WO2023248904A1 - Multi-blade blower and indoor unit - Google Patents

Multi-blade blower and indoor unit Download PDF

Info

Publication number
WO2023248904A1
WO2023248904A1 PCT/JP2023/022123 JP2023022123W WO2023248904A1 WO 2023248904 A1 WO2023248904 A1 WO 2023248904A1 JP 2023022123 W JP2023022123 W JP 2023022123W WO 2023248904 A1 WO2023248904 A1 WO 2023248904A1
Authority
WO
WIPO (PCT)
Prior art keywords
side opening
indoor
heat exchanger
suction side
blade
Prior art date
Application number
PCT/JP2023/022123
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 近藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023248904A1 publication Critical patent/WO2023248904A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans

Definitions

  • the present disclosure relates to a multi-blade blower that rotates to take in a gas-phase fluid flow (hereinafter referred to as an air flow) in the direction of the rotation axis and exhaust it in the radial direction, and an indoor unit equipped with this multi-blade blower.
  • a gas-phase fluid flow hereinafter referred to as an air flow
  • Patent Document 1 discloses a first protrusion provided on the outer periphery of a fan rotor and extending in the radial direction of the fan rotor, a second protrusion provided on the outer periphery of the fan rotor and extending in the rotation axis direction of the fan rotor, and a second protrusion provided on the housing. , a shielding plate facing the first protrusion from the radial direction of the fan rotor, and a surrounding part provided on the housing and surrounding the tip of the second protrusion, the first protrusion and the shielding plate forming a first labyrinth part.
  • a scirocco fan is disclosed in which a second labyrinth portion is formed by a second protrusion and a surrounding portion.
  • An object of the present disclosure is to provide a multi-blade blower and an indoor unit that can reduce miscellaneous vortices, reduce fluctuations in blade surface pressure, and reduce noise.
  • a multi-blade blower of the present disclosure is a multi-blade blower including a scroll casing and a sirocco fan, the scroll casing having a scroll portion, a suction side opening, and an outlet side opening,
  • the suction side opening opens in the direction of the rotation axis of the sirocco fan and extends in a tapered manner toward the inside of the scroll casing, and the inner circumference of the suction side opening is formed with unevenness. Serrations are provided.
  • This specification includes all contents of Japanese patent application/Japanese Patent Application No. 2022-101348 filed on June 23, 2022.
  • the multi-blade blower of the present invention can reduce the miscellaneous vortices generated at the outlet of the suction nozzle, thereby reducing fluctuations in the surface pressure of the blades caused by the collision of the miscellaneous vortices with the blades, thereby reducing noise. .
  • FIG. 1 is a cross-sectional view of an indoor unit in Embodiment 1.
  • FIG. 2 is a longitudinal cross-sectional view of the indoor unit in Embodiment 1.
  • FIG. 3 is a diagram showing a refrigeration cycle circuit in Embodiment 1.
  • FIG. 4 is a perspective view showing a multi-blade blower in Embodiment 1.
  • FIG. 5 is a perspective view showing a multi-blade blower in Embodiment 1.
  • Figure 6 is a conceptual diagram showing the relationship between serrations and longitudinal vortices.
  • Figures 7(a), (b), and (c) are explanatory diagrams showing the relationship between the main flow and the circulation flow.
  • Figure 8 is an explanatory diagram showing the concept of longitudinal vortex formation.
  • the inventors discovered the problem that the problem occurs, and in order to solve the problem, the subject matter of the present disclosure has been constructed.
  • the present disclosure provides a multi-blade blower and an indoor unit that can reduce miscellaneous vortices, reduce fluctuations in blade surface pressure, and reduce noise.
  • FIG. 1 is a cross-sectional view of an indoor unit included in an air conditioner.
  • FIG. 2 is a longitudinal sectional view of the indoor unit.
  • air conditioner 100 in this embodiment includes a box-shaped housing 101.
  • the housing 101 includes a top plate 102 and a bottom plate 103.
  • the left side of the housing 101 in FIG. 1 is a ventilation chamber 104, and the right side of the housing 101 in FIG. 1 is a heat exchanger chamber 105 that accommodates the indoor heat exchanger 33.
  • the ventilation chamber 104 and the heat exchanger chamber 105 are separated by a partition wall 106.
  • a suction side opening 5 for taking in indoor air is provided at the rear of the ventilation chamber 104, and an indoor ventilation device 49 is housed inside the ventilation chamber 104. Details of the indoor air blower 49 will be described later.
  • FIG. 3 is a configuration diagram of a refrigeration cycle in an embodiment of the present invention.
  • the refrigeration cycle device 20 includes a main circuit 21, a compressor 31, an outdoor heat exchanger 32, an indoor heat exchanger 33, a four-way valve 40, an outdoor expansion valve 45, and an indoor expansion valve 46. , a refrigerant storage tank 47, an outdoor blower 48, and an indoor blower 49.
  • the configuration is such that the operation can be switched between radiating heat with the outdoor heat exchanger 32 and absorbing heat with the indoor heat exchanger 33, or absorbing heat with the outdoor heat exchanger 32 and radiating heat with the indoor heat exchanger 33.
  • a device using the refrigeration cycle device 20 for the purpose of heating or cooling air is called an air conditioner or the like, and a device using the refrigeration cycle device 20 for the purpose of heating or cooling water is called a chiller or the like.
  • the outdoor unit 22 includes a compressor 31, an outdoor heat exchanger 32, a four-way valve 40, an outdoor expansion valve 45, a refrigerant storage tank 47, an outdoor blower device 48, and , the indoor unit 23 including the indoor heat exchanger 33, the indoor expansion valve 46, and the indoor blower 49 may be configured as separate units, or the outdoor unit 22 and the indoor unit 23 may be configured as an integrated unit. It may also be configured. Furthermore, even in a configuration in which the outdoor units 22 and indoor units 23 are separated, there are cases where the number of outdoor units 22 and indoor units 23 are the same, and cases where there are more indoor units 23 than outdoor units 22.
  • the main circuit 21 performs an operation of dissipating heat with the outdoor heat exchanger 32 and absorbing heat with the indoor heat exchanger 33
  • the main circuit 21 includes the compressor 31, the first path 41 of the four-way valve 40, the outdoor heat exchanger 32, the outdoor expansion
  • This circuit connects the valve 45, refrigerant storage tank 47, indoor expansion valve 46, and indoor heat exchanger 33 in this order, and returns the heat from the indoor heat exchanger 33 to the compressor 31 via the second path 42 of the four-way valve 40.
  • the compressor 31 and the first path 41 of the four-way valve 40 are connected by a flow path 91
  • the first path 41 of the four-way valve 40 and the outdoor heat exchanger 32 are connected by a flow path 92
  • the outdoor heat exchanger 32 and the outdoor expansion valve 45 are connected by a flow path 91.
  • the outdoor expansion valve 45 and the refrigerant storage tank 47 are connected by the path 93
  • the refrigerant storage tank 47 and the indoor expansion valve 46 are connected by the path 95
  • the indoor expansion valve 46 and the indoor heat exchanger 33 are connected by the path 96
  • the indoor heat exchanger 33 and the second path 42 of the four-way valve 40 are connected by a flow path 97
  • the second path 42 of the four-way valve 40 and the compressor 31 are connected by a flow path 98.
  • the compressor 31, the third path 43 of the four-way valve 40, the indoor heat exchanger 33, the indoor expansion valve 46, A refrigerant storage tank 47, an outdoor expansion valve 45, and an outdoor heat exchanger 32 are connected in this order, and the circuit returns from the outdoor heat exchanger 32 to the compressor 31 via the fourth path 44 of the four-way valve 40.
  • the compressor 31 and the third path 43 of the four-way valve 40 are connected by a flow path 91, the third path 43 of the four-way valve 40 and the indoor heat exchanger 33 are connected by a flow path 97, and the indoor heat exchanger 33 and the indoor expansion valve 46 are connected by a flow path 97.
  • the indoor expansion valve 46 and the refrigerant storage tank 47 are connected by the path 96, the refrigerant storage tank 47 and the outdoor expansion valve 45 are connected by the path 94, the outdoor expansion valve 45 and the outdoor heat exchanger 32 are connected by the path 93, The outdoor heat exchanger 32 and the fourth path 44 of the four-way valve 40 are connected by a flow path 92, and the fourth path 44 of the four-way valve 40 and the compressor 31 are connected by a flow path 98.
  • Switching of the main circuit 21 depending on the operation of the refrigeration cycle device 20 is performed by a four-way valve 40. Inside the main circuit 21, a refrigerant such as R32 or R410A and compressor oil for lubricating the sliding parts of the compressor 31 are sealed.
  • the compressor 31 is a rotary compressor, that is, a cylinder having a cylindrical internal space, a rotor arranged eccentrically with respect to the central axis inside the cylinder, and a rotor that is slidably housed in a slit provided in the cylinder wall.
  • the cylinder is equipped with a gate valve whose tip is always in contact with the cylindrical surface of the rotor, and communication holes to the main circuit 21 on both sides of the gate valve in the cylinder.
  • the outdoor heat exchanger 32 and the indoor heat exchanger 33 are fin-and-tube heat exchangers, that is, an aluminum plate with a thickness of about 0.1 mm with a plurality of round holes with a diameter of about 5 mm to 8 mm. It consists of fins with round holes bent into a collar shape and copper or aluminum tubes.Hundreds of fins are lined up, the tubes are inserted into the round holes, and the tubes are pushed apart so that they fit tightly against the fins. ing.
  • the four-way valve 40 is configured to be able to switch between a combination of the first path 41 and the second path 42 or the third path 43 and the fourth path 44 using an internal valve.
  • the outdoor expansion valve 45 and the indoor expansion valve are configured to partially make it difficult for the refrigerant to flow by reducing the cross-sectional area of the path through which the refrigerant flows with respect to the main circuit 21, or by switching between closing and opening.
  • the refrigerant storage tank 47 includes a container and two communication holes for connection to the main circuit 21, and a pipe extends from the communication hole to the lower part inside the container, and mainly stores the liquid phase refrigerant accumulated in the lower part of the container. It is configured to return to the circuit 21.
  • the outdoor blower device 48 uses an axial blower or a mixed flow blower.
  • a duct indoor unit is used as the indoor unit 23.
  • the indoor unit 23 includes a housing 30, an indoor heat exchanger 33, an indoor expansion valve 46, an electric motor 89, and an indoor air blower 49.
  • the casing 30 is provided with a communication hole therein which passes through the indoor air blower 49 and the indoor heat exchanger 33 in this order, and whose both ends are open to the indoor atmosphere.
  • the electric motor 89 uses a variable speed DC inverter motor.
  • the indoor heat exchanger 33 uses a fin-and-tube type. The indoor heat exchanger 33 surrounds the indoor blower device 49 with a predetermined gap, and although it has ventilation resistance, airflow can pass therethrough.
  • FIG. 4 is a perspective view of a multi-blade blower.
  • FIG. 5 is a perspective view of a multi-blade blower.
  • the indoor blower device 49 includes a multi-blade blower 1 and an electric motor 89.
  • the multi-blade blower 1 includes a scroll casing 2 and a sirocco fan 3.
  • the scroll casing 2 includes a scroll portion 4, a suction side opening 5, an outlet side opening 6, and a tongue portion 7, and is fixed to a housing 30.
  • the radius of the scroll portion 4 increases in a spiral manner toward the front in the direction of rotation of the sirocco fan 3. Specifically, the expansion rate of the Archimedes curve is used.
  • the suction side opening 5 is open in the axial direction of the rotating shaft 99 and has a suction side opening 5 that contracts toward the inside of the scroll casing 2 at a predetermined curvature.
  • the blow-off side opening 6 opens at the outer peripheral end of the scroll portion 4 .
  • the suction side opening 5 and the blowout side opening 6 communicate with each other and form a ventilation path.
  • the tongue portion 7 connects the outlet opening 6 and the inner circumferential end of the scroll portion 4, has an acute angle, and has its ridgeline rounded to a radius of about 10 mm.
  • the sirocco fan 3 includes a main plate 10, a plurality of blades 11, and an end ring 12.
  • the main plate 10 is a disk concentric with the rotating shaft 99 and is fixed to the rotating shaft 99 of the electric motor 89 .
  • the blade 11 has a blade shape that is inclined so that the rear side in the direction of rotation of the sirocco fan 3 approaches the rotation axis 99, and extends from the main plate 10 in parallel to the rotation axis 99.
  • the number of blades of the sirocco fan 3 is 40, which are arranged at equal intervals around the rotating shaft 99.
  • the end ring 12 is a circular ring, and connects the wings 11 at the end of the wings 11 on the opposite side to the main plate 10.
  • the wings 11 extend on both sides of the main plate 10.
  • the scroll casing 2 and sirocco fan 3 of the multi-blade blower are manufactured by resin molding.
  • the suction side opening 5 is rounded with a radius of about 10 mm to 50 mm so as to be convex toward the main flow 17 side.
  • serrations 14 are provided on the inner periphery of the suction side opening 5, and are formed of approximately triangular irregularities.
  • the angle of the outlet of the suction side opening 5 is inclined toward the rotation axis 99 by 3 degrees or more and 30 degrees or less with respect to the rotation axis 99.
  • the serrations 14 are formed so that W/H is 0.3 or more and 5.0 or less, where H is the depth and W is the width of one recess.
  • the flow rate of the refrigerant is adjusted by the indoor expansion valve 46, and the refrigerant is discharged.
  • the refrigerant absorbs heat from the outside air in the indoor heat exchanger 33, evaporates, and is in a low-temperature, low-pressure gas phase state. , and is again compressed by the compressor 31 into a high-temperature, high-pressure gaseous state. This series of operations moves indoor heat to the outdoors via the refrigerant, resulting in a cooling operation in the air conditioner.
  • the refrigeration cycle device 20 operates to absorb heat in the outdoor heat exchanger 32 and radiate heat in the indoor heat exchanger 33, in the main circuit 21, the refrigerant sealed in the main circuit 21 is in a low-temperature, low-pressure gas phase.
  • the gas is sucked into the compressor 31 in this state, and is compressed by the compressor 31 into a high temperature and high pressure gas phase state.
  • the flow direction of the refrigerant is selected by the four-way valve 40, and the refrigerant flows to the indoor heat exchanger 33, where it radiates heat and becomes a medium-temperature, medium-pressure liquid phase refrigerant.
  • the flow rate of the refrigerant is adjusted by the outdoor expansion valve 45 and then discharged.
  • the refrigerant radiates heat to the outside air and evaporates in the outdoor heat exchanger 32, and is in a low-temperature, low-pressure gas phase state. , and is again compressed by the compressor 31 into a high-temperature, high-pressure gaseous state.
  • This series of operations moves outdoor heat into the room via the refrigerant, resulting in a heating operation in the air conditioner.
  • the indoor heat exchanger 33 radiates or absorbs heat
  • the multi-blade blower 1 is used to generate airflow to improve heat exchange efficiency and circulate temperature-controlled air indoors.
  • the airflow generated by the multi-blade blower 1 is taken in from the suction side opening 5 of the scroll casing 2 at the room temperature, flows through the scroll part 4 while being pressurized by the sirocco fan 3, and then flows from the blowout side opening 6 at the room temperature. It will be exhausted. Thereafter, it passes through the indoor heat exchanger 33, where it exchanges heat with the refrigerant, is cooled during cooling operation, warmed during heating operation, and is blown out from the casing 30.
  • the scroll casing 2 and the electric motor 89 are fixed to a housing 30 (not shown), and the sirocco fan 3 is rotationally driven by the electric motor 89.
  • the airflow is sucked in from the suction side opening 5 in the axial direction of the rotating shaft 99, passes through the blades 11, is pressurized while swirling around the scroll portion 4, and is blown out from the blowout side opening 6.
  • the inside of the blade 11 is surrounded by air.
  • the pressure is low in some areas, and the pressure outside is high. That is, the pressure inside the scroll casing 2 located on the outside is higher than that in the suction side opening 5 located on the inside of the blade 11 . Therefore, as shown in FIG. 5, a circulation flow 18, which is an airflow leaking from the scroll portion 4 toward the suction side opening 5, is generated.
  • FIG. 6 is a conceptual diagram showing the relationship between serrations and longitudinal vortices. If the circulating flow 18 merges with the main flow 17 without its velocity being relaxed, a miscellaneous vortex is generated. As shown in FIG. 6, there are many vortices disturbed by the blades 11 around the blades 11, but it can also be seen that relatively strong miscellaneous vortices are generated downstream of the suction side opening 5.
  • the circumferential rotation speed of the blades 11 is, for example, 10 m/sec to 20 m/sec, whereas the wind speed of the suction airflow is as slow as several m/sec. It cannot pass through the gap between the blades 11 and is cut by the plurality of blades 11.
  • the surface pressure of the blade 11 is the same as that of the surroundings before cutting the miscellaneous vortex, decreases when cutting the miscellaneous vortex, and the surface pressure of the blade 11 decreases when the miscellaneous vortex is cut. Then it will recover. That is, the surface pressure of the blade 11 oscillates. Since pressure vibrations are sound waves themselves, noise is generated.
  • the main flow 17 has a serration inflow angle with respect to the serrations 14.
  • a longitudinal vortex 19 is generated that flows in the direction of the main flow 17 but has a rotational component in a plane perpendicular to the direction of the main flow 17.
  • the longitudinal vortex 19 is a structural vortex whose strength and direction are relatively stable, unlike miscellaneous vortices whose direction and size are not fixed.
  • the serrations 14 have a function of generating a longitudinal vortex swirling on a plane perpendicular to the direction of travel of the airflow when the airflow begins to leak from the concave portion thereof. Therefore, it is effective in cases where the serrations 14 have an angle that slightly blocks the airflow, or in cases where there is a pressure difference on both sides of the plate having the serrations 14 and a curling flow occurs. On the other hand, if there is no pressure difference on both sides of the plate and the flow is parallel, the serration effect cannot be obtained.
  • FIGS. 7(a), (b), and (c) are explanatory diagrams showing the relationship between the main flow and the circulating flow.
  • FIG. 7(a) if the suction nozzle outlet 13 does not have the serrations 14 and does not taper toward the rotating shaft 99, the directions of the main flow and the circulation flow are parallel at the confluence of the main flow and the circulation flow. Since the velocity gradient between these airflows is large, a vortex is generated downstream of the suction nozzle outlet 13, as shown in FIG.
  • the suction nozzle outlet 13 does not have the serrations 14 and tapers toward the rotating shaft 99, the circulating flow flows along the slope of the suction nozzle outlet 13. , the velocity gradient plus the element of airflow collision creates a larger vortex.
  • the suction nozzle outlet 13 has serrations 14 and does not taper toward the rotation axis 99, the serrations 14 may be arranged diagonally with respect to the direction of movement of the airflow. While the effect is obtained when the airflow is parallel to the airflow, the effect of the serrations 14 is not obtained because it is parallel to the airflow and is equivalent to the case without the serrations 14, and a vortex is generated.
  • the serrations 14 are provided at the suction nozzle outlet 13 and tapered toward the rotating shaft 99, so that the suction nozzle outlet 13 is disposed diagonally with respect to the main flow. As a result, velocity gradients are relaxed and vortices are reduced. Since vortices are reduced, noise is reduced.
  • FIG. 8 is an explanatory diagram showing the concept of forming a longitudinal vortex. As shown in FIG. 8, when the airflow hits the suction side opening 5 at an angle with respect to the serrations 14, the airflow leaks from the concave portions of the serrations 14 in the direction of travel, causing continuous leakage. Like a screw thread, it has a structure that has both a forward direction component and a rotation direction component.
  • the angle of the outlet of the suction side opening has an inclination of 3 degrees or more and 30 degrees or less with respect to the rotation axis, and the outlet side of the suction side opening
  • the end face of one recess is provided with serrations where the depth is H and the width is W, W/H is 0.3 or more and 5.0 or less, and H and W are both greater than or equal to the plate thickness of the suction side opening.
  • the scroll casing 2 has the scroll portion 4, the suction side opening 5, and the blowout side opening 6, and the suction side opening 5 has the sirocco fan.
  • the suction side opening 5 is opened in the direction of the rotating shaft 99 of the scroll casing 2 and extends in a tapered manner toward the inside of the scroll casing 2.
  • the inner circumferential portion of the suction side opening 5 is provided with serrations 14 formed with unevenness.
  • the unevenness is formed of triangular unevenness.
  • the serrations 14 formed into triangular irregularities can reduce miscellaneous vortices at the outlet of the suction side opening 5, thereby reducing fluctuations in the surface pressure of the blades 11 and reducing the noise of the multi-blade blower 1. can.
  • W/H of the serrations 14 is 0.3 or more and 5.0 or less, and both H and W are on the suction side. It is formed to be thicker than the plate thickness of the opening.
  • the main flow 17 flows into the serrations 14 with a serration inflow angle 15, and a longitudinal vortex 19 is generated between the main flow 17 and the circulation flow 18 by the concave portions of the serrations to mix the respective air flows.
  • the velocity gradient is relaxed and miscellaneous vortices can be reduced.
  • Embodiment 1 has been described as an example of the technology disclosed in this application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made. Therefore, other embodiments will be illustrated below.
  • the compression type of the compressor 31 may be a rotary type, a scroll type, a reciprocating type, or a turbo type. Further, the compressor 31 may be powered by an electric motor provided inside the compressor 31, an electric motor independent of the compressor 31, or a prime mover instead of the electric motor. As long as it is a mechanism that can compress gas phase refrigerant, its type and power do not matter.
  • the indoor unit 23 may be a chiller module that adjusts the temperature of water instead of adjusting the temperature of indoor air, and may be integrated into a chemical substance fractionation facility, etc., instead of being a separate housing. It's okay if it is. As long as the configuration allows heat exchange from the main circuit 21 to the outside, the object or form of temperature adjustment is not limited.
  • the indoor heat exchanger 33 is a heat exchanger in the form of a series of flat tubes, the refrigerant side is called a microchannel heat exchanger, which integrates multiple fine channels, and the air side is composed of a collection of fins. It may also be a heat exchanger in the form of Any type of structure may be used as long as it allows the airflow generated by the indoor air blower 49 to pass through and exchanges heat.
  • the electric motor 89 may be a constant speed DC motor or an AC motor, or may be not limited to an electric motor but may be any other rotary drive device. Any type may be used as long as the indoor air blower 49 can be rotated.
  • the refrigerant sealed in the main circuit 21 may be CO2 or the like that does not undergo a phase change, and the type of refrigerant is not limited.
  • the suction side opening 5 may be in the shape of a nozzle facing the inside of the scroll casing 2, or may be a simple round hole.
  • the multi-blade blower 1 is manufactured by resin molding in the present invention, it may be partially or entirely made of sheet metal, cast metal, or machined.
  • other curves such as an involute curve may be used in addition to the Archimedean curve for the scroll portion 4, but since changes in the air flow due to the shape of the scroll portion 4 have little effect on the air flow colliding with the tongue portion 7, unevenness may be used. If part 16 is applied, there is a noise reduction effect.
  • the number of blades of the sirocco fan 3 may be any number. Generally, there are about 30 to 50 sheets.
  • the blades 11 do not necessarily have to extend parallel to the rotation axis 99. In terms of production, it is often used to use a uniaxial mold because it is low cost, and the blades 11 are often made parallel to the rotation axis 99 in order to be able to take out the mold from the mold even with a single axis.
  • a three-dimensional blade shape may be formed by using a core or by performing post-forming processing such as welding or welding. Furthermore, if deformation is not a problem in practice, such as when the blade 11 extends for a short length, the end ring may be omitted.
  • a multi-blade blower including a scroll casing and a sirocco fan, the scroll casing having a scroll portion, a suction side opening, an outlet side opening, and a tongue,
  • the suction side opening opens in the direction of the rotation axis of the sirocco fan and extends in a tapered manner toward the inside of the scroll casing, and the inner circumference of the suction side opening is formed with unevenness.
  • the multi-blade blower according to the present invention can reduce noise, it can be used not only in refrigeration cycle devices such as air conditioners and chillers, but also in air handling devices such as circulators and duct blowing equipment, ventilation devices, and fan heaters. It can be applied to all equipment using multi-blade blowers, such as intake and exhaust systems for combustors such as combustors, airflow circulation systems for biobenches, etc.

Abstract

The present disclosure provides a multi-blade blower capable of reducing miscellaneous vortexes to reduce a variation in the surface pressure of blades and reduce noise. A scroll casing 2 has a scroll part 4, an intake-side opening 5, and a blowout-side opening 6, wherein: the intake-side opening 5 opens toward the direction of the rotation axis 99 of a Sirocco fan 3 and extends to be tapered toward the inside of the scroll casing 2; and a serration 14 formed by protrusions and recesses is provided to the inner peripheral section of the intake-side opening 5.

Description

多翼送風機および室内機Multi-blade blower and indoor unit
 本開示は、回転することで回転軸方向に気相の流体の流れ(以下、気流)を吸気し、半径方向に排気する多翼送風機およびこの多翼送風機を備えた室内機に関するものである。 The present disclosure relates to a multi-blade blower that rotates to take in a gas-phase fluid flow (hereinafter referred to as an air flow) in the direction of the rotation axis and exhaust it in the radial direction, and an indoor unit equipped with this multi-blade blower.
 特許文献1は、ファンロータの外周に設けられ、当該ファンロータの半径方向に延びる第1突起、ファンロータの外周に設けられ、ファンロータの回転軸方向に延びる第2突起と、ハウジングに設けられ、第1突起にファンロータの半径方向から対向する遮蔽板と、ハウジングに設けられ、第2突起の先端を取り囲む取囲み部分とを備え、第1突起と遮蔽板とによって、第1ラビリンス部分が形成され、さらに、第2突起と取囲み部分とによって、第2ラビリンス部分が形成されたシロッコファンを開示する。 Patent Document 1 discloses a first protrusion provided on the outer periphery of a fan rotor and extending in the radial direction of the fan rotor, a second protrusion provided on the outer periphery of the fan rotor and extending in the rotation axis direction of the fan rotor, and a second protrusion provided on the housing. , a shielding plate facing the first protrusion from the radial direction of the fan rotor, and a surrounding part provided on the housing and surrounding the tip of the second protrusion, the first protrusion and the shielding plate forming a first labyrinth part. A scirocco fan is disclosed in which a second labyrinth portion is formed by a second protrusion and a surrounding portion.
特開2014-77381号公報Japanese Patent Application Publication No. 2014-77381
 本開示は、雑渦を低減して翼の表面圧力の変動を低減し、騒音を低減することのできる多翼送風機および室内機を提供することを目的とする。 An object of the present disclosure is to provide a multi-blade blower and an indoor unit that can reduce miscellaneous vortices, reduce fluctuations in blade surface pressure, and reduce noise.
 本開示の多翼送風機は、スクロールケーシングと、シロッコファンと、を備える多翼送風機であって、前記スクロールケーシングは、スクロール部と、吸込側開口部と、吹出側開口部と、を有し、前記吸込側開口部は、前記シロッコファンの回転軸方向に開口し、前記スクロールケーシングの内側に向けて先細りで延出しており、前記吸込側開口部の内周部には、凹凸で形成されたセレーションが設けられている。
 この明細書には、2022年6月23日に出願された日本国特許出願・特願2022-101348号の全ての内容が含まれる。
A multi-blade blower of the present disclosure is a multi-blade blower including a scroll casing and a sirocco fan, the scroll casing having a scroll portion, a suction side opening, and an outlet side opening, The suction side opening opens in the direction of the rotation axis of the sirocco fan and extends in a tapered manner toward the inside of the scroll casing, and the inner circumference of the suction side opening is formed with unevenness. Serrations are provided.
This specification includes all contents of Japanese patent application/Japanese Patent Application No. 2022-101348 filed on June 23, 2022.
 本発明の多翼送風機は、吸込ノズルの出口において発生する雑渦を低減できるので、雑渦が翼に衝突することに起因する翼の表面圧力の変動を低減でき、騒音を低減することができる。 The multi-blade blower of the present invention can reduce the miscellaneous vortices generated at the outlet of the suction nozzle, thereby reducing fluctuations in the surface pressure of the blades caused by the collision of the miscellaneous vortices with the blades, thereby reducing noise. .
図1は、実施の形態1における室内機の横断面図FIG. 1 is a cross-sectional view of an indoor unit in Embodiment 1. 図2は、実施の形態1における室内機の縦断面図FIG. 2 is a longitudinal cross-sectional view of the indoor unit in Embodiment 1. 図3は、実施の形態1における冷凍サイクル回路を示す図FIG. 3 is a diagram showing a refrigeration cycle circuit in Embodiment 1. 図4は、実施の形態1における多翼送風機を示す斜視図FIG. 4 is a perspective view showing a multi-blade blower in Embodiment 1. 図5は、実施の形態1における多翼送風機を示す斜視図FIG. 5 is a perspective view showing a multi-blade blower in Embodiment 1. 図6は、セレーションと縦渦の関係を示す概念図Figure 6 is a conceptual diagram showing the relationship between serrations and longitudinal vortices. 図7(a),(b),(c)は、本流と循環流との関係を示す説明図Figures 7(a), (b), and (c) are explanatory diagrams showing the relationship between the main flow and the circulation flow. 図8は、縦渦が形成される概念を示す説明図Figure 8 is an explanatory diagram showing the concept of longitudinal vortex formation.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、循環流に対して、側面板とリブとシロッコファンとで構成される拡大風路や縮小風路や転向風路を設けることで、通風抵抗を増大させて循環流を低減し、同一風量時の回転数を低減して低騒音化する技術があった。
 しかしながら、従来の技術では、本流と循環流との速度差が緩和されずに合流するため雑渦が発生し、雑渦が翼に吸い込まれることで、翼の表面圧力が変動して騒音が発生してしまうという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 本開示は、雑渦を低減して翼の表面圧力の変動を低減し、騒音を低減することのできる多翼送風機および室内機を提供する。
(Findings, etc. that formed the basis of this disclosure)
At the time the inventors came up with the present disclosure, it was possible to reduce ventilation resistance by providing an enlarged air passage, a reduced air passage, and a diverted air passage, each of which is composed of a side plate, a rib, and a sirocco fan, for circulating flow. There is a technology that reduces the circulating flow by increasing the airflow, and reduces the rotational speed at the same air volume to reduce noise.
However, with conventional technology, the speed difference between the main flow and the circulating flow is not alleviated and they merge, resulting in a miscellaneous vortex.The miscellaneous vortex is sucked into the blade, causing the surface pressure of the blade to fluctuate and generate noise. The inventors discovered the problem that the problem occurs, and in order to solve the problem, the subject matter of the present disclosure has been constructed.
The present disclosure provides a multi-blade blower and an indoor unit that can reduce miscellaneous vortices, reduce fluctuations in blade surface pressure, and reduce noise.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art.
The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 (実施の形態1)
 以下、図面を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.室内機の構成]
 図1は、空気調和機が備える室内機の横断面図である。図2は、室内機の縦断面図である。
 図1および図2に示すように、本実施の形態における空気調和機100は、箱型の筐体101を備えている。筐体101は、天板102と底板103とを備えている。
 筐体101の図1において左側は、送風室104とされており、筐体101の図1において右側は、室内熱交換器33を収容する熱交換器室105とされている。送風室104と熱交換器室105とは、仕切壁106によって区画されている。
(Embodiment 1)
Embodiment 1 will be described below with reference to the drawings.
[1-1. composition]
[1-1-1. Indoor unit configuration]
FIG. 1 is a cross-sectional view of an indoor unit included in an air conditioner. FIG. 2 is a longitudinal sectional view of the indoor unit.
As shown in FIGS. 1 and 2, air conditioner 100 in this embodiment includes a box-shaped housing 101. As shown in FIGS. The housing 101 includes a top plate 102 and a bottom plate 103.
The left side of the housing 101 in FIG. 1 is a ventilation chamber 104, and the right side of the housing 101 in FIG. 1 is a heat exchanger chamber 105 that accommodates the indoor heat exchanger 33. The ventilation chamber 104 and the heat exchanger chamber 105 are separated by a partition wall 106.
 送風室104の後方には、室内空気を取り込む吸込側開口部5が設けられており、送風室104の内部には、室内送風装置49が収容されている。
 室内送風装置49の詳細については、後述する。
A suction side opening 5 for taking in indoor air is provided at the rear of the ventilation chamber 104, and an indoor ventilation device 49 is housed inside the ventilation chamber 104.
Details of the indoor air blower 49 will be described later.
 [1-1-2.冷凍サイクルの構成]
 次に、本発明の多翼送風機1を使用する装置の一例である冷凍サイクル装置について説明する。
 図3は本発明の実施の形態における冷凍サイクルの構成図である。
 図3において、冷凍サイクル装置20は、主回路21と、圧縮機31と、室外熱交換器32と、室内熱交換器33と、四方弁40と、室外膨張弁45と、室内膨張弁46と、冷媒貯留槽47と、室外送風装置48と、室内送風装置49を備えている。
 そして、室外熱交換器32で放熱するとともに室内熱交換器33で吸熱する、もしくは室外熱交換器32で吸熱するとともに室内熱交換器33で放熱するという動作を切り替えることが可能な構成となっている。冷凍サイクル装置20を、空気を加熱または冷却することを目的として用いた装置がエアコン等と呼ばれ、水を加熱または冷却することを目的として用いた装置がチラー等と呼ばれる。
[1-1-2. Refrigeration cycle configuration]
Next, a refrigeration cycle device, which is an example of a device using the multi-blade blower 1 of the present invention, will be explained.
FIG. 3 is a configuration diagram of a refrigeration cycle in an embodiment of the present invention.
In FIG. 3, the refrigeration cycle device 20 includes a main circuit 21, a compressor 31, an outdoor heat exchanger 32, an indoor heat exchanger 33, a four-way valve 40, an outdoor expansion valve 45, and an indoor expansion valve 46. , a refrigerant storage tank 47, an outdoor blower 48, and an indoor blower 49.
The configuration is such that the operation can be switched between radiating heat with the outdoor heat exchanger 32 and absorbing heat with the indoor heat exchanger 33, or absorbing heat with the outdoor heat exchanger 32 and radiating heat with the indoor heat exchanger 33. There is. A device using the refrigeration cycle device 20 for the purpose of heating or cooling air is called an air conditioner or the like, and a device using the refrigeration cycle device 20 for the purpose of heating or cooling water is called a chiller or the like.
 また、冷凍サイクル装置20の形態として、圧縮機31と、室外熱交換器32と、四方弁40と、室外膨張弁45と、冷媒貯留槽47と、室外送風装置48を含む室外機22、および、室内熱交換器33と、室内膨張弁46と、室内送風装置49を含む室内機23、でユニットを分離して構成することもあるし、室外機22と、室内機23を一体のユニットとして構成することもある。また、室外機22と室内機23を分離する構成においても、室外機22と室内機23が同数の場合と、室外機22よりも室内機23の台数が多い場合と、がある。 Further, as a form of the refrigeration cycle device 20, the outdoor unit 22 includes a compressor 31, an outdoor heat exchanger 32, a four-way valve 40, an outdoor expansion valve 45, a refrigerant storage tank 47, an outdoor blower device 48, and , the indoor unit 23 including the indoor heat exchanger 33, the indoor expansion valve 46, and the indoor blower 49 may be configured as separate units, or the outdoor unit 22 and the indoor unit 23 may be configured as an integrated unit. It may also be configured. Furthermore, even in a configuration in which the outdoor units 22 and indoor units 23 are separated, there are cases where the number of outdoor units 22 and indoor units 23 are the same, and cases where there are more indoor units 23 than outdoor units 22.
 本実施の形態においては、家庭用エアコンや店舗用エアコンに多く見られる、室外機22と室内機23が分離しており、室外機22と室内機23が1台ずつであるエアコンの構成例を示す。
 主回路21は、室外熱交換器32で放熱して室内熱交換器33で吸熱する動作を行う場合には、圧縮機31、四方弁40の第1経路41、室外熱交換器32、室外膨張弁45、冷媒貯留槽47、室内膨張弁46、室内熱交換器33をこの順に接続し、室内熱交換器33から四方弁40の第2経路42を経由して圧縮機31に戻す回路である。
 圧縮機31と四方弁40の第1経路41を流路91によって、四方弁40の第1経路41と室外熱交換器32を流路92によって、室外熱交換器32と室外膨張弁45を流路93によって、室外膨張弁45と冷媒貯留槽47を流路94によって、冷媒貯留槽47と室内膨張弁46を流路95によって、室内膨張弁46と室内熱交換器33を流路96によって、室内熱交換器33と四方弁40の第2経路42を流路97によって、四方弁40の第2経路42と圧縮機31を流路98によって、接続している。
In this embodiment, an example of the configuration of an air conditioner in which the outdoor unit 22 and the indoor unit 23 are separated, and there is one outdoor unit 22 and one indoor unit 23, which is often found in home air conditioners and store air conditioners, will be described. show.
When the main circuit 21 performs an operation of dissipating heat with the outdoor heat exchanger 32 and absorbing heat with the indoor heat exchanger 33, the main circuit 21 includes the compressor 31, the first path 41 of the four-way valve 40, the outdoor heat exchanger 32, the outdoor expansion This circuit connects the valve 45, refrigerant storage tank 47, indoor expansion valve 46, and indoor heat exchanger 33 in this order, and returns the heat from the indoor heat exchanger 33 to the compressor 31 via the second path 42 of the four-way valve 40. .
The compressor 31 and the first path 41 of the four-way valve 40 are connected by a flow path 91, the first path 41 of the four-way valve 40 and the outdoor heat exchanger 32 are connected by a flow path 92, and the outdoor heat exchanger 32 and the outdoor expansion valve 45 are connected by a flow path 91. The outdoor expansion valve 45 and the refrigerant storage tank 47 are connected by the path 93, the refrigerant storage tank 47 and the indoor expansion valve 46 are connected by the path 95, the indoor expansion valve 46 and the indoor heat exchanger 33 are connected by the path 96, The indoor heat exchanger 33 and the second path 42 of the four-way valve 40 are connected by a flow path 97, and the second path 42 of the four-way valve 40 and the compressor 31 are connected by a flow path 98.
 また、室外熱交換器32で吸熱して室内熱交換器33で放熱する動作を行う場合には、圧縮機31、四方弁40の第3経路43、室内熱交換器33、室内膨張弁46、冷媒貯留槽47、室外膨張弁45、室外熱交換器32をこの順に接続しており、室外熱交換器32から四方弁40の第4経路44を経由して圧縮機31に戻す回路である。 In addition, when performing an operation of absorbing heat in the outdoor heat exchanger 32 and dissipating heat in the indoor heat exchanger 33, the compressor 31, the third path 43 of the four-way valve 40, the indoor heat exchanger 33, the indoor expansion valve 46, A refrigerant storage tank 47, an outdoor expansion valve 45, and an outdoor heat exchanger 32 are connected in this order, and the circuit returns from the outdoor heat exchanger 32 to the compressor 31 via the fourth path 44 of the four-way valve 40.
 圧縮機31と四方弁40の第3経路43を流路91によって、四方弁40の第3経路43と室内熱交換器33を流路97によって、室内熱交換器33と室内膨張弁46を流路96によって、室内膨張弁46と冷媒貯留槽47を流路95によって、冷媒貯留槽47と室外膨張弁45を流路94によって、室外膨張弁45と室外熱交換器32を流路93によって、室外熱交換器32と四方弁40の第4経路44を流路92によって、四方弁40の第4経路44と圧縮機31を流路98によって、接続している。冷凍サイクル装置20の動作の別による主回路21の切り替えは四方弁40により行うようにしている。主回路21の内部にはR32やR410Aに代表される冷媒と、圧縮機31の摺動部を潤滑するための圧縮機油を封入している。 The compressor 31 and the third path 43 of the four-way valve 40 are connected by a flow path 91, the third path 43 of the four-way valve 40 and the indoor heat exchanger 33 are connected by a flow path 97, and the indoor heat exchanger 33 and the indoor expansion valve 46 are connected by a flow path 97. The indoor expansion valve 46 and the refrigerant storage tank 47 are connected by the path 96, the refrigerant storage tank 47 and the outdoor expansion valve 45 are connected by the path 94, the outdoor expansion valve 45 and the outdoor heat exchanger 32 are connected by the path 93, The outdoor heat exchanger 32 and the fourth path 44 of the four-way valve 40 are connected by a flow path 92, and the fourth path 44 of the four-way valve 40 and the compressor 31 are connected by a flow path 98. Switching of the main circuit 21 depending on the operation of the refrigeration cycle device 20 is performed by a four-way valve 40. Inside the main circuit 21, a refrigerant such as R32 or R410A and compressor oil for lubricating the sliding parts of the compressor 31 are sealed.
 圧縮機31は、ロータリー式圧縮機、すなわち、円筒形の内部空間を有するシリンダと、シリンダの内部の中心軸に対して偏心して配したローターと、シリンダ壁面に設けたスリットに摺動自由に収納されていて先端がローターの円筒面に常に接する構成にした仕切弁と、シリンダにおいて仕切弁の両側に主回路21への連通孔を備えている。
 室外熱交換器32および室内熱交換器33は、フィンアンドチューブ式熱交換器、すなわち、厚さ0.1mm程度のアルミニウムの板に直径5mm~8mm程度の複数個の丸穴が開いていて且つ丸穴が襟状に曲げられているフィンと、銅またはアルミニウムの管を備え、数百枚のフィンを並べて丸穴に管を挿入し、管を押し広げてフィンに密着するようにして構成している。
The compressor 31 is a rotary compressor, that is, a cylinder having a cylindrical internal space, a rotor arranged eccentrically with respect to the central axis inside the cylinder, and a rotor that is slidably housed in a slit provided in the cylinder wall. The cylinder is equipped with a gate valve whose tip is always in contact with the cylindrical surface of the rotor, and communication holes to the main circuit 21 on both sides of the gate valve in the cylinder.
The outdoor heat exchanger 32 and the indoor heat exchanger 33 are fin-and-tube heat exchangers, that is, an aluminum plate with a thickness of about 0.1 mm with a plurality of round holes with a diameter of about 5 mm to 8 mm. It consists of fins with round holes bent into a collar shape and copper or aluminum tubes.Hundreds of fins are lined up, the tubes are inserted into the round holes, and the tubes are pushed apart so that they fit tightly against the fins. ing.
 四方弁40は、内部に備える弁を用いて、第1経路41と第2経路42、もしくは、第3経路43と第4経路44の組み合わせを切り替えることが可能な構成にしている。
 室外膨張弁45と室内膨張弁は、主回路21に対し冷媒が流れる経路の断面積を小さくするか、閉塞と開放を切り替える等して、部分的に冷媒を流れにくくする構成にしている。
 冷媒貯留槽47は、容器と、主回路21に接続するための2つの連通孔を備え、連通孔から容器内部の下部まで管が延びており、容器の下部に溜まった液相の冷媒を主回路21に戻す構成にしている。
The four-way valve 40 is configured to be able to switch between a combination of the first path 41 and the second path 42 or the third path 43 and the fourth path 44 using an internal valve.
The outdoor expansion valve 45 and the indoor expansion valve are configured to partially make it difficult for the refrigerant to flow by reducing the cross-sectional area of the path through which the refrigerant flows with respect to the main circuit 21, or by switching between closing and opening.
The refrigerant storage tank 47 includes a container and two communication holes for connection to the main circuit 21, and a pipe extends from the communication hole to the lower part inside the container, and mainly stores the liquid phase refrigerant accumulated in the lower part of the container. It is configured to return to the circuit 21.
 室外送風装置48は、軸流送風機もしくは斜流送風機を用いている。
 室内機23としてダクト室内機を用いている。室内機23は筐体30と、室内熱交換器33と、室内膨張弁46と、電動機89と、室内送風装置49を備えている。
 筐体30は、内部に室内送風装置49と室内熱交換器33をこの順に通り、且つ両端が室内の大気に開放された連通孔を備えている。
 電動機89は可変速DCインバーターモーターを用いている。
 室内熱交換器33はフィンアンドチューブ式を用いている。室内熱交換器33は、室内送風装置49を所定の隙間を有して囲繞しており、通風抵抗を有するものの気流は通過可能になっている。
The outdoor blower device 48 uses an axial blower or a mixed flow blower.
A duct indoor unit is used as the indoor unit 23. The indoor unit 23 includes a housing 30, an indoor heat exchanger 33, an indoor expansion valve 46, an electric motor 89, and an indoor air blower 49.
The casing 30 is provided with a communication hole therein which passes through the indoor air blower 49 and the indoor heat exchanger 33 in this order, and whose both ends are open to the indoor atmosphere.
The electric motor 89 uses a variable speed DC inverter motor.
The indoor heat exchanger 33 uses a fin-and-tube type. The indoor heat exchanger 33 surrounds the indoor blower device 49 with a predetermined gap, and although it has ventilation resistance, airflow can pass therethrough.
 [1-1-3.室内送風装置の構成]
 次に、室内送風装置について説明する。
 図4は、多翼送風機を示す斜視図である。図5は、多翼送風機を示す斜視図である。
 図4および図5に示すように、室内送風装置49は、多翼送風機1と電動機89とで構成されている。多翼送風機1は、スクロールケーシング2とシロッコファン3とを備えている。
 スクロールケーシング2は、スクロール部4と吸込側開口部5と吹出側開口部6と舌部7を備えており、筐体30に固定されている。
[1-1-3. Configuration of indoor air blower]
Next, the indoor air blower will be explained.
FIG. 4 is a perspective view of a multi-blade blower. FIG. 5 is a perspective view of a multi-blade blower.
As shown in FIGS. 4 and 5, the indoor blower device 49 includes a multi-blade blower 1 and an electric motor 89. The multi-blade blower 1 includes a scroll casing 2 and a sirocco fan 3.
The scroll casing 2 includes a scroll portion 4, a suction side opening 5, an outlet side opening 6, and a tongue portion 7, and is fixed to a housing 30.
 スクロール部4は、シロッコファン3の回転方向の前方に向かうにつれて螺旋状に半径が拡大している。具体的には、アルキメデス曲線の拡大率を用いている。吸込側開口部5は回転軸99の軸線方向に開口しており、スクロールケーシング2の内部に向かって所定の曲率で縮小する吸込側開口部5を有している。
 吹出側開口部6はスクロール部4の外周端で開口している。吸込側開口部5と吹出側開口部6は、連通しており通風路を形成している。舌部7は吹出側開口部6とスクロール部4の内周端を接続しており、鋭角を成していてその稜線に半径10mm程度の丸みを付けている。
The radius of the scroll portion 4 increases in a spiral manner toward the front in the direction of rotation of the sirocco fan 3. Specifically, the expansion rate of the Archimedes curve is used. The suction side opening 5 is open in the axial direction of the rotating shaft 99 and has a suction side opening 5 that contracts toward the inside of the scroll casing 2 at a predetermined curvature.
The blow-off side opening 6 opens at the outer peripheral end of the scroll portion 4 . The suction side opening 5 and the blowout side opening 6 communicate with each other and form a ventilation path. The tongue portion 7 connects the outlet opening 6 and the inner circumferential end of the scroll portion 4, has an acute angle, and has its ridgeline rounded to a radius of about 10 mm.
 シロッコファン3は、主板10と複数枚の翼11とエンドリング12とを備えている。主板10は、回転軸99と同心の円盤であり、電動機89の回転軸99に固定されている。
 翼11は、シロッコファン3の回転方向後方が回転軸99に近づくように傾斜した翼形状をしており、主板10から回転軸99と平行に延出している。シロッコファン3の翼枚数は40枚とし、回転軸99の周りに等間隔に配置している。エンドリング12は、円環であり、主板10とは反対側の翼11の端部において翼11を連結している。翼11は主板10に対し両側に延出している。スクロールケーシング2とシロッコファン3の間には10mm程度の隙間があり、シロッコファン3は電動機89により回転可能となっている。多翼送風機のスクロールケーシング2やシロッコファン3は樹脂成型で製作している。
The sirocco fan 3 includes a main plate 10, a plurality of blades 11, and an end ring 12. The main plate 10 is a disk concentric with the rotating shaft 99 and is fixed to the rotating shaft 99 of the electric motor 89 .
The blade 11 has a blade shape that is inclined so that the rear side in the direction of rotation of the sirocco fan 3 approaches the rotation axis 99, and extends from the main plate 10 in parallel to the rotation axis 99. The number of blades of the sirocco fan 3 is 40, which are arranged at equal intervals around the rotating shaft 99. The end ring 12 is a circular ring, and connects the wings 11 at the end of the wings 11 on the opposite side to the main plate 10. The wings 11 extend on both sides of the main plate 10. There is a gap of about 10 mm between the scroll casing 2 and the sirocco fan 3, and the sirocco fan 3 can be rotated by an electric motor 89. The scroll casing 2 and sirocco fan 3 of the multi-blade blower are manufactured by resin molding.
 吸込側開口部5は、本流17の側に凸になるように半径10mm~50mm程度で丸みをつけている。
 吸込側開口部5の内周には、本実施の形態においては、略三角形状の凹凸で形成されたセレーション14が設けられている。
 セレーション14は、吸込側開口部5の出口の角度が回転軸99に向かって回転軸99に対して3°以上30°以下の傾斜を有している。さらに、セレーション14は、1つの凹部の奥行をH、幅をWとした場合に、W/Hが0.3以上5.0以下となるように形成されている。
The suction side opening 5 is rounded with a radius of about 10 mm to 50 mm so as to be convex toward the main flow 17 side.
In this embodiment, serrations 14 are provided on the inner periphery of the suction side opening 5, and are formed of approximately triangular irregularities.
In the serrations 14, the angle of the outlet of the suction side opening 5 is inclined toward the rotation axis 99 by 3 degrees or more and 30 degrees or less with respect to the rotation axis 99. Furthermore, the serrations 14 are formed so that W/H is 0.3 or more and 5.0 or less, where H is the depth and W is the width of one recess.
 {1-2.作用]
 以上のように構成された冷凍サイクル装置20および多翼送風機1について、以下その動作、作用を説明する。
 冷凍サイクル装置20が室外熱交換器32で放熱するとともに室内熱交換器33で吸熱する動作を行う場合は、主回路21において、主回路21に封入した冷媒が低温低圧の気相の状態で圧縮機31に吸入され、圧縮機31によって高温高圧の気相の状態に圧縮される。冷媒は四方弁40によって流れの方向が選択されて室外熱交換器32に流れ、室外熱交換器32によって放熱して中温中圧の液相の状態となる。冷媒は、冷媒貯留槽47に蓄えられた後に、室内膨張弁46で冷媒の流れる量が調整されて吐出され、室内熱交換器33において外気から吸熱して蒸発し、低温低圧の気相の状態に戻り、再び圧縮機31によって高温高圧の気相の状態に圧縮される。
 この一連の動作によって、冷媒を介して室内の熱を室外に移動することになるので、エアコンにおける冷房動作となる。
{1-2. Effect]
The operation and effects of the refrigeration cycle device 20 and the multi-blade blower 1 configured as described above will be explained below.
When the refrigeration cycle device 20 performs an operation in which the outdoor heat exchanger 32 radiates heat and the indoor heat exchanger 33 absorbs heat, the refrigerant sealed in the main circuit 21 is compressed in a low-temperature, low-pressure gas phase state. It is sucked into the machine 31 and compressed by the compressor 31 into a high temperature and high pressure gaseous state. The flow direction of the refrigerant is selected by the four-way valve 40, and the refrigerant flows to the outdoor heat exchanger 32. The refrigerant radiates heat by the outdoor heat exchanger 32, and becomes a medium-temperature, medium-pressure liquid phase state. After the refrigerant is stored in the refrigerant storage tank 47, the flow rate of the refrigerant is adjusted by the indoor expansion valve 46, and the refrigerant is discharged.The refrigerant absorbs heat from the outside air in the indoor heat exchanger 33, evaporates, and is in a low-temperature, low-pressure gas phase state. , and is again compressed by the compressor 31 into a high-temperature, high-pressure gaseous state.
This series of operations moves indoor heat to the outdoors via the refrigerant, resulting in a cooling operation in the air conditioner.
 また、冷凍サイクル装置20が室外熱交換器32で吸熱するとともに室内熱交換器33で放熱する動作を行う場合は、主回路21において、主回路21に封入された冷媒が低温低圧の気相の状態で圧縮機31に吸入され、圧縮機31によって高温高圧の気相の状態に圧縮される。冷媒は、四方弁40によって流れの方向が選択されて室内熱交換器33に流れ、室内熱交換器33によって放熱して、中温中圧の液相の冷媒となる。冷媒は、冷媒貯留槽47に蓄えられた後に、室外膨張弁45で冷媒の流れる量が調整されて吐出され、室外熱交換器32において外気へ放熱して蒸発し、低温低圧の気相の状態に戻り、再び圧縮機31によって高温高圧の気相の状態に圧縮される。
 この一連の動作によって、冷媒を介して室外の熱を室内に移動することになるので、エアコンにおける暖房動作となる。
 特に、室内熱交換器33で放熱または吸熱する際に、多翼送風機1を用いて気流を発生させ、熱交換効率を向上させるとともに、室内に調温した空気を循環させている。
In addition, when the refrigeration cycle device 20 operates to absorb heat in the outdoor heat exchanger 32 and radiate heat in the indoor heat exchanger 33, in the main circuit 21, the refrigerant sealed in the main circuit 21 is in a low-temperature, low-pressure gas phase. The gas is sucked into the compressor 31 in this state, and is compressed by the compressor 31 into a high temperature and high pressure gas phase state. The flow direction of the refrigerant is selected by the four-way valve 40, and the refrigerant flows to the indoor heat exchanger 33, where it radiates heat and becomes a medium-temperature, medium-pressure liquid phase refrigerant. After the refrigerant is stored in the refrigerant storage tank 47, the flow rate of the refrigerant is adjusted by the outdoor expansion valve 45 and then discharged.The refrigerant radiates heat to the outside air and evaporates in the outdoor heat exchanger 32, and is in a low-temperature, low-pressure gas phase state. , and is again compressed by the compressor 31 into a high-temperature, high-pressure gaseous state.
This series of operations moves outdoor heat into the room via the refrigerant, resulting in a heating operation in the air conditioner.
In particular, when the indoor heat exchanger 33 radiates or absorbs heat, the multi-blade blower 1 is used to generate airflow to improve heat exchange efficiency and circulate temperature-controlled air indoors.
 多翼送風機1によって発生する気流は、スクロールケーシング2の吸込側開口部5から室内の気温で吸気され、シロッコファン3で昇圧されつつスクロール部4を流れ、吹出側開口部6から室内の気温のまま排気される。その後、室内熱交換器33を通過することにより室内熱交換器33で冷媒と熱交換されて、冷房動作時には冷やされ暖房時には暖められて、筐体30から吹き出される。 The airflow generated by the multi-blade blower 1 is taken in from the suction side opening 5 of the scroll casing 2 at the room temperature, flows through the scroll part 4 while being pressurized by the sirocco fan 3, and then flows from the blowout side opening 6 at the room temperature. It will be exhausted. Thereafter, it passes through the indoor heat exchanger 33, where it exchanges heat with the refrigerant, is cooled during cooling operation, warmed during heating operation, and is blown out from the casing 30.
 図4において、スクロールケーシング2と電動機89は、図示しない筐体30に固定されており、シロッコファン3は電動機89により回転駆動される。気流は、吸込側開口部5から回転軸99の軸線方向に吸い込まれ、翼11を通過して、スクロール部4を旋回しながら昇圧されて、吹出側開口部6から吹き出される。 In FIG. 4, the scroll casing 2 and the electric motor 89 are fixed to a housing 30 (not shown), and the sirocco fan 3 is rotationally driven by the electric motor 89. The airflow is sucked in from the suction side opening 5 in the axial direction of the rotating shaft 99, passes through the blades 11, is pressurized while swirling around the scroll portion 4, and is blown out from the blowout side opening 6.
 一方で、気流は気圧が高い方から低い方に流れることと、気流が吸込側開口部5から吸い込まれて吹出側開口部6から吹き出されることからわかるように、翼11の内方は周囲の気圧に対して部分的に低圧で、外方は高圧となる。すなわち翼11の内方に位置する吸込側開口部5よりも外方に位置するスクロールケーシング2の内部の方が高圧となる。
 そのため、図5に示すように、スクロール部4から吸込側開口部5に向かって漏れ出る気流である循環流18が発生する。
On the other hand, as can be seen from the fact that the airflow flows from the high pressure side to the low pressure side and that the airflow is sucked in from the suction side opening 5 and blown out from the blowout side opening 6, the inside of the blade 11 is surrounded by air. The pressure is low in some areas, and the pressure outside is high. That is, the pressure inside the scroll casing 2 located on the outside is higher than that in the suction side opening 5 located on the inside of the blade 11 .
Therefore, as shown in FIG. 5, a circulation flow 18, which is an airflow leaking from the scroll portion 4 toward the suction side opening 5, is generated.
 図6は、セレーションと縦渦の関係を示す概念図である。
 循環流18が速度緩和されずに本流17と合流すると雑渦が発生する。図6に示すように、翼11の周囲は翼11によって乱された渦が多いが、その他に吸込側開口部5の下流に比較的強い雑渦が発生していることがわかる。
 翼11の回転周速は、例えば10m/秒~20m/秒であるのに対して、吸込気流の風速は数m/秒と遅いため、雑渦がシロッコファン3に吸い込まれると、雑渦は翼11の隙間を通過できず複数の翼11によって切断される。
 雑渦は、遠心力によって内部の圧力が低下しているため、翼11の表面圧力は、雑渦を切断する前は周囲と同等で、雑渦を切断する際に低下し、雑渦を通過すると回復する。すなわち翼11の表面圧力は振動する。そして圧力の振動は音波そのものであるので騒音が発生する。
FIG. 6 is a conceptual diagram showing the relationship between serrations and longitudinal vortices.
If the circulating flow 18 merges with the main flow 17 without its velocity being relaxed, a miscellaneous vortex is generated. As shown in FIG. 6, there are many vortices disturbed by the blades 11 around the blades 11, but it can also be seen that relatively strong miscellaneous vortices are generated downstream of the suction side opening 5.
The circumferential rotation speed of the blades 11 is, for example, 10 m/sec to 20 m/sec, whereas the wind speed of the suction airflow is as slow as several m/sec. It cannot pass through the gap between the blades 11 and is cut by the plurality of blades 11.
Since the internal pressure of the miscellaneous vortex is reduced due to centrifugal force, the surface pressure of the blade 11 is the same as that of the surroundings before cutting the miscellaneous vortex, decreases when cutting the miscellaneous vortex, and the surface pressure of the blade 11 decreases when the miscellaneous vortex is cut. Then it will recover. That is, the surface pressure of the blade 11 oscillates. Since pressure vibrations are sound waves themselves, noise is generated.
 これに対し、吸込側開口部5の出口を回転軸99に向かって傾斜させ、且つ吸込側開口部5の出口の端面にセレーション14を設けることで、本流17がセレーション14に対してセレーション流入角15を有して流入することになり、本流17の方向に流れながらも本流17の方向に直交する面における回転成分を有する縦渦19が生成される。縦渦19は方向や大きさが定まらない雑渦と異なり、強さと方向が比較的安定した構造的な渦である。 On the other hand, by slanting the outlet of the suction side opening 5 toward the rotating shaft 99 and providing the serrations 14 on the end face of the outlet of the suction side opening 5, the main flow 17 has a serration inflow angle with respect to the serrations 14. 15, and a longitudinal vortex 19 is generated that flows in the direction of the main flow 17 but has a rotational component in a plane perpendicular to the direction of the main flow 17. The longitudinal vortex 19 is a structural vortex whose strength and direction are relatively stable, unlike miscellaneous vortices whose direction and size are not fixed.
 次に、セレーション14によって速度差を有する気流が混合される概念について説明する。
 セレーション14は、その凹部から気流が漏れ始めることとで気流の進行と進行方向に垂直な平面上で渦を巻いた縦渦を生成する機能を有する。
 そのため、セレーション14がやや気流を堰き止めるように角度を有している場合や、セレーション14を有する板の両面に圧力差があって巻き返り流れが生じる場合などに効果を発揮する。逆に板の両面に圧力差がなく、平行に流れている場合にはセレーションの効果が得られない。
Next, the concept of mixing airflows having different speeds by the serrations 14 will be explained.
The serrations 14 have a function of generating a longitudinal vortex swirling on a plane perpendicular to the direction of travel of the airflow when the airflow begins to leak from the concave portion thereof.
Therefore, it is effective in cases where the serrations 14 have an angle that slightly blocks the airflow, or in cases where there is a pressure difference on both sides of the plate having the serrations 14 and a curling flow occurs. On the other hand, if there is no pressure difference on both sides of the plate and the flow is parallel, the serration effect cannot be obtained.
 図7(a),(b),(c)は、本流と循環流との関係を示す説明図である。
 ここで、図7(a)において、吸込ノズル出口13にセレーション14が無く、且つ回転軸99に向かう先細りが無い場合は、本流と循環流との合流部において本流と循環流の方向が平行だが、それら気流間の速度勾配が大きいため、図6に示すように、吸込ノズル出口13の下流側に渦が発生する。その結果、当該渦がシロッコファン3に吸い込まれて、翼11に衝突し、翼11の表面圧力に変動が生じることで、(翼枚数×回転数)の周波数にピークを有するNZ音が生じ、騒音が増大する。
FIGS. 7(a), (b), and (c) are explanatory diagrams showing the relationship between the main flow and the circulating flow.
Here, in FIG. 7(a), if the suction nozzle outlet 13 does not have the serrations 14 and does not taper toward the rotating shaft 99, the directions of the main flow and the circulation flow are parallel at the confluence of the main flow and the circulation flow. Since the velocity gradient between these airflows is large, a vortex is generated downstream of the suction nozzle outlet 13, as shown in FIG. As a result, the vortex is sucked into the sirocco fan 3 and collides with the blade 11, causing fluctuations in the surface pressure of the blade 11, resulting in NZ sound having a peak at a frequency of (number of blades x rotation speed), Noise increases.
 また、図7(b)に示すように、吸込ノズル出口13にセレーション14が無く、且つ回転軸99に向かって先細りしている場合は、循環流は吸込ノズル出口13の傾斜に沿って流れるため、速度勾配に加えて気流の衝突の要素が加わり、より大きな渦が発生する。
 また、図7(c)に示すように、吸込ノズル出口13にセレーション14があり、且つ回転軸99に向かう先細りが無い場合は、セレーション14は気流の進行方向に対して斜めに配置されることで効果が得られるのに対して気流に平行であり、セレーション14がない場合と同等であるため、セレーション14の効果が得られず、渦が発生する。
Furthermore, as shown in FIG. 7(b), if the suction nozzle outlet 13 does not have the serrations 14 and tapers toward the rotating shaft 99, the circulating flow flows along the slope of the suction nozzle outlet 13. , the velocity gradient plus the element of airflow collision creates a larger vortex.
Furthermore, as shown in FIG. 7(c), if the suction nozzle outlet 13 has serrations 14 and does not taper toward the rotation axis 99, the serrations 14 may be arranged diagonally with respect to the direction of movement of the airflow. While the effect is obtained when the airflow is parallel to the airflow, the effect of the serrations 14 is not obtained because it is parallel to the airflow and is equivalent to the case without the serrations 14, and a vortex is generated.
 これに対して、本実施の形態の多翼送風機は、吸込ノズル出口13にセレーション14を設け、且つ回転軸99に向かって先細りさせることで、本流に対して吸込ノズル出口13が斜めに配置されることになるので、速度勾配が緩和され、渦が低減される。渦が低減されるので、騒音が低減される。 In contrast, in the multi-blade blower of the present embodiment, the serrations 14 are provided at the suction nozzle outlet 13 and tapered toward the rotating shaft 99, so that the suction nozzle outlet 13 is disposed diagonally with respect to the main flow. As a result, velocity gradients are relaxed and vortices are reduced. Since vortices are reduced, noise is reduced.
 図8は、縦渦が形成される概念を示す説明図である。
 図8に示すように、セレーション14に対して角度を有して吸込側開口部5に気流が当たるとセレーション14の凹部で進行方向に対して随時気流が漏れていき、連続的に漏れることでねじ山のように進行方向成分と回転方向成分を併せ持つ構造となる。
 本開示の多翼送風機1は、吸込側開口部の出口の角度が回転軸に向かって回転軸に対して3°以上30°以下の傾斜を有しており、且つ吸込側開口部の出口側の端面に1つの凹部の奥行をHとし幅をWとして、W/Hが0.3以上5.0以下で、HとWはともに吸込側開口部の板厚以上であるセレーションを備える。
 これにより、本流17がセレーション14に対してセレーション流入角15を有して流入し、セレーションの凹部によって本流17と循環流18との間に縦渦19が生成されて各気流を混合するため、速度勾配が緩和されて雑渦が低減する。
FIG. 8 is an explanatory diagram showing the concept of forming a longitudinal vortex.
As shown in FIG. 8, when the airflow hits the suction side opening 5 at an angle with respect to the serrations 14, the airflow leaks from the concave portions of the serrations 14 in the direction of travel, causing continuous leakage. Like a screw thread, it has a structure that has both a forward direction component and a rotation direction component.
In the multi-blade blower 1 of the present disclosure, the angle of the outlet of the suction side opening has an inclination of 3 degrees or more and 30 degrees or less with respect to the rotation axis, and the outlet side of the suction side opening The end face of one recess is provided with serrations where the depth is H and the width is W, W/H is 0.3 or more and 5.0 or less, and H and W are both greater than or equal to the plate thickness of the suction side opening.
As a result, the main flow 17 flows into the serrations 14 with a serration inflow angle 15, and a longitudinal vortex 19 is generated between the main flow 17 and the circulation flow 18 by the concave portions of the serrations to mix the respective air flows. Velocity gradient is relaxed and miscellaneous vortices are reduced.
 [1-3.効果等]
 以上述べたように、本実施の形態においては、スクロールケーシング2は、スクロール部4と、吸込側開口部5と、吹出側開口部6と、を有し、吸込側開口部5は、シロッコファン3の回転軸99方向に開口し、スクロールケーシング2の内側に向けて先細りで延出しており、吸込側開口部5の内周部には、凹凸で形成されたセレーション14が設けられている。
 これにより、吸込側開口部5の出口において雑渦を低減できるので、翼11の表面圧力の変動を小さくできて、多翼送風機1の騒音を低減できる。
[1-3. Effects, etc.]
As described above, in the present embodiment, the scroll casing 2 has the scroll portion 4, the suction side opening 5, and the blowout side opening 6, and the suction side opening 5 has the sirocco fan. The suction side opening 5 is opened in the direction of the rotating shaft 99 of the scroll casing 2 and extends in a tapered manner toward the inside of the scroll casing 2. The inner circumferential portion of the suction side opening 5 is provided with serrations 14 formed with unevenness.
As a result, miscellaneous vortices can be reduced at the outlet of the suction side opening 5, so that fluctuations in the surface pressure of the blades 11 can be reduced, and the noise of the multi-blade blower 1 can be reduced.
 また、本実施の形態においては、凹凸は、三角形状の凹凸で形成されている。
 これにより、三角形状の凹凸に形成されたセレーション14により、吸込側開口部5の出口において雑渦を低減できるので、翼11の表面圧力の変動を小さくできて、多翼送風機1の騒音を低減できる。
Further, in this embodiment, the unevenness is formed of triangular unevenness.
As a result, the serrations 14 formed into triangular irregularities can reduce miscellaneous vortices at the outlet of the suction side opening 5, thereby reducing fluctuations in the surface pressure of the blades 11 and reducing the noise of the multi-blade blower 1. can.
 また、本実施の形態においては、セレーション14は、1つの凹部の奥行をH、幅をWとした場合に、W/Hが0.3以上5.0以下で、HとWはともに吸込側開口の板厚以上に形成されている。
 これにより、本流17がセレーション14に対してセレーション流入角15を有して流入し、セレーションの凹部によって本流17と循環流18との間に縦渦19が生成されて各気流を混合するため、速度勾配が緩和されて雑渦を低減させることができる。
Further, in this embodiment, when the depth of one recess is H and the width is W, W/H of the serrations 14 is 0.3 or more and 5.0 or less, and both H and W are on the suction side. It is formed to be thicker than the plate thickness of the opening.
As a result, the main flow 17 flows into the serrations 14 with a serration inflow angle 15, and a longitudinal vortex 19 is generated between the main flow 17 and the circulation flow 18 by the concave portions of the serrations to mix the respective air flows. The velocity gradient is relaxed and miscellaneous vortices can be reduced.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。
 そこで、以下、他の実施の形態を例示する。
 圧縮機31の圧縮形式については、ロータリー式やスクロール式やレシプロ式やターボ式でも良い。また、圧縮機31の動力については、圧縮機31の内部に備えられた電動機でも良いし、圧縮機31とは独立した電動機を動力としても良いし、電動機ではなく原動機を動力としても良い。気相の冷媒を圧縮できる機構であれば、その形式や動力は問わない。
(Other embodiments)
As mentioned above, Embodiment 1 has been described as an example of the technology disclosed in this application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made.
Therefore, other embodiments will be illustrated below.
The compression type of the compressor 31 may be a rotary type, a scroll type, a reciprocating type, or a turbo type. Further, the compressor 31 may be powered by an electric motor provided inside the compressor 31, an electric motor independent of the compressor 31, or a prime mover instead of the electric motor. As long as it is a mechanism that can compress gas phase refrigerant, its type and power do not matter.
 また、室内機23は、室内の空気を温度調節する代わりに水を温度調節するチラーモジュールであっても良く、単独の筐体という形態を取らずに化学物質の分留設備等に一体に組み込まれていても良い。主回路21から外部に熱交換が可能な構成であれば、温度調節する対象や形態は問わない。
 また、室内熱交換器33は、扁平管を並べた形態の熱交換器であっても、マイクロチャネル熱交換器と呼ばれる冷媒側は複数の微細流路を一体化し空気側はフィンの集合で構成される形態の熱交換器であっても良い。室内送風装置49によって発生する気流を通過させ、且つ熱交換を行う構成であれば形式は問わない。
In addition, the indoor unit 23 may be a chiller module that adjusts the temperature of water instead of adjusting the temperature of indoor air, and may be integrated into a chemical substance fractionation facility, etc., instead of being a separate housing. It's okay if it is. As long as the configuration allows heat exchange from the main circuit 21 to the outside, the object or form of temperature adjustment is not limited.
In addition, even if the indoor heat exchanger 33 is a heat exchanger in the form of a series of flat tubes, the refrigerant side is called a microchannel heat exchanger, which integrates multiple fine channels, and the air side is composed of a collection of fins. It may also be a heat exchanger in the form of Any type of structure may be used as long as it allows the airflow generated by the indoor air blower 49 to pass through and exchanges heat.
 また、電動機89は一定速DCモーターやACモーターであってもよいし、電動機に限らずその他の回転駆動装置であっても良い。室内送風装置49を回転駆動できれば形式は問わない。
 さらに、主回路21に封入する冷媒は相変化を伴わないCO2等であってもよく、冷媒の種類は問わない。
 また、吸込側開口部5はスクロールケーシング2の内部に向かうノズル状になっていてもよいし、単純な丸穴であってもよい。
Further, the electric motor 89 may be a constant speed DC motor or an AC motor, or may be not limited to an electric motor but may be any other rotary drive device. Any type may be used as long as the indoor air blower 49 can be rotated.
Further, the refrigerant sealed in the main circuit 21 may be CO2 or the like that does not undergo a phase change, and the type of refrigerant is not limited.
Further, the suction side opening 5 may be in the shape of a nozzle facing the inside of the scroll casing 2, or may be a simple round hole.
 また、多翼送風機1は、本発明では樹脂成型により製作しているが、その一部または全部が板金製や鋳物製または削り出し加工されたものであってもよい。
 また、スクロール部4にはアルキメデス曲線の他にインボリュート曲線等のほかの曲線を用いることもあるが、スクロール部4の形状による気流の変化が舌部7に衝突する気流に与える影響は小さいため凹凸部16を適用すれば騒音低減効果がある。
Further, although the multi-blade blower 1 is manufactured by resin molding in the present invention, it may be partially or entirely made of sheet metal, cast metal, or machined.
In addition, other curves such as an involute curve may be used in addition to the Archimedean curve for the scroll portion 4, but since changes in the air flow due to the shape of the scroll portion 4 have little effect on the air flow colliding with the tongue portion 7, unevenness may be used. If part 16 is applied, there is a noise reduction effect.
 また、シロッコファン3の翼枚数は何枚でもよい。一般的に30~50枚程度のものが多い。翼11は必ずしも回転軸99に平行に延出していなくてもよい。生産面で1軸方向の金型を用いるのが低コストであるためしばしば用いられ、1軸でも金型から取り出し可能にするために翼11を回転軸99に平行にすることが多いが、スライドコアを用いたり、溶着や溶接等の成型後処理を施すことで、3次元的な翼形状に形成することもある。また翼11が延出する長さが短い場合のように実用上で変形が問題にならなければエンドリングは無くてもよい。 Moreover, the number of blades of the sirocco fan 3 may be any number. Generally, there are about 30 to 50 sheets. The blades 11 do not necessarily have to extend parallel to the rotation axis 99. In terms of production, it is often used to use a uniaxial mold because it is low cost, and the blades 11 are often made parallel to the rotation axis 99 in order to be able to take out the mold from the mold even with a single axis. A three-dimensional blade shape may be formed by using a core or by performing post-forming processing such as welding or welding. Furthermore, if deformation is not a problem in practice, such as when the blade 11 extends for a short length, the end ring may be omitted.
(付記)
 以上の実施の形態の記載により、下記の技術が開示される。
(技術1)スクロールケーシングと、シロッコファンと、を備える多翼送風機であって、前記スクロールケーシングは、スクロール部と、吸込側開口部と、吹出側開口部と、舌部と、を有し、前記吸込側開口部は、前記シロッコファンの回転軸方向に開口し、前記スクロールケーシングの内側に向けて先細りで延出しており、前記吸込側開口部の内周部には、凹凸で形成されたセレーションが設けられている多翼送風機。
 この構成により、吸込側開口部の出口において雑渦を低減できるので、翼の表面圧力の変動を小さくできる。そのため、多翼送風機の騒音を低減できる。
(Additional note)
The following techniques are disclosed by the description of the above embodiments.
(Technology 1) A multi-blade blower including a scroll casing and a sirocco fan, the scroll casing having a scroll portion, a suction side opening, an outlet side opening, and a tongue, The suction side opening opens in the direction of the rotation axis of the sirocco fan and extends in a tapered manner toward the inside of the scroll casing, and the inner circumference of the suction side opening is formed with unevenness. A multi-blade blower with serrations.
With this configuration, it is possible to reduce miscellaneous vortices at the outlet of the suction side opening, thereby reducing fluctuations in the surface pressure of the blade. Therefore, the noise of the multi-blade blower can be reduced.
(技術2)前記凹凸は、三角形状の凹凸で形成されている技術1に記載の多翼送風機。
 この構成により、三角形状の凹凸に形成されたセレーションにより、吸込側開口部の出口において雑渦を低減できるので、翼の表面圧力の変動を小さくできる。そのため、多翼送風機の騒音を低減できる。
(Technique 2) The multi-blade blower according to Technique 1, wherein the unevenness is formed of triangular unevenness.
With this configuration, the serrations formed in triangular irregularities can reduce the miscellaneous vortices at the outlet of the suction side opening, so that fluctuations in the surface pressure of the blade can be reduced. Therefore, the noise of the multi-blade blower can be reduced.
(技術3)前記セレーションは、1つの凹部の奥行をH、幅をWとした場合に、W/Hが0.3以上5.0以下で、HとWはともに吸込側開口の板厚以上に形成されている技術1または技術2に記載の多翼送風機。
 この構成により、本流がセレーションに対してセレーション流入角を有して流入し、セレーションの凹部によって本流と循環流との間に縦渦が生成されて各気流を混合する。そのため、速度勾配が緩和されて雑渦を低減させることができる。
(Technology 3) In the serrations, where the depth of one recess is H and the width is W, W/H is 0.3 or more and 5.0 or less, and H and W are both greater than or equal to the thickness of the suction side opening. The multi-blade blower according to technology 1 or technology 2, which is formed in.
With this configuration, the main flow flows into the serrations with a serration inflow angle, and a longitudinal vortex is generated between the main flow and the circulation flow by the recesses of the serrations, thereby mixing the respective air flows. Therefore, the velocity gradient is relaxed and miscellaneous vortices can be reduced.
(技術4)技術1から技術3のいずれか一項に記載の多翼送風機と、吹出側開口部に対向して配置された室内熱交換器と、を備えた室内機。
 この構成により、吸込側開口部の出口において雑渦を低減できるので、翼の表面圧力の変動を小さくできる。そのため、多翼送風機の騒音を低減することのできる室内機を得ることができる。
(Technology 4) An indoor unit comprising the multi-blade blower according to any one of Techniques 1 to 3, and an indoor heat exchanger disposed opposite to the outlet opening.
With this configuration, it is possible to reduce miscellaneous vortices at the outlet of the suction side opening, thereby reducing fluctuations in the surface pressure of the blade. Therefore, it is possible to obtain an indoor unit that can reduce the noise of the multi-blade blower.
 以上のように、本発明にかかる多翼送風機は騒音を低減できるので、エアコンやチラー等の冷凍サイクル装置の他にも、サーキュレーターやダクト送風設備等のエアハンドリング装置や、換気装置や、ファンヒーター等の燃焼器の吸排気装置や、バイオベンチの気流循環装置等の、多翼送風機を用いる機器全般に適用できる。 As described above, since the multi-blade blower according to the present invention can reduce noise, it can be used not only in refrigeration cycle devices such as air conditioners and chillers, but also in air handling devices such as circulators and duct blowing equipment, ventilation devices, and fan heaters. It can be applied to all equipment using multi-blade blowers, such as intake and exhaust systems for combustors such as combustors, airflow circulation systems for biobenches, etc.
 1 多翼送風機
 2 スクロールケーシング
 3 シロッコファン
 4 スクロール部
 5 吸込側開口部
 6 吹出側開口部
 7 舌部
 8 開始側端部
 9 終了側端部
 10 主板
 11 翼
 12 エンドリング
 13 段差
 14 線音源部
 15 点音源部
 16 凹凸部
 17 凹凸山高さ
 18 凹凸山幅
 19 凹凸長さ
 20 冷凍サイクル装置
 21 主回路
 22 室外機
 23 室内機
 30 筐体
 31 圧縮機
 32 室外熱交換器
 33 室内熱交換器
 40 四方弁
 41 四方弁の第1経路
 42 四方弁の第2経路
 43 四方弁の第3経路
 44 四方弁の第4経路
 45 室外膨張弁
 46 室内膨張弁
 47 冷媒貯留槽
 48 室外送風装置
 49 室内送風装置
 89 電動機
 91~98 流路
 99回転軸
 101 筐体
 102 天板
 103 底板
 104 送風室
 105 熱交換器室
 106 仕切壁
1 Multi-blade blower 2 Scroll casing 3 Sirocco fan 4 Scroll portion 5 Suction side opening 6 Outlet side opening 7 Tongue portion 8 Start side end portion 9 End side end portion 10 Main plate 11 Wing 12 End ring 13 Step 14 Linear sound source portion 15 Point sound source section 16 Uneven part 17 Uneven height 18 Uneven crest width 19 Uneven length 20 Refrigeration cycle device 21 Main circuit 22 Outdoor unit 23 Indoor unit 30 Housing 31 Compressor 32 Outdoor heat exchanger 33 Indoor heat exchanger 40 Four-way valve 41 First path of four-way valve 42 Second path of four-way valve 43 Third path of four-way valve 44 Fourth path of four-way valve 45 Outdoor expansion valve 46 Indoor expansion valve 47 Refrigerant storage tank 48 Outdoor blower device 49 Indoor blower device 89 Electric motor 91 to 98 Flow path 99 Rotating shaft 101 Housing 102 Top plate 103 Bottom plate 104 Ventilation chamber 105 Heat exchanger chamber 106 Partition wall

Claims (4)

  1.  スクロールケーシングと、シロッコファンと、を備える多翼送風機であって、
     前記スクロールケーシングは、スクロール部と、吸込側開口部と、吹出側開口部と、舌部と、を有し、
     前記吸込側開口部は、前記シロッコファンの回転軸方向に開口し、前記スクロールケーシングの内側に向けて先細りで延出しており、
     前記吸込側開口部の内周部には、凹凸で形成されたセレーションが設けられている
     多翼送風機。
    A multi-blade blower comprising a scroll casing and a sirocco fan,
    The scroll casing has a scroll portion, a suction side opening, an outlet side opening, and a tongue portion,
    The suction side opening opens in the direction of the rotation axis of the sirocco fan and extends in a tapered manner toward the inside of the scroll casing,
    The multi-blade blower is provided with serrations formed of unevenness on the inner circumference of the suction side opening.
  2.  前記凹凸は、三角形状の凹凸で形成されている
     請求項1に記載の多翼送風機。
    The multi-blade blower according to claim 1, wherein the unevenness is formed of triangular unevenness.
  3.  前記セレーションは、1つの凹部の奥行をH、幅をWとした場合に、W/Hが0.3以上5.0以下で、HとWはともに吸込側開口の板厚以上に形成されている
     請求項1または請求項2に記載の多翼送風機。
    The serrations are formed such that when the depth of one recess is H and the width is W, W/H is 0.3 or more and 5.0 or less, and both H and W are larger than the thickness of the suction side opening. The multi-blade blower according to claim 1 or 2.
  4.  請求項1に記載の多翼送風機と、
     吹出側開口部に対向して配置された室内熱交換器と、を備えた
     室内機。
    The multi-blade blower according to claim 1;
    An indoor unit equipped with an indoor heat exchanger placed opposite the outlet opening.
PCT/JP2023/022123 2022-06-23 2023-06-14 Multi-blade blower and indoor unit WO2023248904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101348A JP2024002259A (en) 2022-06-23 2022-06-23 Multi-blade blower and indoor unit
JP2022-101348 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248904A1 true WO2023248904A1 (en) 2023-12-28

Family

ID=89379839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022123 WO2023248904A1 (en) 2022-06-23 2023-06-14 Multi-blade blower and indoor unit

Country Status (2)

Country Link
JP (1) JP2024002259A (en)
WO (1) WO2023248904A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972300A (en) * 1995-09-05 1997-03-18 Daikin Ind Ltd Blower
WO2018079776A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Indoor machine and air conditioner
CN109578328A (en) * 2018-12-27 2019-04-05 泛仕达机电股份有限公司 To centrifugal blower after a kind of centrifugal wind wheel and low noise including the wind wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972300A (en) * 1995-09-05 1997-03-18 Daikin Ind Ltd Blower
WO2018079776A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Indoor machine and air conditioner
CN109578328A (en) * 2018-12-27 2019-04-05 泛仕达机电股份有限公司 To centrifugal blower after a kind of centrifugal wind wheel and low noise including the wind wheel

Also Published As

Publication number Publication date
JP2024002259A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP7031061B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
KR102572313B1 (en) Compact variable geometry diffuser mechanism
WO2018092262A1 (en) Propeller fan and refrigeration cycle device
WO2023248904A1 (en) Multi-blade blower and indoor unit
WO2020250363A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
JP5741197B2 (en) End member of rotor, motor provided with rotor end member, and compressor provided with motor
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
WO2021234859A1 (en) Axial flow fan, blowing device, and refrigeration cycle device
US11885339B2 (en) Turbo fan, air sending device, air-conditioning device, and refrigeration cycle device
CN110319056B (en) Axial flow fan
JP5915147B2 (en) Centrifugal compressor impeller
JP7113819B2 (en) Propeller fan and refrigeration cycle device
JP2024000134A (en) Multi-blade blower and indoor unit
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP2022108060A (en) turbo fan
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
WO2023084652A1 (en) Cross-flow fan, blowing device, and refrigeration cycle device
WO2022091225A1 (en) Axial-flow fan, blowing device, and refrigeration cycle device
JP6925571B1 (en) Blower, indoor unit and air conditioner
KR102585192B1 (en) Ventilating device
JP5558449B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP2022126944A (en) turbo blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827090

Country of ref document: EP

Kind code of ref document: A1