WO2023272618A1 - 频段指示、确定方法和装置、通信装置和存储介质 - Google Patents

频段指示、确定方法和装置、通信装置和存储介质 Download PDF

Info

Publication number
WO2023272618A1
WO2023272618A1 PCT/CN2021/103722 CN2021103722W WO2023272618A1 WO 2023272618 A1 WO2023272618 A1 WO 2023272618A1 CN 2021103722 W CN2021103722 W CN 2021103722W WO 2023272618 A1 WO2023272618 A1 WO 2023272618A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
frequency band
frequency
bands
bwp
Prior art date
Application number
PCT/CN2021/103722
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21947572.0A priority Critical patent/EP4366416A1/en
Priority to PCT/CN2021/103722 priority patent/WO2023272618A1/zh
Priority to CN202310939584.8A priority patent/CN116723577A/zh
Priority to CN202180002035.7A priority patent/CN113678548B/zh
Publication of WO2023272618A1 publication Critical patent/WO2023272618A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a frequency band indication method, a frequency band determination method, a frequency band indication device, a frequency band determination device, a communication device, and a computer-readable storage medium.
  • base stations and terminals can communicate in more and more frequency bands.
  • the communication frequency band has been extended to FR1 and FR2 frequency bands.
  • embodiments of the present disclosure propose a frequency band indication method, a frequency band determination method, a frequency band indication device, a frequency band determination device, a communication device, and a computer-readable storage medium to solve technical problems in related technologies.
  • a method for indicating a frequency band is proposed, which is performed by a base station.
  • the method includes: sending frequency band indication information to a terminal to instruct the terminal to communicate with the base station in an aggregated frequency band; wherein,
  • the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • a method for determining a frequency band is proposed, which is executed by a terminal, and the method includes: receiving frequency band indication information sent by a base station; determining to communicate with the base station in an aggregated frequency band according to the frequency band indication information, Wherein, the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • an apparatus for indicating a frequency band includes one or more processors, and the processor is configured to send frequency band indication information to a terminal to indicate that the terminal is
  • the aggregated frequency band communicates with the base station; wherein, the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • an apparatus for determining a frequency band includes one or more processors configured to receive frequency band indication information sent by a base station; according to the frequency band indication information It is determined to communicate with the base station in an aggregated frequency band, where the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above frequency band indication method is implemented.
  • a communication device including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the above method for determining a frequency band is implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above frequency band indication method are implemented.
  • a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the above method for determining a frequency band are implemented.
  • the base station determines multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous. Furthermore, the base station can indicate multiple sub-frequency bands as an aggregated frequency band to the terminal, so that the bandwidth of multiple sub-frequency bands as an aggregated frequency band can meet the needs of most services, so that the sub-frequency band has a small bandwidth and is not continuous with other sub-frequency bands. It can also be used effectively.
  • Fig. 1 is a schematic flowchart of a method for indicating a frequency band according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart of another method for indicating a frequency band according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram showing a BWP in an aggregated frequency band according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flow chart showing another method for indicating a frequency band according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of a method for determining a frequency band according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flowchart of another method for determining a frequency band according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flow chart showing another method for determining a frequency band according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram of an apparatus for frequency band indication according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram of an apparatus for determining a frequency band according to an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • the terms used herein are “greater than” or “less than”, “higher than” or “lower than” when representing a size relationship. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of "below” also covers the meaning of "less than or equal to”.
  • Fig. 1 is a schematic flowchart of a method for indicating a frequency band according to an embodiment of the present disclosure.
  • the frequency band indication method shown in this embodiment may be performed by a base station, and the base station includes but is not limited to a base station in a communication system such as a 4G base station, a 5G base station, and a 6G base station.
  • the base station can communicate with a terminal serving as user equipment, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the frequency band indication method may include the following steps:
  • step S101 sending frequency band indication information to the terminal, for instructing the terminal to communicate with the base station in the aggregated frequency band;
  • the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • the use of these frequency bands alone is difficult to meet the needs of some 5G communication business scenarios. For example, when performing eMBB (Enhanced Mobile Broadband, enhanced mobile broadband) services, the required bandwidth must reach 100M.
  • eMBB Enhanced Mobile Broadband, enhanced mobile broadband
  • the base station may determine multiple sub-frequency bands, and at least two adjacent sub-frequency bands among the multiple sub-frequency bands are discontinuous, for example, among the multiple sub-frequency bands, two adjacent sub-frequency bands are discontinuous, such as multiple sub-frequency bands
  • Each sub-frequency band in the frequency band is discontinuous, for example, some sub-frequency bands are continuous and some sub-frequency bands are discontinuous.
  • the base station can indicate multiple sub-frequency bands as an aggregated frequency band to the terminal, so that the bandwidth of multiple sub-frequency bands as an aggregated frequency band can meet the needs of most services, so that the sub-frequency band has a small bandwidth and is not continuous with other sub-frequency bands. It can also be used effectively.
  • the discontinuity between two adjacent sub-frequency segments means that there is a gap between the two adjacent sub-frequency segments, that is, the two adjacent sub-frequency segments are discontinuous in frequency.
  • the sub-frequency bands include, but are not limited to, scattered frequency bands refarmed for 5G.
  • Each sub-frequency band in the aggregated frequency band is an independent frequency band before aggregation, and the aggregated frequency band obtained after aggregation is used as a new frequency band with a new frequency band label, and the label of the existing frequency band is not used. That is: the identifier of the aggregated frequency band is a unique identifier, which is different from existing identifiers.
  • the plurality of sub-frequency bands include Time Division Duplexing (Time Division Duplexing, TDD) sub-frequency bands and/or Frequency Division Duplexing (Frequency Division Duplexing, FDD) sub-frequency bands.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the terminal can communicate with the base station in the aggregated frequency band in a time-division duplex manner; if multiple sub-frequency bands in the aggregated frequency band are frequency-division duplex sub-bands, the terminal can Communicate with the base station in the aggregation frequency band in a duplex manner.
  • the TDD sub-bands can be uplink sub-bands
  • the FDD sub-bands can be FDD sub-bands.
  • the frequency band is a downlink sub-frequency band; the TDD sub-frequency band may be a downlink sub-frequency band, and the FDD sub-frequency band may be an uplink sub-frequency band.
  • Fig. 2 is a schematic flowchart of another method for indicating a frequency band according to an embodiment of the present disclosure. As shown in Figure 2, the method also includes:
  • step S201 configuration information of at least one bandwidth part BWP is sent to the terminal, for configuring the BWP to work in the aggregated frequency band and the corresponding bandwidth of each BWP.
  • the base station may also send configuration information to the terminal, so as to configure at least one BWP in the aggregated frequency band for the terminal, and configure the bandwidth corresponding to each BWP.
  • the terminal can determine at least one BWP in the aggregated frequency band according to the configuration information, and determine the bandwidth corresponding to each BWP.
  • the aggregated frequency band may be the aggregated frequency band obtained according to step 101, or may be the aggregated frequency band obtained according to any possible manner, which is not limited here.
  • the at least one BWP includes 1 to 4 BWPs, that is, the base station can configure at least one BWP in the aggregated frequency band, and at most 4 BWPs, which is the same as the number of BWPs currently configured in the frequency band. Similarly, modifications to existing rules can be reduced.
  • Fig. 3 is a schematic diagram showing a BWP in an aggregated frequency band according to an embodiment of the present disclosure.
  • the bandwidth corresponding to the BWP includes at least one of the following:
  • the aggregated frequency band includes three sub-frequency bands f1, f2 and f3, wherein the bandwidths of f1 and f3 are 30M, and the bandwidth of f2 is 40M, then the bandwidth of the aggregated frequency band is 100M.
  • BWP1 can correspond to a part of the bandwidth in the sub-frequency band f1
  • BWP2 can correspond to the complete sub-frequency band f2
  • BWP3 can correspond to the partial bandwidth in the two sub-frequency bands f2 and f3 and between f2 and f3.
  • BWP4 corresponds to the three complete sub-bands of f1, f2, and f3, and two gaps between these three sub-bands.
  • bandwidths corresponding to the above four BWPs are only for relatively comprehensive expression of the corresponding relationship with sub-bands, and the specific BWPs in the aggregated frequency bands are not limited to the embodiment shown in Figure 3, and can be set as required.
  • the method also includes:
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal Block
  • the initial BWP corresponds to a complete sub-frequency band or a partial bandwidth in a sub-frequency band.
  • the base station can select a bandwidth part in the bandwidth part configured for the terminal as the initial (initial) BWP, and then can send broadcast channels on the initial BWP, and can also send synchronization signal blocks (which can include synchronization signals and broadcast channels) on the initial BWP .
  • the terminal Since the base station generally has not sent the above-mentioned configuration information to the terminal when sending the broadcast channel and/or SSB on the initial BWP, the terminal has not yet determined the bandwidth part BWP in the aggregated frequency band, but the terminal has determined the above-mentioned aggregated frequency band, so the terminal can be in A search is performed in the aggregated frequency bands to roughly determine the initial BWP.
  • the terminal because the bandwidth corresponding to the gap is unavailable, the terminal generally does not search on the gap. Therefore, when the base station selects the initial BWP, it can preferentially select the BWP that does not contain the gap as the initial BWP.
  • the initial BWP corresponds to a A complete sub-band or a partial bandwidth in a sub-band, so that the terminal can search for the initial BWP.
  • the initial BWP also corresponds to a plurality of complete sub-frequency bands and gaps between the multiple complete sub-frequency bands, partial bandwidths in the multiple sub-frequency bands, and gaps between the multiple sub-frequency bands.
  • the base station may also select a BWP including gaps as the initial BWP. For example, if all BWPs configured in the aggregated frequency band include gaps, the base station may select a BWP including gaps as the initial BWP.
  • Fig. 4 is a schematic flow chart showing another method for indicating a frequency band according to an embodiment of the present disclosure. As shown in Figure 4, the method also includes:
  • step S401 sending activation instruction information to the terminal, for instructing one BWP in at least one BWP configured to be activated as the activated BWP;
  • the activation indication information includes the frequency domain resource number of the physical resource block PRB (Physical Resource Block) corresponding to the activated BWP.
  • the base station can select a BWP to activate from at least one BWP configured for the terminal through the activation indication information, and the terminal can select a BWP to activate from the at least one BWP configured by the base station according to the activation indication information, and activate the BWP in the activated BWP. Communicate with the base station on the BWP.
  • the base station may determine the frequency-domain resource number of the PRB corresponding to the activated BWP, and use the frequency-domain resource number as activation indication information to indicate to the terminal. According to the frequency domain resource corresponding to the frequency domain resource number, the terminal can determine the BWP indicated by the base station to be activated in the configured BWP. If the terminal of the frequency band f2 is used, the terminal can determine that the activated BWP is BWP2.
  • the terminal and the base station pre-store the association relationship between the sequence number of the PRB frequency domain resource and the frequency domain resource, wherein the PRB corresponding to the gap between the sub-frequency bands in the association relationship is pre-marked as Corresponds to the gap.
  • the terminal and the base station can pre-store the association relationship between the PRB frequency domain resource number and the frequency domain resource, and then the base station can determine the PRB frequency domain resource number corresponding to the frequency domain resource corresponding to the starting point of the BWP activation according to the association relationship after determining to activate the BWP, and activate The PRB frequency domain resource sequence number corresponding to the frequency domain resource corresponding to the BWP end point, and then the determined PRB frequency domain resource sequence number is sent to the terminal as activation indication information.
  • the terminal After receiving the activation indication information, the terminal can determine the activated BWP start point and the activated BWP end point corresponding to the frequency domain resource corresponding to the PRB frequency domain resource number according to the association relationship, and then determine the activated BWP according to the activated BWP start point and the activated BWP end point.
  • the method also includes:
  • the terminal may determine the frequency band supported by itself, the terminal may support the aggregated frequency band, and indicate the frequency band supported by the terminal by sending capability information to the base station.
  • the base station can determine the frequency band supported by the terminal according to the capability information. If the terminal supports the aggregated frequency band, it can instruct the terminal to communicate with the base station in the aggregated frequency band. If the terminal does not support the aggregated frequency band, it can instruct the terminal to communicate with the base station in the supported frequency band.
  • Fig. 5 is a schematic flowchart of a method for determining a frequency band according to an embodiment of the present disclosure.
  • the method for determining the frequency band shown in this embodiment can be performed by a terminal, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal may serve as user equipment to communicate with a base station, and the base station includes but is not limited to a base station in a communication system such as a 4G base station, a 5G base station, and a 6G base station.
  • the frequency band determination method may include the following steps:
  • step S501 receiving frequency band indication information sent by the base station
  • step S502 it is determined to communicate with the base station in an aggregated frequency band according to the frequency band indication information, wherein the aggregated frequency band has a new frequency band label and includes a plurality of sub-frequency bands, and at least two of the multiple sub-frequency bands are adjacent The sub-bands are discontinuous.
  • the use of these frequency bands alone is difficult to meet the needs of some 5G communication business scenarios. For example, when conducting eMBB services, the required bandwidth must reach 100M.
  • the base station may determine multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous, for example, among the multiple sub-frequency bands, two adjacent sub-frequency bands are discontinuous, for example Each sub-frequency band in the multiple sub-frequency bands is discontinuous, for example, some sub-frequency bands are continuous and some sub-frequency bands are discontinuous.
  • the base station can indicate multiple sub-frequency bands as an aggregated frequency band to the terminal, so that the bandwidth of multiple sub-frequency bands as an aggregated frequency band can meet the needs of most services, so that the sub-frequency band has a small bandwidth and is not continuous with other sub-frequency bands. It can also be used effectively.
  • the discontinuity between two adjacent sub-frequency segments means that there is a gap between the two adjacent sub-frequency segments, that is, the two adjacent sub-frequency segments are discontinuous in frequency.
  • the sub-frequency bands include, but are not limited to, scattered frequency bands refarmed for 5G.
  • Each sub-frequency band in the aggregated frequency band is an independent frequency band before aggregation, and the aggregated frequency band obtained after aggregation is used as a new frequency band with a new frequency band label, and the label of the existing frequency band is not used. That is: the identifier of the aggregated frequency band is a unique identifier, which is different from existing identifiers.
  • the plurality of frequency sub-bands include time-division duplex sub-bands and/or frequency-division duplex sub-bands.
  • the terminal can communicate with the base station in the aggregated frequency band in a time-division duplex manner; if multiple sub-frequency bands in the aggregated frequency band are frequency-division duplex sub-bands, the terminal can Communicate with the base station in the aggregation frequency band in a duplex manner.
  • Fig. 6 is a schematic flowchart of another method for determining a frequency band according to an embodiment of the present disclosure. As shown in Figure 6, the method also includes:
  • step S601 receiving configuration information of at least one bandwidth part BWP sent by the base station;
  • step S602 it is determined according to the configuration information that the BWPs work in the aggregated frequency band and the bandwidth corresponding to each of the BWPs.
  • the base station may send configuration information to the terminal, so as to configure at least one BWP in the aggregated frequency band for the terminal, and configure the bandwidth corresponding to each BWP.
  • the terminal can determine at least one BWP in the aggregated frequency band according to the configuration information, and determine the bandwidth corresponding to each BWP.
  • the UE can determine the BWP, that is, the bandwidth corresponding to the BWP according to relevant communication standards; the base station can determine the BWP, that is, the bandwidth corresponding to the BWP according to relevant communication standards; for example, a predetermined determination method (such as a calculation formula) is provided in the protocol to Determine the bandwidth corresponding to the BWP.
  • the UE may negotiate with the base station to determine the bandwidth corresponding to the BWP. That is, the bandwidth corresponding to each BWP may be configured based on the base station, may also be determined based on a protocol, or may be determined through negotiation between the base station and the UE.
  • the at least one BWP can be 1 to 4 BWPs, that is, the base station can configure at least one BWP in the aggregated frequency band, and at most 4 BWPs, which is different from the number of BWPs currently configured in the frequency band are the same, which can reduce the modification of existing rules.
  • the bandwidth corresponding to the BWP includes at least one of the following:
  • the aggregated frequency band includes three sub-frequency bands f1, f2 and f3, wherein the bandwidths of f1 and f3 are 30M, and the bandwidth of f2 is 40M, then the bandwidth of the aggregated frequency band is 100M.
  • BWP1 can correspond to part of the bandwidth in sub-frequency band f1
  • BWP2 can correspond to the complete sub-frequency band f2
  • BWP3 can correspond to the partial bandwidth in the two sub-frequency bands f2 and f3 and between f2 and f3.
  • BWP4 corresponds to the three complete sub-bands of f1, f2, and f3, and two gaps between these three sub-bands.
  • the method also includes:
  • the initial BWP corresponds to a complete sub-frequency band or a partial bandwidth in a sub-frequency band.
  • the base station can select a bandwidth part in the bandwidth part configured for the terminal as the initial (initial) BWP, and then can send broadcast channels on the initial BWP, and can also send synchronization signal blocks (which can include synchronization signals and broadcast channels) on the initial BWP .
  • the terminal Since the base station generally has not sent the above-mentioned configuration information to the terminal when sending the broadcast channel and/or SSB on the initial BWP, the terminal has not yet determined the bandwidth part BWP in the aggregated frequency band, but the terminal has determined the above-mentioned aggregated frequency band, so the terminal can be in A search is performed in the aggregated frequency bands to roughly determine the initial BWP.
  • the terminal because the bandwidth corresponding to the gap is unavailable, the terminal generally does not search on the gap. Therefore, when the base station selects the initial BWP, it can preferentially select the BWP that does not contain the gap as the initial BWP.
  • the initial BWP corresponds to a A complete sub-frequency band or a partial bandwidth in a sub-frequency band, so that the terminal can search for the initial BWP.
  • the initial BWP also corresponds to a plurality of complete sub-frequency bands and gaps between the multiple complete sub-frequency bands, partial bandwidths in the multiple sub-frequency bands, and gaps between the multiple sub-frequency bands.
  • the base station may also select a BWP including gaps as the initial BWP. For example, if all BWPs configured in the aggregated frequency band include gaps, the base station may select a BWP including gaps as the initial BWP.
  • Fig. 7 is a schematic flow chart showing another method for determining a frequency band according to an embodiment of the present disclosure. As shown in Figure 7, the method also includes:
  • step S701 receiving activation indication information sent by the base station
  • step S702 one BWP among at least one configured BWP is activated as an activated BWP according to the activation indication information, wherein the activation indication information includes a PRB frequency-domain resource number corresponding to the activated BWP.
  • the base station can select a BWP to activate from at least one BWP configured for the terminal through the activation indication information, and the terminal can select a BWP to activate from the at least one BWP configured by the base station according to the activation indication information, and activate the BWP in the activated BWP. Communicate with the base station on the BWP.
  • the base station may determine the frequency-domain resource number of the PRB corresponding to the activated BWP, and use the frequency-domain resource number as activation indication information to indicate to the terminal. According to the frequency domain resource corresponding to the frequency domain resource number, the terminal can determine the BWP indicated by the base station to be activated in the configured BWP. If the terminal of the frequency band f2 is used, the terminal can determine that the activated BWP is BWP2.
  • the terminal and the base station pre-store the association relationship between the sequence number of the PRB frequency domain resource and the frequency domain resource, wherein the PRB corresponding to the gap between the sub-frequency bands in the association relationship is pre-marked as Corresponds to the gap.
  • the terminal and the base station can pre-store the association relationship between the PRB frequency domain resource number and the frequency domain resource, and then the base station can determine the PRB frequency domain resource number corresponding to the frequency domain resource corresponding to the starting point of the BWP activation according to the association relationship, and activate The PRB frequency domain resource sequence number corresponding to the frequency domain resource corresponding to the BWP end point, and then the determined PRB frequency domain resource sequence number is sent to the terminal as activation indication information.
  • the terminal After receiving the activation indication information, the terminal can determine the activated BWP start point and the activated BWP end point corresponding to the frequency domain resource corresponding to the PRB frequency domain resource number according to the association relationship, and then determine the activated BWP according to the activated BWP start point and the activated BWP end point.
  • the method also includes:
  • the capability information is used to indicate the frequency band supported by the terminal, and the frequency band supported by the terminal includes the aggregated frequency band.
  • the terminal may determine the frequency band supported by itself, the terminal may support the aggregated frequency band, and indicate the frequency band supported by the terminal by sending capability information to the base station.
  • the base station can determine the frequency band supported by the terminal according to the capability information. If the terminal supports the aggregated frequency band, it can instruct the terminal to communicate with the base station in the aggregated frequency band. If the terminal does not support the aggregated frequency band, it can instruct the terminal to communicate with the base station in the supported frequency band.
  • the present disclosure also provides embodiments of the frequency point indicating device and the frequency band determining device.
  • Embodiments of the present disclosure provide a frequency band indication device, which can be applied to base stations, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the base station can communicate with a terminal serving as user equipment, and the terminal includes but is not limited to a communication device such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal may be a terminal to which the method for indicating a frequency band described in any of the foregoing embodiments applies.
  • the apparatus includes one or more processors, the processors are configured to send frequency band indication information to the terminal, for instructing the terminal to communicate with the base station in the aggregated frequency band;
  • the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous.
  • the plurality of frequency sub-bands include time-division duplex sub-bands and/or frequency-division duplex sub-bands.
  • the processor is further configured to send configuration information of at least one bandwidth part BWP to the terminal, for configuring the BWP to work in the aggregated frequency band, and each of the BWPs corresponds to bandwidth.
  • the at least one BWP includes 1 to 4 BWPs.
  • the bandwidth corresponding to the BWP includes at least one of the following: a complete sub-frequency band, a partial bandwidth in a sub-frequency band, multiple complete sub-frequency bands, and gaps between multiple complete sub-frequency bands, Partial bandwidth in multiple sub-bands and gaps between multiple sub-bands.
  • the processor is further configured to perform sending broadcast channel and/or synchronization signal blocks on an initial BWP; wherein, the initial BWP corresponds to a complete sub-frequency band or a partial bandwidth in a sub-frequency band.
  • the initial BWP also corresponds to a plurality of complete sub-frequency bands and gaps between the multiple complete sub-frequency bands, partial bandwidths in the multiple sub-frequency bands, and gaps between the multiple sub-frequency bands.
  • the processor is further configured to send activation indication information to the terminal, for indicating that one BWP in at least one configured BWP is activated as the activated BWP; wherein the activation indication information includes the The sequence number of the physical resource block PRB frequency domain resource corresponding to the activated BWP.
  • the terminal and the base station pre-store the association relationship between the sequence number of the PRB frequency domain resource and the frequency domain resource, wherein the PRB corresponding to the gap between the sub-frequency bands in the association relationship is pre-marked as Corresponds to the gap.
  • the processor is further configured to receive capability information sent by the terminal; determine a frequency band supported by the terminal according to the capability information, where the frequency band supported by the terminal includes the aggregated frequency band .
  • Embodiments of the present disclosure also propose an apparatus for determining a frequency band, and the apparatus can be applied to a terminal, and the terminal includes but is not limited to a communication apparatus such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the terminal may serve as user equipment to communicate with a base station, and the base station includes but is not limited to a base station in a communication system such as a 4G base station, a 5G base station, and a 6G base station.
  • the apparatus includes one or more processors configured to receive frequency band indication information sent by the base station;
  • the aggregated frequency band has a new frequency band label and includes multiple sub-frequency bands, and at least two adjacent sub-frequency bands in the multiple sub-frequency bands are discontinuous .
  • the plurality of frequency sub-bands include time-division duplex sub-bands and/or frequency-division duplex sub-bands.
  • the processor is further configured to receive configuration information of at least one bandwidth part BWP sent by the base station; determine that the BWP works in the aggregated frequency band according to the configuration information, and each The bandwidth corresponding to the BWP.
  • the at least one BWP includes 1 to 4 BWPs.
  • the bandwidth corresponding to the BWP includes at least one of the following: a complete sub-frequency band, a partial bandwidth in a sub-frequency band, multiple complete sub-frequency bands, and gaps between multiple complete sub-frequency bands, Partial bandwidth in multiple sub-bands and gaps between multiple sub-bands.
  • the processor is further configured to perform receiving broadcast channel and/or synchronization signal blocks on an initial BWP; wherein the initial BWP corresponds to a complete sub-frequency band or a partial bandwidth in a sub-frequency band.
  • the initial BWP also corresponds to a plurality of complete sub-frequency bands and gaps between the multiple complete sub-frequency bands, partial bandwidths in the multiple sub-frequency bands, and gaps between the multiple sub-frequency bands.
  • the processor is further configured to receive activation indication information sent by the base station; activate one of the at least one configured BWP according to the activation indication information as the activated BWP, wherein the activation The indication information includes the PRB frequency-domain resource sequence number of the physical resource block corresponding to the activated BWP.
  • the terminal and the base station pre-store the association relationship between the sequence number of the PRB frequency domain resource and the frequency domain resource, wherein the PRB corresponding to the gap between the sub-frequency bands in the association relationship is pre-marked as Corresponds to the gap.
  • the processor is further configured to send capability information to the base station, where the capability information is used to indicate the frequency band supported by the terminal, and the frequency band supported by the terminal includes the aggregated frequency band .
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the frequency band indication method described in any of the above-mentioned embodiments is implemented .
  • An embodiment of the present disclosure also proposes a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the method for determining the frequency band described in any of the above embodiments is implemented .
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the frequency band indication method described in any of the foregoing embodiments are implemented.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, and when the computer program is executed by a processor, the steps in the method for determining a frequency band described in any of the foregoing embodiments are implemented.
  • FIG. 8 is a schematic block diagram of an apparatus 800 for frequency band indication according to an embodiment of the present disclosure.
  • Apparatus 800 may be provided as a base station.
  • the device 800 includes a processing component 822, a wireless transmitting/receiving component 824, an antenna component 826, and a signal processing part specific to a wireless interface.
  • the processing component 822 may further include one or more processors.
  • One of the processors in the processing component 822 may be configured to implement the frequency band indication method described in any of the foregoing embodiments.
  • Fig. 9 is a schematic block diagram of an apparatus 900 for determining a frequency band according to an embodiment of the present disclosure.
  • the apparatus 900 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 900 may include one or more of the following components: processing component 902, memory 904, power supply component 906, multimedia component 908, audio component 910, input/output (I/O) interface 912, sensor component 914, and communication component 916 .
  • the processing component 902 generally controls the overall operations of the device 900, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions, so as to complete all or part of the steps of the above-mentioned method for determining a frequency band.
  • processing component 902 may include one or more modules that facilitate interaction between processing component 902 and other components.
  • processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902 .
  • the memory 904 is configured to store various types of data to support operations at the device 900 . Examples of such data include instructions for any application or method operating on the device 900, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 904 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 906 provides power to the various components of the device 900 .
  • Power components 906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 900 .
  • the multimedia component 908 includes a screen that provides an output interface between the device 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 910 is configured to output and/or input audio signals.
  • the audio component 910 includes a microphone (MIC) configured to receive external audio signals when the device 900 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 904 or sent via communication component 916 .
  • the audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 914 includes one or more sensors for providing status assessments of various aspects of device 900 .
  • the sensor component 914 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the device 900, and the sensor component 914 can also detect a change in the position of the device 900 or a component of the device 900 , the presence or absence of user contact with the device 900 , the device 900 orientation or acceleration/deceleration and the temperature change of the device 900 .
  • Sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 914 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 914 may also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 916 is configured to facilitate wired or wireless communication between the apparatus 900 and other devices.
  • the device 900 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 900 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Realized by a gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components, and is used to execute the above-mentioned frequency band determination method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Realized by a gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components and is used to execute the above-mentioned frequency band determination method.
  • non-transitory computer-readable storage medium including instructions, such as the memory 904 including instructions, which can be executed by the processor 920 of the device 900 to complete the above frequency band determination method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及频段指示、确定方法和装置、通信装置和存储介质,其中,所述频段指示方法包括:向终端发送频段指示信息,用于指示所述终端在聚合频段与所述基站通信;其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。根据本公开,基站确定多个子频段,多个子频段中至少两个相邻的子频段不连续。进而基站可以将多个子频段作为一个聚合频段指示给终端,从而使得多个子频段作为一个聚合频段的带宽能够满足大多数业务的需要,使得子频段在自身带宽较小,又与其他子频段不连续的情况下,也能够得到有效的利用。

Description

频段指示、确定方法和装置、通信装置和存储介质 技术领域
本公开涉及通信技术领域,具体而言,涉及频段指示方法、频段确定方法、频段指示装置、频段确定装置、通信装置和计算机可读存储介质。
背景技术
随着通信技术的发展,基站与终端可以在越来越多的频段通信,例如在5G中,已经将通信频段拓展到了FR1和FR2频段。
但是目前基站指示给终端的用于通信的频段存在一些限制,例如一般情况下基站与终端通信所用的频段都是一段连续的频段,或者多个连续的频段,也即通过多个频段通信,但是多个频段是相连的,这可能导致针对某些频段通信受限。
发明内容
有鉴于此,本公开的实施例提出了频段指示方法、频段确定方法、频段指示装置、频段确定装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种频段指示方法,由基站执行,所述方法包括:向终端发送频段指示信息,用于指示所述终端在聚合频段与所述基站通信;其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
根据本公开实施例的第二方面,提出一种频段确定方法,由终端执行,所述方法包括:接收基站发送的频段指示信息;根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
根据本公开实施例的第三方面,提出一种频段指示装置,所述装置包括一个或多个处理器,所述处理器被配置为执行向终端发送频段指示信息,用于指示所述终端在聚合频段与基站通信;其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
根据本公开实施例的第四方面,提出一种频段确定装置,所述装置包括一个或多个处理器,所述处理器被配置为执行接收基站发送的频段指示信息;根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
根据本公开实施例的第五方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述频段指示方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述频段确定方法。
根据本公开实施例的第六方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述频段指示方法中的步骤。
根据本公开实施例的第六方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述频段确定方法中的步骤。
根据本公开的实施例,基站确定多个子频段,多个子频段中至少两个相邻的子频段不连续。进而基站可以将多个子频段作为一个聚合频段指示给终端,从而使得多个子频段作为一个聚合频段的带宽能够满足大多数业务的需要,使得子频段在自身带宽较小,又与其他子频段不连续的情况下,也能够得到有效的利用。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种频段指示方法的示意流程图。
图2是根据本公开的实施例示出的另一种频段指示方法的示意流程图。
图3是根据本公开的实施例示出的一种聚合频段内BWP的示意图。
图4是根据本公开的实施例示出的又一种频段指示方法的示意流程图。
图5是根据本公开的实施例示出的一种频段确定方法的示意流程图。
图6是根据本公开的实施例示出的另一种频段确定方法的示意流程图。
图7是根据本公开的实施例示出的又一种频段确定方法的示意流程图。
图8是根据本公开的实施例示出的一种用于频段指示的装置的示意框图。
图9是根据本公开的实施例示出的一种用于频段确定的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是根据本公开的实施例示出的一种频段指示方法的示意流程图。本实施例所示的频段指示方法可以由基站执行,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
如图1所示,所述频段指示方法可以包括以下步骤:
在步骤S101中,向终端发送频段指示信息,用于指示所述终端在聚合频段与所述基站通信;
其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
在一个实施例中,在通信频段上可能存在一些零散的频段,这些频段并不连续,并且每个频段的带宽较小,例如在1GHz左右存在一些零散的频段被重耕给5G系统,这些频段的带宽在30M左右。这些频段单独使用难以满足5G通信某些业务场景的需要,例如在进行eMBB(Enhanced Mobile Broadband,增强移动宽带)业务时,所需带宽要达到100M。
根据本公开的实施例,基站可以确定多个子频段,多个子频段中至少两个相邻的子频段不连续,例如多个子频段中有两个相邻的子频段之间不连续,例如多个子频段中的每个子频段之间都不连续,例如部分子频段之间连续且部分子频段之间不连续。进而基站可以将多个子频段作为一个聚合频段指示给终端,从而使得多个子频段作为一个聚合频段的带宽能够满足大多数业务的需要,使得子频段在自身带宽较小,又与其他子频段不连续的情况下,也能够得到有效的利用。在本公开的所有实施例中,两个相邻的子频段不连续是指,两个相邻的子频段之间具有间隙,即两个子频段之间在频率上不连续。
需要说明的是,所述子频段包括但不限于重耕给5G的零散频段。聚合频段中的每个子频段在聚合之前是独立的频段,聚合后得到的聚合频段作为一个新的频段,具有新的频段标号,不使用目前已有频段的标号。即:聚合频段的标识为唯一的标识,与已有的标识不同。
在一个实施例中,所述多个子频段包括时分双工(Time Division Duplexing,TDD)子频段和/或频分双工(Frequency Division Duplexing,FDD)子频段。
若聚合频段中的多个子频段为时分双工子频段,终端可以按照时分双工的方式在聚合频段与基站通信;若聚合频段中的多个子频段为频分双工子频段,终端可以按照频分双工的方式在聚合频段与基站通信。
若聚合频段中一部分子频段为时分双工子频段,另一部分子频段为频分双工子频段,那么可以包括以下两种情况:时分双工子频段可以为上行子频段,频分双工子频段为下行子频段;时分双工子频段可以为下行子频段,频分双工子频段为上行子频 段。
图2是根据本公开的实施例示出的另一种频段指示方法的示意流程图。如图2所示,所述方法还包括:
在步骤S201中,向所述终端发送至少一个带宽部分BWP的配置信息,用于配置所述BWP工作于所述聚合频段内,以及每个所述BWP对应的带宽。
在一个实施例中,基站还可以向终端发送配置信息,来为终端在聚合频段内配置至少一个BWP,以及配置每个BWP对应的带宽。终端根据配置信息可以在聚合频段内确定至少一个BWP,并确定每个BWP对应的带宽。
在本公开实施例中,该聚合频段可以为根据步骤101得到的聚合频段,也可以是根据任何可能的方式得到的聚合频段,在此不进行限定。
在一个实施例中,所述至少一个BWP包括1个至4个BWP,也即基站可以在在聚合频段内至少配置一个BWP,至多配置4个BWP,这与目前在频段内配置BWP的数量是相同的,可以减少对已有规则的修改。
图3是根据本公开的实施例示出的一种聚合频段内BWP的示意图。如图3所示,所述BWP对应的带宽包括以下至少之一:
一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,如图3所示,例如聚合频段包括3个子频段f1、f2和f3,其中f1和f3的带宽为30M,f2的带宽为40M,那么聚合频段的带宽为100M。相邻的两个带宽之间存在间隙gap,例如图3所示的两个间隙的带宽相等,均为10M,间隙为不可用(是指针对某个通信系统不可用)的带宽,例如f1、f2和f3被重耕为5G系统,但是间隙并没有被重耕给5G系统,那么间隙在5G系统中就是不可用的。
以为终端在聚合频段配置4个BWP为例,例如BWP1可以对应子频段f1中的部分带宽,BWP2对应完整的子频段f2,BWP3对应两个子频段f2和f3中的部分带宽以及f2和f3之间的间隙,BWP4对应f1、f2、f3这三个完整的子频段,以及这三个子频段之间的两个间隙。
需要说明的是,以上4个BWP对应的带宽只是为了相对全面地表达与子频段的对应关系,具体BWP在聚合频段中的情况并不限于图3所示的实施例,可以根据 需要设置。
在一个实施例中,所述方法还包括:
在初始BWP上发送广播信道(Physical Broadcast Channel,PBCH)和/或同步信号块(Synchronization Signal Block,SSB);
其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
基站可以在配置给终端的带宽部分中选一个带宽部分作为初始(initial)BWP,进而可以在初始BWP上发送广播信道,也可以在初始BWP上发送同步信号块(其中可以包括同步信号和广播信道)。
由于基站在初始BWP上发送广播信道和/或SSB时,一般还没有向终端发送上述配置信息,那么终端尚未确定聚合频段内的带宽部分BWP,但是终端已经确定了上述聚合频段,所以终端可以在聚合频段中进行搜索,以大致确定初始BWP。
在这种情况下,由于间隙对应带宽是不可用的,所以终端一般不会在间隙上进行搜索,因此基站选择初始BWP时,可以优先选择不包含间隙的BWP作为初始BWP,例如初始BWP对应一个完整的子频段或一个子频段中的部分带宽,以便终端搜索到初始BWP。
在一个实施例中,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
基站也可以选择包含间隙的BWP作为初始BWP,例如在聚合频段中配置的BWP都是包含间隙的,那么基站可以选择一个包含间隙的BWP作为初始BWP。
图4是根据本公开的实施例示出的又一种频段指示方法的示意流程图。如图4所示,所述方法还包括:
在步骤S401中,向所述终端发送激活指示信息,用于指示激活配置的至少一个BWP中的一个BWP作为激活BWP;
其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB(Physical Resource Block)的频域资源序号。
在一个实施例中,基站可以通过激活指示信息,在配置给终端的至少一个BWP中选择一个BWP激活,终端根据激活指示信息可以在基站配置的至少一个BWP中选择一个BWP激活,并在激活的BWP上与基站通信。
基站可以确定激活BWP对应的PRB频域资源序号,并通过频域资源序号作为激活指示信息对终端进行指示。终端根据频域资源序号对应的频域资源,可以在配置的BWP中确定基站指示激活的BWP,例如频域资源序号为PRBx至PRBy,其中PRBx对应图3中子频段f2的起点,PRBy对应子频段f2的终点,那么终端可以确定激活的BWP为BWP2。
在一个实施例中,所述终端和所述基站预先存储有PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
终端和基站可以预先存储PRB频域资源序号与频域资源的关联关系,进而基站在确定激活BWP后,可以根据关联关系确定激活BWP起点对应的频域资源对应的PRB频域资源序号,以及激活BWP终点对应的频域资源对应的PRB频域资源序号,进而将确定的PRB频域资源序号作为激活指示信息发送给终端。
终端接收到激活指示信息后,可以根据关联关系确定PRB频域资源序号对应的频域资源对应的激活BWP起点和激活BWP终点,进而根据激活BWP起点和激活BWP终点确定激活BWP。
在一个实施例中,所述方法还包括:
接收所述终端发送的能力信息;
根据所述能力信息确定所述终端支持的频段,其中,所述终端支持的频段包括所述聚合频段。
终端可以确定自身支持的频段,所述终端可以支持所述聚合频段,通过向基站发送能力信息指示终端所支持的频段。基站可以根据能力信息确定终端支持的频段,若终端支持聚合频段,可以指示终端在聚合频段与基站通信,若终端不支持聚合频段,那么可以指示终端在其支持的频段与基站通信。
图5是根据本公开的实施例示出的一种频段确定方法的示意流程图。本实施例所示的频段确定方法可以由终端执行,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图5所示,所述频段确定方法可以包括以下步骤:
在步骤S501中,接收基站发送的频段指示信息;
在步骤S502中,根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
在一个实施例中,在通信频段上可能存在一些零散的频段,这些频段并不连续,并且每个频段的带宽较小,例如在1GHz左右存在一些零散的频段被重耕给5G系统,这些频段的带宽在30M左右。这些频段单独使用难以满足5G通信某些业务场景的需要,例如在进行eMBB业务时,所需带宽要达到100M。
根据本公开的实施例,基站可以确定多个子频段,多个子频段中至少两个相邻的子频段之间不连续,例如多个子频段中有两个相邻的子频段之间不连续,例如多个子频段中的每个子频段之间都不连续,例如部分子频段之间连续且部分子频段之间不连续。进而基站可以将多个子频段作为一个聚合频段指示给终端,从而使得多个子频段作为一个聚合频段的带宽能够满足大多数业务的需要,使得子频段在自身带宽较小,又与其他子频段不连续的情况下,也能够得到有效的利用。在本公开的所有实施例中,两个相邻的子频段不连续是指,两个相邻的子频段之间具有间隙,即两个子频段之间在频率上不连续。
需要说明的是,所述子频段包括但不限于重耕给5G的零散频段。聚合频段中的每个子频段在聚合之前是独立的频段,聚合后得到的聚合频段作为一个新的频段,具有新的频段标号,不使用目前已有频段的标号。即:聚合频段的标识为唯一的标识,与已有的标识不同。
在一个实施例中,所述多个子频段包括时分双工子频段和/或频分双工子频段。
若聚合频段中的多个子频段为时分双工子频段,终端可以按照时分双工的方式在聚合频段与基站通信;若聚合频段中的多个子频段为频分双工子频段,终端可以按照频分双工的方式在聚合频段与基站通信。
图6是根据本公开的实施例示出的另一种频段确定方法的示意流程图。如图6所示,所述方法还包括:
在步骤S601中,接收所述基站发送的至少一个带宽部分BWP的配置信息;
在步骤S602中,根据所述配置信息确定所述BWP工作于所述聚合频段内,以及每个所述BWP对应的带宽。
在一个实施例中,基站可以向终端发送配置信息,来为终端在聚合频段内配置至少一个BWP,以及配置每个BWP对应的带宽。终端根据配置信息可以在聚合频段内确定至少一个BWP,并确定每个BWP对应的带宽。在另一个实施例中,UE可以根据相关通信标准确定BWP即该BWP对应的带宽;基站可以根据相关通信标准确定BWP即该BWP对应的带宽;例如协议中提供预定确定方式(例如计算公式)来确定BWP对应的带宽。在又一个实施例中,UE可以和基站协商确定BWP对应的带宽。即,每个BWP对应的带宽可以是基于基站配置的,也可以是基于协议确定的,还可以由基站与UE协商确定。
在一个实施例中,所述至少一个BWP可以是1个至4个BWP,也即基站可以在在聚合频段内至少配置一个BWP,至多配置4个BWP,这与目前在频段内配置BWP的数量是相同的,可以减少对已有规则的修改。
在一个实施例中,所述BWP对应的带宽包括以下至少之一:
一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,如图3所示,例如聚合频段包括3个子频段f1、f2和f3,其中f1和f3的带宽为30M,f2的带宽为40M,那么聚合频段的带宽为100M。相邻的两个带宽之间存在间隙gap,例如图3所示的两个间隙的带宽相等,均为10M,间隙为不可用(是指针对某个通信系统不可用)的带宽,例如f1、f2和f3被重耕为5G系统,但是间隙并没有被重耕给5G系统,那么间隙在5G系统中就是不可用的。
以为终端在聚合频段配置4个BWP为例,其中BWP1可以对应子频段f1中的部分带宽,BWP2对应完整的子频段f2,BWP3对应两个子频段f2和f3中的部分带宽以及f2和f3之间的间隙,BWP4对应f1、f2、f3这三个完整的子频段,以及这三个子频段之间的两个间隙。
在一个实施例中,所述方法还包括:
在初始BWP上接收广播信道和/或同步信号块;
其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
基站可以在配置给终端的带宽部分中选一个带宽部分作为初始(initial)BWP,进而可以在初始BWP上发送广播信道,也可以在初始BWP上发送同步信号块(其中可以包括同步信号和广播信道)。
由于基站在初始BWP上发送广播信道和/或SSB时,一般还没有向终端发送上述配置信息,那么终端尚未确定聚合频段内的带宽部分BWP,但是终端已经确定了上述聚合频段,所以终端可以在聚合频段中进行搜索,以大致确定初始BWP。
在这种情况下,由于间隙对应带宽是不可用的,所以终端一般不会在间隙上进行搜索,因此基站选择初始BWP时,可以优先选择不包含间隙的BWP作为初始BWP,例如初始BWP对应一个完整的子频段或一个子频段中的部分带宽,以便终端搜索到初始BWP。
在一个实施例中,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
基站也可以选择包含间隙的BWP作为初始BWP,例如在聚合频段中配置的BWP都是包含间隙的,那么基站可以选择一个包含间隙的BWP作为初始BWP。
图7是根据本公开的实施例示出的又一种频段确定方法的示意流程图。如图7所示,所述方法还包括:
在步骤S701中,接收所述基站发送的激活指示信息;
在步骤S702中,根据所述激活指示信息激活配置的至少一个BWP中的一个BWP作为激活BWP,其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB频域资源序号。
在一个实施例中,基站可以通过激活指示信息,在配置给终端的至少一个BWP中选择一个BWP激活,终端根据激活指示信息可以在基站配置的至少一个BWP中选择一个BWP激活,并在激活的BWP上与基站通信。
基站可以确定激活BWP对应的PRB频域资源序号,并通过频域资源序号作为激活指示信息对终端进行指示。终端根据频域资源序号对应的频域资源,可以在配置的BWP中确定基站指示激活的BWP,例如频域资源序号为PRBx至PRBy,其中PRBx对应图3中子频段f2的起点,PRBy对应子频段f2的终点,那么终端可以确定激活的BWP为BWP2。
在一个实施例中,所述终端和所述基站预先存储有PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
终端和基站可以预先存储PRB频域资源序号与频域资源的关联关系,进而基站在确定激活BWP后,可以根据关联关系确定激活BWP起点对应的频域资源对应的PRB频域资源序号,以及激活BWP终点对应的频域资源对应的PRB频域资源序号,进而将确定的PRB频域资源序号作为激活指示信息发送给终端。
终端接收到激活指示信息后,可以根据关联关系确定PRB频域资源序号对应的频域资源对应的激活BWP起点和激活BWP终点,进而根据激活BWP起点和激活BWP终点确定激活BWP。
在一个实施例中,所述方法还包括:
向所述基站发送能力信息,其中,所述能力信息用于指示所述终端支持的频段,所述终端支持的频段包括所述聚合频段。
终端可以确定自身支持的频段,所述终端可以支持所述聚合频段,通过向基站发送能力信息指示终端所支持的频段。基站可以根据能力信息确定终端支持的频段,若终端支持聚合频段,可以指示终端在聚合频段与基站通信,若终端不支持聚合频段,那么可以指示终端在其支持的频段与基站通信。
与前述的频点指示方法和频段确定方法的实施例相对应,本公开还提供了频点指示装置和频段确定装置的实施例。
本公开的实施例提出一种频段指示装置,所述装置可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。在一个实施例中,所述终端可以是上述任一实施例所述频段指示方法所适用的终端。
在一个实施例中,所述装置包括一个或多个处理器,所述处理器被配置为执行向终端发送频段指示信息,用于指示所述终端在聚合频段与基站通信;
其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
在一个实施例中,所述多个子频段包括时分双工子频段和/或频分双工子频段。
在一个实施例中,所述处理器还被配置为执行向所述终端发送至少一个带宽部分BWP的配置信息,用于配置所述BWP工作于所述聚合频段内,以及每个所述BWP 对应的带宽。
在一个实施例中,所述至少一个BWP包括1个至4个BWP。
在一个实施例中,所述BWP对应的带宽包括以下至少之一:一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,所述处理器还被配置为执行在初始BWP上发送广播信道和/或同步信号块;其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
在一个实施例中,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,所述处理器还被配置为执行向所述终端发送激活指示信息,用于指示激活配置的至少一个BWP中的一个BWP作为激活BWP;其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB频域资源序号。
在一个实施例中,所述终端和所述基站预先存储有PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
在一个实施例中,所述处理器还被配置为执行接收所述终端发送的能力信息;根据所述能力信息确定所述终端支持的频段,其中,所述终端支持的频段包括所述聚合频段。
本公开的实施例还提出一种频段确定装置,所述装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
在一个实施例中,所述装置包括一个或多个处理器,所述处理器被配置为执行接收基站发送的频段指示信息;
根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
在一个实施例中,所述多个子频段包括时分双工子频段和/或频分双工子频段。
在一个实施例中,所述处理器还被配置为执行接收所述基站发送的至少一个带宽部分BWP的配置信息;根据所述配置信息确定所述BWP工作于所述聚合频段内,以及每个所述BWP对应的带宽。
在一个实施例中,所述至少一个BWP包括1个至4个BWP。
在一个实施例中,所述BWP对应的带宽包括以下至少之一:一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,所述处理器还被配置为执行在初始BWP上接收广播信道和/或同步信号块;其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
在一个实施例中,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
在一个实施例中,所述处理器还被配置为执行接收所述基站发送的激活指示信息;根据所述激活指示信息激活配置的至少一个BWP中的一个BWP作为激活BWP,其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB频域资源序号。
在一个实施例中,所述终端和所述基站预先存储有PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
在一个实施例中,所述处理器还被配置为执行向所述基站发送能力信息,其中,所述能力信息用于指示所述终端支持的频段,所述终端支持的频段包括所述聚合频段。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领 域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的频段指示方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的频段确定方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的频段指示方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的频段确定方法中的步骤。
如图8所示,图8是根据本公开的实施例示出的一种用于频段指示的装置800的示意框图。装置800可以被提供为一基站。参照图8,装置800包括处理组件822、无线发射/接收组件824、天线组件826、以及无线接口特有的信号处理部分,处理组件822可进一步包括一个或多个处理器。处理组件822中的其中一个处理器可以被配置为实现上述任一实施例所述的频段指示方法。
图9是根据本公开的实施例示出的一种用于频段确定的装置900的示意框图。例如,装置900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的频段确定方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话 簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为装置900的各种组件提供电力。电源组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传 感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述频段确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述频段确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅 包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (26)

  1. 一种频段指示方法,其特征在于,由基站执行,所述方法包括:
    向终端发送频段指示信息,用于指示所述终端在聚合频段与所述基站通信;
    其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
  2. 根据权利要求1所述的方法,其特征在于,所述多个子频段包括时分双工子频段和/或频分双工子频段。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送至少一个带宽部分BWP的配置信息,用于配置所述BWP工作于所述聚合频段内,以及每个所述BWP对应的带宽。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个BWP包括1个至4个BWP。
  5. 根据权利要求3所述的方法,其特征在于,所述BWP对应的带宽包括以下至少之一:
    一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    在初始BWP上发送广播信道和/或同步信号块;
    其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
  7. 根据权利要求6所述的方法,其特征在于,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
  8. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    向所述终端发送激活指示信息,用于指示激活配置的至少一个BWP中的一个BWP作为激活BWP;
    其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB频域资源序号。
  9. 根据权利要求8所述的方法,其特征在于,所述终端和所述基站预先存储有PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的能力信息;
    根据所述能力信息确定所述终端支持的频段,其中,所述终端支持的频段包括所述聚合频段。
  11. 一种频段确定方法,其特征在于,由终端执行,所述方法包括:
    接收基站发送的频段指示信息;
    根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
  12. 根据权利要求11所述的方法,其特征在于,所述多个子频段包括时分双工子频段和/或频分双工子频段。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的至少一个带宽部分BWP的配置信息;
    根据所述配置信息确定所述BWP工作于所述聚合频段内,以及每个所述BWP对应的带宽。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个BWP包括1个至4个BWP。
  15. 根据权利要求13所述的方法,其特征在于,所述BWP对应的带宽包括以下至少之一:
    一个完整的子频段、一个子频段中的部分带宽、多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在初始BWP上接收广播信道和/或同步信号块;
    其中,所述初始BWP对应一个完整的子频段或一个子频段中的部分带宽。
  17. 根据权利要求16所述的方法,其特征在于,所述初始BWP还对应多个完整的子频段以及多个完整的子频段之间的间隙、多个子频段中的部分带宽以及多个子频段之间的间隙。
  18. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的激活指示信息;
    根据所述激活指示信息激活配置的至少一个BWP中的一个BWP作为激活BWP,其中,所述激活指示信息包括所述激活BWP对应的物理资源块PRB频域资源序号。
  19. 根据权利要求18所述的方法,其特征在于,所述终端和所述基站预先存储有 PRB频域资源序号与频域资源的关联关系,其中,所述关联关系中对应所述子频段之间间隙的PRB被预先标记为对应间隙。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述方法还包括:
    向所述基站发送能力信息,其中,所述能力信息用于指示所述终端支持的频段,所述终端支持的频段包括所述聚合频段。
  21. 一种频段指示装置,其特征在于,所述装置包括一个或多个处理器,所述处理器被配置为执行向终端发送频段指示信息,用于指示所述终端在聚合频段与基站通信;
    其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
  22. 一种频段确定装置,其特征在于,所述装置包括一个或多个处理器,所述处理器被配置为执行接收基站发送的频段指示信息;
    根据所述频段指示信息确定在聚合频段与所述基站通信,其中,所述聚合频段具有新的频段标号,且包括多个子频段,所述多个子频段中至少两个相邻的子频段不连续。
  23. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至10中任一项所述的频段指示方法。
  24. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求11至20中任一项所述的频段确定方法。
  25. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至10中任一项所述的频段指示方法中的步骤。
  26. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求11至20中任一项所述的频段确定方法中的步骤。
PCT/CN2021/103722 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质 WO2023272618A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21947572.0A EP4366416A1 (en) 2021-06-30 2021-06-30 Frequency-band instruction method and apparatus, frequency-band determination method and apparatus, communication apparatus, and storage medium
PCT/CN2021/103722 WO2023272618A1 (zh) 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质
CN202310939584.8A CN116723577A (zh) 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质
CN202180002035.7A CN113678548B (zh) 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103722 WO2023272618A1 (zh) 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023272618A1 true WO2023272618A1 (zh) 2023-01-05

Family

ID=78551022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103722 WO2023272618A1 (zh) 2021-06-30 2021-06-30 频段指示、确定方法和装置、通信装置和存储介质

Country Status (3)

Country Link
EP (1) EP4366416A1 (zh)
CN (2) CN116723577A (zh)
WO (1) WO2023272618A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686502A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 为长期演进宽带系统提供大传输带宽的方法、系统及装置
WO2010127480A1 (zh) * 2009-05-05 2010-11-11 华为技术有限公司 利用汇聚载波通信的方法、接入网设备及终端
CN109076517A (zh) * 2016-02-04 2018-12-21 夏普株式会社 终端装置、基站装置以及通信方法
CN110999177A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 载波聚合能力信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686502A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 为长期演进宽带系统提供大传输带宽的方法、系统及装置
WO2010127480A1 (zh) * 2009-05-05 2010-11-11 华为技术有限公司 利用汇聚载波通信的方法、接入网设备及终端
CN109076517A (zh) * 2016-02-04 2018-12-21 夏普株式会社 终端装置、基站装置以及通信方法
CN110999177A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 载波聚合能力信令

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Preliminary overview of new features for NR in Rel-16", 3GPP DRAFT; RP-171867 PRELIMINARY OVERVIEW OF NEW FEATURES FOR NR IN REL-16, vol. TSG RAN, 4 September 2017 (2017-09-04), Sapporo, Japan, pages 1 - 6, XP051668711 *

Also Published As

Publication number Publication date
CN116723577A (zh) 2023-09-08
EP4366416A1 (en) 2024-05-08
CN113678548A (zh) 2021-11-19
CN113678548B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
EP3713327B1 (en) Method for indicating frequency-domain information of common control resource set of remaining minimum system information
US11956809B2 (en) Resource determining methods and apparatuses
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2023019592A1 (zh) 配置信息发送、获取方法和装置、通信装置和存储介质
WO2019127109A1 (zh) 调度方法、基站、终端及存储介质
WO2021223157A1 (zh) 通信控制方法和通信控制装置
CN112702803A (zh) 信道的确定方法、装置、终端设备和计算机可读存储介质
WO2023272618A1 (zh) 频段指示、确定方法和装置、通信装置和存储介质
WO2023272605A1 (zh) 激活指示、频段激活方法和装置、通信装置和存储介质
WO2024011528A1 (zh) 端口切换、端口切换指示方法和装置
WO2024060074A1 (zh) 配置信息确定方法、装置、系统、通信装置和存储介质
WO2023151082A1 (zh) 触发条件判断、资源分区配置方法和装置
WO2024021124A1 (zh) 上行传输链路数目确定方法、装置、通信装置及存储介质
WO2023000226A1 (zh) 用途指示、确定方法和装置、通信装置和存储介质
WO2023184270A1 (zh) 通信控制方法、装置、通信装置和存储介质
WO2023168579A1 (zh) 保护时间间隔确定方法、装置、通信装置和存储介质
WO2024060075A1 (zh) 物理上行控制信道发送、接收方法和装置
WO2024026637A1 (zh) 指示信息发送、接收方法和装置、通信装置及存储介质
WO2023150914A1 (zh) 能力指示、能力确定方法和装置
WO2023240409A1 (zh) 上行传输切换、上行信息接收方法和装置
WO2023102941A1 (zh) 随机接入时机资源信息的确定、指示方法和装置
WO2022252032A1 (zh) 终端能力上报方法及装置、存储介质
WO2023115271A1 (zh) 上行传输指示、确定方法和装置、通信装置和存储介质
WO2023168578A1 (zh) 保护时间间隔确定、指示方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947572

Country of ref document: EP

Effective date: 20240130