WO2023273039A1 - 一种防误触方法、可穿戴设备及存储介质 - Google Patents

一种防误触方法、可穿戴设备及存储介质 Download PDF

Info

Publication number
WO2023273039A1
WO2023273039A1 PCT/CN2021/125989 CN2021125989W WO2023273039A1 WO 2023273039 A1 WO2023273039 A1 WO 2023273039A1 CN 2021125989 W CN2021125989 W CN 2021125989W WO 2023273039 A1 WO2023273039 A1 WO 2023273039A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
touch
pressure sensors
wearable device
touch structure
Prior art date
Application number
PCT/CN2021/125989
Other languages
English (en)
French (fr)
Inventor
杨宗旭
李树鹏
曹桂明
隋涛
谭树民
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023273039A1 publication Critical patent/WO2023273039A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment

Definitions

  • the present application relates to the technical field of device control, and in particular to a false touch prevention method, a wearable device and a storage medium.
  • buttons and scroll wheels are usually set on wearable devices, and users can realize human-computer interaction with wearable devices by pressing or rotating the touch structures.
  • the purpose of this application is to provide a false touch prevention method, a wearable device and a storage medium, which can improve the accuracy of false touch recognition.
  • the anti-mistouch method includes:
  • the pressure values collected by at least two pressure sensors are obtained; wherein, the touch structure and the at least two pressure sensors are both arranged on the side wall of the wearable device, at least The distances between the two pressure sensors and the touch structure are not equal;
  • the method further includes:
  • the method further includes:
  • the wearing state data includes data collected by any one or any several sensors of a sign sensor, a distance sensor and a motion sensor;
  • the method further includes:
  • the present application also provides a wearable device, including a touch control structure, at least two pressure sensors, a micro control unit and a main control chip;
  • the touch structure and at least two pressure sensors are arranged on the side wall of the wearable device, the distances between the at least two pressure sensors and the touch structure are not equal, and the micro The control unit is used to send the pressure value collected by the pressure sensor to the main control chip;
  • the main control chip is used to obtain the pressure values collected by at least two pressure sensors through the micro control unit if it is detected that the touch structure is triggered; it is also used to judge whether the pressure values collected by all the pressure sensors are within the Corresponding reference pressure interval; if yes, respond to the event that the touch structure is triggered; if not, determine that the touch structure is accidentally touched, and do not respond to the event that the touch structure is triggered.
  • the touch control structure includes a scroll wheel disposed on the side wall of the housing of the wearable device, and at least two of the pressure sensors are disposed on the side wall of the housing and located on both sides of the touch control structure respectively.
  • At least one pressure sensor is provided at the position where the touch control structure is installed on the side wall of the housing.
  • the touch control structure includes a button, and at least two of the pressure sensors are disposed on the side wall of the housing and are respectively located on both sides of the touch control structure.
  • all the pressure sensors are arranged on the same FPC board or PCB board, and the FPC board or the PCB board is attached to the side wall of the housing of the wearable device.
  • the present application also provides a storage medium, on which a computer program is stored, and when the computer program is executed, the steps performed in the above-mentioned false touch prevention method are realized.
  • the present application provides a false touch prevention method, which is applied to wearable devices.
  • the false touch prevention method includes: if it is detected that the touch structure is triggered, then acquire the pressure values collected by at least two pressure sensors; wherein, the The touch structure and at least two of the pressure sensors are both arranged on the side wall of the wearable device, and the distances between the at least two of the pressure sensors and the touch structure are not equal; it is determined that all the pressure sensors collect Whether the pressure values are all within the corresponding reference pressure range; if yes, respond to the event that the touch structure is triggered; if not, determine that the touch structure is accidentally touched, and do not respond to the event that the touch structure is triggered event.
  • the present application acquires pressure values collected by at least two pressure sensors after detecting that the touch structure is triggered. Since both the touch structure and the pressure sensor are arranged on the side wall of the wearable device, when the user touches the touch structure, the deformation of the side wall of the shell will cause a change in the pressure value collected by the pressure sensor. In the present application, the distances between at least two pressure sensors and the touch structure are not equal, so when the touch structure is triggered under the non-false touch condition, the influence on the pressure value collected by the pressure sensor is different. This application compares the pressure values collected by all the pressure sensors with the corresponding reference pressure range.
  • the present application can detect false touch phenomena in various scenarios, and improves the accuracy of identifying false touches.
  • the present application also provides a wearable device and a storage medium, which have the above-mentioned beneficial effects, and will not be repeated here.
  • FIG. 1 is a flow chart of a method for preventing false touches provided in the embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a positional layout of a pressure sensor provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an attachment method of a pressure sensor disposed on a housing provided in an embodiment of the present application;
  • FIG. 5 is a schematic diagram of an attachment method of a pressure sensor disposed on a touch structure provided in an embodiment of the present application.
  • touch structure designs such as scroll wheels. Because these touch structures are prone to force and cause false triggering, for example, the scroll wheel is prone to force and cause false triggering of rolling (for example, when a table is supported by a hand, a large area of the shell will have skin contact and pressure).
  • the present application provides a new anti-mistouch solution for wearable devices through the following several embodiments, which can avoid the above-mentioned defects with a low-cost solution.
  • FIG. 1 is a flow chart of a method for preventing false touches provided by the embodiment of the present application.
  • the specific steps may include:
  • the above-mentioned wearable devices can include a touch structure, at least two pressure sensors, a micro control unit MCU and a main control chip.
  • the pressure sensor is used to detect the pressure value at a specific position and return the pressure value to the main control chip through the micro control unit.
  • Both the touch control structure and the at least two pressure sensors are disposed on the side wall of the wearable device, and the distances between the at least two pressure sensors and the touch control structure are unequal.
  • calibrating the pressure sensors Before obtaining the pressure values collected by at least two pressure sensors, there may also be an operation of calibrating the pressure sensors. For example, the pressure test values when the pressure sensors are respectively in the pressed state and the unpressed state can be collected, and according to the pressure test value Calibrate the pressure sensor.
  • the touch structure in this embodiment may include a key or a scroll wheel, and the user may trigger the above touch structure by pressing or rotating.
  • the touch structure is connected to the main control chip, and the main control chip can detect the event that the user triggers the touch structure. At this time, a data collection command can be sent to the micro control unit to obtain the pressure value collected by each pressure sensor.
  • the key can be a common depressible key, or a depressible and rotatable key
  • the scroll wheel can be a common rotatable scroll wheel, or a rotatable and pressable scroll wheel.
  • the rotation axis of the roller can be parallel to the plane where the sidewall of the casing where the roller is arranged or parallel to the tangent plane of the sidewall of the casing.
  • the rotation axis of the roller can be parallel to the side wall of the housing on which the roller is disposed, specifically, it can be parallel to the long side of the side wall of the housing, or parallel to the short side of the side wall of the housing.
  • the rotation axis of the scroll wheel is parallel to the tangent plane of the side wall of the housing where the scroll wheel is disposed.
  • the above-mentioned reference pressure interval is the interval where the pressure values of all pressure sensors are located when the touch structure is triggered under the condition of no false touch.
  • the above-mentioned reference pressure range can be set through an actual test.
  • each pressure sensor has its corresponding reference pressure interval, and the reference pressure interval is related to the position of the pressure sensor.
  • this embodiment can compare the pressure values actually collected by each pressure sensor with the corresponding reference pressure range. If the pressure values collected by all the pressure sensors are within the corresponding If the reference pressure interval is used, it is determined that there is no false touch; if the pressure values collected by all the pressure sensors are not uniform in the corresponding reference pressure interval, it is determined that there is a false touch.
  • the main control chip can respond to the event that triggers the touch structure according to the preset processing logic, such as Screen wake-up, volume adjustment, answering calls, etc.
  • S104 Determine that the touch structure is accidentally touched, and do not respond to an event that the touch structure is triggered.
  • pressure values collected by at least two pressure sensors are acquired. Since both the touch structure and the pressure sensor are arranged on the side wall of the wearable device, when the user touches the touch structure, the deformation of the side wall of the shell will cause a change in the pressure value collected by the pressure sensor.
  • the distances between at least two pressure sensors and the touch structure are not equal, so when the touch structure is triggered under the non-false touch condition, the influence on the pressure value collected by the pressure sensors is different.
  • the pressure values collected by all the pressure sensors are compared with the corresponding reference pressure intervals.
  • the anti-false touch solution of this embodiment can detect false touch phenomena in various scenarios, and improves the accuracy of identifying false touches.
  • the wearing state data includes any one or any of several sensors in a sign sensor, a distance sensor and a motion sensor. data; judge whether the wearable device is in the worn state according to the wearing state data; if so, enter the step of obtaining the pressure values collected by at least two pressure sensors; if not, execute the wearable device When not worn, the corresponding processing strategy is triggered by the touch structure.
  • the aforementioned sign sensor can be a sensor for detecting the wearer's heart rate, or a sensor for detecting the wearer's body temperature, or a sensor for simultaneously detecting heart rate and body temperature.
  • the wearable device when it detects that the user is wearing it normally, it can execute the above-mentioned anti-false touch solution of S101-S104, thereby avoiding the disorder of the anti-false touch detection logic when the user is not wearing the device.
  • a reference pressure interval setting instruction may be received, and prompt information prompting the user to trigger the touch structure under non-false touch conditions may be output;
  • the reference pressure value collected by the sensor, and the reference pressure interval is set according to the reference pressure value.
  • the reference pressure interval may be determined according to the pressure value range corresponding to the reference pressure value ⁇ 10%. The reference pressure range under the non-false touch condition can be quickly determined through the above method.
  • the reference pressure interval can be set in the following way: determine the pressure value interval when each pressure sensor is directly pressed, and set the pressure value interval of the pressure sensor installed on the touch structure It is set as the reference pressure interval of the pressure sensor, and the complement of the pressure value intervals of the pressure sensors not set on the touch structure is set as the reference pressure interval of the pressure sensor.
  • all pressure sensors can be divided into two types of pressure sensors according to whether they are arranged on the touch structure, that is, pressure sensors far away from the touch structure and pressure sensors close to the touch structure.
  • the touch structure incorporates all pressure sensors.
  • the false touch detection process based on the above method includes: first collecting the pressure values of each pressure sensor when no contact is pressed, that is, obtaining the minimum pressure value Tmin of each pressure sensor.
  • the minimum pressure Tmin of each pressure sensor may be different, and the pressure sensor may be calibrated based on the above difference.
  • collect the pressure value range M collected when the pressure sensor away from the touch structure is directly pressed set according to the false trigger scene, for example, 0.5-10N).
  • the range S of pressure values collected by the pressure sensor close to the touch structure when the touch structure is triggered (for example, force 3-8N) is collected.
  • the actual pressure value collected by the pressure sensor close to the touch structure is within the interval S, and the actual pressure values collected by the pressure sensor far away from the touch structure are all outside the interval M, it is considered a normal trigger. The rest of the scenes were judged as false triggers.
  • FIG. 2 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • the device may include: a touch control structure, at least two pressure sensors, a micro control unit and a main control chip;
  • the touch structure and at least two pressure sensors are arranged on the side wall of the wearable device, the distances between the at least two pressure sensors and the touch structure are not equal, and the micro
  • the control unit is used to send the pressure value collected by the pressure sensor to the main control chip; the main control chip is used to obtain at least two pressure sensors through the micro control unit if it detects that the touch structure is triggered.
  • the collected pressure value it is also used to judge whether all the pressure values collected by the pressure sensor are in the corresponding reference pressure range; if so, then respond to the event that the touch structure is triggered; if not, then determine that the touch The structure is accidentally touched and does not respond to the event that the touch structure is triggered.
  • pressure values collected by at least two pressure sensors are acquired. Since both the touch structure and the pressure sensor are arranged on the side wall of the wearable device, when the user touches the touch structure, the deformation of the side wall of the shell will cause a change in the pressure value collected by the pressure sensor.
  • the distances between at least two pressure sensors and the touch structure are not equal, so when the touch structure is triggered under the non-false touch condition, the influence on the pressure value collected by the pressure sensors is different.
  • the pressure values collected by all the pressure sensors are compared with the corresponding reference pressure intervals.
  • the anti-false touch solution of this embodiment can detect false touch phenomena in various scenarios, and improves the accuracy of identifying false touches.
  • the above-mentioned touch control structure may include a scroll wheel disposed on the side wall of the wearable device, and at least two of the pressure sensors are disposed on the side wall of the housing and respectively located on both sides of the touch control structure.
  • the above-mentioned touch structure may include a button, and at least two of the pressure sensors are disposed on the side wall of the housing and respectively located on two sides of the touch structure.
  • FIG. 3 is a schematic diagram of a positional layout of a pressure sensor provided by an embodiment of the present application. As shown in FIG. 302, and the other two pressure sensors 301 and 303 are arranged on both sides of the touch structure respectively, and are symmetrically distributed.
  • FIG. 4 is a schematic diagram of the attachment method of a pressure sensor provided in the case provided by the embodiment of the present application. When the outer shell of the wearable device is deformed, it will be welded to the PCB board through foam extrusion Or the pressure sensor on the FPC board, the PCB board or the FPC board is arranged on the bracket.
  • Figure 5 is a schematic diagram of the attachment method of a pressure sensor provided on the touch structure provided by the embodiment of the present application. When the touch structure is triggered, it will be welded to the PCB board through foam extrusion Or pressure sensor on FPC board.
  • This embodiment provides an anti-false touch design based on pressure value detection.
  • the design of multiple side pressure sensors can effectively distinguish between user operations and false triggering scenarios through signal collection and corresponding software control logic.
  • the present application also provides a storage medium on which a computer program is stored. When the computer program is executed, the steps provided in the above-mentioned embodiments can be realized.
  • the storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

一种防误触方法、一种可穿戴设备及一种存储介质,所述防误触方法包括:若检测到触控结构被触发,则获取至少两个压力传感器采集的压力值(S101);其中,触控结构和至少两个压力传感器均设置于可穿戴设备的外壳侧壁,至少两个压力传感器分别与触控结构的距离不相等;判断所有压力传感器采集的压力值是否均在对应的参考压力区间(S102);若是,则响应触控结构被触发的事件(S103);若否,则判定触控结构被误触(S104),不响应触控结构被触发的事件。该方法能够检测多种场景下的误触现象,提高了识别误触的准确率。

Description

一种防误触方法、可穿戴设备及存储介质
本申请要求于2021年6月30日提交中国专利局、申请号为202110741520.8、发明名称为“一种防误触方法、可穿戴设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及设备控制技术领域,特别涉及一种防误触方法、一种可穿戴设备及一种存储介质。
背景技术
随着智能可穿戴技术的发展,智能手表、智能手环等可穿戴设备已经被普遍使用。可穿戴设备上通常设置按键、滚轮等触控结构,用户通过按压或旋转触控结构实现与可穿戴设备的人机交互。
在实际应用中,常常存在由于用户误操作导致的触控结构误触,如手撑桌子时智能手表的大面积外壳都会有皮肤接触与压迫,此时产生表冠误触。本领域中主要通过分析用户状态(如是否抬腕、是否睡眠等)来判断是否存在误触现象,但是根据用户状态分析误触所覆盖的场景范围较少,无法准确识别误触现象。
因此,如何提高识别误触的准确率是本领域技术人员目前需要解决的技术问题。
发明内容
本申请的目的是提供一种防误触方法、一种可穿戴设备及一种存储介质,能够提高识别误触的准确率。
为解决上述技术问题,本申请提供一种防误触方法,应用于可穿戴设备,所述防误触方法包括:
若检测到触控结构被触发,则获取至少两个压力传感器采集的压力值;其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的 外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等;
判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;
若是,则响应所述触控结构被触发的事件;
若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
可选的,在获取至少两个压力传感器采集的压力值之前,还包括:
接收参考压力区间设置指令,并输出提示用户在非误触条件下触发所述触控结构的提示信息;
获取至少两个所述压力传感器采集的参考压力值,并根据所述参考压力值设置参考压力区间。
可选的,在获取至少两个压力传感器采集的压力值之前,还包括:
采集所述可穿戴设备的佩戴状态数据;其中,所述佩戴状态数据包括体征传感器、距离传感器和运动传感器中任一种或任几种传感器采集的数据;
根据所述佩戴状态数据判断所述可穿戴设备是否处于已佩戴状态;
若是,则进入所述获取至少两个压力传感器采集的压力值的步骤;
若否,则执行所述可穿戴设备未佩戴时所述触控结构被触发对应的处理策略。
可选的,在获取至少两个压力传感器采集的压力值之前,还包括:
采集所述压力传感器分别处于按压状态和未按压状态时的压力测试值,根据所述压力测试值对所述压力传感器进行校准。
本申请还提供了一种可穿戴设备,包括触控结构、至少两个压力传感器、微控制单元和主控芯片;
其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等,所述微控制单元用于将所述压力传感器采集的压力值发送至所述主控芯片;
所述主控芯片用于若检测到触控结构被触发,则通过所述微控制单元获取至少两个压力传感器采集的压力值;还用于判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;若是,则响应所述触控结构被触发的事件;若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
可选的,所述触控结构包括设置于所述可穿戴设备的外壳侧壁的滚轮, 至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。
可选的,所述外壳侧壁上装设所述触控结构的位置设置有至少一个压力传感器。
可选的,所述触控结构包括按键,至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。
可选的,所有的压力传感器设置于同一FPC板或PCB板,所述FPC板或所述PCB板贴附于所述可穿戴设备的外壳侧壁。
本申请还提供了一种存储介质,其上存储有计算机程序,所述计算机程序执行时实现上述防误触方法执行的步骤。
本申请提供了一种防误触方法,应用于可穿戴设备,所述防误触方法包括:若检测到触控结构被触发,则获取至少两个压力传感器采集的压力值;其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等;判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;若是,则响应所述触控结构被触发的事件;若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
本申请在检测到触控结构被触发后,获取至少两个压力传感器采集的压力值。由于触控结构和压力传感器均设置于可穿戴设备的外壳侧壁,用户触碰触控结构时,外壳侧壁的形变将会引起压力传感器采集的压力值的变化。本申请中至少两个压力传感器与触控结构之间的距离不相等,因此非误触条件下触控结构被触发时,对于压力传感器采集的压力值的影响不同。本申请根据所有所述压力传感器采集的压力值与对应的参考压力区间进行比较,若均在参考压力区间内,则说明不存在误触;若不均在参考压力区间内,则说明触控结构被误触,此时可以不响应所述触控结构被触发的事件。本申请的防误触方案能够检测多种场景下的误触现象,提高了识别误触的准确率。本申请同时还提供了一种可穿戴设备及一种存储介质,具有上述有益效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例所提供的一种防误触方法的流程图;
图2为本申请实施例所提供的一种可穿戴设备的架构示意图;
图3为本申请实施例所提供的一种压力传感器位置布局示意图;
图4为本申请实施例所提供的一种设置于壳体的压力传感器的贴附方式示意图;
图5为本申请实施例所提供的一种设置于触控结构的压力传感器的贴附方式示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着智能可穿戴技术的发展,常规的物理按键方式逐渐无法满足用户的需求和场景的切换,许多厂商都推出了滚轮等触控结构设计。由于这些触控结构存在易受力而产生误触发现象,例如,滚轮存在易受力而产生滚动的误触发现象(如手撑桌子时,大面积外壳都会有皮肤接触与压迫)。本申请通过以下几个实施例提供新的可穿戴设备防误触方案,能够以低成本的方案对上述缺陷进行规避。
下面请参见图1,图1为本申请实施例所提供的一种防误触方法的流程图,具体步骤可以包括:
S101:若检测到触控结构被触发,则获取至少两个压力传感器采集的压力值;
其中,本实施例可以应用于智能手表、手环、AR眼镜或VR头盔等可穿戴设备,上述可穿戴设备可以包括触控结构、至少两个压力传感器、微控制 单元MCU和主控芯片。压力传感器用于检测特定位置的压力值并将压力值通过微控制单元返回至主控芯片。上述触控结构和至少两个所述压力传感器均设置于可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等。在获取至少两个压力传感器采集的压力值之前还可以存在对压力传感器进行校准的操作,例如可以采集所述压力传感器分别处于按压状态和未按压状态时的压力测试值,根据所述压力测试值对所述压力传感器进行校准。
本实施例中的触控结构可以包括按键或滚轮,用户可以通过按压或旋转的方式触发上述触控结构。触控结构与主控芯片连接,主控芯片可以检测到用户触发触控结构的事件,此时可以向微控制单元下发数据采集指令,以便获取各个压力传感器采集的压力值。还需要说明的是,按键可以是普通的可按压按键,也可是既可按压又可旋转的按键,滚轮可以是普通的可旋转滚轮,也可以是即可旋转也可按压的滚轮。滚轮被旋转时,外壳侧壁会受力发生形变,滚轮的旋转轴线可以平行于设置滚轮的外壳侧壁所在的平面或者平行于外壳侧壁的切平面。例如,当可穿戴设备的外壳大体呈矩形时,滚轮的旋转轴线可以平行于设置滚轮的外壳侧壁,具体地,可以与外壳侧壁的长边平行,也可以与外壳侧壁的短边平行;当可穿戴设备的外壳大体呈圆形时,滚轮的旋转轴线平行于设置滚轮的外壳侧壁的切平面。
S102:判断所有压力传感器采集的压力值是否均在对应的参考压力区间;若是,则进入S103;若否,则进入S104;
其中,上述参考压力区间为在未误触条件下触控结构被触发时所有压力传感器的压力值所在的区间。本实施例可以通过实际测试设置上述参考压力区间。
可以理解的是,当触控结构被用户正常触发时,用户的手指对于距离触控结构越近的压力传感器采集值的影响越大,因此可以基于压力传感器与未误触条件下的参考压力区间进行比较,与实现误触识别。
具体的,每一压力传感器都有其对应的参考压力区间,该参考压力区间与压力传感器的位置相关。在得到多个压力传感器采集的压力值的基础上,本实施例可以将每一压力传感器实际采集的压力值与对应的参考压力区间进行比较,若所有的压力传感器采集的压力值均在对应的参考压力区间,则判 定不存在误触;若所有的压力传感器采集的压力值不均在对应的参考压力区间,则判定存在误触。
S103:响应所述触控结构被触发的事件;
其中,若所有所述压力传感器采集的压力值均在对应的参考压力区间,则说明不存在误触现象,此时主控芯片可以按照预设处理逻辑响应触发所述触控结构的事件,如屏幕唤醒、音量调整、接听电话等。
S104:判定触控结构被误触,不响应所述触控结构被触发的事件。
其中,若所有所述压力传感器采集的压力值均在对应的参考压力区间,则说明存在误触现象,判定所述触控结构被误触,不响应触发所述触控结构的事件。
本实施例在检测到触控结构被触发后,获取至少两个压力传感器采集的压力值。由于触控结构和压力传感器均设置于可穿戴设备的外壳侧壁,用户触碰触控结构时,外壳侧壁的形变将会引起压力传感器采集的压力值的变化。本实施例中至少两个压力传感器与触控结构之间的距离不相等,因此非误触条件下触控结构被触发时,对于压力传感器采集的压力值的影响不同。本实施例根据所有所述压力传感器采集的压力值与对应的参考压力区间进行比较,若均在参考压力区间内,则说明不存在误触;若不均在参考压力区间内,则说明触控结构被误触,此时可以不响应所述触控结构被触发的事件。本实施例的防误触方案能够检测多种场景下的误触现象,提高了识别误触的准确率。
作为对于图1对应实施例的进一步介绍,在进行防误触检测之前还可以存在佩戴状态检测的方案,以便在可穿戴设备处于已佩戴状态下进行防误触检测,具体过程如下:
在获取至少两个压力传感器采集的压力值之前,采集所述可穿戴设备的佩戴状态数据;其中,所述佩戴状态数据包括体征传感器、距离传感器和运动传感器中任一种或任几种传感器采集的数据;根据所述佩戴状态数据判断所述可穿戴设备是否处于已佩戴状态;若是,则进入所述获取至少两个压力传感器采集的压力值的步骤;若否,则执行所述可穿戴设备未佩戴时所述触控结构被触发对应的处理策略。上述体征传感器可以为用于检测佩戴者心率 的传感器,也可以为用于检测佩戴者体温的传感器,还可以为同时检测心率和体温的传感器。
通过上述方式,可穿戴设备能够在检测到用户正常佩戴时,再执行上述S101~S104的防误触方案,进而能够规避用户未佩戴操作时防误触检测逻辑紊乱的情况。
作为对于图1对应实施例的进一步介绍,在压力传感器采集的压力值之前,还可以存在对各个压力传感器进行校准的操作。例如,可以在获取至少两个压力传感器采集的压力值之前,接收参考压力区间设置指令,并输出提示用户在非误触条件下触发所述触控结构的提示信息;获取至少两个所述压力传感器采集的参考压力值,并根据所述参考压力值设置参考压力区间。具体的,本实施例可以根据参考压力值±10%对应的压力值范围确定参考压力区间。通过上述方式能够快速确定非误触条件下的参考压力区间。
此外,若存在设置于触控结构的压力传感器时,可以通过以下方式设置参考压力区间:确定每一压力传感器被直接按压时的压力值区间,将设置于触控结构的压力传感器的压力值区间设置为该压力传感器的参考压力区间,将未设置于触控结构的压力传感器的压力值区间的补集设置为该压力传感器的参考压力区间。
本实施例可以按照是否设置于触控结构将所有的压力传感器划分为两类压力传感器,即远离触控结构的压力传感器和靠近触控结构的压力传感器,靠近触控结构的压力传感器为设置于触控结构将所有的压力传感器。基于上述方式误触的检测过程包括:首先采集未接触按压时各压力传感器的压力值,即得到各个压力传感器的压力最小值Tmin。各压力传感器的压力最小值Tmin可存在差异,可以基于上述差异对压力传感器进行校准。其次,采集远离触控结构的压力传感器被直接按压时(根据误触发场景设置,例如0.5~10N)采集的压力值范围M。然后,采集触控结构被触发(例如力度3~8N)时靠近触控结构的压力传感器采集的压力值范围S。在可穿戴设备使用过程中,若靠近触控结构的压力传感器实际采集的压力值在区间S内,且远离触控结构的压力传感器实际采集的压力值均在区间M外,视为正常触发,其余场景则均判定为误触发。
请参见图2,图2为本申请实施例所提供的一种可穿戴设备的架构示意图,如图2所示该设备可以包括:包括触控结构、至少两个压力传感器、微控制单元和主控芯片;
其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等,所述微控制单元用于将所述压力传感器采集的压力值发送至所述主控芯片;所述主控芯片用于若检测到触控结构被触发,则通过所述微控制单元获取至少两个压力传感器采集的压力值;还用于判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;若是,则响应所述触控结构被触发的事件;若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
本实施例在检测到触控结构被触发后,获取至少两个压力传感器采集的压力值。由于触控结构和压力传感器均设置于可穿戴设备的外壳侧壁,用户触碰触控结构时,外壳侧壁的形变将会引起压力传感器采集的压力值的变化。本实施例中至少两个压力传感器与触控结构之间的距离不相等,因此非误触条件下触控结构被触发时,对于压力传感器采集的压力值的影响不同。本实施例根据所有所述压力传感器采集的压力值与对应的参考压力区间进行比较,若均在参考压力区间内,则说明不存在误触;若不均在参考压力区间内,则说明触控结构被误触,此时可以不响应所述触控结构被触发的事件。本实施例的防误触方案能够检测多种场景下的误触现象,提高了识别误触的准确率。
进一步的,上述触控结构可以包括设置于所述可穿戴设备的外壳侧壁的滚轮,至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。上述触控结构可以包括按键,至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。
请参见图3,图3为本申请实施例所提供的一种压力传感器位置布局示意图,如图3所示,所述外壳侧壁上装设所述触控结构300的位置设置有至少一个压力传感器302,其他两个压力传感器301和303分别设置于触控结构的两侧,且呈对称分布。
进一步的,所有的压力传感器设置于同一FPC板或PCB板,所述FPC 板或所述PCB板贴附于所述可穿戴设备的外壳侧壁。请参见图4,图4为本申请实施例所提供的一种设置于壳体的压力传感器的贴附方式示意图,当可穿戴设备的外壳形变时,将会通过泡棉挤压焊接于PCB板或FPC板上的压力传感器,PCB板或FPC板设置于支架上。请参见图5,图5为本申请实施例所提供的一种设置于触控结构的压力传感器的贴附方式示意图,当触控结构被触发时,将会通过泡棉挤压焊接于PCB板或FPC板上的压力传感器。
本实施例提供了基于压力值检测的防误触设计,采用多个侧边压力传感器的设计,可以通过信号采集以及对应的软件控制逻辑,能够有效区分用户操作和误触发场景。
本申请还提供了一种存储介质,其上存有计算机程序,该计算机程序被执行时可以实现上述实施例所提供的步骤。该存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的状况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种防误触方法,其特征在于,应用于可穿戴设备,所述防误触方法包括:
    若检测到触控结构被触发,则获取至少两个压力传感器采集的压力值;其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等;
    判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;
    若是,则响应所述触控结构被触发的事件;
    若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
  2. 根据权利要求1所述防误触方法,其特征在于,在获取至少两个压力传感器采集的压力值之前,还包括:
    接收参考压力区间设置指令,并输出提示用户在非误触条件下触发所述触控结构的提示信息;
    获取至少两个所述压力传感器采集的参考压力值,并根据所述参考压力值设置参考压力区间。
  3. 根据权利要求1所述防误触方法,其特征在于,在获取至少两个压力传感器采集的压力值之前,还包括:
    采集所述可穿戴设备的佩戴状态数据;其中,所述佩戴状态数据包括体征传感器、距离传感器和运动传感器中任一种或任几种传感器采集的数据;
    根据所述佩戴状态数据判断所述可穿戴设备是否处于已佩戴状态;
    若是,则进入所述获取至少两个压力传感器采集的压力值的步骤;
    若否,则执行所述可穿戴设备未佩戴时所述触控结构被触发对应的处理策略。
  4. 根据权利要求1所述防误触方法,其特征在于,在获取至少两个压力传感器采集的压力值之前,还包括:
    采集所述压力传感器分别处于按压状态和未按压状态时的压力测试值,根据所述压力测试值对所述压力传感器进行校准。
  5. 一种可穿戴设备,其特征在于,包括触控结构、至少两个压力传感器、微控制单元和主控芯片;
    其中,所述触控结构和至少两个所述压力传感器均设置于所述可穿戴设备的外壳侧壁,至少两个所述压力传感器分别与所述触控结构的距离不相等,所述微控制单元用于将所述压力传感器采集的压力值发送至所述主控芯片;
    所述主控芯片用于若检测到触控结构被触发,则通过所述微控制单元获取至少两个压力传感器采集的压力值;还用于判断所有所述压力传感器采集的压力值是否均在对应的参考压力区间;若是,则响应所述触控结构被触发的事件;若否,则判定所述触控结构被误触,不响应所述触控结构被触发的事件。
  6. 根据权利要求5所述可穿戴设备,其特征在于,所述触控结构包括设置于所述可穿戴设备的外壳侧壁的滚轮,至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。
  7. 根据权利要求6所述可穿戴设备,其特征在于,所述外壳侧壁上装设所述触控结构的位置设置有至少一个压力传感器。
  8. 根据权利要求5所述可穿戴设备,其特征在于,所述触控结构包括按键,至少两个所述压力传感器设置于所述外壳侧壁且分别位于所述触控结构的两侧。
  9. 根据权利要求5至8任一项所述可穿戴设备,其特征在于,所有的压力传感器设置于同一FPC板或PCB板,所述FPC板或所述PCB板贴附于所述可穿戴设备的外壳侧壁。
  10. 一种存储介质,其特征在于,所述存储介质中存储有计算机可执行指令,所述计算机可执行指令被处理器加载并执行时,实现如权利要求1至4任一项所述防误触方法的步骤。
PCT/CN2021/125989 2021-06-30 2021-10-25 一种防误触方法、可穿戴设备及存储介质 WO2023273039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110741520.8 2021-06-30
CN202110741520.8A CN113360027A (zh) 2021-06-30 2021-06-30 一种防误触方法、可穿戴设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023273039A1 true WO2023273039A1 (zh) 2023-01-05

Family

ID=77537706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125989 WO2023273039A1 (zh) 2021-06-30 2021-10-25 一种防误触方法、可穿戴设备及存储介质

Country Status (2)

Country Link
CN (1) CN113360027A (zh)
WO (1) WO2023273039A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113360027A (zh) * 2021-06-30 2021-09-07 歌尔科技有限公司 一种防误触方法、可穿戴设备及存储介质
CN113849874A (zh) * 2021-09-27 2021-12-28 歌尔科技有限公司 一种穿戴产品及其部件脱落提醒方法,装置及介质
CN115388511A (zh) * 2022-08-17 2022-11-25 珠海格力电器股份有限公司 一种基于穿戴设备的空调控制方法、装置、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758452A (zh) * 2016-02-04 2016-07-13 歌尔声学股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
CN106354321A (zh) * 2016-09-05 2017-01-25 芯海科技(深圳)股份有限公司 一种压感式按键识别方法
CN111459330A (zh) * 2020-03-30 2020-07-28 维沃移动通信有限公司 一种电子设备及压力按键操作方法
CN113360027A (zh) * 2021-06-30 2021-09-07 歌尔科技有限公司 一种防误触方法、可穿戴设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672262B (zh) * 2018-07-03 2021-04-23 Oppo广东移动通信有限公司 压力按键阈值校准方法、装置、存储介质及电子设备
CN111103997B (zh) * 2018-10-25 2022-08-12 北京小米移动软件有限公司 防误触方法、设备及可读存储介质
CN110083247A (zh) * 2019-04-30 2019-08-02 努比亚技术有限公司 控制可穿戴设备操作方法、装置、可穿戴设备及存储介质
CN111176387A (zh) * 2020-02-28 2020-05-19 芯海科技(深圳)股份有限公司 移动终端壳体、移动终端、压力触控方法及存储介质
CN111736723A (zh) * 2020-06-02 2020-10-02 芯海科技(深圳)股份有限公司 一种终端设备、压力触控方法及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758452A (zh) * 2016-02-04 2016-07-13 歌尔声学股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
CN106354321A (zh) * 2016-09-05 2017-01-25 芯海科技(深圳)股份有限公司 一种压感式按键识别方法
CN111459330A (zh) * 2020-03-30 2020-07-28 维沃移动通信有限公司 一种电子设备及压力按键操作方法
CN113360027A (zh) * 2021-06-30 2021-09-07 歌尔科技有限公司 一种防误触方法、可穿戴设备及存储介质

Also Published As

Publication number Publication date
CN113360027A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2023273039A1 (zh) 一种防误触方法、可穿戴设备及存储介质
CN104951159B (zh) 触摸按键及指纹识别方法
EP2488932B1 (en) Touch interface having microphone to determine touch impact strength
KR101513785B1 (ko) 터치 스크린 사용자 인터페이스 상의 커맨드들을 변경하는 방법
WO2023273038A1 (zh) 一种防误触方法、可穿戴设备及存储介质
CN107291313B (zh) 一种指纹唤醒的控制方法、装置、存储介质及移动终端
CN107357458B (zh) 触摸按键的响应方法、装置、存储介质及移动终端
CN102999291A (zh) 待机状态下触摸唤醒移动终端的方法
WO2019047739A1 (zh) 指纹识别功能开启方法、装置、终端和存储介质
CN107506092B (zh) 一种输入控制方法和终端
CN105227759A (zh) 一种通话录音方法及用户终端
US11941910B2 (en) User interface display method of terminal, and terminal
WO2016082251A1 (zh) 触摸信号处理方法及设备
CN107087075B (zh) 一种基于屏幕指纹识别的提示方法及移动终端
CN111954110A (zh) 耳机交互方法与耳机
WO2019148956A1 (zh) 一种触控识别方法、装置和系统
WO2015131590A1 (zh) 一种控制黑屏手势处理的方法及终端
CN103152484A (zh) 一种移动终端闹铃关闭的方法和系统
WO2017107813A1 (zh) 智能设备的操控装置、智能设备、操作控制方法及装置
CN108803940B (zh) 一种触控识别方法、装置及触控显示装置
US10241671B2 (en) Gesture response method and device
WO2017101212A1 (zh) 一种指纹识别的方法、装置及终端
TWI704504B (zh) 基於光線感測器的輸入方法、終端設備和電腦可讀取記錄媒體
WO2020199913A1 (zh) 一种敲击事件检测方法及装置
WO2018053803A1 (zh) 一种压力触控方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18559346

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE