WO2023272750A1 - 一种快速升温的中央空调水循环控制系统及控制方法 - Google Patents

一种快速升温的中央空调水循环控制系统及控制方法 Download PDF

Info

Publication number
WO2023272750A1
WO2023272750A1 PCT/CN2021/104671 CN2021104671W WO2023272750A1 WO 2023272750 A1 WO2023272750 A1 WO 2023272750A1 CN 2021104671 W CN2021104671 W CN 2021104671W WO 2023272750 A1 WO2023272750 A1 WO 2023272750A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
indoor
supply pipe
pipe
water supply
Prior art date
Application number
PCT/CN2021/104671
Other languages
English (en)
French (fr)
Inventor
孙天奎
袁宇波
史明明
方鑫
庄舒仪
苏伟
袁晓冬
肖小龙
杨景刚
高磊
刘建
陈舒
Original Assignee
国网江苏省电力有限公司电力科学研究院
江苏省电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司电力科学研究院, 江苏省电力试验研究院有限公司 filed Critical 国网江苏省电力有限公司电力科学研究院
Publication of WO2023272750A1 publication Critical patent/WO2023272750A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/873Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the invention belongs to the technical field of comprehensive energy, and in particular relates to a central air-conditioning water cycle control system and control method for rapid temperature rise.
  • the central air conditioner under the heating condition provides hot water with a medium temperature of about 50 degrees Celsius to the indoor fan coil unit on the user side through the water supply pipeline and the return water pipeline.
  • the water supply and return water volume of the fan coil unit can effectively control the temperature of the user side.
  • the indoor fan coil unit on the user side usually needs to run for a long time or run in advance, which greatly increases energy consumption.
  • the present inventor based on years of rich experience and professional knowledge in this type of technology, cooperates with theoretical analysis, researches and innovates, in order to develop a central air-conditioning water circulation control system and control method for rapid heating.
  • the present invention provides a fast heating central air-conditioning water circulation control system, which can effectively solve the defects in the background technology.
  • the present invention also claims a fast heating central air conditioning water circulation control method, which has the same technical effect.
  • a fast-rising central air-conditioning water circulation control system which is connected to the dry water supply pipe and dry return pipe of the central air-conditioning control system, and the indoor water supply pipe and indoor return pipe on the user side, wherein the indoor water supply pipe and indoor return pipe Connect with the indoor fan coil respectively;
  • the first water circulation system realizes the water circulation between the dry water supply pipe, the indoor water supply pipe, the indoor fan coil unit, the indoor water return pipe and the dry return water pipe;
  • the second water circulation system is provided with an electric hot water tank, and realizes water circulation between the indoor water supply pipe, the indoor fan coil unit, the indoor return water pipe and the electric hot water tank.
  • the first water circulation system includes:
  • the first pipeline connects the dry water supply pipe and the indoor water supply pipe;
  • the second pipeline is connected to the dry return pipe and the indoor return pipe;
  • the first pipeline is provided with an electric control two-way valve, and the water supply flows from the dry water supply pipe to the indoor water supply pipe.
  • the second water circulation system includes:
  • the third pipeline connects the indoor return water pipe and the electric hot water tank
  • the fourth pipeline connects the electric hot water tank and the indoor water supply pipe
  • the third pipeline is provided with an electric control two-way valve and a water pump, the electric control two-way valve supplies water to flow from the indoor return pipe to the electric hot water tank, and the water pump provides flow power for the water.
  • a check valve is also provided on the third pipeline to allow one-way flow of water from the indoor return pipe to the electric hot water tank.
  • the first water circulation system includes:
  • the first pipeline connects the dry water supply pipe and the indoor water supply pipe;
  • the second pipeline is connected to the dry return pipe and the indoor return pipe;
  • the second water circulation system includes:
  • a connecting pipeline connecting the first pipeline and the second pipeline, the first connection point between the connecting pipeline and the first pipeline divides the first pipeline into a connection with the dry water supply pipe
  • the first section of the first section, and the second section connected to the indoor water supply pipe, the first section is provided with an electronically controlled two-way valve, and the water supply flows from the dry water supply pipe to the indoor water supply pipe;
  • the water inlet pipeline is connected to the second section and the electric hot water tank, and an electric control three-way valve is set at the connection with the second section, and the water supply flows from the dry water supply pipe to the water inlet pipeline or indoor water supply pipe , the water inlet pipeline is provided with a water pump;
  • the return water pipeline connects the electric hot water tank and the second section, and the second connection point with the second section is located downstream of the electric control three-way valve in the direction of water flow.
  • a check valve is provided on the connecting pipeline to allow one-way flow of water from the indoor return pipe to the electric hot water tank.
  • a method for rapidly heating up the central air-conditioning water cycle control method After the central air-conditioning control system is started, raising the indoor temperature includes the following steps:
  • Water circulation is realized between the indoor water supply pipe, the indoor return water pipe and the electric hot water tank, and the circulating water is heated by the electric hot water tank to provide hot water for the indoor fan coil unit.
  • the electric hot water tank works at rated power during the process of heating the circulating water.
  • it also includes adjusting the flow rate of the water circulation realized between the indoor water supply pipe, the indoor return water pipe and the electric hot water tank.
  • the air volume of the indoor fan coil unit is evenly raised to a set threshold within a set period of time after startup, and works at the set threshold after the set period of time.
  • the air volume of the indoor fan coil unit always works at the set threshold after it is started.
  • maintaining the indoor temperature includes the following steps:
  • Water circulation is realized between the dry water supply pipe, the indoor water supply pipe, the indoor fan coil unit, the indoor water return pipe and the dry return water pipe.
  • the water temperature in the electric hot water tank is maintained within a set range.
  • it also includes adjusting the air volume of the indoor fan coil unit.
  • it also includes adjusting the flow rate of the water circulation realized between the dry water supply pipe, the indoor water supply pipe, the indoor fan coil unit, the indoor water return pipe and the dry return water pipe.
