WO2023249071A1 - T-cell receptor - Google Patents

T-cell receptor Download PDF

Info

Publication number
WO2023249071A1
WO2023249071A1 PCT/JP2023/023069 JP2023023069W WO2023249071A1 WO 2023249071 A1 WO2023249071 A1 WO 2023249071A1 JP 2023023069 W JP2023023069 W JP 2023023069W WO 2023249071 A1 WO2023249071 A1 WO 2023249071A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
tcr
amino acid
seq
Prior art date
Application number
PCT/JP2023/023069
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 中面
聡明 吉川
泰道 等
光次郎 大澤
Original Assignee
国立研究開発法人国立がん研究センター
サイアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立がん研究センター, サイアス株式会社 filed Critical 国立研究開発法人国立がん研究センター
Publication of WO2023249071A1 publication Critical patent/WO2023249071A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a glypican-3-specific T cell receptor, a method for producing the T cell receptor, and a medicament containing the T cell receptor.
  • HCC hepatocellular carcinoma
  • Immunotherapy is considered to be one of the potential treatments for HCC.
  • Glypican-3 GPC3
  • GPC3 Glypican-3
  • CAR human chimeric antigen receptor
  • Patent Document 1 a treatment method using a GPC3-specific antibody and a human chimeric antigen receptor (CAR) targeting GPC3 has been reported.
  • Patent Document 2 a T cell receptor (TCR) specific to the HLA-A02-restricted GPC3 367-375 peptide has also been reported (Patent Document 2).
  • Glypican-3 was isolated as a developmentally regulated transcript from rat small intestine (Non-Patent Document 1), and was later classified as a GPI-linked heparan sulfate proteoglycan with a core protein of molecular weight 69 kDa, OCT, of the glypican family. -5 (Non-patent Document 2). It has been reported that glypican 3 forms a protein-protein complex with insulin-like growth factor-2 and regulates the activity of this growth factor (Non-Patent Document 3).
  • TCR The T cell receptor
  • TCR is a receptor used by T cells to recognize antigens
  • TCR is composed of a dimer of an ⁇ chain and a ⁇ chain, or a ⁇ chain and a ⁇ chain.
  • TCR forms a complex with CD3 molecules on the surface of T cells, recognizes antigens, and transmits stimulating signals to T cells.
  • Each TCR chain has a variable region and a constant region; the constant region has a short cytoplasmic portion that penetrates the cell membrane, and the variable region exists outside the cell and binds to antigen-HLA (MHC) complexes.
  • MHC antigen-HLA
  • the three CDRs are called CDR1, CDR2 and CDR3, respectively.
  • Non-Patent Document 4 cytotoxic T cell clones expressing various GPC3 144-152 peptide-specific TCRs into peripheral blood cells from patients vaccinated with the HLA-A02-restricted GPC3 144-152 peptide. were established from mononuclear cells (PBMC) (Non-Patent Document 4), but Non-Patent Document 1 does not disclose the TCR sequences of these CTL clones.
  • PBMC mononuclear cells
  • the present invention relates to a novel T cell receptor (TCR) that specifically recognizes glypican 3 (GPC3), regenerated T cells obtained by differentiating iPS cells introduced with the TCR that exhibits higher cytotoxicity, and It is an object of the present invention to provide a manufacturing method and a method for manufacturing regenerated T cells obtained by differentiating iPS cells into which the TCR has been introduced. Another object of the present invention is to provide a medicament for preventing or treating GPC3-expressing cancers and tumors using the TCR (for example, using cytotoxic T cells containing the TCR).
  • GPC3 peptide EYILSLEEL, SEQ ID NO: 29
  • PBMCs peripheral blood mononuclear cells
  • GPC3 peptide HLA-A24-restricted GPC3 peptide
  • TCRs are responsive to GPC3-expressing cancer cells, and that by introducing the gene into iPS cells and inducing differentiation, we can generate the GPC3 peptide (EYILSLEEL, SEQ ID NO: 29). ), and that these regenerated T cells exhibit extremely high cytotoxicity, leading to the completion of the present invention.
  • the present invention provides the following.
  • [1] As the complementarity determining region of the ⁇ chain One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 1 to 13, One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 1 to 13, or the amino acids shown in SEQ ID NOs: 1 to 13 Contains one amino acid sequence selected from the group consisting of amino acid sequences having 90% or more identity with the sequence,
  • As the complementarity determining region of the ⁇ chain One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 14 to 28, One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 14 to 28, or the amino acids shown in SEQ ID NOs: 14 to 28
  • a T cell receptor (TCR) comprising
  • the complementarity determining region of the ⁇ chain contains one amino acid sequence selected from the group consisting of the amino acid sequences shown by SEQ ID NOs: 1 to 13, and the complementarity determining region of the ⁇ chain contains the amino acids shown by SEQ ID NOs: 14 to 28.
  • the TCR according to [1] comprising one amino acid sequence selected from the group consisting of sequences.
  • An expression vector comprising the nucleic acid described in [4].
  • [6] A cell containing the nucleic acid according to [4].
  • [7] A cell containing the vector described in [5].
  • [8] The cell according to [6], wherein the cell is a lymphocyte or a pluripotent stem cell.
  • the cell according to [7], wherein the cell is a CD8-positive cytotoxic T cell.
  • the method for producing the cell according to [6] which comprises the step of introducing the nucleic acid according to [4] into the cell.
  • [14] A T cell derived from a pluripotent stem cell, containing the nucleic acid according to [4].
  • [15] T cells derived from pluripotent stem cells, containing the vector described in [5].
  • [16] A medicament containing the cell according to any one of [6] to [11], [14] and [15].
  • [18] [6] - [11], [14] and [15] A cell killer expressing glypican 3, which contains the cell according to any one of [14] and [15].
  • a method for preventing or treating cancer in a mammal which comprises administering to the mammal an effective amount of the cells according to any one of [6] to [11], [14] and [15].
  • a method for preventing or treating cancer in a mammal which comprises administering to the mammal an effective amount of the medicament according to [16].
  • a method for preventing or treating cancer in a mammal which comprises administering to the mammal an effective amount of the killing agent according to [18].
  • a method for preventing or treating cancer in a mammal which comprises administering to the mammal an effective amount of the CD8-positive cytotoxic T cells described in [26].
  • a method for preventing or treating cancer in a mammal which comprises administering to the mammal an effective amount of the medicament according to [27].
  • a method for producing CD8-positive cytotoxic T cells which comprises introducing TCR produced using the method described in [25].
  • CD8-positive cytotoxic T cells produced using the method described in [33] for use in cancer prevention or treatment.
  • Method of manufacturing TCR including the following steps: (1) Stimulating lymphocytes obtained from the peripheral blood of a patient administered GPC3 peptide with GPC3 peptide, (2) a step of single-cell sorting the CD137-positive activated T cells obtained by the stimulation; (3) producing PCR fragments of TCR ⁇ chain and TCR ⁇ chain genes from the single cell sorted CD137-positive activated T cells (secondary PCR); and (4) producing TCR ⁇ chain and TCR ⁇ chain genes highly responsive to GPC3 peptide.
  • Step of selecting TCR ⁇ chain gene pairs [37]
  • the T cell receptor of the present invention has the ability to bind to a GPC3 peptide (HLA-A24-restricted GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)) or a complex between the peptide and an HLA-A molecule (HLA-A24). Furthermore, by using the method for producing T cell receptors of the present invention, T cell receptors can be produced more efficiently and in a shorter period of time than conventional methods. Furthermore, since the nucleic acid encoding the T cell receptor can impart cytotoxic activity to T cells against cells presenting HLA-A molecules and GPC3 peptides, it is useful for the prevention or treatment of cancers and tumors that express GPC3. Useful.
  • FIG. 1 shows the frequency of GPC3 peptide-specific cytotoxic T cells (CTL) observed over time in liver cancer patients who received an HLA-A24-restricted GPC3 peptide vaccine.
  • the frequency of GPC3 peptide-specific cytotoxic T cells (CTL) was measured by ELISPOT assay as the frequency of IFN ⁇ -producing cells after GPC3 peptide vaccine stimulation. Specimens at the points indicated by arrows (P0102, P0103, P0201 and P0202) were measured.
  • Figure 2 shows the process of GPC3-responsive TCR isolation.
  • FIG. 3 shows that PCR fragments of TCR ⁇ chain and TCR ⁇ chain genes with transcriptional activity were introduced into the NF-AT reporter-introduced Jurkat cell line, and the cells were co-cultured with COS cells expressing HLA-A24 to which GPC3 peptide had been added.
  • the results of intensity analysis of antigen-specific TCR signals obtained by measuring the NF-AT reporter activity of the Jurkat cell line are shown below.
  • GPC3 peptide-specific TCR signals were observed in regenerated T cells expressing P0103_TCR_10, P0103_TCR_12, P0103_TCR_18, P0103_TCR_20, and P0103_TCR_82.
  • FIG. 4 shows a schematic diagram (A) of a plasmid encoding a transposon vector and a list (B) showing the positions of each component.
  • Figure 5 shows the expression of tracer gene CD19 in iPS cells.
  • a piggyBac vector encoding the HLA-A24-restricted GPC3 peptide vaccine-responsive TCR ⁇ chain and TCR ⁇ chain was introduced into 1 ⁇ 10 6 FF-I01s04 iPS cells together with a plasmid vector encoding transposase using a gene introduction device (MaxCyte ATx). It was introduced using Gene introduction was carried out by suspending cells in 50 ⁇ L of gene transfer buffer, using a total DNA amount of 320 ⁇ g/mL, a piggyBac vector/transposase vector ratio of 1/3, and introduction conditions of Optimization 8.
  • FIG. 5 shows the expression of the tracer gene CD19 in iPS cells 8 days after this gene introduction.
  • #1 Control indicates CD19 expression of iPS cells into which no genes were introduced
  • #2 Empty indicates CD19 expression of iPS cells into which piggyBac vector containing only dCD19, which does not incorporate TCR ⁇ chain and TCR ⁇ chain, was introduced.
  • show. #3, #4, and #5 show CD19 expression in iPS cells transfected with piggyBac vectors incorporating the TCR ⁇ chain and TCR ⁇ chain of P0103_TCR_10 (TCR10), P0103_TCR_18 (TCR18), and P0103_TCR_82 (TCR82), respectively.
  • FIG. 5 shows that the piggyBac vector encoding the TCR ⁇ chain and TCR ⁇ chain was efficiently introduced into iPS cells under the above conditions.
  • FIG. 6 shows the method of Kaneko et al. (Kawai Y. et al., Microscopic images of embryoid body (EB) formation and hematopoietic stem cells induced according to Mol Ther. 2021;29:3027-3041) are shown.
  • the embryoid body (EB) formed by culture and the blood cells (HC) that appeared around it are shown.
  • Figure 7 shows the expression of T cell markers in differentiated T cells. iPS cells into which the TCR ⁇ chain and TCR ⁇ chain genes were introduced using the piggyBac vector were differentiated into T cells according to the method of Kaneko et al. (Kawai Y. et al., Mol Ther. 2021;29:3027-3041).
  • FIG. 8 shows the results of a cytotoxicity test against target cells to which A24-restricted GPC3 epitope peptide was added using regenerated T cells that were differentiated into T cells after introducing P0103_TCR_10, P0103_TCR_18, and P0103_TCR_82 into iPS cells.
  • the upper panel shows the cytotoxicity towards target cells when target cells with or without a fixed amount of GPC3 epitope peptide (EYILSLEEL, SEQ ID NO: 29) were co-cultured with different numbers of regenerated T cells.
  • Regenerated T cells exhibited concentration-dependent cytotoxicity toward target cells to which GPC3 peptide was added. No cytotoxicity was shown against target cells to which the GPC3 peptide was not added. This indicates that regenerated T cells have antigen-specific cytotoxicity against the GPC3 epitope peptide. In the lower panel, cytotoxicity was verified by fixing the ratio of regenerated T cells to target cells at 10:1 and varying the concentration of the GPC3 epitope peptide added. From the obtained results, the cytotoxic EC50 of regenerated T cells expressing P0103_TCR_10, P0103_TCR_18, and P0103_TCR_82 was 10 nM, ⁇ 1 nM, and ⁇ 1 nM, respectively.
  • FIG. 9 shows that P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18), and P0103_TCR_82 (TCR#82) were introduced into iPS cells and regenerated T cells differentiated into T cells were used for GPC3-expressing SK-Hep liver cancer.
  • the results are shown in which the tumor growth over time was verified by measuring the chemiluminescence emitted by the tumor when the tumor was intraperitoneally administered six times to NOG mice with a tumor implanted in the peritoneal cavity.
  • a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered and the progress was observed.
  • mice The results of investigating the effect on the survival of NOG mice in which tumors were implanted into the peritoneal cavity when administered six times intraperitoneally are shown.
  • a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered, and the progress was observed.
  • Mice received regenerated T cells expressing TCR#18 and TCR#82, respectively, or a cell mixture containing equal amounts of regenerated T cells expressing TCR#18, TCR#82, and TCR#10.
  • Significant survival prolongation was observed in mice. No prolonged survival was observed in mice receiving regenerated T cells expressing TCR#10.
  • T Cell Receptors The present invention provides T cell receptors (also referred to as T cell receptors or TCRs) capable of binding to GPC3 peptides (HLA-A24-restricted GPC3 peptides) or complexes of the peptides and HLA-A24. . Furthermore, the TCR of the present invention may be isolated.
  • T cell receptor is composed of a heterodimer of TCR chains ( ⁇ chain and ⁇ chain), and is composed of a heterodimer of TCR chains ( ⁇ chain and ⁇ chain), and is an antigen or the antigen-HLA (human leukocyte antigen) (MHC; major histocompatibility).
  • Gene complex refers to a receptor that recognizes the complex and transmits a stimulating signal to T cells.
  • Each TCR chain is composed of a variable region and a constant region, which are formed by somatic recombination of the V region, D region, and J region, which are arranged on the chromosome as multiple fragments. There are three complementarity determining regions (CDR1, CDR2 and CDR3).
  • CDR1 and CDR2 are found in the variable (V) region of a polypeptide chain, with CDR3 comprising part of the V region, the diversity (D) region (heavy chain only) and the entire joining (J) region. Because most sequence changes associated with T cell receptors are found in the CDRs, these regions are sometimes referred to as "hypervariable regions.” Among these, CDR3 is the most variable. This is because CDR3 is encoded by VJ rearrangement in the case of a light chain, and by VDJ rearrangement in the case of a heavy chain.
  • the TCR of the present invention includes not only those in which the ⁇ chain and ⁇ chain of TCR constitute a heterodimer, but also those in which the TCR constitutes a homodimer. Furthermore, the TCR of the present invention includes those in which part or all of the constant region is deleted, those in which the amino acid sequence is recombined, and those in which the TCR is made into a soluble TCR.
  • soluble TCR refers to TCR that has been solubilized by chemical modification of TCR, binding to an Fc receptor, or removal of the cell membrane-spanning domain. It exists as a monodisperse heterodimer in saline solution (PBS) (2.7 mM KCl, 1.5 mM KH 2 PO 4 , 137 mM NaCl and 8 mM Na 2 PO 4 , pH 7.1-7.5) and its TCR 90% or more means the ability to remain as a monodisperse heterodimer after incubation at 25° C. for 1 hour.
  • PBS saline solution
  • a new disulfide bond may be artificially introduced between the constant regions of each chain in order to increase stability.
  • Such a soluble TCR can be produced, for example, according to the method described in WO 2004/074322 pamphlet, Boulter et al., Clin Exp Immunol, 2005, 142(3):454-460.
  • the concentration is not particularly limited as long as the TCR can bind to the antigen or the antigen-HLA complex, but for example, when used for in vitro tests, it may be 40 ⁇ g/mL or more. preferable.
  • GPC3 peptide or "HLA-A24-restricted GPC3 peptide” means a peptide fragment of glypican 3 (GPC3) consisting of the amino acid sequence shown by SEQ ID NO: 29.
  • the TCR of the present invention is capable of specifically recognizing and binding a complex of GPC3 peptide and HLA-A24.
  • TCR of the present invention to specifically recognize and bind to the above complex can be confirmed by known methods. Suitable methods include, for example, dextramer assay or ELISPOT assay using HLA-A24 molecules and GPC3 peptide. By performing an ELISPOT assay, it can be confirmed that T cells expressing the TCR on the cell surface recognize target cells by TCR and that the signal is transmitted into the cells.
  • the term "capable of binding” means “having an ability to bind" to one or more other molecules in a non-covalent manner. Refers to the ability to form binding complexes.
  • the complex of the present invention include a complex between a GPC3 peptide and an HLA molecule (eg, HLA-A24), or a complex between a GPC3 peptide and a TCR.
  • HLA-A24 HLA-A24
  • Another example of a complex of the invention is a complex between TCR and GPC3 peptide, which itself forms a complex with HLA.
  • the binding is usually with high affinity, with an affinity measured by a KD value of preferably less than 1 ⁇ M, more preferably less than 100 nM, even more preferably less than 10 nM, even more preferably 1 Less than nM, even more preferably less than 100 pM, even more preferably less than 10 pM, even more preferably less than 1 pM.
  • KD or "KD value” refers to the equilibrium dissociation constant as known in the art. In the context of the present invention, these terms relate to the equilibrium dissociation constant of a TCR for a particular antigen of interest (e.g., a peptide of GPC3 as defined herein, or the respective complex of a peptide and an HLA). obtain.
  • the equilibrium dissociation constant is a measure of the tendency of a complex (eg, TCR-peptide-HLA complex) to reversibly dissociate into its components (eg, TCR and peptide-HLA complex).
  • Methods for determining KD values are known in the art and include, for example, surface plasmon resonance.
  • isolated means a state in which a specific component (eg, TCR) is identified, separated, or recovered from components in its natural environment.
  • a specific component eg, TCR
  • amino acids refers to, for example, 1, 2, 3, 4, or 5 amino acids (e.g., 1 to 4 amino acids, 1 to 3 amino acids, or 1 to 2 amino acids). amino acid).
  • one or several preferably means 1, 2 or 3 amino acids.
  • one or several preferably means 1 to 5, 1 to 4 or 1 to 3, especially 1, 2 or 3 amino acids.
  • % identity means, for example, 90% or more (e.g. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more) high) meaning sameness.
  • Amino acid sequence identity was determined using the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) (https ://blast.ncbi.nlm.nih.gov/Blast.cgi). It is understood that to determine % identity, a sequence of the invention over its entire length is compared to another sequence. In other words, % identity in the present invention excludes comparisons of short fragments (eg 1-3 residues) of a sequence of the present invention with another sequence, or vice versa.
  • the complementarity determining region of the ⁇ chain of the TCR of the present invention comprises each amino acid sequence of CDR3 shown in SEQ ID NOS: 1 to 13, respectively, and the complementarity determining region of the ⁇ chain of the TCR of the present invention includes: It contains each amino acid sequence of CDR3 shown in SEQ ID NOs: 14 to 28, respectively.
  • the above amino acid sequence may contain one to several (for example, two or three) amino acids, as long as the TCR containing the CDR3 amino acid sequence has the ability to bind to the GPC3 peptide or the complex of the peptide and HLA-A24. may be deleted, substituted or added.
  • the TCR of the present invention comprises a TCR ⁇ chain comprising each amino acid sequence of CDR3 shown in SEQ ID NOs: 1 to 13, respectively, and a TCR ⁇ chain comprising each amino acid sequence of CDR3 shown as SEQ ID NOs: 14 to 28, respectively.
  • the ⁇ and ⁇ chains of the TCR form a heterodimer.
  • the ⁇ chain of the TCR of the present invention preferably has SEQ ID NOS: 1 to one amino acid sequence among the amino acid sequences shown by SEQ ID NOs: 13, 1 or several (for example, 2, 3, 4 or 5) amino acids are deleted in the amino acid sequences shown by SEQ ID NOS: 1 to 13, 90% or more (for example, 91%, 92%, 93%, 94%, 95%, 96%) of one of the substituted or added amino acid sequences, or the amino acid sequence shown in SEQ ID NOS: 1 to 13. , 97%, 98% or 99% or more).
  • the ⁇ chain of the TCR of the present invention preferably has SEQ ID NO: 14 to 28, one or several (for example, 2, 3, 4 or 5) amino acids are deleted in the amino acid sequences shown in SEQ ID NOs: 14 to 28, 90% or more (for example, 91%, 92%, 93%, 94%, 95%, 96%) of one of the substituted or added amino acid sequences, or the amino acid sequence shown in SEQ ID NOs: 14 to 28. , 97%, 98% or 99% or more) identity).
  • the TCR of the present invention comprises a TCR ⁇ chain comprising the amino acid sequence shown in SEQ ID NOs: 1 to 13, and a TCR ⁇ chain comprising one of the amino acid sequences shown in SEQ ID NOs: 14 to 28, The ⁇ chain and ⁇ chain of the TCR form a heterodimer.
  • the TCR of the present invention comprises a TCR ⁇ chain comprising one of the amino acid sequences shown in SEQ ID NOs: 1-13, and one of the amino acid sequences shown in SEQ ID NOs: 1-13. The ⁇ and ⁇ chains of the TCR form a heterodimer.
  • the TCR of the present invention can be produced by genetic engineering using the nucleic acid or vector of the present invention described below. For example, by introducing both a nucleic acid encoding the ⁇ chain and a nucleic acid encoding the ⁇ chain of the TCR of the present invention into cells to express the TCR ⁇ chain and ⁇ chain polypeptides, the present invention can be applied to the cells.
  • the TCR can be expressed and isolated by a method known per se.
  • nucleic acid of the present invention provides a nucleic acid encoding the TCR of the present invention described above (hereinafter abbreviated as "nucleic acid of the present invention").
  • the nucleic acids of the present invention may be isolated.
  • the nucleic acid of the present invention may be a nucleic acid encoding the ⁇ chain of TCR, a nucleic acid encoding the ⁇ chain of TCR, or a nucleic acid encoding both ⁇ chain and ⁇ chain of TCR.
  • the invention also relates to nucleic acids encoding any or more of the CDRs, variable regions and/or constant regions described herein.
  • the invention also encompasses nucleic acids that are capable of hybridizing under stringent conditions to the complement of any of the nucleic acids defined herein.
  • the hybridizable nucleic acids encode CDR, variable region or constant region amino acid sequences having the functions described herein.
  • the hybridizable nucleic acid encodes an amino acid sequence such that a TCR containing the amino acid sequence has the ability to bind to the GPC3 peptide or the complex of the peptide and HLA-A24.
  • the nucleic acid encoding the TCR ⁇ chain of the present invention may be any nucleic acid as long as it encodes the TCR ⁇ chain defined above. Examples include nucleic acids. Further, the nucleic acid encoding the TCR ⁇ chain of the present invention may be any nucleic acid as long as it encodes the TCR ⁇ chain defined above, and for example, the polypeptide shown by SEQ ID NOS: 14 to 28. Examples include nucleic acids encoding.
  • the nucleic acid of the present invention may be DNA, RNA, or a DNA/RNA chimera, but is preferably DNA. Further, the nucleic acid may be double-stranded or single-stranded. If it is double-stranded, it may be double-stranded DNA, double-stranded RNA, or a DNA:RNA hybrid. When the nucleic acid is RNA, T in the sequence listing shall be read as U for the RNA sequence.
  • the nucleic acids of the present invention may also include natural nucleotides, modified nucleotides, nucleotide analogs, or mixtures thereof, as long as they can express the polypeptide in vitro or in cells.
  • the nucleic acid of the present invention can be constructed by a method known per se.
  • a DNA chain can be chemically synthesized based on the TCR amino acid sequence or nucleic acid sequence listed in the sequence listing, or synthesized partially overlapping oligo DNA short chains can be synthesized using the PCR method or Gibson Assembly method. It is possible to construct a DNA encoding the full length or a part of the TCR of the present invention by connecting the TCR of the present invention.
  • the nucleic acids of the invention can be incorporated into expression vectors. Therefore, the present invention provides an expression vector (hereinafter abbreviated as "vector of the present invention") containing any of the above-described nucleic acids of the present invention.
  • the vector of the present invention may be a vector that does not integrate into the genome of the target cell. In one embodiment, a vector that is not integrated into the genome is capable of replicating outside the genome of the target cell. The vector may exist in multiple copies outside the genome of the target cell. In a further embodiment of the invention, the vector is integrated into the genome of the target cell. In a preferred embodiment, the vector integrates into the genome of the target cell at a predetermined location.
  • promoters used in the vector of the present invention include ubiquitin promoter, EF1 ⁇ promoter, CAG promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV ( Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, TCR V ⁇ gene promoter, TCR V ⁇ gene promoter, etc. are used.
  • ubiquitin promoter, EF1 ⁇ promoter, CAG promoter, MoMuLV LTR, CMV promoter, SR ⁇ promoter, etc. are preferred.
  • the vector of the present invention may optionally contain transcriptional and translational regulatory sequences, ribosome binding sites, enhancers, origins of replication, polyA addition signals, selection marker genes, and the like.
  • the selectable marker gene include a dihydrofolate reductase gene, a neomycin resistance gene, a puromycin resistance gene, and the like.
  • an expression vector containing a nucleic acid encoding the ⁇ chain and a nucleic acid encoding the ⁇ chain of the TCR of the present invention described above is introduced into a target cell, and the TCR is introduced into the target cell or on the cell surface.
  • a heterodimer of an ⁇ chain and a ⁇ chain can be formed.
  • the nucleic acid encoding the ⁇ chain and the nucleic acid encoding the ⁇ chain of TCR may be incorporated into separate expression vectors, or may be incorporated into one expression vector.
  • these two types of nucleic acids are preferably integrated via a sequence that enables polycistronic expression.
  • Sequences that enable polycistronic expression include, for example, the T2A sequence of foot-and-mouth disease virus (see PLoS ONE3, e2532, 2008, Stem Cells 25, 1707, 2007), the internal ribosome entry site (IRES) (U.S. Patent No. 4,937,190), but from the viewpoint of uniform expression level, the T2A sequence is preferred.
  • Expression vectors that can be used in the present invention are not particularly limited as long as they can express TCR for a period sufficient to prevent or treat diseases when introduced into cells, and include viral vectors and plasmid vectors.
  • viral vectors include retrovirus vectors (including lentivirus vectors and pseudotype vectors), adenovirus vectors, adeno-associated virus vectors, herpes virus vectors, Sendai virus, episomal vectors, and the like.
  • a transposon expression system may be used.
  • plasmid vectors include animal cell expression plasmids (eg, pa1-11, pXT1, pRc/CMV, pRc/RSV, and pcDNAI/Neo).
  • the present invention provides a cell containing the nucleic acid or vector of the present invention (in other words, a cell having the nucleic acid or vector of the present invention) (hereinafter abbreviated as "cell of the present invention").
  • the nucleic acid of the present invention is preferably introduced into desired cells in the form of a vector of the present invention.
  • the invention also encompasses introducing the nucleic acids of the invention into the host genome by genome editing (eg, CRISPR system, TALEN system, etc.).
  • a preferred embodiment of the cell of the present invention includes, but is not limited to, a cell into which both a nucleic acid encoding a TCR ⁇ chain and a nucleic acid encoding a TCR ⁇ chain have been introduced.
  • Confirmation that the cells of the present invention have cytotoxic activity may be performed using known methods, and preferred methods include, for example, measuring cytotoxic activity against HLA-A24-positive target cells, such as a chromium release assay.
  • the cells of the invention are human cells.
  • lymphocytes examples include lymphocytes and lymphocyte progenitor cells including pluripotent stem cells.
  • lymphocytes refers to one of the subtypes of white blood cells in the immune system of vertebrates, and lymphocytes include T cells, B cells, and natural killer cells (NK cells). Since T cell receptors play an important role in antigen recognition by T cells, T cells are preferred as cells into which the nucleic acid or vector of the present invention is introduced.
  • a "T cell” is a type of white blood cell found in lymphoid organs or peripheral blood, and is a lymphocyte that differentiates and matures mainly in the thymus gland and expresses a T cell receptor (TCR).
  • TCR T cell receptor
  • T cells include cytotoxic T cells (CTL), which are CD8-positive cells, helper T cells, regulatory T cells, and effector T cells, which are CD4-positive cells. , preferably cytotoxic T cells.
  • CD4/CD8 both positive cells are also included in T cells.
  • T cells expressing the TCR of the present invention can be obtained by introducing the nucleic acid or vector of the present invention into T cells collected from a living body.
  • T cells expressing the TCR of the present invention can be derived from lymphoid progenitor cells (e.g., pluripotent stem cells) into which the nucleic acid or vector of the present invention has been introduced. cells) can be obtained.
  • lymphoid progenitor cells e.g., pluripotent stem cells
  • the cell of the present invention eg, cytotoxic T cell
  • the cells of the present invention differ from cells collected from living bodies.
  • the lymphocytes can be collected from, for example, peripheral blood, bone marrow, and umbilical cord blood of humans or non-human mammals.
  • the cell population is preferably collected from the person to be treated or a donor whose HLA type matches the HLA type of the person to be treated.
  • Preferred subjects or donors are humans.
  • lymphocyte precursor cells including pluripotent stem cells include embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), and embryonic tumor cells (EC cells). ), embryonic germ stem cells (EG cells), hematopoietic progenitor cells including hematopoietic stem cells, multipotent progenitors (MMPs) that have lost self-renewal ability, myelolymphoid common progenitor cells (MLPs), myeloid lineage Examples include progenitor cells (MP), granulocyte mononuclear progenitors (GMP), macrophage-dendritic cell progenitors (MDP), and dendritic cell progenitors (DCP).
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • EC cells embryonic tumor cells
  • EG cells embryonic germ stem cells
  • hematopoietic progenitor cells including hematopoietic stem cells include multipotent progeni
  • Any cell derived from a human embryo, particularly an ES cell may be a cell produced by destroying the embryo, or a cell produced without destroying the embryo. From an ethical standpoint, iPS cells, EC cells, EG cells, hematopoietic progenitor cells, MMP, MLP, MP, GMP, MDP, DCP, and ES cells produced without destroying embryos are preferred.
  • iPS cells can be produced by introducing specific reprogramming factors in the form of DNA or proteins into somatic cells, and have properties almost equivalent to ES cells, such as pluripotency and the ability to proliferate through self-renewal.
  • Artificial stem cells derived from somatic cells e.g., Takahashi K, Yamanaka S. Cell, 126;663-676 (2006): Takahashi K. et al. Cell, 131;861-872 (2007): Yu J. et al. Science, 318;1917-1920 (2007): Nakagawa M. et al. Nat. Biotechnol. 26;101-106 (2008)).
  • the iPS cells When using iPS cells, the iPS cells may be produced from somatic cells by a method known per se, or already established and stocked iPS cells may be used. Although there are no restrictions on the somatic cells from which the iPS cells used in the present invention are derived, cells derived from peripheral blood or umbilical cord blood are preferred. There is no restriction on the animal from which the pluripotent stem cells are derived, and examples include mammals such as mice, rats, hamsters, guinea pigs, dogs, monkeys, orangutans, chimpanzees, and humans, with humans being preferred.
  • hematopoietic progenitor cells refer to CD34-positive cells, preferably CD34/CD43 dual-positive (DP) cells.
  • the origin of the hematopoietic progenitor cells used in the present invention is not limited, and for example, hematopoietic progenitor cells obtained by inducing differentiation of pluripotent stem cells by the method described below may be used. Hematopoietic progenitor cells isolated by the method described above may also be used.
  • nucleic acid or vector of the present invention there are no particular limitations on the method for introducing the nucleic acid or vector of the present invention into cells, and known methods can be used.
  • introducing a nucleic acid or a plasmid vector it can be carried out, for example, by a calcium phosphate coprecipitation method, a PEG method, an electroporation method, a microinjection method, a lipofection method, or the like.
  • a calcium phosphate coprecipitation method for example, a calcium phosphate coprecipitation method, a PEG method, an electroporation method, a microinjection method, a lipofection method, or the like.
  • the nucleic acid of the present invention is introduced into an appropriate packaging cell (e.g., Plat-E cells) or a complementary cell line (e.g., 293 cells) to obtain the virus produced in the culture supernatant.
  • the vector can be collected and introduced into cells by infecting the cells with the vector using an appropriate method depending on each virus vector. For example, specific methods for using retrovirus vectors as vectors are described in International Publication No. 2007/69666 pamphlet, Takahashi K, Yamanaka S. Cell, 126, 663-676 (2006) and Takahashi K, et al. Cell, 131, Disclosed in reports such as 861-872 (2007).
  • a retrovirus vector when using a retrovirus vector, highly efficient gene transfer into various cells is possible by using the recombinant fibronectin fragment CH-296 (manufactured by Takara Bio).
  • a transposon vector such as a piggyBac vector may be used.
  • the nucleic acid of the present invention may also be directly introduced into cells in the form of RNA and used to express TCR within the cells.
  • a method for introducing RNA a known method can be used, and for example, lipofection, electroporation, etc. can be suitably used.
  • endogenous TCR ⁇ originally expressed by the T cells should be and TCR ⁇ chain expression may be suppressed by siRNA.
  • the base sequence of the nucleic acid encoding the TCR is replaced with siRNA that suppresses the expression of the endogenous TCR ⁇ chain and TCR ⁇ chain. It is preferable to use a sequence (codon conversion type sequence) different from the base sequence corresponding to the acting RNA.
  • the above-mentioned base sequence can be produced by introducing a silent mutation into a naturally obtained TCR-encoding nucleic acid or by chemically synthesizing an artificially designed nucleic acid.
  • part or all of the constant region of the nucleic acid encoding the TCR of the present invention may be replaced with a constant region derived from an animal other than humans, such as a mouse.
  • TCR genes are associated with the administration of HLA-A24-restricted GPC3 peptide vaccine to liver cancer patients conducted at the National Cancer Center Hospital East. Obtained through clinical research.
  • the GPC3 peptide vaccine was administered to two patients (P01 first administration date: January 18, 2012, P02 first administration date: February 24, 2008) continuously every two weeks. Later, blood was collected and stored at the center.
  • samples at the two time points shown in Figure 1 were obtained and the TCR gene was isolated.
  • Isolation of the TCR gene was performed according to the method described in Figure 2. First, peripheral blood was collected from a patient to whom GPC3 peptide was administered according to the GPC3 peptide administration conditions in the above clinical study, and lymphocytes were purified using the obtained peripheral blood. Thereafter, the purified lymphocytes were stimulated with GPC3 peptide under in vitro conditions.
  • CD137-positive activated T cells were subjected to single cell sorting using a cell sorter, and the TCR ⁇ chain and TCR ⁇ were determined by PCR from the single-cell sorted CD137-positive activated T cells. Isolation of gene pairs (primary PCR) was performed. Furthermore, from this isolation step, PCR fragments of TCR ⁇ chain and TCR ⁇ chain genes having transcriptional activity were prepared (secondary PCR).
  • TCR ID is the ID of the TCR obtained from the sample
  • TRAV is the TCRV ⁇ segment
  • TRAJ is the TCRJ ⁇ segment
  • CDR3A is the CDR3 ⁇ segment
  • TRBV indicates the TCRV ⁇ segment
  • TRBJ indicates the TCRJ ⁇ segment
  • TRBD indicates the TCRD ⁇ segment
  • CDR3B indicates the CDR3 ⁇ segment.
  • amino acids were indicated by conventional one-letter abbreviations.
  • the present invention also provides a method for producing cells of the present invention (hereinafter abbreviated as "the production method of the present invention"), which includes a step of introducing the nucleic acid or vector of the present invention into cells. . 4. Cells into which the nucleic acid or vector of the present invention is introduced and the introduction method. As described in .
  • hematopoietic progenitor cells in one embodiment, (1) differentiating pluripotent stem cells into which the nucleic acid or vector of the present invention has been introduced into hematopoietic progenitor cells, and (2) differentiating the hematopoietic progenitor cells into T cells.
  • a method of producing a T cell including the steps.
  • Step (1) Step of differentiating pluripotent stem cells into hematopoietic progenitor cells (step (1))
  • the method for differentiating pluripotent stem cells into hematopoietic progenitor cells is not particularly limited as long as it can be differentiated into hematopoietic progenitor cells, but examples include International Publication No. 2013/075222 pamphlet, International Publication No. 2016/076415 pamphlet, and Liu S.
  • examples include a method of culturing pluripotent stem cells in a medium for inducing hematopoietic progenitor cells.
  • the medium for inducing hematopoietic progenitor cells is not particularly limited, but a medium used for culturing animal cells can be prepared as a basal medium.
  • the basal medium include Iscove's Modified Dulbecco's Medium (IMDM) medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's s medium , Neurobasal Medium (Life Technologies), or a mixed medium thereof.
  • the medium may contain serum or may be serum-free. If necessary, the basal medium may contain, for example, vitamin C (e.g.
  • ascorbic acid albumin
  • insulin transferrin
  • selenium fatty acids
  • trace elements 2-mercaptoethanol
  • thiolglycerol lipids
  • amino acids L-glutamine.
  • non-essential amino acids vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, etc.
  • vitamin C refers to L-ascorbic acid and derivatives thereof, and L-ascorbic acid derivatives refer to those that become vitamin C through an enzymatic reaction in vivo.
  • derivatives of ascorbic acid used in the present invention include vitamin C phosphate, ascorbyl glucoside, ascorbyl ethyl, vitamin C ester, ascobyl tetrahexyldecanoate, ascobyl stearate, and ascorbic acid-2-phosphate-6-palmitic acid.
  • vitamin C phosphate for example, phosphate-L-ascorbate salts such as Na phosphate-L-ascorbate or Mg phosphate-L-ascorbate.
  • a preferred basal medium used in step (1) is an IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, L-glutamine, and ascorbic acid.
  • the culture solution used in step (1) is at least one type selected from the group consisting of BMP4 (Bone morphogenetic protein 4), VEGF (vascular endothelial growth factor), SCF (Stem cell factor), and FLT-3L (Flt3 Ligand). Cytokines may be further added. More preferred is a culture medium supplemented with VEGF, SCF and FLT-3L.
  • vitamin C is preferably added (supplemented) separately every 4 days, every 3 days, every 2 days, or every 1 day, and preferably added every 1 day.
  • the amount of vitamin C in the culture solution is equivalent to 5 ng/mL to 500 ng/mL (e.g. 5 ng/mL, 10 ng/mL, 25 ng/mL, 50 ng/mL, 100 ng/mL). , 200 ng/mL, 300 ng/mL, 400 ng/mL or 500 ng/mL).
  • the concentration of BMP4 in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), preferably 20 ng/mL to 40 ng/mL. ml is more preferable.
  • the concentration of VEGF in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), especially 20 ng/mL. preferable.
  • the concentration of SCF in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), and 30 ng/mL is particularly preferred. preferable.
  • the concentration of FLT-3L in the culture medium is not particularly limited, but may range from 1 ng/mL to 100 ng/mL (e.g. 1 ng/mL, 2 ng/mL, 3 ng/mL, 4 ng/mL, 5 ng/mL, 6 ng/mL, 7 ng/mL, 8 ng/mL, 9 ng/mL, 10 ng/mL, 20 ng/mL, 50 ng/mL or 100 ng/mL), particularly preferably 10 ng/mL.
  • the pluripotent stem cells may be cultured by adhesive culture or suspension culture.
  • adhesive culture the pluripotent stem cells may be cultured using a culture container coated with a coating agent.
  • Co-culture may be used.
  • Other co-cultured cells include C3H10T1/2 (Takayama N. et al. J Exp Med. 2010;207(13):2817-2830) and heterologous stromal cells (Niwa A. et al. J Cell Physiol. 2009;221(2):367-377).
  • An example of the coating agent is Matrigel (Niwa A, et al. PLoS One. 2011;6(7):e22261). In suspension culture, Chadwick K. et al.
  • the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, and about 37°C to 39°C, for example. Furthermore, a person skilled in the art can appropriately determine the culture period while monitoring the number of hematopoietic progenitor cells.
  • the number of days is not particularly limited as long as hematopoietic progenitor cells are obtained, but for example, at least 6 days or more, 7 days or more, 8 days or more, 9 days or more, 10 days or more, 11 days or more, 12 days or more, 13 days or more, or It is 14 days or more, preferably 14 days.
  • hypoxic conditions include oxygen concentrations of 15%, 10%, 9%, 8%, 7%, 6%, 5%, or lower.
  • Step (2) Step of differentiating hematopoietic progenitor cells into T cells
  • the method for differentiating hematopoietic progenitor cells into T cells is not particularly limited as long as hematopoietic progenitor cells can be differentiated into T cells, but for example, as described in WO 2016/076415 pamphlet, etc.
  • (2- Examples include a method comprising: 1) inducing CD4/CD8 dual-positive T cells from hematopoietic progenitor cells; and (2-2) inducing CD8-positive T cells from CD4/CD8 dual-positive T cells.
  • hematopoietic progenitors be isolated in advance from the cell population obtained in step (1) using a hematopoietic progenitor cell marker.
  • the marker includes at least one selected from the group consisting of CD43, CD34, CD31, and CD144.
  • step (2-1) Step of inducing CD4/CD8 double positive T cells from hematopoietic progenitor cells (step (2-1))
  • the method for differentiating into CD4/CD8 dual-positive T cells includes, for example, a method of culturing hematopoietic progenitor cells in an induction medium for CD4/CD8 dual-positive T cells.
  • the medium for inducing differentiation into both CD4/CD8 positive T cells is not particularly limited, but a medium used for culturing animal cells can be prepared as a basal medium.
  • the medium may contain serum or may be serum-free.
  • the basal medium may contain, for example, vitamin C, albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, lipids, amino acids, L-glutamine, non-essential amino acids, vitamins. , growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, and the like.
  • the preferred basal medium used in step (2-1) is ⁇ MEM medium containing serum, transferrin, serine, and L-glutamine.
  • the vitamin C is the same as in step (1).
  • the culture solution used in step (2-1) may further contain the cytokines FLT-3L and/or IL-7, and more preferably, the culture solution is supplemented with FLT-3L and IL-7. be.
  • the concentration of IL-7 in the culture solution is 1 ng/mL to 50 ng/mL (e.g. 1 ng/mL, 2 ng/mL, 3 ng/mL).
  • FLT-3L when FLT-3L is used in step (2-1), FLT-3L can be used in the same manner as in step (1) above.
  • hematopoietic progenitor cells may be cultured in an adherent manner or in suspension.
  • a culture vessel may be coated, or they may be co-cultivated with feeder cells or the like.
  • feeder cells to be co-cultured is bone marrow stromal cell line OP9 cells (available from RIKEN BioResource Center).
  • the OP9 cells are preferably OP-DL1 cells that constitutively express Dll1 (Holmes R, Zuniga-Pflucker JC. Cold Spring Harb Protoc. 2009(2):pdb.prot5156).
  • Dll1 when using OP9 cells as feeder cells, this can also be done by appropriately adding Dll1 or a fusion protein of Dll1 and Fc, etc. prepared separately to the culture medium.
  • Dll1 includes a protein encoded by a gene having the nucleotide sequence listed as NCBI accession number NM#005618 in the case of human and NM#007865 in the case of mouse, and a protein with high sequence identity thereto. Naturally occurring variants having the same functionality (for example, 90% or more) and equivalent functions are included.
  • feeder cells are used to produce CD4/CD8 double-positive T cells, it is preferable to replace the feeder cells as appropriate during culturing. Replacement of feeder cells can be performed by transferring target cells in culture onto previously seeded feeder cells. The exchange may occur every 5 days, every 4 days, every 3 days, or every 2 days.
  • the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, and about 37°C to 39°C, for example.
  • the culture period can be appropriately determined by those skilled in the art while monitoring the number of CD4/CD8 double-positive T cells.
  • the number of days of the culture period is not particularly limited as long as hematopoietic progenitor cells are obtained, but for example, at least 10 days or more, 12 days or more, 14 days or more, 16 days or more, 18 days or more, 20 days or more, 22 days or more, or 23 days or more. 23 days or more, preferably 23 days.
  • the culture period is preferably 90 days or less, more preferably 42 days or less.
  • step (2-2) Step of inducing CD8 positive T cells from CD4/CD8 double positive (DP) T cells (step (2-2)) By subjecting the CD4/CD8 DP cells obtained in step (2-1) to a step of inducing differentiation into CD8 single positive (SP) cells, they can be induced to differentiate into CD8 single positive (SP) cells.
  • the basal medium and medium used in step (2-2) include those similar to the basal medium and medium described in step (1).
  • the medium may contain an adrenal corticosteroid.
  • adrenal corticosteroids include glucocorticoids and derivatives thereof; examples of the glucocorticoids include cortisone acetate, hydrocortisone, fludrocortisone acetate, prednisolone, triamcinolone, methylprednisolone, dexamethasone, betamethasone, Examples include beclomethasone propionate. Among them, dexamethasone is preferred.
  • the concentration of dexamethasone in the culture medium is 1 nM to 100 nM (e.g. 1 nM, 5 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM , 70 nM, 80 nM, 90 nM or 100 nM), and 10 nM is especially preferred.
  • the medium may contain antibodies (eg, anti-CD3 antibody, anti-CD28 antibody, and anti-CD2 antibody), cytokines (eg, IL-7, IL-2, and IL-15), and the like.
  • antibodies eg, anti-CD3 antibody, anti-CD28 antibody, and anti-CD2 antibody
  • cytokines eg, IL-7, IL-2, and IL-15
  • the anti-CD3 antibody is not particularly limited as long as it is an antibody that specifically recognizes CD3, and includes, for example, an antibody produced from an OKT3 clone.
  • the anti-CD3 antibody may be bound to magnetic beads or the like, and instead of adding the anti-CD3 antibody to the medium, the T Stimulation may be provided by culturing the lymphocytes for a certain period of time.
  • the concentration of anti-CD3 antibody in the culture medium is 10 ng/mL to 1000 ng/mL (e.g. 10 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL, 300 ng/mL, 400 ng/mL).
  • mL 500 ng/mL, 600 ng/mL, 700 ng/mL, 800 ng/mL, 900 ng/mL, 1000 ng/ml), and 500 ng/mL is particularly preferable.
  • concentrations of other antibodies can also determine the concentrations of other antibodies as appropriate based on culture conditions and the like.
  • the concentration of IL-2 in the medium is 10 U/mL to 1000 U/mL (e.g. 10 U/mL, 20 U/mL, 30 U/mL , 40 U/mL, 50 U/mL, 60 U/mL, 70 U/mL, 80 U/mL, 90 U/mL, 100 U/mL, 200 U/mL, 500 U/mL or 1000 U/mL ) is preferred, and 100 U/mL is particularly preferred.
  • the concentration of IL-7 or IL-15 used in step (2-2) in the medium is 1 ng/mL to 100 ng/mL (e.g.
  • ng/mL 1 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL, 30 ng/mL, 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), and among them, 10 ng/mL is preferred.
  • the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, more preferably about 37°C to 39°C.
  • the culture period can be appropriately determined by those skilled in the art while monitoring the number of CD8-positive T cells.
  • the number of days is not particularly limited as long as CD8-positive T cells are obtained, but is preferably 1 day or more, 3 days or more, or 7 days or more, preferably 60 days or less, and more preferably 35 days or less.
  • Medicinal product containing the nucleic acid, vector, or cell of the present invention provides a pharmaceutical product containing the nucleic acid, vector, or cell of the present invention as an active ingredient (hereinafter abbreviated as "medicine of the present invention").
  • Cells containing the nucleic acids of the invention can exhibit cytotoxic activity against cells presenting HLA-A24 molecules and GPC3 peptides. Therefore, a medicament containing the nucleic acid, vector, or cell of the present invention can be used for the prevention or treatment of diseases in which GPC3 is expressed, and can be used, for example, in mammals (e.g., mice, rats, hamsters, rabbits, cats, dogs). , cows, sheep, monkeys and humans), preferably humans.
  • Diseases that express GPC3 include, but are not particularly limited to, cancers and tumors that express GPC3. Accordingly, in a preferred embodiment of the present invention, anticancer agents for the prevention or treatment of cancers and tumors expressing GPC3 are provided.
  • liver cancer e.g. hepatocellular carcinoma
  • ovarian cancer e.g. ovarian clear cell adenocarcinoma
  • lung cancer e.g. squamous cell carcinoma, small cell lung cancer
  • testicular cancer e.g. nonseminoma germ cell tumor
  • soft tissue tumor e.g. liposarcoma, malignant fibrous histiocytoma
  • uterine cancer e.g.
  • cervical intraepithelial neoplasia cervical squamous cell carcinoma
  • melanoma adrenal tumors (e.g. adrenal adenoma), neurological tumors (e.g. Schwannoma), gastric cancer (e.g. adenocarcinoma of the stomach), kidney cancer (e.g. Gravitz tumor), breast cancer (e.g. invasive lobular carcinoma, mucinous carcinoma), thyroid cancer (e.g. medullary carcinoma), laryngeal cancer (e.g. squamous cell carcinoma), bladder cancer (e.g. invasive transitional cell carcinoma), etc.
  • these include, but are not limited to: Among these, from the viewpoint of the expression level of GPC3, liver cancer, ovarian cancer, pediatric cancer, and lung cancer are preferable, and among these, liver cancer, particularly hepatocellular carcinoma, is preferable.
  • a nucleic acid or a vector as an active ingredient of the medicament of the present invention, known pharmaceutically acceptable carriers (excipients, diluents, fillers, binders, lubricants, flow aids, disintegrating agents, It is preferable to prepare a pharmaceutical composition by mixing the pharmaceutical composition with conventional additives (including agents, surfactants, etc.) or conventional additives.
  • Excipients are well known to those skilled in the art and include, for example, phosphate buffered saline (e.g., 0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl, pH 7.4), hydrochloride, hydrogen bromide.
  • Aqueous solutions containing mineral acid salts such as acid salts, phosphates, sulfates, physiological saline solutions, solutions such as glycol or ethanol, and salts of organic acids such as acetates, propionates, malonates, benzoates, etc.
  • mineral acid salts such as acid salts, phosphates, sulfates, physiological saline solutions, solutions such as glycol or ethanol, and salts of organic acids such as acetates, propionates, malonates, benzoates, etc.
  • Auxiliary agents such as wetting agents or emulsifying agents, and pH buffering agents can also be used.
  • formulation aids such as suspending agents, preservatives, stabilizers, and dispersants may also be used.
  • the pharmaceutical compositions may also be in dry form for reconstitution with a suitable sterile liquid before use.
  • the pharmaceutical composition can be prepared in any form (oral administration such as tablets, pills, capsules, powders, granules, syrups, emulsions, and suspensions; injections, infusions, external preparations, and suppositories).
  • Parenteral administration can be performed systemically or locally depending on the type of drug (parenteral administration), etc.
  • parenteral administration intravenous administration, intradermal administration, subcutaneous administration, rectal administration, transdermal administration, etc. are possible.
  • acceptable buffers, solubilizing agents, isotonic agents, and the like may be added.
  • the dosage is, for example, in the range of 0.001 mg to 10 mg per kg of body weight at a time.
  • the dose is administered in the range of 0.001 to 50 mg to a patient weighing 60 kg.
  • the active ingredient is a virus vector particle
  • the dose is administered to a subject weighing 60 kg at a time, for example, in a range of about 1 x 10 3 pfu to 1 x 10 15 pfu in terms of virus titer. .
  • the above dosage is just an example, and the dosage can be appropriately selected depending on the type of nucleic acid or vector used, the route of administration, the age, body weight, symptoms, etc. of the subject or patient.
  • the cells When using the cells of the present invention as an active ingredient of the medicament of the present invention, the cells may be cultured and/or stimulated using an appropriate medium and/or stimulating molecules before administration to a subject. good.
  • Stimulatory molecules include, but are not limited to, cytokines, appropriate proteins, other components, and the like. Examples of cytokines include IL-2, IL-7, IL-12, IL-15, and IFN- ⁇ , and preferably IL-2 can be used.
  • the concentration of IL-2 in the medium is not particularly limited, but is, for example, preferably 0.01 to 1 ⁇ 10 5 U/mL, more preferably 1 to 1 ⁇ 10 4 U/mL.
  • suitable proteins include, for example, CD3 ligand, CD28 ligand, and anti-IL-4 antibody.
  • lymphocyte stimulating factors such as lectins can also be added.
  • serum or plasma may be added to the medium.
  • the amount of these added to the medium is not particularly limited, but 0% to 20% by volume is exemplified, and the amount of serum or plasma used can be changed depending on the culture stage. For example, serum or plasma concentrations can be reduced stepwise.
  • the serum or plasma may be derived from either autologous or non-autologous sources, but from the viewpoint of safety, autologous sources are preferred.
  • the medicament containing the cells of the present invention as an active ingredient is preferably administered to a subject parenterally.
  • Parenteral administration methods include intravenous, intraarterial, intramuscular, intraperitoneal, and subcutaneous administration.
  • the dosage is appropriately selected depending on the condition, body weight, age, etc. of the subject, but the number of cells is usually 1 x 10 6 to 1 x 10 10 cells per dose for a subject weighing 60 kg.
  • the number of doses is preferably 1 ⁇ 10 7 to 1 ⁇ 10 9 , more preferably 5 ⁇ 10 7 to 5 ⁇ 10 8 .
  • it may be administered once or multiple times.
  • the medicament of the present invention can be in a known form suitable for parenteral administration, such as an injection or an infusion.
  • the medicament of the present invention may optionally contain pharmacologically acceptable excipients.
  • Pharmacologically acceptable excipients include those described above.
  • the medicament of the present invention may contain physiological saline, phosphate buffered saline (PBS), a medium, etc. to stably maintain cells.
  • the medium is not particularly limited, and examples include, but are not limited to, RPMI, AIM-V, and X-VIVO10.
  • a pharmaceutically acceptable carrier eg, human serum albumin
  • preservative etc.
  • the cells of the present invention can kill cells that express GPC3, they can be used as a killing agent for cells that express GPC3.
  • a killing agent can be produced and used in the same manner as the above-mentioned pharmaceuticals.
  • the TCR of the present invention can also be used as a fusion protein, for example, by combining TCR with a single chain antibody fragment (scFv) of an anti-CD3 antibody (or a similar antibody fragment that binds to T cells and activates a T cell response). You can also do that.
  • a fusion protein a stable, soluble, high-affinity TCR, a new disulfide bond may be artificially introduced between each constant region of the polypeptides of the two TCR chains.
  • the scFv of the fusion protein is preferably fused to the constant region of the ⁇ chain of TCR.
  • Such fusion proteins are described, for example, in US Patent No. 7,569,664 and in the report of Oates J, Jakobsen BK. OncoImmunology. 2013; 2(2):e22891.
  • the medicament containing the fusion protein and the nucleic acid encoding this protein can also be used for the prevention or treatment of diseases that express GPC3, similar to the medicament containing the nucleic acid or cells of the present invention.
  • it can be prepared in the same manner as described above for the HLA-A24-restricted GPC3 peptide.
  • SEQ ID NOs in the sequence listing of this specification are: SEQ ID NOS: 1 to 13 are the amino acid sequences of CDR3A of the TCR chain, SEQ ID NOs: 14 to 28 are the amino acid sequences of CDR3B of the TCR chain, and SEQ ID NO: 29 is the HLA-A24-restricted amino acid sequence.
  • the amino acid sequence of GPC3 peptide is shown. Amino acids are indicated by conventional one-letter abbreviations.
  • HLA Human Leukocyte Antigen HIV: human immunodeficiency virus
  • ELISPOT Enzyme-Linked ImmunoSpot
  • Example 1 For patients with advanced hepatocellular carcinoma, an antigen (HLA-A*24:02-restricted GPC3 peptide (hereinafter abbreviated as "GPC3 peptide") was synthesized according to Good Manufacturing Practice guidelines. ) (EYILSLEEL, SEQ ID NO: 29; American Peptide Company) was mixed with ICFA and emulsified and administered intradermally, and peripheral blood mononuclear cells (PBMC) were collected over time after the administration (see Figure 1). ).A specific method for isolating GPC3-responsive CD8 T cells is described below (see Figure 2).
  • Test example 1 ELISPOT assay
  • an ELISPOT assay was performed using the collected PBMC samples.
  • a cancer cell line (SK-Hep- 1 /hGPC3) in which PBMC (1 x 10 cells per well) was forced to express GPC3 at 37°C in the presence of 5% CO2 or its mock control cancer cell line. (SK-Hep-1/vec) for 20 hours.
  • the PBMC used in this test had the ability to produce interferon- ⁇ in response to cancer cells expressing GPC3.
  • the obtained PBMCs were stimulated with GPC3 peptide in a test tube, and culture was continued. On the 12th day after stimulation, restimulation with GPC3 peptide was performed, and the resulting CD137-positive cells were isolated as GPC3 peptide-responsive cells, and single-cell sorting was performed using a cell sorter to obtain single-cell-sorted CD137-positive activated T cells.
  • a pair of TCR ⁇ chain and TCR ⁇ chain genes was isolated from the cells by PCR (primary PCR). Furthermore, from the isolation step, PCR fragments of TCR ⁇ chain and TCR ⁇ chain genes having transcriptional activity were prepared (secondary PCR).
  • Example 2 Decoding the TCR sequence 1. Sequence decoding The TCR sequence obtained from CD137-positive T cells after single cell sorting was analyzed by the following method. That is, total RNA of T cells was extracted using RNeasy Mini Kit (QIAGEN), amplified using Multiplex One-step RT-PCR, and analyzed using Sanger sequencing (see Table 1 and Sequence Listing).
  • Test example 2 Analysis of antigen specificity of TCR using Jurkat cell line introduced with TCR1. Preparation of TCR Expression PCR Fragment Based on the above TCR ⁇ chain PCR product and TCR ⁇ chain PCR product, PCR fragments of TCR ⁇ chain and TCR ⁇ chain genes having transcriptional activity were prepared (secondary PCR).
  • TCR gene introduction and antigen specificity analysis 1.
  • the PCR fragment obtained was introduced into the NF-AT reporter and CD8-introduced TCR-negative Jurkat cell line, and luciferase was used to target A24-positive COS cells pulsed with GPC3 peptide for antigen-specific TCR activation. Reporter analysis was performed (see Figure 3).
  • Example 3 Preparation of an expression vector incorporating the gene encoding the TCR of the present invention and iPS cell-derived T cells expressing the TCR 1.
  • Preparation of an expression vector incorporating the gene encoding the TCR of the present invention 1) Preparation of piggyBac transposon vector incorporating the TCR ⁇ chain and TCR ⁇ chain Using the pIRII-IRES-dCD19 vector provided by Dr. Yozo Nakazawa of Shinshu University, P0103_TCR_10 , P0103_TCR_18 and P0103_TCR_82 were constructed (see Table 1).
  • the piggyBac vector encoding the TCR ⁇ chain and the TCR ⁇ chain was introduced together with a plasmid vector encoding transposase into 1 ⁇ 10 6 FF-I01s04 iPS cells using a gene transfer device (MaxCyte ATx). Gene transfer was carried out by suspending cells in 50 ⁇ L of gene transfer buffer, using a total DNA amount of 320 ⁇ g/mL, a piggyBac vector/transposase vector ratio of 1/3, and introducing conditions under Optimization 8. Expression of the tracer gene CD19 was observed in the iPS cells 8 days after this gene introduction.
  • T cell differentiation of TCR-introduced iPS cells The above-mentioned TCR-introduced iPS cells were differentiated into T cells according to the method described in the pamphlet of International Publication No. 2017/221975, and the expression of various markers in the cells after differentiation was The study was conducted using FACS Aria III. The results are shown in FIG. By subjecting TCR gene-transfected iPS cells to the above-described differentiation procedure, it was revealed that a complex of TCR ⁇ chain and TCR ⁇ chain can induce T cells expressed on the cell membrane surface.
  • Test example 3 Cytotoxicity test of iPS cell-derived T cells expressing TCR of the present invention Cytotoxicity of iPS cell-derived T cells expressing TCR was measured. Specifically, the target cells were HLA-*24:02-positive lymphoblastoid cell lines (LCL) with or without the addition of the GPC3 antigen peptide. Cytotoxicity was measured based on the amount of intracellularly localized enzymes released from injured target cells. Effector cells (E) were added to target cells (T) at the ratio shown in Figure 8, and reacted at 37°C for 3 hours. Cytotoxic activity (% lysis) was calculated from the dye released in the supernatant after the reaction based on the following formula.
  • LCL lymphoblastoid cell lines
  • the minimum release value is the amount of intracellular localized enzyme released in a well to which no effector cells are added, and indicates the amount of intracellular localized enzyme naturally released from the target cells.
  • the maximum release value indicates the amount of intracellular localized enzyme released when target cells are lysed by adding 1% Triton X-100.
  • Example 4 Efficacy in mice of iPS cell-derived T cells expressing TCR of the present invention
  • Regenerated T cells introduced into cells and differentiated into T cells were intraperitoneally administered six times to NOG mice in which GPC3-expressing SK-Hep liver cancer tumors were implanted into the peritoneal cavity.
  • the results of measuring the chemiluminescence emitted by the tumors are shown in FIG. 9, and the survival curve of the mice is shown in FIG. 10.
  • a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered to mice, and the progress was observed.
  • the present invention provides T cell receptors capable of binding to GPC3 peptides (HLA-A24-restricted GPC3 peptides or complexes of the peptides and HLA-A molecules (HLA-A24) and nucleic acids encoding them). Furthermore, by using the method for producing the T cell receptor, it is possible to produce the T cell receptor with high efficiency in a shorter period of time than with conventional methods. Nucleic acids are useful for preventing or treating diseases that express GPC3 because they can impart cytotoxic activity to T cells against cells presenting HLA-A molecules and GPC3 peptides.

Abstract

[Problem] To provide a novel T-cell receptor (TCR) which specifically recognizes glypican 3 (GPC3). [Solution] Provided is a T-cell receptor (TCR) that includes one amino acid sequence selected from the group consisting of the amino acid sequences represented by sequence numbers 1-13 as a complementarity determining region of an α chain, and that includes one amino acid sequence selected from the group consisting of the amino acid sequences represented by sequence numbers 14-28 as a complementarity determining region of a β chain.

Description

T細胞受容体T cell receptor
 本発明は、グリピカン3特異的なT細胞受容体、前記T細胞受容体の製造方法及び前記T細胞受容体を含む医薬に関する。 The present invention relates to a glypican-3-specific T cell receptor, a method for producing the T cell receptor, and a medicament containing the T cell receptor.
 原発性肝がんは、主として肝細胞がん(HCC)であり、わが国で5番目に多くみられるがんであるが、予後が非常に悪く、死亡率が非常に高い。この予後不良の主な要因の1つとして、進行性HCCに対する治療の選択肢が限定されていることが挙げられる。進行性HCCの患者には、局所切除や多種キナーゼ阻害剤のソラフェニブの投与などの対症療法のみが可能であり、特に高齢者に対しては、ソラフェニブの奏効率は低く、副作用の発生率が高い。従って、副作用のリスクを最小限にし、進行性HCC患者の生存率を向上させる新たな治療法の開発が求められている。 Primary liver cancer is mainly hepatocellular carcinoma (HCC), which is the fifth most common cancer in Japan, but it has a very poor prognosis and a very high mortality rate. One of the main factors for this poor prognosis is that treatment options for advanced HCC are limited. For patients with advanced HCC, only symptomatic treatments such as local excision and administration of the multikinase inhibitor sorafenib are possible, but sorafenib has a low response rate and a high incidence of side effects, especially in the elderly. . Therefore, there is a need to develop new treatments that minimize the risk of side effects and improve the survival rate of patients with advanced HCC.
 免疫療法は、HCCに対する有力な治療法の1つであると考えられている。例えば、グリピカン3(Glypican-3、GPC3)は、HCCにおいて特に過剰発現しており、予後不良とも関連するため、HCCに対するがん免疫療法の理想的な標的である。そして、HCCに対する免疫治療法として、GPC3特異的な抗体及びGPC3を標的とするヒトキメラ抗原受容体(CAR)を用いた治療法が報告されている(特許文献1)。また、HLA-A02-拘束性GPC3367-375ペプチドに特異的なT細胞受容体(TCR)についても報告されている(特許文献2)。  グリピカン3は、ラットの小腸から発生的に調節されている転写物として分離され(非特許文献1)、後にグリピカンファミリーの、分子量69kDaのコアタンパク質を持つGPI-結合型のヘパラン硫酸プロテオグリカン、OCT-5として同定された(非特許文献2)。グリピカン3はインスリン様増殖因子-2とタンパク-タンパク複合体を形成し、この増殖因子の活動を調節することが報告されている(非特許文献3)。 Immunotherapy is considered to be one of the potential treatments for HCC. For example, Glypican-3 (GPC3) is particularly overexpressed in HCC and is also associated with poor prognosis, making it an ideal target for cancer immunotherapy against HCC. As an immunotherapy method for HCC, a treatment method using a GPC3-specific antibody and a human chimeric antigen receptor (CAR) targeting GPC3 has been reported (Patent Document 1). Furthermore, a T cell receptor (TCR) specific to the HLA-A02-restricted GPC3 367-375 peptide has also been reported (Patent Document 2). Glypican-3 was isolated as a developmentally regulated transcript from rat small intestine (Non-Patent Document 1), and was later classified as a GPI-linked heparan sulfate proteoglycan with a core protein of molecular weight 69 kDa, OCT, of the glypican family. -5 (Non-patent Document 2). It has been reported that glypican 3 forms a protein-protein complex with insulin-like growth factor-2 and regulates the activity of this growth factor (Non-Patent Document 3).
 T細胞受容体(TCR)とは、T細胞が抗原を認識する際に使用する受容体であり、TCRはα鎖及びβ鎖、又はγ鎖及びδ鎖の二量体から構成される。TCRはT細胞表面上でCD3分子群と複合体を形成し、抗原を認識してT細胞へ刺激シグナルを伝達する。それぞれのTCR鎖は可変領域と定常領域を有し、定常領域は細胞膜を貫通する短い細胞質部分を持ち、可変領域は細胞外に存在して、抗原-HLA(MHC)複合体と結合する。可変領域には、相補性決定領域(CDR)と呼ばれる領域が3つ存在し、この領域が抗原-HLA(MHC)複合体と結合する。3つのCDRはそれぞれCDR1、CDR2及びCDR3と呼ばれている。 The T cell receptor (TCR) is a receptor used by T cells to recognize antigens, and TCR is composed of a dimer of an α chain and a β chain, or a γ chain and a δ chain. TCR forms a complex with CD3 molecules on the surface of T cells, recognizes antigens, and transmits stimulating signals to T cells. Each TCR chain has a variable region and a constant region; the constant region has a short cytoplasmic portion that penetrates the cell membrane, and the variable region exists outside the cell and binds to antigen-HLA (MHC) complexes. There are three regions called complementarity determining regions (CDR) in the variable region, and these regions bind to antigen-HLA (MHC) complexes. The three CDRs are called CDR1, CDR2 and CDR3, respectively.
 本発明者らは、様々なGPC3144-152ペプチド特異的なTCRを発現する細胞傷害性T細胞(CTL)クローンを、HLA-A02拘束性GPC3144-152ペプチドをワクチン接種した患者由来の末梢血単核細胞(PBMC)から樹立した(非特許文献4)が、非特許文献1には、これらのCTLクローンのTCR配列については開示されていない。 We generated cytotoxic T cell (CTL) clones expressing various GPC3 144-152 peptide-specific TCRs into peripheral blood cells from patients vaccinated with the HLA-A02-restricted GPC3 144-152 peptide. were established from mononuclear cells (PBMC) (Non-Patent Document 4), but Non-Patent Document 1 does not disclose the TCR sequences of these CTL clones.
国際公開第2013/070468号パンフレットInternational Publication No. 2013/070468 pamphlet 国際公開第2015/173112号パンフレットInternational Publication No. 2015/173112 pamphlet
 本発明は、グリピカン3(GPC3)を特異的に認識する新規のT細胞受容体(TCR)、より高い細胞傷害性を示す前記TCRを導入したiPS細胞を分化させた再生T細胞、前記TCRの製造方法、及び、前記TCRを導入したiPS細胞を分化させた再生T細胞の製造方法を提供することを課題とする。また、前記TCRを用いた(例えば、前記TCRを含む細胞傷害性T細胞を用いた)、GPC3を発現するがん及び腫瘍の予防又は治療のための医薬を提供することを課題とする。 The present invention relates to a novel T cell receptor (TCR) that specifically recognizes glypican 3 (GPC3), regenerated T cells obtained by differentiating iPS cells introduced with the TCR that exhibits higher cytotoxicity, and It is an object of the present invention to provide a manufacturing method and a method for manufacturing regenerated T cells obtained by differentiating iPS cells into which the TCR has been introduced. Another object of the present invention is to provide a medicament for preventing or treating GPC3-expressing cancers and tumors using the TCR (for example, using cytotoxic T cells containing the TCR).
 本発明者らは、GPC3ペプチド(HLA-A24拘束性GPC3ペプチド(EYILSLEEL、配列番号29))を接種した患者由来の末梢血単核細胞(PBMC)からGPC3ペプチド(EYILSLEEL、配列番号29))に応答性のT細胞集団を選別し、それらのT細胞が有するTCR配列を解読した。そのTCR配列を基に、鋭意研究した結果、これらのTCRがGPC3発現がん細胞に対して応答性を有すること、iPS細胞に遺伝子導入し分化誘導することによりGPC3ペプチド(EYILSLEEL、配列番号29))に応答性の機能型TCRを発現する再生T細胞を効率的に取得できること、この再生T細胞が極めて高い細胞傷害性を示すものであることを見出し、本発明を完成させるに至った。 The present inventors demonstrated that GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)) was isolated from peripheral blood mononuclear cells (PBMCs) derived from patients inoculated with GPC3 peptide (HLA-A24-restricted GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)). A responsive T cell population was selected and the TCR sequences possessed by these T cells were decoded. As a result of extensive research based on the TCR sequences, we found that these TCRs are responsive to GPC3-expressing cancer cells, and that by introducing the gene into iPS cells and inducing differentiation, we can generate the GPC3 peptide (EYILSLEEL, SEQ ID NO: 29). ), and that these regenerated T cells exhibit extremely high cytotoxicity, leading to the completion of the present invention.
 即ち、本発明は以下を提供する。
[1] 
 α鎖の相補性決定領域として、
 配列番号1~13で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、
 配列番号1~13で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、又は
 配列番号1~13で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含み、
 β鎖の相補性決定領域として、
 配列番号14~28で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、
 配列番号14~28で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、又は
 配列番号14~28で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなる群から選ばれる一つのアミノ酸配列
を含むT細胞受容体(TCR)。
[2]
 前記TCRが、配列番号29で示されるアミノ酸配列を有するペプチド又は該ペプチドとHLA-A24との複合体と結合しうる、[1]に記載のTCR。
[3]
 α鎖の相補性決定領域として、配列番号1~13で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含み、β鎖の相補性決定領域として、配列番号14~28で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含む、[1]に記載のTCR。
[4]
 [1]に記載のTCRをコードする核酸。
[5]
 [4]に記載の核酸を含む発現ベクター。
[6]
 [4]に記載の核酸を含む細胞。
[7]
 [5]に記載のベクターを含む細胞。
[8]
 前記細胞がリンパ球又は多能性幹細胞である、[6]に記載の細胞。
[9]
 前記細胞がCD8陽性細胞傷害性T細胞である、[6]に記載の細胞。
[10]
 前記細胞がリンパ球又は多能性幹細胞である、[7]に記載の細胞。
[11]
 前記細胞がCD8陽性細胞傷害性T細胞である、[7]に記載の細胞。
[12]
 [4]に記載の核酸を細胞に導入する工程を含む、[6]に記載の細胞を製造する方法。
[13]
 [5]に記載のベクターを細胞に導入する工程を含む、[7]に記載の細胞を製造する方法。
[14]
 [4]に記載の核酸を含む、多能性幹細胞から誘導されたT細胞。
[15]
 [5]に記載のベクターを含む、多能性幹細胞から誘導されたT細胞。
[16]
 [6]~[11]、 [14]及び[15]のいずれかに記載の細胞を含有する、医薬。
[17]
 がんの予防又は治療に使用するための、[16]に記載の医薬。
[18]
 [6]~[11]、[14]及び[15]のいずれかに記載の細胞を含有する、グリピカン3を発現する細胞の殺傷剤。
[19]
 哺乳動物に対し、[6]~[11]、[14]及び[15]のいずれかに記載の細胞の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[20]
 哺乳動物に対し、[16]に記載の医薬の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[21]
 哺乳動物に対し、[18]に記載の殺傷剤の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[22]
[6]~[11]、[14]及び[15]のいずれかに記載の細胞を含有する、哺乳動物におけるがんの予防剤又は治療剤。
[23]
 がんの予防又は治療に使用するための、[6]~[11]、[14]及び[15]のいずれかに記載の細胞。
[24]
 がんの予防剤又は治療剤を製造するための、[6]~[11]、[14]及び[15]のいずれかに記載の細胞。
[25]
 T細胞をシングルセルソートする工程を含む、[1]に記載のTCRの製造方法。
[26]
 [25]に記載の方法を用いて製造されたTCRを導入した、CD8陽性細胞傷害性T細胞。
[27]
 [26]に記載のCD8陽性細胞傷害性T細胞を含有する医薬。
[28]
 がんの予防又は治療に使用するための、[27]に記載の医薬。
[29]
 [26]に記載のCD8陽性細胞傷害性T細胞を含有する、グリピカン3を発現する細胞の殺傷剤。
[30]
 哺乳動物に対し、[26]に記載のCD8陽性細胞傷害性T細胞の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[31]
 哺乳動物に対し、[27]に記載の医薬の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[32]
 哺乳動物に対し、[29]に記載の殺傷剤の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。
[33]
 [25]に記載の方法を用いて製造されたTCRを導入する、CD8陽性細胞傷害性T細胞の製造方法。
[34]
 がんの予防又は治療に使用するための、[33]に記載の方法を用いて製造されたCD8陽性細胞傷害性T細胞。
[35]  がんの予防剤又は治療剤を製造するための、[33]に記載の方法を用いて製造されたCD8陽性細胞傷害性T細胞。
[36]
 以下の工程を含む、TCRの製造方法:
 (1) GPC3ペプチド投与患者の末梢血から得られたリンパ球をGPC3ペプチドで刺激する工程、
 (2)前記刺激により得られたCD137陽性活性化T細胞をシングルセルソートする工程、 
 (3)前記シングルセルソートされたCD137陽性活性化T細胞から、TCRα鎖及びTCRβ鎖遺伝子のPCR断片を作製(二次PCR)する工程、及び
 (4)GPC3ペプチドに応答性の高いTCRα鎖及びTCRβ鎖遺伝子対を選別する工程。
[37]
 前記工程(2)の後に、前記シングルセルソートされたCD137陽性活性化T細胞から、PCRによりTCRα鎖及びTCRβ鎖遺伝子対を単離(一次PCR)する工程を含む、[36]に記載のTCRの製造方法。
[38]
 前記工程(4)において、さらに、NF-ATレポーター導入Jurkat細胞株への前記PCR断片の遺伝子導入を行う工程を含む、[36]に記載のTCRの製造方法。
[39]
 前記NF-ATレポーター導入Jurkat細胞株への前記PCR断片の遺伝子導入を行う工程において、さらに、GPC3ペプチドを用いて抗原特異的TCRシグナルの強度解析を行うことにより、GPC3ペプチドに応答性の高いTCRα鎖及びTCRβ鎖遺伝子対の選別を行う工程を含む、[38]に記載のTCRの製造方法。
That is, the present invention provides the following.
[1]
As the complementarity determining region of the α chain,
One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 1 to 13,
One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 1 to 13, or the amino acids shown in SEQ ID NOs: 1 to 13 Contains one amino acid sequence selected from the group consisting of amino acid sequences having 90% or more identity with the sequence,
As the complementarity determining region of the β chain,
One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 14 to 28,
One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 14 to 28, or the amino acids shown in SEQ ID NOs: 14 to 28 A T cell receptor (TCR) comprising one amino acid sequence selected from the group consisting of amino acid sequences having 90% or more identity with the sequence.
[2]
The TCR according to [1], wherein the TCR is capable of binding to a peptide having the amino acid sequence shown by SEQ ID NO: 29 or a complex of the peptide and HLA-A24.
[3]
The complementarity determining region of the α chain contains one amino acid sequence selected from the group consisting of the amino acid sequences shown by SEQ ID NOs: 1 to 13, and the complementarity determining region of the β chain contains the amino acids shown by SEQ ID NOs: 14 to 28. The TCR according to [1], comprising one amino acid sequence selected from the group consisting of sequences.
[4]
A nucleic acid encoding the TCR described in [1].
[5]
An expression vector comprising the nucleic acid described in [4].
[6]
A cell containing the nucleic acid according to [4].
[7]
A cell containing the vector described in [5].
[8]
The cell according to [6], wherein the cell is a lymphocyte or a pluripotent stem cell.
[9]
The cell according to [6], wherein the cell is a CD8-positive cytotoxic T cell.
[10]
The cell according to [7], wherein the cell is a lymphocyte or a pluripotent stem cell.
[11]
The cell according to [7], wherein the cell is a CD8-positive cytotoxic T cell.
[12]
The method for producing the cell according to [6], which comprises the step of introducing the nucleic acid according to [4] into the cell.
[13]
The method for producing the cell according to [7], which comprises the step of introducing the vector according to [5] into the cell.
[14]
A T cell derived from a pluripotent stem cell, containing the nucleic acid according to [4].
[15]
T cells derived from pluripotent stem cells, containing the vector described in [5].
[16]
A medicament containing the cell according to any one of [6] to [11], [14] and [15].
[17]
The medicament according to [16] for use in the prevention or treatment of cancer.
[18]
[6] - [11], [14] and [15] A cell killer expressing glypican 3, which contains the cell according to any one of [14] and [15].
[19]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the cells according to any one of [6] to [11], [14] and [15].
[20]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the medicament according to [16].
[21]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the killing agent according to [18].
[22]
[6] - [11], [14] and [15] A preventive or therapeutic agent for cancer in mammals, comprising the cell according to any one of [14] and [15].
[23]
The cell according to any one of [6] to [11], [14] and [15] for use in the prevention or treatment of cancer.
[24]
The cell according to any one of [6] to [11], [14] and [15] for producing a preventive or therapeutic agent for cancer.
[25]
The method for producing TCR according to [1], which includes a step of single-cell sorting T cells.
[26]
CD8-positive cytotoxic T cells into which TCR produced using the method described in [25] has been introduced.
[27]
A medicament containing the CD8-positive cytotoxic T cells described in [26].
[28]
The medicament according to [27] for use in the prevention or treatment of cancer.
[29]
An agent for killing cells expressing glypican 3, which contains CD8-positive cytotoxic T cells as described in [26].
[30]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the CD8-positive cytotoxic T cells described in [26].
[31]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the medicament according to [27].
[32]
A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the killing agent according to [29].
[33]
A method for producing CD8-positive cytotoxic T cells, which comprises introducing TCR produced using the method described in [25].
[34]
CD8-positive cytotoxic T cells produced using the method described in [33] for use in cancer prevention or treatment.
[35] CD8-positive cytotoxic T cells produced using the method described in [33] for producing a cancer preventive or therapeutic agent.
[36]
Method of manufacturing TCR, including the following steps:
(1) Stimulating lymphocytes obtained from the peripheral blood of a patient administered GPC3 peptide with GPC3 peptide,
(2) a step of single-cell sorting the CD137-positive activated T cells obtained by the stimulation;
(3) producing PCR fragments of TCRα chain and TCRβ chain genes from the single cell sorted CD137-positive activated T cells (secondary PCR); and (4) producing TCRα chain and TCRβ chain genes highly responsive to GPC3 peptide. Step of selecting TCR β chain gene pairs.
[37]
The TCR according to [36], which includes a step of isolating a TCR α chain and TCR β chain gene pair by PCR (primary PCR) from the single cell sorted CD137-positive activated T cells after the step (2). manufacturing method.
[38]
The method for producing a TCR according to [36], wherein the step (4) further includes the step of gene-transferring the PCR fragment into the NF-AT reporter-introduced Jurkat cell line.
[39]
In the step of gene-transferring the PCR fragment into the NF-AT reporter-introduced Jurkat cell line, the intensity analysis of the antigen-specific TCR signal using the GPC3 peptide was further performed to determine which TCRα is highly responsive to the GPC3 peptide. The method for producing a TCR according to [38], which includes the step of selecting a pair of genes for the chain and TCR β chain.
 本発明のT細胞受容体は、GPC3ペプチド(HLA-A24拘束性GPC3ペプチド(EYILSLEEL、配列番号29))又は該ペプチドとHLA-A分子(HLA-A24)との複合体に対する結合能を有する。また、本発明の前記T細胞受容体の製造方法を用いることにより、従来の方法より短期間で高効率にT細胞受容体を製造することができる。さらに前記T細胞受容体をコードする核酸は、HLA-A分子及びGPC3ペプチドを提示する細胞に対する細胞傷害活性をT細胞に付与し得ることから、GPC3を発現するがん及び腫瘍の予防又は治療に有用である。 The T cell receptor of the present invention has the ability to bind to a GPC3 peptide (HLA-A24-restricted GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)) or a complex between the peptide and an HLA-A molecule (HLA-A24). Furthermore, by using the method for producing T cell receptors of the present invention, T cell receptors can be produced more efficiently and in a shorter period of time than conventional methods. Furthermore, since the nucleic acid encoding the T cell receptor can impart cytotoxic activity to T cells against cells presenting HLA-A molecules and GPC3 peptides, it is useful for the prevention or treatment of cancers and tumors that express GPC3. Useful.
図1は、HLA-A24拘束性GPC3ペプチドワクチンを投与した肝臓がん患者において観察される経時的なGPC3ペプチド特異的細胞傷害性T細胞(CTL)の頻度を示す。GPC3ペプチド特異的細胞傷害性T細胞(CTL)の頻度は、GPC3ペプチドワクチン刺激後のIFNγ産生細胞の頻度として、ELISPOTアッセイで計測した。矢印で示したポイント(P0102, P0103, P0201及びP0202)における検体を計測対象とした。FIG. 1 shows the frequency of GPC3 peptide-specific cytotoxic T cells (CTL) observed over time in liver cancer patients who received an HLA-A24-restricted GPC3 peptide vaccine. The frequency of GPC3 peptide-specific cytotoxic T cells (CTL) was measured by ELISPOT assay as the frequency of IFNγ-producing cells after GPC3 peptide vaccine stimulation. Specimens at the points indicated by arrows (P0102, P0103, P0201 and P0202) were measured. 図2は、GPC3応答性TCR単離のプロセスを示す。Figure 2 shows the process of GPC3-responsive TCR isolation. 図3は、転写活性を有するTCRα鎖及びTCRβ鎖遺伝子のPCR断片を、NF-ATレポーター導入Jurkat細胞株へ遺伝子導入し、GPC3ペプチドを添加した細胞HLA-A24を発現するCOS細胞と共培養したのち、Jurkat細胞株のNF-ATレポーター活性を測定した抗原特異的TCRシグナルの強度解析の結果を示す。P0103_TCR_10、P0103_TCR_12、P0103_TCR_18、P0103_TCR_20及びP0103_TCR_82を発現する再生T細胞に、GPC3ペプチド特異的なTCRシグナルが観察された。Figure 3 shows that PCR fragments of TCRα chain and TCRβ chain genes with transcriptional activity were introduced into the NF-AT reporter-introduced Jurkat cell line, and the cells were co-cultured with COS cells expressing HLA-A24 to which GPC3 peptide had been added. The results of intensity analysis of antigen-specific TCR signals obtained by measuring the NF-AT reporter activity of the Jurkat cell line are shown below. GPC3 peptide-specific TCR signals were observed in regenerated T cells expressing P0103_TCR_10, P0103_TCR_12, P0103_TCR_18, P0103_TCR_20, and P0103_TCR_82. 図4は、トランスポゾンベクターをコードするプラスミドの略図(A)及び各構成要因の位置を示す一覧表(B)を示す。取得されたHLA-A24拘束性GPC3ペプチドワクチン応答性のTCRα鎖及びTCRβ鎖をそれぞれコードする遺伝子を、自己切断ペプチドをコードする配列(P2A)を介して連結させ、ヒトEF1αプロモーター及びIRES配列の下流に細胞内ドメインを除いたCD19遺伝子(dCD19)を持つpiggyBacトランスポゾンベクター(pIRII-EF1A-dCD19) に組み込んだ。FIG. 4 shows a schematic diagram (A) of a plasmid encoding a transposon vector and a list (B) showing the positions of each component. The obtained genes encoding the HLA-A24-restricted GPC3 peptide vaccine-responsive TCRα chain and TCRβ chain, respectively, were linked via a sequence (P2A) encoding a self-cleaving peptide, and the genes were linked to the human EF1α promoter and downstream of the IRES sequence. was inserted into a piggyBac transposon vector (pIRII-EF1A-dCD19) containing the CD19 gene (dCD19) with the intracellular domain removed. 図5は、iPS細胞におけるトレーサー遺伝子CD19の発現を示す。HLA-A24拘束性GPC3ペプチドワクチン応答性のTCRα鎖及びTCRβ鎖をコードするpiggyBacベクターを、トランスポゼースをコードするプラスミドベクターと共に1×10個のFF-I01s04 iPS細胞に遺伝子導入装置(MaxCyte ATx)を用いて導入した。遺伝子導入は、細胞を遺伝子導入バッファー50 μLに懸濁し、DNA総量を320 μg/mLで、 piggyBacベクター/トランスポゼースベクターの比を1/3で、また導入条件をOptimization 8として行った。この遺伝子導入後8日目の、iPS細胞におけるトレーサー遺伝子CD19の発現が図5に示される。図中、#1 Controlは、遺伝子を何も導入しなかったiPS細胞の、また#2 Emptyは、TCRα鎖及びTCRβ鎖が組み込まれていないdCD19のみのpiggyBacベクターを導入したiPS細胞のCD19発現を示す。#3、#4及び#5は、それぞれP0103_TCR_10(TCR10)、P0103_TCR_18(TCR18)及びP0103_TCR_82(TCR82)のTCRα鎖及びTCRβ鎖を組み込んだpiggyBacベクターを遺伝子導入したiPS細胞のCD19発現を示す。図5により、上記の条件において、TCRα鎖及びTCRβ鎖をコードするpiggyBacベクターが効率よくiPS細胞に導入されたことがわかる。Figure 5 shows the expression of tracer gene CD19 in iPS cells. A piggyBac vector encoding the HLA-A24-restricted GPC3 peptide vaccine-responsive TCRα chain and TCRβ chain was introduced into 1×10 6 FF-I01s04 iPS cells together with a plasmid vector encoding transposase using a gene introduction device (MaxCyte ATx). It was introduced using Gene introduction was carried out by suspending cells in 50 μL of gene transfer buffer, using a total DNA amount of 320 μg/mL, a piggyBac vector/transposase vector ratio of 1/3, and introduction conditions of Optimization 8. FIG. 5 shows the expression of the tracer gene CD19 in iPS cells 8 days after this gene introduction. In the figure, #1 Control indicates CD19 expression of iPS cells into which no genes were introduced, and #2 Empty indicates CD19 expression of iPS cells into which piggyBac vector containing only dCD19, which does not incorporate TCRα chain and TCRβ chain, was introduced. show. #3, #4, and #5 show CD19 expression in iPS cells transfected with piggyBac vectors incorporating the TCRα chain and TCRβ chain of P0103_TCR_10 (TCR10), P0103_TCR_18 (TCR18), and P0103_TCR_82 (TCR82), respectively. FIG. 5 shows that the piggyBac vector encoding the TCRα chain and TCRβ chain was efficiently introduced into iPS cells under the above conditions. 図6は、P0103_TCR_10(TCR10)、P0103_TCR_18(TCR18)及びP0103_TCR_82(TCR82)のTCRα鎖及びTCRβ鎖をそれぞれ組み込んだpiggyBacベクターを遺伝子導入したiPS細胞について、Kanekoらの方法(Kawai Y. et al., Mol Ther. 2021;29:3027-3041)に従って胚葉体(EB)形成及び造血幹細胞を誘導した顕微鏡画像を示す。図6において、培養によって形成された胚葉体(EB)及びその周辺に出現した血球細胞(HC)が示される。Figure 6 shows the method of Kaneko et al. (Kawai Y. et al., Microscopic images of embryoid body (EB) formation and hematopoietic stem cells induced according to Mol Ther. 2021;29:3027-3041) are shown. In FIG. 6, the embryoid body (EB) formed by culture and the blood cells (HC) that appeared around it are shown. 図7は、分化T細胞におけるT細胞マーカーの発現を示す。piggyBacベクターによりTCRα鎖及びTCRβ鎖遺伝子を導入したiPS細胞は、Kanekoらの方法(Kawai Y. et al., Mol Ther. 2021;29:3027-3041)に従ってT細胞への分化を行なった。誘導されたT細胞は、CD3、CD7、CD8α、CD8β及びTCRαβが陽性のT細胞であった。Figure 7 shows the expression of T cell markers in differentiated T cells. iPS cells into which the TCRα chain and TCRβ chain genes were introduced using the piggyBac vector were differentiated into T cells according to the method of Kaneko et al. (Kawai Y. et al., Mol Ther. 2021;29:3027-3041). The induced T cells were positive for CD3, CD7, CD8α, CD8β, and TCRαβ. 図8は、P0103_TCR_10とP0103_TCR_18とP0103_TCR_82をiPS細胞に導入し、T細胞へ分化させた再生T細胞を用いたA24拘束性GPC3エピトープペプチドを添加した標的細胞に対する細胞傷害性試験の結果を示す。上段は、GPC3エピトープペプチド(EYILSLEEL、配列番号29)を一定量添加した、若しくは添加しない標的細胞を、異なる数の再生T細胞と共培養した際の前記標的細胞に対する細胞傷害性を示す。GPC3ペプチドを添加した標的細胞に対して再生T細胞は濃度依存性に細胞傷害性を示した。GPC3ペプチドを添加しない標的細胞に対しては、細胞傷害性をまったく示さなかった。このことは、再生T細胞がGPC3エピトープペプチドに対して抗原特異的な細胞傷害性を有することを示している。下段は、再生T細胞と標的細胞の比を10:1と固定し、添加するGPC3エピトープペプチドの濃度を変えて、細胞傷害性を検証したものである。得られた結果より、P0103_TCR_10、P0103_TCR_18及びP0103_TCR_82を発現する再生T細胞の有する細胞傷害性のEC50は、それぞれ10 nM、< 1 nM及び < 1 nMであった。Figure 8 shows the results of a cytotoxicity test against target cells to which A24-restricted GPC3 epitope peptide was added using regenerated T cells that were differentiated into T cells after introducing P0103_TCR_10, P0103_TCR_18, and P0103_TCR_82 into iPS cells. The upper panel shows the cytotoxicity towards target cells when target cells with or without a fixed amount of GPC3 epitope peptide (EYILSLEEL, SEQ ID NO: 29) were co-cultured with different numbers of regenerated T cells. Regenerated T cells exhibited concentration-dependent cytotoxicity toward target cells to which GPC3 peptide was added. No cytotoxicity was shown against target cells to which the GPC3 peptide was not added. This indicates that regenerated T cells have antigen-specific cytotoxicity against the GPC3 epitope peptide. In the lower panel, cytotoxicity was verified by fixing the ratio of regenerated T cells to target cells at 10:1 and varying the concentration of the GPC3 epitope peptide added. From the obtained results, the cytotoxic EC50 of regenerated T cells expressing P0103_TCR_10, P0103_TCR_18, and P0103_TCR_82 was 10 nM, < 1 nM, and < 1 nM, respectively. 図9は、P0103_TCR_10(TCR#10)、P0103_TCR_18(TCR#18)及びP0103_TCR_82(TCR#82)をiPS細胞に導入し、T細胞へ分化させた再生T細胞を、GPC3発現SK-Hep肝臓がん腫瘍を腹腔に移植したNOGマウスに6回腹腔内投与した場合の経時的な腫瘍の増殖を、腫瘍が発する化学発光を計測することにより検証した結果を示す。この実験においては、上記の3種の再生T細胞を等量混ぜた細胞混合物も投与し経過を観察した。P0103_TCR_10(TCR#10)、P0103_TCR_18(TCR#18)及びP0103_TCR_82(TCR#82) を発現する再生T細胞、並びにそれらの3種を混合した細胞混合物を投与することにより、マウスにおける腫瘍増殖の顕著な抑制を認めた。Figure 9 shows that P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18), and P0103_TCR_82 (TCR#82) were introduced into iPS cells and regenerated T cells differentiated into T cells were used for GPC3-expressing SK-Hep liver cancer. The results are shown in which the tumor growth over time was verified by measuring the chemiluminescence emitted by the tumor when the tumor was intraperitoneally administered six times to NOG mice with a tumor implanted in the peritoneal cavity. In this experiment, a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered and the progress was observed. By administering regenerated T cells expressing P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18), and P0103_TCR_82 (TCR#82), as well as a cell mixture of these three types, significant tumor growth was observed in mice. Approved restraint. 図10は、P0103_TCR_10(TCR#10)、P0103_TCR_18(TCR#18)及びP0103_TCR_82(TCR#82)をiPS細胞に導入し、T細胞へ分化させた再生T細胞を、GPC3発現SK-Hep肝臓がん腫瘍を腹腔に移植したNOGマウスに6回腹腔内投与した場合の、マウスの生存に及ぼす影響を調べた結果を示す。この実験においては、上記の3種の再生T細胞を等量混ぜた細胞混合物も投与し、経過を観察した。TCR#18及びTCR#82をそれぞれ発現する再生T細胞を投与されたマウス、又はTCR#18、TCR#82及びTCR#10を発現する再生T細胞を等量ずつ混合した細胞混合物を投与されたマウスにおいて、顕著な生存延長を認めた。TCR#10を発現する再生T細胞を投与されたマウスには生存延長を認めなかった。Figure 10 shows that P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18), and P0103_TCR_82 (TCR#82) were introduced into iPS cells and regenerated T cells differentiated into T cells were used for GPC3-expressing SK-Hep liver cancer. The results of investigating the effect on the survival of NOG mice in which tumors were implanted into the peritoneal cavity when administered six times intraperitoneally are shown. In this experiment, a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered, and the progress was observed. Mice received regenerated T cells expressing TCR#18 and TCR#82, respectively, or a cell mixture containing equal amounts of regenerated T cells expressing TCR#18, TCR#82, and TCR#10. Significant survival prolongation was observed in mice. No prolonged survival was observed in mice receiving regenerated T cells expressing TCR#10.
