the quality of low-latency services.
  • the present application also provides a wireless data transmission system, refer to the architecture shown in FIG. 6 .
  • the wireless data transmission system includes a server device (Server), a first wireless access point device (Root AP), one or more second wireless access point devices (Repeater AP1 and Repeater AP2), a third wireless access point device (Repeater AP3) and client device (Wi-Fi Station).
  • the server device is connected to the first wireless access point device.
  • the first wireless access point device, one or more second wireless access point devices, and the third wireless access point device are cascaded in sequence.
  • the third wireless access point device is connected to the client, the first wireless access point device, the second wireless access point device and the third wireless access point device all include a wireless access module (AP), a first virtual transmission module (VFSTA) and a second virtual transmission module (VBSTA).
  • AP wireless access module
  • VBSTA first virtual transmission module
  • VBSTA second virtual transmission module
  • the server device sends downlink data to the first wireless access point device.
  • the first wireless access point device receives the downlink data, and sends the downlink data to the second wireless access point device through the wireless access module.
  • the second wireless access point device receives the downlink data through the first virtual transmission module, and sends the downlink data to the third wireless access point device through the wireless access module.
  • the third wireless access point device receives the downlink data through the first virtual transmission module, and sends the downlink data to the client.
  • the client device sends uplink data to the wireless access module of the third wireless access point device.
  • the third wireless access point device receives the uplink data through the wireless access module, and sends the uplink data to the second virtual module of the second wireless access point device through the wireless access module.
  • the second wireless access point device receives the uplink data, and sends the uplink data to the second virtual transmission module of the first wireless access point device through the wireless access module.
  • the first wireless access point device receives the uplink data through the second virtual transmission module, and sends the uplink data to the server.
  • the second wireless access point device (Repeater AP1) with the lowest cascading level and the first wireless access point device Access point (Root AP) device connection when there are multiple second wireless access point devices (Repeater AP1 and Repeater AP2), the second wireless access point device (Repeater AP1) with the lowest cascading level and the first wireless access point device Access point (Root AP) device connection.
  • the second wireless access point device (Repeater AP2) with the highest cascading level is connected to the third wireless access point device (Repeater AP3).
  • VBSTA1 receives the uplink data sent by AP2, and AP1 sends downlink data to VFSTA2.
  • a new wireless access point device can be added to the wireless data transmission system.
  • the added wireless access point device determines the access location of the added wireless access point device according to the configured first access information.
  • the first virtual transmission module of the newly added wireless access point device is connected to the wireless access module of the wireless access point device corresponding to the access location according to the configured first access information, and the newly added wireless access point device
  • the second access information is sent to the wireless access point device corresponding to the access location.
  • the second virtual transmission module of the wireless access point device corresponding to the access location is connected to the wireless access module of the newly added wireless access point device according to the second access information.
  • FIG. 9 shows a schematic flowchart of adding a wireless access point device to the wireless data transmission system provided by the present application.
  • the Repeater AP1 determines The access location is behind the Root AP. You can connect Repeater AP1 to Root AP through the following steps. Among them, Repeater AP1 includes AP1 and VFSTA1, and Root AP includes AP0.
  • VFSTA1 of Repeater AP1 goes online after AP0 certification.
  • the access information of A0 includes the service set identifier (Service Set Identifier, SSID) of A0, and VFSTA1 can authenticate and connect with A0 according to the SSID of A0. Authentication on AP0 goes online.
  • service set identifier Service Set Identifier
  • Repeater AP1 sends the access information of AP1 to AP0.
  • the access information (second access information) of AP1 may be sent to AP0 through VFSTA1.
  • VFSTA1 can record the access information of AP1 through the VBSTA_Notify_Action frame.
  • the access information of AP1 may include SSID or Basic Service Set Identifier (BSSID) of AP1.
  • BSSID Basic Service Set Identifier
  • Table 3 shows the structure of the Vendor Specific Frame, wherein the category (category) and organization identifier (organization identifier) can be determined according to the actual situation of Repeater AP1, for example, referring to Table 3, the category can be 1, and the organization The identifier can be j.
  • the content of a specific vendor context (Vendor Specific Content) is a variable (variable), therefore, VFSTA1 can record the VBSTA_Notify_Action frame through the Vendor Specific Content in the Vendor Specific Frame.
  • the Root AP creates VBSTA0, and sets a forwarding path between VBSTA0 and AP0.
  • the setting manner of the forwarding path between VBSTA0 and APO can be set with reference to the bridge forwarding table shown in Table 1, and details are not described here.
  • AP0 sends the access information of AP1 to VBSTA0.
  • AP0 can send to VBSTA0 through the internal message of Root AP, and the internal message can be transmitted through the internal bus of Root AP, and the type of internal message is not limited here.
  • the implementation manner of S405 is similar to that of S401, which will not be repeated here.
  • a corresponding first virtual transmission module is created for each newly added wireless access point device.
  • S401-S405 For the step of creating a corresponding first virtual module for each newly added wireless access point device, reference may be made to S401-S405, which will not be repeated here. It should be understood that the sequence numbers of the steps in the above embodiments do not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a wireless access point device provided by an embodiment of the present application.
  • the wireless access point device 5 of this embodiment includes: at least one processor 501 (only one is shown in FIG. 10 ), a memory 502, a wireless network module 504, and stored in the memory 502 and can be used at least A computer program 503 running on a processor 501.
  • the processor 501 executes the computer program 503
  • the processor 501 runs the wireless access module, the first virtual transmission module and the second virtual transmission module.
  • the first virtual transmission module is configured to receive downlink data sent by the wireless access module of the upper-level wireless access point device through the wireless network module 504 .
  • the second virtual transmission module is configured to receive uplink data sent by the wireless access module of the next-level wireless access point device through the wireless network module 504 .
  • the wireless access module is configured to simultaneously send uplink data to the second virtual transmission module of the upper-level wireless access point device and send downlink data to the first virtual transmission module of the lower-level wireless access point through the wireless network module 504 .
  • the first virtual transmission module is configured to send the received downlink data to the wireless access module of the wireless access point device through the wireless network module 504 .
  • the second virtual transmission module is configured to send the received uplink data to the wireless access module of the wireless access point device through the wireless network module 504 .
  • the device further includes a bridge module.
  • the first virtual transmission module is configured to send the received downlink data to the bridge module of the wireless access point device through the wireless network module 504 .
  • the second virtual transmission module is configured to send the received uplink data to the bridge module through the wireless network module 504 .
  • the bridge module is used to receive uplink data and downlink data through the wireless network module 504, and send the uplink data and downlink data to the wireless access module of the wireless access point device according to the preset bridge forwarding table, and the preset bridge forwarding table
  • the publication includes the forwarding relationship between the first virtual transmission module of the wireless access point device and the wireless access module of the wireless access point device, and the wireless communication between the second virtual transmission module of the wireless access point device and the wireless access point device. The forwarding relationship of the access module.
  • the device further includes a creating module, configured to create, in the wireless access point device, a corresponding The second virtual transport module of .
  • the first virtual transmission module of the newly added wireless access point device determines, according to the configured first access information of the wireless access module of the wireless access point device
  • the first virtual transmission module of the newly added wireless access point device is connected to the wireless access module of the wireless access point device through the wireless network module 504 of the wireless access point device according to the configured first access information, And connect and send the second access information of the newly added wireless access point device to the wireless access module.
  • the creation module is specifically used to create a second virtual transmission module in the wireless access point device.
  • the created second virtual transmission module is connected to the wireless access module of the newly added wireless access point device through the wireless network module 504 according to the second access information from the wireless access module of the wireless access point device.
  • the creating module is also used in the wireless access point device to create a new wireless access point device Create a corresponding second virtual transmission module.
  • the wireless access point device when the level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device.
  • the lowest-level wireless access point device receives downlink data from the server device through the wireless network module 504 .
  • the lowest-level wireless access point device sends downlink data from the server device to the first virtual transmission module of the next-level wireless access point device through the wireless network module 504 .
  • the wireless access point device when the cascading level of the wireless access point device is the lowest level, the wireless access point device is connected to the server device.
  • the second virtual transmission module of the lowest-level wireless access point device receives the uplink data sent by the wireless access module of the next-level wireless access point device through the wireless network module 504 .
  • the lowest-level wireless access point device sends the uplink data to the server device through the wireless network module 504 through the second virtual transmission module.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device.
  • the highest-level wireless access point device receives uplink data from the client device through the wireless network module 504 .
  • the highest-level wireless access point device sends the uplink data from the client device to the second virtual transmission module of the upper-level wireless access point device through the wireless access module of the wireless access point device.
  • the wireless access point device when the cascading level of the wireless access point device is the highest level, the wireless access point device is connected to the client device.
  • the first virtual transmission module of the highest-level wireless access point device receives downlink data sent by the wireless access module of the upper-level wireless access point device through the wireless network module 504 .
  • the most advanced wireless access point device sends downlink data to the client device through the wireless access module of the wireless access point device.
  • the wireless access point device 5 may be a device with a wireless network access function such as a wireless router or a wireless switch.
  • the wireless access point device 5 may include, but not limited to, a processor 501 , a memory 502 and a wireless network module 504 .
  • FIG. 10 is only an example of the wireless access point device 5, and does not constitute a limitation on the wireless access point device 5. It may include more or less components than those shown in the figure, or combine some Components, or different components, for example, may also include input and output devices, network access devices, and so on.
  • the so-called processor 501 can be a central processing unit (Central Processing Unit, CPU), and the processor 501 can also be other general processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 502 may be an internal storage unit of the wireless access point device 5 in some embodiments, such as a hard disk or memory of the wireless access point device 5 .
  • the memory 502 may also be an external storage device of the wireless access point device 5 in other embodiments, such as a plug-in hard disk equipped on the wireless access point device 5, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 502 may also include both an internal storage unit of the wireless access point device 5 and an external storage device.
  • the memory 502 is used to store operating systems, application programs, boot loaders (BootLoader), data, and other programs, such as program codes of computer programs.
  • the memory 502 can also be used to temporarily store data that has been output or will be output.
  • the wireless network module 504 may include a Wi-Fi module, a Bluetooth module, and the like.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in each of the foregoing method embodiments can be realized.
  • An embodiment of the present application provides a computer program product.
  • the computer program product When the computer program product is run on a mobile terminal, the mobile terminal can implement the steps in the foregoing method embodiments when executed.
  • An embodiment of the present application provides a chip system, the chip system includes a memory and a processor, and the processor executes a computer program stored in the memory, so as to implement the steps in the foregoing method embodiments.
  • An embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to a computer-readable storage medium, and the processor executes a computer program stored in the computer-readable storage medium, so as to implement the above-mentioned method embodiments. step.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the procedures in the methods of the above embodiments in the present application can be completed by instructing related hardware through computer programs, and the computer programs can be stored in a computer-readable storage medium.