  • the present invention has the following beneficial effects:
  • the central air-conditioning water circulation control system with rapid temperature rise proposed in the present invention can be directly connected in series between the existing central air-conditioning control system and the indoor fan coil unit, and there is no need to carry out the existing central air-conditioning control system.
  • Substantial modification avoids the impact on the normal operation of the existing central air conditioner; during the working process, the indoor temperature can be quickly increased through the second water circulation system, which maintains a good user experience and does not require long-term operation of the system, which improves the comprehensiveness of the system energy efficiency.
  • Fig. 1 is the installation schematic diagram of the central air-conditioning water cycle control system of rapid heating in embodiment two;
  • Fig. 2 is the process schematic diagram of the first water circulation process and the second water circulation process in embodiment two;
  • Fig. 3 is the schematic diagram of the arrangement mode of the check valve in the second embodiment
  • Fig. 4 is the frame diagram of the central air-conditioning water cycle control system of rapid heating in embodiment three;
  • Fig. 5 is the schematic diagram of the arrangement mode of connecting pipeline in embodiment three;
  • Fig. 6 is a schematic diagram of the setting method of the water inlet pipeline and the return water pipeline in the third embodiment
  • Fig. 7 is the installation schematic diagram of the central air-conditioning water cycle control system of rapid heating in embodiment three;
  • Fig. 8 is the process schematic diagram of the second water circulation process in embodiment three;
  • Fig. 9 is the process schematic diagram of the first water circulation process in embodiment three;
  • Fig. 10 is the flow chart of the central air-conditioning water cycle control method of rapid heating in embodiment four;
  • Fig. 11 is the flow chart of the central air-conditioning water cycle control method of rapid heating in embodiment five;
  • A first water circulation process
  • B second water circulation process
  • a water cycle control system for central air-conditioning with rapid temperature rise which is connected to the dry water supply pipe 1 and the dry return pipe 2 of the central air-conditioning control system, and the indoor water supply pipe 3 and the indoor return water pipe 4 on the user side, wherein the indoor water supply pipe 3 and the indoor water return pipe 4
  • the indoor return water pipes 4 are respectively connected to the indoor fan coils; including: the first water circulation system, realizing the water circulation between the dry water supply pipe 1, the indoor water supply pipe 3, the indoor fan coil, the indoor return water pipe 4 and the dry return water pipe 2;
  • the second water circulation system is provided with an electric hot water tank 7, and realizes water circulation between the indoor water supply pipe 3, the indoor fan coil unit, the indoor water return pipe 4 and the electric hot water tank 7.
  • the central air-conditioning water circulation control system with rapid temperature rise proposed in the present invention can be directly connected in series between the existing central air-conditioning control system and the indoor fan coil unit, and there is no need to carry out the existing central air-conditioning control system. Substantial transformation has avoided the impact on the normal operation of the existing central air conditioner.
  • the temperature difference between the hot water supply and the user side can be effectively increased through the second water circulation system, so as to achieve a rapid increase in the indoor temperature. While maintaining a good user experience, the system does not need to run for a long time, which improves the comprehensiveness of the system. Energy efficiency; while the first water circulation system maintains the room temperature after the second water circulation system quickly heats up through the medium-temperature hot water of about 50 degrees Celsius provided by the existing central air conditioner.
  • the first water circulation system includes: a first pipeline 5, connecting the dry water supply pipe 1 and the indoor water supply pipe 3; a second pipeline 6, connecting the dry return pipe 2 and the indoor return water pipe 4; the first pipeline 5 is provided with an electric control The two-way valve 8, the water supply flows from the dry water supply pipe 1 to the indoor water supply pipe 3.
  • the first water circulation system in this embodiment can use the pipeline form of the existing system.
  • the above-mentioned pipeline form is used to supply hot water to the indoor fan coil unit, so no additional construction is required.
  • the indoor water supply pipe 3 and the indoor water return pipe 4 are branch structures corresponding to the indoor fan coil units one by one.
  • the second water circulation system includes: a third pipeline 9 connecting the indoor return water pipe 4 and the electric water tank 7; a fourth pipeline 10 connecting the electric water tank 7 and the indoor water supply pipe 3; An electric control two-way valve 8 and a water pump 12 are provided.
  • the electric control two-way valve 8 supplies water to flow from the indoor return pipe 4 to the electric hot water tank 7, and the water pump 12 provides flow power for the water.
  • This part of the structure requires additional construction in the existing pipeline form, the construction difficulty is small, and the existing pipeline form is not affected, and even the operation of the existing central air conditioner does not need to be stopped during the construction process.
  • a check valve 11 is also provided on the third pipeline 9 to allow water to flow from the indoor return pipe 4 One-way flow to the electric hot water tank 7.
  • first water cycle process A and the second water cycle process B are shown, specifically:
  • the hot water from the dry water supply pipe 1 reaches the indoor water supply pipe 3 through the first water inlet 81 and the first water outlet 82 of the electronically controlled two-way valve 8 on the first pipeline 5, and passes through the indoor fan.
  • the coil returns to the dry return pipe 2 through the indoor return pipe 4 and the second pipe 6.
  • the water flow can obtain circulation power through the water supply pressure of the dry water supply pipe 1.
  • an external power source e.g., an external power source
  • the electric hot water tank 7 supplies the indoor water supply pipe 3 with high-temperature hot water through the fourth pipeline 10, which is higher than the temperature of the hot water supplied by the existing central air conditioner, and the high-temperature hot water passes through the indoor water supply pipe 3 to reach the indoor fan panel.
  • the pipe passes through the indoor return pipe 4 to the third pipeline 9, and returns to the electric hot water tank 7 through the first water inlet 81 and the first water outlet 82 of the electronically controlled two-way valve 8 on the third pipeline 9.
  • the water pump 12 provides circulating power for the water flow.
  • Embodiment 2 on the basis of Embodiment 1, as shown in Figures 4-6, compared with Embodiment 2, another specific pipeline connection method of the central air-conditioning water circulation control system with rapid heating is provided:
  • the first water circulation system includes: a first pipeline 5, connecting the dry water supply pipe 1 and the indoor water supply pipe 3; a second pipeline 6, connecting the dry water return pipe 2 and the indoor water return pipe 4; referring to Fig. 5, the second water circulation system includes: The connecting pipeline 13 connects the first pipeline 5 and the second pipeline 6, and the first connection point 51 between the connecting pipeline 13 and the first pipeline 5 divides the first pipeline 5 into the second pipeline connected with the dry water supply pipe 1.
  • the first section 52 is provided with an electronically controlled two-way valve 8, and the water supply flow flows from the dry water supply pipe 1 to the indoor water supply pipe 3; see Figure 6, and Including the water inlet pipeline 14, connecting the second section 53 and the electric hot water tank 7, and the connection with the second section 53 is provided with an electronically controlled three-way valve 16, and the water supply flows from the dry water supply pipe 1 to the water inlet pipeline 14 or the indoor water supply pipe 3 Circulation, the water pump 12 is set on the water inlet pipeline 14; the return water pipeline 15 connects the electric hot water tank 7 and the second section 53, and the second connection point 54 with the second section 53 is located at the electric control three-way valve 16 in the direction of water flow upstream and downstream.
  • the pipeline connection method in this embodiment effectively saves the amount of materials used, and the establishment of the second water circulation system can be realized by means of some pipelines of the first water circulation system. It is necessary to carry out appropriate transformation on the existing pipeline form. However, the difficulty of transformation is relatively low.
  • the connecting pipeline 13, the water inlet pipeline 14 and the return water pipeline 15 are newly added pipeline forms, and the electronically controlled three-way valve 16 is connected through the second water inlet 161 and the second water outlet 162.
  • the existing first pipeline 5 is connected to the water inlet pipeline 14 through the third water outlet 163 .
  • a check valve 11 is provided on the connecting pipeline 13 to allow the one-way flow of water from the indoor return pipe 4 to the electric hot water tank 7, thereby achieving the same effect as in the second embodiment. technical effect.
  • the system stop operation state there are three states between the system stop operation and the stable heat supply: the system stop operation state, the system rapid heating state and the system stable heat supply state.
  • the central air-conditioning control system stops running.
  • the electronically controlled two-way valve 8 is closed, and the second water inlet 161 of the electronically controlled three-way valve 16 is connected to the third water outlet 163.
  • the water inlet 161 and the second water outlet 162 are closed, the water pump 12 stops working, the electric hot water tank 7 works at a lower power and maintains the water temperature in the water tank, and the water in the indoor water supply pipe 3 and the indoor return pipe stops circulating.
  • the central air-conditioning control system turns into a rapid heating state, as shown in Figure 8.
  • the electronically controlled two-way valve 8 is closed, and the second water inlet 161 of the electronically controlled three-way valve 16 is connected
  • the third water outlet 163 is turned on and the second water inlet 161 and the second water outlet 162 are closed, the water pump 12 starts to realize the second water circulation process B, and the temperature difference between the hot water supplied and the user side can be effectively increased through the second water circulation system, Realize the rapid increase of indoor temperature.
  • the central air-conditioning control system turns to the stable heating state of the system, as shown in Figure 9.
  • the water port 161 and the third water outlet 163 are closed and the second water inlet 161 is connected to the second water outlet 162.
  • the water pump 12 stops working, and the first water circulation process A is realized through the water supply pressure of the dry water supply pipe 1, thereby maintaining the indoor temperature.
  • the above-mentioned precise control including the electronically controlled two-way valve 8 , the electronically controlled three-way valve 16 , the electric hot water tank 7 and the water pump 12 can be realized through the existing electronic control system.
  • the electric hot water tank 7 is used to heat the circulating water to provide hot water for the indoor fan coil.
  • the temperature difference between the hot water supplied and the user side can be effectively increased, and a rapid increase of the indoor temperature can be realized.
  • control method in this implementation can be realized by means of the second water circulation system in Embodiment 1 to Embodiment 3, and the specific working method is as shown in the above-mentioned embodiment, and will not be repeated here.
  • the electric hot water tank 7 works at the rated power during the heating process of the circulating water, and the electric hot water tank 7 running at the rated power can ensure the stability of the work and prolong the service life of the equipment, wherein, In order to reduce heat dissipation and save energy, it is necessary to set an insulating structure for the electric hot water tank 7 .
  • the second water circulation process B is compared with the original The topological system of the system is realized, and its control can be independent of the original central air-conditioning control system. Adjusting the flow can achieve a balance between power supply and heating efficiency.
  • the air intake and return air volume of the indoor fan coil unit can also be optimized, thereby improving the efficiency of indoor heating.
  • increasing the air volume is helpful. for the realization of a rapid heating process.
  • the air volume of the indoor fan coil unit is evenly increased to the set threshold within the set time period after startup, and works at the set threshold after the set time period. Avoid the discomfort caused by the sudden large air volume to the user.
  • the air volume of the indoor fan coil unit always works at the set threshold value after startup, and this method can establish an efficient heat exchange process relatively quickly.
  • This embodiment is carried out on the basis of Embodiment 4. As shown in Figure 11, after the indoor temperature reaches the set temperature, maintaining the indoor temperature includes the following steps:
  • stop step S3 that is, stop the water circulation realized between the indoor water supply pipe 3, the indoor return water pipe 4 and the electric hot water tank 7;
  • A2 Establish the communication relationship between the dry water supply pipe 1 of the central air-conditioning control system and the indoor water supply pipe 3, and the communication relationship between the dry return pipe 2 and the indoor return water pipe 4 of the central air-conditioning control system;
  • A3 Realize water circulation between dry water supply pipe 1, indoor water supply pipe 3, indoor fan coil unit, indoor return water pipe 4 and dry return water pipe 2.
  • control method in this implementation can be realized by means of the first water circulation system in Embodiment 1 to Embodiment 3, and the specific working mode is as shown in the above-mentioned embodiment, and will not be repeated here.
  • the indoor return pipe 4 and the electric water tank 7 after stopping the water circulation realized between the indoor water supply pipe 3, the indoor return pipe 4 and the electric water tank 7, maintain the water temperature in the electric water tank 7 within the set range.
  • This method can be achieved by means of heat preservation Realization can also be realized by continuous or intermittent heating of the electric hot water tank 7 at a lower heating power, or the above-mentioned method is carried out synchronously.
  • the purpose of the above-mentioned approach is to further reduce the excessive time from the first water circulation process A to the second water circulation process B. Thereby further enhancing the customer experience.
  • the purpose of the fourth embodiment is the same, it also includes adjusting the air volume of the indoor fan coil unit, and/or, also includes adjusting the dry water supply pipe 1, the indoor water supply pipe 3, the indoor fan coil unit, the indoor return
  • the flow rate of the water circulation realized between the water pipe 4 and the dry return pipe 2 can be adjusted to obtain a better control effect.
  • the volume of the electric hot water tank 7 is 10L, and the rated heating power is 4kW.
  • the water temperature at the water outlet of the electric hot water tank 7 is maintained at a temperature not lower than 50 degrees Celsius and not higher than 52 degrees Celsius, which is realized through internal water temperature control; the water pump 12
  • the maximum head of the system is 10 meters, the internal diameter of the system is DN20, the initial indoor temperature is 15 degrees Celsius, the target temperature is 23 degrees Celsius, the water temperature in the dry water supply pipe 1 is 50 degrees Celsius, and the temperature difference between the dry water supply pipe 1 and the dry return pipe 2 is set to 5 degrees Celsius.
  • the system is started from a shutdown state:
  • the water pump 12 When the indoor temperature rises to 23 degrees Celsius, the water pump 12 is stopped, the second water inlet 161 and the third water outlet 163 of the electronically controlled three-way valve 16 are closed and the second water inlet 161 and the second water outlet 162 are opened, and the electric valve is turned on.
  • the first water inlet 81 and the second water outlet 82 of the control two-way valve 8 the dry water supply pipe 1 supplies water to the indoor water supply pipe 3, and the indoor return water pipe 4 returns water through the dry return water pipe 2 to realize the first water cycle process A, and the indoor fan
  • the air volume of the coil is adjusted to the temperature control state, and the internal two-way valve is used to control the room temperature.
  • the electric hot water tank 7 is turned to a low power state to maintain the water temperature in the water tank at 50 degrees Celsius.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

一种快速升温的中央空调水循环控制系统,属于综合能源技术领域,包括:第一水循环系统,实现干供水管(1)、室内供水管(3)、室内风机盘管、室内回水管(4)和干回水管(2)之间的水循环;第二水循环系统,设置电热水箱(7),实现室内供水管(3)、室内风机盘管、室内回水管(4)和电热水箱(7)之间的水循环。该快速升温的中央空调水循环控制系统可直接串接在现有中央空调控制系统与室内风机盘管之间,避免了对现有中央空调的正常运行的影响;在工作过程中,通过第二水循环系统可快速提高室内温度,在维持用户较好的体验同时无需系统长期运行,提升了系统的综合用能效率。一种快速升温的中央空调水循环控制方法,具有同样的技术效果。

Description

一种快速升温的中央空调水循环控制系统及控制方法 技术领域
本发明属于综合能源技术领域,具体涉及一种快速升温的中央空调水循环控制系统及控制方法。
背景技术
目前,供暖工况下的中央空调是通过供水管路和回水管路向用户侧的室内风机盘管提供约50摄氏度的中等温度的热水,通过独立或同步调控室内风机盘管的风量,以及室内风机盘管的供水量和回水量,实现有效控制用户侧温度的目的。
在调控过程中,由于提供的热水温度与用户侧温度差异不高,最大水量由干供水管和干回水管间压强限制,用户侧的室内风机盘管从停运状态启动到室温达到设定值的时间较长,在此种情况下,为了保证用户侧在需要时能够快速获得适宜的温度,用户侧的室内风机盘管通常需要长期运行或提前运行,从而大幅增加了能耗。
鉴于上述缺陷,本发明人基于从事此类技术多年丰富经验及专业知识,配合理论分析,加以研究创新,以期开发一种快速升温的中央空调水循环控制系统及控制方法。
发明内容
本发明中提供了一种快速升温的中央空调水循环控制系统,可有效解决背景技术中的缺陷,同时本发明中还请求保护一种快速升温的中央空调水循环控制方法,具有同样的技术效果。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种快速升温的中央空调水循环控制系统,与中央空调控制系统的干供水管和干回水管,以及,用户侧的室内供水管和室内回水管连接,其中,所述室内供水管和室内回水管分别与室内风机盘管连接;
包括:
第一水循环系统,实现所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间的水循环;
第二水循环系统,设置电热水箱,且实现所述室内供水管、室内风机盘管、室内回水管和所述电热水箱之间的水循环。
进一步地,所述第一水循环系统包括:
第一管路,连接所述干供水管和室内供水管;
第二管路,连接所述干回水管和室内回水管;
所述第一管路上设置有电控二通阀,供水流自所述干供水管向所述室内供水管流通。
进一步地,所述第二水循环系统包括:
第三管路,连接所述室内回水管和所述电热水箱;
第四管路,连接所述电热水箱与所述室内供水管;
所述第三管路上设置有电控二通阀和水泵,所述电控二通阀供水流自所述室内回水管向所述电热水箱流通,所述水泵为水提供流通动力。
进一步地,所述第三管路上还设置有止回阀,允许水自所述室内回水管向所述电热水箱的单向流通。
进一步地,所述第一水循环系统包括:
第一管路,连接所述干供水管和室内供水管;
第二管路,连接所述干回水管和室内回水管;
所述第二水循环系统包括:
连接管路,连接所述第一管路和第二管路,所述连接管路与所述第一管路的第一连接点将所述第一管路分为与所述干供水管连接的第一段,以及与所述室内供水管连接的第二段,所述第一段上设置有电控二通阀,供水流自所述干供水管向所述室内供水管流通;
进水管路,连接所述第二段和电热水箱,且与所述第二段的连接处设置电控三通阀,供水流自所述干供水管向所述进水管路或室内供水管流通,所述进水管路上设置有水泵;
回水管路,连接所述电热水箱和第二段,且与所述第二段的第二连接点位于所述电控三通阀在水流通方向上的下游。
进一步地,所述连接管路上设置有止回阀,允许水自所述室内回水管向所述电热水箱的单向流通。
一种快速升温的中央空调水循环控制方法,在中央空调控制系统启动后,对室内温度进行提升包括以下步骤:
分别建立用户侧的室内供水管和室内回水管与电热水箱的水箱出水口和水箱供水口的联通关系,其中,所述室内供水管和室内回水管分别与室内风机盘管连接;
在所述室内供水管、室内回水管和电热水箱之间实现水循环,且通过所述电热水箱实现循环水的加热,为所述室内风机盘管提供热水。
进一步地,所述电热水箱在对循环水的加热过程中,工作在额定功率下。
进一步地,还包括对所述室内供水管、室内回水管和电热水箱之间实现的水循环的流量进行调 节。
进一步地,所述室内风机盘管的风量在启动后的设定时间段内均匀提升至设定阈值,且在所述设定时间段后以所述设定阈值工作。
进一步地,所述室内风机盘管的风量在启动后始终以设定阈值工作。
进一步地,在中央空调控制系统启动且室内温度达到设定温度后,对室内温度进行维持包括以下步骤:
停止在所述室内供水管、室内回水管和电热水箱之间实现的水循环;
建立中央空调控制系统的干供水管与所述室内供水管的联通关系,以及中央空调控制系统的干回水管与所述室内回水管的联通关系;
在所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间实现水循环。
进一步地,停止在所述室内供水管、室内回水管和电热水箱之间实现的水循环后,维持所述电热水箱内的水温在设定范围内。
进一步地,还包括对所述室内风机盘管的风量进行调节。
进一步地,还包括对所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间实现的水循环的流量进行调节。
综上所述,本发明具有以下有益效果:
就安装方式而言,本发明中所提出的快速升温的中央空调水循环控制系统可直接串接在现有的中央空调控制系统与室内风机盘管之间,无须对现有的中央空调控制系统进行大幅改造,避免了对现有中央空调的正常运行的影响;在工作过程中,通过第二水循环系统可快速提高室内温度,在维持用户较好的体验同时无需系统长期运行,提升了系统的综合用能效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例二中快速升温的中央空调水循环控制系统的安装示意图;
图2为实施例二中第一水循环过程和第二水循环过程的过程示意图;
图3为实施例二中止回阀的设置方式示意图;
图4为实施例三中快速升温的中央空调水循环控制系统的框架图;
图5为实施例三中连接管路的设置方式示意图;
图6为实施例三中进水管路和回水管路的设置方式示意图;
图7为实施例三中快速升温的中央空调水循环控制系统的安装示意图;
图8为实施例三中第二水循环过程的过程示意图;
图9为实施例三中第一水循环过程的过程示意图;
图10为实施例四中快速升温的中央空调水循环控制方法的流程图;
图11为实施例五中快速升温的中央空调水循环控制方法的流程图;
附图标记:A、第一水循环过程;B、第二水循环过程;1、干供水管;2、干回水管;3、室内供水管;4、室内回水管;5、第一管路;51、第一连接点;52、第一段;53、第二段;54、第二连接点;6、第二管路;7、电热水箱;8、电控二通阀;81、第一入水口;82、第一出水口;9、第三管路;10、第四管路;11、止回阀;12、水泵;13、连接管路;14、进水管路;15、回水管路;16、电控三通阀;161、第二入水口;162、第二出水口;163、第三出水口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
一种快速升温的中央空调水循环控制系统,与中央空调控制系统的干供水管1和干回水管2,以及,用户侧的室内供水管3和室内回水管4连接,其中,室内供水管3和室内回水管4分别与室内风机盘管连接;包括:第一水循环系统,实现干供水管1、室内供水管3、室内风机盘管、室内回水管4和干回水管2之间的水循环;第二水循环系统,设置电热水箱7,且实现室内供水管3、室内风机盘管、室内回水管4和电热水箱7之间的水循环。
就安装方式而言,本发明中所提出的快速升温的中央空调水循环控制系统可直接串接在现有的中央空调控制系统与室内风机盘管之间,无须对现有的中央空调控制系统进行大幅改造,避免了对现有中央空调的正常运行的影响。
在工作过程中,通过第二水循环系统可有效增大所供热水与用户侧的温差,从而实现室内温度的快速提升,在维持用户较好的体验同时无需系统长期运行,提升了系统的综合用能效率;而第一水循环系统通过现有的中央空调所提供的约50摄氏度的中等温度的热水对经过第二水循环系统快速升温后的室温进行维持。
实施例二
本实施例中,如图1~3所示,在实施例一的基础上提供了一种快速升温的中央空调水循环控制系统的具体管路连接方式:
第一水循环系统包括:第一管路5,连接干供水管1和室内供水管3;第二管路6,连接干回水管2和室内回水管4;第一管路5上设置有电控二通阀8,供水流自干供水管1向室内供水管3流通。
本实施例中的第一水循环系统可借助现有系统的管路形式,目前对室内风机盘管即采用上述管路形式进行热水的供给,因此无需额外的施工,其中,本发明中所指的室内供水管3和室内回水管4为与室内风机盘管一一对应的支路结构。
在本实施例中,第二水循环系统包括:第三管路9,连接室内回水管4和电热水箱7;第四管路10,连接电热水箱7与室内供水管3;第三管路9上设置有电控二通阀8和水泵12,电控二通阀8供水流自室内回水管4向电热水箱7流通,水泵12为水提供流通动力。
此部分结构在现有的管路形式中需要额外进行施工而实现,施工难度小,且并不影响现有的管路形式,甚至在施工过程中无需停止现有中央空调的运行。
在本实施例中,为了避免水的导流,保证第二水循环系统中各部件的使用寿命,参见图3,第三管路9上还设置有止回阀11,允许水自室内回水管4向电热水箱7的单向流通。
参见图2,展示了第一水循环过程A和第二水循环过程B,具体地:
第一水循环过程A中,来自干供水管1的热水经过第一管路5上电控二通阀8的第一入水口81和第一出水口82到达室内供水管3,且经过室内风机盘管进行热交换后,通过室内回水管4及第二管路6返回至干回水管2,在上述过程中水流可通过干供水管1的供水压力获得循环动力,当然也可设置外置的动力源;
第二水循环过程B中,电热水箱7通过第四管路10向室内供水管3供给高于现有中央空调所供热水温度的高温热水,高温热水经过室内供水管3达到室内风机盘管进行热交换后,通过室内回水管4到达第三管路9,经过第三管路9上电控二通阀8的第一入水口81和第一出水口82返回电热水箱7,在上述过程中,通过水泵12为水流提供循环动力。
实施例三
本实施例中,在实施例一的基础上,如图4~6所示,相对于实施例二提供了另外一种快速升温的中央空调水循环控制系统的具体管路连接方式:
第一水循环系统包括:第一管路5,连接干供水管1和室内供水管3;第二管路6,连接干回水管2和室内回水管4;参见图5,第二水循环系统包括:连接管路13,连接第一管路5和第二管路6,连接管路13与第一管路5的第一连接点51将第一管路5分为与干供水管1连接的第一段52,以及与室内供水管3连接的第二段53,第一段52上设置有电控二通阀8,供水流自干供水管1向室内供水管3流通;参见图6,还包括进水管路14,连接第二段53和电热水箱7,且与第二段53 的连接处设置电控三通阀16,供水流自干供水管1向进水管路14或室内供水管3流通,进水管路14上设置有水泵12;回水管路15,连接电热水箱7和第二段53,且与第二段53的第二连接点54位于电控三通阀16在水流通方向上的下游。
本实施例中的管路连接方式有效的节省了材料的使用量,可借助第一水循环系统的部分管路来实现第二水循环系统的建立,需要对现有的管路形式进行适当的改造,但改造难度较低,其中,连接管路13、进水管路14和回水管路15为新增的管路形式,电控三通阀16通过第二入水口161、第二出水口162接入现有的第一管路5中,且通过第三出水口163与进水管路14连接。
作为本实施例的优选,如图7所示,连接管路13上设置有止回阀11,允许水自室内回水管4向电热水箱7的单向流通,从而起到与实施例二中同样的技术效果。
本实施例中,系统由停止运行到稳定供热之间存在三个状态:系统停止运行状态、系统快速加热状态和系统稳定供热状态。
当室内不需要供热时,中央空调控制系统停止运行,该状态下,电控二通阀8关闭,电控三通阀16的第二入水口161与第三出水口163导通且第二入水口161与第二出水口162关闭,水泵12停止工作,电热水箱7工作在较低功率下并维持水箱内水温,室内供水管3与室内回水管内水停止循环。
当室内需要供热的初始时刻,中央空调控制系统转为快速加热状态,如图8所示,该状态下,电控二通阀8关闭,电控三通阀16的第二入水口161与第三出水口163导通且第二入水口161与第二出水口162关闭,水泵12启动实现第二水循环过程B,通过第二水循环系统可有效增大所供热水与用户侧的温差,实现室内温度快速提升。
当室内温度达到设定温度后,中央空调控制系统转为系统稳定供热状态,如图9所示,该状态下,电控二通阀8导通,电控三通阀16的第二入水口161与第三出水口163关闭且第二入水口161与第二出水口162导通,水泵12停止工作,通过干供水管1的供水压力实现第一水循环过程A,从而维持室内温度。
通过现有的电控系统可实现上述包括电控二通阀8、电控三通阀16、电热水箱7和水泵12的精准控制。
实施例四
如图10所示,一种快速升温的中央空调水循环控制方法,过程如下:
S1:中央空调控制系统启动;
S2:分别建立用户侧的室内供水管3和室内回水管4与电热水箱7的水箱出水口和水箱供水口的联通关系,其中,室内供水管3和室内回水管4分别与室内风机盘管连接;
S3:在室内供水管3、室内回水管4和电热水箱7之间实现水循环;
S4:通过电热水箱7实现循环水的加热,为室内风机盘管提供热水。
通过上述步骤S1~S4可有效增大所供热水与用户侧的温差,实现室内温度的快速提升。
本实施中的控制方法可借助实施例一~实施例三中的第二水循环系统实现,具体的工作方式如上述实施例所示,此处不再赘述。
作为本实施例的优选,电热水箱7在对循环水的加热过程中,工作在额定功率下,在额定功率下运行的电热水箱7可保证工作的稳定性,且延长设备的使用寿命,其中,为了降低热量的散发,节省能源,需要对电热水箱7设置保温结构。
在实际的工作过程中,为了实现更加精准的控制,还包括对室内供水管3、室内回水管4和电热水箱7之间实现的水循环的流量进行调节,第二水循环过程B通过相对于原有系统的拓扑系统实现,其控制可独立于原有中央空调控制系统,对流量进行调节可在动力供给和加热效率之间获得平衡。
作为进一步的优选,除了对流量进行调节外,室内风机盘管的进风量和回风量也可进行优化,从而提高室内升温的效率,总体而言,相对于正常工作的情况,增大风量有助于快速升温过程的实现。
其中,作为一种风量调节的方式:室内风机盘管的风量在启动后的设定时间段内均匀提升至设定阈值,且在设定时间段后以设定阈值工作,此种方式下可避免突然产生的较大风量给用户带来的不适感。
或者,作为另一种风量调节的方式:室内风机盘管的风量在启动后始终以设定阈值工作,此种方式则可较为快速的建立高效的热交换过程。
实施例五
本实施例在实施例四的基础上进行,如图11所示,在室内温度达到设定温度后,对室内温度进行维持包括以下步骤:
A1;停止步骤S3,即停止在室内供水管3、室内回水管4和电热水箱7之间实现的水循环;
A2:建立中央空调控制系统的干供水管1与室内供水管3的联通关系,以及中央空调控制系统的干回水管2与室内回水管4的联通关系;
A3:在干供水管1、室内供水管3、室内风机盘管、室内回水管4和干回水管2之间实现水循环。
本实施中的控制方法可借助实施例一~实施例三中的第一水循环系统实现,具体的工作方式如上述实施例所示,此处不再赘述。
作为本实施例的优选,停止在室内供水管3、室内回水管4和电热水箱7之间实现的水循环后,维持电热水箱7内的水温在设定范围内,此种方式可通过保温的方式实现,也可通过电热水箱7在较低的加热功率下持续或间歇加热实现,或者上述方式同步进行,上述做法的目的在于进一步降低从第一水循环过程A到第二水循环过程B的过度时间,从而进一步提升客户的体验效果。
在此过程中,与实施例四目的相同的是,还包括对室内风机盘管的风量进行调节,和/或,还包括对干供水管1、室内供水管3、室内风机盘管、室内回水管4和干回水管2之间实现的水循环的流量进行调节,均可获得更优的控制效果。
示例性的,电热水箱7的容积为10L,额定加热功率为4kW,电热水箱7的水箱出水口处水温维持温度不低于50摄氏度,且不高于52摄氏度,通过内部水温控制实现;水泵12的最大扬程10米,系统内管径均为DN20,室内初始温度为15摄氏度,目标温度为23摄氏度,干供水管1内水温为50摄氏度,干供水管1与干回水管2温差设定为5摄氏度。
系统由停机状态下启动:
B1:启动水泵12,并控制水流量为2m 3/h,同时启动电热水箱7控制水箱出水口温度不低于50摄氏度,实现第二水循环过程B,室内风机盘管出风量调至最大,快速加热室内温度;
B2:当室内温度升至23摄氏度,停止水泵12工作,电控三通阀16的第二入水口161与第三出水口163关闭且第二入水口161与第二出水口162打开,打开电控二通阀8的第一入水口81和第二出水口82,干供水管1为室内供水管3供水,室内回水管4通过干回水管2回水,实现第一水循环过程A,室内风机盘管出风量调降至温度控制状态,配合内部二通阀控制室温,同时电热水箱7转为低功率状态维持水箱内水温50摄氏度。
以上,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例展示如上,但并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (15)

  1. 一种快速升温的中央空调水循环控制系统,其特征在于,与中央空调控制系统的干供水管和干回水管,以及,用户侧的室内供水管和室内回水管连接,其中,所述室内供水管和室内回水管分别与室内风机盘管连接;
    包括:
    第一水循环系统,实现所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间的水循环;
    第二水循环系统,设置电热水箱,且实现所述室内供水管、室内风机盘管、室内回水管和所述电热水箱之间的水循环。
  2. 根据权利要求1所述的快速升温的中央空调水循环控制系统,其特征在于,所述第一水循环系统包括:
    第一管路,连接所述干供水管和室内供水管;
    第二管路,连接所述干回水管和室内回水管;
    所述第一管路上设置有电控二通阀,供水流自所述干供水管向所述室内供水管流通。
  3. 根据权利要求1或2所述的快速升温的中央空调水循环控制系统,其特征在于,所述第二水循环系统包括:
    第三管路,连接所述室内回水管和所述电热水箱;
    第四管路,连接所述电热水箱与所述室内供水管;
    所述第三管路上设置有电控二通阀和水泵,所述电控二通阀供水流自所述室内回水管向所述电热水箱流通,所述水泵为水提供流通动力。
  4. 根据权利要求3所述的快速升温的中央空调水循环控制系统,其特征 在于,所述第三管路上还设置有止回阀,允许水自所述室内回水管向所述电热水箱的单向流通。
  5. 根据权利要求1所述的快速升温的中央空调水循环控制系统,其特征在于,所述第一水循环系统包括:
    第一管路,连接所述干供水管和室内供水管;
    第二管路,连接所述干回水管和室内回水管;
    所述第二水循环系统包括:
    连接管路,连接所述第一管路和第二管路,所述连接管路与所述第一管路的第一连接点将所述第一管路分为与所述干供水管连接的第一段,以及与所述室内供水管连接的第二段,所述第一段上设置有电控二通阀,供水流自所述干供水管向所述室内供水管流通;
    进水管路,连接所述第二段和电热水箱,且与所述第二段的连接处设置电控三通阀,供水流自所述干供水管向所述进水管路或室内供水管流通,所述进水管路上设置有水泵;
    回水管路,连接所述电热水箱和第二段,且与所述第二段的第二连接点位于所述电控三通阀在水流通方向上的下游。
  6. 根据权利要求5所述的快速升温的中央空调水循环控制系统,其特征在于,所述连接管路上设置有止回阀,允许水自所述室内回水管向所述电热水箱的单向流通。
  7. 一种快速升温的中央空调水循环控制方法,其特征在于,在中央空调控制系统启动后,对室内温度进行提升包括以下步骤:
    分别建立用户侧的室内供水管和室内回水管与电热水箱的水箱出水口和水箱供水口的联通关系,其中,所述室内供水管和室内回水管分别与室内风机盘管连接;
    在所述室内供水管、室内回水管和电热水箱之间实现水循环,且通过所述电热水箱实现循环水的加热,为所述室内风机盘管提供热水。
  8. 根据权利要求7所述的快速升温的中央空调水循环控制方法,其特征在于,所述电热水箱在对循环水的加热过程中,工作在额定功率下。
  9. 根据权利要求7所述的快速升温的中央空调水循环控制方法,其特征在于,还包括对所述室内供水管、室内回水管和电热水箱之间实现的水循环的流量进行调节。
  10. 根据权利要求7~9任一项所述的快速升温的中央空调水循环控制方法,其特征在于,所述室内风机盘管的风量在启动后的设定时间段内均匀提升至设定阈值,且在所述设定时间段后以所述设定阈值工作。
  11. 根据权利要求7~9任一项所述的快速升温的中央空调水循环控制方法,其特征在于,所述室内风机盘管的风量在启动后始终以设定阈值工作。
  12. 根据权利要求7所述的快速升温的中央空调水循环控制方法,其特征在于,在中央空调控制系统启动且室内温度达到设定温度后,对室内温度进行维持包括以下步骤:
    停止在所述室内供水管、室内回水管和电热水箱之间实现的水循环;
    建立中央空调控制系统的干供水管与所述室内供水管的联通关系,以及中央空调控制系统的干回水管与所述室内回水管的联通关系;
    在所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间实现水循环。
  13. 根据权利要求12所述的快速升温的中央空调水循环控制方法,其特征在于,停止在所述室内供水管、室内回水管和电热水箱之间实现的水循环后,维持所述电热水箱内的水温在设定范围内。
  14. 根据权利要求12或13所述的快速升温的中央空调水循环控制方法,其特征在于,还包括对所述室内风机盘管的风量进行调节。
  15. 根据权利要求12或13所述的快速升温的中央空调水循环控制方法,其特征在于,还包括对所述干供水管、室内供水管、室内风机盘管、室内回水管和干回水管之间实现的水循环的流量进行调节。
PCT/CN2021/104671 2021-06-29 2021-07-06 一种快速升温的中央空调水循环控制系统及控制方法 WO2023272750A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731957.3 2021-06-29
CN202110731957.3A CN113623814B (zh) 2021-06-29 2021-06-29 一种快速升温的中央空调水循环控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023272750A1 true WO2023272750A1 (zh) 2023-01-05

Family

ID=78378643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104671 WO2023272750A1 (zh) 2021-06-29 2021-07-06 一种快速升温的中央空调水循环控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN113623814B (zh)
WO (1) WO2023272750A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126345A (ja) * 1991-11-08 1993-05-21 Hitachi Home Tec Ltd 空気調和機
CN2625790Y (zh) * 2003-06-05 2004-07-14 广东美的集团股份有限公司 一种与水冷式中央空调组合使用的燃气壁挂炉
CN101140090A (zh) * 2007-10-16 2008-03-12 赵明桥 户式水媒冷暖空调装置
CN101210719A (zh) * 2006-12-29 2008-07-02 张剑 双能源冷热水机组中央空调系统
CN206496511U (zh) * 2017-01-10 2017-09-15 珠海格力电器股份有限公司 空气能与太阳能耦合的多功能热泵系统
CN208832603U (zh) * 2018-09-17 2019-05-07 珠海格力电器股份有限公司 空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2596252Y (zh) * 2003-01-09 2003-12-31 林国粹 新型空调
CN1598422A (zh) * 2004-07-27 2005-03-23 陈世超 多功能太阳能中央空调装置
CN202328588U (zh) * 2011-11-25 2012-07-11 上海理工大学 家用节能水系统中央空调系统
CN203215829U (zh) * 2013-04-26 2013-09-25 中国电力工程顾问集团华北电力设计院工程有限公司 发电厂辅机循环水供暖结构
CN205403185U (zh) * 2016-02-15 2016-07-27 河南水木环保科技股份有限公司 一种太阳能磁悬浮中央空调供热系统
CN110398012A (zh) * 2019-08-27 2019-11-01 上海盈达空调设备股份有限公司 复合式中央空调系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126345A (ja) * 1991-11-08 1993-05-21 Hitachi Home Tec Ltd 空気調和機
CN2625790Y (zh) * 2003-06-05 2004-07-14 广东美的集团股份有限公司 一种与水冷式中央空调组合使用的燃气壁挂炉
CN101210719A (zh) * 2006-12-29 2008-07-02 张剑 双能源冷热水机组中央空调系统
CN101140090A (zh) * 2007-10-16 2008-03-12 赵明桥 户式水媒冷暖空调装置
CN206496511U (zh) * 2017-01-10 2017-09-15 珠海格力电器股份有限公司 空气能与太阳能耦合的多功能热泵系统
CN208832603U (zh) * 2018-09-17 2019-05-07 珠海格力电器股份有限公司 空调系统

Also Published As

Publication number Publication date
CN113623814B (zh) 2023-01-31
CN113623814A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN103134232A (zh) 冷暖干衣空气能热水器
CN202494217U (zh) 直流循环式空气能热水器
CN100513933C (zh) 热水空气调节两用机
CN104764314A (zh) 一种用于密集型烤房的空气源热泵集中供热分配方法及设备
WO2023272750A1 (zh) 一种快速升温的中央空调水循环控制系统及控制方法
CN210089036U (zh) 一种太阳能辅助供暖,制冷,供热水三联供热泵系统
CN112344424A (zh) 一种高温水采暖系统
CN204612232U (zh) 一种家用太阳能热泵供热制冷系统
CN102353179B (zh) 空调热水系统
CN108444010A (zh) 一种能源梯级利用的三管制中央空调水系统
CN205102224U (zh) 一种采暖热泵动态控制装置
CN211854375U (zh) 一种空调制冷与热水器即热储水加热控制装置
CN203478601U (zh) 热泵热水器
CN204902289U (zh) 混合流道双效太阳能集热板芯及集热器
CN202254481U (zh) 空调热水系统
CN202501564U (zh) 一种节能生活用热水智能循环系统
CN105042908A (zh) 混合流道双效太阳能集热板芯及集热器
CN201104021Y (zh) 循环加热式供热系统
CN105042679B (zh) 一种采暖热泵动态控制装置
CN209145662U (zh) 一种超临界燃煤机组供热供汽装置
CN105402887B (zh) 开式的基于喷射热泵的燃气热水器
CN209042515U (zh) 一种电采暖水暖装置
CN216080018U (zh) 一种带有自主调节功能的热泵供暖装置
CN211903029U (zh) 一种双路控制的水暖锅炉供热系统及降温系统
CN219550814U (zh) 燃气热水器恒温伴侣

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947694

Country of ref document: EP

Kind code of ref document: A1