1.T細胞受容体
 本発明は、GPC3ペプチド(HLA-A24拘束性GPC3ペプチド)又は該ペプチドとHLA-A24との複合体に結合しうるT細胞受容体(T細胞レセプター又はTCRとも呼ばれる)を提供する。また、本発明のTCRは、単離されたものでもよい。
1. T Cell Receptors The present invention provides T cell receptors (also referred to as T cell receptors or TCRs) capable of binding to GPC3 peptides (HLA-A24-restricted GPC3 peptides) or complexes of the peptides and HLA-A24. . Furthermore, the TCR of the present invention may be isolated.
 本発明において、「T細胞受容体(TCR)」とは、TCR鎖(α鎖及びβ鎖)のヘテロダイマーから構成され、抗原又は該抗原-HLA(ヒト白血球型抗原)(MHC;主要組織適合遺伝子複合体)複合体を認識してT細胞へ刺激シグナルを伝達する受容体を意味する。それぞれのTCR鎖は、多数の断片として染色体の上に並んでいるV領域、D領域及びJ領域からなる遺伝子再構成(somatic recombination)により形成される可変領域並びに定常領域から構成され、可変領域には3つの相補性決定領域(CDR1、CDR2及びCDR3)が存在する。CDR1及びCDR2はポリペプチド鎖の可変(V)領域で見られ、CDR3はV領域の一部、多様性(D)領域(重鎖のみ)及び連結(J)領域の全体を含む。T細胞受容体と関連するほとんどの配列の変化はCDRにおいて見られるため、これらの領域は「超可変領域」と呼ばれることがある。これらの中で、CDR3が最も変動が大きい。これは、CDR3が軽鎖の場合はVJの再構成、また重鎖の場合はVDJの再構成によってコードされるためである。また、本発明のTCRには、TCRのα鎖とβ鎖とがヘテロダイマーを構成しているものだけでなく、ホモダイマーを構成しているものも包含される。さらに、本発明のTCRには、定常領域の一部又は全部を欠損したもの、アミノ酸配列を組み換えたもの、及び可溶性TCR(soluble TCR)としたものなども包含される。 In the present invention, "T cell receptor (TCR)" is composed of a heterodimer of TCR chains (α chain and β chain), and is composed of a heterodimer of TCR chains (α chain and β chain), and is an antigen or the antigen-HLA (human leukocyte antigen) (MHC; major histocompatibility). Gene complex) refers to a receptor that recognizes the complex and transmits a stimulating signal to T cells. Each TCR chain is composed of a variable region and a constant region, which are formed by somatic recombination of the V region, D region, and J region, which are arranged on the chromosome as multiple fragments. There are three complementarity determining regions (CDR1, CDR2 and CDR3). CDR1 and CDR2 are found in the variable (V) region of a polypeptide chain, with CDR3 comprising part of the V region, the diversity (D) region (heavy chain only) and the entire joining (J) region. Because most sequence changes associated with T cell receptors are found in the CDRs, these regions are sometimes referred to as "hypervariable regions." Among these, CDR3 is the most variable. This is because CDR3 is encoded by VJ rearrangement in the case of a light chain, and by VDJ rearrangement in the case of a heavy chain. Furthermore, the TCR of the present invention includes not only those in which the α chain and β chain of TCR constitute a heterodimer, but also those in which the TCR constitutes a homodimer. Furthermore, the TCR of the present invention includes those in which part or all of the constant region is deleted, those in which the amino acid sequence is recombined, and those in which the TCR is made into a soluble TCR.
 本発明において、「可溶性TCR」とは、TCRの化学的修飾、Fc受容体との結合又は細胞膜貫通ドメインの除去等により可溶化したTCRを意味し、可溶性とは、例えば、リン酸緩衝化生理食塩水(PBS)(KCl 2.7 mM、KH2PO4 1.5 mM、NaCl 137 mM及びNa2PO4 8 mM、pH 7.1~7.5)中で単分散へテロ二量体として存在し、かつそのTCRの90%以上が、25℃、1時間のインキュベーションの後に単分散へテロ二量体として残存できる性質を意味する。可溶性TCRは、安定性を高めるために各鎖の定常領域間に、新たに人工的にジスルフィド結合を導入してもよい。このような可溶性TCRは、例えば国際公開第2004/074322号パンフレット、Boulter et al., Clin Exp Immunol, 2005 ,142(3):454-460などに記載された方法にしたがって作製できる。可溶性TCRを用いる場合、該TCRが、抗原又は該抗原-HLA複合体に結合しうる限りその濃度は特に制限されないが、例えばin vitroでの試験に用いる場合、40 μg/mL以上であることが好ましい。 In the present invention, "soluble TCR" refers to TCR that has been solubilized by chemical modification of TCR, binding to an Fc receptor, or removal of the cell membrane-spanning domain. It exists as a monodisperse heterodimer in saline solution (PBS) (2.7 mM KCl, 1.5 mM KH 2 PO 4 , 137 mM NaCl and 8 mM Na 2 PO 4 , pH 7.1-7.5) and its TCR 90% or more means the ability to remain as a monodisperse heterodimer after incubation at 25° C. for 1 hour. In soluble TCR, a new disulfide bond may be artificially introduced between the constant regions of each chain in order to increase stability. Such a soluble TCR can be produced, for example, according to the method described in WO 2004/074322 pamphlet, Boulter et al., Clin Exp Immunol, 2005, 142(3):454-460. When using a soluble TCR, the concentration is not particularly limited as long as the TCR can bind to the antigen or the antigen-HLA complex, but for example, when used for in vitro tests, it may be 40 μg/mL or more. preferable.
 本発明において、「GPC3ペプチド」又は「HLA-A24拘束性GPC3ペプチド」とは、配列番号29で示されるアミノ酸配列からなるグリピカン3(GPC3)のペプチド断片を意味する。好ましい実施態様において、本発明のTCRは、GPC3ペプチドとHLA-A24との複合体を特異的に認識し結合しうる。 In the present invention, "GPC3 peptide" or "HLA-A24-restricted GPC3 peptide" means a peptide fragment of glypican 3 (GPC3) consisting of the amino acid sequence shown by SEQ ID NO: 29. In a preferred embodiment, the TCR of the present invention is capable of specifically recognizing and binding a complex of GPC3 peptide and HLA-A24.
 本発明のTCRが上記複合体を特異的に認識し、結合しうることは公知の方法によって確認することができる。好適な方法としては、例えばHLA-A24分子及びGPC3ペプチドを用いたデキストラマーアッセイ又はELISPOTアッセイなどが挙げられる。ELISPOTアッセイを行うことにより、前記TCRを細胞表面に発現しているT細胞がTCRにより標的細胞を認識し、そのシグナルが細胞内に伝達されたことを確認することができる。 The ability of the TCR of the present invention to specifically recognize and bind to the above complex can be confirmed by known methods. Suitable methods include, for example, dextramer assay or ELISPOT assay using HLA-A24 molecules and GPC3 peptide. By performing an ELISPOT assay, it can be confirmed that T cells expressing the TCR on the cell surface recognize target cells by TCR and that the signal is transmitted into the cells.
 本明細書で用いる「結合しうる(capable of binding)」という用語は、「結合する能力を有すること(having an ability to bind)」を意味し、1つ又はそれ以上の他の分子と非共有結合複合体を形成する能力を指す。本発明の複合体の例として、GPC3ペプチドとHLA分子(例:HLA-A24)との複合体、又はGPC3ペプチドとTCRとの複合体が挙げられる。本発明の複合体の別の例として、TCRとそれ自体HLAと複合体を形成するGPC3ペプチドとの複合体が挙げられる。結合能を決定するための様々な方法及びアッセイは、当技術分野で公知である。結合は、通常、高親和性を有する結合であり、KD値で測定される親和性は、好ましくは1 μM未満、より好ましくは100 nM未満、さらにより好ましくは10 nM未満、さらにより好ましくは1 nM未満、さらにより好ましくは100 pM未満、さらにより好ましくは10 pM未満、さらにより好ましくは1 pM未満である。「KD」又は「KD値」という用語は、当技術分野で公知の平衡解離定数に関連する。本発明の文脈において、これらの用語は、目的の特定の抗原(例:本明細書中で定義されるGPC3のペプチド、又はペプチドとHLAとの各複合体)に対するTCRの平衡解離定数に関連し得る。平衡解離定数は、複合体(例:TCR-ペプチド-HLA複合体)が、その成分(例:TCR及びペプチド-HLA複合体)に可逆的に解離する傾向の尺度である。KD値を決定する方法は、当技術分野において公知であり、例えば、表面プラズモン共鳴が例示される。 As used herein, the term "capable of binding" means "having an ability to bind" to one or more other molecules in a non-covalent manner. Refers to the ability to form binding complexes. Examples of the complex of the present invention include a complex between a GPC3 peptide and an HLA molecule (eg, HLA-A24), or a complex between a GPC3 peptide and a TCR. Another example of a complex of the invention is a complex between TCR and GPC3 peptide, which itself forms a complex with HLA. Various methods and assays for determining binding capacity are known in the art. The binding is usually with high affinity, with an affinity measured by a KD value of preferably less than 1 μM, more preferably less than 100 nM, even more preferably less than 10 nM, even more preferably 1 Less than nM, even more preferably less than 100 pM, even more preferably less than 10 pM, even more preferably less than 1 pM. The term "KD" or "KD value" refers to the equilibrium dissociation constant as known in the art. In the context of the present invention, these terms relate to the equilibrium dissociation constant of a TCR for a particular antigen of interest (e.g., a peptide of GPC3 as defined herein, or the respective complex of a peptide and an HLA). obtain. The equilibrium dissociation constant is a measure of the tendency of a complex (eg, TCR-peptide-HLA complex) to reversibly dissociate into its components (eg, TCR and peptide-HLA complex). Methods for determining KD values are known in the art and include, for example, surface plasmon resonance.
 本発明において、「単離された」とは、特定の成分(例:TCR)が、その天然環境の成分から同定、分離され、あるいは回収されている状態を意味する。 In the present invention, "isolated" means a state in which a specific component (eg, TCR) is identified, separated, or recovered from components in its natural environment.
 本発明において、「1又は数個のアミノ酸」とは、例えば、1,2,3,4又は5個のアミノ酸(例:1~4個のアミノ酸、1~3個のアミノ酸又は1~2個のアミノ酸)を意味する。例えば、TCR CDR領域の文脈では、1又は数個は、好ましくは1、2又は3個のアミノ酸を意味する。TCR可変領域又はTCRの文脈では、1又は数個は、好ましくは1~5、1~4又は1~3個、特に1、2又は3個のアミノ酸を意味する。 In the present invention, "one or several amino acids" refers to, for example, 1, 2, 3, 4, or 5 amino acids (e.g., 1 to 4 amino acids, 1 to 3 amino acids, or 1 to 2 amino acids). amino acid). For example, in the context of a TCR CDR region, one or several preferably means 1, 2 or 3 amino acids. In the context of a TCR variable region or TCR, one or several preferably means 1 to 5, 1 to 4 or 1 to 3, especially 1, 2 or 3 amino acids.
 本発明において、「% 同一性」とは、例えば、 90%以上の(例:91%、92%、93%、94%、95%、96%、97%、98%若しくは99%又はそれより高い)同一性を意味する。アミノ酸配列の同一性は、以下の条件下(expectancy =10; gap allowed; matrix=BLOSUM62; filtering=OFF)で、相同性計算アルゴリズムのNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)を用いて計算することができる。% 同一性を決定するため、全長にわたる本発明の配列を別の配列と比較することが理解される。言い換えれば、本発明における%同一性は、本発明の配列の短い断片(例えば1~3残基)を別の配列と比較すること、又はその逆を除外する。 In the present invention, "% identity" means, for example, 90% or more (e.g. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more) high) meaning sameness. Amino acid sequence identity was determined using the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) (https ://blast.ncbi.nlm.nih.gov/Blast.cgi). It is understood that to determine % identity, a sequence of the invention over its entire length is compared to another sequence. In other words, % identity in the present invention excludes comparisons of short fragments (eg 1-3 residues) of a sequence of the present invention with another sequence, or vice versa.
 本発明の一実施態様において、本発明のTCRのα鎖の相補性決定領域として、配列番号1~13でそれぞれ示されるCDR3の各アミノ酸配列を含み、TCRのβ鎖の相補性決定領域として、配列番号14~28でそれぞれ示されるCDR3の各アミノ酸配列を含む。上記アミノ酸配列は、前記CDR3のアミノ酸配列を含むTCRがGPC3ペプチド又は該ペプチドとHLA-A24との複合体に対する結合能を有する限り、1個~数個(例えば、2個又は3個)のアミノ酸が欠失、置換若しくは付加されてもよい。好ましい実施態様において、本発明のTCRは、配列番号1~13でそれぞれ示されるCDR3の各アミノ酸配列を含むTCRα鎖、及び配列番号14~28でそれぞれ示されるCDR3の各アミノ酸配列を含むTCRβ鎖を含み、該TCRのα鎖とβ鎖がヘテロダイマーを形成する。 In one embodiment of the present invention, the complementarity determining region of the α chain of the TCR of the present invention comprises each amino acid sequence of CDR3 shown in SEQ ID NOS: 1 to 13, respectively, and the complementarity determining region of the β chain of the TCR of the present invention includes: It contains each amino acid sequence of CDR3 shown in SEQ ID NOs: 14 to 28, respectively. The above amino acid sequence may contain one to several (for example, two or three) amino acids, as long as the TCR containing the CDR3 amino acid sequence has the ability to bind to the GPC3 peptide or the complex of the peptide and HLA-A24. may be deleted, substituted or added. In a preferred embodiment, the TCR of the present invention comprises a TCR α chain comprising each amino acid sequence of CDR3 shown in SEQ ID NOs: 1 to 13, respectively, and a TCR β chain comprising each amino acid sequence of CDR3 shown as SEQ ID NOs: 14 to 28, respectively. The α and β chains of the TCR form a heterodimer.
 また、本発明のTCRのα鎖は、好ましくは、α鎖の前記可変領域を含むTCRがGPC3ペプチド又は該ペプチドとHLA-A24との複合体に結合しうることを条件として、配列番号1~13で示されるアミノ酸配列のうちの一つのアミノ酸配列、配列番号1~13で示されるアミノ酸配列において1若しくは数個(例えば、2個、3個、4個又は5個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列のうちの一つのアミノ酸配列、又は配列番号1~13で示されるアミノ酸配列と90%以上(例えば、91%、92%、93%、94%、95%、96%、97%、98%又は99%以上)の同一性を有するアミノ酸配列のうちの一つのアミノ酸配列で示されるα鎖の可変領域を含む。 Further, the α chain of the TCR of the present invention preferably has SEQ ID NOS: 1 to one amino acid sequence among the amino acid sequences shown by SEQ ID NOs: 13, 1 or several (for example, 2, 3, 4 or 5) amino acids are deleted in the amino acid sequences shown by SEQ ID NOS: 1 to 13, 90% or more (for example, 91%, 92%, 93%, 94%, 95%, 96%) of one of the substituted or added amino acid sequences, or the amino acid sequence shown in SEQ ID NOS: 1 to 13. , 97%, 98% or 99% or more).
 また、本発明のTCRのβ鎖は、好ましくは、β鎖の前記可変領域を含むTCRがGPC3ペプチド又は該ペプチドとHLA-A24との複合体に結合しうることを条件として、配列番号14~28で示されるアミノ酸配列のうちの一つのアミノ酸配列、配列番号14~28で示されるアミノ酸配列において1若しくは数個(例えば、2個、3個、4個又は5個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列のうちの一つのアミノ酸配列、又は配列番号14~28で示されるアミノ酸配列と90%以上(例えば、91%、92%、93%、94%、95%、96%、97%、98%又は99%以上)の同一性を有するアミノ酸配列のうちの一つのアミノ酸配列で示されるβ鎖の可変領域を含む。 Further, the β chain of the TCR of the present invention preferably has SEQ ID NO: 14 to 28, one or several (for example, 2, 3, 4 or 5) amino acids are deleted in the amino acid sequences shown in SEQ ID NOs: 14 to 28, 90% or more (for example, 91%, 92%, 93%, 94%, 95%, 96%) of one of the substituted or added amino acid sequences, or the amino acid sequence shown in SEQ ID NOs: 14 to 28. , 97%, 98% or 99% or more) identity).
 好ましい実施態様において、本発明のTCRは、配列番号1~13で示されるアミノ酸配列含むTCRα鎖、及び配列番号14~28で示されるアミノ酸配列のうちの一つのアミノ酸配列を含むTCRβ鎖を含み、該TCRのα鎖とβ鎖とがヘテロダイマーを形成する。別の好ましい実施態様において、本発明のTCRは、配列番号1~13で示されるアミノ酸配列のうちの一つのアミノ酸配列を含むTCRα鎖、及び配列番号1~13で示されるアミノ酸配列のうちの一つのアミノ酸配列を含むTCRβ鎖を含み、該TCRのα鎖とβ鎖がヘテロダイマーを形成する。 In a preferred embodiment, the TCR of the present invention comprises a TCR α chain comprising the amino acid sequence shown in SEQ ID NOs: 1 to 13, and a TCR β chain comprising one of the amino acid sequences shown in SEQ ID NOs: 14 to 28, The α chain and β chain of the TCR form a heterodimer. In another preferred embodiment, the TCR of the present invention comprises a TCRα chain comprising one of the amino acid sequences shown in SEQ ID NOs: 1-13, and one of the amino acid sequences shown in SEQ ID NOs: 1-13. The α and β chains of the TCR form a heterodimer.
 本発明のTCRは、後述する本発明の核酸又はベクターを使用して遺伝子工学的に生産することができる。例えば、本発明のTCRのα鎖をコードする核酸及びβ鎖をコードする核酸の両方を細胞に導入してTCRのα鎖及びβ鎖ポリペプチドを発現させることなどにより、当該細胞に、本発明のTCRを発現させ、自体公知の方法により単離することができる。 The TCR of the present invention can be produced by genetic engineering using the nucleic acid or vector of the present invention described below. For example, by introducing both a nucleic acid encoding the α chain and a nucleic acid encoding the β chain of the TCR of the present invention into cells to express the TCR α chain and β chain polypeptides, the present invention can be applied to the cells. The TCR can be expressed and isolated by a method known per se.
2.本発明の核酸
 本発明は、上述した本発明のTCRをコードする核酸(以下「本発明の核酸」と略記する。)を提供する。本発明の核酸は、単離されたものでもよい。
2. Nucleic acid of the present invention The present invention provides a nucleic acid encoding the TCR of the present invention described above (hereinafter abbreviated as "nucleic acid of the present invention"). The nucleic acids of the present invention may be isolated.
 本発明の核酸としては、TCRのα鎖をコードする核酸、TCRのβ鎖をコードする核酸、及びTCRのα鎖及びβ鎖の両方をコードする核酸のいずれであってもよい。本発明はまた、本明細書に記載のいずれか若しくは複数のCDR、可変領域及び/又は定常領域をコードする核酸に関する。 The nucleic acid of the present invention may be a nucleic acid encoding the α chain of TCR, a nucleic acid encoding the β chain of TCR, or a nucleic acid encoding both α chain and β chain of TCR. The invention also relates to nucleic acids encoding any or more of the CDRs, variable regions and/or constant regions described herein.
 本発明はまた、ストリンジェントな条件下で、本明細書で定義されるいずれかの核酸の相補体にハイブリダイズしうる核酸を包含する。好ましい実施態様において、ハイブリダイズしうる核酸は、本明細書に記載の機能を有するCDR、可変領域又は定常領域のアミノ酸配列をコードする。具体的には、ハイブリダイズしうる核酸は、前記アミノ酸配列を含むTCRが、GPC3ペプチド又は該ペプチドとHLA-A24との複合体に結合する能力を有するようなアミノ酸配列をコードする。 The invention also encompasses nucleic acids that are capable of hybridizing under stringent conditions to the complement of any of the nucleic acids defined herein. In preferred embodiments, the hybridizable nucleic acids encode CDR, variable region or constant region amino acid sequences having the functions described herein. Specifically, the hybridizable nucleic acid encodes an amino acid sequence such that a TCR containing the amino acid sequence has the ability to bind to the GPC3 peptide or the complex of the peptide and HLA-A24.
 本発明のTCRのα鎖をコードする核酸としては、上記で定義されたTCRのα鎖をコードする核酸であればいかなるものでもよいが、例えば、配列番号1~13で示されるポリペプチドをコードする核酸などが挙げられる。また、本発明のTCRのβ鎖をコードする核酸としては、上記で定義されたTCRのβ鎖をコードする核酸であればいかなるものでもよいが、例えば、配列番号14~28で示されるポリペプチドをコードする核酸などが挙げられる。 The nucleic acid encoding the TCR α chain of the present invention may be any nucleic acid as long as it encodes the TCR α chain defined above. Examples include nucleic acids. Further, the nucleic acid encoding the TCR β chain of the present invention may be any nucleic acid as long as it encodes the TCR β chain defined above, and for example, the polypeptide shown by SEQ ID NOS: 14 to 28. Examples include nucleic acids encoding.
 本発明の核酸はDNAであってもRNAであってもよく、又はDNA/RNAキメラであってもよいが、好ましくはDNAである。また、該核酸は二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNA又はDNA:RNAのハイブリッドでもよい。核酸がRNAである場合は、RNAの配列については、配列表におけるTをUと読み替えることとする。また、本発明の核酸は、in vitro又は細胞中で、ポリペプチドを発現できる限り、天然ヌクレオチド、修飾ヌクレオチド、ヌクレオチド類似体又はこれらの混合物を含んでもよい。 The nucleic acid of the present invention may be DNA, RNA, or a DNA/RNA chimera, but is preferably DNA. Further, the nucleic acid may be double-stranded or single-stranded. If it is double-stranded, it may be double-stranded DNA, double-stranded RNA, or a DNA:RNA hybrid. When the nucleic acid is RNA, T in the sequence listing shall be read as U for the RNA sequence. The nucleic acids of the present invention may also include natural nucleotides, modified nucleotides, nucleotide analogs, or mixtures thereof, as long as they can express the polypeptide in vitro or in cells.
 本発明の核酸は、自体公知の方法により構築することができる。例えば、配列表に記載したTCRのアミノ酸配列又は核酸配列に基づき、化学的にDNA鎖を合成するか、若しくは合成した一部オーバーラップするオリゴDNA短鎖を、PCR法又はGibson Assembly法を利用して接続することにより、本発明のTCRの全長又は一部をコードするDNAを構築することが可能である。 The nucleic acid of the present invention can be constructed by a method known per se. For example, a DNA chain can be chemically synthesized based on the TCR amino acid sequence or nucleic acid sequence listed in the sequence listing, or synthesized partially overlapping oligo DNA short chains can be synthesized using the PCR method or Gibson Assembly method. It is possible to construct a DNA encoding the full length or a part of the TCR of the present invention by connecting the TCR of the present invention.
3.本発明の核酸を含む発現ベクター
 本発明の核酸は、発現ベクターに組み込むことができる。従って、本発明は、上述した本発明の核酸のいずれかを含む発現ベクター(以下「本発明のベクター」と略記する。)を提供する。
 本発明のベクターは、標的細胞のゲノムに組み込まれないベクターであってもよい。一実施態様において、ゲノムに組み込まれないベクターは、標的細胞のゲノムの外側で複製しうる。ベクターは、標的細胞のゲノムの外側に複数のコピーで存在してもよい。本発明のさらなる実施態様において、ベクターは標的細胞のゲノムに組み込まれる。好ましい実施態様において、ベクターは、標的細胞のゲノムのあらかじめ決められた位置に組み込まれる。
3. Expression Vectors Comprising the Nucleic Acids of the Invention The nucleic acids of the invention can be incorporated into expression vectors. Therefore, the present invention provides an expression vector (hereinafter abbreviated as "vector of the present invention") containing any of the above-described nucleic acids of the present invention.
The vector of the present invention may be a vector that does not integrate into the genome of the target cell. In one embodiment, a vector that is not integrated into the genome is capable of replicating outside the genome of the target cell. The vector may exist in multiple copies outside the genome of the target cell. In a further embodiment of the invention, the vector is integrated into the genome of the target cell. In a preferred embodiment, the vector integrates into the genome of the target cell at a predetermined location.
 本発明のベクターに使用されるプロモーターとしては、例えば、ユビキチンプロモーター、EF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーター、TCR Vα遺伝子プロモーター、TCR Vβ遺伝子プロモーターなどが用いられる。なかでも、ユビキチンプロモーター、EF1αプロモーター、CAGプロモーター、MoMuLV LTR、CMVプロモーター、SRαプロモーター等が好ましい。 Examples of promoters used in the vector of the present invention include ubiquitin promoter, EF1α promoter, CAG promoter, SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV ( Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, TCR Vα gene promoter, TCR Vβ gene promoter, etc. are used. Among these, ubiquitin promoter, EF1α promoter, CAG promoter, MoMuLV LTR, CMV promoter, SRα promoter, etc. are preferred.
 本発明のベクターは、上記プロモーターの他に、所望により、転写及び翻訳調節配列、リボソーム結合部位、エンハンサー、複製起点、ポリA付加シグナル、選択マーカー遺伝子などを含んでいてもよい。選択マーカー遺伝子としては、例えば、ジヒドロ葉酸還元酵素遺伝子、ネオマイシン耐性遺伝子、ピューロマイシン耐性遺伝子などが挙げられる。 In addition to the promoter described above, the vector of the present invention may optionally contain transcriptional and translational regulatory sequences, ribosome binding sites, enhancers, origins of replication, polyA addition signals, selection marker genes, and the like. Examples of the selectable marker gene include a dihydrofolate reductase gene, a neomycin resistance gene, a puromycin resistance gene, and the like.
 本発明の一実施態様において、上述した本発明のTCRのα鎖をコードする核酸とβ鎖をコードする核酸とを含む発現ベクターを標的細胞内に導入し、標的細胞内又は細胞表面にTCRのα鎖とβ鎖とのヘテロダイマーを構成することができる。この場合において、TCRのα鎖をコードする核酸とβ鎖をコードする核酸とは、それぞれ別の発現ベクターに組み込んでもよいし、又は1つの発現ベクターに組み込んでもよい。1つの発現ベクターに組み込む場合には、これら2種類の核酸は、ポリシストロニック発現を可能にする配列を介して組み込むことが好ましい。ポリシストロニック発現を可能にする配列を用いることにより、1種類の発現ベクターに組み込まれている複数の遺伝子をより効率的に発現させることが可能になる。ポリシストロニック発現を可能にする配列としては、例えば、口蹄疫ウイルスのT2A配列(PLoS ONE3, e2532, 2008、Stem Cells 25, 1707, 2007を参照)、内部リボソームエントリー部位(IRES)(U.S. Patent No. 4,937,190を参照)などが挙げられるが、均一な発現量の観点からは、T2A配列が好ましい。 In one embodiment of the present invention, an expression vector containing a nucleic acid encoding the α chain and a nucleic acid encoding the β chain of the TCR of the present invention described above is introduced into a target cell, and the TCR is introduced into the target cell or on the cell surface. A heterodimer of an α chain and a β chain can be formed. In this case, the nucleic acid encoding the α chain and the nucleic acid encoding the β chain of TCR may be incorporated into separate expression vectors, or may be incorporated into one expression vector. When integrated into one expression vector, these two types of nucleic acids are preferably integrated via a sequence that enables polycistronic expression. By using sequences that enable polycistronic expression, it becomes possible to more efficiently express multiple genes incorporated into one type of expression vector. Sequences that enable polycistronic expression include, for example, the T2A sequence of foot-and-mouth disease virus (see PLoS ONE3, e2532, 2008, Stem Cells 25, 1707, 2007), the internal ribosome entry site (IRES) (U.S. Patent No. 4,937,190), but from the viewpoint of uniform expression level, the T2A sequence is preferred.
 本発明に用いることができる発現ベクターは、細胞に導入された場合に、疾患の予防又は治療に十分な期間においてTCRを発現できれば特に限定されないが、ウイルスベクター及びプラスミドベクターなどが挙げられる。ウイルスベクターとしては、レトロウイルスベクター(レンチウイルスベクター及びシュードタイプベクターを含む)、アデノウイルスベクター、アデノ随伴ウイルスベクター、ヘルペスウイルスベクター、センダイウイルス、エピソーマルベクターなどが挙げられる。また、トランスポゾン発現システム(PiggyBacシステム)を用いてもよい。プラスミドベクターとしては、動物細胞発現プラスミド(例えば、pa1-11、pXT1、pRc/CMV、pRc/RSV及びpcDNAI/Neo)などが挙げられる。 Expression vectors that can be used in the present invention are not particularly limited as long as they can express TCR for a period sufficient to prevent or treat diseases when introduced into cells, and include viral vectors and plasmid vectors. Examples of viral vectors include retrovirus vectors (including lentivirus vectors and pseudotype vectors), adenovirus vectors, adeno-associated virus vectors, herpes virus vectors, Sendai virus, episomal vectors, and the like. Alternatively, a transposon expression system (PiggyBac system) may be used. Examples of plasmid vectors include animal cell expression plasmids (eg, pa1-11, pXT1, pRc/CMV, pRc/RSV, and pcDNAI/Neo).
4.本発明の核酸又はベクターを含む細胞
 本発明の核酸又はベクターを細胞に導入し、TCRが細胞表面に存在するときには、該細胞は標的細胞に対するHLA-A24拘束性のGPC3特異的な細胞傷害活性を有し得る。従って、本発明は、本発明の核酸又はベクターを含む細胞(言い換えれば、本発明の核酸又はベクターを有する細胞)(以下「本発明の細胞」と略記する。)を提供する。ここで、本発明の核酸は、本発明のベクターの形態で所望の細胞に導入されていることが好ましい。本発明はまた、ゲノム編集(例えば、CRISPRシステム、TALENシステムなど)により本発明の核酸を宿主ゲノムに導入することを包含する。本発明の細胞の好適な態様としては、TCRα鎖をコードする核酸及びTCRβ鎖をコードする核酸の両方が導入されている細胞が挙げられるが、この態様に限定されない。本発明の細胞が細胞傷害活性を有することの確認は公知の方法によればよく、好適な方法として、例えばクロム放出アッセイなどのHLA-A24陽性標的細胞に対する細胞傷害活性の測定が挙げられる。好ましい実施態様において、本発明の細胞はヒト細胞である。
4. Cells containing the nucleic acid or vector of the present invention When the nucleic acid or vector of the present invention is introduced into cells and TCR is present on the cell surface, the cells exhibit HLA-A24-restricted GPC3-specific cytotoxic activity against target cells. may have. Therefore, the present invention provides a cell containing the nucleic acid or vector of the present invention (in other words, a cell having the nucleic acid or vector of the present invention) (hereinafter abbreviated as "cell of the present invention"). Here, the nucleic acid of the present invention is preferably introduced into desired cells in the form of a vector of the present invention. The invention also encompasses introducing the nucleic acids of the invention into the host genome by genome editing (eg, CRISPR system, TALEN system, etc.). A preferred embodiment of the cell of the present invention includes, but is not limited to, a cell into which both a nucleic acid encoding a TCRα chain and a nucleic acid encoding a TCRβ chain have been introduced. Confirmation that the cells of the present invention have cytotoxic activity may be performed using known methods, and preferred methods include, for example, measuring cytotoxic activity against HLA-A24-positive target cells, such as a chromium release assay. In a preferred embodiment, the cells of the invention are human cells.
 本発明の核酸又は発現ベクターを導入する細胞としては、例えば、リンパ球及び多能性幹細胞を含むリンパ球の前駆細胞が挙げられる。本発明において、「リンパ球」とは、脊椎動物の免疫系における白血球のサブタイプの一つを意味し、リンパ球としては、T細胞、B細胞及びナチュラルキラー細胞(NK細胞)が挙げられる。T細胞受容体はT細胞の抗原の認識に重要な役割を示すことから、本発明の核酸又はベクターを導入する細胞としては、T細胞が好ましい。本発明において、「T細胞」とは、リンパ器官あるいは末梢血中等に認められる白血球の一種で、主に胸腺で分化成熟し、T細胞受容体(TCR)を発現することを特徴とするリンパ球の一分類を意味する。本発明に用いることができるT細胞としては、例えば、CD8陽性細胞である細胞傷害性T細胞(CTL)、CD4陽性細胞であるヘルパーT細胞、制御性T細胞及びエフェクターT細胞などが挙げられるが、好ましくは、細胞傷害性T細胞である。また、CD4/CD8両陽性細胞も、T細胞に包含される。本発明のTCRを発現するT細胞は、生体より採取されたT細胞に、本発明の核酸又はベクターを導入することにより、本発明のTCRを発現するT細胞を得ることができる。又は、本発明の核酸若しくはベクターが導入されたリンパ球の前駆細胞(例:多能性幹細胞)から誘導することにより、本発明のTCRを発現するT細胞(即ち、前記前駆細胞に由来するT細胞)を得ることができる。 Examples of cells into which the nucleic acid or expression vector of the present invention is introduced include lymphocytes and lymphocyte progenitor cells including pluripotent stem cells. In the present invention, "lymphocyte" refers to one of the subtypes of white blood cells in the immune system of vertebrates, and lymphocytes include T cells, B cells, and natural killer cells (NK cells). Since T cell receptors play an important role in antigen recognition by T cells, T cells are preferred as cells into which the nucleic acid or vector of the present invention is introduced. In the present invention, a "T cell" is a type of white blood cell found in lymphoid organs or peripheral blood, and is a lymphocyte that differentiates and matures mainly in the thymus gland and expresses a T cell receptor (TCR). means a classification of Examples of T cells that can be used in the present invention include cytotoxic T cells (CTL), which are CD8-positive cells, helper T cells, regulatory T cells, and effector T cells, which are CD4-positive cells. , preferably cytotoxic T cells. Furthermore, CD4/CD8 both positive cells are also included in T cells. T cells expressing the TCR of the present invention can be obtained by introducing the nucleic acid or vector of the present invention into T cells collected from a living body. Alternatively, T cells expressing the TCR of the present invention (i.e., T cells derived from the progenitor cells) can be derived from lymphoid progenitor cells (e.g., pluripotent stem cells) into which the nucleic acid or vector of the present invention has been introduced. cells) can be obtained.
 本発明の細胞(例:細胞傷害性T細胞)は、該細胞が本来有するTCR遺伝子に加えて、本発明の核酸又はベクターに由来する外因性のTCR遺伝子も有する。この点において、本発明の細胞は、生体より採取された細胞とは異なる。 In addition to the TCR gene inherent in the cell, the cell of the present invention (eg, cytotoxic T cell) also has an exogenous TCR gene derived from the nucleic acid or vector of the present invention. In this respect, the cells of the present invention differ from cells collected from living bodies.
 前記リンパ球は、ヒト又は非ヒト哺乳動物の例えば末梢血、骨髄及び臍帯血より採取することができる。本発明のTCR遺伝子導入細胞をがんなどの疾患の治療に用いる場合には、当該細胞集団は、治療対象本人又は治療対象のHLAタイプと一致したドナーから採取することが好ましい。好ましい対象又はドナーはヒトである。 The lymphocytes can be collected from, for example, peripheral blood, bone marrow, and umbilical cord blood of humans or non-human mammals. When using the TCR gene-introduced cells of the present invention for the treatment of a disease such as cancer, the cell population is preferably collected from the person to be treated or a donor whose HLA type matches the HLA type of the person to be treated. Preferred subjects or donors are humans.
 多能性幹細胞を含むリンパ球の前駆細胞としては、例えば、胚性幹細胞(embryonic stem cell:ES細胞)、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、胚性腫瘍細胞(EC細胞)、胚性生殖幹細胞(EG細胞)、造血幹細胞を含む造血前駆細胞、自己複製能を失った多能性前駆細胞(multipotent progenitor:MMP)、ミエローリンフォイド共通前駆細胞(MLP)、ミエロイド系前駆細胞(MP)、顆粒球単核前駆細胞(GMP)、マクロファージ-樹状細胞前駆細胞(MDP)及び樹状細胞前駆細胞(DCP)などが挙げられる。ヒト胚、特にES細胞に由来する任意の細胞は、胚を破壊して作製された細胞であっても、胚を破壊することなく作製された細胞であってもよい。倫理の観点からは、iPS細胞、EC細胞、EG細胞、造血前駆細胞、MMP、MLP、MP、GMP、MDP、DCP及び胚を破壊することなく作製されたES細胞が好ましい。 Examples of lymphocyte precursor cells including pluripotent stem cells include embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), and embryonic tumor cells (EC cells). ), embryonic germ stem cells (EG cells), hematopoietic progenitor cells including hematopoietic stem cells, multipotent progenitors (MMPs) that have lost self-renewal ability, myelolymphoid common progenitor cells (MLPs), myeloid lineage Examples include progenitor cells (MP), granulocyte mononuclear progenitors (GMP), macrophage-dendritic cell progenitors (MDP), and dendritic cell progenitors (DCP). Any cell derived from a human embryo, particularly an ES cell, may be a cell produced by destroying the embryo, or a cell produced without destroying the embryo. From an ethical standpoint, iPS cells, EC cells, EG cells, hematopoietic progenitor cells, MMP, MLP, MP, GMP, MDP, DCP, and ES cells produced without destroying embryos are preferred.
 iPS細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって製造することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能を有する体細胞由来の人工の幹細胞である(例えば、Takahashi K, Yamanaka S. Cell, 126;663-676 (2006): Takahashi K. et al. Cell, 131;861-872 (2007): Yu J. et al. Science, 318;1917-1920 (2007): Nakagawa M. et al. Nat. Biotechnol. 26;101-106 (2008)を参照)。iPS細胞を用いる場合、該iPS細胞は、自体公知の方法により体細胞から作製してもよいし、既に樹立され、ストックされているiPS細胞を用いてもよい。本発明に用いるiPS細胞の由来となる体細胞に制限はないが、好ましくは末梢血由来の細胞又は臍帯血由来の細胞である。多能性幹細胞の由来となる動物に制限はなく、例えば、マウス、ラット、ハムスター、モルモット、イヌ、サル、オランウータン、チンパンジー、ヒトなどの哺乳動物が挙げられ、好ましくはヒトである。 iPS cells can be produced by introducing specific reprogramming factors in the form of DNA or proteins into somatic cells, and have properties almost equivalent to ES cells, such as pluripotency and the ability to proliferate through self-renewal. Artificial stem cells derived from somatic cells (e.g., Takahashi K, Yamanaka S. Cell, 126;663-676 (2006): Takahashi K. et al. Cell, 131;861-872 (2007): Yu J. et al. Science, 318;1917-1920 (2007): Nakagawa M. et al. Nat. Biotechnol. 26;101-106 (2008)). When using iPS cells, the iPS cells may be produced from somatic cells by a method known per se, or already established and stocked iPS cells may be used. Although there are no restrictions on the somatic cells from which the iPS cells used in the present invention are derived, cells derived from peripheral blood or umbilical cord blood are preferred. There is no restriction on the animal from which the pluripotent stem cells are derived, and examples include mammals such as mice, rats, hamsters, guinea pigs, dogs, monkeys, orangutans, chimpanzees, and humans, with humans being preferred.
 本発明において、「造血前駆細胞」とは、CD34陽性細胞を意味し、好ましくは、CD34/CD43両陽性(DP)細胞である。本発明に用いる造血前駆細胞の由来は制限されず、例えば、下述の方法により、多能性幹細胞を分化誘導することにより得られる造血前駆細胞であってもよく、また、生体組織から、公知の手法により単離した造血前駆細胞であってもよい。 In the present invention, "hematopoietic progenitor cells" refer to CD34-positive cells, preferably CD34/CD43 dual-positive (DP) cells. The origin of the hematopoietic progenitor cells used in the present invention is not limited, and for example, hematopoietic progenitor cells obtained by inducing differentiation of pluripotent stem cells by the method described below may be used. Hematopoietic progenitor cells isolated by the method described above may also be used.
 本発明の核酸又はベクターを細胞に導入する方法に特に限定はなく、公知の方法を用いることができる。核酸やプラスミドベクターを導入する場合には、例えば、リン酸カルシウム共沈殿法、PEG法、エレクトロポレーション法、マイクロインジェクション法、リポフェクション法などにより行うことができる。例えば、細胞工学別冊8 新細胞工学実験プロトコール、263-267 (1995)(秀潤社発行)、ヴィロロジー(Virology),第52巻,456 (1973)、日薬理誌(Folia Pharmacol. Jpn.), 第119巻 (第6号), 345-351 (2002) などに記載の方法を用いることができる。ウイルスベクターを用いる場合には、本発明の核酸を適当なパッケージング細胞(例、Plat-E細胞)又は相補細胞株(例、293細胞)に導入して、培養上清中に産生されるウイルスベクターを回収し、各ウイルスベクターに応じた適切な方法により、前記ベクターを細胞に感染させることで、細胞に導入することができる。例えば、ベクターとしてレトロウイルスベクターを用いる具体的手段が、国際公開第2007/69666号パンフレット並びにTakahashi K, Yamanaka S. Cell, 126, 663-676 (2006)及びTakahashi K, et al. Cell, 131, 861-872 (2007)などの報告に開示されている。特に、レトロウイルスベクターを用いる場合には、組換えフィブロネクチンフラグメントであるCH-296(タカラバイオ社製)を用いることにより、各種細胞に対して、高効率な遺伝子導入が可能となる。また、非ウイルスベクターとして、トランスポゾンベクター、例えばpiggyBacベクター等を用いても良い。 There are no particular limitations on the method for introducing the nucleic acid or vector of the present invention into cells, and known methods can be used. When introducing a nucleic acid or a plasmid vector, it can be carried out, for example, by a calcium phosphate coprecipitation method, a PEG method, an electroporation method, a microinjection method, a lipofection method, or the like. For example, Cell Engineering Special Issue 8 New Cell Engineering Experimental Protocols, 263-267 (1995) (published by Shujunsha), Virology, Vol. 52, 456 (1973), Folia Pharmacol. Jpn. The method described in Volume 119 (No. 6), 345-351 (2002), etc. can be used. When using a viral vector, the nucleic acid of the present invention is introduced into an appropriate packaging cell (e.g., Plat-E cells) or a complementary cell line (e.g., 293 cells) to obtain the virus produced in the culture supernatant. The vector can be collected and introduced into cells by infecting the cells with the vector using an appropriate method depending on each virus vector. For example, specific methods for using retrovirus vectors as vectors are described in International Publication No. 2007/69666 pamphlet, Takahashi K, Yamanaka S. Cell, 126, 663-676 (2006) and Takahashi K, et al. Cell, 131, Disclosed in reports such as 861-872 (2007). In particular, when using a retrovirus vector, highly efficient gene transfer into various cells is possible by using the recombinant fibronectin fragment CH-296 (manufactured by Takara Bio). Furthermore, as a non-viral vector, a transposon vector such as a piggyBac vector may be used.
 本発明の核酸はまた、RNAの形態で直接細胞に導入し、細胞内でTCRを発現するために用いてもよい。RNAの導入方法としては、公知の方法を用いることができ、例えば、リポフェクション法や電気穿孔法などが好適に使用できる。 The nucleic acid of the present invention may also be directly introduced into cells in the form of RNA and used to express TCR within the cells. As a method for introducing RNA, a known method can be used, and for example, lipofection, electroporation, etc. can be suitably used.
 本発明の核酸をT細胞に導入する場合には、本発明のTCRの発現上昇、ミスペアTCRの出現の抑制又は非自己反応性の抑制の観点から、前記T細胞が本来発現する内在性のTCRα鎖及びTCRβ鎖の発現をsiRNAによって抑制してもよい。この方法を前記の核酸に適用する場合には、本発明のTCRに対するsiRNAの効果を避けるため、該TCRをコードする核酸の塩基配列を、内在性のTCRα鎖及びTCRβ鎖の発現を抑えるsiRNAが作用するRNAに対応する塩基配列とは異なる配列(コドン変換型配列)とすることが好ましい。これらの方法は、例えば国際公開第2008/153029号パンフレットに記載されている。前記の塩基配列は、天然から取得されたTCRをコードする核酸へのサイレント変異の導入又は人為的に設計した核酸を化学的に合成することにより作製することができる。又は、内在性のTCR鎖とのミスペアを避けるため、本発明のTCRをコードする核酸の定常領域の一部若しくは全部を、ヒト以外の動物、例えばマウス由来の定常領域に置換してもよい。 When introducing the nucleic acid of the present invention into T cells, from the viewpoint of increasing the expression of the TCR of the present invention, suppressing the appearance of mispaired TCRs, or suppressing non-autoreactivity, endogenous TCRα originally expressed by the T cells should be and TCRβ chain expression may be suppressed by siRNA. When this method is applied to the above nucleic acid, in order to avoid the effect of siRNA on the TCR of the present invention, the base sequence of the nucleic acid encoding the TCR is replaced with siRNA that suppresses the expression of the endogenous TCRα chain and TCRβ chain. It is preferable to use a sequence (codon conversion type sequence) different from the base sequence corresponding to the acting RNA. These methods are described, for example, in WO 2008/153029 pamphlet. The above-mentioned base sequence can be produced by introducing a silent mutation into a naturally obtained TCR-encoding nucleic acid or by chemically synthesizing an artificially designed nucleic acid. Alternatively, in order to avoid mispairing with endogenous TCR chains, part or all of the constant region of the nucleic acid encoding the TCR of the present invention may be replaced with a constant region derived from an animal other than humans, such as a mouse.
5.本発明の細胞の製造方法
 本願において、T細胞を製造するため、まずはGPC3応答性のTCRを特定するため、その単離を行った。
5. Method for Producing Cells of the Present Invention In the present application, in order to produce T cells, we first isolated GPC3-responsive TCRs in order to identify them.
5-1.GPC3応答性TCR単離の方法
 図1に示したように、TCR遺伝子は、国立がん研究センター東病院で行われた肝臓がん患者を対象としたHLA-A24拘束性GPC3ペプチドワクチンの投与に関する臨床研究によって得られた。当該臨床研究では、GPC3ペプチドワクチンの患者2名への投与(P01初回投与日:2012/1/18、P02初回投与日:2008/2/24)を2週間おきに継続して行い、前記投与後に、前記センターにおいて血液の採取及び保存を行った。P01及びP02の2名の患者より得られた末梢血単核球凍結検体のうち、図1に示す2時点(P0102及び P0103並びにP0201及びP0202)における検体を入手し、TCR遺伝子の単離を行った。
5-1. Method for isolating GPC3-responsive TCR As shown in Figure 1, TCR genes are associated with the administration of HLA-A24-restricted GPC3 peptide vaccine to liver cancer patients conducted at the National Cancer Center Hospital East. Obtained through clinical research. In this clinical study, the GPC3 peptide vaccine was administered to two patients (P01 first administration date: January 18, 2012, P02 first administration date: February 24, 2008) continuously every two weeks. Later, blood was collected and stored at the center. Among frozen peripheral blood mononuclear cell samples obtained from two patients P01 and P02, samples at the two time points shown in Figure 1 (P0102 and P0103 and P0201 and P0202) were obtained and the TCR gene was isolated. Ta.
 TCR遺伝子の単離は、図2に記載した方法に従って行った。まず、上記臨床研究におけるGPC3ペプチド投与条件に従って投与されたGPC3ペプチド投与患者の末梢血の採取を行い、得られた末梢血を用いてリンパ球の精製を行った。その後、精製したリンパ球に対して、in vitro条件でGPC3ペプチドを用いた刺激を行った。 Isolation of the TCR gene was performed according to the method described in Figure 2. First, peripheral blood was collected from a patient to whom GPC3 peptide was administered according to the GPC3 peptide administration conditions in the above clinical study, and lymphocytes were purified using the obtained peripheral blood. Thereafter, the purified lymphocytes were stimulated with GPC3 peptide under in vitro conditions.
 次に、精製された末梢血のリンパ球から、CD137陽性活性化T細胞に対してセルソーターを利用したシングルセルソートを行い、シングルセルソートされたCD137陽性活性化T細胞よりPCRによるTCRα鎖及びTCRβ遺伝子対の単離 (一次PCR)を行った。また、この単離の工程から、転写活性を有するTCRα鎖及びTCRβ鎖遺伝子のPCR断片の作製(二次PCR)を行った。 Next, from the purified peripheral blood lymphocytes, CD137-positive activated T cells were subjected to single cell sorting using a cell sorter, and the TCRα chain and TCRβ were determined by PCR from the single-cell sorted CD137-positive activated T cells. Isolation of gene pairs (primary PCR) was performed. Furthermore, from this isolation step, PCR fragments of TCRα chain and TCRβ chain genes having transcriptional activity were prepared (secondary PCR).
 NF-ATレポーター導入Jurkat細胞株への前記PCR断片の遺伝子導入を行った後、GPC3ペプチドを用いて抗原特異的TCRシグナルの強度解析を行うことにより、GPC3ペプチドに応答性の高いTCRα鎖及びTCRβ鎖遺伝子対を選別した。その結果、以下の表1に記載したHLA-A24拘束性GPC3ペプチド(EYILSLEEL、配列番号29)応答性TCR配列を同定することができた。表1の各カラムの記載は、TCR IDが検体から得られたTCRのID、TRAVがTCRVαセグメント、TRAJがTCRJαセグメント、CDR3AがCDR3αセグメント、SEQ ID NO.がCDR3αセグメント及びCDR3βセグメントの配列番号、TRBVがTCRVβセグメント、TRBJがTCRJβセグメント、TRBDがTCRDβセグメント、並びにCDR3BがCDR3βセグメントを示している。また、アミノ酸は、慣用的な1文字表記による略号で表示した。 After transfecting the PCR fragment into the NF-AT reporter-introduced Jurkat cell line, intensity analysis of antigen-specific TCR signals using GPC3 peptide revealed that TCRα chain and TCRβ highly responsive to GPC3 peptide. Chain gene pairs were selected. As a result, the HLA-A24-restricted GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)-responsive TCR sequence listed in Table 1 below could be identified. The description in each column of Table 1 is as follows: TCR ID is the ID of the TCR obtained from the sample, TRAV is the TCRVα segment, TRAJ is the TCRJα segment, CDR3A is the CDR3α segment, SEQ ID NO. is the sequence number of the CDR3α segment and CDR3β segment, TRBV indicates the TCRVβ segment, TRBJ indicates the TCRJβ segment, TRBD indicates the TCRDβ segment, and CDR3B indicates the CDR3β segment. In addition, amino acids were indicated by conventional one-letter abbreviations.
5-2.本発明の細胞の製造方法 また本発明は、本発明の核酸又はベクターを細胞に導入する工程を含む、本発明の細胞の製造方法(以下「本発明の製法」と略記する。)を提供する。本発明の核酸又はベクターが導入される細胞及び導入方法等は、4.に記載の通りである。 5-2. Method for producing cells of the present invention The present invention also provides a method for producing cells of the present invention (hereinafter abbreviated as "the production method of the present invention"), which includes a step of introducing the nucleic acid or vector of the present invention into cells. . 4. Cells into which the nucleic acid or vector of the present invention is introduced and the introduction method. As described in .
 本発明の製法の一態様において、(1)本発明の核酸又はベクターが導入された多能性幹細胞を、造血前駆細胞に分化させる工程、及び(2)前記造血前駆細胞をT細胞に分化させる工程を含む、T細胞の製法が提供される。 In one embodiment of the production method of the present invention, (1) differentiating pluripotent stem cells into which the nucleic acid or vector of the present invention has been introduced into hematopoietic progenitor cells, and (2) differentiating the hematopoietic progenitor cells into T cells. A method of producing a T cell is provided, including the steps.
(1)多能性幹細胞を造血前駆細胞に分化させる工程(工程(1))
 多能性幹細胞から造血前駆細胞への分化方法としては、造血前駆細胞へ分化できる限り特に制限されないが、例えば、国際公開第2013/075222号パンフレット、国際公開第2016/076415号パンフレット及びLiu S. et al. Cytotherapy, 17;344-358 (2015) などの報告に記載されているように、造血前駆細胞への誘導培地中で多能性幹細胞を培養する方法が挙げられる。
(1) Step of differentiating pluripotent stem cells into hematopoietic progenitor cells (step (1))
The method for differentiating pluripotent stem cells into hematopoietic progenitor cells is not particularly limited as long as it can be differentiated into hematopoietic progenitor cells, but examples include International Publication No. 2013/075222 pamphlet, International Publication No. 2016/076415 pamphlet, and Liu S. As described in reports such as et al. Cytotherapy, 17;344-358 (2015), examples include a method of culturing pluripotent stem cells in a medium for inducing hematopoietic progenitor cells.
 本発明において、造血前駆細胞への誘導培地は、特に限定されないが、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIscove's Modified Dulbecco's Medium(IMDM)培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)、又はこれらの混合培地などが挙げられる。培地には、血清が含有されていてもよいし、又は無血清を使用してもよい。必要に応じて、基礎培地には、例えば、ビタミンC類(例:アスコルビン酸)、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、脂質、アミノ酸、L-グルタミン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどが含まれていてもよい。 In the present invention, the medium for inducing hematopoietic progenitor cells is not particularly limited, but a medium used for culturing animal cells can be prepared as a basal medium. Examples of the basal medium include Iscove's Modified Dulbecco's Medium (IMDM) medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's s medium , Neurobasal Medium (Life Technologies), or a mixed medium thereof. The medium may contain serum or may be serum-free. If necessary, the basal medium may contain, for example, vitamin C (e.g. ascorbic acid), albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, lipids, amino acids, L-glutamine. , non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, etc.
 本発明においてビタミンC類とは、L-アスコルビン酸及びその誘導体を意味し、L-アスコルビン酸誘導体とは、生体内で酵素反応によりビタミンCとなるものを意味する。本発明に用いるアスコルビン酸の誘導体として、リン酸ビタミンC、アスコルビン酸グルコシド、アスコルビルエチル、ビタミンCエステル、テトラヘキシルデカン酸アスコビル、ステアリン酸アスコビル及びアスコルビン酸-2リン酸-6パルミチン酸が例示される。好ましくは、リン酸ビタミンCであり、例えば、リン酸-L-アスコルビン酸Na又はリン酸-L-アスコルビン酸Mgなどのリン酸-L-アスコルビン酸塩が挙げられる。 In the present invention, vitamin C refers to L-ascorbic acid and derivatives thereof, and L-ascorbic acid derivatives refer to those that become vitamin C through an enzymatic reaction in vivo. Examples of derivatives of ascorbic acid used in the present invention include vitamin C phosphate, ascorbyl glucoside, ascorbyl ethyl, vitamin C ester, ascobyl tetrahexyldecanoate, ascobyl stearate, and ascorbic acid-2-phosphate-6-palmitic acid. Preferred is vitamin C phosphate, for example, phosphate-L-ascorbate salts such as Na phosphate-L-ascorbate or Mg phosphate-L-ascorbate.
 工程(1)で用いる好ましい基礎培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、L-グルタミン及びアスコルビン酸を含むIMDM培地である。 A preferred basal medium used in step (1) is an IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, L-glutamine, and ascorbic acid.
 工程(1)で用いる培養液は、BMP4 (Bone morphogenetic protein 4)、VEGF (vascular endothelial growth factor)、SCF (Stem cell factor)及びFLT-3L (Flt3 Ligand)からなる群より選択される少なくとも1種類のサイトカインがさらに添加されていてもよい。より好ましくは、VEGF、SCF及びFLT-3Lを添加された培養液である。 The culture solution used in step (1) is at least one type selected from the group consisting of BMP4 (Bone morphogenetic protein 4), VEGF (vascular endothelial growth factor), SCF (Stem cell factor), and FLT-3L (Flt3 Ligand). Cytokines may be further added. More preferred is a culture medium supplemented with VEGF, SCF and FLT-3L.
 工程(1)でビタミンC類を用いる場合、ビタミンC類は、4日毎、3日毎、2日毎、又は1日毎に、別途添加(補充)することが好ましく、1日毎に添加することが好ましい。当該ビタミンC類は、培養液において、5 ng/mL~500 ng/mLに相当する量(例:5 ng/mL、10 ng/mL、25 ng/mL、50 ng/mL、100 ng/mL、200 ng/mL、300 ng/mL、400 ng/mL又は500 ng/mLに相当する量)を添加ことが好ましい。 When using vitamin C in step (1), vitamin C is preferably added (supplemented) separately every 4 days, every 3 days, every 2 days, or every 1 day, and preferably added every 1 day. The amount of vitamin C in the culture solution is equivalent to 5 ng/mL to 500 ng/mL (e.g. 5 ng/mL, 10 ng/mL, 25 ng/mL, 50 ng/mL, 100 ng/mL). , 200 ng/mL, 300 ng/mL, 400 ng/mL or 500 ng/mL).
 工程(1)でBMP4を用いる場合、培養液中におけるBMP4の濃度は、特に制限されないが、10 ng/mL~100 ng/mL(例:10 ng/mL、20 ng/mL、30 ng/mL、40 ng/mL、50 ng/mL、60 ng/mL、70 ng/mL、80 ng/mL、90 ng/mL又は100 ng/mL)であることが好ましく、20 ng/ml~40 ng/mlであることがより好ましい。 When BMP4 is used in step (1), the concentration of BMP4 in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), preferably 20 ng/mL to 40 ng/mL. ml is more preferable.
 工程(1)でVEGFを用いる場合、培養液中におけるVEGFの濃度は、特に制限されないが、10 ng/mL~100 ng/mL(例:10 ng/mL、20 ng/mL、30 ng/mL、40 ng/mL、50 ng/mL、60 ng/mL、70 ng/mL、80 ng/mL、90 ng/mL又は100 ng/mL)であることが好ましく、なかでも、20 ng/mLが好ましい。 When using VEGF in step (1), the concentration of VEGF in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), especially 20 ng/mL. preferable.
 工程(1)でSCFを用いる場合、培養液中におけるSCFの濃度は、特に制限されないが、10 ng/mL~100 ng/mL(例:10 ng/mL、20 ng/mL、30 ng/mL、40 ng/mL、50 ng/mL、60 ng/mL、70 ng/mL、80 ng/mL、90 ng/mL又は100 ng/mL)であることが好ましく、なかでも、30 ng/mLが好ましい。 When using SCF in step (1), the concentration of SCF in the culture medium is not particularly limited, but is between 10 ng/mL and 100 ng/mL (e.g. 10 ng/mL, 20 ng/mL, 30 ng/mL). , 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), and 30 ng/mL is particularly preferred. preferable.
 工程(1)でFLT-3Lを用いる場合、培養液中におけるFLT-3Lの濃度は、特に制限されないが、1 ng/mL~100 ng/mL(例:1 ng/mL、2 ng/mL、3 ng/mL、4 ng/mL、5 ng/mL、6 ng/mL、7 ng/mL、8 ng/mL、9 ng/mL、10 ng/mL、20 ng/mL、50 ng/mL又は100 ng/mL)であることが好ましく、なかでも、10 ng/mLが好ましい。 When FLT-3L is used in step (1), the concentration of FLT-3L in the culture medium is not particularly limited, but may range from 1 ng/mL to 100 ng/mL (e.g. 1 ng/mL, 2 ng/mL, 3 ng/mL, 4 ng/mL, 5 ng/mL, 6 ng/mL, 7 ng/mL, 8 ng/mL, 9 ng/mL, 10 ng/mL, 20 ng/mL, 50 ng/mL or 100 ng/mL), particularly preferably 10 ng/mL.
 工程(1)において、多能性幹細胞の培養は、接着培養又は浮遊培養であってもよく、接着培養の場合、コーティング剤をコーティングした培養容器を用いて行ってもよく、また他の細胞と共培養してもよい。共培養する他の細胞として、C3H10T1/2(Takayama N. et al. J Exp Med. 2010;207(13):2817-2830)及び異種由来のストローマ細胞(Niwa A. et al. J Cell Physiol. 2009;221(2):367-377)が例示される。コーティング剤としては、マトリゲル(Niwa A, et al. PLoS One. 2011;6(7):e22261)が例示される。浮遊培養では、Chadwick K. et al. Blood, 2003;102:906-915、Vijayaragavan K. et al. Cell Stem Cell, 2009; 4:248-262及びSaeki et al. Stem Cells 2009;27:59-67の報告に記載の方法が例示される。 In step (1), the pluripotent stem cells may be cultured by adhesive culture or suspension culture. In the case of adhesive culture, the pluripotent stem cells may be cultured using a culture container coated with a coating agent. Co-culture may be used. Other co-cultured cells include C3H10T1/2 (Takayama N. et al. J Exp Med. 2010;207(13):2817-2830) and heterologous stromal cells (Niwa A. et al. J Cell Physiol. 2009;221(2):367-377). An example of the coating agent is Matrigel (Niwa A, et al. PLoS One. 2011;6(7):e22261). In suspension culture, Chadwick K. et al. Blood, 2003;102:906-915, Vijayaragavan K. et al. Cell Stem Cell, 2009; 4:248-262 and Saeki et al. Stem Cells 2009;27:59- The method described in 67 reports is exemplified.
 工程(1)において、培養温度の条件は、特に制限されないが、例えば、37℃~42℃程度、37~39℃程度が好ましい。また、培養期間については、当業者であれば造血前駆細胞の数などをモニターしながら、適宜決定することが可能である。造血前駆細胞が得られる限り、日数は特に限定されないが、例えば、少なくとも6日間以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、13日以上又は14日以上であり、好ましくは14日である。培養期間が長いことについては、造血前駆細胞の製造においては通常問題とされないが、例えば35日以下が好ましく、21日以下がより好ましい。また、低酸素条件下で培養してもよい。本発明において低酸素条件とは、15%、10%、9%、8%、7%、6%、5%又はそれら以下の酸素濃度が例示される。 In step (1), the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, and about 37°C to 39°C, for example. Furthermore, a person skilled in the art can appropriately determine the culture period while monitoring the number of hematopoietic progenitor cells. The number of days is not particularly limited as long as hematopoietic progenitor cells are obtained, but for example, at least 6 days or more, 7 days or more, 8 days or more, 9 days or more, 10 days or more, 11 days or more, 12 days or more, 13 days or more, or It is 14 days or more, preferably 14 days. Although a long culture period is usually not a problem in the production of hematopoietic progenitor cells, it is preferably 35 days or less, and more preferably 21 days or less. Alternatively, the culture may be performed under hypoxic conditions. In the present invention, hypoxic conditions include oxygen concentrations of 15%, 10%, 9%, 8%, 7%, 6%, 5%, or lower.
(2)造血前駆細胞をT細胞に分化させる工程(工程(2))
 造血前駆細胞からT細胞への分化方法としては、造血前駆細胞をT細胞へ分化できる限り特に制限されないが、例えば、国際公開第2016/076415号パンフレットなどに記載されているような、(2-1)造血前駆細胞からCD4/CD8両陽性T細胞を誘導する工程、及び(2-2) CD4/CD8両陽性T細胞からCD8陽性T細胞を誘導する工程を含む方法が挙げられる。造血前駆体は、工程(1)により得られた細胞集団から、造血前駆細胞のマーカーを用いてあらかじめ単離することが好ましい。該マーカーとしては、CD43、CD34、CD31及びCD144からなる群から選択される少なくとも1つが挙げられる。
(2) Step of differentiating hematopoietic progenitor cells into T cells (step (2))
The method for differentiating hematopoietic progenitor cells into T cells is not particularly limited as long as hematopoietic progenitor cells can be differentiated into T cells, but for example, as described in WO 2016/076415 pamphlet, etc. (2- Examples include a method comprising: 1) inducing CD4/CD8 dual-positive T cells from hematopoietic progenitor cells; and (2-2) inducing CD8-positive T cells from CD4/CD8 dual-positive T cells. It is preferable that hematopoietic progenitors be isolated in advance from the cell population obtained in step (1) using a hematopoietic progenitor cell marker. The marker includes at least one selected from the group consisting of CD43, CD34, CD31, and CD144.
(2-1)造血前駆細胞からCD4/CD8両陽性T細胞を誘導する工程(工程(2-1))
 本発明において、CD4/CD8両陽性T細胞への分化方法としては、例えば、CD4/CD8両陽性T細胞への誘導培地中で造血前駆細胞を培養する方法が挙げられる。
(2-1) Step of inducing CD4/CD8 double positive T cells from hematopoietic progenitor cells (step (2-1))
In the present invention, the method for differentiating into CD4/CD8 dual-positive T cells includes, for example, a method of culturing hematopoietic progenitor cells in an induction medium for CD4/CD8 dual-positive T cells.
 本発明において、CD4/CD8両陽性T細胞への分化誘導培地としては、特に制限されないが、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地には、上記工程(1)で用いたものと同様のものが挙げられる。培地には、血清が含有されていてもよいし、又は無血清としてもよい。必要に応じて、基礎培地には、例えば、ビタミンC類、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、脂質、アミノ酸、L-グルタミン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどが含まれていてもよい。 In the present invention, the medium for inducing differentiation into both CD4/CD8 positive T cells is not particularly limited, but a medium used for culturing animal cells can be prepared as a basal medium. Examples of the basal medium include those similar to those used in step (1) above. The medium may contain serum or may be serum-free. If necessary, the basal medium may contain, for example, vitamin C, albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, lipids, amino acids, L-glutamine, non-essential amino acids, vitamins. , growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, and the like.
 工程(2-1)で用いる好ましい基礎培地は、血清、トランスフェリン、セリン及びL-グルタミンを含むαMEM培地である。基礎培地へビタミンC類を添加する場合、ビタミンC類は、工程(1)の場合と同様である。 The preferred basal medium used in step (2-1) is αMEM medium containing serum, transferrin, serine, and L-glutamine. When adding vitamin C to the basal medium, the vitamin C is the same as in step (1).
 工程(2-1)で用いる培養液は、サイトカインであるFLT-3L及び/又はIL-7をさらに含んでいてもよく、より好ましくは、FLT-3L及びIL-7を添加された培養液である。 The culture solution used in step (2-1) may further contain the cytokines FLT-3L and/or IL-7, and more preferably, the culture solution is supplemented with FLT-3L and IL-7. be.
 工程(2-1)でIL-7を用いる場合、培養液中におけるIL-7の濃度は、1 ng/mL~50 ng/mL(例:1 ng/mL、2 ng/mL、3 ng/mL、4 ng/mL、5 ng/mL、6 ng/mL、7 ng/mL、8 ng/mL、9 ng/mL、10 ng/mL、20 ng/mL、30 ng/mL、40 ng/mL又は50 ng/mL)であることが好ましく、なかでも、5 ng/mLが好ましい。 When using IL-7 in step (2-1), the concentration of IL-7 in the culture solution is 1 ng/mL to 50 ng/mL (e.g. 1 ng/mL, 2 ng/mL, 3 ng/mL). mL, 4 ng/mL, 5 ng/mL, 6 ng/mL, 7 ng/mL, 8 ng/mL, 9 ng/mL, 10 ng/mL, 20 ng/mL, 30 ng/mL, 40 ng/ mL or 50 ng/mL), particularly preferably 5 ng/mL.
 工程(2-1)でFLT-3Lを用いる場合、FLT-3Lは、上記工程(1)と同様に用いることができる。 When FLT-3L is used in step (2-1), FLT-3L can be used in the same manner as in step (1) above.
 工程(2-1)において、造血前駆細胞を接着培養又は浮遊培養してもよく、接着培養の場合、培養容器をコーティングして用いてもよく、またフィーダー細胞等と共培養してもよい。共培養するフィーダー細胞として、骨髄間質細胞株OP9細胞(理研BioResource Centerより入手可能)が例示される。当該OP9細胞は、好ましくは、Dll1を恒常的に発現するOP-DL1細胞である(Holmes R, Zuniga-Pflucker JC. Cold Spring Harb Protoc. 2009(2):pdb.prot5156)。本発明において、フィーダー細胞としてOP9細胞を用いる場合、別途用意したDll1又はDll1とFc等との融合タンパク質を適宜培養液に添加することによっても行い得る。本発明において、Dll1には、NCBIのアクセッション番号として、ヒトの場合、NM#005618、マウスの場合、NM#007865に記載されたヌクレオチド配列を有する遺伝子にコードされるタンパク質及びこれらと高い配列同一性(例えば90%以上)を有し、同等の機能を有する天然に存在する変異体が包含される。CD4/CD8両陽性T細胞を製造する際にフィーダー細胞を用いる場合、当該フィーダー細胞を適宜交換して培養を行うことが好ましい。フィーダー細胞の交換は、予め播種したフィーダー細胞上へ培養中の対象細胞を移すことによって行い得る。当該交換は、5日毎、4日毎、3日毎、又は2日毎にて行い得る。 In step (2-1), hematopoietic progenitor cells may be cultured in an adherent manner or in suspension. In the case of adherent culture, a culture vessel may be coated, or they may be co-cultivated with feeder cells or the like. An example of feeder cells to be co-cultured is bone marrow stromal cell line OP9 cells (available from RIKEN BioResource Center). The OP9 cells are preferably OP-DL1 cells that constitutively express Dll1 (Holmes R, Zuniga-Pflucker JC. Cold Spring Harb Protoc. 2009(2):pdb.prot5156). In the present invention, when using OP9 cells as feeder cells, this can also be done by appropriately adding Dll1 or a fusion protein of Dll1 and Fc, etc. prepared separately to the culture medium. In the present invention, Dll1 includes a protein encoded by a gene having the nucleotide sequence listed as NCBI accession number NM#005618 in the case of human and NM#007865 in the case of mouse, and a protein with high sequence identity thereto. Naturally occurring variants having the same functionality (for example, 90% or more) and equivalent functions are included. When feeder cells are used to produce CD4/CD8 double-positive T cells, it is preferable to replace the feeder cells as appropriate during culturing. Replacement of feeder cells can be performed by transferring target cells in culture onto previously seeded feeder cells. The exchange may occur every 5 days, every 4 days, every 3 days, or every 2 days.
 工程(2-1)において、培養温度の条件は、特に制限されないが、例えば、37℃~42℃程度、37~39℃程度が好ましい。また、培養期間については、当業者であればCD4/CD8両陽性T細胞の数などをモニターしながら、適宜決定することが可能である。造血前駆細胞が得られる限り、培養期間の日数は特に限定されないが、例えば、少なくとも10日間以上、12日以上、14日以上、16日以上、18日以上、20日以上、22日以上又は23日以上であり、好ましくは23日である。また、培養期間は90日以下が好ましく、42日以下がより好ましい。 In step (2-1), the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, and about 37°C to 39°C, for example. Furthermore, the culture period can be appropriately determined by those skilled in the art while monitoring the number of CD4/CD8 double-positive T cells. The number of days of the culture period is not particularly limited as long as hematopoietic progenitor cells are obtained, but for example, at least 10 days or more, 12 days or more, 14 days or more, 16 days or more, 18 days or more, 20 days or more, 22 days or more, or 23 days or more. 23 days or more, preferably 23 days. Further, the culture period is preferably 90 days or less, more preferably 42 days or less.
(2-2) CD4/CD8両陽性(DP)T細胞からCD8陽性T細胞を誘導する工程(工程(2-2))
 工程(2-1)により得られたCD4/CD8 DP細胞を、CD8single positive(SP)細胞に分化誘導する工程に付すことにより、CD8 single positive(SP)細胞へ分化誘導することができる。
(2-2) Step of inducing CD8 positive T cells from CD4/CD8 double positive (DP) T cells (step (2-2))
By subjecting the CD4/CD8 DP cells obtained in step (2-1) to a step of inducing differentiation into CD8 single positive (SP) cells, they can be induced to differentiate into CD8 single positive (SP) cells.
 工程(2-2)で用いる基礎培地及び培地としては、工程(1)に記載された基礎培地及び培地と同様のものが挙げられる。 The basal medium and medium used in step (2-2) include those similar to the basal medium and medium described in step (1).
 前記培地は、副腎皮質ホルモン剤を含んでいてもよい。副腎皮質ホルモン剤としては、例えば、糖質コルチコイド及びその誘導体などが挙げられ、該糖質コルチコイドとしては、例えば、酢酸コルチゾン、ヒドロコルチゾン、酢酸フルドロコルチゾン、プレドニゾロン、トリアムシノロン、メチルプレドニゾロン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾンが挙げられる。なかでも、デキサメタゾンが好ましい。 The medium may contain an adrenal corticosteroid. Examples of adrenal corticosteroids include glucocorticoids and derivatives thereof; examples of the glucocorticoids include cortisone acetate, hydrocortisone, fludrocortisone acetate, prednisolone, triamcinolone, methylprednisolone, dexamethasone, betamethasone, Examples include beclomethasone propionate. Among them, dexamethasone is preferred.
 副腎皮質ホルモン剤としてデキサメタゾンを用いる場合、培養液中におけるデキサメタゾンの濃度は、1 nM~100 nM(例:1 nM、5 nM、10 nM、20 nM、30 nM、40 nM、50 nM、60 nM、70 nM、80 nM、90 nM又は100 nM)が好ましく、なかでも、10 nMが好ましい。 When dexamethasone is used as a corticosteroid, the concentration of dexamethasone in the culture medium is 1 nM to 100 nM (e.g. 1 nM, 5 nM, 10 nM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM , 70 nM, 80 nM, 90 nM or 100 nM), and 10 nM is especially preferred.
 前記培地は、抗体(例:抗CD3抗体、抗CD28抗体及び抗CD2抗体)、サイトカイン(例:IL-7、IL-2及びIL-15)などを含有していてもよい。 The medium may contain antibodies (eg, anti-CD3 antibody, anti-CD28 antibody, and anti-CD2 antibody), cytokines (eg, IL-7, IL-2, and IL-15), and the like.
 工程(2-2)で抗CD3抗体を用いる場合、該抗CD3抗体としては、CD3を特異的に認識する抗体であれば特に限定されないが、例えば、OKT3クローンから産生される抗体が挙げられる。抗CD3抗体は、磁気ビーズ等が結合されているものであってもよく、また、前記抗CD3抗体を培地中に添加する代わりに、抗CD3抗体を表面に結合させた培養容器上で前記Tリンパ球を一定期間培養することによって刺激を与えてもよい。抗CD3抗体の培地中における濃度は、10 ng/mL~1000 ng/mL(例:10 ng/mL、50 ng/mL、100 ng/mL、200 ng/mL、300 ng/mL、400 ng/mL、500 ng/mL、600 ng/mL、700 ng/mL、800 ng/mL、900 ng/mL、1000 ng/ml)が好ましく、なかでも、500 ng/mLが好ましい。その他の抗体の濃度についても、当業者は、培養条件等に基づき、適宜決定することができる。 When using an anti-CD3 antibody in step (2-2), the anti-CD3 antibody is not particularly limited as long as it is an antibody that specifically recognizes CD3, and includes, for example, an antibody produced from an OKT3 clone. The anti-CD3 antibody may be bound to magnetic beads or the like, and instead of adding the anti-CD3 antibody to the medium, the T Stimulation may be provided by culturing the lymphocytes for a certain period of time. The concentration of anti-CD3 antibody in the culture medium is 10 ng/mL to 1000 ng/mL (e.g. 10 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL, 300 ng/mL, 400 ng/mL). mL, 500 ng/mL, 600 ng/mL, 700 ng/mL, 800 ng/mL, 900 ng/mL, 1000 ng/ml), and 500 ng/mL is particularly preferable. Those skilled in the art can also determine the concentrations of other antibodies as appropriate based on culture conditions and the like.
 工程(2-2)でIL-2を用いる場合、培地中におけるIL-2の濃度は、10 U/mL~1000 U/mL(例:10 U/mL、20 U/mL、30 U/mL、40 U/mL、50 U/mL、60 U/mL、70 U/mL、80 U/mL、90 U/mL、100 U/mL、200 U/mL、500 U/mL又は1000 U/mL)が好ましく、なかでも、100 U/mLが好ましい。工程(2-2)で用いるIL-7又はIL-15の培地中における濃度は、1 ng/mL~100 ng/mL(例:1 ng/mL、5 ng/mL、10 ng/mL、20 ng/mL、30 ng/mL、40 ng/mL、50 ng/mL、60 ng/mL、70 ng/mL、80 ng/mL、90 ng/mL又は100 ng/mL)が好ましく、なかでも、10 ng/mLが好ましい。 When using IL-2 in step (2-2), the concentration of IL-2 in the medium is 10 U/mL to 1000 U/mL (e.g. 10 U/mL, 20 U/mL, 30 U/mL , 40 U/mL, 50 U/mL, 60 U/mL, 70 U/mL, 80 U/mL, 90 U/mL, 100 U/mL, 200 U/mL, 500 U/mL or 1000 U/mL ) is preferred, and 100 U/mL is particularly preferred. The concentration of IL-7 or IL-15 used in step (2-2) in the medium is 1 ng/mL to 100 ng/mL (e.g. 1 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL, 30 ng/mL, 40 ng/mL, 50 ng/mL, 60 ng/mL, 70 ng/mL, 80 ng/mL, 90 ng/mL or 100 ng/mL), and among them, 10 ng/mL is preferred.
 工程(2-2)において、培養温度の条件は、特に制限されないが、37℃~42℃程度が好ましく、37~39℃程度がより好ましい。また、培養期間については、当業者であればCD8陽性T細胞の数などをモニターしながら、適宜決定することができる。CD8陽性T細胞が得られる限り、日数は特に限定されないが、1日以上、3日以上又は7日以上が好ましく、60日以下が好ましく、35日以下がより好ましい。 In step (2-2), the culture temperature conditions are not particularly limited, but are preferably about 37°C to 42°C, more preferably about 37°C to 39°C. Furthermore, the culture period can be appropriately determined by those skilled in the art while monitoring the number of CD8-positive T cells. The number of days is not particularly limited as long as CD8-positive T cells are obtained, but is preferably 1 day or more, 3 days or more, or 7 days or more, preferably 60 days or less, and more preferably 35 days or less.
6.本発明の核酸、ベクター又は細胞を含有する医薬
 本発明は、本発明の核酸、ベクター又は細胞を有効成分として含有する医薬(以下「本発明の医薬」と略記する。)を提供する。本発明の核酸を含む細胞は、HLA-A24分子とGPC3ペプチドとを提示する細胞に対して細胞傷害活性を示し得る。従って、本発明の核酸、ベクター又は細胞を含有する医薬は、GPC3を発現する疾患の予防又は治療のために用いることができ、たとえば哺乳動物(例:マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル及びヒト)、好ましくはヒトに投与することができる。GPC3を発現する疾患としては、特に限定されないが、例えばGPC3を発現するがん及び腫瘍などが挙げられる。従って、本発明の好ましい実施態様において、GPC3を発現するがん及び腫瘍の予防又は治療のための抗がん剤が提供される。
6. Medicinal product containing the nucleic acid, vector, or cell of the present invention The present invention provides a pharmaceutical product containing the nucleic acid, vector, or cell of the present invention as an active ingredient (hereinafter abbreviated as "medicine of the present invention"). Cells containing the nucleic acids of the invention can exhibit cytotoxic activity against cells presenting HLA-A24 molecules and GPC3 peptides. Therefore, a medicament containing the nucleic acid, vector, or cell of the present invention can be used for the prevention or treatment of diseases in which GPC3 is expressed, and can be used, for example, in mammals (e.g., mice, rats, hamsters, rabbits, cats, dogs). , cows, sheep, monkeys and humans), preferably humans. Diseases that express GPC3 include, but are not particularly limited to, cancers and tumors that express GPC3. Accordingly, in a preferred embodiment of the present invention, anticancer agents for the prevention or treatment of cancers and tumors expressing GPC3 are provided.
 かかるGPC3を発現するがん及び腫瘍は、例えば、Baumhoer D. et al. Am J. Clin Pathol. 2008;129:899-906の報告などに記載されている。具体的には、肝臓がん(例:肝細胞がん)、卵巣がん(例:卵巣明細胞腺がん)、小児がん、肺がん(例:扁平上皮がん、肺小細胞がん)、精巣がん(例:非セミノーマ胚細胞腫瘍)、軟部腫瘍(例:脂肪肉腫、悪性線維性組織球腫)、子宮がん(例:子宮頚部上皮内腫瘍、子宮頸部扁平上皮がん)、メラノーマ、副腎腫瘍(例:副腎の腺腫)、神経性腫瘍(例:シュワン腫)、胃がん(例:胃の腺がん)、腎臓がん(例:グラヴィッツ腫瘍)、乳がん(例:浸潤性小葉性がん、粘液性がん)、甲状腺がん(例:髄様がん)、喉頭がん(例:扁平上皮がん)、膀胱がん(例:浸潤性移行上皮がん)などが挙げられるが、これらに限定されない。この中でも、GPC3の発現量の観点からは、肝臓がん、卵巣がん、小児がん及び肺がんが好ましく、なかでも肝臓がん、特に肝細胞がんが好ましい。 Cancers and tumors that express such GPC3 are described, for example, in the report of Baumhoer D. et al. Am J. Clin Pathol. 2008;129:899-906. Specifically, liver cancer (e.g. hepatocellular carcinoma), ovarian cancer (e.g. ovarian clear cell adenocarcinoma), childhood cancer, and lung cancer (e.g. squamous cell carcinoma, small cell lung cancer). , testicular cancer (e.g. nonseminoma germ cell tumor), soft tissue tumor (e.g. liposarcoma, malignant fibrous histiocytoma), uterine cancer (e.g. cervical intraepithelial neoplasia, cervical squamous cell carcinoma) , melanoma, adrenal tumors (e.g. adrenal adenoma), neurological tumors (e.g. Schwannoma), gastric cancer (e.g. adenocarcinoma of the stomach), kidney cancer (e.g. Gravitz tumor), breast cancer (e.g. invasive lobular carcinoma, mucinous carcinoma), thyroid cancer (e.g. medullary carcinoma), laryngeal cancer (e.g. squamous cell carcinoma), bladder cancer (e.g. invasive transitional cell carcinoma), etc. These include, but are not limited to: Among these, from the viewpoint of the expression level of GPC3, liver cancer, ovarian cancer, pediatric cancer, and lung cancer are preferable, and among these, liver cancer, particularly hepatocellular carcinoma, is preferable.
 本発明の医薬の有効成分として、核酸又はベクターを用いる場合には、公知の薬学的に許容される担体(賦形剤、希釈剤、増量剤、結合剤、滑沢剤、流動助剤、崩壊剤及び界面活性剤等が含まれる)又は慣用の添加剤などと混合して医薬組成物として調製することが好ましい。賦形剤は、当業者にはよく知られており、例えば、リン酸緩衝生理食塩水(例えば、0.01 M リン酸塩、0.138 M NaCl、0.0027 M KCl、pH 7.4)、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩などの鉱酸塩を含有する水溶液、生理食塩液、グリコール又はエタノールなどの溶液及び酢酸塩、プロピオン酸塩、マロン酸塩、安息香酸塩などの有機酸の塩などが挙げられる。また、湿潤剤又は乳化剤などの補助剤、及びpH緩衝剤も使用することができる。さらに、懸濁化剤、保存剤、安定化剤及び分散剤などの製剤補助剤などを用いてもよい。また、上記医薬組成物は、使用前に適切な無菌の液体により再構成するための乾燥形態であってもよい。前記医薬組成物は、調製する形態(錠剤、丸剤、カプセル剤、散剤、顆粒剤、シロップ剤、乳剤及び懸濁液などの経口投与剤;注射剤、点滴剤、外用剤及び坐剤などの非経口投与剤)等に応じて、全身的に又は局所的に非経口投与することができる。非経口投与する場合には、静脈投与、皮内投与、皮下投与、直腸投与又は経皮投与すること等が可能である。また注射剤型で用いる場合には、許容される緩衝剤、溶解補助剤及び等張剤等を添加することもできる。 When using a nucleic acid or a vector as an active ingredient of the medicament of the present invention, known pharmaceutically acceptable carriers (excipients, diluents, fillers, binders, lubricants, flow aids, disintegrating agents, It is preferable to prepare a pharmaceutical composition by mixing the pharmaceutical composition with conventional additives (including agents, surfactants, etc.) or conventional additives. Excipients are well known to those skilled in the art and include, for example, phosphate buffered saline (e.g., 0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl, pH 7.4), hydrochloride, hydrogen bromide. Aqueous solutions containing mineral acid salts such as acid salts, phosphates, sulfates, physiological saline solutions, solutions such as glycol or ethanol, and salts of organic acids such as acetates, propionates, malonates, benzoates, etc. Examples include. Auxiliary agents such as wetting agents or emulsifying agents, and pH buffering agents can also be used. Furthermore, formulation aids such as suspending agents, preservatives, stabilizers, and dispersants may also be used. The pharmaceutical compositions may also be in dry form for reconstitution with a suitable sterile liquid before use. The pharmaceutical composition can be prepared in any form (oral administration such as tablets, pills, capsules, powders, granules, syrups, emulsions, and suspensions; injections, infusions, external preparations, and suppositories). Parenteral administration can be performed systemically or locally depending on the type of drug (parenteral administration), etc. In the case of parenteral administration, intravenous administration, intradermal administration, subcutaneous administration, rectal administration, transdermal administration, etc. are possible. Furthermore, when used in the form of an injection, acceptable buffers, solubilizing agents, isotonic agents, and the like may be added.
 有効成分が核酸である場合の投与量としては、例えば、1回につき体重1kgあたり該核酸が0.001 mg~10 mgの範囲で投与される。例えば、ヒト患者に投与する場合、体重60kgの患者に対し0.001~50 mgの範囲で投与される。有効成分がウイルスベクター粒子である場合の投与量は、体重60kgの対象に対して、1回につき、例えばウイルスの力価として約1×10pfu~1×1015pfuの範囲で投与される。上記の投与量は例示であり、用いる核酸やベクターの種類や投与経路、投与対象又は患者の年齢、体重、症状などにより、投与量を適宜選択することができる。 When the active ingredient is a nucleic acid, the dosage is, for example, in the range of 0.001 mg to 10 mg per kg of body weight at a time. For example, when administered to a human patient, the dose is administered in the range of 0.001 to 50 mg to a patient weighing 60 kg. When the active ingredient is a virus vector particle, the dose is administered to a subject weighing 60 kg at a time, for example, in a range of about 1 x 10 3 pfu to 1 x 10 15 pfu in terms of virus titer. . The above dosage is just an example, and the dosage can be appropriately selected depending on the type of nucleic acid or vector used, the route of administration, the age, body weight, symptoms, etc. of the subject or patient.
 本発明の医薬の有効成分として、本発明の細胞を用いる場合には、該細胞は、対象に投与する前に適切な培地及び/又は刺激分子を使用して培養及び/又は刺激を行ってもよい。刺激分子としては、サイトカイン類、適当なタンパク質、その他の成分などが挙げられるが、これらに限定されない。サイトカイン類としては、例えばIL-2、IL-7、IL-12、IL-15、IFN-γ等が例示され、好ましくは、IL-2を用いることができる。IL-2の培地中の濃度としては、特に限定はないが、例えば、好適には0.01~1×10U/mL、より好適には1~1×10U/mLである。また、適当なタンパク質としては、例えばCD3リガンド、CD28リガンド及び抗IL-4抗体が例示される。また、この他、レクチン等のリンパ球刺激因子を添加することもできる。さらに、培地中に血清又は血漿を添加してもよい。これらの培地中への添加量は特に限定はないが、0体積%~20体積%が例示され、また培養段階に応じて使用する血清や血漿の量を変更することができる。例えば、血清又は血漿濃度を段階的に減らして使用することもできる。血清又は血漿の由来としては、自己又は非自己のいずれでも良いが、安全性の観点からは、自己由来のものが好ましい。 When using the cells of the present invention as an active ingredient of the medicament of the present invention, the cells may be cultured and/or stimulated using an appropriate medium and/or stimulating molecules before administration to a subject. good. Stimulatory molecules include, but are not limited to, cytokines, appropriate proteins, other components, and the like. Examples of cytokines include IL-2, IL-7, IL-12, IL-15, and IFN-γ, and preferably IL-2 can be used. The concentration of IL-2 in the medium is not particularly limited, but is, for example, preferably 0.01 to 1×10 5 U/mL, more preferably 1 to 1×10 4 U/mL. Further, suitable proteins include, for example, CD3 ligand, CD28 ligand, and anti-IL-4 antibody. In addition, lymphocyte stimulating factors such as lectins can also be added. Additionally, serum or plasma may be added to the medium. The amount of these added to the medium is not particularly limited, but 0% to 20% by volume is exemplified, and the amount of serum or plasma used can be changed depending on the culture stage. For example, serum or plasma concentrations can be reduced stepwise. The serum or plasma may be derived from either autologous or non-autologous sources, but from the viewpoint of safety, autologous sources are preferred.
 本発明において、本発明の細胞を有効成分として含有する医薬は、非経口的に対象に投与して用いることが好ましい。非経口的な投与方法としては、静脈内、動脈内、筋肉内、腹腔内、及び皮下投与などの方法が挙げられる。投与量は、対象の状態、体重、年齢等応じて適宜選択されるが、通常、細胞数として、体重60kgの対象に対し、1回当り、通常1×10~1×1010個となるように、好ましくは1×10~1×10個となるように、より好ましくは5×10~5×10個となるように投与される。また、1回で投与してもよく、複数回にわたって投与してもよい。本発明の医薬は、非経口投与に適した公知の形態、例えば、注射又は注入剤とすることができる。本発明の医薬は、適宜、薬理学的に許容できる賦形剤を含んでいてもよい。薬理学的に許容できる賦形剤としては、上記に記載したものが挙げられる。本発明の医薬は、細胞を安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含んでもよい。培地としては、特に限定するものではなく、RPMI、AIM-V、X-VIVO10などの培地が挙げられるが、これらに限定されない。また前記医薬には医薬的に許容される担体(例:ヒト血清アルブミン)及び保存剤等が安定化の目的で添加されていてもよい。 In the present invention, the medicament containing the cells of the present invention as an active ingredient is preferably administered to a subject parenterally. Parenteral administration methods include intravenous, intraarterial, intramuscular, intraperitoneal, and subcutaneous administration. The dosage is appropriately selected depending on the condition, body weight, age, etc. of the subject, but the number of cells is usually 1 x 10 6 to 1 x 10 10 cells per dose for a subject weighing 60 kg. Thus, the number of doses is preferably 1×10 7 to 1×10 9 , more preferably 5×10 7 to 5×10 8 . Moreover, it may be administered once or multiple times. The medicament of the present invention can be in a known form suitable for parenteral administration, such as an injection or an infusion. The medicament of the present invention may optionally contain pharmacologically acceptable excipients. Pharmacologically acceptable excipients include those described above. The medicament of the present invention may contain physiological saline, phosphate buffered saline (PBS), a medium, etc. to stably maintain cells. The medium is not particularly limited, and examples include, but are not limited to, RPMI, AIM-V, and X-VIVO10. Furthermore, a pharmaceutically acceptable carrier (eg, human serum albumin), preservative, etc. may be added to the drug for the purpose of stabilization.
 さらに、本発明の細胞は、GPC3を発現する細胞を殺傷し得るため、GPC3を発現する細胞の殺傷剤として用いることができる。かかる殺傷剤は、前記医薬と同様にして作製し、使用することができる。 Furthermore, since the cells of the present invention can kill cells that express GPC3, they can be used as a killing agent for cells that express GPC3. Such a killing agent can be produced and used in the same manner as the above-mentioned pharmaceuticals.
 また、本発明のTCRは、例えばTCRを抗CD3抗体の一本鎖抗体断片(scFv)(又はT細胞に結合し、T細胞応答を活性化する類似の抗体断片)を組み合わせた融合タンパク質として用いることもできる。かかる融合タンパク質は、安定した、可溶性の高親和性TCRとするために、2つのTCR鎖のポリペプチドの各定常領域間に、新たに人工的にジスルフィド結合を導入してもよい。また、融合タンパク質のscFvは、TCRのβ鎖の定常領域に融合していることが好ましい。このような融合タンパク質については、例えば、米国特許第7,569,664号公報及びOates J, Jakobsen BK. OncoImmunology. 2013; 2(2):e22891の報告などに記載されている。 The TCR of the present invention can also be used as a fusion protein, for example, by combining TCR with a single chain antibody fragment (scFv) of an anti-CD3 antibody (or a similar antibody fragment that binds to T cells and activates a T cell response). You can also do that. In order to make such a fusion protein a stable, soluble, high-affinity TCR, a new disulfide bond may be artificially introduced between each constant region of the polypeptides of the two TCR chains. Furthermore, the scFv of the fusion protein is preferably fused to the constant region of the β chain of TCR. Such fusion proteins are described, for example, in US Patent No. 7,569,664 and in the report of Oates J, Jakobsen BK. OncoImmunology. 2013; 2(2):e22891.
 かかる融合タンパク質は、生体内に導入された場合に、TCRの特異的認識を通じて、GPC3を発現する細胞に結合し、scFvが細胞傷害性T細胞の細胞表面に存在するCD3に結合することで、GPC3を発現する細胞を傷害し得る。従って、前記融合タンパク質及びこのタンパク質をコードする核酸を含有する医薬も、本発明の核酸や細胞を含有する医薬と同様に、GPC3を発現する疾患の予防又は治療のために用いることができる。医薬として用いる場合には、前述のHLA-A24拘束性GPC3ペプチドの記載と同様に調製等することができる。 When such a fusion protein is introduced into a living body, it binds to cells expressing GPC3 through specific recognition of TCR, and the scFv binds to CD3 present on the cell surface of cytotoxic T cells. It can injure cells expressing GPC3. Therefore, the medicament containing the fusion protein and the nucleic acid encoding this protein can also be used for the prevention or treatment of diseases that express GPC3, similar to the medicament containing the nucleic acid or cells of the present invention. When used as a medicine, it can be prepared in the same manner as described above for the HLA-A24-restricted GPC3 peptide.
 本願明細書の配列表の配列番号は、配列番号1~13はTCR鎖のCDR3Aのアミノ酸配列、配列番号14~28はTCR鎖のCDR3Bのアミノ酸配列、及び、配列番号29はHLA-A24拘束性GPC3ペプチドのアミノ酸配列を示す。アミノ酸は、慣用的な1文字表記による略号で表示した。
 TCR鎖のCDR3Aのアミノ酸配列
   CAGAKISAGNKLTF(配列番号1)
   CVVSAANNAGNMLTF(配列番号2)
   CVVRQSSASKIIF(配列番号3)
   CAMSAGSARQLTF(配列番号4)
   CAERDSSASKIIF(配列番号5)
   CAVKATDKLIF(配列番号6)
   CAGRYSSASKIIF(配列番号7)
   CAVNSPPASKLTF(配列番号8)
   CVVRYSSASKIIF(配列番号9)
   CALKKGFCKATDL(配列番号10)
   CAGTRSFGNVLHC(配列番号11)
   CAVRTTILTDSWGKLQF(配列番号12)
   CVVNRGNTGFQKLVF(配列番号13)
 TCR鎖のCDR3Bのアミノ酸配列
   CASSLAGTQETQYF(配列番号14)   
CASSSTRVAGHGTDTQYF(配列番号15)
   CASSHGGGLSNEQFF(配列番号16)
   CASSVGGGLQAKNIQYF(配列番号17)
   CASSHGTSGRIGHEQYF(配列番号18)
   CASSEGGGAGGHSNEQFF(配列番号19)
   CASSRGPFSGNTIYF(配列番号20)
   CASSLGGNSNQPQHF(配列番号21)
   CASSRGQGSAGELFF(配列番号22)
   CASSVGSGRGNEQFF(配列番号23)
   CASSVGGGVGDTQYF(配列番号24)
   CASSTPGGTGRNEQFF(配列番号25)
   CASSAGTSVYNEQFF(配列番号26)
   CSARDVTTTAYEQYF(配列番号27)
   CASSVGGDGYNEQFF(配列番号28)
 HLA-A24拘束性GPC3ペプチドのアミノ酸配列
   EYILSLEEL(配列番号29) 
The SEQ ID NOs in the sequence listing of this specification are: SEQ ID NOS: 1 to 13 are the amino acid sequences of CDR3A of the TCR chain, SEQ ID NOs: 14 to 28 are the amino acid sequences of CDR3B of the TCR chain, and SEQ ID NO: 29 is the HLA-A24-restricted amino acid sequence. The amino acid sequence of GPC3 peptide is shown. Amino acids are indicated by conventional one-letter abbreviations.
Amino acid sequence of CDR3A of TCR chain CAGAKISAGNKLTF (SEQ ID NO: 1)
CVVSAANNAGNMLTF (SEQ ID NO: 2)
CVVRQSSASKIIF (sequence number 3)
CAMSAGSARQLTF (SEQ ID NO: 4)
CAERDSSASKIIF (Sequence number 5)
CAVKATDKLIF (SEQ ID NO: 6)
CAGRYSSASKIIF (SEQ ID NO: 7)
CAVNSPPASKLTF (SEQ ID NO: 8)
CVVRYSSASKIIF (Sequence number 9)
CALKKGFCKATDL (SEQ ID NO: 10)
CAGTRSFGNVLHC (SEQ ID NO: 11)
CAVRTTILTDSWGKLQF (SEQ ID NO: 12)
CVVNRGNTGFQKLVF (SEQ ID NO: 13)
Amino acid sequence of CDR3B of TCR chain CASSLAGTQETQYF (SEQ ID NO: 14)
CASSSTRVAGHGTDTQYF (SEQ ID NO: 15)
CASSHGGGLSNEQFF (SEQ ID NO: 16)
CASSVGGGLQAKNIQYF (SEQ ID NO: 17)
CASSHGTSGRIGHEQYF (SEQ ID NO: 18)
CASSEGGGAGGHSNEQFF (SEQ ID NO: 19)
CASSRGPFSGNTIYF (SEQ ID NO: 20)
CASSLGGNSNQPQHF (SEQ ID NO: 21)
CASSRGQGSAGELFF (SEQ ID NO: 22)
CASSVGSGRGNEQFF (SEQ ID NO: 23)
CASSVGGGVGDTQYF (SEQ ID NO: 24)
CASSTPGGTGRNEQFF (SEQ ID NO: 25)
CASSAGTSVYNEQFF (SEQ ID NO: 26)
CSARDVTTTAYEQYF (SEQ ID NO: 27)
CASSVGGDGYNEQFF (SEQ ID NO: 28)
Amino acid sequence of HLA-A24-restricted GPC3 peptide EYILSLEEL (SEQ ID NO: 29)
 アミノ酸の慣用的な1文字表記及び3文字表記による略号は以下を使用した。
The conventional one-letter and three-letter abbreviations for amino acids were used as follows.
 以下に実施例を挙げて本発明をさらに具体的に説明するが、これらは単なる例示であって本発明はこれらに限定されない。 The present invention will be described in more detail with reference to Examples below, but these are merely illustrative and the present invention is not limited thereto.
 実施例中の略号は、本技術分野で現在通常用いられている用例に従うものであり、例えば、次のような意味である。
HLA: ヒト白血球抗原(Human Leukocyte Antigen)
HIV: ヒト免疫不全ウイルス(human immunodeficiency virus)
ELISPOT: 酵素免疫スポットアッセイ(Enzyme-Linked ImmunoSpot)
The abbreviations in the examples follow the conventions currently commonly used in this technical field, and have, for example, the following meanings.
HLA: Human Leukocyte Antigen
HIV: human immunodeficiency virus
ELISPOT: Enzyme-Linked ImmunoSpot
実施例1.
 進行性の肝細胞がん患者に対し、適正製造基準(Good Manufacturing Practice)のガイドラインに従って合成された抗原(HLA-A*24:02-拘束性GPC3ペプチド(以下では「GPC3ペプチド」と略記する。)(EYILSLEEL、配列番号29 ; アメリカンペプチド社)をICFAと混合して乳剤化したワクチンを皮内投与し、当該投与後の末梢血単核細胞(PBMC)を経時的に採取した(図1参照)。以下にGPC3応答性のCD8 T細胞単離の具体的な方法を記す(図2参照)。
Example 1.
For patients with advanced hepatocellular carcinoma, an antigen (HLA-A*24:02-restricted GPC3 peptide (hereinafter abbreviated as "GPC3 peptide") was synthesized according to Good Manufacturing Practice guidelines. ) (EYILSLEEL, SEQ ID NO: 29; American Peptide Company) was mixed with ICFA and emulsified and administered intradermally, and peripheral blood mononuclear cells (PBMC) were collected over time after the administration (see Figure 1). ).A specific method for isolating GPC3-responsive CD8 T cells is described below (see Figure 2).
(1)抗原投与
 臨床試験 (試験名:進行肝細胞がん患者を対象としたHLA-A24及びA2結合性グリピカン3(GPC3)由来ペプチドワクチン療法の免疫学的有効性を評価する臨床試験、UMIN試験ID: UMIN000005093)において、HLA-A24ポジティブな患者にGPC3298-306ペプチド及びフロイントの不完全アジュバントを混合して乳剤化したワクチンを2週毎に皮内注射により投与(3mgペプチド/body)した。3回目のワクチン投与から2週間後の末梢血を採取し、後述のようにPBMCを単離した。
(1) Antigen administration Clinical trial (Study name: Clinical trial to evaluate the immunological efficacy of HLA-A24 and A2-binding glypican 3 (GPC3)-derived peptide vaccine therapy for patients with advanced hepatocellular carcinoma, UMIN In the study (Study ID: UMIN000005093), a vaccine prepared by mixing GPC3 298-306 peptide and Freund's incomplete adjuvant and emulsifying it was administered by intradermal injection (3 mg peptide/body) to HLA-A24 positive patients every two weeks. . Peripheral blood was collected two weeks after the third vaccination, and PBMC were isolated as described below.
(2)PBMCの単離
 前記末梢血(30 mL)をフィコールパック勾配(Ficoll-Paque gradient)を用いて遠心分離することでPBMCを単離した。
(2) Isolation of PBMC PBMC were isolated by centrifuging the peripheral blood (30 mL) using a Ficoll-Paque gradient.
試験例1.
 ELISPOT アッセイ
 抗原特異的CTL反応を測定するため、採取されたPBMC検体を用いてELISPOTアッセイを行った。PBMC(1ウェル当たり1×10個)を37℃、5%CO存在下で、GPC3を強制発現させたがん細胞株(SK-Hep-1/hGPC3)又はそのMockコントロールがん細胞株(SK-Hep-1/vec)と共に20時間培養した。
Test example 1.
ELISPOT assay In order to measure antigen-specific CTL responses, an ELISPOT assay was performed using the collected PBMC samples. A cancer cell line (SK-Hep- 1 /hGPC3) in which PBMC (1 x 10 cells per well) was forced to express GPC3 at 37°C in the presence of 5% CO2 or its mock control cancer cell line. (SK-Hep-1/vec) for 20 hours.
 この結果、本試験に適用したPBMCは、GPC3を発現するがん細胞に応答したインターフェロン-γ産生能を有することが判明した。得られたPBMCを試験管内にてGPC3ペプチドで刺激を行い、培養を継続した。刺激後12日目にGPC3ペプチドでの再刺激を行い、得られるCD137陽性細胞をGPC3ペプチド応答性細胞として単離し、セルソーターを利用したシングルセルソートを行い、シングルセルソートされたCD137陽性活性化T細胞よりPCRによるTCRα鎖及びTCRβ鎖遺伝子対の単離 (一次PCR)を行った。また、当該単離の工程から転写活性を有するTCRα鎖及びTCRβ鎖遺伝子のPCR断片の作製(二次PCR)を行った。 As a result, it was found that the PBMC used in this test had the ability to produce interferon-γ in response to cancer cells expressing GPC3. The obtained PBMCs were stimulated with GPC3 peptide in a test tube, and culture was continued. On the 12th day after stimulation, restimulation with GPC3 peptide was performed, and the resulting CD137-positive cells were isolated as GPC3 peptide-responsive cells, and single-cell sorting was performed using a cell sorter to obtain single-cell-sorted CD137-positive activated T cells. A pair of TCR α chain and TCR β chain genes was isolated from the cells by PCR (primary PCR). Furthermore, from the isolation step, PCR fragments of TCRα chain and TCRβ chain genes having transcriptional activity were prepared (secondary PCR).
NF-ATレポーター導入Jurkat細胞株への前記PCR断片の遺伝子導入を行った後、GPC3ペプチドを用いて抗原特異的TCRシグナルの強度解析を行うことにより、GPC3ペプチドに応答性の高いTCRα鎖及びTCRβ鎖遺伝子対を選別した。その結果、表1に記載したHLA-A24拘束性GPC3ペプチド(EYILSLEEL、配列番号29)応答性TCR配列を同定することができた。 After transfecting the PCR fragment into the NF-AT reporter-introduced Jurkat cell line, intensity analysis of antigen-specific TCR signals using GPC3 peptide revealed that TCRα chain and TCRβ highly responsive to GPC3 peptide. Chain gene pairs were selected. As a result, the HLA-A24-restricted GPC3 peptide (EYILSLEEL, SEQ ID NO: 29)-responsive TCR sequence listed in Table 1 could be identified.
実施例2.
 TCR配列の解読
1.配列解読
 シングルセルソート後のCD137陽性T細胞から得られたTCRの配列は以下の方法で分析した。すなわち、T細胞のトータルRNAを、RNeasy Mini Kit(QIAGEN)を用いて抽出後、Multiplex One-step RT-PCR法で増幅し、サンガーシーケンスで解析を行った(表1及び配列表参照)。
Example 2.
Decoding the TCR sequence 1. Sequence decoding The TCR sequence obtained from CD137-positive T cells after single cell sorting was analyzed by the following method. That is, total RNA of T cells was extracted using RNeasy Mini Kit (QIAGEN), amplified using Multiplex One-step RT-PCR, and analyzed using Sanger sequencing (see Table 1 and Sequence Listing).
試験例2.
 TCRを導入したJurkat細胞株を用いた、TCRの抗原特異性解析
1.TCR発現PCR断片の作製
 上記TCRβ鎖のPCR産物及びTCRα鎖のPCR産物をもとに、転写活性を有するTCRα鎖及びTCRβ鎖遺伝子のPCR断片の作製(二次PCR)を行った。
Test example 2.
Analysis of antigen specificity of TCR using Jurkat cell line introduced with TCR1. Preparation of TCR Expression PCR Fragment Based on the above TCR β chain PCR product and TCR α chain PCR product, PCR fragments of TCR α chain and TCR β chain genes having transcriptional activity were prepared (secondary PCR).
2.TCR遺伝子導入と抗原特異性解析
 上記1.で得られたPCR断片を、NF-ATレポーター及びCD8導入TCR陰性Jurkat細胞株へ遺伝子導入し、GPC3ペプチドをパルスされたA24陽性のCOS細胞を標的として、抗原特異的TCRの活性化について、ルシフェラーゼレポーター解析を行った(図3参照)。
2. TCR gene introduction and antigen specificity analysis 1. The PCR fragment obtained was introduced into the NF-AT reporter and CD8-introduced TCR-negative Jurkat cell line, and luciferase was used to target A24-positive COS cells pulsed with GPC3 peptide for antigen-specific TCR activation. Reporter analysis was performed (see Figure 3).
3.デキストラマー(Dextramer)染色及びフローサイトメトリー分析
 2.で作製した遺伝子導入Jurkat細胞を、HLA-A*24:02 デキストラマー-RPE (GPC3298-306 (EYILSLEEL、配列番号29)、HIV583-591 (RYLKDQQLL、配列番号30); イムデックス社)を用いて室温、30分間染色し、次いで抗CD8-FITC(プロイミューン社)と共に4℃で20分間染色した。フローサイトメトリーは、FACSAccuri フローサイトメーター(BDバイオサイエンス社)を用いて解析を行った。得られた結果より、CD3ポジティブの細胞集団のなかにデキストラマー陽性の細胞集団が認められたことから、それぞれのTCRを導入したJurkat細胞において、機能型TCRが効率的に細胞表面に発現したことが判明した。
3. Dextramer staining and flow cytometry analysis 2. The gene-introduced Jurkat cells prepared in The cells were stained at room temperature for 30 minutes, and then stained with anti-CD8-FITC (Proimmune) at 4°C for 20 minutes. Flow cytometry analysis was performed using a FACSAccuri flow cytometer (BD Bioscience). From the obtained results, a dextramer-positive cell population was observed within the CD3-positive cell population, indicating that functional TCRs were efficiently expressed on the cell surface in Jurkat cells into which each TCR was introduced. There was found.
実施例3.
 本発明のTCRをコードする遺伝子を組み込んだ発現ベクター及び前記TCRを発現するiPS細胞由来T細胞の作製
1.本発明のTCRをコードする遺伝子を組み込んだ発現ベクターの作製
 1)TCRα鎖及びTCRβ鎖を組み込んだpiggyBacトランスポゾンベクターの作製
 信州大学、中沢洋三博士より提供されたpIRII-IRES-dCD19ベクターを用い、P0103_TCR_10、P0103_TCR_18及びP0103_TCR_82を組み込んだプラスミドを作製した(表1参照)。
 2)TCRα鎖及びTCRβ鎖をコードするpiggyBacベクターを、トランスポゼースをコードするプラスミドベクターと共に、1×10個のFF-I01s04 iPS細胞に遺伝子導入装置(MaxCyte ATx)を用いて導入した。遺伝子導入は、細胞を遺伝子導入バッファー50 μLに懸濁し、DNA総量を320 μg/mLで、piggyBacベクター /トランスポゼースベクターの比を1/3で、また導入条件をOptimization 8として行った。この遺伝子導入後8日目のiPS細胞に、トレーサー遺伝子CD19の発現が認められた。上記の条件において、TCRα鎖及びTCRβ鎖をコードするpiggyBacベクターが効率よくiPS細胞に導入されたことがわかる(図4~図6参照)。
 3)TCR導入iPS細胞のT細胞分化
 上記のTCR導入iPS細胞を、国際公開第2017/221975号パンフレットに記載の方法に準じてT細胞方向へ分化させ、分化後の細胞における各種マーカーの発現をFACS Aria IIIを用いて検討した。その結果を図7に示す。TCR遺伝子導入iPS細胞を、上記の分化操作に供することにより、TCRα鎖とTCRβ鎖との複合体が細胞膜表面に発現したT細胞を誘導可能であることが明らかとなった。
Example 3.
Preparation of an expression vector incorporating the gene encoding the TCR of the present invention and iPS cell-derived T cells expressing the TCR 1. Preparation of an expression vector incorporating the gene encoding the TCR of the present invention 1) Preparation of piggyBac transposon vector incorporating the TCRα chain and TCRβ chain Using the pIRII-IRES-dCD19 vector provided by Dr. Yozo Nakazawa of Shinshu University, P0103_TCR_10 , P0103_TCR_18 and P0103_TCR_82 were constructed (see Table 1).
2) The piggyBac vector encoding the TCRα chain and the TCRβ chain was introduced together with a plasmid vector encoding transposase into 1×10 6 FF-I01s04 iPS cells using a gene transfer device (MaxCyte ATx). Gene transfer was carried out by suspending cells in 50 μL of gene transfer buffer, using a total DNA amount of 320 μg/mL, a piggyBac vector/transposase vector ratio of 1/3, and introducing conditions under Optimization 8. Expression of the tracer gene CD19 was observed in the iPS cells 8 days after this gene introduction. It can be seen that under the above conditions, the piggyBac vector encoding the TCRα chain and TCRβ chain was efficiently introduced into iPS cells (see FIGS. 4 to 6).
3) T cell differentiation of TCR-introduced iPS cells The above-mentioned TCR-introduced iPS cells were differentiated into T cells according to the method described in the pamphlet of International Publication No. 2017/221975, and the expression of various markers in the cells after differentiation was The study was conducted using FACS Aria III. The results are shown in FIG. By subjecting TCR gene-transfected iPS cells to the above-described differentiation procedure, it was revealed that a complex of TCRα chain and TCRβ chain can induce T cells expressed on the cell membrane surface.
試験例3.
 本発明のTCRを発現するiPS細胞由来T細胞の細胞傷害性試験
 TCRを発現するiPS細胞由来T細胞の細胞傷害性を測定した。具体的には、GPC3抗原ペプチドを添加した、又は添加していない、HLA-*24:02陽性リンパ芽球細胞系(LCL)を標的細胞とした。傷害を受けた標的細胞から放出される細胞内局在酵素の量に基づき、細胞傷害性を測定した。標的細胞(T)に対して、エフェクター細胞(E)を図8に示す比率で添加し、37℃で3時間反応させた。反応後の上清に遊離された色素から、以下の式に基づいて、細胞傷害活性(% lysis)を算出した。
 % lysis = (測定値- 最小放出値の平均)/(最大放出値の平均/最小放出値の平均)×100
 なお、上式において、最小放出値とはエフェクター細胞を加えないウェルにおける細胞内局在酵素遊離量であり、標的細胞からの細胞内局在酵素自然遊離量を示す。また、最大放出値とは1% Triton X-100を加えて標的細胞を溶解したときの細胞内局在酵素遊離量を示す。
Test example 3.
Cytotoxicity test of iPS cell-derived T cells expressing TCR of the present invention Cytotoxicity of iPS cell-derived T cells expressing TCR was measured. Specifically, the target cells were HLA-*24:02-positive lymphoblastoid cell lines (LCL) with or without the addition of the GPC3 antigen peptide. Cytotoxicity was measured based on the amount of intracellularly localized enzymes released from injured target cells. Effector cells (E) were added to target cells (T) at the ratio shown in Figure 8, and reacted at 37°C for 3 hours. Cytotoxic activity (% lysis) was calculated from the dye released in the supernatant after the reaction based on the following formula.
% lysis = (measured value - average of minimum release values) / (average of maximum release values / average of minimum release values) × 100
In the above formula, the minimum release value is the amount of intracellular localized enzyme released in a well to which no effector cells are added, and indicates the amount of intracellular localized enzyme naturally released from the target cells. Furthermore, the maximum release value indicates the amount of intracellular localized enzyme released when target cells are lysed by adding 1% Triton X-100.
 本試験の結果を図8に示す。GPC3特異的TCRを発現するiPS細胞由来T細胞は、GPC3ペプチドを添加したHLA-A24陽性LCLに対してのみ細胞傷害活性を有することが示された。 The results of this test are shown in Figure 8. It was shown that iPS cell-derived T cells expressing GPC3-specific TCR have cytotoxic activity only against HLA-A24-positive LCL added with GPC3 peptide.
実施例4.
 本発明のTCRを発現するiPS細胞由来T細胞のマウスにおける有効性
 上述した通り、プラスミドのP0103_TCR_10(TCR#10)、P0103_TCR_18(TCR#18)及びP0103_TCR_82(TCR#82) (表1参照)をiPS細胞に導入し、T細胞へ分化させた再生T細胞を、GPC3発現SK-Hep肝臓がん腫瘍を腹腔に移植したNOGマウスに6回腹腔内投与した。該投与後の腫瘍の経時的な増殖について、腫瘍が発する化学発光を計測した結果を図9に、またマウスの生存曲線を図10に示す。本実験においては、上記の3種の再生T細胞を等量混ぜた細胞混合物もマウスに投与し、経過を観察した。
Example 4.
Efficacy in mice of iPS cell-derived T cells expressing TCR of the present invention As mentioned above, plasmids P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18) and P0103_TCR_82 (TCR#82) (see Table 1) were used in iPS cells. Regenerated T cells introduced into cells and differentiated into T cells were intraperitoneally administered six times to NOG mice in which GPC3-expressing SK-Hep liver cancer tumors were implanted into the peritoneal cavity. Regarding the growth of tumors over time after the administration, the results of measuring the chemiluminescence emitted by the tumors are shown in FIG. 9, and the survival curve of the mice is shown in FIG. 10. In this experiment, a cell mixture containing equal amounts of the three types of regenerated T cells described above was also administered to mice, and the progress was observed.
 経時的な腫瘍の増殖を、腫瘍が発する化学発光により計測した実験においては、P0103_TCR_10(TCR#10)、P0103_TCR_18(TCR#18)及びP0103_TCR_82(TCR#82) を発現する再生T細胞並びにそれらの3種を等量混合した細胞混合物を投与することにより、マウスにおける腫瘍増殖の顕著な抑制を認めた(図9参照)。また、マウスの生存曲線においても、上記3種の再生T細胞及び上記3種の再生T細胞を等量混ぜた細胞混合物を投与し、経過を観察した。TCR#18及びTCR#82をそれぞれ発現する再生T細胞を投与されたマウス、若しくはTCR#18、TCR#82及びTCR#10を発現する再生T細胞を等量混合した細胞混合物を投与されたマウスにおいて、顕著な生存延長が認められた。TCR#10を発現する再生T細胞を投与されたマウスには、生存の延長を認めなかった(図10参照)。 In experiments in which tumor growth over time was measured using chemiluminescence emitted by tumors, regenerated T cells expressing P0103_TCR_10 (TCR#10), P0103_TCR_18 (TCR#18), and P0103_TCR_82 (TCR#82) and their three By administering a cell mixture containing equal amounts of the seeds, significant inhibition of tumor growth in mice was observed (see Figure 9). In addition, for mouse survival curves, the above three types of regenerated T cells and a cell mixture containing equal amounts of the above three types of regenerated T cells were administered, and the progress was observed. Mice administered with regenerated T cells expressing TCR#18 and TCR#82, respectively, or a cell mixture containing equal amounts of regenerated T cells expressing TCR#18, TCR#82, and TCR#10. Significant survival prolongation was observed. No prolonged survival was observed in mice receiving regenerated T cells expressing TCR#10 (see Figure 10).
 本発明により、GPC3ペプチド(HLA-A24-拘束性GPC3ペプチド又は該ペプチドとHLA-A分子(HLA-A24)との複合体に対する結合能を有するT細胞受容体及びそれらをコードする核酸が提供される。また、前記T細胞受容体の製造方法を用いることにより、従来の方法より短期間で高効率にT細胞受容体を製造することを可能とする。さらに、前記T細胞受容体をコードする核酸は、HLA-A分子とGPC3ペプチドを提示する細胞に対する細胞傷害活性をT細胞に付与し得ることから、GPC3を発現する疾患の予防又は治療に有用である。 The present invention provides T cell receptors capable of binding to GPC3 peptides (HLA-A24-restricted GPC3 peptides or complexes of the peptides and HLA-A molecules (HLA-A24) and nucleic acids encoding them). Furthermore, by using the method for producing the T cell receptor, it is possible to produce the T cell receptor with high efficiency in a shorter period of time than with conventional methods. Nucleic acids are useful for preventing or treating diseases that express GPC3 because they can impart cytotoxic activity to T cells against cells presenting HLA-A molecules and GPC3 peptides.

Claims (35)

  1.  α鎖の相補性決定領域として、
     配列番号1~13で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、
     配列番号1~13で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、又は
     配列番号1~13で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含み、
     β鎖の相補性決定領域として、
     配列番号14~28で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、
     配列番号14~28で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる群から選ばれる一つのアミノ酸配列、又は
     配列番号14~28で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなる群から選ばれる一つのアミノ酸配列
    を含むT細胞受容体(TCR)。
    As the complementarity determining region of the α chain,
    One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 1 to 13,
    One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 1 to 13, or the amino acids shown in SEQ ID NOs: 1 to 13 Contains one amino acid sequence selected from the group consisting of amino acid sequences having 90% or more identity with the sequence,
    As the complementarity determining region of the β chain,
    One amino acid sequence selected from the group consisting of amino acid sequences shown in SEQ ID NOS: 14 to 28,
    One amino acid sequence selected from the group consisting of amino acid sequences in which one or several amino acids are deleted, substituted, or added in the amino acid sequences shown in SEQ ID NOs: 14 to 28, or the amino acids shown in SEQ ID NOs: 14 to 28 A T cell receptor (TCR) comprising one amino acid sequence selected from the group consisting of amino acid sequences having 90% or more identity with the sequence.
  2.  前記TCRが、配列番号29で示されるアミノ酸配列を有するペプチド又は該ペプチドとHLA-A24との複合体と結合しうる、請求項1に記載のTCR。 The TCR according to claim 1, wherein the TCR is capable of binding to a peptide having the amino acid sequence shown by SEQ ID NO: 29 or a complex of the peptide and HLA-A24.
  3.  α鎖の相補性決定領域として、配列番号1~13で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含み、β鎖の相補性決定領域として、配列番号14~28で示されるアミノ酸配列からなる群から選ばれる一つのアミノ酸配列を含む、請求項1に記載のTCR。 The complementarity determining region of the α chain contains one amino acid sequence selected from the group consisting of the amino acid sequences shown by SEQ ID NOs: 1 to 13, and the complementarity determining region of the β chain contains the amino acids shown by SEQ ID NOs: 14 to 28. The TCR of claim 1, comprising one amino acid sequence selected from the group consisting of sequences.
  4.  請求項1に記載のTCRをコードする核酸。 A nucleic acid encoding the TCR according to claim 1.
  5.  請求項4に記載の核酸を含む発現ベクター。 An expression vector comprising the nucleic acid according to claim 4.
  6.  請求項4に記載の核酸を含む細胞。 A cell comprising the nucleic acid according to claim 4.
  7.  請求項5に記載のベクターを含む細胞。 A cell comprising the vector according to claim 5.
  8.  前記細胞がリンパ球又は多能性幹細胞である、請求項6に記載の細胞。 The cell according to claim 6, wherein the cell is a lymphocyte or a pluripotent stem cell.
  9.  前記細胞がCD8陽性細胞傷害性T細胞である、請求項6に記載の細胞。 The cell according to claim 6, wherein the cell is a CD8-positive cytotoxic T cell.
  10.  前記細胞がリンパ球又は多能性幹細胞である、請求項7に記載の細胞。 The cell according to claim 7, wherein the cell is a lymphocyte or a pluripotent stem cell.
  11.  前記細胞がCD8陽性細胞傷害性T細胞である、請求項7に記載の細胞。 The cell according to claim 7, wherein the cell is a CD8-positive cytotoxic T cell.
  12.  請求項4に記載の核酸を細胞に導入する工程を含む、請求項6に記載の細胞を製造する方法。 A method for producing the cell according to claim 6, comprising the step of introducing the nucleic acid according to claim 4 into the cell.
  13.  請求項5に記載のベクターを細胞に導入する工程を含む、請求項7に記載の細胞を製造する方法。 A method for producing the cell according to claim 7, comprising the step of introducing the vector according to claim 5 into the cell.
  14.  請求項4に記載の核酸を含む、多能性幹細胞から誘導されたT細胞。 A T cell derived from a pluripotent stem cell, comprising the nucleic acid according to claim 4.
  15.  請求項5に記載のベクターを含む、多能性幹細胞から誘導されたT細胞。 A T cell derived from a pluripotent stem cell, comprising the vector according to claim 5.
  16.  請求項6~11、14及び15のいずれか1項に記載の細胞を含有する、医薬。 A medicament containing the cell according to any one of claims 6 to 11, 14, and 15.
  17.  がんの予防又は治療に使用するための、請求項16に記載の医薬。 The medicament according to claim 16, for use in the prevention or treatment of cancer.
  18.  請求項6~11、14及び15のいずれか1項に記載の細胞を含有する、グリピカン3を発現する細胞の殺傷剤。 A killing agent for cells expressing glypican-3, comprising the cell according to any one of claims 6 to 11, 14, and 15.
  19.  哺乳動物に対し、請求項6~11、14及び15のいずれか1項に記載の細胞の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the cell according to any one of claims 6 to 11, 14, and 15.
  20.  哺乳動物に対し、請求項16に記載の医薬の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, comprising administering to the mammal an effective amount of the medicament according to claim 16.
  21.  哺乳動物に対し、請求項18に記載の殺傷剤の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, which comprises administering to the mammal an effective amount of the killing agent according to claim 18.
  22. 請求項6~11、14及び15のいずれか1項に記載の細胞を含有する、哺乳動物におけるがんの予防剤又は治療剤。 A preventive or therapeutic agent for cancer in mammals, comprising the cell according to any one of claims 6 to 11, 14, and 15.
  23.  がんの予防又は治療に使用するための、請求項6~11、14及び15のいずれか1項に記載の細胞。 The cell according to any one of claims 6 to 11, 14, and 15, for use in the prevention or treatment of cancer.
  24.  がんの予防剤又は治療剤を製造するための、請求項6~11、14及び15のいずれか1項に記載の細胞。 The cell according to any one of claims 6 to 11, 14, and 15, for producing a cancer preventive or therapeutic agent.
  25.  T細胞をシングルセルソートする工程を含む、請求項1に記載のTCRの製造方法。 The method for producing TCR according to claim 1, comprising the step of single-cell sorting T cells.
  26.  請求項25に記載の方法を用いて製造されたTCRを導入した、CD8陽性細胞傷害性T細胞。 A CD8-positive cytotoxic T cell into which the TCR produced using the method according to claim 25 has been introduced.
  27.  請求項26に記載のCD8陽性細胞傷害性T細胞を含有する医薬。 A medicament containing the CD8-positive cytotoxic T cell according to claim 26.
  28.  がんの予防又は治療に使用するための、請求項27に記載の医薬。 The medicament according to claim 27, for use in the prevention or treatment of cancer.
  29.  請求項26に記載のCD8陽性細胞傷害性T細胞を含有する、グリピカン3を発現する細胞の殺傷剤。 A killing agent for cells expressing glypican 3, which contains the CD8-positive cytotoxic T cells according to claim 26.
  30.  哺乳動物に対し、請求項26に記載のCD8陽性細胞傷害性T細胞の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, comprising administering to the mammal an effective amount of the CD8-positive cytotoxic T cell according to claim 26.
  31.  哺乳動物に対し、請求項27に記載の医薬の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, comprising administering to the mammal an effective amount of the medicament according to claim 27.
  32.  哺乳動物に対し、請求項29に記載の殺傷剤の有効量を投与することを含む、前記哺乳動物におけるがんの予防又は治療方法。 A method for preventing or treating cancer in a mammal, comprising administering to the mammal an effective amount of the killing agent according to claim 29.
  33.  請求項25に記載の方法を用いて製造されたTCRを導入する、CD8陽性細胞傷害性T細胞の製造方法。 A method for producing CD8-positive cytotoxic T cells, which comprises introducing a TCR produced using the method according to claim 25.
  34.  がんの予防又は治療に使用するための、請求項33に記載の方法を用いて製造されたCD8陽性細胞傷害性T細胞。 CD8-positive cytotoxic T cells produced using the method according to claim 33 for use in the prevention or treatment of cancer.
  35.  がんの予防剤又は治療剤を製造するための、請求項33に記載の方法を用いて製造されたCD8陽性細胞傷害性T細胞。
     

     
    CD8-positive cytotoxic T cells produced using the method according to claim 33, for producing a cancer preventive or therapeutic agent.


PCT/JP2023/023069 2022-06-24 2023-06-22 T-cell receptor WO2023249071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101473 2022-06-24
JP2022-101473 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249071A1 true WO2023249071A1 (en) 2023-12-28

Family

ID=89380069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023069 WO2023249071A1 (en) 2022-06-24 2023-06-22 T-cell receptor

Country Status (1)

Country Link
WO (1) WO2023249071A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522859A (en) * 2014-05-13 2017-08-17 テクニッシュ ウニヴェルジテート ミュンヘン T cell receptor specific for glypican 3 and its use for immunotherapy of hepatocellular carcinoma
JP2020517294A (en) * 2017-04-26 2020-06-18 ユーリカ セラピューティックス, インコーポレイテッド Construct specifically recognizing glypican 3 and use thereof
WO2022056321A1 (en) * 2020-09-10 2022-03-17 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using gpc3 specific fusion proteins
WO2022059780A1 (en) * 2020-09-18 2022-03-24 サイアス株式会社 Method for producing regenerated t cells via ips cells
WO2022220146A1 (en) * 2021-04-16 2022-10-20 サイアス株式会社 Cell bank composed of ips cells for introducing t cell receptor gene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522859A (en) * 2014-05-13 2017-08-17 テクニッシュ ウニヴェルジテート ミュンヘン T cell receptor specific for glypican 3 and its use for immunotherapy of hepatocellular carcinoma
JP2020517294A (en) * 2017-04-26 2020-06-18 ユーリカ セラピューティックス, インコーポレイテッド Construct specifically recognizing glypican 3 and use thereof
WO2022056321A1 (en) * 2020-09-10 2022-03-17 TCR2 Therapeutics Inc. Compositions and methods for tcr reprogramming using gpc3 specific fusion proteins
WO2022059780A1 (en) * 2020-09-18 2022-03-24 サイアス株式会社 Method for producing regenerated t cells via ips cells
WO2022220146A1 (en) * 2021-04-16 2022-10-20 サイアス株式会社 Cell bank composed of ips cells for introducing t cell receptor gene

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HERVAS-STUBBS, S. ET AL.: "Identification of a T-cell receptor specific for glypican 3 for adoptive immunotherapy", HUMAN GENE THERAPY, MARY ANN LIEBERT, INC. PUBLISHERS, GB, vol. 30, no. 12, 19 September 2019 (2019-09-19), GB , pages A15, XP009551856, ISSN: 1043-0342 *
NAKATSURA, TETSUYA ET AL.: "TCR-T Cells and CAR-T Cells Targeted Against Glypican-3 Antigen − Which Is More Promising?", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, BIOMEDICAL DRUGS PUBLICATION, JP, vol. 275, no. 1, 1 January 2020 (2020-01-01), JP , pages 26 - 33, XP009551855, ISSN: 0039-2359 *
NAKATSURA, TETSUYA: "Peptide-Based Vaccines for Cancer Targeted Against Glypican-3 Antigen", JAPANESE JOURNAL OF CLINICAL MEDICINE, NIPPON-RINSHO CO., OSAKA., JP, vol. 75, no. 2, 1 January 2017 (2017-01-01), JP , pages 257 - 262, XP009551460, ISSN: 0047-1852 *
NOBUHIRO TSUCHIYA, TOSHIAKI YOSHIKAWA, NORIHIRO FUJINAMI, KEIGO SAITO, SHOICHI MIZUNO, YU SAWADA, ITARU ENDO, TETSUYA NAKATSURA: "Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma", ONCOIMMUNOLGY, LANDES BIOSCIENCE, US, vol. 6, no. 10, 3 October 2017 (2017-10-03), US , pages 1 - 11, XP055742966, ISSN: 2162-4011, DOI: 10.1080/2162402X.2017.1346764 *

Similar Documents

Publication Publication Date Title
JP7460675B2 (en) PD-1-CD28 fusion protein and its use in medicine
CA2962375C (en) Car expression vector and car-expressing t cells
CN109803983B (en) Specific chimeric antigen receptor T cell targeting NKG2DL, preparation method and application thereof
KR20200071079A (en) New platform for co-stimulation, new CAR design and other enhancements for adoptive cell therapy
AU2016238963A1 (en) Method and compositions for cellular immunotherapy
KR20210118426A (en) Receptors that provide targeted co-stimulation for adoptive cell therapy
US20230257708A1 (en) Novel t-cell receptor
US11890302B2 (en) Gamma delta CAR-T cells comprising Fc gamma intracellular signaling domains
JP6580579B2 (en) Methods and compositions for producing cells expressing a T cell receptor
CN110857319B (en) Isolated T cell receptor, modified cell, encoding nucleic acid and application thereof
WO2019096115A1 (en) Isolated t-cell receptor, cell modified by same, coding nucleic acids, expression vector, preparation method, pharmaceutical composition, and applications
WO2021256522A1 (en) Chimeric antigen receptor-expressing immunocompetent cells
JP2021525066A (en) CAR NK cells
JP2024012413A (en) Method for producing cd3 positive cell
JP2024507929A (en) Recombinant vectors containing polycistronic expression cassettes and methods for their use
US20240084256A1 (en) Method for culturing cord blood-derived natural killer cells using transformed t-cells
EP4253410A1 (en) Ras mutant epitope peptide and t cell receptor recognizing ras mutant
WO2023249071A1 (en) T-cell receptor
WO2023288278A1 (en) Chimeric molecules providing targeted costimulation for adoptive cell therapy
WO2021112055A1 (en) Ny-eso-1-containing artificial adjuvant vector cell used for treating cancer
JP5485139B2 (en) Method for producing transgenic cells
WO2023150562A1 (en) Methods for activation and expansion of t cells
CA3141210A1 (en) Modified nk-92 cells, and therapeutic and diagnostic uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827253

Country of ref document: EP

Kind code of ref document: A1