  • the computer program When executed by a processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may at least include: any entity or device capable of carrying computer program codes to the wireless access point device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signal telecommunication signal and software distribution medium.
  • U disk mobile hard disk
  • magnetic disk or optical disk etc.
  • computer readable media may not be electrical carrier signals and telecommunication signals under legislation and patent practice.
  • the disclosed wireless data transmission method, system, and wireless access point device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Abstract

本申请适用于无线网络技术领域,提供了一种无线数据传输方法、系统及无线接入点设备,包括:无线接入点设备的第一虚拟传输模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据。无线接入点设备的第二虚拟传输模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据。无线接入点设备的无线接入模块同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。由于无线接入模块同时发送上行数据和下行数据,可以合并上行和下行的空口,有效减少空口交互的次数,进而降低空口交互时延开销,保证低时延业务的质量。

Description

无线数据传输方法、系统及无线接入点设备
本申请要求于2021年6月28日提交国家知识产权局、申请号202110723351.5、申请名称为“无线数据传输方法、系统及无线接入点设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线网络领域,尤其涉及一种无线数据传输方法、系统及无线接入点设备。
背景技术
无线网络(Wi-Fi)已经在日常生活中普遍使用了。在布置Wi-Fi的时候,为了使场景中每一处的Wi-Fi信号都能维持在较高的水平,一般会采用多个无线接入点(Access Point,AP)级联组网的方式来提升Wi-Fi的覆盖和信号强度。
但是,当级联的层次较深时,与最深一层AP连接的无线工作站(Wi-Fi Station,STA)进行业务交互时会经历多次空口交互,空口时延开销较高,需求低时延的业务质量无法得到保障。
发明内容
本申请实施例提供了一种无线数据传输方法、系统及无线接入点设备,可以改善由于进行业务交互时经历空口交互次数较多,空口时延开销较高,导致需求低时延的业务质量无法得到保障的问题。
第一方面,本申请实施例提供了一种无线数据传输方法,应用于多个依次级联的无线接入点设备中的一个,无线接入点设备包括无线接入模块、第一虚拟传输模块和第二虚拟传输模块。该方法包括:
无线接入点设备的第一虚拟传输模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据。无线接入点设备的第二虚拟传输模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据。无线接入点设备的无线接入模块同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。
在本申请中,无线接入点设备可以是无线路由器、无线交换机、无线信号放大器等网络设备,本申请对无线接入点设备的类型不做限制。
在第一方面中,通过无线接入点设备中的第一虚拟传输模块接收来自上一级无线接入点设备的下行数据,通过第二虚拟传输模块接收来自下一级无线接入点设备的上行数据,并通过无线接入模块将接收到上行数据和下行数据转发。由于无线接入模块同时发送上行数据和下行数据,可以合并上行和下行的空口,有效减少空口交互的次数,进而降低空口交互时延开销,保证低时延业务的质量。
一些实施方式中,无线接入点设备的第一虚拟传输模块将接收到的下行数据发送给无线接入点设备的无线接入模块。无线接入点设备的第二虚拟传输模块将接收到的上行数据发送给无线接入点设备的无线接入模块。
一些实施方式中,无线接入点设备的第一虚拟传输模块将接收到的下行数据发送给无线接入点设备的桥接模块。无线接入点设备的第二虚拟传输模块将接收到的上行数据发送给桥接模块。桥接模块接收上行数据和下行数据,并根据预先设置的桥接转发表,将上行数据和下行数据发送给无线接入点设备的无线接入模块,预先设置的桥接转发表中包括无线接入点设备的第一虚拟传输模块与无线接入点设备的无线接入模块的转发关系,以及包括无线接入点设备的第二虚拟传输模块与无线接入点设备的无线接入模块的转发关系。
一些实施方式中,该方法还包括:
当无线接入点设备接入新增的无线接入点设备时,在无线接入点设备中,为新增的无线接入点设备创建对应的第二虚拟传输模块。
一些实施方式中,当新增的无线接入点设备的第一虚拟传输模块,根据配置的无线接入点设备的无线接入模块的第一接入信息,确定通过无线接入点设备进行级联时,在无线接入点设备中,为新增的无线接入点设备创建对应的第二虚拟传输模块,包括:
新增的无线接入点设备的第一虚拟传输模块根据配置的第一接入信息,与无线接入点设备的无线接入模块连接,并向无线接入模块连接发送新增的无线接入点设备的第二接入信息。在无线接入点设备中设备创建第二虚拟传输模块。创建的第二虚拟传输模块根据来自无线接入点设备的无线接入模块的第二接入信息,与新增的无线接入点设备的无线接入模块连接。
一些实施方式中,当无线接入点设备接入多个新增的无线接入点设备时,在无线接入点设备中,为每个新增的无线接入点设备创建一个对应的第二虚拟传输模块。
一些实施方式中,当无线接入点设备的层级为最低级时,无线接入点设备与服务端设备连接,该方法还包括:
最低级无线接入点设备接收来自服务端设备的下行数据。最低级无线接入点设备通过无线接入点设备的无线接入模块向下一级无线接入点设备的第一虚拟传输模块发送来自服务端设备的下行数据。
一些实施方式中,该当无线接入点设备的级联层级为最低级时,无线接入点设备与服务端设备连接,该方法还包括:
最低级无线接入点设备的第二虚拟传输模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据。最低级无线接入点设备通过第二虚拟传输模块将上行数据发送至服务端设备。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接,该方法还包括:
最高级无线接入点设备接收来自客户端设备的上行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块向上一级无线接入点设备的第二虚拟传输模块发送来自客户端设备的上行数据。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接,该方法还包括:
最高级无线接入点设备的第一虚拟传输模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块将下行数据发送至客户端设备。
第二方面,本申请实施例提供了一种无线数据传输系统。无线数据传输系统包括服务端设备、第一无线接入点设备、一个或多个第二无线接入点设备、第三无线接入点设备以及客户端设备。服务端设备与第一无线接入点设备连接。第一无线接入点设备、一个或多个第二无线接入点设备、以及第三无线接入点设备依次级联。第三无线接入点设备与客户端连接,第一无线接入点设备、第二无线接入点设备以及第三无线接入点设备均包括无线接入模块、第一虚拟传输模块和第二虚拟传输模块。
服务端设备向第一无线接入点设备发送下行数据。第一无线接入点设备接收下行数据,并通过无线接入模块向第二无线接入点设备发送下行数据。第二无线接入点设备通过第一虚拟传输模块接收下行数据,并通过无线接入模块向第三无线接入点设备发送下行数据。第三无线接入点设备通过第一虚拟传输模块接收下行数据,并向客户端发送下行数据。
客户端设备向第三无线接入点设备的无线接入模块发送上行数据。第三无线接入点设备通过无线接入模块接收上行数据,并通过无线接入模块向第二无线接入点设备的第二虚拟模块发送上行数据。第二无线接入点设备通过接收上行数据,并通过无线接入模块向第一无线接入点设备的第二虚拟传输模块发送上行数据。第一无线接入点设备通过第二虚拟传输模块接收上行数据,并向服务端发送上行数据。
一些实施方式中,无线接入点设备的第一虚拟传输模块将接收到的下行数据发送给无线接入点设备的无线接入模块。无线接入点设备的第二虚拟传输模块将接收到的上行数据发送给无线接入点设备的无线接入模块。
一些实施方式中,当第二无线接入点设备为多个时,级联层级最低的第二无线接入点设备与第一无线接入点设备连接。级联层级最高的第二无线接入点设备与第三无线接入点设备连接。
两个第二无线接入点设备之间,包括:
级联层级较低的第二无线接入点设备的第二虚拟传输模块接收来自上一级第二无线接入点设备的无线接入模块发送的上行数据。级联层级较低的第二无线接入点设备的无线接入模块向上一级第二无线接入点设备的第一虚拟传输模块发送下行数据。
一些实施方式中,当无线接入点设备接入新增的无线接入点设备时,为新增的无线接入点设备创建对应的第二虚拟传输模块。
一些实施方式中,无线数据传输系统中增加无线接入点设备时,包括:
新增的无线接入点设备根据配置的第一接入信息确定新增的无线接入点设备的接入位置。新增的无线接入点设备的第一虚拟传输模块根据配置的第一接入信息与接入位置对应的无线接入点设备的无线接入模块连接,并将新增的无线接入点设备的第二接入信息发送给接入位置对应的无线接入点设备。接入位置对应的无线接入点设备的第二虚拟 传输模块根据第二接入信息与新增的无线接入点设备的无线接入模块连接。
一些实施方式中,当无线接入点设备接入多个新增的无线接入点设备时,为每个新增的无线接入点设备创建一个对应的第二虚拟传输模块。
第三方面,本申请实施例提供了一种无线接入点设备,包括存储器、处理器、无线网络模块以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时,处理器上运行有无线接入模块、第一虚拟传输模块和第二虚拟传输模块。处理器执行计算机程序时,第一虚拟传输模块,用于通过无线网络模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据。第二虚拟传输模块,用于通过无线网络模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据。无线接入模块,用于通过无线网络模块同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。
一些实施方式中,第一虚拟传输模块用于通过无线网络模块将接收到的下行数据发送给无线接入点设备的无线接入模块。第二虚拟传输模块,用于通过无线网络模块将接收到的上行数据发送给无线接入点设备的无线接入模块。
一些实施方式中,设备还包括桥接模块。第一虚拟传输模块,用于通过无线网络模块将接收到的下行数据发送给无线接入点设备的桥接模块。第二虚拟传输模块,用于通过无线网络模块将接收到的上行数据发送给桥接模块。桥接模块,用于通过无线网络模块接收上行数据和下行数据,并根据预先设置的桥接转发表,将上行数据和下行数据发送给无线接入点设备的无线接入模块,预先设置的桥接转发表中包括无线接入点设备的第一虚拟传输模块与无线接入点设备的无线接入模块的转发关系,以及包括无线接入点设备的第二虚拟传输模块与无线接入点设备的无线接入模块的转发关系。
一些实施方式中,设备还包括创建模块,用于当无线接入点设备接入新增的无线接入点设备时,在无线接入点设备中,为新增的无线接入点设备创建对应的第二虚拟传输模块。
一些实施方式中,当新增的无线接入点设备的第一虚拟传输模块,根据配置的无线接入点设备的无线接入模块的第一接入信息,确定通过无线接入点设备进行级联时,新增的无线接入点设备的第一虚拟传输模块根据配置的第一接入信息,通过无线接入点设备的无线网络模块与无线接入点设备的无线接入模块连接,并向无线接入模块连接发送新增的无线接入点设备的第二接入信息。创建模块,具体用于在无线接入点设备中设备创建第二虚拟传输模块。创建的第二虚拟传输模块根据来自无线接入点设备的无线接入模块的第二接入信息,通过无线网络模块与新增的无线接入点设备的无线接入模块连接。
一些实施方式中,当无线接入点设备接入多个新增的无线接入点设备时,创建模块,还用于在无线接入点设备中,为每个新增的无线接入点设备创建一个对应的第二虚拟传输模块。
一些实施方式中,当无线接入点设备的层级为最低级时,无线接入点设备与服务端设备连接。
最低级无线接入点设备通过无线网络模块接收来自服务端设备的下行数据。最低级无线接入点设备通过无线网络模块无线接入点设备的无线接入模块向下一级无线接入点 设备的第一虚拟传输模块发送来自服务端设备的下行数据。
一些实施方式中,当无线接入点设备的级联层级为最低级时,无线接入点设备与服务端设备连接。最低级无线接入点设备的第二虚拟传输模块通过无线网络模块,接收来自下一级无线接入点设备的无线接入模块发送的上行数据。最低级无线接入点设备通过第二虚拟传输模块通过无线网络模块,将上行数据发送至服务端设备。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接。最高级无线接入点设备通过无线网络模块接收来自客户端设备的上行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块向上一级无线接入点设备的第二虚拟传输模块发送来自客户端设备的上行数据。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接。最高级无线接入点设备的第一虚拟传输模块通过无线网络模块,接收来自上一级无线接入点设备的无线接入模块发送的下行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块将下行数据发送至客户端设备。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如第一方面提供的方法。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面提供的方法。
第六方面,本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行存储器中存储的计算机程序,以实现第一方面提供的方法。
第七方面,本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与第四方面提供的计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现第一方面提供的方法。
可以理解的是,上述第二方面至第七方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1为本申请实施例提供的一种无线数据传输方法的应用场景示意图;
图2为一种现有技术中多级Wi-Fi组网的架构;
图3为本申请实施例提供的一种无线接入点设备的结构示意图;
图4为本申请实施例提供的一种无线网络设备的软件结构示意图;
图5为本申请实施例提供的一种无线数据传输方法的示意性流程图;
图6为本申请实施例提供的一种无线数据传输方法应用时的框架示意图;
图7为本申请实施例提供的一种无线接入点设备中各个模块数据转发的示意图;
图8为本申请实施例提供的另一种无线接入点设备中各个模块数据转发的示意图;
图9为本申请实施例提供的向无线数据传输系统中新增无线接入点设备时的流程示意图;
图10为本申请实施例提供的另一种无线接入点设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示出了一种无线数据传输方法的应用场景示意图。
参考图1,在本场景中,包括服务端(Server)11、根无线接入点(Root AP)12、中继无线接入点1(Repeater AP1)13、中继无线接入点2(Repeater AP2)14、中继无线接入点3(Repeater AP3)15,无线工作站(Wi-Fi Station,STA1)16。根无线接入点12与服务端11连接,服务端11可以是提供业务的服务器、主机或者核心网等。根无线接入点(Root AP)12、中继无线接入点1(Repeater AP1)13、中继无线接入点2(Repeater AP2)14、中继无线接入点3(Repeater AP3)15则可以是无线网络设备,如无线路由器、无线交换机、无线信号放大器等。本申请实施例对无线网络设备的具体类型不作任何限制。无线工作站16可以是能够通过无线网络联网的用户设备,如智能手机、笔记本电脑、平板电脑等,也可以是支持无线联网终端设备等,在此不做限制。
图2示出了一种现有技术中多级Wi-Fi组网的架构。
在图1示出的场景中,STA1与AP0进行数据交互时,可以参考图2示出的架构。参考图,根无线接入点下包括一个无线接入模块(AP0),中继无线接入点1下包括一个无线接入模块(AP1)和一个虚拟无线工作站(VSTA1)、中继无线接入点2下包括一个无线接入模块(AP2)和一个虚拟无线工作站(VSTA2)、中继无线接入点3下包括一个无线接入模块(AP3)和一个虚拟无线工作站(VSTA3)。AP0与VSTA1连接、AP1与VSTA2连接、AP2与VSTA3连接,AP3与STA1连接。
当AP0与STA1进行数据交互时,下行方向需经过:
AP0→中继无线接入点1(VSTA1→AP1)→中继无线接入点2(VSTA2→AP2)→中继无线接入点3(VSTA3→AP3)→STA1。这个过程中,至少需要经过四次空口交互。
相应的,上行方向需经过:
STA1→中继无线接入点3(AP3→VSTA3)→中继无线接入点2(AP2→VSTA2)→中继 无线接入点1(AP1→VSTA1)→AP0。这个过程中,也至少需要经过四次空口交互。
当所有设备均处于一个冲突域中时,每个设备获取空口的几率相同,则Server与STA1的一次交互平均需要经历64次空口交互。STA所在级联层级越深、冲突域内设备数目越多,需要经历的空口交互的次数越多,空口交互的时延开销越大,低时延业务的质量越难保障。
为此,本申请提供了一种无线数据传输方法,可以应用于多个依次级联的无线接入点设备中的一个。无线接入点设备包括无线接入模块、第一虚拟传输模块和第二虚拟传输模块。无线接入点设备的无线接入模块同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。
通过无线接入点设备中的第一虚拟传输模块接收来自上一级无线接入点设备的下行数据,通过第二虚拟传输模块接收来自下一级无线接入点设备的上行数据,并通过无线接入模块将接收到上行数据和下行数据转发。由于无线接入模块同时发送上行数据和下行数据,可以合并上行和下行的空口,有效减少空口交互的次数,进而降低空口交互时延开销,保证低时延业务的质量。
图3给出了一种无线接入点设备的结构示意图,在图3中,该无线接入点设备200可以包括处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,电池242,按键252,指示器251,显示屏250,天线1,无线通信模块260。
可以理解的是,本申请实施例示意的结构并不构成对无线接入点设备200的具体限定。在本申请另一些实施例中,无线接入点设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
作为举例,当无线接入点设备200为无线路由器时,可以包括图示中的全部部件,也可以仅包括图示中的部分部件。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是无线接入点设备200的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器210的等待时间,因而提高了系统的效率。
在一些实施例中,处理器210可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous  receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器210可以包含多组I2C总线。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在与并行通信之间转换。
在一些实施例中,UART接口通常被用于连接处理器210与无线通信模块260。例如:处理器210通过UART接口与无线通信模块260中的蓝牙模块通信,实现蓝牙功能。
MIPI接口可以被用于连接处理器210与显示屏250等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器210和显示屏250通过DSI接口通信,实现无线接入点设备200的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器210与显示屏250,无线通信模块260等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口230是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口230可以用于连接充电器为无线接入点设备200充电,也可以用于无线接入点设备200与外围设备之间传输数据。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对无线接入点设备200的结构限定。在本申请另一些实施例中,无线接入点设备200也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块240用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块240可以通过USB接口230接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块240可以通过无线接入点设备200的无线充电线圈接收无线充电输入。充电管理模块240为电池242充电的同时,还可以通过电源管理模块241为电子设备供电。
当无线接入点设备200支持电池供电时,电源管理模块241用于连接电池242,充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210,内部存储器221,外部存储器,显示屏250和无线通信模块260等供电。电源管理模块241还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
在其他一些实施例中,电源管理模块241也可以设置于处理器210中。在另一些实施例中,电源管理模块241和充电管理模块240也可以设置于同一个器件中。
无线接入点设备200的无线通信功能可以通过天线1,无线通信模块260,调制解调处理器等实现。
无线通信模块260可以提供应用在无线接入点设备200上的包括系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块260可 以是集成至少一个通信处理模块的一个或多个器件。无线通信模块260经由天线1接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块260还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线1转为电磁波辐射出去。
在一些实施例中,无线接入点设备200的天线1和无线通信模块260耦合,使得无线接入点设备200可以通过无线通信技术与网络以及其他设备通信。
显示屏250用于显示图像,视频等。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,无线接入点设备200可以包括1个或N个显示屏250,N为大于1的正整数。
外部存储器接口220可以用于连接外部存储卡,例如Micro SD卡,实现扩展无线接入点设备200的存储能力。外部存储卡通过外部存储器接口220与处理器210通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,可执行程序代码包括指令。处理器210通过运行存储在内部存储器221的指令,从而执行无线接入点设备200的各种功能应用以及数据处理。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序。存储数据区可存储无线接入点设备200使用过程中所创建的数据。
此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
指示器251可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
图4是本申请实施例的无线网络设备的软件结构示意图。无线网络设备中的操作系统可以是林纳斯(Linux)系统、安卓(Android)系统或者鸿蒙系统(Harmony OS)等。在此,以无线网络设备的操作系统为鸿蒙系统为例进行说明。
在一些实施例中,可将鸿蒙系统分为四层,包括内核层、系统服务层、框架层以及应用层,层与层之间通过软件接口通信。
如图4所示,内核层包括内核抽象层(Kernel Abstract Layer,KAL)和驱动子系统。KAL下包括多个内核,如Linux系统的内核Linux Kernel、轻量级物联网系统内核LiteOS等。驱动子系统则可以包括硬件驱动框架(Hardware Driver Foundation,HDF)。硬件驱动框架能够提供统一外设访问能力和驱动开发、管理框架。多内核的内核层可以根据系统的需求选择相应的内核进行处理。
系统服务层是鸿蒙系统的核心能力集合,系统服务层通过框架层对应用程序提供服务。该层可包括:
系统基本能力子系统集:为分布式应用在鸿蒙系统多设备上的运行、调度、迁移等操作提供了基础能力。可包括分布式软总线、分布式数据管理、分布式任务调度、方舟多语言运 行时、公共基础库、多模输入、图形、安全、人工智能(Artificial Intelligence,AI)、用户程序框架等子系统。其中,方舟多语言运行时提供了C或C++或JavaScript(JS)多语言运行时和基础的系统类库,也可以为使用方舟编译器静态化的Java程序(即应用程序或框架层中使用Java语言开发的部分)提供运行时。
基础软件服务子系统集:为鸿蒙系统提供公共的、通用的软件服务。可包括事件通知、电话、多媒体、面向X设计(Design For X,DFX)、MSDP&DV等子系统。
增强软件服务子系统集:为鸿蒙系统提供针对不同设备的、差异化的能力增强型软件服务。可包括智慧屏专有业务、穿戴专有业务、物联网(Internet of Things,IoT)专有业务子系统组成。
硬件服务子系统集:为鸿蒙系统提供硬件服务。可包括位置服务、生物特征识别、穿戴专有硬件服务、IoT专有硬件服务等子系统。
框架层为鸿蒙系统应用开发提供了Java、C、C++、JS等多语言的用户程序框架和能力(Ability)框架,两种用户界面(User Interface,UI)框架(包括适用于Java语言的Java UI框架、适用于JS语言的JS UI框架),以及各种软硬件服务对外开放的多语言框架应用程序接口(Application Programming Interface,API)。根据系统的组件化裁剪程度,鸿蒙系统设备支持的API也会有所不同。
应用层包括系统应用和第三方非系统应用。系统应用可包括桌面、控制栏、设置、电话等电子设备默认安装的应用程序。扩展应用可以是由电子设备的制造商开发设计的、非必要的应用,如电子设备管家、换机迁移、便签、天气等应用程序。而第三方非系统应用则可以是由其他厂商开发,但是可以在鸿蒙系统中运行应用程序,如游戏、导航、社交或购物等应用程序。
鸿蒙系统的应用由一个或多个元程序(Feature Ability,FA)或元服务(Particle Ability,PA)组成。其中,FA有UI界面,提供与用户交互的能力。而PA无UI界面,提供后台运行任务的能力以及统一的数据访问抽象。PA主要为FA提供支持,例如作为后台服务提供计算能力,或作为数据仓库提供数据访问能力。基于FA或PA开发的应用,能够实现特定的业务功能,支持跨设备调度与分发,为用户提供一致、高效的应用体验。
多个运行鸿蒙系统的电子设备之间可以通过分布式软总线、分布式设备虚拟化、分布式数据管理和分布式任务调度实现硬件互助和资源共享。
图5示出了本申请提供的无线数据传输方法的示意性流程图,图6示出了本申请提供的无线数据传输方法应用时的框架示意图。作为示例而非限定,该方法可以应用于上述无线接入点设备200中。
参考图5,该方法包括:
S301、无线接入点设备的第一虚拟传输模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据。
S302、无线接入点设备的第二虚拟传输模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据。
S303、无线接入点设备的无线接入模块同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。
一些实施方式中,第一虚拟传输模块为虚拟前传STA(Virtual fronthaul STA,VFSTA),用于接收上一级无线接入点设备发送的下行数据。第二虚拟传输模块为虚拟回传STA(Virtual backhaul STA,VBSTA),用于接收下一级无线接入点设备发送的上行数据。无线接入(Access Point,AP)模块用于与其他无线接入点设备以及STA进行无线连接。当AP模块与VFSTA和VBSTA连接时,可以向VFSTA和VBSTA发送下行数据、以及向VBSTA发送上行数据。
在本实施例中,参考图6,多个无线接入点设备依次级联,当无线接入点设备的级联层级为最低级时,无线接入点设备为Root AP。Root AP与服务端设备连接。Root AP的VBSTA接收来自下一级无线接入点设备(Repeater AP1)的AP模块(AP1)发送的上行数据,并将上行数据转发给Root AP的AP模块(AP0)。
当无线接入点设备的级联层级为最高级时,无线接入点设备为Repeater AP3,且与客户端设备(STA1)连接。
Repeater AP3的AP模块(AP3)接收来自STA1的上行数据。AP3向上一级无线接入点设备(Repeater AP2)的第二虚拟传输模块(VBSTA2)发送来自STA1的上行数据。
Repeater AP3的VFSTA接收来自AP2发送的下行数据。AP3将下行数据发送至客户端设备。
图7示出了一种无线接入点设备中各个模块数据转发的示意图。
需要说明的是,VFSTA和VBSTA在将接收到的上行数据和下行数据转发给AP时,可以参考图7示出的数据流向。其中,VBSTA和VFSTA不会主动占用空口发送数据,而是将接收到的数据通过桥接(Bridge)转发至AP。然后,通过AP同时将上行数据和下行数据进行发送。发送时,可以通过正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)将上行数据和下行数据集成在一个信号中,同时向上一级的VFSTA以及下一级的VBSTA发送。
一些实施方式中,可以参照表1示出的桥接转发表对桥接进行配置。
表1
目的地址 源端口 目的端口
- VFSTA AP
- VBSTA AP
其中,上行数据的目的地址可以为服务端的ip地址,下行数据的目的地址可以为客户端的ip地址,具体的目的地址以应用时的配置为准。
当桥接根据表1配置后,若桥接接收到的报文的源端口为VFSTA或VBSTA时,则直接将报文转发至AP。
图8为本申请实施例提供的另一种无线接入点设备中各个模块数据转发的示意图。
还有一些实施方式中,参考图8,Repeater AP2和Repeater AP3同时与Repeater AP1连接,无线工作站1(STA1)与AP2连接,无线工作站2(STA2)与AP3连接。Repeater AP1可以创建一个VBSTA1’。AP2将STA1发送的上行数据发送给VBSTA1,AP3将STA2发送的上行数据发送给VBSTA1’。
在这个情况下,可以参照表2示出的桥接转发表对桥接进行配置。
表2
目的地址 源端口 目的端口
- VFSTA1 AP1
- VBSTA1 AP1
- VBSTA1’ AP1
当桥接根据表2配置后,若桥接接收到的报文的源端口为VFSTA1、VBSTA1以及VBSTA1’时,则直接将报文转发至AP1。
在本实施例中,由于使用AP同时发送上行数据和下行数据,当所有设备在同一冲突域中时,Server与STA1进行一次交互平均需要经历25次空口交互。与现有技术相比,空口交互的次数明显降低,能够有效减少空口交互的时延开销,保证了低时延业务的质量。
本申请还提供了一种无线数据传输系统,参考图6示出的架构。无线数据传输系统包括服务端设备(Server)、第一无线接入点设备(Root AP)、一个或多个第二无线接入点设备(Repeater AP1和Repeater AP2)、第三无线接入点设备(Repeater AP3)以及客户端设备(Wi-Fi Station)。服务端设备与第一无线接入点设备连接。第一无线接入点设备、一个或多个第二无线接入点设备、以及第三无线接入点设备依次级联。第三无线接入点设备与客户端连接,第一无线接入点设备、第二无线接入点设备以及第三无线接入点设备均包括无线接入模块(AP)、第一虚拟传输模块(VFSTA)和第二虚拟传输模块(VBSTA)。
无线数据传输系统在运行时,服务端设备向第一无线接入点设备发送下行数据。第一无线接入点设备接收下行数据,并通过无线接入模块向第二无线接入点设备发送下行数据。第二无线接入点设备通过第一虚拟传输模块接收下行数据,并通过无线接入模块向第三无线接入点设备发送下行数据。第三无线接入点设备通过第一虚拟传输模块接收下行数据,并向客户端发送下行数据。
客户端设备向第三无线接入点设备的无线接入模块发送上行数据。第三无线接入点设备通过无线接入模块接收上行数据,并通过无线接入模块向第二无线接入点设备的第二虚拟模块发送上行数据。第二无线接入点设备通过接收上行数据,并通过无线接入模块向第一无线接入点设备的第二虚拟传输模块发送上行数据。第一无线接入点设备通过第二虚拟传输模块接收上行数据,并向服务端发送上行数据。
运行时的具体实现方式可以参考上述无线数据传输方法中的示例,在此不做赘述。
一些实施方式中,参考图6,当第二无线接入点设备为多个时(Repeater AP1和Repeater AP2),级联层级最低的第二无线接入点设备(Repeater AP1)与第一无线接入点(Root AP)设备连接。级联层级最高的第二无线接入点设备(Repeater AP2)与第三无线接入点设备(Repeater AP3)连接。
Repeater AP1和Repeater AP2之间进行数据传输时,VBSTA1接收AP2发送的上行数据,AP1向VFSTA2发送下行数据。
一些实施方式中,可以向无线数据传输系统中增加新的无线接入点设备。在新增无线接入点设备时,新增的无线接入点设备根据配置的第一接入信息确定新增的无线接入点设备的接入位置。新增的无线接入点设备的第一虚拟传输模块根据配置的第一接入信息与接入位置对应的无线接入点设备的无线接入模块连接,并将新增的无线接入点设备的第二接入信息发 送给接入位置对应的无线接入点设备。接入位置对应的无线接入点设备的第二虚拟传输模块根据第二接入信息与新增的无线接入点设备的无线接入模块连接。
图9示出了本申请提供的向无线数据传输系统中新增无线接入点设备时的流程示意图。
作为示例,参考图9,当通过预设的级联选路算法为新增的无线接入点设备(Repeater AP1)配置Root AP中AP0的接入信息(第一接入信息),Repeater AP1确定接入位置为Root AP后。可以通过以下步骤将Repeater AP1接入Root AP。其中,Repeater AP1包括AP1和VFSTA1,Root AP包括AP0。
S401、Repeater AP1的VFSTA1在AP0认证上线。
在本实施例中,AP0的接入信息包括AP0的服务集标识(Service Set Identifier,SSID),VFSTA1可以根据AP0的SSID与AP0认证连接,当VFSTA1与AP0完成认证并连接成功后,VFSTA1即在AP0上认证上线。
S402、Repeater AP1将AP1的接入信息发送给AP0。
在本实施例中,可以通过VFSTA1将AP1的接入信息(第二接入信息)发送给AP0。例如,VFSTA1可以通过VBSTA_Notify_Action帧记录AP1的接入信息。AP1的接入信息可以包括AP1的SSID或基本服务集标识(Basic Service Set Identifier,BSSID)。
表3
类别 组织标识 特定供应商上下文
1 j variable
表3示出了供应商框架(Vendor Specific Frame)的结构,其中,类别(category)和组织标识(organization identifier)可根据Repeater AP1的实际情况确定,例如,参考表3,类别可以为1,组织标识可以为j。特定供应商上下文(Vendor Specific Content)的内容为变量(variable),因此,VFSTA1可以将VBSTA_Notify_Action帧通过Vendor Specific Frame中的Vendor Specific Content进行记录。
S403、Root AP创建VBSTA0,设置VBSTA0与AP0的转发路径。
一些实施方式中,VBSTA0与AP0的转发路径的设置方式可以参照表1示出的桥接转发表进行设置,在此不做赘述。
S404、AP0将AP1的接入信息发送给VBSTA0。
一些实施方式中,AP0可以通过Root AP的内部消息发送给VBSTA0,内部消息可以通过Root AP内部的总线进行传递,在此不对内部消息的类型进行限制。
S405、VFSTA0在AP1认证上线。
一些实施方式中,S405的实现方式与S401类似,在此不做赘述。
一些实施方式中,当无线接入点设备接入多个新增的无线接入点设备时,为每个新增的无线接入点设备创建一个对应的第一虚拟传输模块。为每个新增的无线接入点设备创建对应的第一虚拟模块的步骤可参考S401-S405,在此不做赘述。应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图10为本申请一实施例提供的无线接入点设备的结构示意图。如图10所示,该实施例的无线接入点设备5包括:至少一个处理器501(图10中仅示出一个)、存储器502、无线网 络模块504以及存储在存储器502中并可在至少一个处理器501上运行的计算机程序503。处理器501执行计算机程序503时,处理器501上运行有无线接入模块、第一虚拟传输模块和第二虚拟传输模块。
第一虚拟传输模块,用于通过无线网络模块504接收来自上一级无线接入点设备的无线接入模块发送的下行数据。第二虚拟传输模块,用于通过无线网络模块504接收来自下一级无线接入点设备的无线接入模块发送的上行数据。无线接入模块,用于通过无线网络模块504同时向上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向下一级无线接入点的第一虚拟传输模块发送下行数据。
一些实施方式中,第一虚拟传输模块用于通过无线网络模块504将接收到的下行数据发送给无线接入点设备的无线接入模块。第二虚拟传输模块,用于通过无线网络模块504将接收到的上行数据发送给无线接入点设备的无线接入模块。
一些实施方式中,设备还包括桥接模块。第一虚拟传输模块,用于通过无线网络模块504将接收到的下行数据发送给无线接入点设备的桥接模块。第二虚拟传输模块,用于通过无线网络模块504将接收到的上行数据发送给桥接模块。桥接模块,用于通过无线网络模块504接收上行数据和下行数据,并根据预先设置的桥接转发表,将上行数据和下行数据发送给无线接入点设备的无线接入模块,预先设置的桥接转发表中包括无线接入点设备的第一虚拟传输模块与无线接入点设备的无线接入模块的转发关系,以及包括无线接入点设备的第二虚拟传输模块与无线接入点设备的无线接入模块的转发关系。
一些实施方式中,设备还包括创建模块,用于当无线接入点设备接入新增的无线接入点设备时,在无线接入点设备中,为新增的无线接入点设备创建对应的第二虚拟传输模块。
一些实施方式中,当新增的无线接入点设备的第一虚拟传输模块,根据配置的无线接入点设备的无线接入模块的第一接入信息,确定通过无线接入点设备进行级联时,新增的无线接入点设备的第一虚拟传输模块根据配置的第一接入信息,通过无线接入点设备的无线网络模块504与无线接入点设备的无线接入模块连接,并向无线接入模块连接发送新增的无线接入点设备的第二接入信息。创建模块,具体用于在无线接入点设备中设备创建第二虚拟传输模块。创建的第二虚拟传输模块根据来自无线接入点设备的无线接入模块的第二接入信息,通过无线网络模块504与新增的无线接入点设备的无线接入模块连接。
一些实施方式中,当无线接入点设备接入多个新增的无线接入点设备时,创建模块,还用于在无线接入点设备中,为每个新增的无线接入点设备创建一个对应的第二虚拟传输模块。
一些实施方式中,当无线接入点设备的层级为最低级时,无线接入点设备与服务端设备连接。
最低级无线接入点设备通过无线网络模块504接收来自服务端设备的下行数据。最低级无线接入点设备通过无线网络模块504无线接入点设备的无线接入模块向下一级无线接入点设备的第一虚拟传输模块发送来自服务端设备的下行数据。
一些实施方式中,当无线接入点设备的级联层级为最低级时,无线接入点设备与服务端设备连接。最低级无线接入点设备的第二虚拟传输模块通过无线网络模块504,接收来自下一级无线接入点设备的无线接入模块发送的上行数据。最低级无线接入点设备通过第二虚拟传输模块通过无线网络模块504,将上行数据发送至服务端设备。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接。最高级无线接入点设备通过无线网络模块504接收来自客户端设备的上行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块向上一级无线接入点设备的第二虚拟传输模块发送来自客户端设备的上行数据。
一些实施方式中,当无线接入点设备的级联层级为最高级时,无线接入点设备与客户端设备连接。最高级无线接入点设备的第一虚拟传输模块通过无线网络模块504,接收来自上一级无线接入点设备的无线接入模块发送的下行数据。最高级无线接入点设备通过无线接入点设备的无线接入模块将下行数据发送至客户端设备。
无线接入点设备5可以是无线路由器、无线交换机等具有无线网络接入功能的设备。该无线接入点设备5可包括,但不仅限于,处理器501、存储器502和无线网络模块504。本领域技术人员可以理解,图10仅仅是无线接入点设备5的举例,并不构成对无线接入点设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器501可以是中央处理单元(Central Processing Unit,CPU),该处理器501还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器502在一些实施例中可以是无线接入点设备5的内部存储单元,例如无线接入点设备5的硬盘或内存。存储器502在另一些实施例中也可以是无线接入点设备5的外部存储设备,例如无线接入点设备5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器502还可以既包括无线接入点设备5的内部存储单元也包括外部存储设备。存储器502用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器502还可以用于暂时地存储已经输出或者将要输出的数据。
无线网络模块504则可以包括Wi-Fi模块、蓝牙模块等。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种芯片系统,芯片系统包括存储器和处理器,处理器执行存储器中存储的计算机程序,以实现上述各个方法实施例中的步骤。
本申请实施例提供了一种芯片系统,芯片系统包括处理器,处理器与计算机可读存储介质耦合,处理器执行计算机可读存储介质中存储的计算机程序,以实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于 一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到无线接入点设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的无线数据传输方法、系统、无线接入点设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种无线数据传输方法,其特征在于,应用于多个依次级联的无线接入点设备中的一个,所述无线接入点设备包括无线接入模块、第一虚拟传输模块和第二虚拟传输模块,所述方法包括:
    所述无线接入点设备的第一虚拟传输模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据;
    所述无线接入点设备的第二虚拟传输模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据;
    所述无线接入点设备的无线接入模块同时向所述上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向所述下一级无线接入点的第一虚拟传输模块发送下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述无线接入点设备的第一虚拟传输模块将接收到的下行数据发送给所述无线接入点设备的无线接入模块;
    所述无线接入点设备的第二虚拟传输模块将接收到的上行数据发送给所述无线接入点设备的无线接入模块。
  3. 根据权利要求2所述的方法,其特征在于,所述无线接入点设备的第一虚拟传输模块将接收到的所述下行数据发送给所述无线接入点设备的桥接模块;
    所述无线接入点设备的第二虚拟传输模块将接收到的所述上行数据发送给所述桥接模块;
    所述桥接模块接收所述上行数据和所述下行数据,并根据预先设置的桥接转发表,将所述上行数据和所述下行数据发送给所述无线接入点设备的无线接入模块,所述预先设置的桥接转发表中包括所述无线接入点设备的第一虚拟传输模块与所述无线接入点设备的无线接入模块的转发关系,以及包括所述无线接入点设备的第二虚拟传输模块与所述无线接入点设备的无线接入模块的转发关系。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    当所述无线接入点设备接入新增的无线接入点设备时,在所述无线接入点设备中,为所述新增的无线接入点设备创建对应的第二虚拟传输模块。
  5. 根据权利要求4所述的方法,其特征在于,当所述新增的无线接入点设备的第一虚拟传输模块,根据配置的所述无线接入点设备的无线接入模块的第一接入信息,确定通过所述无线接入点设备进行级联时,在所述无线接入点设备中,为所述新增的无线接入点设备创建对应的第二虚拟传输模块,包括:
    所述新增的无线接入点设备的第一虚拟传输模块根据配置的所述第一接入信息,与所述无线接入点设备的无线接入模块连接,并向所述无线接入模块连接发送所述新增的无线接入点设备的第二接入信息;
    在所述无线接入点设备中设备创建第二虚拟传输模块;
    创建的所述第二虚拟传输模块根据来自所述无线接入点设备的无线接入模块的所述第二接入信息,与所述新增的无线接入点设备的无线接入模块连接。
  6. 根据权利要求4或5所述的方法,其特征在于,当所述无线接入点设备接入多个新增的无线接入点设备时,在所述无线接入点设备中,为每个所述新增的无线接入点设备创建一个对应的第二虚拟传输模块。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,当无线接入点设备的层级为最低级时,所述无线接入点设备与服务端设备连接,所述方法还包括:
    所述最低级无线接入点设备接收来自所述服务端设备的下行数据;
    所述最低级无线接入点设备通过所述无线接入点设备的无线接入模块向所述下一级无线接入点设备的第一虚拟传输模块发送来自所述服务端设备的下行数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,当无线接入点设备的级联层级为最低级时,所述无线接入点设备与服务端设备连接,所述方法还包括:
    所述最低级无线接入点设备的第二虚拟传输模块接收来自所述下一级无线接入点设备的无线接入模块发送的上行数据;
    所述最低级无线接入点设备通过所述第二虚拟传输模块将所述上行数据发送至所述服务端设备。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,当无线接入点设备的级联层级为最高级时,所述无线接入点设备与客户端设备连接,所述方法还包括:
    所述最高级无线接入点设备接收来自所述客户端设备的上行数据;
    所述最高级无线接入点设备通过所述无线接入点设备的无线接入模块向所述上一级无线接入点设备的第二虚拟传输模块发送来自所述客户端设备的上行数据。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,当无线接入点设备的级联层级为最高级时,所述无线接入点设备与客户端设备连接,所述方法还包括:
    所述最高级无线接入点设备的第一虚拟传输模块接收来自所述上一级无线接入点设备的无线接入模块发送的下行数据;
    所述最高级无线接入点设备通过所述无线接入点设备的无线接入模块将所述下行数据发送至所述客户端设备。
  11. 一种无线数据传输系统,所述无线数据传输系统包括服务端设备、第一无线接入点设备、一个或多个第二无线接入点设备、第三无线接入点设备以及客户端设备;所述服务端设备与所述第一无线接入点设备连接;所述第一无线接入点设备、所述一个或多个第二无线接入点设备、以及所述第三无线接入点设备依次级联;所述第三无线接入点设备与所述客户端连接,其特征在于,所述第一无线接入点设备、所述第二无线接入点设备以及所述第三无线接入点设备均包括无线接入模块、第一虚拟传输模块和第二虚拟传输模块;
    所述服务端设备向所述第一无线接入点设备发送下行数据;
    所述第一无线接入点设备接收所述下行数据,并通过无线接入模块向所述第二无线接入点设备发送所述下行数据;
    所述第二无线接入点设备通过第一虚拟传输模块接收所述下行数据,并通过无线接入模块向所述第三无线接入点设备发送所述下行数据;
    所述第三无线接入点设备通过第一虚拟传输模块接收所述下行数据,并向所述客户端发送所述下行数据;
    所述客户端设备向所述第三无线接入点设备的无线接入模块发送上行数据;
    所述第三无线接入点设备通过无线接入模块接收所述上行数据,并通过所述无线接入模块向所述第二无线接入点设备的第二虚拟模块发送所述上行数据;
    所述第二无线接入点设备通过接收所述上行数据,并通过无线接入模块向所述第一无线 接入点设备的第二虚拟传输模块发送所述上行数据;
    所述第一无线接入点设备通过第二虚拟传输模块接收所述上行数据,并向所述服务端发送所述上行数据。
  12. 根据权利要求11所述的系统,其特征在于,所述无线接入点设备的第一虚拟传输模块将接收到的下行数据发送给所述无线接入点设备的无线接入模块;
    所述无线接入点设备的第二虚拟传输模块将接收到的上行数据发送给所述无线接入点设备的无线接入模块。
  13. 根据权利要求11或12所述的系统,其特征在于,当所述第二无线接入点设备为多个时,级联层级最低的所述第二无线接入点设备与所述第一无线接入点设备连接;级联层级最高的所述第二无线接入点设备与所述第三无线接入点设备连接;
    两个所述第二无线接入点设备之间,包括:
    级联层级较低的第二无线接入点设备的第二虚拟传输模块接收来自上一级第二无线接入点设备的无线接入模块发送的上行数据;
    所述级联层级较低的第二无线接入点设备的无线接入模块向所述上一级第二无线接入点设备的第一虚拟传输模块发送下行数据。
  14. 根据权利要求11-13任一项所述的系统,其特征在于,当所述无线接入点设备接入新增的无线接入点设备时,为所述新增的无线接入点设备创建对应的第二虚拟传输模块。
  15. 根据权利要求14所述的系统,其特征在于,所述无线数据传输系统中增加无线接入点设备时,包括:
    所述无线数据传输系统中增加无线接入点设备时,包括:
    新增的无线接入点设备根据配置的第一接入信息确定新增的无线接入点设备的接入位置;
    所述新增的无线接入点设备的第一虚拟传输模块根据所述配置的第一接入信息与所述接入位置对应的无线接入点设备的无线接入模块连接,并将所述新增的无线接入点设备的第二接入信息发送给所述接入位置对应的无线接入点设备;
    所述接入位置对应的无线接入点设备的第二虚拟传输模块根据所述第二接入信息与所述新增的无线接入点设备的无线接入模块连接。
  16. 根据权利要求14或15所述的系统,其特征在于,当所述无线接入点设备接入多个新增的无线接入点设备时,为每个所述新增的无线接入点设备创建一个对应的第二虚拟传输模块。
  17. 一种无线接入点设备,其特征在于,包括存储器、处理器、无线网络模块以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,所述处理器上运行有无线接入模块、第一虚拟传输模块和第二虚拟传输模块;
    所述第一虚拟传输模块,用于通过所述无线网络模块接收来自上一级无线接入点设备的无线接入模块发送的下行数据;
    所述第二虚拟传输模块,用于通过所述无线网络模块接收来自下一级无线接入点设备的无线接入模块发送的上行数据;
    所述无线接入模块,用于通过所述无线网络模块同时向所述上一级无线接入点设备的第二虚拟传输模块发送上行数据,以及向所述下一级无线接入点的第一虚拟传输模块发送下行数据。
  18. 根据权利要求17所述的设备,其特征在于,所述第一虚拟传输模块用于通过所述无线网络模块将接收到的下行数据发送给所述无线接入点设备的无线接入模块;
    所述第二虚拟传输模块,用于通过所述无线网络模块将接收到的上行数据发送给所述无线接入点设备的无线接入模块。
  19. 根据权利要求18所述的设备,其特征在于,所述设备还包括桥接模块;
    所述第一虚拟传输模块,用于通过所述无线网络模块将接收到的所述下行数据发送给所述无线接入点设备的所述桥接模块;
    所述第二虚拟传输模块,用于通过所述无线网络模块将接收到的所述上行数据发送给所述桥接模块;
    所述桥接模块,用于通过所述无线网络模块接收所述上行数据和所述下行数据,并根据预先设置的桥接转发表,将所述上行数据和所述下行数据发送给所述无线接入点设备的无线接入模块,所述预先设置的桥接转发表中包括所述无线接入点设备的第一虚拟传输模块与所述无线接入点设备的无线接入模块的转发关系,以及包括所述无线接入点设备的第二虚拟传输模块与所述无线接入点设备的无线接入模块的转发关系。
  20. 根据权利要求17-19任一项所述的设备,其特征在于,所述设备还包括创建模块,用于当所述无线接入点设备接入新增的无线接入点设备时,在所述无线接入点设备中,为所述新增的无线接入点设备创建对应的第二虚拟传输模块。
  21. 根据权利要求20所述的设备,其特征在于,当所述新增的无线接入点设备的第一虚拟传输模块,根据配置的所述无线接入点设备的无线接入模块的第一接入信息,确定通过所述无线接入点设备进行级联时,所述新增的无线接入点设备的第一虚拟传输模块根据所述配置的第一接入信息,通过所述无线网络模块与所述无线接入点设备的无线接入模块连接,并向所述无线接入模块连接发送所述新增的无线接入点设备的第二接入信息;
    所述创建模块,具体用于在所述无线接入点设备中设备创建第二虚拟传输模块;
    创建的所述第二虚拟传输模块根据来自所述无线接入点设备的无线接入模块的所述第二接入信息,通过所述无线网络模块与所述新增的无线接入点设备的无线接入模块连接。
  22. 根据权利要求21所述的设备,其特征在于,当所述无线接入点设备接入多个新增的无线接入点设备时,所述创建模块,还用于在所述无线接入点设备中,为每个所述新增的无线接入点设备创建一个对应的第二虚拟传输模块。
  23. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至10任一项所述的方法。
PCT/CN2022/076222 2021-06-28 2022-02-14 无线数据传输方法、系统及无线接入点设备 WO2023273359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110723351.5 2021-06-28
CN202110723351.5A CN115604749A (zh) 2021-06-28 2021-06-28 无线数据传输方法、系统及无线接入点设备

Publications (1)

Publication Number Publication Date
WO2023273359A1 true WO2023273359A1 (zh) 2023-01-05

Family

ID=84690200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076222 WO2023273359A1 (zh) 2021-06-28 2022-02-14 无线数据传输方法、系统及无线接入点设备

Country Status (2)

Country Link
CN (1) CN115604749A (zh)
WO (1) WO2023273359A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172698A1 (en) * 2012-05-17 2013-11-21 Mimos Berhad A system and method for propagating vlan traffic over a wireless multi-hop network
CN105813091A (zh) * 2014-12-30 2016-07-27 中国电信股份有限公司 信息收发方法和系统、虚拟宏基站控制装置、微基站
CN106165351A (zh) * 2014-04-03 2016-11-23 高通股份有限公司 使用tdls的多信道链路聚集
CN110475375A (zh) * 2018-05-11 2019-11-19 智观诚通讯科技(昆山)有限公司 无线接入点及其信道分配方法、计算机可读存储介质
CN111010713A (zh) * 2019-12-17 2020-04-14 烽火通信科技股份有限公司 一种数据传输方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172698A1 (en) * 2012-05-17 2013-11-21 Mimos Berhad A system and method for propagating vlan traffic over a wireless multi-hop network
CN106165351A (zh) * 2014-04-03 2016-11-23 高通股份有限公司 使用tdls的多信道链路聚集
CN105813091A (zh) * 2014-12-30 2016-07-27 中国电信股份有限公司 信息收发方法和系统、虚拟宏基站控制装置、微基站
CN110475375A (zh) * 2018-05-11 2019-11-19 智观诚通讯科技(昆山)有限公司 无线接入点及其信道分配方法、计算机可读存储介质
CN111010713A (zh) * 2019-12-17 2020-04-14 烽火通信科技股份有限公司 一种数据传输方法及系统

Also Published As

Publication number Publication date
CN115604749A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2021052437A1 (zh) 一种应用启动方法及电子设备
WO2019174472A1 (zh) 画质参数调节方法、装置、终端及存储介质
WO2020108356A1 (zh) 一种应用显示方法及电子设备
US9654906B2 (en) Method for processing data based on bluetooth protocol and electronic device thereof
US10165567B2 (en) Adaptive communication method and apparatus
CN107003889B (zh) 用于提供全球平台兼容可信执行环境的系统和方法
US9538445B2 (en) Communication method and apparatus for electronic device in mobile communication system
WO2021027630A1 (zh) 补丁方法、相关装置及系统
US11782756B2 (en) Method and apparatus for scheduling processor core, and storage medium
US20150065053A1 (en) Method of controlling short-range wireless communication and apparatus supporting the same
US9756674B2 (en) Method of transmitting and receiving data of electronic device and electronic device using the method
WO2021104114A1 (zh) 一种提供无线保真WiFi网络接入服务的方法及电子设备
WO2021185235A1 (zh) 一种应用显示接续方法及装置
US10257873B2 (en) Method and electronic device for providing tethering service
EP4195870B1 (en) Data transmission method and terminal
AU2014315883A1 (en) Method of controlling short-range wireless communication and apparatus supporting the same
US10237087B2 (en) Method for controlling transmission speed and electronic device thereof
US20240111595A1 (en) Application deployment method, distributed operating system, electronic device, and storage medium
US10075798B2 (en) Method for providing audio and electronic device adapted to the same
WO2023273359A1 (zh) 无线数据传输方法、系统及无线接入点设备
WO2022228190A1 (zh) 一种WiFi连接方法及装置
EP4191409A1 (en) Shared library multiplexing method and electronic device
US9928090B2 (en) Method for processing dynamic language and electronic device using the same
WO2024046062A1 (zh) 一种卡片跨设备交互方法及电子设备
WO2022228005A1 (zh) 一种消息提醒方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE