WO2023272776A1 - 一种去除水中重金属的处理装置及其去除以及回收方法 - Google Patents

一种去除水中重金属的处理装置及其去除以及回收方法 Download PDF

Info

Publication number
WO2023272776A1
WO2023272776A1 PCT/CN2021/105721 CN2021105721W WO2023272776A1 WO 2023272776 A1 WO2023272776 A1 WO 2023272776A1 CN 2021105721 W CN2021105721 W CN 2021105721W WO 2023272776 A1 WO2023272776 A1 WO 2023272776A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery
anode
cathode
heavy metals
conductive layer
Prior art date
Application number
PCT/CN2021/105721
Other languages
English (en)
French (fr)
Inventor
潘玉琼
Original Assignee
潘玉琼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潘玉琼 filed Critical 潘玉琼
Publication of WO2023272776A1 publication Critical patent/WO2023272776A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of heavy metal pollution treatment, in particular to a treatment device for removing heavy metals in water and a removal and recovery method thereof.
  • toxic heavy metal ions Due to various factors, toxic heavy metal ions continue to pollute lakes and some ecosystems. These toxic heavy metal ions have polluted some mountain springs and poisoned surrounding residents and crops. Heavy metals have obvious effects on human metabolism and normal physiology. Harmful effect, leading to the occurrence of various diseases. Solving the pollution of toxic heavy metal ions is a global problem.
  • the patent publication numbers CN107473416A and CN102075113A both disclose the use of microalgae to remove heavy metal ions in wastewater.
  • the culture liquid after collecting the microalgae needs to be precipitated in the sedimentation tank first to remove the insoluble impurities in the culture liquid, and after the nearly precipitated culture liquid is filtered, the filtrate is pumped into the The adsorption pool, the process of removing heavy metals is cumbersome and complex and the removal efficiency is low; at the same time, the bioelectricity generated by microalgae is unstable, and biodegradation will occur;
  • the second patent application belongs to the green algae biofuel cell based on photosynthesis to generate electricity, through Green algae photolyzes water to produce hydrogen, but in this process, the hydrogen production of microalgae is counter-inhibited by hydrogen and the metal electrodes are high in cost and easy to be poisoned.
  • the latest patent publication number is CN211393969U in China's patent application system, which uses microalgae to produce cell living batteries and uses them to purify heavy metal ions in aqueous solutions, resulting in low efficiency in removing heavy metals and takes a long time.
  • the time, and microalgae produce cell live battery unstable.
  • one of the purposes of the present invention provides a treatment device for removing heavy metals in water, which can solve the problem of removing heavy metals in water;
  • the second object of the present invention is to provide a removal method of a treatment device for removing heavy metals in water, which can solve the problem of removing heavy metals in water.
  • the third object of the present invention is to provide a recovery method for a treatment device to recover the heavy metals temporarily adsorbed by the technology of the first object, which can solve the problem of recovering heavy metals in water.
  • a treatment device for removing heavy metals in water including an analog circuit battery pack that imitates microalgae to generate cell live electricity, an anode electrode with a built-in buffer medium, and a cathode for storing heavy metal solutions battery, wherein the analog circuit battery pack is provided with a cathode output terminal and an anode output terminal, wherein the cathode output terminal is electrically connected to a cathode electrode through a wire, and the anode output terminal is electrically connected to the anode electrode through a wire, and the cathode electrode is connected to the anode electrode through a wire.
  • the heavy metal solution in the cathode cell is in contact; and the cathode electrode includes a conductive layer electrically connected to the output end of the cathode and a carbon adsorption layer wrapped on the surface of the conductive layer.
  • the cathode electrode is a tubular structure, and the center of the cathode electrode is provided with a through hole along its own length for allowing the heavy metal solution to flow through, so that the carbon adsorption layer contacts the waste water.
  • tubular structure cathode electrode includes a carbon adsorption layer, a conductive layer, and an insulating layer that are sequentially wrapped from the inside to the outside.
  • cathode electrode is a plate-like structure or a rod-like structure.
  • Cathode and anode can be tubular and have high efficiency; other configurations such as plate or rod are acceptable but with reduced efficiency.
  • the conductive layer is copper or iron or zinc or other conductive metals and the like.
  • the buffer medium is bicarbonate buffer medium or oxygen; when in the recovery process, the anode electrode becomes the recovery cathode through the analog circuit battery pack, and the recovery buffer medium in the recovery cathode is potassium ferricyanide, potassium permanganate , nitrates, sulfates, bicarbonates.
  • the output voltage of the analog circuit battery pack is 1-6V.
  • the second technical solution for realizing the purpose of the present invention is: a method for removing heavy metals in water, including a treatment device, comprising the following steps:
  • Step 1 Fill the anode electrode with buffer medium, the buffer medium of the anode electrode is bicarbonate buffer medium or oxygen;
  • Step 2 Place the cathode electrode in the cathode pool stored with the heavy metal solution, and make the carbon adsorption layer directly contact the wastewater;
  • Step 3 The analog circuit battery pack is respectively energized to the anode electrode and the conductive layer of the cathode electrode through the wires, so that the anode electrode generates positive charges, and the surface of the cathode electrode conductive layer generates negative charges, and at the same time, the heavy metals in the heavy metal solution are The negative charges on the conductive layer of the cathode electrode are adsorbed on the surface of the carbon adsorption layer.
  • a step 2a is also provided between step 2 and step 3,
  • Step 2a extract the heavy metal solution through the pump body, and control the heavy metal solution to pass through the cathode electrode at a preset flow rate, and make the carbon adsorption layer directly contact the wastewater;
  • the heavy metal solution includes Ni, Mn, Pb, Zn, Cd, One or more of Cu, Hg, Cr, As, Co, Mo, Ag, Au, Pt, Pd, Rh, Ir, Re heavy metal ions.
  • a recovery method for a treatment device for removing heavy metals in water characterized in that:
  • Step 1 The analog circuit battery pack adjusts the cathode electrode through the internal circuit to become a positively charged recovery anode, and at the same time adjusts the anode electrode to output a negatively charged recovery cathode through the internal circuit;
  • the recovery cathode is filled with a recovery buffer medium, which is one of potassium ferricyanide, potassium permanganate, nitrate, sulfate, and bicarbonate; wherein the recovery cathode includes sequentially wrapping from the inside to the outside The first recovery carbon adsorption layer, the first recovery conductive layer, and the first recovery insulating layer, the recovery buffer medium is located in the first recovery carbon adsorption layer;
  • Step 2 Place the recovery anode in the cathode pool for storage and heavy metal solution.
  • the recovery anode is provided with a second recovery carbon adsorption layer, a second recovery conductive layer, and a second recovery insulation layer in sequence from the inside to the outside, wherein the recovery anode Heavy metals are adsorbed on the surface of the second recovered carbon adsorption layer;
  • Step 3 The analog circuit battery pack is respectively energized to the recovery cathode and the recovery conductive layer of the recovery anode through the wires, so that the second recovery conductive layer of the recovery anode generates positive charges, and at the same time, the second recovery carbon adsorption layer of the recovery anode The heavy metals are pushed out of the surface of the second recovery carbon adsorption layer by the positive charges on the second recovery conductive layer.
  • the present invention produces the anode electrode of the simulated circuit battery pack that imitates microalgae to be positioned at the anode pool, and the said cathode electrode is in contact with the heavy metal solution in the cathode pool;
  • the conductive layer of the conductive layer is energized so that the anode electrode generates a positive charge, and the surface of the conductive layer generates a negative charge, so that the heavy metal in the heavy metal solution is adsorbed on the surface of the carbon adsorption layer by the negative charge on the conductive layer, so the present invention does not use Chemical reaction, and can effectively remove heavy metal ions, including one of Ni, Mn, Pb, Zn, Cd, Cu, Hg, Cr, As, Co, Mo, Ag, Au, Pt, Pd, Rh, Ir, Re One or more, and the efficiency of removing heavy metals is greatly improved.
  • the battery pack used in the present invention is an analog circuit battery pack that imitates microalgae to generate cell live electricity.
  • the output power is high and very stable, and because the analog circuit battery pack uses conventional electronic components, there is no biological decay, and its production cost is low, which is suitable for mass production.
  • the analog circuit battery pack of this application is easy to control, and the cathode electrode can be adjusted to output a positively charged recovery anode according to the demand through the internal circuit; Recovery of heavy metals from surfaces.
  • Fig. 1 is a schematic diagram of the working principle that the cathode electrode is a tubular structure while the anode electrode is a tubular structure among the present invention
  • Fig. 2 is a schematic diagram of the working principle that the cathode electrode is a tubular structure while the anode electrode is another tubular structure in the present invention
  • Fig. 3 is a schematic diagram of the working principle of the recovery of the anode as a tubular structure and recovery of the cathode as a tubular structure in the present invention
  • Fig. 4 is a schematic diagram of the working principle of the adsorption process and the recovery process of the overall device in the present invention
  • Fig. 5 is a schematic diagram of the working principle in which both the cathode electrode and the anode electrode are rod-shaped structures in the present invention
  • FIG. 6 is a schematic diagram of the working principle in which the cathode electrode is a rod-shaped structure and the anode electrode is a tubular structure in the present invention
  • FIG. 7 is a schematic diagram of the working principle in which the cathode electrode is a rod-shaped structure and the anode electrode is another tubular structure in the present invention
  • Analog circuit battery pack 11. Anode output terminal; 12. Cathode output terminal; 2. Anode electrode; 20. Buffer medium; 21. Anode carbon adsorption layer; 22. Anode conductive layer; 23. Anode insulation layer; 3. Cathode electrode; 31. Carbon adsorption layer; 32. Conductive layer; 33. Heavy metal solution; 34. Insulation layer; 4. Recovery cathode; 40. Recovery buffer medium; 41. First recovery carbon adsorption layer; 42. First recovery conductive 43. The first recovery insulating layer; 5. The recovery anode; 51. The second recovery carbon adsorption layer; 52. The second recovery conductive layer; 53. The second recovery insulation layer.
  • a method for removing heavy metals in water including the following steps:
  • Step 1 filling the buffer medium 20 in the anode electrode 2 of the analog circuit battery pack 1, and the buffer medium 20 of the anode electrode 2 is bicarbonate buffer medium during the adsorption process;
  • Step 2 Place the cathode electrode 3 of the analog circuit battery pack 1 in the cathode pool storing the heavy metal solution 33, and make the carbon adsorption layer 31 directly contact the waste water;
  • Step 2a extract the heavy metal solution 33 through the pump body, and control the heavy metal solution 33 to pass through the cathode electrode 3 at a preset flow rate, and make the carbon adsorption layer 31 directly contact the wastewater.
  • the Reynolds number of the wastewater fluid is increased by controlling the design of the pipeline and increasing the surface area, thereby greatly improving the efficiency of removing heavy metal ions.
  • Step 3 The analog circuit battery pack 1 is respectively energized to the anode electrode 2 and the conductive layer 32 of the cathode electrode 3 through the wires, so that the anode electrode 2 generates positive charges, and the surface of the conductive layer 32 generates negative charges, and at the same time, the heavy metal solution
  • the heavy metals in 33 are adsorbed on the surface of the carbon adsorption layer 31 by the negative charges on the conductive layer 32 of the cathode electrode 3 .
  • Step 1 Fill the recovery cathode 4 with a recovery buffer medium 40, wherein the recovery buffer medium 40 in this step is potassium ferricyanide, potassium permanganate, nitrate, sulfate, bicarbonate; wherein the recovery cathode 4 includes The first recycled carbon adsorption layer 41, the first recycled conductive layer 42, and the first recycled insulating layer 43 are sequentially wrapped from inside to outside, and the recycled buffer medium 40 is located in the first recycled carbon adsorbed layer 41;
  • Step 2 Connect the recovery pipeline to the recovery anode 5 as shown in Figure 3 and place it; in this step, in order to improve the recovery efficiency, the recovery anode 5 is designed as a tubular structure, and the recovery anode 5 is sequentially provided with a second recovery carbon from the inside and outside The adsorption layer 51, the second recovery conductive layer 52, and the second recovery insulating layer 53, wherein the surface of the second recovery carbon adsorption layer 51 of the recovery anode 5 is adsorbed with heavy metals;
  • Step 3 The analog circuit battery pack 1 is respectively energized to the recovery cathode 4 and the second recovery conductive layer 52 of the recovery anode 5 through the wires, so that the second recovery conductive layer 52 of the recovery anode 5 generates positive charges, and at the same time, it is recovered in the recovery anode
  • the heavy metals in the second recovery carbon adsorption layer 51 of 5 are pushed out of the surface of the second recovery carbon adsorption layer 51 by the positive charges on the second recovery conductive layer 52 .
  • the analog circuit battery pack 1 adjusts the cathode electrode 3 through the internal circuit to become the output positively charged recovery anode 5; therefore, the cleaning of the second recovery carbon adsorption layer 51 of the recovery anode 5 can be realized.
  • the heavy metal solution 33 is pumped into the treatment device of the present application from the water inlet pipe, and the heavy metal solution 33 is discharged from the water outlet pipe, and is continuously circulated through the pump body.
  • the solution 33 was sampled and analyzed. After 90 minutes of adsorption treatment, the treatment device was then controlled to enter the recovery process.
  • the experimenters sampled and analyzed the heavy metal solution 33 at different times, and after 90 minutes of recovery treatment.
  • the following table is the initial concentration of each heavy metal ion in the heavy metal solution 33 and the concentration of each heavy metal ion after 90 minutes of treatment and after 90 minutes of recovery treatment:
  • a treatment device for removing heavy metals in water includes an analog circuit battery pack 1 that imitates microalgae to generate cell live electricity, an anode electrode 2 with a built-in buffer medium 20, and a battery pack for storing heavy metal solution 33.
  • Cathode pool wherein the analog circuit battery pack 1 is provided with a cathode output terminal 12 and an anode output terminal 11, wherein the cathode output terminal 12 is electrically connected to the cathode electrode 3 through a wire, and the anode output terminal 11 is electrically connected to the anode through a wire
  • the electrode 2 is connected, and the cathode electrode 3 is in contact with the heavy metal solution 33 in the cathode cell; and the cathode electrode 3 includes a conductive layer 32 electrically connected to the cathode output terminal 12 and a carbon adsorption layer 31 wrapped on the surface of the conductive layer 32 .
  • the cathode electrode 3 is a tubular structure (due to the high adsorption efficiency of the tubular structure, the cathode electrode 3 is designed as a tubular structure in this specific embodiment), and the center of the cathode electrode 3 is arranged along its own length There are through holes for allowing the heavy metal solution 33 to flow through, so that the carbon adsorption layer 31 contacts waste water.
  • the wastewater containing heavy metals (that is, the heavy metal solution 33) is input into the through hole at a preset flow rate, and discharged from the through hole, wherein the conductive layer 32 makes negative charges, and the carbon adsorption layer 31 Wrapped on the surface of the conductive layer 32, the heavy metals in the wastewater in the through holes are adsorbed by the carbon layer through the negative charge.
  • the cathode output terminal 12 is directly connected to the conductive layer 32 and the conductive layer 32 is distributed throughout the pipeline, the voltage distribution on the conductive layer 32 is uniform, so that heavy metal ions can be quickly adsorbed, and there is no chemical reaction in the wastewater, plus the flow rate Under the action of the waste water through the through hole, the efficiency of removing heavy metal ions is greatly improved.
  • the heavy metal ions that can be removed include Ni, Mn, Pb, Zn, Cd, Cu, Hg, Cr, As, Co, Mo, Ag, Au, One or more of one or more of Pt, Pd, Rh, Ir, Re.
  • the set carbon layer can be durable for a long time, and is easy to clean and reuse.
  • the tubular structure cathode electrode 3 includes a carbon adsorption layer 31, a conductive layer 32, and an insulating layer 34 which are sequentially wrapped from the inside to the outside.
  • the added insulating layer 34 can effectively avoid leakage.
  • the structure of the anode electrode 2 is similar to that of the cathode electrode 3 in tubular structure, and the anode electrode 2 includes an anode carbon adsorption layer 21 , an anode conductive layer 22 , and an anode insulation layer 23 which are sequentially wrapped from inside to outside.
  • the cathode electrode 3 is a plate-shaped structure or a rod-shaped structure.
  • the cathode electrode 3 in addition to the above-mentioned tubular structure, can also be set as a plate-like structure and a rod-like structure, wherein the plate-like structure and the rod-like structure can be conveniently used in conjunction with the manufacturer's equipment, and the cathode electrode 3 can be adjusted according to different use environments. Set in different shapes, the higher the area, the higher the adsorption efficiency.
  • the tubular structure of the cathode electrode 3 is the main preferred implementation structure, and the plate or rod structure of the cathode electrode 3 is only an auxiliary structure in special cases.
  • Fig. 1 is that the cathode electrode 3 is a tubular structure and the anode electrode 2 is a tubular structure in the present invention
  • Fig. 2 is that the cathode electrode 3 is a tubular structure and the anode electrode 2 is another tubular structure in the present invention
  • Fig. 3 is a reclaimed anode in the present invention 5 is a schematic diagram of the working principle of the tubular structure while the recovery cathode 4 is a tubular structure
  • the cathode electrode 3 in Fig. 1-Fig. 2 and the recovery anode 5 in Fig. 3 are all preferred implementation structures: tubular.
  • Fig. 5 shows that the cathode electrode 3 and the anode electrode 2 are both rod-shaped structures
  • Fig. 6 shows that the cathode electrode 3 is a rod-shaped structure and the anode electrode 2 is a tubular structure in the present invention
  • the electrode 2 is another tubular structure
  • the cathode electrode 3 in Fig. 5-Fig. 7 is not a preferred structure, but is listed as an example.
  • the cathode electrode 3 of the simulated circuit battery pack 1 that generates cell live electricity by imitating microalgae is in contact with the heavy metal solution 33 in the cathode pool; Energize so that the anode electrode 2 generates positive charges, and the surface of the conductive layer 32 generates negative charges, so that the heavy metal in the heavy metal solution 33 is adsorbed on the surface of the carbon adsorption layer 31 by the negative charges on the conductive layer 32; so the present invention Can effectively remove heavy metal ions, including one or more of Ni, Mn, Pb, Zn, Cd, Cu, Hg, Cr, As, Co, Mo, Ag, Au, Pt, Pd, Rh, Ir, Re , and the efficiency of removing heavy metals is greatly improved.
  • the battery pack used in the present invention is an analog circuit battery pack 1 that imitates microalgae to generate cell live electricity, and the output The power is high and very stable, and because the analog circuit battery pack 1 uses conventional electronic components, there is no biological decay, and its manufacturing cost is low, which is suitable for mass production.
  • the analog circuit battery pack 1 of the present application is easy to control, and the cathode electrode 3 can be adjusted to output a positively charged recovery anode 5 according to requirements through internal circuit adjustment; then it can facilitate subsequent recovery of the second recovery carbon adsorption layer 51 on the recovery anode 5 cleaning, and the recovery of heavy metals adsorbed on the surface of the second recovery carbon adsorption layer 51.
  • the second recovered carbon adsorption layer 51 on the surface of the second recovered conductive layer 52 can be durable for a long time, and is easy to clean and reuse.
  • the conductive layer 32 is copper or iron or zinc or other conductive metals and the like.
  • the buffer medium 20 is bicarbonate buffer or oxygen.
  • the anode electrode 2 has the structure shown in Figure 1 or Figure 6, and if the buffer medium 20 is oxygen, the anode electrode 2 can be a tubular structure. (As shown in Figure 2 and 7)
  • the anode electrode 2 becomes the recovery cathode 4 through the analog circuit battery pack 1, and the recovery buffer medium 40 in the recovery cathode 4 is potassium ferricyanide, potassium permanganate, nitrate, Sulfates, bicarbonates.
  • the output voltage of the analog circuit battery pack 1 is a voltage of 1-6V.
  • the carbon adsorption layer 31 is wrapped on the surface of the conductive layer 32, the voltage distribution on the conductive layer 32 is uniform, and the carbon adsorption layer 31 can quickly adsorb heavy metal ions, and there is no chemical reaction in the wastewater.
  • the heavy metal ions that can be removed include one or more of Ni, Mn, Pb, Zn, Cd, Cu, Hg, Cr, As, Co, Mo, Ag, Au, Pt, Pd, Rh, Ir, Re.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种去除水中重金属的处理装置及其去除以及回收方法,模拟电路电池组(1)经导线分别向阳极电极(2)通电以及阴极电极(3)的导电层(32)通电,所述导电层(32)表面产生负电荷,以使得重金属溶液中的重金属被导电层(32)上的负电荷吸附在炭吸附层(31)的表面上;能够有效去除重金属离子,包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re中的一种或多种,去除重金属的效率大大提高。使用的电池组为模仿微藻产生细胞活电的模拟电路电池组(1),输出功率高且十分稳定,根据需求将阴极电极(3)通过内部电路调整变成输出带正电荷的回收阳极(5);则可以方便后续对回收炭吸附层(31)的清洗,以及对吸附在回收炭吸附层(31)表面的重金属的回收。

Description

一种去除水中重金属的处理装置及其去除以及回收方法 技术领域
本发明涉及重金属污染处理技术领域,具体是一种去除水中重金属的处理装置及其去除以及回收方法。
背景技术
由于各种的因素,有毒的重金属离子不断地污染湖泊和一些生态系统,这些有毒的重金属离子已经污染了一些山泉,毒害着周边的居民和农作物,重金属对人体的新陈代谢及正常的生理有明显的伤害作用,导致各种疾病的发生。解决有毒重金属离子的污染是全球的问题。
目前的技术:去除水中(食品,饮料,废水)的重金属离子处理方法,大部分使用吸附材料,不但昂贵,循环利用难度高,废置处理会造成二次污染。使用电解的方式实现去除水中重金属,存在去除效率低,且存在一定的化学反应导致有废气排出的缺点。
其中专利公开号为CN107473416A和CN102075113A均公开了利用微藻进行去除废水中的重金属离子。第一篇申请专利中,需要将收集微藻后的养殖液先在沉淀池中沉淀,以去除不溶于养殖液中的杂质,将近沉淀后的养殖液过滤后,将滤液泵入装有吸附剂的吸附池,去除重金属的过程繁琐复杂且去除效率低下;同时微藻产生生物电不稳定,会出现生物衰退;第二篇申请专利中,属于基于光合作用产电的绿藻生物燃料电池,通过绿藻光解水产生氢气,但这一过程中,微藻产氢受到氢气的反抑制作用以及金属电极成本高、易中毒的不足。同时最新专利公开号为CN211393969U的中国申请专利制中,使用微 藻产生细胞活电电池并通过电解的方式进行使用将用于净化水溶液中的重金属离子,导致去除重金属的效率不高,需要较长的时间,而且微藻产生细胞活电电池不稳定。
发明内容
针对现有技术的不足,本发明的目的之一提供一种去除水中重金属的处理装置,其能够解决去除水中重金属的问题;
本发明的目的之二提供一种去除水中重金属的处理装置的去除方法,其能够解决去除水中重金属的问题。
本发明的目的之三提供一种去回收被目的1的技术暂时吸附的重金属的处理装置的回收方法,其能够解决回收水中重金属的问题。
实现本发明的目的之一的技术方案为:一种去除水中重金属的处理装置,包括模仿微藻产生细胞活电的模拟电路电池组、内置有缓冲介质的阳极电极、用于存放重金属溶液的阴极池,其中模拟电路电池组设置有阴极输出端以及阳极输出端,其中所述阴极输出端通过导线电性连接有阴极电极,所述阳极输出端通过导线电性与阳极电极,所述阴极电极与阴极池内的重金属溶液接触;且所述阴极电极包括与阴极输出端电性连接的导电层以及包裹在导电层表面的炭吸附层。
进一步,所述阴极电极为管状结构,阴极电极中心沿自身长度设置有用于允许重金属溶液流过的通孔,以使得炭吸附层接触废水。
进一步,所述管状结构阴极电极包括由内之外依次包裹的炭吸附层、导电层、绝缘层。
进一步,所述阴极电极为板状结构或棒状结构。阴极和阳极可以 是管状,效率高;其他结构如板状结构或棒状结构都可以,但效率降低。
进一步,所述导电层为铜或铁或锌或其他导电的金属等等。
进一步,所述缓冲介质为碳酸氢盐缓冲介质或氧气;当在回收过程中,阳极电极经过模拟电路电池组变成回收阴极,回收阴极内的回收缓冲介质为铁氰化钾,高锰酸钾,硝酸盐,硫酸盐,碳酸氢盐。
进一步,模拟电路电池组的输出电压为1-6V的电压。
实现本发明的目的之二的技术方案为:一种去除水中重金属的处理装置的去除方法,包括以下步骤:
步骤1:将阳极电极内填充缓冲介质,该阳极电极的缓冲介质为碳酸氢盐缓冲介质或氧气;
步骤2:将阴极电极放置在存放与重金属溶液的阴极池中,并使得炭吸附层直接接触到废水;
步骤3:模拟电路电池组经导线分别向阳极电极通电以及阴极电极的导电层通电,以使得阳极电极产生正电荷,所述阴极电极导电层表面产生负电荷,同时以使得重金属溶液中的重金属被阴极电极导电层上的负电荷吸附在炭吸附层的表面上。
优选为,在步骤2与步骤3之间还设置有步骤2a,
步骤2a:通过泵体将重金属溶液抽取,并以预设的流速控制重金属溶液经过阴极电极,并使得炭吸附层直接接触到废水;所述重金属溶液内包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re重金属离子的一种或多种。
实现本发明的目的之三的技术方案为:
一种去除水中重金属的处理装置的回收方法,其特征在于:
步骤1:模拟电路电池组将阴极电极通过内部电路调整变成输出带正电荷的回收阳极,同时将阳极电极通过内部电路调整变成输出带负电荷的回收阴极;
且该回收阴极内填充有回收缓冲介质,该回收缓冲介质为铁氰化钾,高锰酸钾,硝酸盐,硫酸盐,碳酸氢盐中的一种;其中回收阴极包括由内之外依次包裹的第一回收炭吸附层、第一回收导电层、第一回收绝缘层,所述回收缓冲介质位于第一回收炭吸附层内;
步骤2:将回收阳极放置在存放与重金属溶液的阴极池中,回收阳极由内之外依次设置有第二回收炭吸附层、第二回收导电层、第二回收绝缘层,其中该回收阳极的第二回收炭吸附层的表面吸附有重金属;
步骤3:模拟电路电池组经导线分别向回收阴极通电以及回收阳极的回收导电层通电,使得回收阳极的第二回收导电层产生正电荷,同时以使得在回收阳极的第二回收炭吸附层的重金属被第二回收导电层上的正电荷排挤在第二回收炭吸附层的表面外。
本发明的有益效果为:
1.本发明通过模仿微藻产生细胞活电的模拟电路电池组的阳极电极位于阳极池内,所述阴极电极与阴极池内的重金属溶液接触;模拟电路电池组经导线分别向阳极电极通电以及阴极电极的导电层通电,以使得阳极电极产生正电荷,所述导电层表面产生负电荷,以 使得重金属溶液中的重金属被导电层上的负电荷吸附在炭吸附层的表面上,故本发明不使用化学反应,同时能够有效去除具有重金属离子,包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re中的一种或多种,且去除重金属的效率大大提高。
2.传统的微藻产生细胞活电电池,主要存在反应器内阻大,材料成本高,输出功率低等问题;本发明使用的电池组为模仿微藻产生细胞活电的模拟电路电池组,输出功率高且十分稳定,同时由于模拟电路电池组采用的均为常规的电子元件,不存在生物衰变的情况,且其制作成本低,可适用于批量化生产。
3.本申请的模拟电路电池组控制方便,可以根据需求将阴极电极通过内部电路调整变成输出带正电荷的回收阳极;则可以方便后续对炭吸附层的清洗,以及对吸附在炭吸附层表面的重金属的回收。
附图说明
图1为本发明中阴极电极为管状结构同时阳极电极为管状结构的工作原理示意图;
图2为本发明中阴极电极为管状结构同时阳极电极为另一管状结构的工作原理示意图;
图3为本发明中回收阳极为管状结构同时回收阴极为管状结构的工作原理示意图;
图4为本发明中整体装置进行吸附过程以及回收过程的工作原理示意图;
图5为本发明中为本发明中阴极电极以及阳极电极均为棒状结构的工作原理示意图;
图6为本发明中阴极电极为棒状结构同时阳极电极为管状结构的工作原理示意图;
图7为本发明中阴极电极为棒状结构同时阳极电极为另一管状结构的工作原理示意图;
附图标号说明:
1.模拟电路电池组;11.阳极输出端;12.阴极输出端;2.阳极电极;20.缓冲介质;21.阳极炭吸附层;22.阳极导电层;23.阳极绝缘层;3.阴极电极;31.炭吸附层;32.导电层;33.重金属溶液;34.绝缘层;4.回收阴极;40.回收缓冲介质;41.第一回收炭吸附层;42.第一回收导电层;43.第一回收绝缘层;5.回收阳极;51.第二回收炭吸附层、52.第二回收导电层;53.第二回收绝缘层。
具体实施方式
下面,结合附图以及具体实施方案,对本发明做进一步描述:
如图1-4所示,在本具体实施例中,提供一种去除水中重金属处理装置的去除方法,包括如下步骤:
步骤1:将模拟电路电池组1的阳极电极2内填充缓冲介质20,在吸附过程中阳极电极2的缓冲介质20为碳酸氢盐缓冲介质;
步骤2:将模拟电路电池组1的阴极电极3放置在存放有重金属溶液33的阴极池中,并使得炭吸附层31直接接触到废水;
步骤2a:通过泵体将重金属溶液33抽取,并以预设的流速控制 重金属溶液33经过阴极电极3,并使得炭吸附层31直接接触到废水。其中在具体实施例中,通过控制管道设计和增加表面面积实现增加废水流体雷诺数,进而大大提高去除重金属离子的效率。
步骤3:模拟电路电池组1经导线分别向阳极电极2通电以及阴极电极3的导电层32通电,以使得阳极电极2产生正电荷,所述导电层32表面产生负电荷,同时以使得重金属溶液33中的重金属被阴极电极3的导电层32上的负电荷吸附在炭吸附层31的表面上。
如图3所示,还提供一种回收清洗被上述处理装置暂时吸附的重金属的回收方法,其中本回收方法中,在原先吸附过程中的阴极电极3变为回收阳极5,原先吸附过程中的阳极电极2变成回收阴极4;
以下列举处理装置进入回收过程的工作步骤:
步骤1:将回收阴极4内填充有回收缓冲介质40,其中在本步骤中回收缓冲介质40为铁氰化钾,高锰酸钾,硝酸盐,硫酸盐,碳酸氢盐;其中回收阴极4包括由内之外依次包裹的第一回收炭吸附层41、第一回收导电层42、第一回收绝缘层43,所述回收缓冲介质40位于第一回收炭吸附层41内;
步骤2:把回收的管道如图3连接回收阳极5放置;在本步骤中,为了提高回收效率,故将回收阳极5设计为管状结构,回收阳极5由内之外依次设置有第二回收炭吸附层51、第二回收导电层52、第二回收绝缘层53,其中该回收阳极5的第二回收炭吸附层51的表面吸附有重金属;
步骤3:模拟电路电池组1经导线分别向回收阴极4通电以及回 收阳极5的第二回收导电层52通电,使得回收阳极5的第二回收导电层52产生正电荷,同时以使得在回收阳极5的第二回收炭吸附层51的重金属被第二回收导电层52上的正电荷排挤在第二回收炭吸附层51的表面外。
在回收过程中,当重金属溶液33中重金属离子经过炭吸附层31吸附后,为了方便后续对第二回收炭吸附层51的清洗,以及对吸附在第二回收炭吸附层51表面的重金属的回收,故模拟电路电池组1将阴极电极3通过内部电路调整变成输出带正电荷的回收阳极5;故可以实现对回收阳极5的第二回收炭吸附层51的清洗。
如图4所示,当废水通过泵体将重金属溶液33从进水管泵入本申请的处理装置,重金属溶液33再从出水管排出,并通过泵体不断循环,实验人员在不同的时间对重金属溶液33进行取样分析,经过90分钟吸附处理后,再控制处理装置进入回收过程,实验人员在不同的时间对重金属溶液33进行取样分析,经过90分钟回收处理后。
下表为重金属溶液33中各重金属离子的初始浓度以及经过90分钟处理后以及经过90分钟回收处理后各重金属离子的浓度:
  ppm ppm ppm
重金属离子 初始浓度 90分钟吸附 回收后浓度
Ni 34.90 13.58 33.88
Mn 30.60 11.90 29.70
Pb 46.10 17.94 44.75
Zn 34.70 13.50 33.68
Cd 51.30 19.95 49.80
Cu 39.10 15.21 37.95
Hg 26.20 10.19 25.43
Cr 39.56 15.39 38.40
As 49.33 19.19 47.88
Co 39.21 15.25 38.06
Mo 26.45 10.29 25.67
Ag 30.51 11.87 29.65
Au 25.30 9.84 24.56
Pt 32.50 12.64 31.55
Pd 20.10 7.82 19.51
Rh 19.20 7.47 18.64
Ir 15.20 5.91 14.75
Re 10.20 3.97 9.9
如图1至图7所示,一种去除水中重金属的处理装置,包括模仿微藻产生细胞活电的模拟电路电池组1、内置有缓冲介质20的阳极电极2、用于存放重金属溶液33的阴极池,其中模拟电路电池组1设置有阴极输出端12以及阳极输出端11,其中所述阴极输出端12通过导线电性连接有阴极电极3,所述阳极输出端11通过导线电性与阳极电极2连接,所述阴极电极3与阴极池内的重金属溶液33接触;且所述阴极电极3包括与阴极输出端12电性连接的导电层32以及包裹在导电层32表面的炭吸附层31。
如图1-3,进一步,所述阴极电极3为管状结构(由于管状结构重金属吸附效率高,故在本具体实施例中将阴极电极3设计为管状结构),阴极电极3中心沿自身长度设置有用于允许重金属溶液33流过的通孔,以使得炭吸附层31接触废水。在本具体实施例中,将含有重金属的废水(也即重金属溶液33)按预设的流速输入至通孔内,并从通孔排出,其中导电层32使得产生负电荷,且炭吸附层31包裹在导电层32表面,通过负电荷使得通孔内的废水中的重金属被碳层所吸附。由于阴极输出端12直接与导电层32连接且导电层32分布 在整个管道,使得导电层32上的电压分布均匀,从而能够快速吸附重金属离子,且使得废水中不存在化学反应,再加上流速的作用下导致废水快速经过通孔,大大提高去除重金属离子的效率,能够去除的重金属离子包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re中的一种或多种中的一种或多种。设置的碳层能够长久耐用,且便于清洗和再利用。
如图1-3,进一步,所述管状结构阴极电极3包括由内之外依次包裹的炭吸附层31、导电层32、绝缘层34。其中增加的绝缘层34可以有效的避免发生漏电的情况。在本具体实施例中,该阳极电极2的结构类似于管状结构阴极电极3,阳极电极2包括由内之外依次包裹的阳极炭吸附层21、阳极导电层22、阳极绝缘层23。
如图5-7,进一步,所述阴极电极3为板状结构或棒状结构。在本申请中,阴极电极3除了上述的管状结构,还可以设置为板状结构以及棒状结构,其中板状结构和棒状结构可以方便配合使用厂家的设备,而且根据不同的使用环境将阴极电极3设置成不同形状,其面积越高,吸附效率越高。其中需要注意的是,在本申请中为了保证其吸附已经回收效率,阴极电极3为管状结构为主要的优选实施结构,阴极电极3的板状结构或棒状结构只是在特殊情况下的辅助结构。
图1为本发明中阴极电极3为管状结构同时阳极电极2为管状结构;图2为本发明中阴极电极3为管状结构同时阳极电极2为另一管状结构;图3为本发明中回收阳极5为管状结构同时回收阴极4为管状结构的工作原理示意图;图1-图2的阴极电极3,以及图3中的回 收阳极5均为优选实施结构:管状。
比如图5为阴极电极3以及阳极电极2均为棒状结构;图6为本发明中阴极电极3为棒状结构同时阳极电极2为管状结构;图7为本发明中阴极电极3为棒状结构同时阳极电极2为另一管状结构;图5-图7的阴极电极3为非优选结构,只是作为实施例列举。
本发明通过模仿微藻产生细胞活电的模拟电路电池组1的阴极电极3与阴极池内的重金属溶液33接触;模拟电路电池组1经导线分别向阳极电极2通电以及阴极电极3的导电层32通电,以使得阳极电极2产生正电荷,所述导电层32表面产生负电荷,以使得重金属溶液33中的重金属被导电层32上的负电荷吸附在炭吸附层31的表面上;故本发明能够有效去除具有重金属离子,包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re中的一种或多种,且去除重金属的效率大大提高。
传统的微藻产生细胞活电电池,主要存在反应器内阻大,材料成本高,输出功率低等问题;本发明使用的电池组为模仿微藻产生细胞活电的模拟电路电池组1,输出功率高且十分稳定,同时由于模拟电路电池组1采用的均为常规的电子元件,不存在生物衰变的情况,且其制作成本低,可适用于批量化生产。
本申请的模拟电路电池组1控制方便,可以根据需求将阴极电极3通过内部电路调整变成输出带正电荷的回收阳极5;则可以方便后续对回收阳极5上的第二回收炭吸附层51的清洗,以及对吸附在第二回收炭吸附层51表面的重金属的回收。同时在第二回收导电层52 表面的第二回收炭吸附层51能够长久耐用,且便于清洗和再利用。
进一步,所述导电层32为铜或铁或锌或其他导电的金属等等。
进一步,所述缓冲介质20为碳酸氢盐缓或氧气。在吸附过程中,其中当缓冲介质20为碳酸氢盐缓冲介质时,阳极电极2则如图1或图6所示的结构,如果缓冲介质20为氧气,则阳极电极2可以为管状结构。(如图2、7所示)
如图3所示,当在回收过程中,阳极电极2经过模拟电路电池组1变成回收阴极4,回收阴极4内的回收缓冲介质40为铁氰化钾,高锰酸钾,硝酸盐,硫酸盐,碳酸氢盐。
进一步,模拟电路电池组1的输出电压为1-6V的电压。
在本具体实施例中,由于炭吸附层31包裹在导电层32的表面,故使得导电层32上的电压分布均匀,炭吸附层31从而能够快速吸附重金属离子,且使得废水中不存在化学反应,能够去除的重金属离子包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re中的一种或多种。
本说明书所公开的实施例只是对本发明单方面特征的一个例证,本发明的保护范围不限于此实施例,其他任何功能等效的实施例均落入本发明的保护范围内。对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种去除水中重金属的处理装置,其特征在于:包括模仿微藻产生细胞活电的模拟电路电池组、内置有缓冲介质的阳极电极、用于存放重金属溶液的阴极池,其中模拟电路电池组设置有阴极输出端以及阳极输出端,其中所述阴极输出端通过导线电性连接有阴极电极,所述阳极输出端通过导线电性与阳极电极,所述阴极电极与阴极池内的重金属溶液接触;且所述阴极电极包括与阴极输出端电性连接的导电层以及包裹在导电层表面的炭吸附层。
  2. 根据权利要求1所述的一种去除水中重金属的处理装置,其特征在于:所述阴极电极为管状结构,阴极电极中心沿自身长度设置有用于允许重金属溶液流过的通孔,以使得炭吸附层接触废水。
  3. 根据权利要求2所述的一种去除水中重金属的处理装置,其特征在于:所述管状结构阴极电极包括由内之外依次包裹的炭吸附层、导电层、绝缘层。
  4. 根据权利要求2所述的一种去除水中重金属的处理装置,其特征在于:所述阴极电极为板状结构或棒状结构。
  5. 根据权利要求1所述的一种去除水中重金属的处理装置,其特征在于:所述导电层为铜或铁或锌。
  6. 根据权利要求1所述的一种去除水中重金属的处理装置,其特征在于:所述缓冲介质为碳酸氢盐缓冲介质或氧气。
  7. 根据权利要求1所述的一种去除水中重金属的处理装置,其特征在于:模拟电路电池组的输出电压为1-6V的电压。
  8. 根据权利要求1所述的一种去除水中重金属的处理装置的去除方法,其特征在于:
    包括以下步骤:
    步骤1:将阳极电极内填充缓冲介质,该阳极电极的缓冲介质为碳酸氢盐缓冲介质或氧气;
    步骤2:将阴极电极放置在存放与重金属溶液的阴极池中,并使得炭吸附层直接接触到废水;
    步骤3:模拟电路电池组经导线分别向阳极电极通电以及阴极电极的导电层通电,以使得阳极电极产生正电荷,所述阴极电极导电层表面产生负电荷,同时以使得重金属溶液中的重金属被阴极电极的导电层上的负电荷吸附在炭吸附层的表面上。
  9. 根据权利要求8所述的一种去除水中重金属的处理装置的去除方法,其特征在于:在步骤2与步骤3之间还设置有步骤2a,
    步骤2a:通过泵体将重金属溶液抽取,并以预设的流速控制重金属溶液经过阴极电极,并使得炭吸附层直接接触到废水;所述重金属溶液内包括Ni,Mn,Pb,Zn,Cd,Cu,Hg,Cr,As,Co,Mo,Ag,Au,Pt,Pd,Rh,Ir,Re重金属离子的一种或多种。
  10. 根据权利要求1所述的一种去除水中重金属的处理装置的回收方法,其特征在于:
    步骤1:模拟电路电池组将阴极电极通过内部电路调整变成输出带正电荷的回收阳极,同时将阳极电极通过内部电路调整变成输出带负电荷的回收阴极;且该回收阴极内填充有回收缓冲介质,该回收缓冲介质为铁氰化钾,高锰酸钾,硝酸盐,硫酸盐,碳酸氢盐中的一种;其中回收阴极包括由内之外依次包裹的第一回收炭吸附层、第一回收导电层、第一回收绝缘层,所述回收缓冲介质位于第一回收炭吸附层内;
    步骤2:将回收阳极放置在存放与重金属溶液的阴极池中,回收阳极由内之外依次设置有第二回收炭吸附层、第二回收导电层、第二回收绝缘层,其中该回收阳极的第二回收炭吸附层的表面吸附有重金属;
    步骤3:模拟电路电池组经导线分别向回收阴极通电以及回收阳极的回收导电层通电,使得回收阳极的第二回收导电层产生正电荷,同时以使得在回收阳极的第二回收炭吸附层的重金属被第二回收导电层上的正电荷排挤在第二回收炭吸附层的表面外。
PCT/CN2021/105721 2021-06-30 2021-07-12 一种去除水中重金属的处理装置及其去除以及回收方法 WO2023272776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731108.8A CN113321273A (zh) 2021-06-30 2021-06-30 一种去除水中重金属的处理装置及其去除以及回收方法
CN202110731108.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023272776A1 true WO2023272776A1 (zh) 2023-01-05

Family

ID=77425186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105721 WO2023272776A1 (zh) 2021-06-30 2021-07-12 一种去除水中重金属的处理装置及其去除以及回收方法

Country Status (2)

Country Link
CN (1) CN113321273A (zh)
WO (1) WO2023272776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117843199A (zh) * 2024-03-01 2024-04-09 海普欧环保集团有限公司 一种重金属污水的离心吸附处理设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041477A1 (fr) * 1997-03-19 1998-09-24 Western Pacific Company, Inc. Ltd. Procede d'adsorption electrochimiquement controlee de substances organiques solubles et d'ions de metaux lourds extraits de solutions aqueuses, et dispositif
CN1533834A (zh) * 2003-03-28 2004-10-06 �����ع�ҵ��ʽ���� 吸附材料的再生方法和再生装置
CN201454977U (zh) * 2009-04-28 2010-05-12 上海海事大学 电动力吸附复合修复重金属污染土壤装置
CN109719122A (zh) * 2019-01-17 2019-05-07 长沙理工大学 一种带吸附剂的去除土壤(水体)中重金属离子的处理方法及装置
CN110589940A (zh) * 2019-10-24 2019-12-20 潘玉琼 一种去除水中重金属离子的处理装置及方法
CN112062364A (zh) * 2020-09-09 2020-12-11 樊晓瑜 含重金属废水的重金属回收系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041477A1 (fr) * 1997-03-19 1998-09-24 Western Pacific Company, Inc. Ltd. Procede d'adsorption electrochimiquement controlee de substances organiques solubles et d'ions de metaux lourds extraits de solutions aqueuses, et dispositif
CN1533834A (zh) * 2003-03-28 2004-10-06 �����ع�ҵ��ʽ���� 吸附材料的再生方法和再生装置
CN201454977U (zh) * 2009-04-28 2010-05-12 上海海事大学 电动力吸附复合修复重金属污染土壤装置
CN109719122A (zh) * 2019-01-17 2019-05-07 长沙理工大学 一种带吸附剂的去除土壤(水体)中重金属离子的处理方法及装置
CN110589940A (zh) * 2019-10-24 2019-12-20 潘玉琼 一种去除水中重金属离子的处理装置及方法
CN112062364A (zh) * 2020-09-09 2020-12-11 樊晓瑜 含重金属废水的重金属回收系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117843199A (zh) * 2024-03-01 2024-04-09 海普欧环保集团有限公司 一种重金属污水的离心吸附处理设备
CN117843199B (zh) * 2024-03-01 2024-05-21 海普欧环保集团有限公司 一种重金属污水的离心吸附处理设备

Also Published As

Publication number Publication date
CN113321273A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN110420983B (zh) 联合淋洗、吸附和电动修复重金属污染土壤的方法及系统
CN101781001A (zh) 一种两段式电解法处理废水的方法及其装置
CN2828014Y (zh) 一种电化学反应器
WO2023272776A1 (zh) 一种去除水中重金属的处理装置及其去除以及回收方法
CN109719122A (zh) 一种带吸附剂的去除土壤(水体)中重金属离子的处理方法及装置
CN109513741A (zh) 用于修复污染土壤的装置及修复方法
CN112676336A (zh) 一种利用原电池驱动技术修复重金属污染土壤的方法
CN101844075B (zh) 一种电化学活性碳再生装置的使用方法
CN106630116B (zh) 一种强化微生物电化学脱氮的方法与大阴极室连续流生物电化学反应装置
CN201240964Y (zh) 超声电凝聚-膜滤组合水处理装置
CN211393969U (zh) 一种去除水中重金属离子的处理装置
CN108862487A (zh) 一种水处理系统及工艺
CN102774934A (zh) 一种处理冶金废水中高浓度氨氮方法
CN217479128U (zh) 一种去除水中重金属的处理装置
CN1796615A (zh) 一种用于电镀溶液净化的恒电位循环电解处理的方法
CN101792195B (zh) 有机废水活性炭纤维吸附装置及脱附装置
CN110589940A (zh) 一种去除水中重金属离子的处理装置及方法
CN102895853B (zh) 一种电动力迁移回收与净化含氰废气的装置及其方法
CN213569939U (zh) 一种连续电催化废水处理装置
CN102161517A (zh) 有机废水活性炭纤维吸附装置及脱附装置
CN205241416U (zh) 一种多层微孔曝气铁碳微电解反应装置
CN212733552U (zh) 光能-垂直电动修复重金属污染土壤的装置
CN207210037U (zh) 一种高盐废水回收处理设备
CN203408616U (zh) 一种粒子群电极吸附耦合电催化氧化处理含苯废气的装置
CN106145275A (zh) 一种密闭式活塞流电催化装置及废水处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE