WO2023272566A1 - 车辆用热管理系统及其工作方法 - Google Patents

车辆用热管理系统及其工作方法 Download PDF

Info

Publication number
WO2023272566A1
WO2023272566A1 PCT/CN2021/103456 CN2021103456W WO2023272566A1 WO 2023272566 A1 WO2023272566 A1 WO 2023272566A1 CN 2021103456 W CN2021103456 W CN 2021103456W WO 2023272566 A1 WO2023272566 A1 WO 2023272566A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
way valve
fluid medium
vehicle
management system
Prior art date
Application number
PCT/CN2021/103456
Other languages
English (en)
French (fr)
Inventor
谭浩
Original Assignee
舍弗勒技术股份两合公司
谭浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 谭浩 filed Critical 舍弗勒技术股份两合公司
Priority to CN202180097759.4A priority Critical patent/CN117279797A/zh
Priority to DE112021007908.5T priority patent/DE112021007908T5/de
Priority to PCT/CN2021/103456 priority patent/WO2023272566A1/zh
Priority to US18/572,394 priority patent/US20240286454A1/en
Publication of WO2023272566A1 publication Critical patent/WO2023272566A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts

Definitions

  • the present application relates to the field of thermal management of vehicles, and in particular to a thermal management system for a vehicle and its working method.
  • Battery charging efficiency is low in low temperature environment, which has an adverse effect on braking energy recovery. Also, charging batteries at low temperatures is risky because lithium deposits in the battery can lead to short circuits in the battery and thus thermal runaway of the battery. Further, when the state of charge of the battery is high, more kinetic energy cannot be converted into electrical energy, the wasted kinetic energy will increase, and thermal degradation of the braking system will occur.
  • An object of the present application is to provide a novel thermal management system for a vehicle, which can transfer the heat generated by the braking system of the vehicle to at least one of the battery and the motor assembly, thereby reducing the energy during the braking process of the vehicle. waste, and helps to alleviate the phenomenon of thermal degradation of the vehicle's braking system.
  • Another object of the present application is to provide a working method of the above thermal management system for a vehicle.
  • the present application may adopt the following technical solutions.
  • the present application provides a thermal management system for a vehicle as follows, which includes a main passage, a first branch and a second branch.
  • a braking system and a first power source are arranged in series.
  • a battery is arranged in one branch
  • a motor assembly is arranged in the second branch, and the main passage can be selectively communicated with at least one of the first branch and the second branch, so that in Driven by the first power source, the fluid medium from the main passage can flow through the at least one and then return to the main passage.
  • a first heat sink and a second power source connected in series with the motor assembly are further arranged in the second branch, and the vehicle heat management system further includes a third branch.
  • a second radiator is arranged in the third branch.
  • the first branch circuit includes a first bypass passage connected in parallel with the battery
  • the second branch circuit includes a second bypass passage connected in parallel with the first heat sink
  • the The third branch includes a third bypass passage connected in parallel with the second radiator.
  • a first three-way valve is also provided in the first branch, and by controlling the first three-way valve, the fluid medium in the first branch can flow through the the battery or the first bypass;
  • a second three-way valve is also provided in the second branch. By controlling the second three-way valve, the fluid medium in the second branch can flow through the first radiator or the second radiator. Bypass; and
  • a third three-way valve is also provided in the third branch. By controlling the third three-way valve, the fluid medium in the third branch can flow through the second radiator or the third radiator. Bypass.
  • the vehicle thermal management system further includes a first four-way valve and a second four-way valve
  • the first inlet of the first four-way valve communicates with the main passage
  • the first outlet of the first four-way valve communicates with the first branch
  • the second inlet of the first four-way valve communicates with the main passage.
  • the second branch is in communication
  • the second outlet of the first four-way valve is in communication with the third branch
  • the first inlet and the second inlet One inlet communicates with one of the first outlet and the second outlet while the other of the first inlet and the second inlet communicates with the first outlet and the second outlet. Another outlet of the connected,
  • the first inlet of the second four-way valve communicates with the first branch
  • the first outlet of the second four-way valve communicates with the main passage
  • the second inlet of the second four-way valve communicates with the main passage.
  • the third branch communicates, the second outlet of the second four-way valve communicates with the second branch, and in the second four-way valve, the first inlet and the second inlet One inlet communicates with one of the first outlet and the second outlet while the other of the first inlet and the second inlet communicates with the first outlet and the second outlet. connected to another outlet.
  • the vehicle thermal management system further includes a fan, and the first radiator and the second radiator are arranged side by side, so that the airflow from the fan can flow through the first radiator. radiator and the second radiator.
  • the fluid medium is a mixed solution of water and ethylene glycol.
  • the present application also provides a working method of the vehicle thermal management system described in any one of the above technical solutions, which includes the following three working modes:
  • the fluid medium from the main passage returns to the main passage after passing through the battery in the first branch;
  • the fluid medium from the main passage returns to the main passage after passing through the motor assembly in the second branch circuit;
  • the fluid medium from the main passage returns to the main passage after passing through the battery in the first branch and the motor assembly in the second branch.
  • the present application also provides more than one working method of a thermal management system for a vehicle, which includes the following three working modes:
  • the fluid medium from the main channel flows through the battery in the first branch circuit and then returns to the main channel, and in the first four-way valve, the first inlet and the The first outlet is communicated and the second inlet is communicated with the second outlet, and in the second four-way valve, the first inlet is communicated with the first outlet and the second inlet is communicated with the first The two outlets are connected, and the first three-way valve is controlled to make the fluid medium in the first branch flow through the battery;
  • the fluid medium from the main passage flows through the motor assembly in the second branch and then returns to the main passage, and the first inlet and the first four-way valve in the first four-way valve
  • the second outlet communicates with the second inlet and the first outlet, and in the second four-way valve, the first inlet communicates with the first outlet and the second inlet communicates with the first outlet.
  • the second outlet is connected, the first three-way valve is controlled to make the fluid medium in the first branch flow through the first bypass passage, and the second three-way valve is controlled to make the fluid medium in the second branch flow through the first bypass passage.
  • the fluid medium flows through the second bypass passage, and the third three-way valve is controlled to make the fluid medium in the third branch flow through the third bypass passage;
  • the fluid medium from the main passage returns to the main passage after passing through the battery in the first branch and the motor assembly in the second branch, and in the first In the four-way valve, the first inlet communicates with the first outlet and the second inlet communicates with the second outlet, and in the second four-way valve, the first inlet communicates with the second outlet and the second inlet is in communication with the first outlet, the first three-way valve is controlled to make the fluid medium in the first branch flow through the battery, and the second three-way valve is controlled to make the fluid medium in the first branch flow through the battery.
  • the fluid medium in the second branch flows through the second bypass passage, and the third three-way valve is controlled to make the fluid medium in the third branch flow through the third bypass passage.
  • the working method further includes a fourth working mode, wherein in the first four-way valve, the first inlet communicates with the second outlet and the second inlet communicates with the The first outlet is communicated, the first inlet is communicated with the second outlet in the second four-way valve, and the second inlet is communicated with the first outlet, and the first three-way valve is controlled so that the The fluid medium in the first branch flows through the first bypass passage, the second three-way valve is controlled to make the fluid medium in the second branch flow through the first radiator, and the second three-way valve is controlled to flow through the first radiator.
  • the three-way valve allows the fluid medium in the third branch to flow through the second radiator.
  • the thermal management system for a vehicle includes a main path, a first branch and a second branch.
  • a brake system and a first power source connected in series are arranged in the main path, a battery is arranged in the first branch, and a motor assembly is arranged in the second branch.
  • the main passage can be selectively communicated with at least one of the first branch and the second branch, so that the fluid medium in the main passage can flow through at least one of them and then return to the main passage driven by the first power source.
  • the thermal management system for vehicles can transfer the heat generated by the braking system of the vehicle to the battery and/or the motor assembly for use, so that the heat generated by the braking system of the vehicle can be fully utilized, thereby reducing the Energy is wasted during the braking process of the vehicle, and it helps to alleviate the phenomenon of thermal degradation of the braking system.
  • FIG. 1 is a schematic diagram showing a connection structure of a thermal management system for a vehicle according to an embodiment of the present application.
  • FIG. 2A is a schematic diagram for explaining the first working mode of the thermal management system for a vehicle in FIG. 1 , where the hollow arrows indicate the flow direction of the fluid medium.
  • FIG. 2B is a schematic diagram for explaining the second working mode of the thermal management system for a vehicle in FIG. 1 , where the hollow arrows indicate the flow direction of the fluid medium.
  • FIG. 2C is a schematic diagram for explaining the third working mode of the thermal management system for a vehicle in FIG. 1 , where the hollow arrows indicate the flow direction of the fluid medium.
  • FIG. 2D is a schematic diagram for explaining the fourth working mode of the vehicle thermal management system in FIG. 1 , where the hollow arrows indicate the flow direction of the fluid medium.
  • First Power Source 2 Brake System 3 Battery 41 Motor 42 Motor Control Unit 43 Transformer 44 Onboard Charging Unit 5 First Radiator 6 Second Power Source 7 Second Radiator 8 Fan
  • a thermal management system for a vehicle includes a main passage P0 , a first branch P1 , a second branch P2 and a third branch P3 .
  • the fluid medium flows in the flow path constituted by the main path P0, the first branch path P1, the second branch path P2, and the third branch path P3.
  • the fluid medium may be a mixed solution of water and ethylene glycol, and the mass percentage concentrations of water and ethylene glycol are both 50%, for example.
  • a first power source 1 and four braking systems 2 are arranged in series with each other.
  • the first power source 1 is, for example, an electric pump capable of pumping the fluid medium in the main passage P0.
  • the four braking systems 2 are respectively used for braking the four wheels of the vehicle.
  • Each brake system 2 includes a fluid pipeline (not shown) for cooling the corresponding brake system 2 , and the main passage P0 actually connects the fluid pipelines of the four brake systems 2 in series.
  • a battery 3 is provided in the first branch P1.
  • An example of the battery 3 is a battery pack or a battery stack
  • the battery 3 includes a fluid pipeline (not shown), and the first branch P1 communicates with the fluid pipeline of the battery 3 .
  • the first branch circuit P1 also includes a first three-way valve T1 and a first bypass channel P1b connected in parallel with the battery 3. By controlling the first three-way valve T1, the first branch circuit P1 can The fluid medium selectively flows through the battery 3 or the first bypass passage P1b.
  • the motor assembly may include a motor 41, a motor control unit 42, a transformer 43, and an onboard charging unit 44, and the second branch P2 actually connects the motor 41, the motor control unit 42, the transformer 43, and the onboard charging unit 44 to Fluid lines (not shown) are connected in series.
  • the first heat sink 5 can be any type of heat sink, for example, it can include a large number of heat dissipation fins arranged side by side.
  • the second power source 6 is, for example, an electric pump capable of pumping the fluid medium in the second branch P2. Further, as shown in FIG.
  • the second branch P2 includes a second three-way valve T2 and a second bypass passage P2b connected in parallel with the first radiator 5.
  • the second branch P2 can The fluid medium in P2 selectively flows through the first radiator 5 or the second bypass passage P2b.
  • the second radiator 7 is provided in the third branch P3, the second radiator 7 is provided. Further, as shown in FIG. 1, the third branch P3 also includes a third three-way valve T3 and a third bypass passage P3b connected in parallel with the second radiator 7. By controlling the third three-way valve T3, the third branch can be The fluid medium in the path P3 selectively flows through the second radiator 7 or the third bypass path P3b.
  • the main passage P0 can be It selectively communicates with at least one of the first branch P1, the second branch P2 and the third branch P3.
  • the vehicle thermal management system further includes a first four-way valve F1 and a second four-way valve F2.
  • the first four-way valve F1 includes a first inlet I11, a second inlet I12, a first outlet O11 and a second outlet O12.
  • first inlet I11 and the second inlet I12 communicates with one of the first outlet O11 and the second outlet O12
  • the first inlet I11 and the second inlet I12 The other inlet of is in communication with the other outlet of the first outlet O11 and the second outlet O12.
  • the first inlet I11 of the first four-way valve F1 communicates with the main passage P0
  • the first outlet O11 of the first four-way valve F1 communicates with the first branch P1
  • the second inlet I12 of F1 communicates with the second branch P2
  • the second outlet O12 of the first four-way valve F1 communicates with the third branch P3.
  • the second four-way valve F2 includes a first inlet I21, a second inlet I22, a first outlet O21 and a second outlet O22.
  • first inlet I21 and the second inlet I22 communicates with one of the first outlet O21 and the second outlet O22
  • the first inlet I21 and the second inlet I22 The other inlet of the first outlet O21 and the second outlet O22 communicate with the other outlet.
  • the first inlet I21 of the second four-way valve F2 communicates with the first branch P1
  • the first outlet O21 of the second four-way valve F2 communicates with the main passage P0
  • the second four-way valve F2 The second inlet I22 of F2 communicates with the third branch P3, and the second outlet O22 of the second four-way valve F2 communicates with the second branch P2.
  • the thermal management system for the vehicle also includes a fan 8, and the first radiator 5 and the second radiator 7 are arranged side by side, so that the airflow from the fan 8 can flow through the first radiator 5 and the second radiator. 7, so that the heat dissipation efficiency of the first radiator 5 and the second radiator 7 can be improved.
  • thermal management system for a vehicle according to an embodiment of the present application as shown in FIG. 1 , four working modes as follows can be realized.
  • the first working mode can be adopted. In the first working mode, the fluid medium from the main passage P0 flows through the battery 3 in the first branch P1 and then returns to the main passage P0.
  • the first inlet I11 communicates with the first outlet O11 and the second inlet I12 communicates with the second outlet O12;
  • the first inlet I21 communicates with the first outlet O21 and the second inlet I22 communicates with the second outlet O22.
  • the first three-way valve T1 is controlled to make the fluid medium in the first branch P1 flow through the battery 3
  • the second three-way valve T2 is controlled to make the fluid medium in the second branch P2 flow through the second bypass passage P2b
  • the third three-way valve T3 is controlled to make the fluid medium in the third branch P3 flow through the third bypass passage P3b.
  • the fluid medium from the main passage P0 flows through the four brake systems 2 and then circulates through the following flow paths:
  • the fluid medium from the second branch P2 circulates through the following flow path: second three-way valve T2 ⁇ second bypass passage P2b ⁇ motor assembly ⁇ first four-way valve F1
  • the fluid medium from the main passage P0 only heats the battery 3 .
  • opening of the second power source 6 is optional, that is to say, the circulating flow of the fluid medium driven by the second power source 6 is optional.
  • the second working mode can be adopted.
  • the fluid medium from the main passage P0 flows through the motor assembly in the second branch P2 and then returns to the main passage P0.
  • the first inlet I11 communicates with the second outlet O12 and the second inlet I12 communicates with the first outlet O11;
  • the first inlet I21 communicates with the first outlet O21 and the second inlet I22 communicates with the second outlet O22.
  • the first three-way valve T1 is controlled to make the fluid medium in the first branch P1 flow through the first bypass passage P1b
  • the second three-way valve T2 is controlled to make the fluid medium in the second branch P2 flow through the second bypass passage.
  • the passage P2b controls the third three-way valve T3 to make the fluid medium in the third branch P3 flow through the third bypass passage P3b.
  • the fluid medium from the main passage P0 flows through the four brake systems 2 and then circulates through the following flow paths:
  • the second outlet O22 of the four-way valve F2 ⁇ the second power source 6 ⁇ the second three-way valve T2 ⁇ the second bypass passage P2b ⁇ the motor assembly ⁇ the second inlet I12 of the first four-way valve F1 ⁇ the first four-way valve F1
  • the fluid medium from the main passage P0 only heats the motor assembly.
  • the opening of the second power source 6 is optional, that is to say, the second power source 6 can assist the first power source 1 to drive the fluid medium.
  • the third working mode can be adopted.
  • the fluid medium from the main passage P0 flows through the battery 3 in the first branch P1 and the motor assembly in the second branch P2 and then returns to the main passage P0.
  • the first inlet I11 communicates with the first outlet O11 and the second inlet I12 communicates with the second outlet O12;
  • the first inlet I21 communicates with the second outlet O22 and the second inlet I22 communicates with the first outlet O21.
  • the first three-way valve T1 is controlled to make the fluid medium in the first branch P1 flow through the battery 3
  • the second three-way valve T2 is controlled to make the fluid medium in the second branch P2 flow through the second bypass passage P2b
  • the third three-way valve T3 is controlled to make the fluid medium in the third branch P3 flow through the third bypass passage P3b.
  • the thermal management system for a vehicle can be in the fourth working mode as follows.
  • the first inlet I11 communicates with the second outlet O12 and the second inlet I12 communicates with the first outlet O11;
  • the first inlet I21 communicates with the second outlet O22 and the second inlet I22 communicates with the first outlet O21.
  • the first three-way valve T1 allows the fluid medium in the first branch P1 to flow through the first bypass passage P1b
  • the second three-way valve T2 allows the fluid medium in the second branch P2 to flow through the first radiator 5
  • the third three-way valve T3 allows the fluid medium in the third branch P3 to flow through the second radiator 7 .
  • the fluid medium from the main passage P0 flows through the four brake systems 2 and then circulates through the following flow paths:
  • the fluid medium from the second branch P2 circulates through the following flow path: second three-way valve T2 ⁇ first radiator 5 ⁇ motor assembly ⁇ first four-way valve F1
  • the thermal management system for a vehicle according to the present application is especially suitable for a vehicle under low temperature conditions, which improves the deceleration capability of the vehicle under low temperature conditions, protects the battery and improves battery performance.
  • the fluid medium involved in the present application is not limited to the situation described above, and the mass percentage concentration of water and ethylene glycol in the fluid medium is not limited to the numerical values described in the above specific examples, but can be appropriately selected according to needs .
  • the fluid medium formed by water and ethylene glycol can make the fluid medium still maintain a liquid state at a relatively low temperature.
  • the working modes of the vehicle thermal management system according to the present application may not be limited to the four working modes listed in the above-mentioned specific embodiments, and other working modes may be added as required, mainly by switching the work of the three-way valve and the four-way valve status to achieve. It can be understood that the three-way valve and the four-way valve in the vehicle thermal management system according to the present application can be replaced by other control valves, and the same effect can also be achieved.
  • the number of braking systems in a vehicle including the thermal management system of the present application and the number of braking systems in the thermal management system for a vehicle according to the present application are not limited to the above-described cases.
  • at least one braking system may be connected to the main path P0.
  • the thermal management system for a vehicle may further include a fluid medium container, which may be disposed in the main passage for storing the fluid medium.
  • the thermal management system for vehicles according to the present application is not only applicable to pure electric vehicles, but also applicable to hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供了一种车辆用热管理系统,其包括主通路(P0)、第一支路(P1)和第二支路(P2)。在主通路(P0)中设置彼此串联的制动系统(2)和第一动力源(1),在第一支路(P1)中设置电池(3),在第二支路(P2)中设置电机组件(41、42、43、44)。主通路(P0)能够选择性地与第一支路(P1)和第二支路(P2)中的至少一者连通,使得在第一动力源(1)的驱动下来自主通路(P0)的流体介质能够流经至少一者之后返回主通路(P0)。这样,能够充分利用车辆的制动系统产生的热量,减小了车辆制动过程中能量的浪费,有助于缓解制动系统产生热退化的现象。还提供了上述车辆用热管理系统的工作方法,其能够实现同样的效果。

