WO2023249291A1 - Aerogel preparation method - Google Patents

Aerogel preparation method Download PDF

Info

Publication number
WO2023249291A1
WO2023249291A1 PCT/KR2023/007844 KR2023007844W WO2023249291A1 WO 2023249291 A1 WO2023249291 A1 WO 2023249291A1 KR 2023007844 W KR2023007844 W KR 2023007844W WO 2023249291 A1 WO2023249291 A1 WO 2023249291A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
airgel
reaction tank
organogel
solvent
Prior art date
Application number
PCT/KR2023/007844
Other languages
French (fr)
Korean (ko)
Inventor
최익준
장주영
최강희
이찬형
강동희
최정원
박병제
Original Assignee
주식회사 엔에스앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔에스앤티 filed Critical 주식회사 엔에스앤티
Publication of WO2023249291A1 publication Critical patent/WO2023249291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant

Definitions

  • the present invention relates to a method for producing airgel with a base base.
  • aerogels have high porosity of up to 99%, low refractive index of 1.01 to 1.1, high transparency of over 90%, and high specific surface area of over 1000 m 2 /g. It is an advanced material with characteristics such as very low thermal conductivity of less than 0.02 W/mK.
  • Airgel which has these characteristics, is evaluated as having high applicability as an energy and environmental material, and a material for the advancement of the electronics industry due to its unique thermal, electrical, and optical properties. Therefore, this material is being attempted to be applied as an ultra-insulating material, acoustic wave delay material, catalyst carrier, and interlayer insulating material for high-speed circuits of next-generation semiconductors.
  • airgel has many difficulties in the manufacturing process when mass-producing it for commercial purposes. Manufacturing takes a long time, and a lot of money must be invested to build production facilities. Additionally, the quality of mass-produced airgel may be lower than when produced in small quantities in a laboratory.
  • One object of the present invention is to provide a method for manufacturing airgel that can shorten production time and improve production equipment efficiency.
  • Another object of the present invention is to provide a method for manufacturing airgel that can improve the quality of the final product in addition to improving productivity as described above.
  • a method for producing airgel according to an aspect of the present invention includes the steps of reacting water glass and a first material in a reaction tank to obtain a hydrogel; Moving the hydrogel to a solvent exchange tank and then reacting the hydrogel with a second material in the solvent exchange tank to obtain an organogel; And after moving the organogel to a dryer, drying the organogel in the dryer to obtain airgel powder, wherein the first material includes pure water, HMDS, and nitric acid, and the nitric acid is next to the HMDS. It can be added to the reaction tank.
  • the solvent may be added to the solvent exchange tank without adding the solvent to the reaction tank.
  • no second material is added to the reaction tank, and the second material may include n-hexane.
  • the method includes reacting water glass and a first material in a reaction tank to obtain a hydrogel; Moving the hydrogel to a solvent exchange tank and then reacting the hydrogel with a second material in the solvent exchange tank to obtain an organogel; And after moving the organogel to a dryer, drying the organogel in the dryer to obtain airgel powder, wherein the first material includes pure water, HMDS, and nitric acid, and the nitric acid is next to the HMDS. It is added to the reaction tank, no second material is added to the reaction tank, and the second material may include n-hexane.
  • the nitric acid may be introduced through the bottom of the reaction tank and first mixed with the water glass and pure water mixture before reacting with the HMDS.
  • the nitric acid may be introduced along the wall of the reaction tank and react with the HMDS.
  • a step of cleaning the reaction tank may be further provided.
  • the step of cleaning the reaction tank includes spraying pure water on the inner surface of the reaction tank while rotating the spray nozzle 360°. can do.
  • the second material may include n-hexane.
  • the solvent substitution tank may be made of a material with lower corrosion resistance, acid resistance, and high-temperature strength than the reaction tank.
  • the controller may include controlling the opening and closing of a discharge valve for discharging the wastewater based on the level of the wastewater measured by a level sensor.
  • the level sensor may be a radar-type sensor that is installed in the solvent substitution tank and emits electromagnetic waves in a direction toward the interface between the organogel layer and the wastewater layer.
  • a step of washing the solvent replacement tank may be further provided.
  • the step of cleaning the solvent displacement tank includes spraying n-hexane on the inner surface of the solvent displacement tank while rotating the spray nozzle 360°. It may include steps.
  • the airgel was manufactured by the method 1-15 above.
  • the airgel may have a thermal conductivity of less than 0.020 W/mK and an apparent density of less than 0.09 g/cm 3 .
  • the airgel has mesopores, and in SEM image analysis at 20,000 magnification, the number of mesopores of 500 nm or more per area of 3 ⁇ m x 5 ⁇ m may be 6 or more.
  • hydrogel is obtained from water glass in a reaction tank, then the hydrogel is moved to a solvent replacement tank to obtain organogel, and then airgel powder is obtained through drying in a dryer. While the substitution process is in progress for a long time in the tank, the next round of reaction takes place in the reaction tank, thereby significantly shortening the overall production time.
  • the organogel is produced separately in the solvent exchange tank, disturbance of raw material mixing due to the organogel remaining in the reaction tank can be structurally prevented compared to the case where the organogel is produced in the reaction tank. Due to the absence of this disturbance, the quality of the final produced airgel can also be improved.
  • the explosive reaction between HMDS and nitric acid can be prevented by introducing nitric acid through the lower channel or wall channel of the reaction tank. This lowers the sensitivity and risk of the reaction process and makes it possible to obtain higher quality airgel.
  • Figure 1 is a flowchart showing an airgel manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing the arrangement of the manufacturing equipment 100 and the input of materials for implementing the manufacturing method of FIG. 1.
  • Figure 3 is a diagram showing the chemical reaction equation for producing airgel.
  • FIG. 4 is a conceptual diagram showing the specific structure of the reaction tank 110 of FIG. 2.
  • FIG. 5 is a conceptual diagram showing the specific structure of the solvent substitution tank 130 of Figure 2.
  • Figure 6(A) is a SEM image of the airgel powder prepared in the comparative example at x1500 magnification
  • Figure 6(B) is an SEM image of the airgel powder prepared in the example at x1500 magnification.
  • Figure 7(A) is a SEM image of the airgel powder prepared in the comparative example at x5000 magnification
  • Figure 7(B) is an SEM image of the airgel powder prepared in the example at x5000 magnification.
  • Figure 8(A) is a SEM image of the airgel powder prepared in the comparative example at a magnification of x20,000
  • Figure 8(B) is a SEM image of the airgel powder prepared in the example at a magnification of x20,000.
  • Figure 1 is a flowchart showing an airgel manufacturing method according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram showing the arrangement of the manufacturing equipment 100 and material input for implementing the manufacturing method of Figure 1.
  • airgel production begins with a step (S1) of reacting water glass and the first material.
  • the first water glass introduced into the reaction tank 110 is sodium silicate (Na 2 SiO 3 ). Before the water glass is introduced from the storage tank into the reaction tank 110, the amount required for the reaction can be measured and placed on standby. Water glass can be put into the reaction tank 110 in a short time by gravity.
  • the first material is added to the reaction tank 110.
  • the first material may include demineralized water, HMDS (Hexamethyldisilazane), and nitric acid. These must be sequentially added to the reaction tank 110.
  • an agitator can be installed in the reaction tank 110 and stirred to ensure sufficient mixing.
  • HMDS is added at 1-minute intervals while water glass and pure water are being stirred.
  • nitric acid HNO 3 , 60%
  • the stirring mechanism is continuously operated so that they are well mixed during the reaction.
  • the water glass As pure water is added to the water glass, the water glass is hydrolyzed to create an aqueous water glass solution. As HMDS and nitric acid are added, the property changes to a gel and the pH concentration begins to be neutralized. The total process time in the reaction tank 110 is less than 20 minutes.
  • the internal temperature of the reaction tank 110 should be about 45-50°C.
  • a heating jacket surrounding the housing of the reaction tank 110 heats the reaction tank 110 using hot water.
  • the internal temperature of the reaction tank 110 may be about 60°C.
  • hydrogel is formed in the reaction tank 110.
  • the generated hydrogel is discharged from the reaction tank 110.
  • reaction tank 110 After the reaction tank 110 is emptied, cleaning of the reaction tank 110 may be performed.
  • a spray nozzle is operated within the reaction tank 110.
  • the spray nozzle can spray pure water onto the inner surface of the reaction tank 110 while rotating 360°.
  • the reaction tank 110 receives the next round of water glass and the first material in a cleanly cleaned state.
  • the cleaned wastewater is sent to a wastewater treatment device for treatment.
  • the hydrogel discharged from the reaction tank 110 is moved to another container, that is, the solvent replacement tank 130 (S3).
  • the solvent substitution tank 130 may be manufactured differently from the reaction tank 110 in terms of materials. Specifically, the reaction tank 110 must be made of, for example, STS316L in order to respond to corrosion and temperature decrease in response to strong acids and strong bases. On the other hand, since this is not the case for the solvent substitution tank 130, STS304, a material with lower corrosion resistance, acid resistance, and high-temperature strength than the reaction tank 110, is sufficient.
  • the solvent substitution tank 130 can be manufactured at 40% of the material cost compared to the reaction tank 110. Since the solvent displacement tank 130 must be twice the size of the reaction tank 110, even if they are manufactured separately, the overall cost is further reduced compared to the case where only the reaction tank 110 is manufactured in a larger size.
  • n-hexane for example, is added as a second material to the hydrogel (S5).
  • Hydrogel undergoes a condensation reaction with n-hexane and is replaced with organogel and water.
  • the substitution process is completed within about 40 minutes while maintaining the temperature of 50°C at normal pressure. This time is approximately twice that of the time in the reaction tank 110.
  • Water (wastewater) is discharged to a wastewater treatment device, which is explained with reference to FIG. 5.
  • the organogel is moved to the dryer 150 (S7).
  • the solvent displacement tank 130 can be cleaned. This can be achieved by spraying n-hexane into the solvent substitution tank 130. n-hexane can be sprayed to every corner of the inner surface of the solvent replacement tank 130 by rotating the spray nozzle 360°.
  • the organogel becomes airgel powder through a drying process (S9).
  • the organogel introduced into the dryer 150 is stirred at a temperature of about 130°C and under vacuum. Accordingly, n-hexane and residual moisture evaporate, and the organogel undergoes a phase transformation into a solid state.
  • n-hexane may be separated and sent to the condenser 170, liquefied, separated, and reintroduced into the solvent replacement tank 130.
  • the reuse rate of n-hexane can be around 90%, and a certain amount may need to be discharged periodically to maintain quality. To compensate for this, new n-hexane can be additionally mixed with the recycled n-hexane.
  • the airgel powder is subjected to shear force and its pores are homogenized. Airgel powder is sent to silos, stored, and can be shipped in required quantities.
  • FIG. 4 is a conceptual diagram showing the specific structure of the reaction tank 110 of FIG. 2.
  • the reaction tank 110 includes a housing 111 having an internal space.
  • a stirring mechanism 113 is installed in the internal space.
  • a lower input channel 115 is formed in the lower part of the housing 111.
  • the lower input channel 115 may be provided with a valve (not shown) responsible for opening and closing the channel.
  • An inner wall input channel 117 is formed in the upper part of the housing 111.
  • the inner wall input channel 117 may be the inner wall of the housing 111 itself, a groove formed in the inner wall, or a pipe attached to the inner wall.
  • HMDS (H) is added to the mixture (M) of water glass and pure water.
  • HMDS (H) is a hydrophobic liquid, so it does not easily mix with the mixed solution (M).
  • M the mixed solution
  • the middle part of the layer formed by HMDS (H) becomes thick according to the inertial momentum.
  • the closer it is to the inner wall of the housing 111 the thinner the layer of HMDS (H) becomes.
  • the first is to slowly inject nitric acid through the lower injection channel 115.
  • nitric acid is first mixed with the mixed solution (M) before reacting with HMDS (H). Accordingly, nitric acid can react little by little with HMDS(H).
  • nitric acid is slowly injected along the inner wall of the housing 111 through the inner wall injection channel 117. In that case, nitric acid may react slowly with the thin portion of the HMDS(H) layer.
  • Figure 5 is a conceptual diagram showing the specific structure of the solvent substitution tank 130 of Figure 2.
  • organogel (O) and wastewater (W) are generated within the housing 131 of the solvent substitution tank 130 according to a condensation reaction.
  • the organogel (O) is located on the upper side of the wastewater (W) due to the difference in specific gravity.
  • layer separation of the organogel (O) and the waste water (W) may occur more easily.
  • Wastewater (W) must be discharged to the wastewater treatment device through the discharge valve (133).
  • the discharge valve 133 must be controlled to open only until the waste water (W) is discharged.
  • a controller (not shown) that controls the opening and closing of the discharge valve 133 operates based on the detection result of the level sensor 135.
  • the level sensor 135 measures the water level of the wastewater (W) by measuring the interface (I) between the organogel (O) and the wastewater (W).
  • the level sensor 135 may be a radar-type sensor installed in the housing 131. Accordingly, the level sensor 135 can measure the height of the interface I in a non-contact manner by emitting electromagnetic waves in a direction toward the interface I.
  • the controller controls the discharge valve 133 based on the detection result of the level sensor 135, so that the discharge valve 133 can be opened and closed according to the exact level of the wastewater (W). This prevents loss of not only wastewater (W) but also organogel (O).
  • the organogel (O) can be moved to the dryer (150) through another line (137). Furthermore, ammonia generated within the housing 131 may be moved to the scrubber 190 through a separate line 139.
  • the airgel manufacturing method as described above is not limited to the configuration and operation method of the embodiments described above.
  • the above embodiments may be configured so that various modifications can be made by selectively combining all or part of each embodiment.
  • Figure 6(A) is a SEM image of the airgel powder prepared in the comparative example at x1500 magnification
  • Figure 6(B) is an SEM image of the airgel powder prepared in the example at x1500 magnification.
  • Figure 6(A) it can be seen that the gelation process and particle growth were interrupted by impurities, resulting in more small pieces compared to Figure 6(B). It appears that organic impurities inhibited the agglomeration process between airgel particles.
  • Figure 7(A) is a SEM image of the airgel powder prepared in the comparative example at x5000 magnification
  • Figure 7(B) is an SEM image of the airgel powder prepared in the example at x5000 magnification. It can be seen that the pores in Figure 7(B) are more developed than in Figure 7(A). This indicates that FIG. 7(B) was properly mesoporated.
  • Figure 8(A) is a SEM image of the airgel powder prepared in the comparative example at a magnification of x20,000
  • Figure 8(B) is a SEM image of the airgel powder prepared in the example at a magnification of x20,000.
  • the number of mesopores larger than 500 nm was 8 per area of 3 ⁇ m
  • hydrogel is obtained from water glass in a reaction tank, then the hydrogel is moved to a solvent displacement tank to obtain organogel, and then airgel powder is obtained through drying in a dryer, so that the hydrogel is stored in the solvent displacement tank for a long time.
  • the overall production time can be significantly shortened. Since the organogel is produced separately in the solvent substitution tank, the organogel is produced separately from the reaction tank. Disturbance in the mixing of raw materials due to remaining in this reaction tank can be structurally prevented. Due to the absence of this disturbance, the quality of the final produced airgel can also be improved.
  • the explosive reaction between HMDS and nitric acid can be prevented by introducing nitric acid through the lower channel or wall channel of the reaction tank. This lowers the sensitivity and risk of the reaction process and makes it possible to obtain higher quality airgel.

Abstract

The present invention provides an aerogel preparation method comprising the steps of: reacting water glass and a first material in a reaction bath to obtain a hydrogel; transferring the hydrogel into a solvent replacement bath and then reacting the hydrogel and a second material in the solvent replacement bath to obtain an organogel; and transferring the organogel into a dryer and then drying the organogel in the dryer to obtain an aerogel powder, wherein the first material includes pure water, HMDS, and nitric acid, and the nitric acid is introduced into the reaction bath after HMDS.

Description

에어로젤 제조 방법 Airgel manufacturing method
본 발명은 염기 베이스로 에어로젤을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing airgel with a base base.
일반적으로, 에어로젤(aerogel)은 최대 99%에 달하는 높은 기공도와 1.01 ~ 1.1의 낮은 굴절률(refractive index) 및 90% 이상의 높은 투명도(transparency), 1000 m2/g 이상의 높은 비표면적(specific surface area)과 0.02 W/mK 이하의 매우 낮은 열전도도(thermal conductivity) 등의 특성을 갖는 첨단소재이다.In general, aerogels have high porosity of up to 99%, low refractive index of 1.01 to 1.1, high transparency of over 90%, and high specific surface area of over 1000 m 2 /g. It is an advanced material with characteristics such as very low thermal conductivity of less than 0.02 W/mK.
이런 특성을 갖는 에어로젤은 특유의 열적, 전기적, 광학적 특성으로 인해 에너지 및 환경 소재, 전자산업의 고도화를 위한 소재로서 응용성이 높은 것으로 평가되고 있다. 따라서 이 물질은 초단열재, 음파지연재, 촉매담지체 및 차세대 반도체의 고속회로용 층간 절연물질로의 응용이 시도되고 있다.Airgel, which has these characteristics, is evaluated as having high applicability as an energy and environmental material, and a material for the advancement of the electronics industry due to its unique thermal, electrical, and optical properties. Therefore, this material is being attempted to be applied as an ultra-insulating material, acoustic wave delay material, catalyst carrier, and interlayer insulating material for high-speed circuits of next-generation semiconductors.
에어로젤은 이와 같은 우수한 특성에도 불구하고 상업용으로 대량 생산하는데 있어서 제조 공정 상의 어려움이 많이 있었다. 제조 시간이 오래 걸리고, 생산 시설을 구축하는데 많이 자금이 투자되어야 한다. 또한, 실험실에서 소량 생산된 경우에 비해 대량 생산된 에어로젤의 품질이 떨어지기도 한다.Despite these excellent properties, airgel has many difficulties in the manufacturing process when mass-producing it for commercial purposes. Manufacturing takes a long time, and a lot of money must be invested to build production facilities. Additionally, the quality of mass-produced airgel may be lower than when produced in small quantities in a laboratory.
본 발명의 일 목적은, 생산 시간을 단축하고 생산 설비를 효율화할 수 있는, 에어로젤 제조 방법을 제공하는 것이다.One object of the present invention is to provide a method for manufacturing airgel that can shorten production time and improve production equipment efficiency.
본 발명의 다른 일 목적은, 위와 같은 생산성 향상과 더불어, 최종 생산물의 품질을 높일 수 있는, 에어로젤 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing airgel that can improve the quality of the final product in addition to improving productivity as described above.
1. 본 발명의 일 측면에 따른 에어로젤 제조 방법은, 반응조에서 물유리와 제1 물질을 반응시켜, 하이드로젤을 얻는 단계; 상기 하이드로젤을 용매 치환조로 이동시킨 후, 상기 용매 치환조에서 상기 하이드로젤과 제2 물질을 반응시켜 오가노젤을 얻는 단계; 및 상기 오가노젤을 건조기로 이동시킨 후, 상기 건조기에서 상기 오가노젤을 건조하여 에어로젤 파우더를 얻는 단계를 포함하고, 상기 제1 물질은, 순수, HMDS, 및 질산을 포함하고, 상기 질산은 상기 HMDS 다음으로 상기 반응조에 투입될 수 있다.1. A method for producing airgel according to an aspect of the present invention includes the steps of reacting water glass and a first material in a reaction tank to obtain a hydrogel; Moving the hydrogel to a solvent exchange tank and then reacting the hydrogel with a second material in the solvent exchange tank to obtain an organogel; And after moving the organogel to a dryer, drying the organogel in the dryer to obtain airgel powder, wherein the first material includes pure water, HMDS, and nitric acid, and the nitric acid is next to the HMDS. It can be added to the reaction tank.
2. 상기 1 구체예에서 상기 반응조에는 용매를 투입하지 않고, 용매치환조에 용매를 투입할 수 있다.2. In the first embodiment above, the solvent may be added to the solvent exchange tank without adding the solvent to the reaction tank.
3. 상기 1-2 구체예에서, 상기 반응조에는 제2 물질을 투입하지 않으며, 상기 제2 물질은 n-헥산을 포함할 수 있다.3. In embodiment 1-2, no second material is added to the reaction tank, and the second material may include n-hexane.
4. 상기 1-3 구체예에서, 상기 방법은 반응조에서 물유리와 제1 물질을 반응시켜, 하이드로젤을 얻는 단계; 상기 하이드로젤을 용매 치환조로 이동시킨 후, 상기 용매 치환조에서 상기 하이드로젤과 제2 물질을 반응시켜 오가노젤을 얻는 단계; 및 상기 오가노젤을 건조기로 이동시킨 후, 상기 건조기에서 상기 오가노젤을 건조하여 에어로젤 파우더를 얻는 단계를 포함하고, 상기 제1 물질은 순수, HMDS, 및 질산을 포함하고, 상기 질산은 상기 HMDS 다음으로 상기 반응조에 투입되며, 상기 반응조에는 제2 물질을 투입하지 않으며, 상기 제2 물질은 n-헥산을 포함하는 것일 수 있다.4. In embodiments 1-3, the method includes reacting water glass and a first material in a reaction tank to obtain a hydrogel; Moving the hydrogel to a solvent exchange tank and then reacting the hydrogel with a second material in the solvent exchange tank to obtain an organogel; And after moving the organogel to a dryer, drying the organogel in the dryer to obtain airgel powder, wherein the first material includes pure water, HMDS, and nitric acid, and the nitric acid is next to the HMDS. It is added to the reaction tank, no second material is added to the reaction tank, and the second material may include n-hexane.
5. 상기 1-4 구체예에서, 상기 질산은, 상기 반응조의 하부를 통해 투입되어, 상기 HMDS와 반응하기 전에 상기 물유리 및 상기 순수의 혼합액과 먼저 섞이게 될 수 있다.5. In embodiments 1-4, the nitric acid may be introduced through the bottom of the reaction tank and first mixed with the water glass and pure water mixture before reacting with the HMDS.
6. 상기 1-5 구체예에서, 상기 반응조에서 상기 물유리, 상기 순수, 및 상기 HMDS의 혼합액이 교반되는 중에, 상기 질산은 상기 반응조의 벽을 타고 투입되어 상기 HMDS와의 반응하게 될 수 있다.6. In embodiments 1-5, while the mixed solution of water glass, pure water, and HMDS is stirred in the reaction tank, the nitric acid may be introduced along the wall of the reaction tank and react with the HMDS.
7. 상기 1-6 구체예에서, 상기 하이드로젤이 상기 용매 치환조로 이동된 후에, 상기 반응조를 세정하는 단계가 더 구비될 수 있다.7. In embodiments 1-6, after the hydrogel is moved to the solvent exchange tank, a step of cleaning the reaction tank may be further provided.
8. 상기 1-7 구체예에서, 상기 하이드로젤이 상기 용매 치환조로 이동된 후에, 상기 반응조를 세정하는 단계는, 분사 노즐을 360° 회전시키면서 상기 반응조의 내면에 대해 순수를 분사하는 단계를 포함할 수 있다.8. In embodiments 1-7, after the hydrogel is moved to the solvent exchange tank, the step of cleaning the reaction tank includes spraying pure water on the inner surface of the reaction tank while rotating the spray nozzle 360°. can do.
9. 상기 1-8 구체예에서, 상기 제2 물질은, n-헥산을 포함할 수 있다.9. In embodiments 1-8, the second material may include n-hexane.
10. 상기 1-9 구체예에서, 상기 반응조에는 오가노젤이 존재하지 않는다.10. In embodiments 1-9 above, there is no organogel in the reaction tank.
11. 상기 1-10 구체예에서, 상기 용매 치환조는, 상기 반응조 보다 내식성, 내산성, 및 고온강도가 낮은 재료로 제작된 것일 수 있다.11. In embodiments 1-10, the solvent substitution tank may be made of a material with lower corrosion resistance, acid resistance, and high-temperature strength than the reaction tank.
12. 상기 1-11 구체예에서, 상기 오가노젤을 상기 건조기로 이동시키기 전에 상기 용매 치환조에서 상기 오가노젤과 함께 발생된 폐수를 배출하는 단계를 더 포함하고, 상기 폐수를 배출하는 단계는, 제어기가 레벨 센서에 의해 측정된 상기 폐수의 수위에 기초하여 상기 폐수의 배출을 위한 배출 밸브의 개폐를 제어하는 단계를 포함할 수 있다.12. In embodiments 1-11, further comprising discharging wastewater generated with the organogel in the solvent displacement tank before moving the organogel to the dryer, wherein the step of discharging the wastewater includes, The controller may include controlling the opening and closing of a discharge valve for discharging the wastewater based on the level of the wastewater measured by a level sensor.
13. 상기 1-12 구체예에서, 상기 레벨 센서는, 상기 용매 치환조에 설치되고, 상기 오가노젤층과 상기 폐수층의 경계면을 향한 방향으로 전자기파를 발사하는 레이다 타입의 센서일 수 있다.13. In embodiments 1-12, the level sensor may be a radar-type sensor that is installed in the solvent substitution tank and emits electromagnetic waves in a direction toward the interface between the organogel layer and the wastewater layer.
14. 상기 1-13 구체예에서, 상기 오가노젤이 상기 건조기로 이동된 후에, 상기 용매 치환조를 세정하는 단계가 더 구비될 수 있다.14. In embodiments 1-13, after the organogel is moved to the dryer, a step of washing the solvent replacement tank may be further provided.
15. 상기 1-14 구체예에서, 상기 오가노젤이 상기 건조기로 이동된 후에, 상기 용매 치환조를 세정하는 단계는, 분사 노즐을 360° 회전시키면서 상기 용매 치환조의 내면에 대해 n-헥산을 분사하는 단계를 포함할 수 있다.15. In embodiments 1-14, after the organogel is moved to the dryer, the step of cleaning the solvent displacement tank includes spraying n-hexane on the inner surface of the solvent displacement tank while rotating the spray nozzle 360°. It may include steps.
16. 본 발명의 다른 관점은 에어로젤에 관한 것이다. 상기 에어로젤은 상기 1-15의 방법으로 제조된 것이다. 상기 에어로젤은 열전도도가 0.020 W/mK 미만이고, 겉보기 밀도가 0.09 g/cm3 미만일 수 있다.16. Another aspect of the present invention relates to airgel. The airgel was manufactured by the method 1-15 above. The airgel may have a thermal conductivity of less than 0.020 W/mK and an apparent density of less than 0.09 g/cm 3 .
17. 상기 16 구체예에서, 상기 에어로젤은 메조포어를 가지며, 20,000 배율 SEM 이미지 분석에서 3㎛ x 5㎛ 면적당 500 nm 이상의 메조포어의 개수가 6개 이상일 수 있다.17. In the above 16 embodiments, the airgel has mesopores, and in SEM image analysis at 20,000 magnification, the number of mesopores of 500 nm or more per area of 3㎛ x 5㎛ may be 6 or more.
상기와 같이 구성되는 본 발명에 따른 에어로젤 제조 방법에 의하면, 반응조에서 물유리로부터 하이드로젤을 얻은 후 하이드로젤을 용매 치환조로 이동시켜 오가노젤을 얻고 이후 건조기에서 건조를 통해 에어로젤 파우더를 얻기에, 용매 치환조에서 오랜 시간 동안 치환 공정이 진행되는 중에 반응조에서는 다음 회차의 반응이 이루어짐에 따라 전체적인 생산 시간을 대폭 단축할 수 있게 된다.According to the airgel production method according to the present invention configured as described above, hydrogel is obtained from water glass in a reaction tank, then the hydrogel is moved to a solvent replacement tank to obtain organogel, and then airgel powder is obtained through drying in a dryer. While the substitution process is in progress for a long time in the tank, the next round of reaction takes place in the reaction tank, thereby significantly shortening the overall production time.
또한, 오가노젤은 용매 치환조에서 별도로 생성되기에, 반응조에서 오가노젤까지 생성되는 경우에 비하여 오가노젤이 반응조에 잔류함에 따른 원료 혼합의 교란이 발생하는 일이 구조적으로 차단될 수 있다. 이러한 교란이 없음으로 인하여, 최종적으로 생산되는 에어로젤의 품질 역시 향상될 수 있다.In addition, since the organogel is produced separately in the solvent exchange tank, disturbance of raw material mixing due to the organogel remaining in the reaction tank can be structurally prevented compared to the case where the organogel is produced in the reaction tank. Due to the absence of this disturbance, the quality of the final produced airgel can also be improved.
또한, 염기 베이스로 에어로젤을 제조하는 경우라도, 반응조의 하부 채널 또는 벽 채널을 통한 질산 투입을 통하여 HMDS와 질산 간의 폭발적인 반응을 차단할 수 있다. 이는 반응 공정의 예민성 및 위험성을 낮추고, 보다 높은 품질의 에어로젤을 얻을 수 있게 한다.In addition, even when airgel is manufactured using a base base, the explosive reaction between HMDS and nitric acid can be prevented by introducing nitric acid through the lower channel or wall channel of the reaction tank. This lowers the sensitivity and risk of the reaction process and makes it possible to obtain higher quality airgel.
도 1은 본 발명의 일 실시예에 따른 에어로젤 제조 방법을 보인 순서도이다.Figure 1 is a flowchart showing an airgel manufacturing method according to an embodiment of the present invention.
도 2는 도 1의 제조 방법을 구현하기 위한 제조 설비(100)의 배치 및 재료 투입을 함께 표시한 개념도이다.FIG. 2 is a conceptual diagram showing the arrangement of the manufacturing equipment 100 and the input of materials for implementing the manufacturing method of FIG. 1.
도 3은 에어로젤 제조를 위한 화학 반응식을 보인 도면이다.Figure 3 is a diagram showing the chemical reaction equation for producing airgel.
도 4는 도 2의 반응조(110)의 구체적 구조를 보인 개념도이다.FIG. 4 is a conceptual diagram showing the specific structure of the reaction tank 110 of FIG. 2.
도 5는 도 2의 용매 치환조(130)의 구체적 구조를 보인 개념도이다.Figure 5 is a conceptual diagram showing the specific structure of the solvent substitution tank 130 of Figure 2.
도 6(A)는 비교예에서 제조된 에어로젤 파우더의 x1500배율 SEM 이미지이고, 도 6(B)는 실시예에서 제조된 에어로젤 파우더의 x1500배율 SEM 이미지이다.Figure 6(A) is a SEM image of the airgel powder prepared in the comparative example at x1500 magnification, and Figure 6(B) is an SEM image of the airgel powder prepared in the example at x1500 magnification.
도 7(A)는 비교예에서 제조된 에어로젤 파우더의 x5000배율 SEM 이미지이고, 도 7(B)는 실시예에서 제조된 에어로젤 파우더의 x5000배율 SEM 이미지이다.Figure 7(A) is a SEM image of the airgel powder prepared in the comparative example at x5000 magnification, and Figure 7(B) is an SEM image of the airgel powder prepared in the example at x5000 magnification.
도 8(A)는 비교예에서 제조된 에어로젤 파우더의 x20,000배율 SEM 이미지이고, 도 8(B)는 실시예에서 제조된 에어로젤 파우더의 x20,000배율 SEM 이미지이다.Figure 8(A) is a SEM image of the airgel powder prepared in the comparative example at a magnification of x20,000, and Figure 8(B) is a SEM image of the airgel powder prepared in the example at a magnification of x20,000.
이하, 본 발명의 바람직한 실시예에 따른 에어로젤 제조 방법에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.Hereinafter, an airgel manufacturing method according to a preferred embodiment of the present invention will be described in detail with reference to the attached drawings. In this specification, the same or similar reference numbers are assigned to the same or similar components even in different embodiments, and the description is replaced with the first description.
도 1은 본 발명의 일 실시예에 따른 에어로젤 제조 방법을 보인 순서도이고, 도 2는 도 1의 제조 방법을 구현하기 위한 제조 설비(100)의 배치 및 재료 투입을 함께 표시한 개념도이다.Figure 1 is a flowchart showing an airgel manufacturing method according to an embodiment of the present invention, and Figure 2 is a conceptual diagram showing the arrangement of the manufacturing equipment 100 and material input for implementing the manufacturing method of Figure 1.
본 도면들을 참조하면, 에어로젤 제조는 물유리와 제1 물질을 반응시키는 단계(S1)로부터 시작된다.Referring to these drawings, airgel production begins with a step (S1) of reacting water glass and the first material.
반응조(110)에 제일 먼저 투입되는 물유리는 규산나트륨(Na2SiO3)이다. 물유리는 저장탱크에서 반응조(110)로 투입되기 전에 반응에 필요한 양만큼 계량되어 대기할 수 있다. 물유리는 중력에 의해 반응조(110)에 단시간에 투입될 수 있다.The first water glass introduced into the reaction tank 110 is sodium silicate (Na 2 SiO 3 ). Before the water glass is introduced from the storage tank into the reaction tank 110, the amount required for the reaction can be measured and placed on standby. Water glass can be put into the reaction tank 110 in a short time by gravity.
물유리가 반응조(110)에 투입된 후에, 반응조(110)에는 제1 물질이 투입된다. 구체적으로, 제1 물질은, 순수(demineralized water), HMDS(Hexamethyldisilazane), 및 질산을 포함할 수 있다. 이들은 반응조(110)에 순차적으로 투입되어야 한다.After the water glass is added to the reaction tank 110, the first material is added to the reaction tank 110. Specifically, the first material may include demineralized water, HMDS (Hexamethyldisilazane), and nitric acid. These must be sequentially added to the reaction tank 110.
물유리와 순수는 큰 비중 차이로 인하여 잘 섞이지 않으므로 충분히 섞일 수 있도록 반응조(110)에 교반기구(Agitator)를 설치하여 교반할 수 있다. 원료의 투입은 물유리와 순수가 교반되고 있는 상태에서 1분 간격으로 HMDS이 투입되고 3분 뒤 질산(HNO3, 60%)이 투입되는 방식으로 이루어질 수 있다. 이들의 반응 중에도 그들이 잘 섞이도록 상기 교반기구가 계속적으로 가동되는 것이 바람직하다.Since water glass and pure water do not mix well due to the large difference in specific gravity, an agitator can be installed in the reaction tank 110 and stirred to ensure sufficient mixing. When adding raw materials, HMDS is added at 1-minute intervals while water glass and pure water are being stirred. After 3 minutes, nitric acid (HNO 3 , 60%) can be done in a way that is invested. It is preferable that the stirring mechanism is continuously operated so that they are well mixed during the reaction.
물유리에 순수가 투입됨에 따라 물유리가 가수분해되어 물유리 수용액이 만들어진다. 여기에 HMDS와 질산이 투입됨에 따라 젤(gel)로 성상 변화가 일어나고 pH 농도의 중성화가 시작된다. 반응조(110)에서의 전체 공정시간은 20분 이내이다.As pure water is added to the water glass, the water glass is hydrolyzed to create an aqueous water glass solution. As HMDS and nitric acid are added, the property changes to a gel and the pH concentration begins to be neutralized. The total process time in the reaction tank 110 is less than 20 minutes.
물유리와 제1 물질 간의 반응을 위하여, 반응조(110)의 내부 온도는 약 45~50℃가 되어야 한다. 이를 위해, 반응조(110)의 하우징을 감싸는 히팅 자켓(heating jacket)은 고온수(hot water)를 이용하여 반응조(110)를 가열한다. 반응이 원활하게 이루어짐에 따라, 반응조(110)의 내부 온도는 약 60℃ 수준이 될 수 있다.For the reaction between water glass and the first material, the internal temperature of the reaction tank 110 should be about 45-50°C. To this end, a heating jacket surrounding the housing of the reaction tank 110 heats the reaction tank 110 using hot water. As the reaction proceeds smoothly, the internal temperature of the reaction tank 110 may be about 60°C.
이상의 반응에 대한 화학식은 도 3에 나타나 있다. 도 3을 추가로 참조하면, HMDS와 질산이 반응하면 암모니아(NH3)가 나오는데 이 가스는 스크러버(Scrubber, 190)로 처리된다. 처리된 폐수는 폐수처리장으로 보내어져 그곳에서 처리된다. 반응조(110)에서 반응이 완료되었는지는 반응물의 pH를 확인하여 결정될 수 있다.The chemical formula for the above reaction is shown in Figure 3. Referring further to FIG. 3, when HMDS and nitric acid react, ammonia (NH 3 ) is produced, and this gas is treated with a scrubber (190). Treated wastewater is sent to a wastewater treatment plant where it is treated. Whether the reaction in the reaction tank 110 is complete can be determined by checking the pH of the reactant.
반응 완료에 의해, 반응조(110)에는 하이드로젤(hydrogel)이 형성된다. 생성된 하이드로젤은 반응조(110)에서 배출된다.Upon completion of the reaction, hydrogel is formed in the reaction tank 110. The generated hydrogel is discharged from the reaction tank 110.
반응조(110)가 비워진 후에는, 반응조(110)에 대한 세정이 이루어질 수 있다. 세정을 위해서는, 반응조(110) 내에서 분사 노즐이 가동된다. 분사 노즐은 360° 회전하면서, 반응조(110)의 내면에 순수를 분사할 수 있다. 그에 의해, 반응조(110)는 깨끗하게 세정된 상태로 다음 회차의 물유리와 제1 물질을 투입받게 된다. 세정된 폐수는 폐수처리장치에 보내져서 처리된다.After the reaction tank 110 is emptied, cleaning of the reaction tank 110 may be performed. For cleaning, a spray nozzle is operated within the reaction tank 110. The spray nozzle can spray pure water onto the inner surface of the reaction tank 110 while rotating 360°. As a result, the reaction tank 110 receives the next round of water glass and the first material in a cleanly cleaned state. The cleaned wastewater is sent to a wastewater treatment device for treatment.
반응조(110)에서 배출된 하이드로젤은 다른 용기, 즉 용매 치환조(130)로 이동된다(S3). 용매 치환조(130)는 재질적인 면에서 반응조(110)와는 다르게 제작될 수 있다. 구체적으로, 반응조(110)는 강산과 강염기에 대응하여 부식과 온도 저하에 대응하기 위하여, 예를 들어 STS316L로 제작되어야 한다. 반면에, 용매 치환조(130)는 그렇지 않기에, 반응조(110) 보다 내식성, 내산성, 및 고온강도가 낮은 재료인 STS304 재질이면 충분하다.The hydrogel discharged from the reaction tank 110 is moved to another container, that is, the solvent replacement tank 130 (S3). The solvent substitution tank 130 may be manufactured differently from the reaction tank 110 in terms of materials. Specifically, the reaction tank 110 must be made of, for example, STS316L in order to respond to corrosion and temperature decrease in response to strong acids and strong bases. On the other hand, since this is not the case for the solvent substitution tank 130, STS304, a material with lower corrosion resistance, acid resistance, and high-temperature strength than the reaction tank 110, is sufficient.
그에 따라, 용매 치환조(130)는 재료비 기준으로 반응조(110) 대비 40% 수준에 제작될 수 있다. 용매 치환조(130)는 반응조(110)에 비해 2배의 크기를 가져야 하기에, 이들이 별도로 제작된다고 하더라도 반응조(110) 하나만 크게 제작되는 경우에 비해 전체 비용은 더 줄어들게 된다.Accordingly, the solvent substitution tank 130 can be manufactured at 40% of the material cost compared to the reaction tank 110. Since the solvent displacement tank 130 must be twice the size of the reaction tank 110, even if they are manufactured separately, the overall cost is further reduced compared to the case where only the reaction tank 110 is manufactured in a larger size.
용매 치환조(130)에서는 하이드로젤에 대해 제2 물질로서, 예를 들어 n-헥산이 투입된다(S5). 하이드로젤은 n-헥산과 축합반응을 일으켜서, 오가노젤(organogel)과 물로 치환된다. 치환 공정은 상압에서 온도 50℃를 유지한 채로, 약 40분 이내에 완료된다. 이러한 시간은 반응조(110)에서의 시간에 비해 대략 2배 정도가 된다. 물(폐수)은 폐수처리장치로 배출되며, 이는 도 5를 참조하여 설명한다.In the solvent replacement tank 130, n-hexane, for example, is added as a second material to the hydrogel (S5). Hydrogel undergoes a condensation reaction with n-hexane and is replaced with organogel and water. The substitution process is completed within about 40 minutes while maintaining the temperature of 50°C at normal pressure. This time is approximately twice that of the time in the reaction tank 110. Water (wastewater) is discharged to a wastewater treatment device, which is explained with reference to FIG. 5.
다시 도 1 및 도 2를 참조하면, 오가노젤은 건조기(150)로 이동된다(S7). 용매 치환조(130)가 비워진 후에, 용매 치환조(130)는 세정될 수 있다. 이는 용매 치환조(130)에 n-헥산을 분사함에 의해 이루어질 수 있다. n-헥산은 분사 노즐이 360° 회전됨에 의해, 용매 치환조(130)의 내면 구석구석에 분사될 수 있다.Referring again to FIGS. 1 and 2, the organogel is moved to the dryer 150 (S7). After the solvent displacement tank 130 is emptied, the solvent displacement tank 130 can be cleaned. This can be achieved by spraying n-hexane into the solvent substitution tank 130. n-hexane can be sprayed to every corner of the inner surface of the solvent replacement tank 130 by rotating the spray nozzle 360°.
건조기(150) 내에서, 오가노젤은 건조 공정을 통해 에어로젤 파우더가 된다(S9). 구체적으로, 건조기(150)에 투입된 오가노젤은 약 130℃ 온도 조건 및 진공 상태에서 교반된다. 그에 따라, n-헥산과 잔류 수분이 증발하고, 오가노젤은 고체 상태로 상변형이 이루어진다. n-헥산은 분리되어 응축기(170)로 보내져서 액화하여 분리되어 용매 치환조(130)에 재투입될 수 있다. n-헥산의 재사용률은 90% 정도가 될 수 있으며, 품질 유지를 위해 일정량은 주기적으로 배출해야 할 수 있다. 이를 보완하기 위하여 새로운 n-헥산이 재상되는 n-헥산에 추가로 혼합되면 된다. 건조를 통해, 에어로젤 파우더에는 전단력이 부여되고, 그의 기공(pore)은 균일화된다. 에어로젤 파우더는 사일로에 보내져서 저장되고, 필요 양만큼 출하될 수 있다.Within the dryer 150, the organogel becomes airgel powder through a drying process (S9). Specifically, the organogel introduced into the dryer 150 is stirred at a temperature of about 130°C and under vacuum. Accordingly, n-hexane and residual moisture evaporate, and the organogel undergoes a phase transformation into a solid state. n-hexane may be separated and sent to the condenser 170, liquefied, separated, and reintroduced into the solvent replacement tank 130. The reuse rate of n-hexane can be around 90%, and a certain amount may need to be discharged periodically to maintain quality. To compensate for this, new n-hexane can be additionally mixed with the recycled n-hexane. Through drying, the airgel powder is subjected to shear force and its pores are homogenized. Airgel powder is sent to silos, stored, and can be shipped in required quantities.
이상에서 반응조(110)에 대한 질산의 투입 방법은 도 4를 참조하여 설명한다. 도 4는 도 2의 반응조(110)의 구체적 구조를 보인 개념도이다.In the above, the method of adding nitric acid to the reaction tank 110 is described with reference to FIG. 4. FIG. 4 is a conceptual diagram showing the specific structure of the reaction tank 110 of FIG. 2.
본 도면을 참조하면, 반응조(110)는 내부 공간을 갖는 하우징(111)을 포함한다. 상기 내부 공간에는 교반기구(113)가 설치된다. 하우징(111)의 하부에는 하부투입 채널(115)이 형성된다. 하부투입 채널(115)에는 채널의 개폐를 담당하는 밸브(미도시)가 구비될 수 있다. 하우징(111)의 상부에는 내벽투입 채널(117)이 형성된다. 내벽투입 채널(117)은 하우징(111)의 내벽 자체이거나, 내벽에 형성된 그루브, 또는 내벽에 부착된 파이프일 수 있다.Referring to this drawing, the reaction tank 110 includes a housing 111 having an internal space. A stirring mechanism 113 is installed in the internal space. A lower input channel 115 is formed in the lower part of the housing 111. The lower input channel 115 may be provided with a valve (not shown) responsible for opening and closing the channel. An inner wall input channel 117 is formed in the upper part of the housing 111. The inner wall input channel 117 may be the inner wall of the housing 111 itself, a groove formed in the inner wall, or a pipe attached to the inner wall.
염기 베이스 공정으로 진행되는 경우에, 물유리와 순수의 혼합액(M)에 대해 HMDS(H)가 투입된다. HMDS(H)는 소수성 액체이므로 혼합액(M)과 쉽게 섞이지 않는다. 그 상태에서 교반기구(113)로 교반을 하면, 관성 모멘텀에 따라 HMDS(H)가 이루는 층의 중간 부분은 두꺼워진다. 그에 반해, 하우징(111)의 내벽에 가까울수록 HMDS(H)의 층은 얇아진다.In the case of a base-based process, HMDS (H) is added to the mixture (M) of water glass and pure water. HMDS (H) is a hydrophobic liquid, so it does not easily mix with the mixed solution (M). In that state, when stirring is performed using the stirring mechanism 113, the middle part of the layer formed by HMDS (H) becomes thick according to the inertial momentum. On the other hand, the closer it is to the inner wall of the housing 111, the thinner the layer of HMDS (H) becomes.
이러한 상태에서 질산을 중간 부분으로 투입하면, 질산과 HMDS(H) 간에 폭발적인 반응이 일어나서, 커다란 위험이 따르게 된다. 이를 해결하기 위하여, 본 발명자는 다음의 2 가지 방법을 도출하게 되었다.If nitric acid is added to the middle part under these conditions, an explosive reaction will occur between nitric acid and HMDS(H), resulting in great danger. To solve this problem, the present inventor came up with the following two methods.
첫 번째는, 질산을 하부투입 채널(115)을 통해 천천히 주입하는 것이다. 그 경우, 질산은 HMDS(H)와 반응하기 전에 혼합액(M)과 먼저 섞이게 된다. 그에 따라, 질산은 HMDS(H)와는 조금씩 반응할 수 있게 된다.The first is to slowly inject nitric acid through the lower injection channel 115. In that case, nitric acid is first mixed with the mixed solution (M) before reacting with HMDS (H). Accordingly, nitric acid can react little by little with HMDS(H).
두 번째로, 질산을 내벽투입 채널(117)을 통해 하우징(111)의 내벽을 따라 천천히 주입하는 것이다. 그 경우, 질산은 HMDS(H)의 층 중 얇은 부분과 천천히 반응할 수 있다.Second, nitric acid is slowly injected along the inner wall of the housing 111 through the inner wall injection channel 117. In that case, nitric acid may react slowly with the thin portion of the HMDS(H) layer.
이러한 방법에 의해, 염기 베이스 공정에서 공정의 예민도와 위험성은 효과적으로 제어하면서, 산 베이스 공정 보다 뛰어난 품질의 에어로젤을 얻을 수 있게 된다.By this method, it is possible to obtain airgel of superior quality than the acid-based process while effectively controlling the sensitivity and risk of the process in the base-based process.
용매 치환조(130)에 대해서는 도 5를 참조하여 추가로 설명한다. 도 5는 도 2의 용매 치환조(130)의 구체적 구조를 보인 개념도이다.The solvent substitution tank 130 will be further described with reference to FIG. 5 . Figure 5 is a conceptual diagram showing the specific structure of the solvent substitution tank 130 of Figure 2.
본 도면을 참조하면, 용매 치환조(130)의 하우징(131) 내에서는 축합 반응에 따라 오가노젤(O)과 폐수(W)가 생성된다. 여기서, 오가노젤(O)은 비중차에 의해 폐수(W)의 상측에 위치하게 된다. 하우징(131) 내에서 교반기구의 작동에 따라, 오가노젤(O)과 폐수(W)의 층 분리는 보다 쉽게 일어날 수 있다.Referring to this figure, organogel (O) and wastewater (W) are generated within the housing 131 of the solvent substitution tank 130 according to a condensation reaction. Here, the organogel (O) is located on the upper side of the wastewater (W) due to the difference in specific gravity. Depending on the operation of the stirring mechanism within the housing 131, layer separation of the organogel (O) and the waste water (W) may occur more easily.
폐수(W)는 배출 밸브(133)를 통해 폐수처리장치로 배출되어야 한다. 배출 밸브(133)는 폐수(W)를 배출할 때까지만 열리도록 제어되어야 한다. 이를 위해, 배출 밸브(133)의 개폐를 제어하는 제어기(미도시)는 레벨 센서(135)의 감지 결과에 기반하여 작동한다.Wastewater (W) must be discharged to the wastewater treatment device through the discharge valve (133). The discharge valve 133 must be controlled to open only until the waste water (W) is discharged. To this end, a controller (not shown) that controls the opening and closing of the discharge valve 133 operates based on the detection result of the level sensor 135.
레벨 센서(135)는 오가노젤(O)과 폐수(W)의 경계면(I)에 대한 측정을 통해 폐수(W)의 수위를 측정한다. 이를 위해, 레벨 센서(135)는 하우징(131)에 설치되는 레이다 타입의 센서일 수 있다. 그에 따라, 레벨 센서(135)는 경계면(I)을 향한 방향으로 전자기파를 발사하여, 비접촉 방식으로 경계면(I)의 높이를 측정할 수 있다.The level sensor 135 measures the water level of the wastewater (W) by measuring the interface (I) between the organogel (O) and the wastewater (W). For this purpose, the level sensor 135 may be a radar-type sensor installed in the housing 131. Accordingly, the level sensor 135 can measure the height of the interface I in a non-contact manner by emitting electromagnetic waves in a direction toward the interface I.
제어기가 레벨 센서(135)의 감지 결과에 근거하여 배출 밸브(133)를 제어하여, 폐수(W)의 정확한 수위에 맞추어 배출 밸브(133)가 개폐될 수 있다. 이는 폐수(W) 외에 오가노젤(O)까지 배출되는 손실을 막을 수 있게 한다.The controller controls the discharge valve 133 based on the detection result of the level sensor 135, so that the discharge valve 133 can be opened and closed according to the exact level of the wastewater (W). This prevents loss of not only wastewater (W) but also organogel (O).
폐수(W)의 배출 후에 오가노젤(O)는 다른 라인(137)을 통해 건조기(150)로 이동될 수 있다. 나아가, 하우징(131) 내에서 발생한 암모니아는 별도의 라인(139)을 통해 스크러버(190)로 이동될 수 있다.After discharging the wastewater (W), the organogel (O) can be moved to the dryer (150) through another line (137). Furthermore, ammonia generated within the housing 131 may be moved to the scrubber 190 through a separate line 139.
상기와 같은 에어로젤 제조 방법은 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다.The airgel manufacturing method as described above is not limited to the configuration and operation method of the embodiments described above. The above embodiments may be configured so that various modifications can be made by selectively combining all or part of each embodiment.
실시예Example
반응조에 물유리 24.55kg, 순수 117.27kg, HMDS 12.27kg 을 투입하고, 교반하여 혼합물을 제조하였다. 상기 혼합물에 질산 14.73kg 을 투입하여 반응을 수행시켜 하이드로젤을 제조한 후, 상기 하이드로젤을 용매 치환조로 이동시켜 n-헥산 90kg 과 50℃ 에서 반응시켜 오가노젤을 얻었다. 제조된 오가노젤을 130℃ 에서 건조시켜 에어로젤 파우더를 제조하였다. 제조된 에어로젤 파우더에 대해 열전도도를 측정하였으며, 0.01835 W/mk 였다.24.55 kg of water glass, 117.27 kg of pure water, and 12.27 kg of HMDS were added to the reaction tank and stirred to prepare a mixture. After reacting by adding 14.73 kg of nitric acid to the mixture to prepare a hydrogel, the hydrogel was transferred to a solvent replacement tank and reacted with 90 kg of n-hexane at 50°C to obtain an organogel. The prepared organogel was dried at 130°C to prepare airgel powder. The thermal conductivity of the manufactured airgel powder was measured and was 0.01835 W/mk.
비교예Comparative example
n-헥산을 용매 치환조에 투입하지 않고 반응조에 투입한 것을 제외하고는 상기 실시예와 동일하게 수행하였다. 제조된 에어로젤 파우더에 대해 열전도도를 측정하였으며, 0.02147 W/mK였다.The same procedure as the above example was performed except that n-hexane was added to the reaction tank instead of being added to the solvent exchange tank. Thermal conductivity was measured for the manufactured airgel powder and was 0.02147 W/mK.
실시예 및 비교예에서 제조된 에어로젤 파우더에 대해 열전도도 및 겉보기 밀도를 측정하여 표 1에 나타내었다.Thermal conductivity and apparent density of the airgel powders prepared in Examples and Comparative Examples were measured and shown in Table 1.
표 1Table 1
Figure PCTKR2023007844-appb-img-000001
Figure PCTKR2023007844-appb-img-000001
또한 실시예 및 비교예에서 제조된 에어로젤 파우더에 대해 SEM 이미지 분석을 위해 x1500배율, x5000 배율, x 20000 배율에서 각각 측정하였으며, 도 6, 7, 8에 각각 나타내었다. 도 6(A)는 비교예에서 제조된 에어로젤 파우더의 x1500배율 SEM 이미지이고, 도 6(B)는 실시예에서 제조된 에어로젤 파우더의 x1500배율 SEM 이미지이다. 도 6(A)는 불순물에 의해 Gelation과정과 입자성장에 방해를 받아 도 6(B)에 비해 작은 조각들이 많이 발생한 것을 확인할 수 있다. 이는 유기 성분 불순물이 에어로젤 입자들 간의 응집과정을 저해한 것으로 보인다. 도 7(A)는 비교예에서 제조된 에어로젤 파우더의 x5000배율 SEM 이미지이고, 도 7(B)는 실시예에서 제조된 에어로젤 파우더의 x5000배율 SEM 이미지이다. 도 7(B)가 도 7(A)에 비해 기공이 더욱 발달한 것을 확인할 수 있다. 이는 도 7(B)가 메조포러스화가 제대로 이루어진 것을 나타내는 것이다. 도 8(A)는 비교예에서 제조된 에어로젤 파우더의 x20,000배율 SEM 이미지이고, 도 8(B)는 실시예에서 제조된 에어로젤 파우더의 x20,000배율 SEM 이미지이다. 도 8(B)는 3㎛ x 5㎛ 면적당 500 nm 이상의 메조포어의 개수가 8 개인 반면, 도 8(A)는 응집저해로 인해 500 nm 이상의 메조포어의 개수가 1개인 것으로 나타났다.In addition, the airgel powders prepared in Examples and Comparative Examples were measured at x1500 magnification, x5000 magnification, and x20000 magnification for SEM image analysis, and are shown in Figures 6, 7, and 8, respectively. Figure 6(A) is a SEM image of the airgel powder prepared in the comparative example at x1500 magnification, and Figure 6(B) is an SEM image of the airgel powder prepared in the example at x1500 magnification. In Figure 6(A), it can be seen that the gelation process and particle growth were interrupted by impurities, resulting in more small pieces compared to Figure 6(B). It appears that organic impurities inhibited the agglomeration process between airgel particles. Figure 7(A) is a SEM image of the airgel powder prepared in the comparative example at x5000 magnification, and Figure 7(B) is an SEM image of the airgel powder prepared in the example at x5000 magnification. It can be seen that the pores in Figure 7(B) are more developed than in Figure 7(A). This indicates that FIG. 7(B) was properly mesoporated. Figure 8(A) is a SEM image of the airgel powder prepared in the comparative example at a magnification of x20,000, and Figure 8(B) is a SEM image of the airgel powder prepared in the example at a magnification of x20,000. In Figure 8(B), the number of mesopores larger than 500 nm was 8 per area of 3㎛
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on the embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.
본 발명에 따른 에어로젤 제조 방법에 의하면, 반응조에서 물유리로부터 하이드로젤을 얻은 후 하이드로젤을 용매 치환조로 이동시켜 오가노젤을 얻고 이후 건조기에서 건조를 통해 에어로젤 파우더를 얻기에, 용매 치환조에서 오랜 시간 동안 치환 공정이 진행되는 중에 반응조에서는 다음 회차의 반응이 이루어짐에 따라 전체적인 생산 시간을 대폭 단축할 수 있으며, 오가노젤은 용매 치환조에서 별도로 생성되기에, 반응조에서 오가노젤까지 생성되는 경우에 비하여 오가노젤이 반응조에 잔류함에 따른 원료 혼합의 교란이 발생하는 일이 구조적으로 차단될 수 있다. 이러한 교란이 없음으로 인하여, 최종적으로 생산되는 에어로젤의 품질 역시 향상될 수 있다. 또한 염기 베이스로 에어로젤을 제조하는 경우라도, 반응조의 하부 채널 또는 벽 채널을 통한 질산 투입을 통하여 HMDS와 질산 간의 폭발적인 반응을 차단할 수 있다. 이는 반응 공정의 예민성 및 위험성을 낮추고, 보다 높은 품질의 에어로젤을 얻을 수 있게 한다.According to the airgel production method according to the present invention, hydrogel is obtained from water glass in a reaction tank, then the hydrogel is moved to a solvent displacement tank to obtain organogel, and then airgel powder is obtained through drying in a dryer, so that the hydrogel is stored in the solvent displacement tank for a long time. As the next round of reactions takes place in the reaction tank while the substitution process is in progress, the overall production time can be significantly shortened. Since the organogel is produced separately in the solvent substitution tank, the organogel is produced separately from the reaction tank. Disturbance in the mixing of raw materials due to remaining in this reaction tank can be structurally prevented. Due to the absence of this disturbance, the quality of the final produced airgel can also be improved. Additionally, even when manufacturing airgel based on a base, the explosive reaction between HMDS and nitric acid can be prevented by introducing nitric acid through the lower channel or wall channel of the reaction tank. This lowers the sensitivity and risk of the reaction process and makes it possible to obtain higher quality airgel.

