WO2023248828A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2023248828A1
WO2023248828A1 PCT/JP2023/021485 JP2023021485W WO2023248828A1 WO 2023248828 A1 WO2023248828 A1 WO 2023248828A1 JP 2023021485 W JP2023021485 W JP 2023021485W WO 2023248828 A1 WO2023248828 A1 WO 2023248828A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
rubber
tire
Prior art date
Application number
PCT/JP2023/021485
Other languages
French (fr)
Japanese (ja)
Inventor
亜由子 山田
健太郎 中村
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2023248828A1 publication Critical patent/WO2023248828A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to tires.
  • Patent Documents 1 to 4 Since tires are subject to wear due to running, various techniques have been proposed to improve wear resistance (for example, Patent Documents 1 to 4).
  • an object of the present invention is to improve wear resistance during high-speed running.
  • the present invention A tire including a tread portion,
  • the cap rubber layer forming the tread portion is Containing styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component, 60 parts by mass or more and 80 parts by mass or less, Containing less than 100 parts by mass of silica with respect to 100 parts by mass of the rubber component, Formed from a rubber composition whose loss tangent (30°C tan ⁇ ) measured in tensile deformation mode is more than 0.25 under the conditions of a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%. and
  • the tire is characterized in that the thickness of the tread portion is 15 mm or less.
  • the tire according to the present invention is a tire having a tread portion, in which the cap rubber layer forming the tread portion contains SBR containing 25% by mass or less of styrene, 60 parts by mass or more in 100 parts by mass of the rubber component, Contains 80 parts by mass or less, and contains less than 100 parts by mass of silica per 100 parts by mass of the rubber component, under the conditions of temperature 30 ° C., frequency 10 Hz, initial strain 5%, dynamic strain rate 1%, deformation mode: tensile.
  • the rubber composition has a loss tangent (tan ⁇ at 30°C) of more than 0.25.
  • the thickness of the tread portion is 15 mm or less.
  • cap rubber layer referred to herein is not limited to the rubber layer that forms the outermost layer of the tread portion, but if there are two or more layers within 5 mm inward from the tread surface, at least one of the layers is It is sufficient as long as it satisfies the requirements of the rubber composition.
  • the rubber composition forming the cap rubber layer of the tire according to the present invention contains 60 parts by mass or more and 80 parts by mass or less of SBR with a styrene content of 25% by mass or less in 100 parts by mass of the rubber component.
  • silica is contained in an amount of 100 parts by mass or less based on 100 parts by mass of the rubber component.
  • the SBR component in 100 parts by mass of the rubber component to 60 parts by mass or more and 80 parts by mass or less, it is possible to form a phase-separated structure in which the SBR phase is a continuous phase in the rubber matrix.
  • the amount of styrene in the rubber composition By setting the amount of styrene in the rubber composition to 25% by mass or less, the silica contained in the rubber composition as a reinforcing agent can easily interact with the SBR phase in the rubber matrix, and the reinforcing effect of silica can be obtained. It is thought that it will become easier.
  • minute styrene domains derived from the styrene portion can be appropriately formed in the rubber matrix system. These minute styrene domains that are formed tend to relax force at the interface with other polymer molecular chains, and are therefore thought to be able to ease deformation caused by friction with the road surface when the tire runs at high speed.
  • the amount of styrene described above is more preferably 20% by mass or less, even more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • the lower limit is preferably 4% by mass or more, more preferably 5% by mass or more, and even more preferably 6% by mass or more.
  • containing 60 parts by mass or more and 80 parts by mass or less of SBR with an amount of styrene of 25 parts by mass or less in 100 parts by mass of the rubber component means that the amount of SBR in 100 parts by mass of the rubber component is 60 parts by mass or less. The amount is 80 parts by mass or more, and 80 parts by mass or less, indicating that the amount of styrene in the entire SBR is 25% by mass or less.
  • a styrene-containing polymer SBR
  • SBR styrene-containing polymer
  • the amount of styrene contained in the rubber component after acetone extraction can also be determined by solid-state nuclear magnetic resonance (solid-state NMR) or Fourier transform infrared spectrophotometer (FTIR). It is possible to calculate.
  • the rubber composition forming the cap rubber layer contains less than 100 parts by mass of silica per 100 parts by mass of the rubber component, which is not more than the rubber component.
  • the deformation mode loss tangent ( 30° C. tan ⁇ ) is set to exceed 0.25.
  • the loss tangent tan ⁇ is a viscoelastic parameter indicating energy absorption performance, and the larger the value, the more energy can be absorbed and converted into heat.
  • the tan ⁇ of 30°C which is close to the running temperature, is set to a high value exceeding 0.25, so even when running at high speeds where high-frequency vibrations occur, vibration energy is sufficiently absorbed and converted into heat. By releasing the energy, sufficient energy loss can be caused within the rubber composition, and the grip performance can be improved. In addition to improving the grip performance, it is possible to suppress the occurrence of slippage on the tread surface, so it is thought that the wear resistance during high-speed running can be sufficiently improved.
  • the 30°C tan ⁇ is more preferably 0.28 or more, further preferably 0.30 or more, even more preferably 0.33 or more, even more preferably 0.34 or more, and 0.35 It is more preferable that it is 0.36 or more, and even more preferable that it is 0.36 or more.
  • the upper limit is not particularly limited, it is preferably 0.50 or less, more preferably 0.45 or less, and even more preferably 0.40 or less.
  • the loss tangent (tan ⁇ ) can be measured, for example, using a viscoelasticity measuring device such as “Iplexer (registered trademark)” manufactured by GABO.
  • tan ⁇ can be increased by increasing the amount of styrene in the polymer, increasing the content of resin components, increasing the content of carbon black, etc.; It can be lowered by reducing the content of the components and the content of carbon black.
  • the thickness of the tread portion is 15 mm or less.
  • the thickness of the tread portion is more preferably 13 mm or less, even more preferably 11 mm or less, even more preferably 10 mm or less, and even more preferably 9 mm or less.
  • the lower limit is not particularly limited, it is preferably 4 mm or more, more preferably 5 mm or more, even more preferably 6 mm or more, and even more preferably 8 mm or more.
  • the thickness of the tread portion refers to the thickness of the tread portion on the tire equatorial plane in the tire radial cross section, and when the tread portion is formed of a single rubber composition, the thickness of the tread portion is This refers to the thickness of the composition, and in the case where it is formed of a laminated structure of a plurality of rubber compositions described below, it refers to the total thickness of these layers.
  • a tire When a tire has a groove on the equatorial plane, it refers to the thickness from the intersection of the tire equatorial plane with a straight line connecting the outermost end points of the groove in the tire radial direction to the innermost interface in the tire radial direction of the tread portion.
  • the tread portion refers to a member in the region that forms the ground contact surface of the tire, and refers to a portion outside in the tire radial direction from members including fiber materials such as the carcass, belt layer, and belt reinforcing layer.
  • the thickness of the tread portion described above can be measured by aligning the bead portion with the regular rim width in a cross section cut out of the tire in the radial direction.
  • “regular rim” is a rim specified for each tire by the standard in the standard system including the standard on which the tire is based, for example, in the case of JATMA (Japan Automobile Tire Association), "JATMA YEAR BOOK” For standard rims in the applicable sizes listed in ETRTO (The European Tire and Rim Technical Organization), “Measuring Rim” listed in “STANDARDS MANUAL”, TRA (The Tire and Rim Association, Inc.) If there is, it refers to "Design Rim” described in "YEAR BOOK”, and refers to JATMA, ETRTO, and TRA in that order, and if there is an applicable size at the time of reference, that standard is followed.
  • the rim that can be assembled into a rim and that can maintain internal pressure that is, the rim that does not cause air leakage between the rim and the tire, has the smallest diameter, and then the rim. Refers to the narrowest width.
  • the reinforcing effect of silica in the rubber composition As described above, in the tire according to the present invention, the reinforcing effect of silica in the rubber composition, the moderating effect on deformation due to an appropriate amount of styrene, the suppressing effect on slipping on the tread surface due to an appropriate 30°C tan ⁇ , and It is thought that wear resistance during high-speed running can be sufficiently improved due to the effect of suppressing heat accumulation through appropriate thickness control.
  • tan ⁇ /G is more preferably 0.034 or more, even more preferably 0.035 or more, and even more preferably 0.036 or more.
  • the upper limit is preferably 0.045 or less, more preferably 0.041 or less.
  • the glass transition temperature (Tg) of the cap rubber layer is preferably -10.8°C or lower, more preferably -12.6°C or lower, even more preferably -15°C or lower, The temperature is more preferably -19.1°C or lower, even more preferably -40°C or lower, even more preferably -40.8°C or lower, and even more preferably -41°C or lower.
  • Tg glass transition temperature
  • Tg -15°C or less
  • the lower limit of Tg is not particularly limited, but it is preferably -60°C or higher, and more preferably -50°C or higher.