Description

车辆用热管理系统及其工作方法 技术领域
本申请涉及车辆的热管理领域,且特别地涉及一种用于车辆的热管理系统及其工作方法。
背景技术
在现有的电动车辆中,制动能量回收系统已经被广泛地应用。因而,在车辆制动过程中,绝大部分动能都被回收到电动车辆的电池中,剩余的动能则转换成热能散发到空气中。但是,在上述制动能量回收过程中存在如下情况。
i.电动车辆的动能转换成热能散发到空气中,导致这部分动能实际上被浪费了。
ii.在低温环境下电池充电效率较低,这对制动能量回收产生了不利影响。而且,在低温环境下进行电池充电存在一定风险,这是因为电池的锂沉积将导致电池出现短路以及由此引发电池热失控。进一步地,在电池的荷电状态高的情况下,更多的动能不能转化为电能,被浪费的动能会增大,而且将导致制动系统产生热退化。
iii.随着电池的能量增加,电动车辆的重量增大,诸如卡车和公共汽车等的重型车辆电动化将导致电动车辆行驶过程中的动能变大,使得电动车辆制动时不能回收的动能变大,这也将导致制动系统产生热退化。进一步地,当电动车辆进行紧急制动时也会产生类似的情况。
由此可知,现有的电动车辆的制动能量回收在很多情况下将导致很多动能被浪费,而且容易导致车辆的制动系统产生热退化的现象。
发明内容
为了克服或至少减轻上述现有技术存在的不足而做出了本申请。本申请的一个目的是提供一种新型的车辆用热管理系统,其能够将车辆的制动系统产生的热量传递到电池和电机组件中的至少一者,从而减小了车辆制动过程中能量的浪费,而且有助于缓解车辆的制动系统产生热退化的现象。本申请的另一个目的在于提供上述车辆用热管理系统的工作方法。
为了实现上述目的,本申请可以采用如下的技术方案。
本申请提供了一种如下的车辆用热管理系统,其包括主通路、第一支路和第二支路,在所述主通路中设置彼此串联的制动系统和第一动力源,在第一支路中设置电池,在所述第二支路中设置电机组件,所述主通路能够选择性地与所述第一支路和所述第二支路中的至少一者连通,使得在所述第一动力源的驱动下来自所述主通路的流体介质能够流经所述至少一者之后返回所述主通路。
在一个可选的方案中,在所述第二支路中还设置与所述电机组件串联的第一散热器和第二动力源,所述车辆用热管理系统还包括第三支路,在所述第三支路中设置第二散热器。
在另一个可选的方案中,所述第一支路包括与所述电池并联的第一旁通路,所述第二支路包括与所述第一散热器并联的第二旁通路,所述第三支路包括与所述第二散热器并联的第三旁通路。
在另一个可选的方案中,在所述第一支路中还设置第一三通阀,通过控制所述第一三通阀能够使得所述第一支路中的流体介质流经所述电池或所述第一旁通路;
在所述第二支路中还设置第二三通阀,通过控制所述第二三通阀能够使得所述第二支路中的流体介质流经所述第一散热器或所述第二旁通路;以及
在所述第三支路中还设置第三三通阀,通过控制所述第三三通阀能够使得所述第三支路中的流体介质流经所述第二散热器或所述第三旁通路。
在另一个可选的方案中,所述车辆用热管理系统还包括第一四通阀和第二四通阀,
所述第一四通阀的第一入口与所述主通路连通,所述第一四通阀的第一出口与所述第一支路连通,所述第一四通阀的第二入口与所述第二支路连通,所述第一四通阀的第二出口与所述第三支路连通,在所述第一四通阀中所述第一入口和所述第二入口中的一个入口与所述第一出口和所述第二出口中的一个出口连通的同时所述第一入口和所述第二入口中的另一个入口与所述第一出口和所述第二出口中的另一个出口连通,
所述第二四通阀的第一入口与所述第一支路连通,所述第二四通阀的第一出口与所述主通路连通,所述第二四通阀的第二入口与所述第三支路连通,所述第二四通阀的第二出口与所述第二支路连通,在所述第二四通阀中所述第一入口和所述第二入口中的一个入口与所述第一出口和所述第二出口中的一个出口连通的同时所述第一入口和所述第二入口中的另一个入口与所述第一出口和所述第二出口中的另一个出口连通。
在另一个可选的方案中,所述车辆用热管理系统还包括风扇,所述第一散热器和所述第二散热器并排配置,使得来自所述风扇的气流能够流经所述第一散热器和所述第二散热器。
在另一个可选的方案中,所述流体介质为水和乙二醇的混合溶液。
本申请还提供了一种以上技术方案中任意一项技术方案所述的车辆用热管理系统的工作方法,其包括以下三种工作模式:
在第一工作模式中,来自所述主通路中的流体介质流经所述第一支路中的电池之后返回所述主通路;
在第二工作模式中,来自所述主通路中的流体介质流经所述第二支路中的电机组件之后返回所述主通路;以及
在第三工作模式中,来自所述主通路中的流体介质流经所述第一支路中的电池和所述第二支路中的电机组件之后返回所述主通路。
本申请还提供了一种以上的车辆用热管理系统的工作方法,其包括以下三种工作模式:
在第一工作模式中,来自所述主通路中的流体介质流经所述第一支路中的电池之后返回所述主通路,在所述第一四通阀中所述第一入口与所述第一出口连通且所述第二入口与所述第二出口连通,在所述第二四通阀中所述第一入口与所述第一出口连通且所述第二入口与所述第二出口连通,控制所述第一三通阀使所述第一支路中的流体介质流经所述电池;
在第二工作模式中,来自所述主通路中的流体介质流经所述第二支路中的电机组件之后返回所述主通路,在所述第一四通阀中所述第一入口与所述第二出口连通且所述第二入口与所述第一出口连通,在所述第二四通阀中所述第一入口与所述第一出口连通且所述第二入口与所述第二出口连通,控制所述第一三通阀使所述第一支路中的流体介质流经所述第一旁通路,控制所述第二三通阀使所述第二支路中的流体介质流经所述第二旁通路,控制所述第三三通阀使所述第三支路中的流体介质流经所述第三旁通路;
在第三工作模式中,来自所述主通路中的流体介质流经所述第一支路中的电池和所述第二支路中的电机组件之后返回所述主通路,在所述第一四通阀中所述第一入口与所述第一出口连通且所述第二入口与所述第二出口连通,在所述第二四通阀中所述第一入口与所述第二出口连通且所述第二入口与所述第一出口连通,控制所述第一三通阀使所述第一支路中的流体介质流经所述电池,控制所述第二三通阀使所述第二支路中的流体介质流经所述第 二旁通路,控制所述第三三通阀使所述第三支路中的流体介质流经所述第三旁通路。
在一个可选的方案中,所述工作方法还包括第四工作模式,其中在所述第一四通阀中所述第一入口与所述第二出口连通且所述第二入口与所述第一出口连通,在所述第二四通阀中所述第一入口与所述第二出口连通且所述第二入口与所述第一出口连通,控制所述第一三通阀使所述第一支路中的流体介质流经所述第一旁通路,控制所述第二三通阀使所述第二支路中的流体介质流经所述第一散热器,控制所述第三三通阀使所述第三支路中的流体介质流经所述第二散热器。
通过采用上述技术方案,本申请提供了一种新型的车辆用热管理系统及其工作方法。该车辆用热管理系统包括主通路、第一支路和第二支路。在主通路中设置彼此串联的制动系统和第一动力源,在第一支路中设置电池,在第二支路中设置电机组件。主通路能够选择性地与第一支路和第二支路中的至少一者连通,使得在第一动力源的驱动下来自主通路的流体介质能够流经至少一者之后返回主通路。这样,通过根据本申请的车辆用热管理系统能够将车辆的制动系统产生的热量传递到电池和/或电机组件进行使用,从而能够充分利用车辆的制动系统产生的热量,从而减小了车辆制动过程中能量的浪费,而且有助于缓解制动系统产生热退化的现象。
附图说明
图1是示出了根据本申请的一实施例的车辆用热管理系统的连接结构示意图。
图2A是用于说明图1中的车辆用热管理系统的第一工作模式的示意图,其中空心箭头表示流体介质流动的方向。
图2B是用于说明图1中的车辆用热管理系统的第二工作模式的示意图, 其中空心箭头表示流体介质流动的方向。
图2C是用于说明图1中的车辆用热管理系统的第三工作模式的示意图,其中空心箭头表示流体介质流动的方向。
图2D是用于说明图1中的车辆用热管理系统的第四工作模式的示意图,其中空心箭头表示流体介质流动的方向。
附图标记说明
1第一动力源 2制动系统 3电池 41电机 42电机控制单元 43变压器 44板载充电单元 5第一散热器 6第二动力源 7第二散热器 8风扇
P0主通路 P1第一支路 P1b第一旁通路 P2第二支路 P2b第二旁通路 P3第三支路 P3b第三旁通路
F1第一四通阀 I11第一四通阀的第一入口 I12第一四通阀的第二入口 O11第一四通阀的第一出口 O12第一四通阀的第二出口 F2第二四通阀 I21第二四通阀的第一入口 I22第二四通阀的第二入口 O21第二四通阀的第一出口 O22第二四通阀的第二出口
T1第一三通阀 T2第二三通阀 T3第三三通阀。
具体实施方式
下面参照附图描述本申请的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
以下将参照附图说明根据本申请的一实施例的车辆用热管理系统的结构。
(根据本申请的一实施例的车辆用热管理系统的结构)
如图1所示,根据本申请的一实施例的车辆用热管理系统包括主通路P0、第一支路P1、第二支路P2和第三支路P3。流体介质在由主通路P0、第一支路P1、第二支路P2和第三支路P3构成的流路中流动。在本实施例中,流体介质可以为水和乙二醇的混合溶液,水和乙二醇的质量百分比浓度例如均为50%。
在本实施例中,在主通路P0中,设置彼此串联的第一动力源1和四个制动系统2。第一动力源1为例如电动泵,其能够泵送主通路P0中的流体介质。四个制动系统2分别用于车辆的四个车轮的制动。各制动系统2均包括流体管路(未示出)用于冷却对应的制动系统2,主通路P0实际上将四个制动系统2的流体管路串联在一起。
在本实施例中,在第一支路P1中,设置电池3。电池3的示例为电池组或电池堆,电池3包括流体管路(未示出),第一支路P1与电池3的流体管路连通。进一步地,如图1所示,第一支路P1还包括第一三通阀T1以及与电池3并联的第一旁通路P1b,通过控制第一三通阀T1能够使得第一支路P1中的流体介质选择性地流经电池3或第一旁通路P1b。
在本实施例中,在第二支路P2中,设置彼此串联的电机组件、第一散热器5和第二动力源6。具体地,电机组件可以包括电机41、电机控制单元42、变压器43和板载充电单元44,第二支路P2实际上将电机41、电机控制单元42、变压器43和板载充电单元44各自的流体管路(未示出)串联在一起。第一散热器5可以是任意类型的散热器,例如可以包括大量并排设置的散热翅片。第二动力源6为例如电动泵,其能够泵送第二支路P2中的流体介质。进一步地,如图1所示,第二支路P2包括第二三通阀T2以及与第一散热器5并联的第二旁通路P2b,通过控制第二三通阀T2能够使得第二支路P2中的流体介质选择性地流经第一散热器5或第二旁通路P2b。
在本实施例中,在第三支路P3中,设置第二散热器7。进一步地,如图1所示,第三支路P3还包括第三三通阀T3以及与第二散热器7并联的第三旁通路P3b,通过控制第三三通阀T3能够使得第三支路P3中的流体介质选择性地流经第二散热器7或第三旁通路P3b。
为了使得主通路P0中从制动系统2中带走热量的流体介质选择性地流经电池3、电机组件和第二散热器7中的至少一者,在本实施例中使得主通路P0能够选择性地与第一支路P1、第二支路P2和第三支路P3中的至少一者连通。为此,车辆用热管理系统还包括第一四通阀F1和第二四通阀F2。
具体地,第一四通阀F1包括第一入口I11、第二入口I12、第一出口O11和第二出口O12。在第一四通阀F1中,第一入口I11和第二入口I12中的一个入口与第一出口O11和第二出口O12中的一个出口连通的同时,第一入口I11和第二入口I12中的另一个入口与第一出口O11和第二出口O12中的另一个出口连通。进一步地,如图1所示,第一四通阀F1的第一入口I11与主通路P0连通,第一四通阀F1的第一出口O11与第一支路P1连通,第一四通阀F1的第二入口I12与第二支路P2连通,第一四通阀F1的第二出口O12与第三支路P3连通。
进一步地,第二四通阀F2包括第一入口I21、第二入口I22、第一出口O21和第二出口O22。在第二四通阀F2中,第一入口I21和第二入口I22中的一个入口与第一出口O21和第二出口O22中的一个出口连通的同时,第一入口I21和第二入口I22中的另一个入口与第一出口O21和第二出口O22中的另一个出口连通。进一步地,如图1所示,第二四通阀F2的第一入口I21与第一支路P1连通,第二四通阀F2的第一出口O21与主通路P0连通,第二四通阀F2的第二入口I22与第三支路P3连通,第二四通阀F2的第二出口O22与第二支路P2连通。
此外,在本实施例中,车辆用热管理系统还包括风扇8,第一散热器5和 第二散热器7并排配置,使得来自风扇8的气流能够流经第一散热器5和第二散热器7,从而能够提高第一散热器5和第二散热器7的散热效率。
以下说明根据本申请的一实施例的车辆用热管理系统的工作方法。
(根据本申请的一实施例的车辆用热管理系统的工作方法)
在如图1所示的根据本申请的一实施例的车辆用热管理系统中,能够实现四种如下的工作模式。
当车辆处于低温环境中时,电池3的温度低于预定值,而且电机组件的温度比电池3更低。这时,需要优先使电池3的温度升高,为了避免电机组件影响对电池3的加热效率,可以采用第一工作模式。在第一工作模式中,来自主通路P0中的流体介质流经第一支路P1中的电池3之后返回主通路P0。
具体地,如图2A所示,在第一工作模式中,在第一四通阀F1中,第一入口I11与第一出口O11连通且第二入口I12与第二出口O12连通;在第二四通阀F2中,第一入口I21与第一出口O21连通且第二入口I22与第二出口O22连通。进一步地,控制第一三通阀T1使第一支路P1中的流体介质流经电池3,控制第二三通阀T2使第二支路P2中的流体介质流经第二旁通路P2b,控制第三三通阀T3使第三支路P3中的流体介质流经第三旁通路P3b。
这样,如图2A所示,在第一工作模式中,在第一动力源1的驱动下,来自主通路P0的流体介质流经四个制动系统2之后经由如下的流动路径循环流动:第一四通阀F1的第一入口I11→第一四通阀F1的第一出口O11→电池3→第二四通阀F2的第一入口I21→第二四通阀F2的第一出口O21;在第二动力源6的驱动下,来自第二支路P2中的流体介质经由如下的流动路径循环流动:第二三通阀T2→第二旁通路P2b→电机组件→第一四通阀F1的第二入口I12→第一四通阀F1的第二出口O12→第三三通阀T3→第三旁通路P3b→第二四通阀F2的第二入口I22→第二四通阀F2的第二出口O22。由此,在第一工作模式中,来自主通路P0的流体介质仅对电池3进行加热。另外,可以理解,在 第一工作模式中,第二动力源6的开启是可选的,也就是说通过第二动力源6驱动的流体介质的循环流动是可选的。
当车辆处于低温环境中时,但是电池3的温度高于预定值,考虑到电机组件处于大约70摄氏度至80摄氏度时工作状态较佳,这时需要优先使电机组件的温度升高。为了避免电池3影响对电机组件的加热效率,可以采用第二工作模式。在第二工作模式中,来自主通路P0中的流体介质流经第二支路P2中的电机组件之后返回主通路P0。
具体地,如图2B所示,在第二工作模式中,在第一四通阀F1中,第一入口I11与第二出口O12连通且第二入口I12与第一出口O11连通;在第二四通阀F2中,第一入口I21与第一出口O21连通且第二入口I22与第二出口O22连通。进一步地,控制第一三通阀T1使第一支路P1中的流体介质流经第一旁通路P1b,控制第二三通阀T2使第二支路P2中的流体介质流经第二旁通路P2b,控制第三三通阀T3使第三支路P3中的流体介质流经第三旁通路P3b。
这样,如图2B所示,在第二工作模式中,在第一动力源1的驱动下,来自主通路P0的流体介质流经四个制动系统2之后经由如下的流动路径循环流动:第一四通阀F1的第一入口I11→第一四通阀F1的第二出口O12→第三三通阀T3→第三旁通路P3b→第二四通阀F2的第二入口I22→第二四通阀F2的第二出口O22→第二动力源6→第二三通阀T2→第二旁通路P2b→电机组件→第一四通阀F1的第二入口I12→第一四通阀F1的第一出口O11→第一三通阀T1→第一旁通路P1b→第二四通阀F2的第一入口I21→第二四通阀F2的第一出口O21。由此,在第二工作模式中,来自主通路P0的流体介质仅对电机组件进行加热。另外,可以理解,在第二工作模式中,第二动力源6的开启是可选的,也就是说通过第二动力源6可以辅助第一动力源1驱动流体介质。
当车辆处于低温环境中时,电池3的温度低于预定值,而且电机组件的 温度比电池3更高。这时,为了提高对电池3的加热效率,可以采用第三工作模式。在第三工作模式中,来自主通路P0中的流体介质流经第一支路P1中的电池3和第二支路P2中的电机组件之后返回主通路P0。
具体地,如图2C所示,在第三工作模式中,在第一四通阀F1中,第一入口I11与第一出口O11连通且第二入口I12与第二出口O12连通;在第二四通阀F2中,第一入口I21与第二出口O22连通且第二入口I22与第一出口O21连通。进一步地,控制第一三通阀T1使第一支路P1中的流体介质流经电池3,控制第二三通阀T2使第二支路P2中的流体介质流经第二旁通路P2b,控制第三三通阀T3使第三支路P3中的流体介质流经第三旁通路P3b。
这样,如图2C所示,在第三工作模式中,在第一动力源1的驱动下,来自主通路P0的流体介质流经四个制动系统2之后经由如下的流动路径循环流动:第一四通阀F1的第一入口I11→第一四通阀F1的第一出口O11→第一三通阀T1→电池3→第二四通阀F2的第一入口I21→第二四通阀F2的第二出口O22→第二动力源6→第二三通阀T2→第二旁通路P2b→电机组件→第一四通阀F1的第二入口I12→第一四通阀F1的第二出口O12→第三三通阀T3→第三旁通路P3b→第二四通阀F2的第二入口I22→第二四通阀F2的第一出口O21。可以理解,在第三工作模式中,第二动力源6的开启是可选的,也就是说通过第二动力源6可以辅助第一动力源1驱动的流体介质。
当车辆处于高温环境中时,电池3的温度高于预定值,但是车辆由于电池3的荷电状态较高或者车速限制等原因不能进行制动能量回收时,车辆的制动系统2的热量只能散发到空气中,由此根据本申请的一实施例的车辆用热管理系统可以处于如下的第四工作模式。
具体地,如图2D所示,在第四工作模式中,在第一四通阀F1中,第一入口I11与第二出口O12连通且第二入口I12与第一出口O11连通;在第二四通 阀F2中,第一入口I21与第二出口O22连通且第二入口I22与第一出口O21连通。进一步地,第一三通阀T1使第一支路P1中的流体介质流经第一旁通路P1b,第二三通阀T2使第二支路P2中的流体介质流经第一散热器5,第三三通阀T3使第三支路P3中的流体介质流经第二散热器7。
这样,如图2D所示,在第四工作模式中,在第一动力源1的驱动下,来自主通路P0的流体介质流经四个制动系统2之后经由如下的流动路径循环流动:第一四通阀F1的第一入口I11→第一四通阀F1的第二出口O12→第三三通阀T3→第二散热器7→第二四通阀F2的第二入口I22→第二四通阀F2的第一出口O21。在第二动力源6的驱动下,来自第二支路P2中的流体介质经由如下的流动路径循环流动:第二三通阀T2→第一散热器5→电机组件→第一四通阀F1的第二入口I12→第一四通阀F1的第一出口O11→第一旁通路P1b→第二四通阀F2的第一入口I21→第二四通阀F2的第二出口O22。由此,在第四工作模式中,来自主通路P0的流体介质在第二散热器7处散热,流经电机组件的流体介质在第一散热器5处散热。
当然,本申请不限于上述实施方式,本领域技术人员在本申请的教导下可以对本申请的上述实施方式做出各种变型,而不脱离本申请的范围。为此,还进行如下说明。
i.可以理解,在具有根据本申请的车辆用热管理系统的车辆中,仍然可以采用制动能量回收功能,这样可以根据实际情况将车辆的动能转化为电池的电能或者转化为热管理系统中的热能。另外,根据本申请的车辆用热管理系统尤其适用于车辆处于低温条件下的状态,改善了车辆在低温条件下的减速能力,而且保护了电池且改善了电池性能。
ii.本申请的涉及的流体介质不限于上面描述的情况,流体介质中的水和乙二醇的质量百分比浓度也不限于上述具体实施例中说明的数值,而是可 以根据需要进行适当的选择。利用水和乙二醇形成的流体介质,能够使得流体介质在较低温度下依然可以维持液态。
iii.根据本申请的车辆用热管理系统的工作模式可以不限于上述具体实施例中列举的四种工作模式,可以根据需要增加其它的工作模式,主要通过转换三通阀和四通阀的工作状态来实现。可以理解,根据本申请的车辆用热管理系统中的三通阀和四通阀可以由其它控制阀替换,也能够实现同样的效果。
iv.包括本申请的热管理系统的车辆中的制动系统的数量以及根据本申请的车辆用热管理系统中的制动系统的数量不限于上面描述的情况。例如,主通路P0中接入至少一个制动系统即可。
v.根据本申请的车辆用热管理系统还可以包括流体介质容器,该流体介质容器可以设置在主通路中,用于存储流体介质。
vi.根据本申请的车辆用热管理系统不仅适用于纯电动车辆,而且还可以应用于混合动力车辆。

Claims (7)

  1. 一种车辆用热管理系统,其包括主通路(P0)、第一支路(P1)和第二支路(P2),在所述主通路(P0)中设置彼此串联的制动系统(2)和第一动力源(1),在第一支路(P1)中设置电池(3),在所述第二支路(P2)中设置电机组件(41、42、43、44),所述主通路(P0)能够选择性地与所述第一支路(P1)和所述第二支路(P2)中的至少一者连通,使得在所述第一动力源(1)的驱动下来自所述主通路(P0)的流体介质能够流经所述至少一者之后返回所述主通路(P0)。
  2. 根据权利要求1所述的车辆用热管理系统,其特征在于,在所述第二支路(P2)中还设置与所述电机组件(41、42、43、44)串联的第一散热器(5)和第二动力源(6),所述车辆用热管理系统还包括第三支路(P3),在所述第三支路(P3)中设置第二散热器(7)。
  3. 根据权利要求2所述的车辆用热管理系统,其特征在于,所述第一支路(P1)包括与所述电池(3)并联的第一旁通路(P1b),所述第二支路(P2)包括与所述第一散热器(5)并联的第二旁通路(P2b),所述第三支路(P3)包括与所述第二散热器(7)并联的第三旁通路(P3b)。
  4. 根据权利要求3所述的车辆用热管理系统,其特征在于,
    在所述第一支路(P1)中还设置第一三通阀(T1),通过控制所述第一三通阀(T1)能够使得所述第一支路(P1)中的流体介质流经所述电池(3)或所述第一旁通路(P1b);
    在所述第二支路(P2)中还设置第二三通阀(T2),通过控制所述第二三通阀(T2)能够使得所述第二支路(P2)中的流体介质流经所述第一散热器(5)或所述第二旁通路(P2b);以及
    在所述第三支路(P3)中还设置第三三通阀(T3),通过控制所述第三三通阀(T3)能够使得所述第三支路(P3)中的流体介质流经所述第二散热 器(7)或所述第三旁通路(P3b)。
  5. 根据权利要求2至4中任一项所述的车辆用热管理系统,其特征在于,所述车辆用热管理系统还包括风扇(8),所述第一散热器(5)和所述第二散热器(7)并排配置,使得来自所述风扇(8)的气流能够流经所述第一散热器(5)和所述第二散热器(7)。
  6. 根据权利要求1至5中任一项所述的车辆用热管理系统,其特征在于,所述流体介质为水和乙二醇的混合溶液。
  7. 一种权利要求1至6中任一项所述的车辆用热管理系统的工作方法,其包括以下三种工作模式:
    在第一工作模式中,来自所述主通路(P0)中的流体介质流经所述第一支路(P1)中的电池(3)之后返回所述主通路(P0);
    在第二工作模式中,来自所述主通路(P0)中的流体介质流经所述第二支路(P2)中的电机组件(41、42、43、44)之后返回所述主通路(P0);以及
    在第三工作模式中,来自所述主通路(P0)中的流体介质流经所述第一支路(P1)中的电池(3)和所述第二支路(P2)中的电机组件(41、42、43、44)之后返回所述主通路(P0)。
PCT/CN2021/103456 2021-06-30 2021-06-30 车辆用热管理系统及其工作方法 WO2023272566A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097759.4A CN117279797A (zh) 2021-06-30 2021-06-30 车辆用热管理系统及其工作方法
DE112021007908.5T DE112021007908T5 (de) 2021-06-30 2021-06-30 Thermomanagementsystem für ein Fahrzeug und Verfahren zum Betrieb desselben
PCT/CN2021/103456 WO2023272566A1 (zh) 2021-06-30 2021-06-30 车辆用热管理系统及其工作方法
US18/572,394 US20240286454A1 (en) 2021-06-30 2021-06-30 Thermal management system for vehicle, and working method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103456 WO2023272566A1 (zh) 2021-06-30 2021-06-30 车辆用热管理系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2023272566A1 true WO2023272566A1 (zh) 2023-01-05

Family

ID=84690923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103456 WO2023272566A1 (zh) 2021-06-30 2021-06-30 车辆用热管理系统及其工作方法

Country Status (4)

Country Link
US (1) US20240286454A1 (zh)
CN (1) CN117279797A (zh)
DE (1) DE112021007908T5 (zh)
WO (1) WO2023272566A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281736A (zh) * 2019-06-25 2019-09-27 北京工业大学 一种基于涡流制动制热的电动汽车集成式热管理系统
WO2020173351A1 (zh) * 2019-02-28 2020-09-03 宁德时代新能源科技股份有限公司 电池组热管理系统和电动汽车的热管理系统
US20200339136A1 (en) * 2019-04-26 2020-10-29 Denso Corporation Heat management device, system, method, and program product for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173351A1 (zh) * 2019-02-28 2020-09-03 宁德时代新能源科技股份有限公司 电池组热管理系统和电动汽车的热管理系统
US20200339136A1 (en) * 2019-04-26 2020-10-29 Denso Corporation Heat management device, system, method, and program product for vehicle
CN110281736A (zh) * 2019-06-25 2019-09-27 北京工业大学 一种基于涡流制动制热的电动汽车集成式热管理系统

Also Published As

Publication number Publication date
US20240286454A1 (en) 2024-08-29
CN117279797A (zh) 2023-12-22
DE112021007908T5 (de) 2024-06-13

Similar Documents

Publication Publication Date Title
US10220722B2 (en) Operation of combined cooling circuit for power electronics and battery
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
CN107097664B (zh) 一种智能化多回路电动汽车热管理系统
US10730403B2 (en) System and method to utilize waste heat from power electronics to heat high voltage battery
CN107017440B (zh) 包括热电装置的电池热管理系统
US20160344075A1 (en) Thermal Management System for a Vehicle
CN109572486B (zh) 一种混合动力汽车动力电池热管理系统及控制方法
CN109980246A (zh) 燃料电池汽车热管理系统
KR102208716B1 (ko) 열 커패시터를 이용한 하이브리드 및 완전 전기 자동차들을 위한 배터리 열 관리 시스템
CN113547895B (zh) 一种增程式汽车余热回收系统
WO2012123525A2 (en) Hybrid electric vehicle cooling circuit and method of cooling
CN105015320A (zh) 多区域散热器
CN105313643A (zh) 电气化车辆的热泵辅助发动机冷却
CN213291917U (zh) 一种电机电控废热利用装置及电动汽车
CN114206639A (zh) 车辆的集成热管理回路
CN111434501A (zh) 车辆中的热管理系统和用于操作所述系统的方法
CN116901648A (zh) 热管理设备、热管理系统和电动车辆
WO2023272566A1 (zh) 车辆用热管理系统及其工作方法
CN112158054A (zh) 车辆热管理系统和车辆
CN210805962U (zh) 电池热管理系统及车辆
CN216231660U (zh) 一种四轮独立驱动电动汽车轮毂电机余热发电再利用系统
CN212637096U (zh) 车辆热管理系统和车辆
CN115257356A (zh) 热管理系统及其控制方法、以及车辆
CN115257355A (zh) 热管理系统及其控制方法、以及车辆
KR102429510B1 (ko) 연료전지 차량용 냉각 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097759.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18572394

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21947520

Country of ref document: EP

Kind code of ref document: A1