Claims (15)

  1. 반응조에서 물유리와 제1 물질을 반응시켜, 하이드로젤을 얻는 단계;Reacting water glass and the first material in a reaction tank to obtain a hydrogel;
    상기 하이드로젤을 용매 치환조로 이동시킨 후, 상기 용매 치환조에서 상기 하이드로젤과 제2 물질을 반응시켜 오가노젤을 얻는 단계; 및Moving the hydrogel to a solvent exchange tank and then reacting the hydrogel with a second material in the solvent exchange tank to obtain an organogel; and
    상기 오가노젤을 건조기로 이동시킨 후, 상기 건조기에서 상기 오가노젤을 건조하여 에어로젤 파우더를 얻는 단계를 포함하고,After moving the organogel to a dryer, drying the organogel in the dryer to obtain airgel powder,
    상기 제1 물질은, 순수, HMDS, 및 질산을 포함하고, 상기 질산은 상기 HMDS 다음으로 상기 반응조에 투입되는, 에어로젤 제조 방법.The first material includes pure water, HMDS, and nitric acid, and the nitric acid is added to the reaction tank after the HMDS.
  2. 제1항에 있어서, 상기 반응조에는 용매를 투입하지 않고, 용매치환조에 용매를 투입하는 것인, 에어로젤 제조 방법.The method of claim 1, wherein the solvent is not added to the reaction tank, but the solvent is added to the solvent exchange tank.
  3. 제1항에 있어서, 상기 반응조에는 제2 물질을 투입하지 않으며, 상기 제2 물질은 n-헥산을 포함하는, 에어로젤 제조 방법.The method of claim 1, wherein no second material is added to the reaction tank, and the second material includes n-hexane.
  4. 제1항에 있어서, 상기 질산은,The method of claim 1, wherein the silver nitrate,
    상기 반응조의 하부를 통해 투입되어, 상기 HMDS와 반응하기 전에 상기 물유리 및 상기 순수의 혼합액과 먼저 섞이게 되는, 에어로젤 제조 방법.A method of producing airgel, which is introduced through the lower part of the reaction tank and first mixed with the mixture of the water glass and the pure water before reacting with the HMDS.
  5. 제1항에 있어서,According to paragraph 1,
    상기 반응조에서 상기 물유리, 상기 순수, 및 상기 HMDS의 혼합액이 교반되는 중에, 상기 질산은 상기 반응조의 벽을 타고 투입되어 상기 HMDS와의 반응하게 되는, 에어로젤 제조 방법.While the mixed solution of the water glass, pure water, and HMDS is stirred in the reaction tank, the nitric acid is introduced along the wall of the reaction tank and reacts with the HMDS.
  6. 제1항에 있어서,According to paragraph 1,
    상기 하이드로젤이 상기 용매 치환조로 이동된 후에, 상기 반응조를 세정하는 단계를 더 포함하는, 에어로젤 제조 방법.After the hydrogel is moved to the solvent exchange tank, the airgel production method further includes the step of cleaning the reaction tank.
  7. 제6항에 있어서,According to clause 6,
    상기 하이드로젤이 상기 용매 치환조로 이동된 후에, 상기 반응조를 세정하는 단계는,After the hydrogel is moved to the solvent exchange tank, the step of cleaning the reaction tank is,
    분사 노즐을 360° 회전시키면서 상기 반응조의 내면에 대해 순수를 분사하는 단계를 포함하는, 에어로젤 제조 방법.An airgel production method comprising the step of spraying pure water on the inner surface of the reaction tank while rotating the spray nozzle 360°.
  8. 제1항에 있어서,According to paragraph 1,
    상기 반응조에는 오가노젤이 존재하지 않는, 에어로젤 제조 방법.An airgel production method in which organogel is not present in the reaction tank.
  9. 제1항에 있어서,According to paragraph 1,
    상기 용매 치환조는,The solvent substitution tank is,
    상기 반응조 보다 내식성, 내산성, 및 고온강도가 낮은 재료로 제작된 것인, 에어로젤 제조 방법.A method of producing airgel, which is made of a material with lower corrosion resistance, acid resistance, and high temperature strength than the reaction tank.
  10. 제1항에 있어서,According to paragraph 1,
    상기 오가노젤을 상기 건조기로 이동시키기 전에 상기 용매 치환조에서 상기 오가노젤과 함께 발생된 폐수를 배출하는 단계를 더 포함하고,Further comprising the step of discharging wastewater generated with the organogel from the solvent displacement tank before moving the organogel to the dryer,
    상기 폐수를 배출하는 단계는,The step of discharging the wastewater is,
    제어기가 레벨 센서에 의해 측정된 상기 폐수의 수위에 기초하여 상기 폐수의 배출을 위한 배출 밸브의 개폐를 제어하는 단계를 포함하는, 에어로젤 제조 방법.A method for producing airgel, comprising the step of a controller controlling the opening and closing of a discharge valve for discharging the wastewater based on the level of the wastewater measured by a level sensor.
  11. 제10항에 있어서,According to clause 10,
    상기 레벨 센서는,The level sensor is,
    상기 용매 치환조에 설치되고, 상기 오가노젤층과 상기 폐수층의 경계면을 향한 방향으로 전자기파를 발사하는 레이다 타입의 센서인, 에어로젤 제조 방법.An airgel manufacturing method, which is a radar-type sensor installed in the solvent replacement tank and emitting electromagnetic waves in a direction toward the interface between the organogel layer and the wastewater layer.
  12. 제1항에 있어서,According to paragraph 1,
    상기 오가노젤이 상기 건조기로 이동된 후에, 상기 용매 치환조를 세정하는 단계를 더 포함하는, 에어로젤 제조 방법.After the organogel is moved to the dryer, the airgel production method further comprises the step of cleaning the solvent displacement tank.
  13. 제12항에 있어서,According to clause 12,
    상기 오가노젤이 상기 건조기로 이동된 후에, 상기 용매 치환조를 세정하는 단계는,After the organogel is moved to the dryer, the step of cleaning the solvent displacement tank is,
    분사 노즐을 360° 회전시키면서 상기 용매 치환조의 내면에 대해 n-헥산을 분사하는 단계를 포함하는, 에어로젤 제조 방법.An airgel production method comprising the step of spraying n-hexane on the inner surface of the solvent substitution tank while rotating the spray nozzle 360°.
  14. 제1항 내지 제13항중 어느 한 항의 방법으로 제조되며, 열전도도가 0.020 W/mK 미만이고, 겉보기 밀도가 0.09g/cm3 미만인 에어로젤.An airgel manufactured by the method of any one of claims 1 to 13, having a thermal conductivity of less than 0.020 W/mK and an apparent density of less than 0.09 g/cm3.
  15. 제14항에 있어서,According to clause 14,
    상기 에어로젤은 메조포어를 가지며, 20,000 배율 SEM 이미지 분석에서 3㎛ x 5㎛ 면적당 500 nm 이상의 메조포어의 개수가 6개 이상인 것인 에어로젤.The airgel has mesopores, and the number of mesopores of 500 nm or more per area of 3㎛ x 5㎛ is 6 or more in SEM image analysis at 20,000 magnification.
PCT/KR2023/007844 2022-06-24 2023-06-08 Aerogel preparation method WO2023249291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220077455A KR102534702B1 (en) 2022-06-24 2022-06-24 Method for manufacturing aerogel
KR10-2022-0077455 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249291A1 true WO2023249291A1 (en) 2023-12-28

Family

ID=86529680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007844 WO2023249291A1 (en) 2022-06-24 2023-06-08 Aerogel preparation method

Country Status (2)

Country Link
KR (2) KR102534702B1 (en)
WO (1) WO2023249291A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534702B1 (en) * 2022-06-24 2023-05-30 주식회사 엔에스앤티 Method for manufacturing aerogel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202019A (en) * 2012-03-29 2013-10-07 Honda Motor Co Ltd Reaction tank and method for washing the same
KR20140050867A (en) * 2012-10-22 2014-04-30 지오스 에어로겔 리미티드 Silica aerogel power manufacturing system and manufacturing method using the same
KR20170110993A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Silica aerogel manufacturing system
WO2018124979A2 (en) * 2016-12-31 2018-07-05 Yodyingyong Supan A method for producing a micron-size spherical silica aerogel
KR102113655B1 (en) * 2016-09-12 2020-05-22 주식회사 엘지화학 Method of preparing for silica aerogel and silica aerogel prepared by the same
KR102534702B1 (en) * 2022-06-24 2023-05-30 주식회사 엔에스앤티 Method for manufacturing aerogel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202019A (en) * 2012-03-29 2013-10-07 Honda Motor Co Ltd Reaction tank and method for washing the same
KR20140050867A (en) * 2012-10-22 2014-04-30 지오스 에어로겔 리미티드 Silica aerogel power manufacturing system and manufacturing method using the same
KR20170110993A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Silica aerogel manufacturing system
KR102113655B1 (en) * 2016-09-12 2020-05-22 주식회사 엘지화학 Method of preparing for silica aerogel and silica aerogel prepared by the same
WO2018124979A2 (en) * 2016-12-31 2018-07-05 Yodyingyong Supan A method for producing a micron-size spherical silica aerogel
KR102534702B1 (en) * 2022-06-24 2023-05-30 주식회사 엔에스앤티 Method for manufacturing aerogel

Also Published As

Publication number Publication date
KR20240002166A (en) 2024-01-04
KR102534702B1 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2023249291A1 (en) Aerogel preparation method
WO2024005398A1 (en) Integrated method for preparing aerogel
WO2017126785A1 (en) Method and apparatus for producing aerogel sheet
EP2621857A2 (en) Method of preparing silica aerogel granules
US3936383A (en) Sol of ultra-fine particles of synthetic hectorite
KR100796253B1 (en) Method of fabricating superhydrophobic silica chain powders
WO2014003490A1 (en) Method for preparing colored foamed glass, and colored foamed glass prepared by said method
WO2017142238A1 (en) Method and apparatus for preparing aerogel sheet
WO2017142239A1 (en) Apparatus for manufacturing aerogel sheet
CN109475833A (en) It is used to prepare the device and method and aerogel composite of aerogel composite
WO2014084583A1 (en) Hydrothermal synthesis apparatus and method for preparing cathode active material using same
WO2023219480A1 (en) Method for preparing aerogel
WO2021040114A1 (en) Method for preparing lithium carbonate from lithium sulfate
WO2019050221A1 (en) Milk of lime preparation apparatus comprising waste heat recovery line, and milk of lime preparation method using waste heat recovery line
WO2017126870A1 (en) Method and apparatus for producing aerogel sheet
CN107651658A (en) A kind of preparation method of sodium-ion battery stratiform polyhedral structure hydroxyl cupric phosphate electrode material
KR102534701B1 (en) Method for manufacturing aerogel
WO2011136497A2 (en) Method for manufacturing a lithium transition metal phosphate
WO2020040325A1 (en) Carbon dioxide storage cement composition using carbon dioxide captured by-product, and method for producing same
KR20230159682A (en) Method for manufacturing aerogel
CN207237955U (en) Off-gas cleaning equipment
CN110510658A (en) A kind of greenization production method of cuprous iodide
JP6959467B1 (en) Inorganic oxide hollow particles
CN211120316U (en) Fumed silica pretreatment device for high-peel-strength structural adhesive
WO2019124582A1 (en) Method for manufacturing mesoporous silica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827411

Country of ref document: EP

Kind code of ref document: A1