WO2023249444A1 - Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode - Google Patents

Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode Download PDF

Info

Publication number
WO2023249444A1
WO2023249444A1 PCT/KR2023/008714 KR2023008714W WO2023249444A1 WO 2023249444 A1 WO2023249444 A1 WO 2023249444A1 KR 2023008714 W KR2023008714 W KR 2023008714W WO 2023249444 A1 WO2023249444 A1 WO 2023249444A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
weight
binder
parts
active material
Prior art date
Application number
PCT/KR2023/008714
Other languages
French (fr)
Korean (ko)
Inventor
박수진
이상민
이재욱
권요한
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority claimed from KR1020230080521A external-priority patent/KR102650284B1/en
Publication of WO2023249444A1 publication Critical patent/WO2023249444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • This application relates to a negative electrode composition, a negative electrode for a lithium secondary battery including the same, and a lithium secondary battery including the negative electrode.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and are widely used.
  • an electrode for such a high-capacity lithium secondary battery research is being actively conducted on methods for manufacturing a high-density electrode with a higher energy density per unit volume.
  • a secondary battery consists of an anode, a cathode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material that inserts and desorbs lithium ions from the positive electrode, and silicon-based particles with a large discharge capacity may be used as the negative electrode active material.
  • silicon-based compounds such as Si/C or SiOx, which have a capacity more than 10 times greater than graphite-based materials, as anode active materials.
  • silicon-based compounds which are high-capacity materials
  • the capacity is large compared to conventionally used graphite, but there is a problem in that the volume expands rapidly during the charging process and the conductive path is cut off, deteriorating battery characteristics.
  • the volume expansion itself is suppressed, such as a method of controlling the driving potential, a method of additionally coating a thin film on the active material layer, and a method of controlling the particle size of the silicon-based compound.
  • Various methods are being discussed to prevent the conductive path from being disconnected or to prevent the conductive path from being disconnected, but these methods have limitations in application because they can reduce battery performance, so the negative electrode battery still has a high content of silicon-based compounds. There are limits to commercialization of manufacturing.
  • an aqueous binder that has both dispersibility and adhesive properties is used.
  • the water-based binder there is an advantage in improving dispersibility, but as the cycle progresses due to poor stretching properties, electrical contact between active materials is broken due to volume expansion of the active material, causing a problem of poor lifespan properties.
  • a rubber-based binder can also be applied to improve lifespan characteristics, but in the case of silicon-based active materials, it is known that this also has limitations because the binder does not have sufficient rigidity when it contains only a rubber-based binder.
  • water-based binders have a disadvantage in the process due to the problem of intensified shrinkage due to heat when drying the electrode, but SBR rubber-based binders, which have excellent ductility, have a comparatively less tendency to shrink when dried.
  • Patent Document 1 Japanese Patent Publication No. 2009-080971
  • This application relates to a binder that does not disconnect the conductive network due to volume expansion of the silicon-based active material in manufacturing high-capacity and high-density negative electrodes and has excellent adhesion to the negative electrode current collector.
  • the binder's Young's modulus and strain value are It was confirmed through research that the above-mentioned problem can be solved by adjusting the content at the same time. Accordingly, the present application relates to a negative electrode composition, a negative electrode for a lithium secondary battery containing the same, and a lithium secondary battery containing the negative electrode.
  • An exemplary embodiment of the present specification includes a silicon-based active material; cathode conductive material; and a cathode binder; wherein the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the cathode binder satisfies the following equation 1: A negative electrode composition is provided.
  • Y refers to parts by weight of the first binder based on 100 parts by weight of the negative electrode binder
  • X refers to parts by weight of the second binder based on 100 parts by weight of the anode binder.
  • a negative electrode current collector layer In another embodiment, a negative electrode current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one or both sides of the negative electrode current collector layer.
  • the anode A negative electrode for a lithium secondary battery according to the present application;
  • a separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
  • the anode composition according to an embodiment of the present invention is characterized by solving the problem of volume expansion of the silicon-based active material by applying a specific anode binder when using a silicon-based active material, which is a high-capacity material, to manufacture a high-capacity battery. .
  • the negative electrode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the negative electrode binder satisfies the range of a specific equation 1.
  • the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material, and to improve adhesion. It can solve the problem of conductive network disconnection due to initial and late adhesion and volume expansion of the battery used.
  • the negative electrode composition according to the present application has a high content of silicon-based active material particles, so that a negative electrode with high capacity and high density can be obtained, and at the same time, in order to solve problems such as volume expansion due to the high content of silicon-based active material particles, it has a specific composition and
  • the main purpose of the present invention is to solve the above problem by using a binder of similar content.
  • Figure 1 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • Figure 2 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application.
  • Figure 3 is a diagram showing a curl evaluation method of examples and comparative examples according to the present application.
  • 'p to q' means a range of 'p to q or less.
  • specific surface area is measured by the BET method, and is specifically calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II from BEL Japan. That is, in the present application, the BET specific surface area may mean the specific surface area measured by the above measurement method.
  • Dn refers to particle size distribution and refers to the particle size at the n% point of the cumulative distribution of particle numbers according to particle size.
  • D50 is the particle size (average particle diameter) at 50% of the cumulative distribution of particle numbers according to particle size
  • D90 is the particle size at 90% of the cumulative distribution of particle numbers according to particle size
  • D10 is the cumulative particle number according to particle size. This is the particle size at 10% of the distribution.
  • particle size distribution can be measured using a laser diffraction method.
  • the powder to be measured in a dispersion medium After dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500), and when the particles pass through the laser beam, the difference in diffraction patterns according to particle size is measured to determine particle size distribution. Calculate .
  • a commercially available laser diffraction particle size measuring device for example, Microtrac S3500
  • a polymer contains a certain monomer as a monomer unit means that the monomer participates in a polymerization reaction and is included as a repeating unit in the polymer.
  • this is interpreted the same as saying that the polymer contains a monomer as a monomer unit.
  • 'polymer' is understood to be used in a broad sense including copolymers, unless specified as 'homopolymer'.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are determined by using monodisperse polystyrene polymers (standard samples) of various degrees of polymerization commercially available for molecular weight measurement as standard materials, and using gel permeation chromatography (Gel Permeation). This is the polystyrene equivalent molecular weight measured by chromatography (GPC).
  • molecular weight means weight average molecular weight unless otherwise specified.
  • the method for measuring the Young's modulus involves putting the binder solution in a coated bowl and drying it at room temperature for a long time to remove moisture.
  • the film that has lost moisture is vacuum dried at 130°C for 10 hours according to the electrode drying temperature to obtain a dried film.
  • the dried film can be cut or punched into a sample size of 6mm x 100mm to collect a sample, and the tensile strength (Young's modulus) can be measured using UTM equipment.
  • the Young's modulus varies depending on the measurement method, speed, and measurement state of the binder, but the Young's modulus of the binder has a dew point of -5°C to 10°C, and may refer to a value measured in a dry room with a temperature of about 20°C to 22°C. there is.
  • the dew point refers to the temperature at which condensation begins when moist air is cooled, because the partial pressure of water vapor in the air becomes equal to the saturated vapor pressure of water at that temperature. In other words, when the temperature of the gas containing water vapor is lowered, the relative humidity becomes 100% and dew begins to form.
  • the dew point is -5°C to 10°C and the temperature is approximately 20°C to 22°C, which can generally be defined as a dry room, where the humidity is at a very low level.
  • the strain measurement method involves putting the binder solution in a coated bowl and drying it at room temperature for a long time to remove moisture.
  • the film that has lost moisture is vacuum dried at 130°C for 10 hours according to the electrode drying temperature to obtain a dried film.
  • the dried film can be cut or punched into a sample size of 6mm x 100mm to collect a sample, and the tensile strain can be measured using UTM equipment.
  • the tensile strain of the binder varies depending on the measurement method, speed, and measurement state of the binder, but the strain of the binder is the same as the Young's modulus measurement conditions.
  • An exemplary embodiment of the present specification includes a silicon-based active material; cathode conductive material; and a cathode binder; wherein the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the cathode binder satisfies the following equation 1: A negative electrode composition is provided.
  • Y refers to parts by weight of the first binder based on 100 parts by weight of the negative electrode binder
  • X refers to parts by weight of the second binder based on 100 parts by weight of the anode binder.
  • the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material, and to improve adhesion. It can solve the problem of conductive network disconnection due to initial and late adhesion and volume expansion of the battery used.
  • the active material of the present invention includes a silicon-based active material.
  • the silicon-based active material may be SiOx, Si/C, or Si.
  • SiOx may include a compound represented by SiOx (0 ⁇ x ⁇ 2). In the case of SiO 2 , lithium cannot be stored because it does not react with lithium ions, so x is preferably within the above range.
  • the silicon-based active material may be Si/C or Si, which is composed of a composite of Si and C. Additionally, two or more types of the above silicon-based active materials can be mixed and used.
  • the negative electrode active material may further include a carbon-based active material along with the silicon-based active material described above. The carbon-based active material can contribute to excellent cycle characteristics or improved battery life performance of the anode or secondary battery of the present invention.
  • silicon-based active materials are known to have a capacity that is more than 10 times higher than carbon-based active materials. Accordingly, when silicon-based active materials are applied to a negative electrode, it is expected that it will be possible to implement an electrode with a high level of energy density even with a thin thickness. .
  • pure silicon (Si) may be used as the silicon-based active material.
  • silicon-based active materials Compared to existing graphite-based active materials, silicon-based active materials have a significantly higher capacity, so attempts to apply them are increasing. However, due to the high volume expansion rate during the charging and discharging process, they are limited to cases where trace amounts are mixed with graphite-based active materials.
  • the present invention uses a high content of silicon-based active material as a negative electrode active material to improve capacity performance, and in order to solve the problems of maintaining the conductive path and maintaining the combination of the conductive material, binder, and active material due to volume expansion as described above, It is characterized by the use of a conditional binder.
  • the average particle diameter (D50) of the silicon-based active material of the present invention may be 5 ⁇ m to 10 ⁇ m, specifically 5.5 ⁇ m to 8 ⁇ m, and more specifically 6 ⁇ m to 7 ⁇ m.
  • the average particle diameter is within the above range, the specific surface area of the particles is within an appropriate range, and the viscosity of the anode slurry is within an appropriate range. Accordingly, dispersion of the particles constituting the cathode slurry becomes smooth.
  • the size of the silicon-based active material is greater than the above lower limit, the contact area between the silicon particles and the conductive material is excellent due to the composite of the conductive material and the binder in the negative electrode slurry, and the possibility of the conductive network being maintained increases, increasing the capacity. Retention rate increases.
  • the average particle diameter satisfies the above range, excessively large silicon particles are excluded to form a smooth surface of the cathode, thereby preventing current density unevenness during charging and discharging.
  • the silicon-based active material generally has a characteristic BET surface area.
  • the BET surface area of the silicon-based active material is preferably 0.01 to 150.0 m 2 /g, more preferably 0.1 to 100.0 m 2 /g, particularly preferably 0.2 to 80.0 m 2 /g, most preferably 0.2 to 18.0 m 2 It is /g.
  • BET surface area is measured according to DIN 66131 (using nitrogen).
  • the DIN 66131 measurement method corresponds to a method of measuring pores based on the amount of adsorption/desorption of nitrogen molecules.
  • the silicon-based active material may exist, for example, in a crystalline or amorphous form, and is preferably not porous.
  • the silicon particles are preferably spherical or fragment-shaped particles. Alternatively but less preferably, the silicon particles may also have a fibrous structure or be present in the form of a silicon-comprising film or coating.
  • a negative electrode composition in which the silicon-based active material is contained in an amount of 60 parts by weight or more based on 100 parts by weight of the negative electrode composition.
  • the silicon-based active material may contain at least 60 parts by weight, preferably at least 65 parts by weight, more preferably at least 70 parts by weight, based on 100 parts by weight of the negative electrode composition, and not more than 95 parts by weight. , preferably 90 parts by weight or less, more preferably 85 parts by weight or less.
  • the anode composition according to the present application uses a specific conductive material and binder that can control the volume expansion rate during the charging and discharging process even when a silicon-based active material with a significantly high capacity is used within the above range, so that the performance of the anode is maintained even within the above range. It does not deteriorate and has excellent output characteristics during charging and discharging.
  • the silicon-based active material may have a non-spherical shape and its sphericity is, for example, 0.9 or less, for example, 0.7 to 0.9, for example, 0.8 to 0.9, for example, 0.85 to 0.9. am.
  • the circularity is determined by the following equation 1-1, where A is the area and P is the boundary line.
  • the negative conductive material may include one or more selected from the group consisting of a point-shaped conductive material, a planar conductive material, and a linear conductive material.
  • the point-shaped conductive material refers to a point-shaped or spherical conductive material that can be used to improve conductivity in the cathode and has conductivity without causing chemical change.
  • the dot-shaped conductive material is natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, channel black, Parness black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, It may be at least one selected from the group consisting of potassium titanate, titanium oxide, and polyphenylene derivatives, and preferably may include carbon black in terms of realizing high conductivity and excellent dispersibility.
  • the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g. It may be more than /g and less than 60m 2 /g.
  • the point-shaped conductive material may satisfy a functional group content (Volatile matter) of 0.01% or more and 1% or less, preferably 0.01% or more and 0.3% or less, and more preferably 0.01% or more and 0.1% or less. there is.
  • a functional group content Volatile matter
  • the functional group content of the dot-shaped conductive material satisfies the above range, functional groups exist on the surface of the dot-shaped conductive material, so that when water is used as a solvent, the dot-shaped conductive material can be smoothly dispersed in the solvent.
  • the functional group content of the point-shaped conductive material can be lowered by using silicon particles and a specific binder, which has an excellent effect in improving dispersibility.
  • it is characterized in that it includes a point-shaped conductive material having a functional group content in the above range along with a silicon-based active material.
  • the content of the functional group can be adjusted according to the degree of heat treatment of the point-type conductive material. there is.
  • the particle diameter of the point-shaped conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
  • the conductive material may include a planar conductive material.
  • the planar conductive material may serve to improve conductivity by increasing surface contact between silicon particles within the cathode and at the same time suppress disconnection of the conductive path due to volume expansion.
  • the planar conductive material may be expressed as a plate-shaped conductive material or a bulk-type conductive material.
  • the planar conductive material may include at least one selected from the group consisting of plate-shaped graphite, graphene, graphene oxide, and graphite flakes, and may preferably be plate-shaped graphite.
  • the average particle diameter (D50) of the planar conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 3.5 ⁇ m to 5 ⁇ m. .
  • D50 average particle diameter
  • the planar conductive material has a D10 of 0.5 ⁇ m or more and 2.0 ⁇ m or less, a D50 of 2.5 ⁇ m or more and 3.5 ⁇ m or less, and a D90 of 6.5 ⁇ m or more and 15.0 ⁇ m or less. It provides a negative electrode composition.
  • the planar conductive material is a high specific surface area planar conductive material having a high BET specific surface area; Alternatively, a low specific surface area planar conductive material can be used.
  • the planar conductive material includes a high specific surface area planar conductive material;
  • a planar conductive material with a low specific surface area can be used without limitation, but in particular, the planar conductive material according to the present application can be affected to some extent by dispersion on electrode performance, so it is possible to use a planar conductive material with a low specific surface area that does not cause problems with dispersion. This may be particularly desirable.
  • the planar conductive material may have a BET specific surface area of 1 m 2 /g or more.
  • the planar conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g. It may be more than g and less than 250m 2 /g.
  • planar conductive material includes a high specific surface area planar conductive material; Alternatively, a low specific surface area planar conductive material can be used.
  • the planar conductive material is a high specific surface area planar conductive material, and has a BET specific surface area of 50 m 2 /g or more and 500 m 2 /g or less, preferably 80 m 2 /g or more and 300 m 2 /g or less, more preferably In other words, it can satisfy the range of 100m 2 /g or more and 300m 2 /g or less.
  • the planar conductive material is a low specific surface area planar conductive material, and the BET specific surface area is 1 m 2 /g or more and 40 m 2 /g or less, preferably 5 m 2 /g or more and 30 m 2 /g or less, more preferably In other words, it can satisfy the range of 5m 2 /g or more and 25m 2 /g or less.
  • Other conductive materials may include linear conductive materials such as carbon nanotubes.
  • the carbon nanotubes may be bundled carbon nanotubes.
  • the bundled carbon nanotubes may include a plurality of carbon nanotube units.
  • the 'bundle type' herein refers to a bundle in which a plurality of carbon nanotube units are arranged side by side or entangled in substantially the same orientation along the longitudinal axis of the carbon nanotube units, unless otherwise specified. It refers to a secondary shape in the form of a bundle or rope.
  • the carbon nanotube unit has a graphite sheet in the shape of a cylinder with a nano-sized diameter and an sp2 bond structure.
  • the characteristics of a conductor or semiconductor can be displayed depending on the angle and structure at which the graphite surface is rolled.
  • the bundled carbon nanotubes can be uniformly dispersed when manufacturing a cathode, and can smoothly form a conductive network within the cathode, improving the conductivity of the cathode.
  • an anode conductive material is provided in an amount of 0.1 part by weight or more and 40 parts by weight or less based on 100 parts by weight of the anode composition. Also, for example, it may include 10 parts by weight or more and 40 parts by weight or less.
  • the anode conductive material is present in an amount of 0.1 to 40 parts by weight, preferably 0.2 to 30 parts by weight, more preferably 0.4 to 25 parts by weight, based on 100 parts by weight of the anode composition. parts or less, most preferably 0.4 parts by weight or more and 10 parts by weight or less.
  • the negative electrode conductive material is a planar conductive material; and a linear conductive material.
  • the negative electrode conductive material is 80 parts by weight or more and 99.9 parts by weight or less of the planar conductive material based on 100 parts by weight of the negative electrode conductive material; and 0.1 to 20 parts by weight of the linear conductive material.
  • the negative electrode conductive material is present in an amount of 80 parts by weight or more and 99.9 parts by weight or less, preferably 85 parts by weight or more and 99.9 parts by weight or less, more preferably, based on 100 parts by weight of the negative electrode conductive material. It may contain 95 parts by weight or more and 98 parts by weight or less.
  • the anode conductive material is 0.1 part by weight or more and 20 parts by weight or less, preferably 0.1 part by weight or more and 15 parts by weight or less, more preferably 0.2 parts by weight, based on 100 parts by weight of the anode conductive material. It may contain more than 5 parts by weight and less than 5 parts by weight.
  • the negative conductive material since the negative conductive material includes a planar conductive material and a linear conductive material and satisfies the above composition and ratio, it does not significantly affect the lifespan characteristics of the existing lithium secondary battery, especially the planar conductive material.
  • the number of charging and discharging points increases, resulting in excellent output characteristics at high C-rates and reduced high-temperature gas generation.
  • the negative electrode conductive material may be made of a linear conductive material.
  • the electrode tortuosity which is a problem of silicon-based anodes
  • the electrode structure can be improved, and the movement resistance of lithium ions in the electrode can be reduced accordingly. do.
  • the negative electrode conductive material when the negative electrode conductive material includes a linear conductive material alone, the negative electrode conductive material is 0.1 part by weight or more and 5 parts by weight or less, preferably 0.2 parts by weight or more, based on 100 parts by weight of the negative electrode composition. It may contain less than or equal to 0.4 parts by weight and less than or equal to 1 part by weight.
  • the cathode conductive material according to the present application has a completely separate configuration from the anode conductive material applied to the anode.
  • the anode conductive material according to the present application serves to hold the contact point between silicon-based active materials whose volume expansion of the electrode is very large due to charging and discharging.
  • the anode conductive material acts as a buffer when rolled and retains some conductivity. It has a role in providing , and its composition and role are completely different from the cathode conductive material of the present invention.
  • the negative electrode conductive material according to the present application is applied to a silicon-based active material and has a completely different structure from the conductive material applied to the graphite-based active material.
  • the conductive material used in the electrode having a graphite-based active material has the property of improving output characteristics and providing some conductivity simply because it has smaller particles compared to the active material, and is different from the anode conductive material applied together with the silicon-based active material as in the present invention.
  • the composition and roles are completely different.
  • the planar conductive material used as the above-described negative electrode conductive material has a different structure and role from the carbon-based active material generally used as the negative electrode active material.
  • the carbon-based active material used as a negative electrode active material may be artificial graphite or natural graphite, and refers to a material that is processed into a spherical or dot-shaped shape to facilitate storage and release of lithium ions.
  • the planar conductive material used as a negative electrode conductive material is a material that has a plane or plate shape and can be expressed as plate-shaped graphite.
  • it is a material included to maintain a conductive path within the negative electrode active material layer, and refers to a material that does not play a role in storing and releasing lithium, but rather secures a conductive path in a planar shape inside the negative electrode active material layer.
  • the use of plate-shaped graphite as a conductive material means that it is processed into a planar or plate-shaped shape and used as a material that secures a conductive path rather than storing or releasing lithium.
  • the negative electrode active material included has high capacity characteristics for storing and releasing lithium, and plays a role in storing and releasing all lithium ions transferred from the positive electrode.
  • the use of a carbon-based active material as an active material means that it is processed into a point-shaped or spherical shape and used as a material that plays a role in storing or releasing lithium.
  • the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more.
  • a negative electrode composition wherein the first binder includes at least one selected from the group consisting of PAA, PAN, and PAM, and the second binder is a rubber-based binder.
  • the negative electrode binder includes a first binder having a Young's modulus of 10 3 MPa or more.
  • the cathode binder may have a Young's modulus of 1x10 3 MPa or more, preferably 2x10 3 MPa, more preferably 5x10 3 MPa or more, and most preferably 9x10 3 MPa or more, It can satisfy 20x10 3 MPa or less, preferably 18x10 3 MPa or less, and more preferably 15x10 3 MPa or less.
  • the Young's modulus of the cathode binder is 3x10 3 MPa or more, 4x10 3 MPa or more, 6x10 3 MPa or more, 7x10 3 MPa or more, 8x10 3 MPa or more, 10x10 3 MPa or more, 19x10 3 MPa or less, 17x10 It may be 3 MPa or less, 16x10 3 MPa or less, 14x10 3 MPa or less, 13x10 3 MPa or less, 12x10 3 MPa or less, and includes various combinations of the above ranges.
  • the first binder has both dispersibility for dispersing the negative electrode active material in the negative electrode slurry containing the negative electrode composition and adhesive power for binding to the negative electrode current collector layer and the negative electrode active material layer after drying.
  • the adhesive strength is not high compared to the binder. It applies. That is, the first binder according to the present application includes an aqueous binder that satisfies the Young's modulus, and may mean a binder having a surface bonding form.
  • the first binder is a binder suitable for a lithium secondary battery in which a silicon active material with large volume expansion during the charging and discharging process is applied to the negative electrode.
  • a silicon active material with large volume expansion during the charging and discharging process is applied to the negative electrode.
  • the first binder is a binder suitable for a lithium secondary battery.
  • the rigidity is too hard, so there is a high possibility that the bond will be broken during the charging and discharging process.
  • the aqueous binder is soluble in aqueous solvents such as water and includes polyvinyl alcohol (PVA), polyacrylic acid (PAA), and polyethylene glycol (PEG). , polyacrylonitrile (PAN), and polyacryl amide (PAM).
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PAM polyacryl amide
  • PAA polyacrylic acid
  • PAM polyacryl amide
  • PAA polyacrylic acid
  • PAM polyacryl amide
  • PAM polyacryl amide
  • PAA polyacrylic acid
  • PAM polyacryl amide
  • PAM polyacryl amide
  • the first binder may be a PAM-based binder.
  • the PAM-based binder is a binder whose main component is PAM, and can be used by adjusting the ratio of PAM, PAA, and PAN, and can be used as described above by appropriately changing the composition. Young's modulus can be satisfied.
  • hydrogen in the first binder is used as Li , may include those substituted with Na or Ca, etc.
  • the first binder has hydrophilic properties and is generally insoluble in electrolytes or electrolyte solutions used in secondary batteries. These characteristics can provide strong stress or tensile strength to the first binder when applied to a negative electrode or lithium secondary battery, and thus can effectively suppress volume expansion/contraction problems due to charging and discharging of the silicon-based active material.
  • a negative electrode composition wherein the weight average molecular weight of the first binder is 100,000 g/mol or more and 2,000,000 g/mol or less.
  • it may be 500,000 g/mol or more and 1,500,000 g/mol or less.
  • the second binder may have a strain of 15% or more, preferably a strain of 20% or more, more preferably a strain of 30% or more, and most preferably a strain of 40% or more.
  • the strain may be 300% or less, preferably 200% or less, and more preferably 150% or less.
  • the strain may be 25% or more, the strain may be 35% or more, the strain may be 45% or more, the strain may be 75% or less, the strain may be 65% or more, and the strain may be 55% or less, and the corresponding range Various combinations of may be included.
  • the strain value of the second binder is less than the above range, the stress is high, making it difficult to effectively control the volume expansion of silicon, and if it exceeds the above range, it is difficult to effectively control the adhesion between electrodes.
  • the second binder can be well dissolved in an electrolyte or electrolyte solution generally used in secondary batteries, and can relieve the stress of the first binder to a certain level when used together with the first binder.
  • the negative electrode composition of the present invention can improve lifespan characteristics by effectively solving the volume expansion/contraction problem of the silicon-based active material by using a negative electrode binder containing the first binder and the second binder in a specific weight ratio, and can improve the lifespan characteristics of the thin film negative electrode. It can solve the problem of bending during manufacturing and also has the feature of improving adhesion.
  • the strain value of the second binder can be implemented in a range that satisfies the above-mentioned range by specifically adjusting the ST/BD ratio of the SBR binder to an appropriate range.
  • the second binder is a material different from the first binder, and may be defined as being insoluble in aqueous solvents such as water, but capable of smooth dispersion in aqueous solvents.
  • the second binder with a strain of 15% or more includes styrene butadiene rubber (SBR), hydrogenated nitrile butadiene rubber (HNBR), acrylonitrile butadiene rubber, and acrylic rubber ( It may include at least one selected from the group consisting of acrylic rubber, butyl rubber, and fluoro rubber, and is preferably styrene-butadiene rubber and It may include at least one selected from the group consisting of hydrogenated nitrile butadiene rubber, more preferably styrene butadiene rubber.
  • SBR styrene butadiene rubber
  • HNBR hydrogenated nitrile butadiene rubber
  • acrylic rubber It may include at least one selected from the group consisting of acrylic rubber, butyl rubber, and fluoro
  • the second binder is a material that has very high electrolyte wettability compared to the first binder.
  • the cathode resistance is lowered because the FEC solvent or LiPF 6 salt that can create an SEI layer can be quickly supplied.
  • Equation 1 may satisfy 1 ⁇ X/Y ⁇ 4, preferably 1.1 ⁇ X/Y ⁇ 3.9, and more preferably 1.2 ⁇ X/Y ⁇ 3.8.
  • the amount of It may be below. Additionally, it may be 50 parts by weight or more and 70 parts by weight or less, 55 parts by weight or more and 67 parts by weight or less, and 60 parts by weight or more and 67 parts by weight or less.
  • Y is 5 parts by weight or more and 50 parts by weight or less, preferably 10 parts by weight or more and 45 parts by weight or less, more preferably 20 parts by weight or more and 45 parts by weight, based on 100 parts by weight of the negative binder. It may be below. Additionally, it may be 33 parts by weight or more and 45 parts by weight or less, 35 parts by weight or more and 45 parts by weight or less, and 40 parts by weight or more and 45 parts by weight or less.
  • the negative electrode binder according to the present application has the first binder and the second binder satisfying the above contents, and has the feature of improving dispersibility even when using a silicon-based active material and also solving the problem of adhesion. .
  • the second binder can be well dissolved in an electrolyte or electrolyte solution generally used in secondary batteries, and can relieve the stress of the first binder to a certain level when used together with the first binder.
  • the negative electrode composition of the present invention can improve lifespan characteristics by effectively solving the volume expansion/contraction problem of the silicon-based active material by using a negative electrode binder containing the first binder and the second binder in a specific weight ratio, and can improve the lifespan characteristics of the thin film negative electrode. It can solve the problem of bending during manufacturing and also has the feature of improving adhesion.
  • the above-mentioned negative electrode binder and negative electrode conductive material include a planar conductive material; And when a linear conductive material is included, the adhesion problem can be improved and the cathode internal resistance can also be improved.
  • the negative electrode binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, Polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • EPDM propylene-diene monomer
  • SBR styrene butadiene rubber
  • fluororubber poly acrylic acid
  • materials whose hydrogen is replaced with Li, Na, or Ca etc. It may include at least one of the following, and may also include various copolymers thereof.
  • the anode binder is provided in an amount of 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the anode composition.
  • the negative electrode binder may include 20 parts by weight or less, preferably 15 parts by weight or less, based on 100 parts by weight of the negative electrode composition, and 1 or more parts by weight, 5 or more parts by weight, or 10 parts by weight. It can be more than wealth.
  • a negative electrode current collector layer In an exemplary embodiment of the present application, a negative electrode current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one or both sides of the negative electrode current collector layer.
  • Figure 1 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • the negative electrode 100 for a lithium secondary battery includes a negative electrode active material layer 20 on one side of the negative electrode current collector layer 10, and Figure 1 shows that the negative electrode active material layer is formed on one side, but the negative electrode collector layer 10 has a negative electrode active material layer 20 on one side. It can be included on both sides of the entire floor.
  • the negative electrode may be formed by coating a negative electrode slurry containing the negative electrode composition on one or both sides of a current collector to form a negative electrode for a lithium secondary battery.
  • the negative electrode slurry includes a negative electrode composition; and a slurry solvent.
  • the solid content of the anode slurry may satisfy 5% or more and 40% or less.
  • the solid content of the anode slurry may be within the range of 5% to 40%, preferably 7% to 35%, and more preferably 10% to 30%.
  • the solid content of the negative electrode slurry may mean the content of the negative electrode composition contained in the negative electrode slurry, and may mean the content of the negative electrode composition based on 100 parts by weight of the negative electrode slurry.
  • the viscosity is appropriate when forming the negative electrode active material layer, thereby minimizing particle agglomeration of the negative electrode composition, thereby enabling efficient formation of the negative electrode active material layer.
  • the negative electrode current collector layer generally has a thickness of 1 ⁇ m to 100 ⁇ m.
  • This negative electrode current collector layer is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel. Surface treatment of carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the bonding power of the negative electrode active material can be strengthened by forming fine irregularities on the surface, and it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • a negative electrode for a lithium secondary battery wherein the negative electrode current collector layer has a thickness of 1 ⁇ m or more and 100 ⁇ m or less, and the negative electrode active material layer has a thickness of 20 ⁇ m or more and 500 ⁇ m or less.
  • the thickness may vary depending on the type and purpose of the cathode used and is not limited to this.
  • the porosity of the negative electrode active material layer may satisfy a range of 10% to 60%.
  • the porosity of the negative electrode active material layer may be within the range of 10% to 60%, preferably 20% to 50%, and more preferably 30% to 45%.
  • the porosity includes the silicon-based active material included in the negative electrode active material layer; conductive material; and varies depending on the composition and content of the binder, especially the silicon-based active material according to the present application; and a conductive material of a specific composition and content satisfies the above range, and thus the electrode is characterized by having an appropriate range of electrical conductivity and resistance.
  • the adhesive strength of the surface of the negative electrode active material layer in contact with the negative electrode current collector layer satisfies 100 gf / 5mm or more and 500 gf / 5mm or less under normal pressure conditions at 25 ° C.
  • a negative electrode for a lithium secondary battery is provided. do.
  • the adhesive strength of the surface of the negative electrode active material layer in contact with the negative electrode current collector layer is 100gf/5mm or more and 500gf/5mm or less, preferably 300gf/5mm or more and 450gf/5mm or less under normal pressure conditions at 25°C. , more preferably 350gf/5mm or more and 430gf/5mm or less.
  • the negative electrode according to the present application includes a specific negative electrode binder in the negative electrode composition described above, and the adhesion is improved as described above.
  • the conductive network is maintained by applying a negative electrode binder and negative electrode conductive material of a specific composition, and the increase in resistance is suppressed by preventing disconnection.
  • the adhesive strength was measured at 90° and a speed of 5 mm/s using a peel strength meter using 3M 9070 tape. Specifically, one side of the negative electrode active material layer of the negative electrode for a lithium secondary battery is adhered to one side of a slide glass (3M 9070 tape) to which an adhesive film is attached. Afterwards, it was attached by reciprocating 5 to 10 times with a 2 kg rubber roller, and the adhesive force (peel force) was measured at a speed of 5 mm/s in an angular direction of 90°. At this time, adhesion can be measured at 25°C and normal pressure.
  • the adhesion was measured at 25°C and normal pressure on a 5mm x 15cm electrode.
  • atmospheric pressure may mean pressure without applying or lowering a specific pressure, and may be used in the same sense as atmospheric pressure. It can generally be expressed as 1 atmosphere.
  • an anode In an exemplary embodiment of the present application, an anode; A negative electrode for a lithium secondary battery according to the present application; A separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
  • FIG. 2 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application.
  • a negative electrode 100 for a lithium secondary battery including a negative electrode active material layer 20 can be confirmed on one side of the negative electrode current collector layer 10, and a positive electrode active material layer 40 on one side of the positive electrode current collector layer 50.
  • a positive electrode 200 for a lithium secondary battery can be confirmed, indicating that the negative electrode 100 for a lithium secondary battery and the positive electrode 200 for a lithium secondary battery are formed in a stacked structure with a separator 30 in between.
  • the secondary battery according to an exemplary embodiment of the present specification may particularly include the above-described negative electrode for a lithium secondary battery.
  • the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, detailed description will be omitted.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon on the surface of aluminum or stainless steel. , surface treated with nickel, titanium, silver, etc. can be used. Additionally, the positive electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material may be a commonly used positive electrode active material.
  • the positive electrode active material is a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxide such as LiFe 3 O 4 ; Lithium manganese oxide with the formula Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , etc.; lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Chemical formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3).
  • LiMn 2-c3 M c3 O 2 (where M is at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ta, and satisfies 0.01 ⁇ c3 ⁇ 0.1) or Li 2 Mn 3 MO lithium manganese composite oxide represented by 8 (where M is at least one selected from the group consisting of Fe, Co, Ni, Cu and Zn);
  • Examples include LiMn 2 O 4 in which part of Li in the chemical formula is replaced with an alkaline earth metal ion, but it is not limited to these.
  • the anode may be Li-metal.
  • the positive electrode active material layer may include the positive electrode active material described above, a positive conductive material, and a positive electrode binder.
  • the anode conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, etc., of which one type alone or a mixture of two or more types may be used.
  • the positive electrode binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC). ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber. (SBR), fluorine rubber, or various copolymers thereof, and one type of these may be used alone or a mixture of two or more types may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene flu
  • the separator separates the cathode from the anode and provides a passage for lithium ions. It can be used without particular restrictions as long as it is normally used as a separator in secondary batteries. In particular, it has low resistance to ion movement in the electrolyte and has an electrolyte moisture capacity. Excellent is desirable.
  • porous polymer films for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolytes include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, and 1,2-dimethyl.
  • Triesters trimethoxy methane, dioxoran derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl pyropionate, propionic acid.
  • Aprotic organic solvents such as ethyl may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • cyclic carbonates are high-viscosity organic solvents and have a high dielectric constant, so they can be preferably used because they easily dissociate lithium salts.
  • These cyclic carbonates include dimethyl carbonate and diethyl carbonate. If linear carbonates of the same low viscosity and low dielectric constant are mixed and used in an appropriate ratio, an electrolyte with high electrical conductivity can be made and can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt is a material that is easily soluble in the non-aqueous electrolyte.
  • anions of the lithium salt include F - , Cl - , I - , NO 3 - , N(CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included.
  • One embodiment of the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and battery pack include the secondary battery with high capacity, high rate characteristics, and cycle characteristics, they are medium-to-large devices selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems. It can be used as a power source.
  • a method for manufacturing a negative electrode using the negative electrode composition is provided. More specifically, a solvent is added to the negative electrode composition to obtain a negative electrode slurry. The negative electrode slurry is applied to at least one surface of the negative electrode current collector layer to form a negative electrode active material layer. Afterwards, the negative electrode is manufactured by drying and rolling the negative electrode active material layer coated on the negative electrode current collector layer.
  • the solvent included in the cathode slurry may be, for example, distilled water.
  • the anode slurry may have a solid content of 5% or more and 40% or less.
  • the anode slurry may satisfy a solid content range of 5% to 40%, preferably 7% to 35%, and more preferably 10% to 30%.
  • the solid content of the negative electrode slurry may refer to the amount of the negative electrode composition contained in the negative electrode slurry, and may refer to the amount of the negative electrode composition based on 100 parts by weight of the negative electrode slurry.
  • the negative electrode active material layer When the negative electrode slurry satisfies the solid content range of 5% to 40%, the negative electrode active material layer has an appropriate viscosity when forming the negative electrode active material layer, so the particle agglomeration phenomenon of the negative electrode active material minimizes the electrode composition and efficiently forms the negative electrode active material layer. It has characteristics that can be formed.
  • the silicon-based active material is Si (average particle diameter (D50): 5 ⁇ m)
  • the plate-shaped conductive material A has a BET specific surface area of 17 m 2 /g, D10: 1.7 ⁇ m, D50: 3.5 ⁇ m, D90: 6.8. ⁇ m
  • a material with a BET specific surface area of around 1000 to 1500 m 2 /g and an aspect ratio of 10000 or more was used.
  • PAM-2 is a binder with a Young's modulus of 9x10 3 MPa (9GPa)
  • PAN has a Young's modulus of 10 2 MPa.
  • SBR-1 is a binder with a strain of 60%
  • SBR-2 is a binder with a strain of 40%
  • SBR-3 is a binder with a strain of 10%.
  • the Young's modulus of the first binder satisfied the above range by adjusting the mixing ratio of PAA and PAN in the binder containing PAM as the main component, and the strain value of the second binder was adjusted by adjusting the ratio of ST/BD in the SBR binder. It was implemented to satisfy the above range.
  • the weight average molecular weight of the first binder satisfies the level of 5.0 Weight average molecular weight cannot be measured.
  • the content may refer to the weight ratio (parts by weight) of each composition based on 100 parts by weight of the total negative electrode composition.
  • a negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry to the negative electrode composition having the composition shown in Table 1 (solids concentration: 25% by weight).
  • a negative electrode active material layer was coated on 8 ⁇ m thick Cu foil at a thickness of 38 ⁇ m with a negative electrode loading amount of 76.34 mg/25 cm 2 , dried at 130°C for 12 hours, and rolled to a porosity of 40% to form the negative electrode. was manufactured.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle diameter (D50): 15 ⁇ m) as the positive electrode active material, carbon black (product name: Super C65, manufacturer: Timcal) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder.
  • a positive electrode slurry was prepared by adding N-methyl-2-pyrrolidone (NMP) as a solvent for forming positive electrode slurry at a weight ratio of :1.5:1.5 (solid concentration: 78% by weight).
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was coated at a loading amount of 537 mg/25 cm 2 on both sides of an aluminum current collector (thickness: 12 ⁇ m), rolled, and dried in a vacuum oven at 130°C for 10 hours to form a positive electrode.
  • An active material layer (thickness: 65 ⁇ m) was formed to prepare a positive electrode (anode thickness: 77 ⁇ m, porosity 26%).
  • a lithium secondary battery was manufactured by interposing a polyethylene separator between the positive electrode and the negative electrode of the examples and comparative examples and injecting electrolyte.
  • the electrolyte is made by adding 3% by weight of vinylene carbonate based on the total weight of the electrolyte to an organic solvent mixed with fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) at a volume ratio of 10:90, and LiPF as a lithium salt. 6 was added at a concentration of 1M.
  • FEC fluoroethylene carbonate
  • DMC diethyl carbonate
  • Monocells were manufactured in the same manner as above except that the cathodes of the examples and comparative examples were used, and lifespan characteristics were evaluated in the range of 4.2-3.0V.
  • the secondary batteries containing the negative electrodes manufactured in the above Examples and Comparative Examples were evaluated for their lifespan using an electrochemical charger and discharger, and the capacity maintenance rate was evaluated. A cycle test was performed on the secondary battery at 4.2-3.0V 1C/0.5C, and the number of cycles was measured when the capacity retention rate reached 80%.
  • Capacity maintenance rate (%) ⁇ (discharge capacity in Nth cycle)/(discharge capacity in first cycle) ⁇ ⁇ 100
  • the secondary batteries containing the negative electrodes manufactured in the above Examples and Comparative Examples were evaluated for their lifespan using an electrochemical charger and discharger, and the capacity maintenance rate was evaluated. A cycle test was performed on the secondary battery at 4.2-3.0V 1C/0.5C, and the number of cycles was measured when the capacity retention rate reached 80%.
  • the degree of bending was measured by placing the coated part of the coated electrode on top and measuring the height of the center. In other words, when the binder dries, the coating becomes concave due to tensile action and thus curl occurs. The degree of curl was measured, and the results are listed in Table 2 below.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 SOH80%(cycle) room temperature lifespan characteristics evaluation (4.2-3.0V) 248 238 241 230 223 242 203 150 163 200 170 131 resistance increase rate (%, @250cycle, discharge) 43 47 45 50 53 60 100 200 130 105 120 300 SOH80%(cycle) high temperature lifespan characteristics evaluation (4.2-3.0V) 230 218 - - - - 189 130 - - - - Curl rating (mm) 13 - 9 7 - - 25 - - 20 5 -
  • Comparative Example 1 does not include the second binder
  • Comparative Example 2 does not include the first binder
  • Comparative Example 3 includes the first and second binders, but the content range is Equation 1 exceeds the range of
  • Comparative Example 4 corresponds to a case where it is below the range of Equation 1
  • Comparative Example 5 corresponds to a case where the range of Equation 1 is satisfied but the Young's modulus of the first binder is below the range of the present application
  • Comparative Example 6 is This applies to a case where the range of Equation 1 is satisfied but the strain of the second binder is less than the range of this application.
  • the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material. It was confirmed that the problem of conductive network disconnection due to early and late adhesion and volume expansion of the battery can be solved.
  • the negative electrode composition according to the present application has a high content of silicon-based active material particles to obtain a negative electrode with high capacity and high density, and at the same time solves problems such as volume expansion due to the high content of silicon-based active material particles.

Abstract

The present application relates to: a negative electrode composition; a negative electrode for a lithium secondary battery, the negative electrode comprising the negative electrode composition; and a lithium secondary battery including the negative electrode. The negative electrode composition includes a silicon-based active material, a negative electrode conductive material, and a negative electrode binder including a first binder which has a Young's modulus of at least 10³ MPa, and a second binder which has a strain of at least 15%, and satisfying 1≤X/Y<4, where Y refers to the parts by weight of the first binder per 100 parts by weight of the negative electrode binder, and X refers to the parts by weight of the second binder per 100 parts by weight of the negative electrode binder.

Description

음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지Negative electrode composition, negative electrode for lithium secondary battery including same, and lithium secondary battery including negative electrode
본 출원은 2022년 06월 23일 한국특허청에 제출된 한국 특허 출원 제10-2022-0076784호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.This application claims the benefit of the filing date of Korean Patent Application No. 10-2022-0076784 filed with the Korea Intellectual Property Office on June 23, 2022, the entire contents of which are included in this specification.
본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.This application relates to a negative electrode composition, a negative electrode for a lithium secondary battery including the same, and a lithium secondary battery including the negative electrode.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative or clean energy is increasing, and as part of this, the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.Currently, secondary batteries are a representative example of electrochemical devices that use such electrochemical energy, and their use area is gradually expanding.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차 전지용 전극으로서, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among these secondary batteries, lithium secondary batteries with high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and are widely used. In addition, as an electrode for such a high-capacity lithium secondary battery, research is being actively conducted on methods for manufacturing a high-density electrode with a higher energy density per unit volume.
일반적으로 이차 전지는 양극, 음극, 전해질 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다. Generally, a secondary battery consists of an anode, a cathode, an electrolyte, and a separator. The negative electrode includes a negative electrode active material that inserts and desorbs lithium ions from the positive electrode, and silicon-based particles with a large discharge capacity may be used as the negative electrode active material.
특히 최근 고 밀도 에너지 전지에 대한 수요에 따라, 음극 활물질로서, 흑연계 소재 대비 용량이 10배 이상 큰 Si/C나 SiOx와 같은 실리콘계 화합물을 함께 사용하여 용량을 늘리는 방법에 대한 연구가 활발히 진행되고 있다. 고용량 소재인 실리콘계 화합물의 경우, 기존에 사용되는 흑연과 비교할 때, 용량이 크지만, 충전 과정에서 급격하게 부피가 팽창하여 도전 경로를 단절시켜 전지 특성을 저하시키는 문제점이 있다.In particular, in response to the recent demand for high-density energy batteries, research is being actively conducted on ways to increase capacity by using silicon-based compounds such as Si/C or SiOx, which have a capacity more than 10 times greater than graphite-based materials, as anode active materials. there is. In the case of silicon-based compounds, which are high-capacity materials, the capacity is large compared to conventionally used graphite, but there is a problem in that the volume expands rapidly during the charging process and the conductive path is cut off, deteriorating battery characteristics.
이에, 실리콘계 화합물을 음극 활물질로서 사용할 때의 문제점을 해소하기 위하여 구동 전위를 조절시키는 방안, 추가적으로 활물질층 상에 박막을 더 코팅하는 방법, 실리콘계 화합물의 입경을 조절하는 방법과 같은 부피 팽창 자체를 억제시키는 방안 혹은 도전 경로가 단절되는 것을 방지하기 위한 다양한 방안 등이 논의되고 있지만, 상기 방안들의 경우, 되려 전지의 성능을 저하시킬 수 있으므로, 적용에 한계가 있어, 여전히 실리콘계 화합물의 함량이 높은 음극 전지 제조의 상용화에는 한계가 있다.Accordingly, in order to solve the problem of using a silicon-based compound as a negative electrode active material, the volume expansion itself is suppressed, such as a method of controlling the driving potential, a method of additionally coating a thin film on the active material layer, and a method of controlling the particle size of the silicon-based compound. Various methods are being discussed to prevent the conductive path from being disconnected or to prevent the conductive path from being disconnected, but these methods have limitations in application because they can reduce battery performance, so the negative electrode battery still has a high content of silicon-based compounds. There are limits to commercialization of manufacturing.
특히, 부피 팽창에 따른 바인더의 조성에 관한 연구도 진행되었으며, 부피변화가 큰 음극 활물질의 충방전에 따른 부피 팽창을 억제하기 위하여 측면에서 강한 응력을 갖는 바인더 고분자를 사용하려는 연구가 진행되고 있다. 하지만 이들 바인더 고분자 단독으로는 음극 활물질의 수축 팽창으로 인한 전극의 두께 증가 및 이로부터 도출되는 리튬 이차 전지의 성능 저하를 억제하는 것에는 한계가 있었다.In particular, research has been conducted on the composition of binders according to volume expansion, and research is being conducted to use binder polymers with strong side stress to suppress volume expansion due to charging and discharging of negative electrode active materials with large volume changes. However, these binder polymers alone had limitations in suppressing the increase in electrode thickness due to contraction and expansion of the negative electrode active material and the resulting deterioration in performance of lithium secondary batteries.
또한 상기와 같은 실리콘계 활물질을 갖는 음극의 부피 팽창에 따른 문제를 해결하기 위하여, 분산성과 접착성을 동시에 가지는 수계 바인더를 사용하고 있다. 상기 수계 바인더의 경우 분산성을 개선할 수 있는 것에는 장점이 있으나, 연신 물성이 떨어져 사이클이 진행됨에 따라 활물질의 부피 팽창에 의해 활물질 간 전기적 접촉이 끊어지며 수명 물성이 열위해지는 문제가 발생하고 있다.In addition, in order to solve the problem caused by volume expansion of the negative electrode containing the silicon-based active material as described above, an aqueous binder that has both dispersibility and adhesive properties is used. In the case of the water-based binder, there is an advantage in improving dispersibility, but as the cycle progresses due to poor stretching properties, electrical contact between active materials is broken due to volume expansion of the active material, causing a problem of poor lifespan properties. .
추가로, 수명 특성의 개선을 위하여 고무계 바인더를 또한 적용할 수 있으나, 실리콘계 활물질의 경우 고무계 바인더만을 포함하는 경우 바인더의 강성이 충분하지 못해 이 또한 한계가 있는 것으로 알려져 있다.In addition, a rubber-based binder can also be applied to improve lifespan characteristics, but in the case of silicon-based active materials, it is known that this also has limitations because the binder does not have sufficient rigidity when it contains only a rubber-based binder.
또한 수계 바인더는 전극 건조 시 열에 의한 수축이 심화되는 문제점이 있어 공정에 불리한 면이 있으나, 연성이 뛰어난 SBR 고무계 바인더는 건조 시 비교적 수축 경향이 덜한 차이가 있다.In addition, water-based binders have a disadvantage in the process due to the problem of intensified shrinkage due to heat when drying the electrode, but SBR rubber-based binders, which have excellent ductility, have a comparatively less tendency to shrink when dried.
따라서, 고용량의 전지를 제작하기 위해 고용량의 소재를 사용하는 경우에도, 활물질의 부피 팽창에 따른 도전성 네트워크를 단절하지 않으며, 또한 접착력도 우수한 특징을 갖는 바인더에 대한 연구가 필요하다.Therefore, even when high-capacity materials are used to manufacture high-capacity batteries, research is needed on binders that do not disconnect the conductive network due to volume expansion of the active material and also have excellent adhesive properties.
<선행기술문헌><Prior art literature>
(특허문헌 1) 일본 공개특허공보 제2009-080971호(Patent Document 1) Japanese Patent Publication No. 2009-080971
본 출원은 고용량 및 고밀도의 음극을 제조함에 있어, 실리콘계 활물질의 부피 팽창에 따른 도전성 네트워크를 단절시키지 않으며, 음극 집전체와의 접착력이 우수한 특징을 갖는 바인더에 관한 것으로, 바인더의 영률 및 strain 값을 조절함과 동시에 함량부를 조절하는 경우 전술한 문제를 해결할 수 있음을 연구를 통하여 확인하였다. 이에 본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.This application relates to a binder that does not disconnect the conductive network due to volume expansion of the silicon-based active material in manufacturing high-capacity and high-density negative electrodes and has excellent adhesion to the negative electrode current collector. The binder's Young's modulus and strain value are It was confirmed through research that the above-mentioned problem can be solved by adjusting the content at the same time. Accordingly, the present application relates to a negative electrode composition, a negative electrode for a lithium secondary battery containing the same, and a lithium secondary battery containing the negative electrode.
본 명세서의 일 실시상태는 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물을 제공한다.An exemplary embodiment of the present specification includes a silicon-based active material; cathode conductive material; and a cathode binder; wherein the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the cathode binder satisfies the following equation 1: A negative electrode composition is provided.
[식 1][Equation 1]
1 ≤ X/Y < 41 ≤ X/Y < 4
상기 식 1에 있어서,In equation 1 above,
Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,Y refers to parts by weight of the first binder based on 100 parts by weight of the negative electrode binder,
X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.X refers to parts by weight of the second binder based on 100 parts by weight of the anode binder.
또 다른 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.In another embodiment, a negative electrode current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one or both sides of the negative electrode current collector layer.
마지막으로, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.Finally, the anode; A negative electrode for a lithium secondary battery according to the present application; A separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
본 발명의 일 실시상태에 따른 음극 조성물은 고용량의 전지를 제작하기 위해 고용량 소재인 실리콘계 활물질을 사용함에 있어, 실리콘계 활물질의 부피 팽창에 따른 문제점을 특정의 음극 바인더를 적용하여 해결한 것을 특징로 한다.The anode composition according to an embodiment of the present invention is characterized by solving the problem of volume expansion of the silicon-based active material by applying a specific anode binder when using a silicon-based active material, which is a high-capacity material, to manufacture a high-capacity battery. .
특히, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 특정의 식 1의 범위를 만족한다.In particular, the negative electrode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the negative electrode binder satisfies the range of a specific equation 1.
구체적으로, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있다.Specifically, the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material, and to improve adhesion. It can solve the problem of conductive network disconnection due to initial and late adhesion and volume expansion of the battery used.
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질 입자를 고함량 가져 고용량 및 고밀도의 음극을 얻을 수 있음과 동시에, 실리콘계 활물질 입자를 고함량 가짐에 따른 부피 팽창 등의 문제점을 해결하기 위하여, 특정 조성 및 함량의 바인더를 사용하여 상기 문제를 해결하였다는 것을 본 발명의 주된 목적으로 한다.That is, the negative electrode composition according to the present application has a high content of silicon-based active material particles, so that a negative electrode with high capacity and high density can be obtained, and at the same time, in order to solve problems such as volume expansion due to the high content of silicon-based active material particles, it has a specific composition and The main purpose of the present invention is to solve the above problem by using a binder of similar content.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.Figure 1 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다.Figure 2 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application.
도 3은 본 출원에 따른 실시예 및 비교예의 컬(Curl) 평가 방법을 나타낸 도이다.Figure 3 is a diagram showing a curl evaluation method of examples and comparative examples according to the present application.
<부호의 설명><Explanation of symbols>
10: 음극 집전체층10: Negative current collector layer
20: 음극 활물질층20: Negative active material layer
30: 분리막30: Separator
40: 양극 활물질층40: positive electrode active material layer
50: 양극 집전체층50: Anode current collector layer
100: 리튬 이차 전지용 음극100: Negative electrode for lithium secondary battery
200: 리튬 이차 전지용 양극200: Anode for lithium secondary battery
본 발명을 설명하기에 앞서, 우선 몇몇 용어를 정의한다.Before explaining the present invention, some terms are first defined.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In this specification, when a part “includes” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.In this specification, 'p to q' means a range of 'p to q or less.'
본 명세서에 있어서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출된 것이다. 즉 본 출원에 있어서 BET 비표면적은 상기 측정 방법으로 측정된 비표면적을 의미할 수 있다.In this specification, “specific surface area” is measured by the BET method, and is specifically calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II from BEL Japan. That is, in the present application, the BET specific surface area may mean the specific surface area measured by the above measurement method.
본 명세서에 있어서, "Dn"은 입도 분포를 의미하며, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경(평균 입경)이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 한편, 입도 분포는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다.In this specification, “Dn” refers to particle size distribution and refers to the particle size at the n% point of the cumulative distribution of particle numbers according to particle size. In other words, D50 is the particle size (average particle diameter) at 50% of the cumulative distribution of particle numbers according to particle size, D90 is the particle size at 90% of the cumulative distribution of particle numbers according to particle size, and D10 is the cumulative particle number according to particle size. This is the particle size at 10% of the distribution. Meanwhile, particle size distribution can be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500), and when the particles pass through the laser beam, the difference in diffraction patterns according to particle size is measured to determine particle size distribution. Calculate .
본 명세서에 있어서, 중합체가 어떤 단량체를 단량체 단위로 포함한다는 의미는 그 단량체가 중합 반응에 참여하여 중합체 내에서 반복 단위로서 포함되는 것을 의미한다. 본 명세서에 있어서, 중합체가 단량체를 포함한다고 할 때, 이는 중합체가 단량체를 단량체 단위로 포함한다는 것과 동일하게 해석되는 것이다.In this specification, the fact that a polymer contains a certain monomer as a monomer unit means that the monomer participates in a polymerization reaction and is included as a repeating unit in the polymer. In this specification, when it is said that a polymer contains a monomer, this is interpreted the same as saying that the polymer contains a monomer as a monomer unit.
본 명세서에 있어서, '중합체'라 함은 '단독 중합체'라고 명시되지 않는 한 공중합체를 포함한 광의의 의미로 사용된 것으로 이해한다.In this specification, the term 'polymer' is understood to be used in a broad sense including copolymers, unless specified as 'homopolymer'.
본 명세서에 있어서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 분자량 측정용으로 시판되고 있는 다양한 중합도의 단분산 폴리스티렌 중합체(표준 시료)를 표준물질로 하고, 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)에 의해 측정한 폴리스티렌 환산 분자량이다. 본 명세서에 있어서, 분자량이란 특별한 기재가 없는 한 중량 평균 분자량을 의미한다.In this specification, the weight average molecular weight (Mw) and number average molecular weight (Mn) are determined by using monodisperse polystyrene polymers (standard samples) of various degrees of polymerization commercially available for molecular weight measurement as standard materials, and using gel permeation chromatography (Gel Permeation). This is the polystyrene equivalent molecular weight measured by chromatography (GPC). In this specification, molecular weight means weight average molecular weight unless otherwise specified.
본 출원의 일 실시상태에 있어서, 상기 영률의 측정 방법은 코팅된 그릇에 상기 바인더 용액을 넣고 오랜시간 동안 상온 건조를 시켜 수분을 제거한다. 수분을 날린 필름은 전극 건조 온도에 맞춰 130℃ 10hr 진공 건조를 진행하여 건조된 필름을 얻는다. 이 후 건조된 필름을 6mm x 100mm 수준의 시료 형태로 자르거나 타발하여 시료를 채취하고, UTM 장비를 이용하여 인장강도(영률)를 측정할 수 있다.In an exemplary embodiment of the present application, the method for measuring the Young's modulus involves putting the binder solution in a coated bowl and drying it at room temperature for a long time to remove moisture. The film that has lost moisture is vacuum dried at 130°C for 10 hours according to the electrode drying temperature to obtain a dried film. Afterwards, the dried film can be cut or punched into a sample size of 6mm x 100mm to collect a sample, and the tensile strength (Young's modulus) can be measured using UTM equipment.
상기 영률은 측정 방식, 속도, 바인더의 측정 상태에 따라 상이하나, 상기 바인더의 영률은 노점 -5℃ 내지 10℃이고, 온도가 20℃ 내지 22℃ 정도의 드라이룸에서 측정한 값을 의미할 수 있다.The Young's modulus varies depending on the measurement method, speed, and measurement state of the binder, but the Young's modulus of the binder has a dew point of -5°C to 10°C, and may refer to a value measured in a dry room with a temperature of about 20°C to 22°C. there is.
본 출원에서 노점은 습한 공기를 냉각해 가면 어느 온도에서 응축이 시작하는데, 공기 중의 수증기 분압이 그 온도에 있어서의 물의 포화 증기압과 같게 되었기 때문이며, 이 때의 온도를 의미한다. 즉 수증기를 포함하는 기체의 온도를 그대로 떨어뜨려 갔을 때, 상대 습도가 100%로 되어 이슬이 맺히기 시작할 때의 온도를 의미할 수 있다.In this application, the dew point refers to the temperature at which condensation begins when moist air is cooled, because the partial pressure of water vapor in the air becomes equal to the saturated vapor pressure of water at that temperature. In other words, when the temperature of the gas containing water vapor is lowered, the relative humidity becomes 100% and dew begins to form.
상기 노점 -5℃ 내지 10℃이고, 온도가 20℃ 내지 22℃ 정도는 일반적으로 드라이룸이라고 정의할 수 있고 이때 습도는 매우 낮은 수준에 해당한다.The dew point is -5°C to 10°C and the temperature is approximately 20°C to 22°C, which can generally be defined as a dry room, where the humidity is at a very low level.
본 출원의 일 실시상태에 있어서, 상기 strain의 측정 방법은 코팅된 그릇에 상기 바인더 용액을 넣고 오랜시간 동안 상온 건조를 시켜 수분을 제거한다. 수분을 날린 필름은 전극 건조 온도에 맞춰 130℃ 10hr 진공 건조를 진행하여 건조된 필름을 얻는다. 이 후 건조된 필름을 6mm x 100mm 수준의 시료 형태로 자르거나 타발하여 시료를 채취하고, UTM 장비를 이용하여 인장 변형률(strain)을 측정할 수 있다.In an exemplary embodiment of the present application, the strain measurement method involves putting the binder solution in a coated bowl and drying it at room temperature for a long time to remove moisture. The film that has lost moisture is vacuum dried at 130°C for 10 hours according to the electrode drying temperature to obtain a dried film. Afterwards, the dried film can be cut or punched into a sample size of 6mm x 100mm to collect a sample, and the tensile strain can be measured using UTM equipment.
상기 바인더의 인장 변형률은 측정 방식, 속도, 바인더의 측정 상태에 따라 상이하나, 상기 바인더의 strain은 상기의 영률의 측정 조건과 동일하다.The tensile strain of the binder varies depending on the measurement method, speed, and measurement state of the binder, but the strain of the binder is the same as the Young's modulus measurement conditions.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 설명에 한정되지 않는다.Hereinafter, the present invention will be described in detail with reference to the drawings so that those skilled in the art can easily practice the present invention. However, the present invention may be implemented in various different forms and is not limited to the following description.
본 명세서의 일 실시상태는 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물을 제공한다.An exemplary embodiment of the present specification includes a silicon-based active material; cathode conductive material; and a cathode binder; wherein the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more, and the cathode binder satisfies the following equation 1: A negative electrode composition is provided.
[식 1][Equation 1]
1 ≤ X/Y < 41 ≤ X/Y < 4
상기 식 1에 있어서,In equation 1 above,
Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,Y refers to parts by weight of the first binder based on 100 parts by weight of the negative electrode binder,
X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.X refers to parts by weight of the second binder based on 100 parts by weight of the anode binder.
구체적으로, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있다.Specifically, the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material, and to improve adhesion. It can solve the problem of conductive network disconnection due to initial and late adhesion and volume expansion of the battery used.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx(x=0), SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.In an exemplary embodiment of the present application, the silicon-based active material may include one or more selected from the group consisting of SiOx (x=0), SiOx (0<x<2), SiC, and Si alloy.
본 발명의 활물질은 실리콘계 활물질을 포함한다. 실리콘계 활물질은 SiOx, Si/C, Si일 수 있다. SiOx는 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하다. 실리콘계 활물질은 Si과 C의 복합체로 구성된 Si/C 또는 Si일 수 있다. 또한 상기의 실리콘계 활물질을 2종 이상 혼합하여 사용할 수 있다. 상기 음극 활물질은 전술한 실리콘계 활물질과 함께 탄소계 활물질을 더 포함할 수 있다. 상기 탄소계 활물질은 본 발명의 음극 또는 이차전지에 우수한 사이클 특성 또는 전지 수명 성능 개선에 기여할 수 있다.The active material of the present invention includes a silicon-based active material. The silicon-based active material may be SiOx, Si/C, or Si. SiOx may include a compound represented by SiOx (0≤x<2). In the case of SiO 2 , lithium cannot be stored because it does not react with lithium ions, so x is preferably within the above range. The silicon-based active material may be Si/C or Si, which is composed of a composite of Si and C. Additionally, two or more types of the above silicon-based active materials can be mixed and used. The negative electrode active material may further include a carbon-based active material along with the silicon-based active material described above. The carbon-based active material can contribute to excellent cycle characteristics or improved battery life performance of the anode or secondary battery of the present invention.
일반적으로 실리콘계 활물질은 탄소계 활물질에 비해 10배 이상의 높은 용량을 갖는 것으로 알려져 있고, 이에 따라 실리콘계 활물질을 음극에 적용할 경우 얇은 두께로도 높은 수준의 에너지 밀도를 갖는 전극 구현이 가능할 것으로 기대되고 있다.In general, silicon-based active materials are known to have a capacity that is more than 10 times higher than carbon-based active materials. Accordingly, when silicon-based active materials are applied to a negative electrode, it is expected that it will be possible to implement an electrode with a high level of energy density even with a thin thickness. .
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, the silicon-based active material includes one or more selected from the group consisting of SiOx (x=0) and SiOx (0<x<2), and the SiOx (based on 100 parts by weight of the silicon-based active material) Provided is a negative electrode composition containing 70 parts by weight or more of x=0).
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상, 바람직하게는 80 중량부 이상, 더욱 바람직하게는 90 중량부 이상을 포함할 수 있으며, 100 중량부 이하, 바람직하게는 99 중량부 이하, 더욱 비람직하게는 95 중량부 이하를 포함할 수 있다.In another embodiment, the silicon-based active material may contain at least 70 parts by weight, preferably at least 80 parts by weight, and more preferably at least 90 parts by weight of SiOx (x=0) based on 100 parts by weight of the silicon-based active material. It may contain 100 parts by weight or less, preferably 99 parts by weight or less, and more preferably 95 parts by weight or less.
본 출원에 따른 실리콘계 활물질은 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것으로, SiOx(0<x<2) 계열을 주된 물질로 사용하는 실리콘계 활물질과 대비하였을 때, 이론적 용량이 본 출원의 실리콘계 활물질에 비하여 훨씬 높다. 즉 SiOx(0<x<2) 계열의 활물질을 사용하는 경우 활물질 자체에 어떠한 처리를 할지라도, 본원 발명 실리콘계 활물질을 갖는 경우 대비, 충전 및 방전 용량과 동등 조건을 구현할 수 없다.The silicon-based active material according to the present application contains more than 70 parts by weight of SiOx (x=0) based on 100 parts by weight of the silicon-based active material, and when compared to the silicon-based active material that uses SiOx (0<x<2) series as the main material. , the theoretical capacity is much higher than that of the silicon-based active material of the present application. That is, when using a SiOx (0<x<2) series active material, no matter what treatment is performed on the active material itself, equivalent charging and discharging capacity conditions cannot be achieved compared to the case with the silicon-based active material of the present invention.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 순수 실리콘(Si)을 실리콘계 활물질로서 사용할 수 있다. 순수 실리콘(Si)을 실리콘계 활물질로 사용한다는 것은 상기와 같이 실리콘계 활물질을 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si 입자(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.In an exemplary embodiment of the present application, pure silicon (Si) may be used as the silicon-based active material. Using pure silicon (Si) as a silicon-based active material means that pure Si particles (SiOx (x=0)) that are not combined with other particles or elements are within the above range, based on 100 parts by weight of the total silicon-based active material as described above. It may mean including.
실리콘계 활물질은 기존에 사용되는 흑연계 활물질과 비교할 때, 용량이 현저히 높아 이를 적용하려는 시도가 높아지고 있지만, 충방전 과정에서 부피 팽창율이 높아, 흑연계 활물질에 미량을 혼합하여 사용하는 경우 등에 그치고 있다.Compared to existing graphite-based active materials, silicon-based active materials have a significantly higher capacity, so attempts to apply them are increasing. However, due to the high volume expansion rate during the charging and discharging process, they are limited to cases where trace amounts are mixed with graphite-based active materials.
따라서, 본 발명은 용량 성능 향상을 위하여 실리콘계 활물질을 음극 활물질로서 고함량 사용하면서도, 상기와 같은 부피 팽창에 따른 도전성 경로 유지 및 도전재, 바인더, 활물질의 결합을 유지의 문제점을 해소하기 위하여, 특정 조건의 바인더를 사용한 것을 특징으로 한다.Therefore, the present invention uses a high content of silicon-based active material as a negative electrode active material to improve capacity performance, and in order to solve the problems of maintaining the conductive path and maintaining the combination of the conductive material, binder, and active material due to volume expansion as described above, It is characterized by the use of a conditional binder.
한편, 본원 발명의 상기 실리콘계 활물질의 평균 입경(D50)은 5㎛ 내지 10㎛일 수 있으며, 구체적으로 5.5㎛ 내지 8㎛일 수 있고, 보다 구체적으로 6㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 상기 범위에 포함되는 경우, 입자의 비표면적이 적합한 범위로 포함하여, 음극 슬러리의 점도가 적정 범위로 형성 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하게 된다. 또한, 실리콘계 활물질의 크기가 상기 하한값의 범위 이상의 값을 갖는 것으로, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 우수하여, 도전 네트워크가 지속될 가능성이 높아져서 용량 유지율이 증가된다. 한편, 상기 평균 입경이 상기 범위를 만족하는 경우, 지나치게 큰 실리콘 입자들이 배제되어 음극의 표면이 매끄럽게 형성되며, 이에 따라 충방전 시 전류 밀도 불균일 현상을 방지할 수 있다.Meanwhile, the average particle diameter (D50) of the silicon-based active material of the present invention may be 5㎛ to 10㎛, specifically 5.5㎛ to 8㎛, and more specifically 6㎛ to 7㎛. When the average particle diameter is within the above range, the specific surface area of the particles is within an appropriate range, and the viscosity of the anode slurry is within an appropriate range. Accordingly, dispersion of the particles constituting the cathode slurry becomes smooth. In addition, since the size of the silicon-based active material is greater than the above lower limit, the contact area between the silicon particles and the conductive material is excellent due to the composite of the conductive material and the binder in the negative electrode slurry, and the possibility of the conductive network being maintained increases, increasing the capacity. Retention rate increases. Meanwhile, when the average particle diameter satisfies the above range, excessively large silicon particles are excluded to form a smooth surface of the cathode, thereby preventing current density unevenness during charging and discharging.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 일반적으로 특징적인 BET 표면적을 갖는다. 실리콘계 활물질의 BET 표면적은 바람직하게는 0.01 내지 150.0 m2/g, 더욱 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 내지 80.0 m2/g, 가장 바람직하게는 0.2 내지 18.0 m2/g이다. BET 표면적은 (질소를 사용하여) DIN 66131에 따라 측정된다. 상기 DIN 66131 측정 방법은 질소 분자의 흡착/탈착량으로 기공을 측정하는 방법에 해당한다.In one embodiment of the present application, the silicon-based active material generally has a characteristic BET surface area. The BET surface area of the silicon-based active material is preferably 0.01 to 150.0 m 2 /g, more preferably 0.1 to 100.0 m 2 /g, particularly preferably 0.2 to 80.0 m 2 /g, most preferably 0.2 to 18.0 m 2 It is /g. BET surface area is measured according to DIN 66131 (using nitrogen). The DIN 66131 measurement method corresponds to a method of measuring pores based on the amount of adsorption/desorption of nitrogen molecules.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질은 예컨대 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 규소 입자는 바람직하게는 구형 또는 파편형 입자이다. 대안으로서 그러나 덜 바람직하게는, 규소 입자는 또한 섬유 구조를 가지거나 또는 규소 포함 필름 또는 코팅의 형태로 존재할 수 있다.In one embodiment of the present application, the silicon-based active material may exist, for example, in a crystalline or amorphous form, and is preferably not porous. The silicon particles are preferably spherical or fragment-shaped particles. Alternatively but less preferably, the silicon particles may also have a fibrous structure or be present in the form of a silicon-comprising film or coating.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상인 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, a negative electrode composition is provided in which the silicon-based active material is contained in an amount of 60 parts by weight or more based on 100 parts by weight of the negative electrode composition.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상, 바람직하게는 65 중량부 이상, 더욱 바람직하게는 70 중량부 이상을 포함할 수 있으며, 95 중량부 이하, 바람직하게는 90 중량부 이하, 더욱 바람직하게는 85 중량부 이하일 수 있다.In another embodiment, the silicon-based active material may contain at least 60 parts by weight, preferably at least 65 parts by weight, more preferably at least 70 parts by weight, based on 100 parts by weight of the negative electrode composition, and not more than 95 parts by weight. , preferably 90 parts by weight or less, more preferably 85 parts by weight or less.
본 출원에 따른 음극 조성물은 용량이 현저히 높은 실리콘계 활물질을 상기 범위로 사용하여도 충방전 과정에서 부피 팽창율을 잡아줄 수 있는 특정의 도전재 및 바인더를 사용하여, 상기 범위를 포함하여도 음극의 성능을 저하시키지 않으며 충전 및 방전에서의 출력 특성이 우수한 특징을 갖게 된다.The anode composition according to the present application uses a specific conductive material and binder that can control the volume expansion rate during the charging and discharging process even when a silicon-based active material with a significantly high capacity is used within the above range, so that the performance of the anode is maintained even within the above range. It does not deteriorate and has excellent output characteristics during charging and discharging.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 비구형 형태를 가질 수 있고 그 구형도는 예를 들어 0.9 이하, 예를 들어 0.7 내지 0.9, 예를 들어 0.8 내지 0.9, 예를 들어 0.85 내지 0.9이다. In an exemplary embodiment of the present application, the silicon-based active material may have a non-spherical shape and its sphericity is, for example, 0.9 or less, for example, 0.7 to 0.9, for example, 0.8 to 0.9, for example, 0.85 to 0.9. am.
본 출원에 있어서, 상기 구형도(circularity)는 하기 식 1-1로 결정되며, A는 면적이고, P는 경계선이다. In the present application, the circularity is determined by the following equation 1-1, where A is the area and P is the boundary line.
[식 1-1] [Equation 1-1]
4πA/P2 4πA/P 2
종래에는 음극 활물질로서 흑연계 화합물만을 사용하는 것이 일반적이었으나, 최근에는 고용량 전지에 대한 수요가 높아짐에 따라, 용량을 높이기 위하여 실리콘계 화합물을 혼합하여 사용하려는 시도가 늘어나고 있다. 다만, 실리콘계 화합물의 경우, 상기와 같이 실리콘계 활물질 자체의 특성을 본 출원에 따라 조절한다고 하더라도, 충/방전 과정에서 부피가 급격하게 팽창하여, 음극 활물질 층 내에 형성된 도전 경로를 훼손시키는 문제가 일부 발생될 수 있다.In the past, it was common to use only graphite-based compounds as negative electrode active materials, but recently, as demand for high-capacity batteries increases, attempts to use silicon-based compounds mixed to increase capacity are increasing. However, in the case of silicon-based compounds, even if the characteristics of the silicon-based active material itself are adjusted according to the present application as described above, the volume expands rapidly during the charging/discharging process, causing some problems in damaging the conductive path formed in the negative electrode active material layer. It can be.
따라서, 본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 점형 도전재, 면형 도전재 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.Therefore, in an exemplary embodiment of the present application, the negative conductive material may include one or more selected from the group consisting of a point-shaped conductive material, a planar conductive material, and a linear conductive material.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가지는 점형 또는 구형 형태의 도전재를 의미한다. 구체적으로 상기 점형 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.In an exemplary embodiment of the present application, the point-shaped conductive material refers to a point-shaped or spherical conductive material that can be used to improve conductivity in the cathode and has conductivity without causing chemical change. Specifically, the dot-shaped conductive material is natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, channel black, Parness black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, It may be at least one selected from the group consisting of potassium titanate, titanium oxide, and polyphenylene derivatives, and preferably may include carbon black in terms of realizing high conductivity and excellent dispersibility.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.In an exemplary embodiment of the present application, the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g. It may be more than /g and less than 60m 2 /g.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 작용기 함량(Volatile matter)이 0.01% 이상 1% 이하, 바람직하게는 0.01% 이상 0.3% 이하, 더욱 바람직하게는 0.01% 이상 0.1% 이하를 만족할 수 있다.In an exemplary embodiment of the present application, the point-shaped conductive material may satisfy a functional group content (Volatile matter) of 0.01% or more and 1% or less, preferably 0.01% or more and 0.3% or less, and more preferably 0.01% or more and 0.1% or less. there is.
특히 점형 도전재의 작용기 함량이 상기 범위를 만족하는 경우, 상기 점형 도전재의 표면에 존재하는 관능기가 존재하여, 물을 용매로 하는 경우에 있어서 상기 용매 내에 점형 도전재가 원활하게 분산될 수 있다. 특히, 본 발명에서는 실리콘 입자 및 특정 바인더를 사용함에 따라 상기 점형 도전재의 작용기 함량을 낮출 수 있는데, 이에 따라 분산성 개선에 탁월한 효과를 갖는다.In particular, when the functional group content of the dot-shaped conductive material satisfies the above range, functional groups exist on the surface of the dot-shaped conductive material, so that when water is used as a solvent, the dot-shaped conductive material can be smoothly dispersed in the solvent. In particular, in the present invention, the functional group content of the point-shaped conductive material can be lowered by using silicon particles and a specific binder, which has an excellent effect in improving dispersibility.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질과 함께, 상기 범위의 작용기 함량을 가지는 점형 도전재를 포함하는 것을 특징으로 하는 것으로, 상기 작용기 함량의 조절은 점형 도전재를 열처리의 정도에 따라 조절할 수 있다.In an exemplary embodiment of the present application, it is characterized in that it includes a point-shaped conductive material having a functional group content in the above range along with a silicon-based active material. The content of the functional group can be adjusted according to the degree of heat treatment of the point-type conductive material. there is.
본 출원의 일 실시상태에 있어어서, 상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다.In an exemplary embodiment of the present application, the particle diameter of the point-shaped conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
본 출원의 일 실시상태에 있어서, 상기 도전재는 면형 도전재를 포함할 수 있다.In an exemplary embodiment of the present application, the conductive material may include a planar conductive material.
상기 면형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할할 수 있다. 상기 면형 도전재는 판상형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다.The planar conductive material may serve to improve conductivity by increasing surface contact between silicon particles within the cathode and at the same time suppress disconnection of the conductive path due to volume expansion. The planar conductive material may be expressed as a plate-shaped conductive material or a bulk-type conductive material.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.In an exemplary embodiment of the present application, the planar conductive material may include at least one selected from the group consisting of plate-shaped graphite, graphene, graphene oxide, and graphite flakes, and may preferably be plate-shaped graphite.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 3.5㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.In an exemplary embodiment of the present application, the average particle diameter (D50) of the planar conductive material may be 2㎛ to 7㎛, specifically 3㎛ to 6㎛, and more specifically 3.5㎛ to 5㎛. . When the above range is satisfied, dispersion is easy without causing an excessive increase in viscosity of the anode slurry due to the sufficient particle size. Therefore, the dispersion effect is excellent when dispersed using the same equipment and time.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 D10이 0.5μm 이상 2.0μm 이하이고, D50이 2.5μm 이상 3.5μm 이하이며, D90이 6.5μm 이상 15.0μm 이하인 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, the planar conductive material has a D10 of 0.5 μm or more and 2.0 μm or less, a D50 of 2.5 μm or more and 3.5 μm or less, and a D90 of 6.5 μm or more and 15.0 μm or less. It provides a negative electrode composition.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 높은 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.In an exemplary embodiment of the present application, the planar conductive material is a high specific surface area planar conductive material having a high BET specific surface area; Alternatively, a low specific surface area planar conductive material can be used.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재로 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 제한없이 사용할 수 있으나, 특히 본 출원에 따른 면형 도전재는 분산 영향을 전극 성능에서 어느 정도 영향을 받을 수 있어, 분산에 문제가 발생하지 않는 저비표면적 면형 도전재를 사용하는 것이 특히 바람직할 수 있다.In an exemplary embodiment of the present application, the planar conductive material includes a high specific surface area planar conductive material; Alternatively, a planar conductive material with a low specific surface area can be used without limitation, but in particular, the planar conductive material according to the present application can be affected to some extent by dispersion on electrode performance, so it is possible to use a planar conductive material with a low specific surface area that does not cause problems with dispersion. This may be particularly desirable.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상일 수 있다.In an exemplary embodiment of the present application, the planar conductive material may have a BET specific surface area of 1 m 2 /g or more.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 250m2/g 이하일 수 있다.In another embodiment, the planar conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g. It may be more than g and less than 250m 2 /g.
본 출원에 따른 면형 도전재는 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.The planar conductive material according to the present application includes a high specific surface area planar conductive material; Alternatively, a low specific surface area planar conductive material can be used.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 고비표면적 면형 도전재이며, BET 비표면적이 50m2/g 이상 500m2/g 이하, 바람직하게는 80m2/g 이상 300m2/g 이하, 더욱 바람직하게는 100m2/g 이상 300m2/g 이하의 범위를 만족할 수 있다.In another embodiment, the planar conductive material is a high specific surface area planar conductive material, and has a BET specific surface area of 50 m 2 /g or more and 500 m 2 /g or less, preferably 80 m 2 /g or more and 300 m 2 /g or less, more preferably In other words, it can satisfy the range of 100m 2 /g or more and 300m 2 /g or less.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 저비표면적 면형 도전재이며, BET 비표면적이 1m2/g 이상 40m2/g 이하, 바람직하게는 5m2/g 이상 30m2/g 이하, 더욱 바람직하게는 5m2/g 이상 25m2/g 이하의 범위를 만족할 수 있다.In another embodiment, the planar conductive material is a low specific surface area planar conductive material, and the BET specific surface area is 1 m 2 /g or more and 40 m 2 /g or less, preferably 5 m 2 /g or more and 30 m 2 /g or less, more preferably In other words, it can satisfy the range of 5m 2 /g or more and 25m 2 /g or less.
그 외 도전재로는 탄소나노튜브 등의 선형 도전재가 있을 수 있다. 탄소나노튜브는 번들형 탄소나노튜브일 수 있다. 상기 번들형 탄소나노튜브는 복수의 탄소나노튜브 단위체들을 포함할 수 있다. 구체적으로, 여기서 '번들형(bundle type)'이란, 달리 언급되지 않는 한, 복수 개의 탄소나노튜브 단위체가 탄소나노튜브 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. 상기 탄소나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 번들형 탄소나노튜브는 인탱글형(entangled type) 탄소나노튜브에 비해 음극 제조 시 균일하게 분산될 수 있으며, 음극 내 도전성 네트워크를 원활하게 형성하여, 음극의 도전성이 개선될 수 있다.Other conductive materials may include linear conductive materials such as carbon nanotubes. The carbon nanotubes may be bundled carbon nanotubes. The bundled carbon nanotubes may include a plurality of carbon nanotube units. Specifically, the 'bundle type' herein refers to a bundle in which a plurality of carbon nanotube units are arranged side by side or entangled in substantially the same orientation along the longitudinal axis of the carbon nanotube units, unless otherwise specified. It refers to a secondary shape in the form of a bundle or rope. The carbon nanotube unit has a graphite sheet in the shape of a cylinder with a nano-sized diameter and an sp2 bond structure. At this time, the characteristics of a conductor or semiconductor can be displayed depending on the angle and structure at which the graphite surface is rolled. Compared to entangled type carbon nanotubes, the bundled carbon nanotubes can be uniformly dispersed when manufacturing a cathode, and can smoothly form a conductive network within the cathode, improving the conductivity of the cathode.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하인 것인 음극 조성물을 제공한다. 또한 예를 들어 10 중량부 이상 40 중량부 이하를 포함할 수 있다.In an exemplary embodiment of the present application, an anode conductive material is provided in an amount of 0.1 part by weight or more and 40 parts by weight or less based on 100 parts by weight of the anode composition. Also, for example, it may include 10 parts by weight or more and 40 parts by weight or less.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하, 바람직하게는 0.2 중량부 이상 30 중량부 이하, 더욱 바람직하게는 0.4 중량부 이상 25 중량부 이하, 가장 바람직하게는 0.4 중량부 이상 10 중량부 이하를 포함할 수 있다.In another embodiment, the anode conductive material is present in an amount of 0.1 to 40 parts by weight, preferably 0.2 to 30 parts by weight, more preferably 0.4 to 25 parts by weight, based on 100 parts by weight of the anode composition. parts or less, most preferably 0.4 parts by weight or more and 10 parts by weight or less.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 면형 도전재; 및 선형 도전재를 포함하는 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, the negative electrode conductive material is a planar conductive material; and a linear conductive material.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하; 및 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하를 포함하는 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, the negative electrode conductive material is 80 parts by weight or more and 99.9 parts by weight or less of the planar conductive material based on 100 parts by weight of the negative electrode conductive material; and 0.1 to 20 parts by weight of the linear conductive material.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하, 바람직하게는 85 중량부 이상 내지 99.9 중량부 이하, 더욱 바람직하게는 95 중량부 이상 내지 98 중량부 이하를 포함할 수 있다.In another embodiment, the negative electrode conductive material is present in an amount of 80 parts by weight or more and 99.9 parts by weight or less, preferably 85 parts by weight or more and 99.9 parts by weight or less, more preferably, based on 100 parts by weight of the negative electrode conductive material. It may contain 95 parts by weight or more and 98 parts by weight or less.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하, 바람직하게는 0.1 중량부 이상 15 중량부 이하, 더욱 바람직하게는 0.2 중량부 이상 5 중량부 이하를 포함할 수 있다.In another embodiment, the anode conductive material is 0.1 part by weight or more and 20 parts by weight or less, preferably 0.1 part by weight or more and 15 parts by weight or less, more preferably 0.2 parts by weight, based on 100 parts by weight of the anode conductive material. It may contain more than 5 parts by weight and less than 5 parts by weight.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재가 면형 도전재 및 선형 도전재를 포함하며 각각 상기 조성 및 비율을 만족함에 따라, 기존 리튬 이차 전지의 수명 특성에는 큰 영향을 미치지 않으며, 특히 면형 도전재 및 선형 도전재를 포함하는 경우 충전 및 방전이 가능한 포인트가 많아져 높은 C-rate에서 출력 특성이 우수하고 고온 가스 발생량이 줄어드는 특징을 갖게 된다.In an exemplary embodiment of the present application, since the negative conductive material includes a planar conductive material and a linear conductive material and satisfies the above composition and ratio, it does not significantly affect the lifespan characteristics of the existing lithium secondary battery, especially the planar conductive material. When ash and linear conductive materials are included, the number of charging and discharging points increases, resulting in excellent output characteristics at high C-rates and reduced high-temperature gas generation.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 선형 도전재로 이루어질 수 있다.In an exemplary embodiment of the present application, the negative electrode conductive material may be made of a linear conductive material.
특히, 선형 도전재를 단독으로 사용하는 경우, 실리콘계 음극의 문제점인 전극 tortuosity를 단순화할 수 있어, 전극 구조를 개선할 수 있고, 이에 따라 전극 내 리튬 이온의 이동 저항을 감소할 수 있는 특징을 갖게 된다.In particular, when a linear conductive material is used alone, the electrode tortuosity, which is a problem of silicon-based anodes, can be simplified, the electrode structure can be improved, and the movement resistance of lithium ions in the electrode can be reduced accordingly. do.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재가 선형 도전재를 단독으로 포함하는 경우 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 5 중량부 이하, 바람직하게는 0.2 중량부 이상 3 중량부 이하, 더욱 바람직하게는 0.4 중량부 이상 1 중량부 이하를 포함할 수 있다.In an exemplary embodiment of the present application, when the negative electrode conductive material includes a linear conductive material alone, the negative electrode conductive material is 0.1 part by weight or more and 5 parts by weight or less, preferably 0.2 parts by weight or more, based on 100 parts by weight of the negative electrode composition. It may contain less than or equal to 0.4 parts by weight and less than or equal to 1 part by weight.
본 출원에 따른 음극 도전재는 양극에 적용되는 양극 도전재와는 전혀 별개의 구성을 갖는다. 즉 본 출원에 따른 음극 도전재의 경우 충전 및 방전에 의해서 전극의 부피 팽창이 매우 큰 실리콘계 활물질들 사이의 접점을 잡아주는 역할을 하는 것으로, 양극 도전재는 압연될 때 완충 역할의 버퍼 역할을 하면서 일부 도전성을 부여하는 역할로, 본원 발명의 음극 도전재와는 그 구성 및 역할이 전혀 상이하다.The cathode conductive material according to the present application has a completely separate configuration from the anode conductive material applied to the anode. In other words, in the case of the anode conductive material according to the present application, it serves to hold the contact point between silicon-based active materials whose volume expansion of the electrode is very large due to charging and discharging. The anode conductive material acts as a buffer when rolled and retains some conductivity. It has a role in providing , and its composition and role are completely different from the cathode conductive material of the present invention.
또한, 본 출원에 따른 음극 도전재는 실리콘계 활물질에 적용되는 것으로, 흑연계 활물질에 적용되는 도전재와는 전혀 상이한 구성을 갖는다. 즉 흑연계 활물질을 갖는 전극에 사용되는 도전재는 단순히 활물질 대비 작은 입자를 갖기 때문에 출력 특성 향상과 일부의 도전성을 부여하는 특성을 갖는 것으로, 본원 발명과 같이 실리콘계 활물질과 함께 적용되는 음극 도전재와는 구성 및 역할이 전혀 상이하다.In addition, the negative electrode conductive material according to the present application is applied to a silicon-based active material and has a completely different structure from the conductive material applied to the graphite-based active material. In other words, the conductive material used in the electrode having a graphite-based active material has the property of improving output characteristics and providing some conductivity simply because it has smaller particles compared to the active material, and is different from the anode conductive material applied together with the silicon-based active material as in the present invention. The composition and roles are completely different.
본 출원의 일 실시상태에 있어서, 전술한 음극 도전재로 사용되는 면형 도전재는 일반적으로 음극 활물질로 사용되는 탄소계 활물질과 상이한 구조 및 역할을 갖는다. 구체적으로, 음극 활물질로 사용되는 탄소계 활물질은 인조 흑연 또는 천연 흑연일 수 있으며, 리튬 이온의 저장 및 방출을 용이하게 하기 위하여 구형 또는 점형의 형태로 가공하여 사용하는 물질을 의미한다.In an exemplary embodiment of the present application, the planar conductive material used as the above-described negative electrode conductive material has a different structure and role from the carbon-based active material generally used as the negative electrode active material. Specifically, the carbon-based active material used as a negative electrode active material may be artificial graphite or natural graphite, and refers to a material that is processed into a spherical or dot-shaped shape to facilitate storage and release of lithium ions.
반면, 음극 도전재로 사용되는 면형 도전재는 면 또는 판상의 형태를 갖는 물질로, 판상형 흑연으로 표현될 수 있다. 즉, 음극 활물질층 내에서 도전성 경로를 유지하기 위하여 포함되는 물질로 리튬의 저장 및 방출의 역할이 아닌 음극 활물질층 내부에서 면형태로 도전성 경로를 확보하기 위한 물질을 의미한다.On the other hand, the planar conductive material used as a negative electrode conductive material is a material that has a plane or plate shape and can be expressed as plate-shaped graphite. In other words, it is a material included to maintain a conductive path within the negative electrode active material layer, and refers to a material that does not play a role in storing and releasing lithium, but rather secures a conductive path in a planar shape inside the negative electrode active material layer.
즉, 본 출원에 있어서, 판상형 흑연이 도전재로 사용되었다는 것은 면형 또는 판상형으로 가공되어 리튬을 저장 또는 방출의 역할이 아닌 도전성 경로를 확보하는 물질로 사용되었다는 것을 의미한다. 이 때, 함께 포함되는 음극 활물질은 리튬 저장 및 방출에 대한 용량 특성이 높으며, 양극으로부터 전달되는 모든 리튬 이온을 저장 및 방출할 수 있는 역할을 하게 된다.That is, in the present application, the use of plate-shaped graphite as a conductive material means that it is processed into a planar or plate-shaped shape and used as a material that secures a conductive path rather than storing or releasing lithium. At this time, the negative electrode active material included has high capacity characteristics for storing and releasing lithium, and plays a role in storing and releasing all lithium ions transferred from the positive electrode.
반면, 본 출원에 있어서, 탄소계 활물질이 활물질로 사용되었다는 것은 점형 또는 구형으로 가공되어 리튬을 저장 또는 방출의 역할을 하는 물질로 사용되었다는 것을 의미한다.On the other hand, in the present application, the use of a carbon-based active material as an active material means that it is processed into a point-shaped or spherical shape and used as a material that plays a role in storing or releasing lithium.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함한다.In an exemplary embodiment of the present application, the cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more.
본 출원의 일 실시상태에 있어서, 상기 제1 바인더는 PAA, PAN 및 PAM 으로 이루어진 군에서 선택되는 1 이상을 포함하고, 상기 제2 바인더는 고무계 바인더인 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, a negative electrode composition is provided wherein the first binder includes at least one selected from the group consisting of PAA, PAN, and PAM, and the second binder is a rubber-based binder.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더를 포함한다.In an exemplary embodiment of the present application, the negative electrode binder includes a first binder having a Young's modulus of 10 3 MPa or more.
또 다른 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 1x103MPa 이상, 바람직하게는 2x103MPa, 더욱 바람직하게는 5x103MPa 이상, 가장 바람직하게는 9x103MPa 이상일 수 있으며, 20x103MPa 이하, 바람직하게는 18x103MPa 이하, 더욱 바람직하게는 15x103MPa 이하를 만족할 수 있다.In another embodiment, the cathode binder may have a Young's modulus of 1x10 3 MPa or more, preferably 2x10 3 MPa, more preferably 5x10 3 MPa or more, and most preferably 9x10 3 MPa or more, It can satisfy 20x10 3 MPa or less, preferably 18x10 3 MPa or less, and more preferably 15x10 3 MPa or less.
또 다른 일 실시상태에 있어서, 상기 음극 바인더의 영률은 3x103MPa 이상, 4x103MPa 이상, 6x103MPa 이상, 7x103MPa 이상, 8x103MPa 이상, 10x103MPa 이상, 19x103MPa 이하, 17x103MPa 이하, 16x103MPa 이하, 14x103MPa 이하, 13x103MPa 이하, 12x103MPa 이하일 수 있으며, 상기 범위의 다양한 조합을 모두 포함한다.In another embodiment, the Young's modulus of the cathode binder is 3x10 3 MPa or more, 4x10 3 MPa or more, 6x10 3 MPa or more, 7x10 3 MPa or more, 8x10 3 MPa or more, 10x10 3 MPa or more, 19x10 3 MPa or less, 17x10 It may be 3 MPa or less, 16x10 3 MPa or less, 14x10 3 MPa or less, 13x10 3 MPa or less, 12x10 3 MPa or less, and includes various combinations of the above ranges.
상기 제1 바인더는 음극 조성물이 포함된 음극 슬러리 상태에서 음극 활물질을 분산시키기 위한 분산성과 건조 후 음극 집전체층 및 음극 활물질층과 바인딩 하기 위한 접착력을 동시에 갖는 것으로, 그 접착력은 높은 편이 아닌 바인더에 해당한다. 즉 본 출원에 따른 제1 바인더는 상기 영률을 만족하는 수계 바인더를 포함하는 것으로, 면접착 형태를 갖는 바인더를 의미할 수 있다.The first binder has both dispersibility for dispersing the negative electrode active material in the negative electrode slurry containing the negative electrode composition and adhesive power for binding to the negative electrode current collector layer and the negative electrode active material layer after drying. The adhesive strength is not high compared to the binder. It applies. That is, the first binder according to the present application includes an aqueous binder that satisfies the Young's modulus, and may mean a binder having a surface bonding form.
상기 제1 바인더는 충방전 과정 중 부피 팽창이 큰 실리콘 활물질을 음극에 적용한 리튬 이차 전지에 적합한 바인더로서, 상기 범위의 하한 조건 이하인 경우 실리콘의 부피 팽창을 효과적으로 제어하기 어려우며, 상기 범위의 상한 조건 이상인 경우 지나치게 강성이 단단하여 충방전 과정 중 결합이 깨질 가능성이 높다.The first binder is a binder suitable for a lithium secondary battery in which a silicon active material with large volume expansion during the charging and discharging process is applied to the negative electrode. When the condition is below the lower limit of the above range, it is difficult to effectively control the volume expansion of silicon, and when the condition is above the upper limit of the above range, the first binder is a binder suitable for a lithium secondary battery. In this case, the rigidity is too hard, so there is a high possibility that the bond will be broken during the charging and discharging process.
본 출원의 일 실시상태에 있어서, 상기 수계 바인더는 물 등 수계 용매에 용해될 수 있는 것으로서 폴리비닐알코올(PVA: polyvinyl alcohol), 폴리아크릴산(PAA: polyacrylic acid), 폴리에틸렌 글리콜(PEG: polyethylene glycol), 폴리아크릴로니트릴(PAN: polyacrylonitrile) 및 폴리아크릴 아미드(PAM: polyacryl amide)로 이루어진 군에서 선택된 적어도 1종을 포함한다. 바람직하게는 실리콘계 활물질의 부피 팽창/수축에 대한 우수한 저항성을 가지는 측면에서 폴리아크릴산(PAA: polyacrylic acid) 및 폴리아크릴 아미드(PAM: polyacryl amide)으로 이루어 진 군에서 선택된 적어도 1종, 더 바람직하게는 폴리아크릴산(PAA: polyacrylic acid) 및 폴리아크릴 아미드(PAM: polyacryl amide)를 포함할 수 있다.In an exemplary embodiment of the present application, the aqueous binder is soluble in aqueous solvents such as water and includes polyvinyl alcohol (PVA), polyacrylic acid (PAA), and polyethylene glycol (PEG). , polyacrylonitrile (PAN), and polyacryl amide (PAM). Preferably, at least one selected from the group consisting of polyacrylic acid (PAA) and polyacryl amide (PAM), more preferably, in terms of excellent resistance to volume expansion/contraction of the silicone-based active material. It may include polyacrylic acid (PAA) and polyacryl amide (PAM).
더욱 구체적으로 상기 제1 바인더는 PAM계 바인더일 수 있으며, 이 때 PAM계 바인더는 PAM이 주성분인 바인더로, PAM, PAA, PAN의 비율을 조절하여 사용할 수 있으며, 상기 조성을 적절히 변경하여 상기와 같은 영률을 만족시킬 수 있다.More specifically, the first binder may be a PAM-based binder. In this case, the PAM-based binder is a binder whose main component is PAM, and can be used by adjusting the ratio of PAM, PAA, and PAN, and can be used as described above by appropriately changing the composition. Young's modulus can be satisfied.
상기 제1 바인더는 음극 활물질층 형성을 위한 음극 슬러리 제조 시에 물 등 수계 용매에 더욱 잘 분산되도록 하고, 활물질을 보다 원활하게 피복하여 결착력을 향상시키기 위한 측면에서, 상기 제1 바인더 내의 수소를 Li, Na 또는 Ca 등으로 치환된 것을 포함할 수 있다.In order to better disperse the first binder in an aqueous solvent such as water when producing a negative electrode slurry for forming a negative electrode active material layer and to improve binding force by covering the active material more smoothly, hydrogen in the first binder is used as Li , may include those substituted with Na or Ca, etc.
상기 제1 바인더는 물에 친한 특성(hydrophilic)을 가지며, 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 용해되지 않는 성질을 가진다. 이러한 특성은 음극 또는 리튬 이차 전지에 적용 시에 상기 제1 바인더에 강한 응력 또는 인장 강도를 부여할 수 있으며, 이에 따라 실리콘계 활물질의 충방전에 따른 부피 팽창/수축 문제를 효과적으로 억제할 수 있다.The first binder has hydrophilic properties and is generally insoluble in electrolytes or electrolyte solutions used in secondary batteries. These characteristics can provide strong stress or tensile strength to the first binder when applied to a negative electrode or lithium secondary battery, and thus can effectively suppress volume expansion/contraction problems due to charging and discharging of the silicon-based active material.
본 출원의 일 실시상태에 있어서, 상기 제1 바인더의 중량 평균 분자량은 100,000g/mol 이상 2,000,000g/mol 이하인 것인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, a negative electrode composition is provided wherein the weight average molecular weight of the first binder is 100,000 g/mol or more and 2,000,000 g/mol or less.
또한 보다 바람직하게는 500,000g/mol 이상일 수 있으며, 1,500,000g/mol 이하일 수 있다.Also, more preferably, it may be 500,000 g/mol or more and 1,500,000 g/mol or less.
본 출원의 일 실시상태에 있어서, 상기 제2 바인더는 strain이 15% 이상일 수 있으며, 바람직하게는 strain이 20% 이상, 더욱 바람직하게는 strain이 30% 이상, 가장 바람직하게는 strain이 40% 이상일 수 있으며, strain이 300% 이하, 바람직하게는 200% 이하, 더욱 바람직하게는 150% 이하일 수 있다.In an exemplary embodiment of the present application, the second binder may have a strain of 15% or more, preferably a strain of 20% or more, more preferably a strain of 30% or more, and most preferably a strain of 40% or more. The strain may be 300% or less, preferably 200% or less, and more preferably 150% or less.
또 다른 일 실시상태에 있어서, strain이 25% 이상, strain이 35% 이상, strain이 45% 이상, strain이 75% 이하, strain이 65% 이상, strain이 55% 이하를 만족할 수 있으며, 해당 범위의 다양한 조합이 포함될 수 있다.In another embodiment, the strain may be 25% or more, the strain may be 35% or more, the strain may be 45% or more, the strain may be 75% or less, the strain may be 65% or more, and the strain may be 55% or less, and the corresponding range Various combinations of may be included.
상기와 같이 제2 바인더의 strain값이 상기 범위 미만인 경우 응력이 높아 실리콘의 부피 팽창을 효과적으로 제어하기 어려우며, 상기 범위를 초과하는 경우 전극 간 접착력을 효과적으로 제어하기 어렵게 된다.As described above, if the strain value of the second binder is less than the above range, the stress is high, making it difficult to effectively control the volume expansion of silicon, and if it exceeds the above range, it is difficult to effectively control the adhesion between electrodes.
제1 바인더는 전술한 모듈러스 범위를 만족하여 강한 응력을 가지므로, 제1 바인더만을 단독으로 사용할 경우 음극의 휘어짐 현상, 휘어 짐에 따른 크랙 발생, 수명 특성 열화의 위험이 있다. 제2 바인더는 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 잘 용해될 수 있으며, 제1 바인더와 병용 시에 제1 바인더의 응력을 일정 수준으로 완화시킬 수 있다.Since the first binder satisfies the above-mentioned modulus range and has strong stress, if the first binder is used alone, there is a risk of warping of the cathode, occurrence of cracks due to bending, and deterioration of life characteristics. The second binder can be well dissolved in an electrolyte or electrolyte solution generally used in secondary batteries, and can relieve the stress of the first binder to a certain level when used together with the first binder.
따라서, 본 발명의 음극 조성물은 상기 제1 바인더 및 제2 바인더를 특정 중량비로 포함되는 음극 바인더를 사용함으로써, 실리콘계 활물질의 부피 팽창/수축 문제를 효과적으로 해소하여 수명 특성을 향상시킬 수 있고, 박막 음극 제조 시의 휘어짐 문제를 해소할 수 있으며, 또한 접착력도 개선할 수 있는 특징을 갖게 된다.Therefore, the negative electrode composition of the present invention can improve lifespan characteristics by effectively solving the volume expansion/contraction problem of the silicon-based active material by using a negative electrode binder containing the first binder and the second binder in a specific weight ratio, and can improve the lifespan characteristics of the thin film negative electrode. It can solve the problem of bending during manufacturing and also has the feature of improving adhesion.
이 때 제2 바인더의 strain 값은 구체적으로 SBR 바인더의 ST/BD의 비율을 적당 범위로 조절하여 전술한 상기의 범위를 만족하는 범위로 구현할 수 있다.At this time, the strain value of the second binder can be implemented in a range that satisfies the above-mentioned range by specifically adjusting the ST/BD ratio of the SBR binder to an appropriate range.
본 출원의 일 실시상태에 있어서, 상기 제2 바인더는 상기 제1 바인더와는 다른 물질이며, 물 등 수계 용매에 잘 용해되지 않으나 수계 용매에 원활한 분산이 가능한 것으로 정의될 수 있다. 구체적으로 상기 strain이 15% 이상인 제2 바인더는 스티렌부타디엔 고무(SBR: styrene butadiene rubber), 수소화 니트릴부타디엔 고무(HNBR: hydrogenated nitrile butadiene rubber), 아크릴로니트릴부타디엔 고무(acrylonitrile butadiene rubber), 아크릴 고무(acrylic rubber), 부틸 고무(butyl rubber) 및 플루오르 고무(fluoro rubber)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 분산에 용이하고, 상 안정성이 우수하다는 측면에서 스티렌부타디엔 고무 및 수소화 니트릴부타디엔 고무로 이루어진 군에서 선택된 적어도 1종, 더 바람직하게는 스티렌부타디엔 고무를 포함할 수 있다.In an exemplary embodiment of the present application, the second binder is a material different from the first binder, and may be defined as being insoluble in aqueous solvents such as water, but capable of smooth dispersion in aqueous solvents. Specifically, the second binder with a strain of 15% or more includes styrene butadiene rubber (SBR), hydrogenated nitrile butadiene rubber (HNBR), acrylonitrile butadiene rubber, and acrylic rubber ( It may include at least one selected from the group consisting of acrylic rubber, butyl rubber, and fluoro rubber, and is preferably styrene-butadiene rubber and It may include at least one selected from the group consisting of hydrogenated nitrile butadiene rubber, more preferably styrene butadiene rubber.
일반적으로 제2 바인더는 제1 바인더 대비 전해질 젖음성이 매우 높은 재료이다. 전술한 제2 바인더가 실리콘계 음극 표면 근처에 위치하는 경우, SEI layer를 만들 수 있는 FEC용매나 LiPF6염을 빠르게 공급할 수 있기 때문에 음극 저항이 낮아진다.In general, the second binder is a material that has very high electrolyte wettability compared to the first binder. When the aforementioned second binder is located near the silicon-based cathode surface, the cathode resistance is lowered because the FEC solvent or LiPF 6 salt that can create an SEI layer can be quickly supplied.
본 출원의 일 실시상태에 있어서, 상기 식 1은 1≤ X/Y < 4, 바람직하게는 1.1≤ X/Y < 3.9, 더욱 바람직하게는 1.2≤ X/Y < 3.8을 만족할 수 있다.In an exemplary embodiment of the present application, Equation 1 may satisfy 1≤X/Y<4, preferably 1.1≤X/Y<3.9, and more preferably 1.2≤X/Y<3.8.
보다 구체적으로 , 1.3 ≤ X/Y < 3.7, 1.4 ≤ X/Y < 3.6, 1.5 ≤ X/Y < 3.5, 1.6 ≤ X/Y < 3.4, 1.7 ≤ X/Y < 3.3, 1.8 ≤ X/Y < 3.2, 1.9 ≤ X/Y < 3.1, 2.0 ≤ X/Y < 3.0, 1.2 ≤ X/Y < 2.0일 수 있다.More specifically, 1.3 ≤ X/Y < 3.7, 1.4 ≤ X/Y < 3.6, 1.5 ≤ X/Y < 3.5, 1.6 ≤ It may be 3.2, 1.9 ≤ X/Y < 3.1, 2.0 ≤ X/Y < 3.0, 1.2 ≤ X/Y < 2.0.
본 출원의 일 실시상태에 있어서, 상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하이며, 상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하이다.In an exemplary embodiment of the present application,
또 다른 일 실시상태에 있어서, 상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하, 바람직하게는 55 중량부 이상 90 중량부 이하, 더욱 바람직하게는 55 중량부 이상 80 중량부 이하일 수 있다. 또한, 50 중량부 이상 70 중량부 이하, 55 중량부 이상 67 중량부 이하, 60 중량부 이상 67 중량부 이하일 수 있다.In another embodiment, the amount of It may be below. Additionally, it may be 50 parts by weight or more and 70 parts by weight or less, 55 parts by weight or more and 67 parts by weight or less, and 60 parts by weight or more and 67 parts by weight or less.
또 다른 일 실시상태에 있어서, 상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하, 바람직하게는 10 중량부 이상 45 중량부 이하, 더욱 바람직하게는 20 중량부 이상 45 중량부 이하일 수 있다. 또한, 33 중량부 이상 45 중량부 이하, 35 중량부 이상 45 중량부 이하, 40 중량부 이상 45 중량부 이하일 수 있다.In another embodiment, Y is 5 parts by weight or more and 50 parts by weight or less, preferably 10 parts by weight or more and 45 parts by weight or less, more preferably 20 parts by weight or more and 45 parts by weight, based on 100 parts by weight of the negative binder. It may be below. Additionally, it may be 33 parts by weight or more and 45 parts by weight or less, 35 parts by weight or more and 45 parts by weight or less, and 40 parts by weight or more and 45 parts by weight or less.
상기와 같이 본 출원에 따른 음극 바인더는 제1 바인더 및 제2 바인더가 상기 함량을 만족하는 것으로, 실리콘계 활물질을 사용하는 경우에도 분산성을 개선하고, 또한 접착력의 문제를 해결할 수 있는 특징을 갖게 된다.As described above, the negative electrode binder according to the present application has the first binder and the second binder satisfying the above contents, and has the feature of improving dispersibility even when using a silicon-based active material and also solving the problem of adhesion. .
제1 바인더는 전술한 모듈러스 범위를 만족하여 강한 응력을 가지므로, 제1 바인더만을 단독으로 사용할 경우 음극의 휘어짐 현상, 휘어 짐에 따른 크랙 발생, 수명 특성 열화의 위험이 있다. 제2 바인더는 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 잘 용해될 수 있으며, 제1 바인더와 병용 시에 제1 바인더의 응력을 일정 수준으로 완화시킬 수 있다.Since the first binder satisfies the above-mentioned modulus range and has strong stress, if the first binder is used alone, there is a risk of warping of the cathode, occurrence of cracks due to bending, and deterioration of life characteristics. The second binder can be well dissolved in an electrolyte or electrolyte solution generally used in secondary batteries, and can relieve the stress of the first binder to a certain level when used together with the first binder.
따라서, 본 발명의 음극 조성물은 상기 제1 바인더 및 제2 바인더를 특정 중량비로 포함되는 음극 바인더를 사용함으로써, 실리콘계 활물질의 부피 팽창/수축 문제를 효과적으로 해소하여 수명 특성을 향상시킬 수 있고, 박막 음극 제조 시의 휘어짐 문제를 해소할 수 있으며, 또한 접착력도 개선할 수 있는 특징을 갖게 된다.Therefore, the negative electrode composition of the present invention can improve lifespan characteristics by effectively solving the volume expansion/contraction problem of the silicon-based active material by using a negative electrode binder containing the first binder and the second binder in a specific weight ratio, and can improve the lifespan characteristics of the thin film negative electrode. It can solve the problem of bending during manufacturing and also has the feature of improving adhesion.
더욱이 상기의 음극 바인더와 음극 도전재로 면형 도전재; 및 선형 도전재를 포함하는 경우, 접착력의 문제를 개선할 수 있음과 동시에 음극 내부 저항 또한 개선할 수 있는 특징을 갖게 된다.Furthermore, the above-mentioned negative electrode binder and negative electrode conductive material include a planar conductive material; And when a linear conductive material is included, the adhesion problem can be improved and the cathode internal resistance can also be improved.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.In an exemplary embodiment of the present application, the negative electrode binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, Polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene. -Selected from the group consisting of propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, poly acrylic acid, and materials whose hydrogen is replaced with Li, Na, or Ca, etc. It may include at least one of the following, and may also include various copolymers thereof.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 1 중량부 이상 20 중량부 이하인 음극 조성물을 제공한다.In an exemplary embodiment of the present application, the anode binder is provided in an amount of 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the anode composition.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 20 중량부 이하, 바람직하게는 15 중량부 이하를 포함할 수 있으며, 1 중량부 이상, 5 중량부 이상, 10 중량부 이상일 수 있다.In an exemplary embodiment of the present application, the negative electrode binder may include 20 parts by weight or less, preferably 15 parts by weight or less, based on 100 parts by weight of the negative electrode composition, and 1 or more parts by weight, 5 or more parts by weight, or 10 parts by weight. It can be more than wealth.
본 출원의 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.In an exemplary embodiment of the present application, a negative electrode current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one or both sides of the negative electrode current collector layer.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 도 1은 음극 활물질층이 일면에 형성된 것을 나타내나, 음극 집전체층의 양면에 포함할 수 있다.Figure 1 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application. Specifically, it can be seen that the negative electrode 100 for a lithium secondary battery includes a negative electrode active material layer 20 on one side of the negative electrode current collector layer 10, and Figure 1 shows that the negative electrode active material layer is formed on one side, but the negative electrode collector layer 10 has a negative electrode active material layer 20 on one side. It can be included on both sides of the entire floor.
본 출원의 일 실시상태에 있어서, 상기 음극은 상기 음극 조성물을 포함하는 음극 슬러리를 집전체의 일면 또는 양면에 코팅하여 리튬 이차 전지용 음극을 형성할 수 있다.In an exemplary embodiment of the present application, the negative electrode may be formed by coating a negative electrode slurry containing the negative electrode composition on one or both sides of a current collector to form a negative electrode for a lithium secondary battery.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리는 음극 조성물; 및 슬러리 용매;를 포함할 수 있다.In an exemplary embodiment of the present application, the negative electrode slurry includes a negative electrode composition; and a slurry solvent.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하를 만족할 수 있다.In an exemplary embodiment of the present application, the solid content of the anode slurry may satisfy 5% or more and 40% or less.
또 다른 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하, 바람직하게는 7% 이상 35%이하, 더욱 바람직하게는 10% 이상 30% 이하의 범위를 만족할 수 있다.In another embodiment, the solid content of the anode slurry may be within the range of 5% to 40%, preferably 7% to 35%, and more preferably 10% to 30%.
상기 음극 슬러리의 고형분 함량이라는 것은 상기 음극 슬러리 내에 포함되는 음극 조성물의 함량을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 상기 음극 조성물의 함량을 의미할 수 있다.The solid content of the negative electrode slurry may mean the content of the negative electrode composition contained in the negative electrode slurry, and may mean the content of the negative electrode composition based on 100 parts by weight of the negative electrode slurry.
상기 음극 슬러리의 고형분 함량이 상기 범위를 만족하는 경우, 음극 활물질층 형성시 점도가 적당하여 음극 조성물의 입자 뭉침 현상을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특징을 갖게 된다.When the solid content of the negative electrode slurry satisfies the above range, the viscosity is appropriate when forming the negative electrode active material layer, thereby minimizing particle agglomeration of the negative electrode composition, thereby enabling efficient formation of the negative electrode active material layer.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층은 일반적으로 1㎛ 내지 100㎛의 두께를 가진다. 이러한 음극 집전체층은, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In an exemplary embodiment of the present application, the negative electrode current collector layer generally has a thickness of 1 μm to 100 μm. This negative electrode current collector layer is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel. Surface treatment of carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used. In addition, the bonding power of the negative electrode active material can be strengthened by forming fine irregularities on the surface, and it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며, 상기 음극 활물질층의 두께는 20μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극을 제공한다.In an exemplary embodiment of the present application, a negative electrode for a lithium secondary battery is provided, wherein the negative electrode current collector layer has a thickness of 1 μm or more and 100 μm or less, and the negative electrode active material layer has a thickness of 20 μm or more and 500 μm or less.
다만, 두께는 사용되는 음극의 종류 및 용도에 따라 다양하게 변형할 수 있으며 이에 한정되지 않는다. However, the thickness may vary depending on the type and purpose of the cathode used and is not limited to this.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하의 범위를 만족할 수 있다.In an exemplary embodiment of the present application, the porosity of the negative electrode active material layer may satisfy a range of 10% to 60%.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하, 바람직하게는 20% 이상 50% 이하, 더욱 바람직하게는 30% 이상 45% 이하의 범위를 만족할 수 있다.In another embodiment, the porosity of the negative electrode active material layer may be within the range of 10% to 60%, preferably 20% to 50%, and more preferably 30% to 45%.
상기 공극률은 음극 활물질층에 포함되는 실리콘계 활물질; 도전재; 및 바인더의 조성 및 함량에 따라 변동되는 것으로, 특히 본 출원에 따른 실리콘계 활물질; 및 도전재를 특정 조성 및 함량부 포함함에 따라 상기 범위를 만족하는 것으로, 이에 따라 전극에 있어 전기 전도도 및 저항이 적절한 범위를 갖는 것을 특징으로 한다.The porosity includes the silicon-based active material included in the negative electrode active material layer; conductive material; and varies depending on the composition and content of the binder, especially the silicon-based active material according to the present application; and a conductive material of a specific composition and content satisfies the above range, and thus the electrode is characterized by having an appropriate range of electrical conductivity and resistance.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하를 만족하는 것인 리튬 이차 전지용 음극을 제공한다.In an exemplary embodiment of the present application, the adhesive strength of the surface of the negative electrode active material layer in contact with the negative electrode current collector layer satisfies 100 gf / 5mm or more and 500 gf / 5mm or less under normal pressure conditions at 25 ° C. A negative electrode for a lithium secondary battery is provided. do.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하, 바람직하게는 300gf/5mm 이상 450gf/5mm 이하, 더욱 바람직하게는 350gf/5mm 이상 430gf/5mm 이하를 만족할 수 있다.In another embodiment, the adhesive strength of the surface of the negative electrode active material layer in contact with the negative electrode current collector layer is 100gf/5mm or more and 500gf/5mm or less, preferably 300gf/5mm or more and 450gf/5mm or less under normal pressure conditions at 25°C. , more preferably 350gf/5mm or more and 430gf/5mm or less.
특히, 본 출원에 따른 음극은 전술한 음극 조성물로 특정의 음극 바인더를 포함하여, 상기와 같이 접착력이 개선된다. 또한 음극의 충전 및 방전을 반복하여 실리콘계 활물질의 팽창 및 수축이 반복되어도, 특정 조성의 음극 바인더 및 음극 도전재를 적용하여 도전 네트워크를 유지하고, 단절을 막아 저항의 상승을 억제할 수 있는 특징을 갖게 된다.In particular, the negative electrode according to the present application includes a specific negative electrode binder in the negative electrode composition described above, and the adhesion is improved as described above. In addition, even if expansion and contraction of the silicon-based active material is repeated due to repeated charging and discharging of the negative electrode, the conductive network is maintained by applying a negative electrode binder and negative electrode conductive material of a specific composition, and the increase in resistance is suppressed by preventing disconnection. have it
상기 접착력은 Peel strength 측정기로 3M 9070 tape를 이용하여 90°, 5mm/s의 속도로 측정하였다. 구체적으로 접착 필름이 붙어있는 슬라이드 글래스(3M 9070 tape)의 일면 상에 상기 리튬 이차 전지용 음극의 상기 음극 활물질층의 일면을 접착시킨다. 이후 2kg 고무 롤러로 5회 내지 10회 왕복하여 부착하고, 90°의 각도 방향으로, 5mm/s의 속도로 접착력(박리력)을 측정하였다. 이 때, 25℃, 상압 조건에서 접착력을 측정할 수 있다.The adhesive strength was measured at 90° and a speed of 5 mm/s using a peel strength meter using 3M 9070 tape. Specifically, one side of the negative electrode active material layer of the negative electrode for a lithium secondary battery is adhered to one side of a slide glass (3M 9070 tape) to which an adhesive film is attached. Afterwards, it was attached by reciprocating 5 to 10 times with a 2 kg rubber roller, and the adhesive force (peel force) was measured at a speed of 5 mm/s in an angular direction of 90°. At this time, adhesion can be measured at 25°C and normal pressure.
구체적으로, 측정은 5mm x 15cm 전극에 대하여 25℃, 상압 조건에서 접착력을 측정하였다.Specifically, the adhesion was measured at 25°C and normal pressure on a 5mm x 15cm electrode.
본 출원의 일 실시상태에 있어서, 상압은 특정 압력을 가하거나 낮추지 않은 상태의 압력을 의미할 수 있으며, 대기압과 같은 의미로 사용될 수 있다. 일반적으로 1기압으로 표시될 수 있다.In an exemplary embodiment of the present application, atmospheric pressure may mean pressure without applying or lowering a specific pressure, and may be used in the same sense as atmospheric pressure. It can generally be expressed as 1 atmosphere.
본 출원의 일 실시상태에 있어서, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.In an exemplary embodiment of the present application, an anode; A negative electrode for a lithium secondary battery according to the present application; A separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 양극 집전체층(50)의 일면에 양극 활물질층(40)을 포함하는 리튬 이차 전지용 양극(200)을 확인할 수 있으며, 상기 리튬 이차 전지용 음극(100)과 리튬 이차 전지용 양극(200)이 분리막(30)을 사이에 두고 적층되는 구조로 형성됨을 나타낸다.Figure 2 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application. Specifically, a negative electrode 100 for a lithium secondary battery including a negative electrode active material layer 20 can be confirmed on one side of the negative electrode current collector layer 10, and a positive electrode active material layer 40 on one side of the positive electrode current collector layer 50. A positive electrode 200 for a lithium secondary battery can be confirmed, indicating that the negative electrode 100 for a lithium secondary battery and the positive electrode 200 for a lithium secondary battery are formed in a stacked structure with a separator 30 in between.
본 명세서의 일 실시상태에 따른 이차 전지는 특히 상술한 리튬 이차 전지용 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.The secondary battery according to an exemplary embodiment of the present specification may particularly include the above-described negative electrode for a lithium secondary battery. Specifically, the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, detailed description will be omitted.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.The positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer containing the positive electrode active material.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In the positive electrode, the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon on the surface of aluminum or stainless steel. , surface treated with nickel, titanium, silver, etc. can be used. Additionally, the positive electrode current collector may typically have a thickness of 3㎛ to 500㎛, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.The positive electrode active material may be a commonly used positive electrode active material. Specifically, the positive electrode active material is a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxide such as LiFe 3 O 4 ; Lithium manganese oxide with the formula Li 1+c1 Mn 2-c1 O 4 (0≤c1≤0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , etc.; lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Chemical formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01≤c2≤0.3). Ni site-type lithium nickel oxide; Chemical formula LiMn 2-c3 M c3 O 2 (where M is at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ta, and satisfies 0.01≤c3≤0.1) or Li 2 Mn 3 MO lithium manganese composite oxide represented by 8 (where M is at least one selected from the group consisting of Fe, Co, Ni, Cu and Zn); Examples include LiMn 2 O 4 in which part of Li in the chemical formula is replaced with an alkaline earth metal ion, but it is not limited to these. The anode may be Li-metal.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.The positive electrode active material layer may include the positive electrode active material described above, a positive conductive material, and a positive electrode binder.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. At this time, the anode conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed. Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, etc., of which one type alone or a mixture of two or more types may be used.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.Additionally, the positive electrode binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC). ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber. (SBR), fluorine rubber, or various copolymers thereof, and one type of these may be used alone or a mixture of two or more types may be used.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator separates the cathode from the anode and provides a passage for lithium ions. It can be used without particular restrictions as long as it is normally used as a separator in secondary batteries. In particular, it has low resistance to ion movement in the electrolyte and has an electrolyte moisture capacity. Excellent is desirable. Specifically, porous polymer films, for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used. In addition, conventional porous non-woven fabrics, for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc., may be used. In addition, a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.The electrolytes include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다. Specifically, the electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, and 1,2-dimethyl. Toxy ethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxoran, formamide, dimethylformamide, dioxoran, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid. Triesters, trimethoxy methane, dioxoran derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl pyropionate, propionic acid. Aprotic organic solvents such as ethyl may be used.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다. In particular, among the carbonate-based organic solvents, ethylene carbonate and propylene carbonate, which are cyclic carbonates, are high-viscosity organic solvents and have a high dielectric constant, so they can be preferably used because they easily dissociate lithium salts. These cyclic carbonates include dimethyl carbonate and diethyl carbonate. If linear carbonates of the same low viscosity and low dielectric constant are mixed and used in an appropriate ratio, an electrolyte with high electrical conductivity can be made and can be used more preferably.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.The metal salt may be a lithium salt, and the lithium salt is a material that is easily soluble in the non-aqueous electrolyte. For example, anions of the lithium salt include F - , Cl - , I - , NO 3 - , N(CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - At least one selected from the group consisting of can be used.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.In addition to the electrolyte components, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexanoic acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida. One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included.
본 발명의 일 실시상태는 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.One embodiment of the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and battery pack include the secondary battery with high capacity, high rate characteristics, and cycle characteristics, they are medium-to-large devices selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems. It can be used as a power source.
본 출원의 일 실시상태에 있어서, 상기 음극 조성물을 이용하여 음극을 제조하는 방법을 제공한다. 보다 구체적으로, 상기 음극 조성물에 용매를 첨가하여 음극 슬러리를 얻는다. 상기 음극 슬러리는 음극 집전체층의 적어도 일면에 도포되어 음극 활물질층을 형성한다. 이 후 음극 집전체층에 코팅된 음극 활물질층을 건조 및 압연하여 음극을 제조한다.In an exemplary embodiment of the present application, a method for manufacturing a negative electrode using the negative electrode composition is provided. More specifically, a solvent is added to the negative electrode composition to obtain a negative electrode slurry. The negative electrode slurry is applied to at least one surface of the negative electrode current collector layer to form a negative electrode active material layer. Afterwards, the negative electrode is manufactured by drying and rolling the negative electrode active material layer coated on the negative electrode current collector layer.
본 출원에 있어서, 상기 음극 슬러리에 포함되는 용매는 예를 들어 증류수일 수 있다.In the present application, the solvent included in the cathode slurry may be, for example, distilled water.
본 출원의 하나의 실시상태에 있어서, 상기 음극 슬러리는 고형분 함량이 5% 이상 40% 이하를 만족할 수 있다.In one embodiment of the present application, the anode slurry may have a solid content of 5% or more and 40% or less.
다른 실시예에서 상기 음극 슬러리는 고형분 함량 범위를 5% 이상 40% 이하, 바람직하게는 7% 이상 35% 이하, 보다 바람직하게는 10% 이상 30% 이하를 만족할 수 있다.In another embodiment, the anode slurry may satisfy a solid content range of 5% to 40%, preferably 7% to 35%, and more preferably 10% to 30%.
상기 음극 슬러리의 고형분 함량은 음극 슬러리에 포함된 음극 조성물의 양을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 한 음극 조성물의 양을 의미할 수 있다.The solid content of the negative electrode slurry may refer to the amount of the negative electrode composition contained in the negative electrode slurry, and may refer to the amount of the negative electrode composition based on 100 parts by weight of the negative electrode slurry.
음극 슬러리가 상기 고형분 함량 범위인 5% 이상 40% 이하를 만족하는 경우, 음극 활물질층은 음극 활물질층 형성시 적절한 점도를 가지므로 음극 활물질의 입자 뭉침 현상이 전극 조성을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특성을 갖는다.When the negative electrode slurry satisfies the solid content range of 5% to 40%, the negative electrode active material layer has an appropriate viscosity when forming the negative electrode active material layer, so the particle agglomeration phenomenon of the negative electrode active material minimizes the electrode composition and efficiently forms the negative electrode active material layer. It has characteristics that can be formed.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention. However, the above examples are merely illustrative of the present description, and it is clear to those skilled in the art that various changes and modifications are possible within the scope and technical spirit of the present description, It is natural that such variations and modifications fall within the scope of the attached patent claims.
<제조예><Manufacturing example>
<음극 조성물의 제조><Preparation of negative electrode composition>
하기 표 1의 조성 및 함량을 만족하는 음극 조성물을 각각 제조하였다.Anode compositions satisfying the composition and content in Table 1 below were prepared.
실리콘계 활물질Silicone-based active material 음극 도전재 cathode conductive material 음극 바인더cathode binder
종류type 함량content 종류type 함량content 제1 바인더
(함량)
1st binder
(content)
제2 바인더
(함량)
2nd binder
(content)
식 1Equation 1
실시예 1Example 1 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (4.5)PAM-1 (4.5) SBR-1
(5.5)
SBR-1
(5.5)
1.21.2
실시예 2Example 2 SiSi 8989 SWCNTSWCNTs 1One PAM-2 (4.5)PAM-2 (4.5) SBR-1
(5.5)
SBR-1
(5.5)
1.21.2
실시예 3Example 3 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (4.5)PAM-1 (4.5) SBR-2
(5.5)
SBR-2
(5.5)
1.21.2
실시예 4Example 4 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (3.3)PAM-1 (3.3) SBR-1
(6.7)
SBR-1
(6.7)
22
실시예 5Example 5 SiSi 8080 SWCNT/판상형도전재 ASWCNT/plate-type conductive material A 0.4/9.60.4/9.6 PAM-1
(4.5)
PAM-1
(4.5)
SBR-1
(5.5)
SBR-1
(5.5)
1.21.2
실시예 6Example 6 SiSi 8080 SWCNTSWCNTs 1One PAM-2 (4.5)PAM-2 (4.5) SBR-2
(5.5)
SBR-2
(5.5)
1.21.2
비교예 1Comparative Example 1 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (10)PAM-1 (10) -- --
비교예 2Comparative Example 2 SiSi 8989 SWCNTSWCNTs 1One -- SBR-1
(10)
SBR-1
(10)
--
비교예 3Comparative Example 3 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (1.6)PAM-1 (1.6) SBR-1
(8.4)
SBR-1
(8.4)
5.255.25
비교예 4Comparative Example 4 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (6)PAM-1 (6) SBR-1
(4)
SBR-1
(4)
0.660.66
비교예 5Comparative Example 5 SiSi 8989 SWCNTSWCNTs 1One PAN(5.5)PAN(5.5) SBR-1
(4.5)
SBR-1
(4.5)
0.820.82
비교예 6Comparative Example 6 SiSi 8989 SWCNTSWCNTs 1One PAM-1 (5.5)PAM-1 (5.5) SBR-3
(4.5)
SBR-3
(4.5)
0.820.82
상기 표 1에 있어서, 실리콘계 활물질인 Si(평균 입경(D50): 5 ㎛)이고, 판상형 도전재 A는 BET 비표면적이 17m2/g이며, D10:1.7μm, D50:3.5μm, D90: 6.8μm이고, SWCNT는 BET 비표면적이 1000~1500m2/g 내외를 만족하고 종횡비가 10000 이상인 물질을 사용하였다.In Table 1, the silicon-based active material is Si (average particle diameter (D50): 5 μm), and the plate-shaped conductive material A has a BET specific surface area of 17 m 2 /g, D10: 1.7 μm, D50: 3.5 μm, D90: 6.8. μm, and for SWCNT, a material with a BET specific surface area of around 1000 to 1500 m 2 /g and an aspect ratio of 10000 or more was used.
또한 상기 표 1에 있어서, 제1 바인더로 PAM-1은 영률(Young's modulus)이 15x103MPa(=15GPa)인 바인더이며, PAM-2는 영률(Young's modulus)이 9x103MPa(9GPa)인 바인더이고, PAN은 영률(Young's modulus)이 102MPa이다.In addition, in Table 1, as the first binder, PAM-1 is a binder with a Young's modulus of 15x10 3 MPa (=15GPa), and PAM-2 is a binder with a Young's modulus of 9x10 3 MPa (9GPa). and PAN has a Young's modulus of 10 2 MPa.
또한 상기 표 1에 있어서, 제2 바인더로 SBR-1은 Strain이 60%인 바인더이며, SBR-2는 Strain이 40%인 바인더이며 SBR-3은 strain이 10%인 바인더이다.Also, in Table 1, as the second binder, SBR-1 is a binder with a strain of 60%, SBR-2 is a binder with a strain of 40%, and SBR-3 is a binder with a strain of 10%.
이 때 상기 제1 바인더의 영률은 PAM를 주성분으로 갖는 바인더에서 PAA 및 PAN의 혼합 비율을 조절하여 상기 범위를 만족하였고, 상기 제2 바인더의 Strain 값은 SBR 바인더에서 ST/BD의 비율을 조절하여 상기 범위를 만족하도록 구현하였다.At this time, the Young's modulus of the first binder satisfied the above range by adjusting the mixing ratio of PAA and PAN in the binder containing PAM as the main component, and the strain value of the second binder was adjusted by adjusting the ratio of ST/BD in the SBR binder. It was implemented to satisfy the above range.
상기 제1 바인더의 중량 평균 분자량은 5.0 x 105 내지 1.5 x 106 수준을 만족하며, 상기 제2 바인더는 cross-linking 전의 중량 평균 분자량은 측정 가능하지만 실제 사용되는 형태는 구형의 입자로 존재하므로 중량 평균 분자량의 측정이 되지 않는다.The weight average molecular weight of the first binder satisfies the level of 5.0 Weight average molecular weight cannot be measured.
상기 표 1에 있어서 함량은 전체 음극 조성물 100 중량부를 기준으로 한 각 조성의 무게비(중량부)를 의미할 수 있다.In Table 1, the content may refer to the weight ratio (parts by weight) of each composition based on 100 parts by weight of the total negative electrode composition.
음극의 제조Preparation of cathode
상기 표 1의 조성을 갖는 음극 조성물에 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 25중량%).A negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry to the negative electrode composition having the composition shown in Table 1 (solids concentration: 25% by weight).
이 후, 8μm 두께의 Cu foil 위에 38μm의 두께로 음극 로딩양을 76.34mg/25cm2으로 하여, 음극 활물질층을 코팅한 후 130℃에서 12시간 건조하고, 음극의 공극률을 40%로 압연하여 음극을 제조하였다.Afterwards, a negative electrode active material layer was coated on 8 μm thick Cu foil at a thickness of 38 μm with a negative electrode loading amount of 76.34 mg/25 cm 2 , dried at 130°C for 12 hours, and rolled to a porosity of 40% to form the negative electrode. was manufactured.
<이차전지의 제조><Manufacture of secondary batteries>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 15㎛), 도전재로서 카본블랙 (제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 78중량%).LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle diameter (D50): 15㎛) as the positive electrode active material, carbon black (product name: Super C65, manufacturer: Timcal) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder. A positive electrode slurry was prepared by adding N-methyl-2-pyrrolidone (NMP) as a solvent for forming positive electrode slurry at a weight ratio of :1.5:1.5 (solid concentration: 78% by weight).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 양면에 상기 양극 슬러리를 537mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 65㎛)을 형성하여, 양극을 제조하였다 (양극의 두께: 77㎛, 공극률 26%).As a positive electrode current collector, the positive electrode slurry was coated at a loading amount of 537 mg/25 cm 2 on both sides of an aluminum current collector (thickness: 12㎛), rolled, and dried in a vacuum oven at 130°C for 10 hours to form a positive electrode. An active material layer (thickness: 65㎛) was formed to prepare a positive electrode (anode thickness: 77㎛, porosity 26%).
상기 양극과 상기 실시예 및 비교예의 음극 사이에 폴리에틸렌 분리막을 개재하고 전해질을 주입하여 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured by interposing a polyethylene separator between the positive electrode and the negative electrode of the examples and comparative examples and injecting electrolyte.
상기 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 10:90의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것이었다.The electrolyte is made by adding 3% by weight of vinylene carbonate based on the total weight of the electrolyte to an organic solvent mixed with fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) at a volume ratio of 10:90, and LiPF as a lithium salt. 6 was added at a concentration of 1M.
상기 실시예들 및 비교예들의 음극을 사용한 것을 제외하고는 상기와 동일한 방법으로 모노셀을 각각 제조하여, 4.2-3.0V 범위에서 수명 특성 평가를 진행하였다.Monocells were manufactured in the same manner as above except that the cathodes of the examples and comparative examples were used, and lifespan characteristics were evaluated in the range of 4.2-3.0V.
실험예 1: 모노셀 상온 수명 특성 평가(25℃, 4.2-3.OV)Experimental Example 1: Evaluation of monocell room temperature lifespan characteristics (25℃, 4.2-3.OV)
상기 실시예들 및 비교예들에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 사이클(cycle) 테스트를 진행하였고, 용량 유지율이 80%가 되는 시점의 Cycle 횟수를 측정하였다.The secondary batteries containing the negative electrodes manufactured in the above Examples and Comparative Examples were evaluated for their lifespan using an electrochemical charger and discharger, and the capacity maintenance rate was evaluated. A cycle test was performed on the secondary battery at 4.2-3.0V 1C/0.5C, and the number of cycles was measured when the capacity retention rate reached 80%.
용량 유지율(%) = {(N번째 사이클에서의 방전 용량)/(첫 번째 사이클에서의 방전 용량)} Х 100Capacity maintenance rate (%) = {(discharge capacity in Nth cycle)/(discharge capacity in first cycle)} Х 100
그 결과는 하기 표 2와 같았다.The results were as shown in Table 2 below.
실험예 2: 모노셀 저항 증가율 측정 평가(250cycle, @SOC50, 방전)Experimental Example 2: Monocell resistance increase rate measurement evaluation (250cycle, @SOC50, discharge)
상기 실험예 1에서 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정한 후, SOC50에서 2.5C pulse로 방전하여 저항을 측정하여 저항 증가율을 비교 분석하였다.In the test in Experimental Example 1, the capacity maintenance rate was measured by charging/discharging (4.2-3.0V) at 0.33C/0.33C every 50 cycles, and then the resistance was measured by discharging at 2.5C pulse at SOC50 to determine the resistance increase rate. A comparative analysis was conducted.
상기 저항 증가율 측정 평가에 대하여, 250cycle에서의 데이터를 계산하였으며 그 결과는 하기 표 2와 같았다.For the evaluation of the resistance increase rate measurement, data at 250 cycles were calculated, and the results are shown in Table 2 below.
실험예 3: 모노셀 고온 수명 특성 평가(45℃, 4.2-3.OV)Experimental Example 3: Evaluation of monocell high temperature lifespan characteristics (45℃, 4.2-3.OV)
상기 실시예들 및 비교예들에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 사이클(cycle) 테스트를 진행하였고, 용량 유지율이 80%가 되는 시점의 Cycle 횟수를 측정하였다.The secondary batteries containing the negative electrodes manufactured in the above Examples and Comparative Examples were evaluated for their lifespan using an electrochemical charger and discharger, and the capacity maintenance rate was evaluated. A cycle test was performed on the secondary battery at 4.2-3.0V 1C/0.5C, and the number of cycles was measured when the capacity retention rate reached 80%.
그 결과는 하기 표 2와 같았다.The results were as shown in Table 2 below.
실험예 4: 전극 Curl 측정Experimental Example 4: Electrode Curl Measurement
도 3과 같이 코팅된 전극의 코팅부를 위로 오도록 두고 중심부의 높이를 측정하여 휘어짐 정도를 측정하였다. 즉 바인더의 건조 시 tensile 작용하여 코팅부가 오목해지며 이에 따라 curl 이 발생하는 것으로, 그 curl 정도를 측정하였고, 그 결과를 하기 표 2에 기재하였다.As shown in Figure 3, the degree of bending was measured by placing the coated part of the coated electrode on top and measuring the height of the center. In other words, when the binder dries, the coating becomes concave due to tensile action and thus curl occurs. The degree of curl was measured, and the results are listed in Table 2 below.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6
SOH80%(cycle)상온 수명 특성 평가
(4.2-3.0V)
SOH80%(cycle) room temperature lifespan characteristics evaluation
(4.2-3.0V)
248248 238238 241241 230230 223223 242242 203203 150150 163163 200200 170170 131131
저항 증가율
(%, @250cycle, 방전)
resistance increase rate
(%, @250cycle, discharge)
4343 4747 4545 5050 5353 6060 100100 200200 130130 105105 120120 300300
SOH80%(cycle)고온 수명 특성 평가
(4.2-3.0V)
SOH80%(cycle) high temperature lifespan characteristics evaluation
(4.2-3.0V)
230230 218218 -- -- -- -- 189189 130130 -- -- -- --
컬 평가(mm)Curl rating (mm) 1313 -- 99 77 -- -- 2525 -- -- 2020 55 --
실시예 1 내지 6과 같이 제1 바인더 및 제2 바인더를 포함하며 특정 식 1을 만족하는 것으로 특히 일정 범위의 strain을 갖는 SBR이 Blend되어 사이클 진행에 따른 부피 팽창에도 활물질 사이사이의 contact point를 유지해줄 수 있어 저항 증가율이 낮으며, 이에 따라 상온 및 고온에서의 수명 성능도 우수함을 확인할 수 있었다.As in Examples 1 to 6, it contains a first binder and a second binder and satisfies Specific Equation 1. In particular, SBR with a certain range of strain is blended to maintain the contact point between active materials even when the volume expands as the cycle progresses. It was confirmed that the rate of increase in resistance is low, and thus the lifespan performance at room temperature and high temperature is also excellent.
참고로, 실시예 1, 3 및 4와 비교예 1, 4 및 5를 비교하였을 때, SBR의 비율이 높을수록 전극의 curl 발생이 적어 공정 안정성에 유리함을 확인할 수 있었으며, 비교예 4의 경우처럼 SBR의 비율이 본 출원의 비율 미만인 경우 curl 현상이 심해짐을 확인할 수 있었다.For reference, when comparing Examples 1, 3, and 4 with Comparative Examples 1, 4, and 5, it was confirmed that the higher the ratio of SBR, the less curling of the electrode occurs, which is advantageous for process stability. As in the case of Comparative Example 4, It was confirmed that the curl phenomenon became worse when the ratio of SBR was less than the ratio of this application.
참고로 비교예 1의 경우 제2 바인더를 포함하지 않은 경우이고, 비교예 2는 제1 바인더를 포함하지 않은 경우이며, 비교예 3은 제1 및 제2 바인더를 포함하나 그 함량 범위가 식 1의 범위를 초과하는 경우이고, 비교예 4는 식 1의 범위 미만인 경우이며, 비교예 5는 식 1의 범위는 만족하나 제1 바인더의 영률이 본 출원 범위 미만인 경우에 해당하고, 비교예 6은 식 1의 범위는 만족하나 제2 바인더의 strain이 본 출원 범위 미만인 경우에 해당한다.For reference, Comparative Example 1 does not include the second binder, Comparative Example 2 does not include the first binder, and Comparative Example 3 includes the first and second binders, but the content range is Equation 1 exceeds the range of, Comparative Example 4 corresponds to a case where it is below the range of Equation 1, Comparative Example 5 corresponds to a case where the range of Equation 1 is satisfied but the Young's modulus of the first binder is below the range of the present application, and Comparative Example 6 is This applies to a case where the range of Equation 1 is satisfied but the strain of the second binder is less than the range of this application.
상기 비교예 1 내지 6을 각각 확인하였을 때, 본 출원에 따른 실시예 1 내지 6에 비하여 수명 특성이 낮으며, 저항 증가율이 높음을 확인할 수 있었고, 또한 curl 현상 또한 많이 발생하고 있음을 확인할 수 있었다.When each of the Comparative Examples 1 to 6 was confirmed, it was confirmed that the lifespan characteristics were lower and the resistance increase rate was higher compared to Examples 1 to 6 according to the present application, and it was also confirmed that the curl phenomenon occurred a lot. .
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있는 것을 확인할 수 있었다.That is, the anode composition according to the present application includes first and second binders of a specific composition to improve dispersibility for dispersing the active material and improve adhesion even when using a silicon-based active material. It was confirmed that the problem of conductive network disconnection due to early and late adhesion and volume expansion of the battery can be solved.
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질 입자를 고함량 가져 고용량 및 고밀도의 음극을 얻을 수 있음과 동시에, 실리콘계 활물질 입자를 고함량 가짐에 따른 부피 팽창 등의 문제점을 해결함을 확인할 수 있었다.In other words, it was confirmed that the negative electrode composition according to the present application has a high content of silicon-based active material particles to obtain a negative electrode with high capacity and high density, and at the same time solves problems such as volume expansion due to the high content of silicon-based active material particles.

Claims (15)

  1. 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로,Silicone-based active material; cathode conductive material; A negative electrode composition comprising: and a negative electrode binder,
    상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고,The cathode binder includes a first binder having a Young's modulus of 10 3 MPa or more and a second binder having a strain of 15% or more,
    상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물:A negative electrode composition in which the negative electrode binder satisfies the following formula 1:
    [식 1][Equation 1]
    1 ≤ X/Y < 41 ≤ X/Y < 4
    상기 식 1에 있어서,In equation 1 above,
    Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,Y refers to parts by weight of the first binder based on 100 parts by weight of the negative electrode binder,
    X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.X refers to parts by weight of the second binder based on 100 parts by weight of the anode binder.
  2. 청구항 1에 있어서,In claim 1,
    상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하이며, The X is 50 parts by weight or more and 95 parts by weight or less based on 100 parts by weight of the negative electrode binder,
    상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하인 것인 음극 조성물.A negative electrode composition wherein Y is in an amount of 5 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the negative electrode binder.
  3. 청구항 1에 있어서, In claim 1,
    상기 음극 조성물 100 중량부 기준 상기 음극 바인더는 1 중량부 이상 20 중량부 이하인 것인 음극 조성물.A negative electrode composition wherein the negative electrode binder is contained in an amount of 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the negative electrode composition.
  4. 청구항 1에 있어서,In claim 1,
    상기 제1 바인더는 PAA, PAN 및 PAM 으로 이루어진 군에서 선택되는 1 이상을 포함하고,The first binder includes at least one selected from the group consisting of PAA, PAN, and PAM,
    상기 제2 바인더는 고무계 바인더인 것인 음극 조성물.The negative electrode composition wherein the second binder is a rubber-based binder.
  5. 청구항 1에 있어서,In claim 1,
    상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상인 음극 조성물.The silicon-based active material is an anode composition in an amount of 60 parts by weight or more based on 100 parts by weight of the anode composition.
  6. 청구항 1에 있어서,In claim 1,
    상기 실리콘계 활물질은 SiOx (x=0), SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.A negative electrode composition wherein the silicon-based active material includes one or more selected from the group consisting of SiOx (x=0), SiOx (0<x<2), SiC, and Si alloy.
  7. 청구항 1에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물.The method of claim 1, wherein the silicon-based active material includes one or more selected from the group consisting of SiOx (x=0) and SiOx (0<x<2), and based on 100 parts by weight of the silicon-based active material, the SiOx (x=0) A negative electrode composition comprising 70 parts by weight or more.
  8. 청구항 1에 있어서,In claim 1,
    상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하인 것인 음극 조성물.The anode conductive material is in an amount of 0.1 part by weight or more and 40 parts by weight or less based on 100 parts by weight of the anode composition.
  9. 청구항 1에 있어서,In claim 1,
    상기 음극 도전재는 점형 도전재; 면형 도전재; 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.The cathode conductive material is a point-shaped conductive material; Planar conductive material; and a negative electrode composition comprising at least one selected from the group consisting of linear conductive materials.
  10. 청구항 9에 있어서,In claim 9,
    상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하; 및 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하를 포함하는 것인 음극 조성물.The negative electrode conductive material is 80 parts by weight or more and 99.9 parts by weight or less of the planar conductive material based on 100 parts by weight of the negative electrode conductive material; And a negative electrode composition comprising 0.1 part by weight or more and 20 parts by weight or less of the linear conductive material.
  11. 청구항 1에 있어서, 상기 제1 바인더의 중량 평균 분자량은 100,000g/mol 이상 2,000,000g/mol 이하인 것인 음극 조성물.The anode composition according to claim 1, wherein the weight average molecular weight of the first binder is 100,000 g/mol or more and 2,000,000 g/mol or less.
  12. 음극 집전체층; 및Negative current collector layer; and
    상기 음극 집전체층의 일면 또는 양면에 형성된 청구항 1 내지 청구항 11 중 어느 한 항에 따른 음극 조성물을 포함하는 음극 활물질층;a negative electrode active material layer comprising the negative electrode composition according to any one of claims 1 to 11 formed on one or both sides of the negative electrode current collector layer;
    을 포함하는 리튬 이차 전지용 음극.A negative electrode for a lithium secondary battery containing.
  13. 청구항 12에 있어서,In claim 12,
    상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하를 만족하는 것인 리튬 이차 전지용 음극.A negative electrode for a lithium secondary battery, wherein the adhesive strength of the surface of the negative electrode active material layer in contact with the negative electrode current collector layer satisfies 100 gf/5mm or more and 500 gf/5mm or less under normal pressure conditions at 25°C.
  14. 청구항 12에 있어서,In claim 12,
    상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며,The thickness of the negative electrode current collector layer is 1 μm or more and 100 μm or less,
    상기 음극 활물질층의 두께는 20μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극.A negative electrode for a lithium secondary battery, wherein the thickness of the negative electrode active material layer is 20 μm or more and 500 μm or less.
  15. 양극;anode;
    청구항 12에 따른 리튬 이차 전지용 음극; Negative electrode for lithium secondary battery according to claim 12;
    상기 양극과 상기 음극 사이에 구비된 분리막; 및A separator provided between the anode and the cathode; and
    전해질;을 포함하는 리튬 이차 전지.A lithium secondary battery containing an electrolyte.
PCT/KR2023/008714 2022-06-23 2023-06-22 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode WO2023249444A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220076784 2022-06-23
KR10-2022-0076784 2022-06-23
KR1020230080521A KR102650284B1 (en) 2022-06-23 2023-06-22 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR10-2023-0080521 2023-06-22

Publications (1)

Publication Number Publication Date
WO2023249444A1 true WO2023249444A1 (en) 2023-12-28

Family

ID=89380254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008714 WO2023249444A1 (en) 2022-06-23 2023-06-22 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode

Country Status (1)

Country Link
WO (1) WO2023249444A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147052A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Binder solution for anode, active material slurry for anode including the binder solution, anode using the active material slurry and electrochemical device including the anode
KR20180006140A (en) * 2016-07-08 2018-01-17 주식회사 코캄 Anode active material-containing slurry, method for producing the slurry, anode using the slurry and lithium secondary battery including the anode
US10008716B2 (en) * 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
KR102108136B1 (en) * 2018-08-10 2020-05-07 한국생산기술연구원 All solid lithium secondary battery using solid electrolyte and method for manufacturing the same
KR20200089568A (en) * 2019-01-17 2020-07-27 주식회사 엘지화학 Negative electrode and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008716B2 (en) * 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
KR20140147052A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Binder solution for anode, active material slurry for anode including the binder solution, anode using the active material slurry and electrochemical device including the anode
KR20180006140A (en) * 2016-07-08 2018-01-17 주식회사 코캄 Anode active material-containing slurry, method for producing the slurry, anode using the slurry and lithium secondary battery including the anode
KR102108136B1 (en) * 2018-08-10 2020-05-07 한국생산기술연구원 All solid lithium secondary battery using solid electrolyte and method for manufacturing the same
KR20200089568A (en) * 2019-01-17 2020-07-27 주식회사 엘지화학 Negative electrode and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
WO2021101188A1 (en) Anode and secondary battery comprising same
WO2021251663A1 (en) Anode and secondary battery comprising same
WO2023059015A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023113464A1 (en) Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2022010225A1 (en) Anode, and secondary battery comprising anode
WO2023249444A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
WO2023120966A1 (en) Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023249446A1 (en) Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023249445A1 (en) Lithium secondary battery anode, method for manufacturing lithium secondary battery anode, and lithium secondary battery comprising anode
WO2023214711A1 (en) Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023249442A1 (en) Anode composition, anode for lithium secondary battery comprising same, and lithium secondary battery comprising anode
WO2024054019A1 (en) Negative electrode composition, negative electrode for lithium secondary battery, comprising same, and lithium secondary battery comprising negative electrode
WO2024054016A1 (en) Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023059016A1 (en) Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2024029924A1 (en) Anode active material, method for preparing anode active material, anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2024085708A1 (en) Negative electrode composition, negative electrode for lithium secondar battery, comprising same, and lithium secondary battery comprising negative electrode
WO2023068601A1 (en) Anode for lithium secondary battery, lithium secondary battery including anode, and manufacturing method for anode for lithium secondary battery
WO2023249443A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023182852A1 (en) Anode composition, anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2024014897A1 (en) Anode active material, method for manufacturing anode active material, anode composition, anode for lithium secondary battery, including same, and lithium secondary battery including anode
WO2023182701A1 (en) Anode slurry, preparation method for anode slurry, anode for lithium secondary battery including anode slurry, and method for manufacturing anode for lithium secondary battery
WO2023059151A1 (en) Negative electrode composition, negative electrode for lithium secondary battery including same, lithium secondary battery including negative electrode, and method for preparing negative electrode composition
WO2023153716A1 (en) Transfer laminate, method for manufacturing anode for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023113330A1 (en) Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023068838A1 (en) Anode composition, lithium secondary battery anode comprising same, lithium secondary battery comprising anode, and method for preparing anode composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827553

Country of ref document: EP

Kind code of ref document: A1