  • the glass transition temperature (Tg) of the rubber composition described above was determined using a viscoelasticity measuring device such as the Iplexer series manufactured by GABO, and was measured at a frequency of 10 Hz, an initial strain of 10%, an amplitude of ⁇ 0.5%, and a temperature increase rate. It can be determined based on the temperature distribution curve of tan ⁇ measured under the condition of 2 °C/min, and in the case of the present invention, in the range of -60 °C or more and 40 °C or less of the measured temperature distribution curve The temperature corresponding to the largest tan ⁇ value is defined as the glass transition point (Tg). Note that if there are two or more points with the highest tan ⁇ value within the range of ⁇ 60° C.
  • the point with the lowest temperature is taken as Tg.
  • Tg the glass transition temperature
  • the method for adjusting the glass transition temperature (Tg) described above is not particularly limited, but examples include increasing the proportion of a polymer component with a high Tg in the rubber component, increasing the amount of styrene in the rubber component, and increasing the content of the resin component. Conversely, it can be lowered by reducing the ratio of polymer components with high Tg in the rubber component, reducing the amount of styrene in the rubber component, or reducing the content of resin components. be able to.
  • the complex modulus of elasticity of cap rubber layer (E * )
  • the complex modulus of elasticity (30°C E*) of the cap rubber layer measured at a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, a dynamic strain rate of 1%, and a deformation mode in tension (30°C E * ) is 6.1 MPa or less. It is preferably 6.0 MPa or less, more preferably 5.9 MPa or less, even more preferably 5.6 MPa or less, even more preferably 5.5 MPa or less, and even more preferably 5.4 MPa or less. It is even more preferable.
  • the complex modulus of elasticity E * is a parameter that indicates the rigidity of the rubber layer, and when E * at 30°C is set to 6.0 MPa or less, the rigidity is suppressed from becoming too high and the slippage with the road surface is reduced during high-speed driving. It is thought that this can suppress the wear resistance and further improve the wear resistance.
  • the lower limit is not particularly limited, it is preferably 4.00 MPa or more, more preferably 5.00 MPa or more, and even more preferably 5.30 MPa or more.
  • the above 30°C E * (MPa) preferably satisfies (30°C E * /G) ⁇ 0.50 between the above-mentioned thickness G (mm) of the tread portion, and 0. It is more preferably .54 or more, even more preferably 0.55 or more, even more preferably 0.56 or more, even more preferably 0.59 or more, and even more preferably 0.61 or more.
  • the upper limit is preferably 1.00 or less, more preferably 0.98 or less, even more preferably 0.77 or less, even more preferably 0.75 or less, and 0.65 or less. It is even more preferable.
  • the above-mentioned complex modulus of elasticity can be measured, for example, using a viscoelasticity measuring device such as "Iprexor (registered trademark)" manufactured by GABO.
  • the above-mentioned method for adjusting 30°CE * is not particularly limited, but examples include increasing the amount of styrene in the polymer, increasing the amount of fillers such as silica and carbon black, decreasing the content of the plasticizer component, and increasing the amount of the resin component.
  • the content can be increased by increasing the content, and the content can be lowered by reducing the amount of styrene in the polymer, reducing the amount of fillers such as silica and carbon black, increasing the content of plasticizer components, and reducing the content of resin components. can do.
  • Loss tangent at 0°C (0°C tan ⁇ ) and complex modulus of elasticity (0°C E * ) In the above, 30°C tan ⁇ and 30°C E * are specified assuming that the tire is running, but the tire is in a cold state at the start of running, and considering running at low temperatures, the cap rubber layer is formed.
  • the loss tangent (0°C tan ⁇ ) of the rubber composition measured in tensile deformation mode under the conditions of temperature 0°C, frequency 10Hz, initial strain 5%, and dynamic strain rate 1% must be 0.30 or more. is preferably 0.34 or more, more preferably 0.60 or more, even more preferably 0.70 or more, even more preferably 0.76 or more, and 0.77 or more.
  • the upper limit is not particularly limited, it is preferably 1.00 or less, more preferably 0.95 or less, and even more preferably 0.90 or less.
  • the complex modulus of elasticity (0°C E * ) of the cap rubber layer measured by temperature 0°C, frequency 10Hz, initial strain 5%, dynamic strain rate 1%, deformation mode: tension is 25.0 MPa or less. It is preferably 24.0 MPa or less, more preferably 23.8 MPa or less, even more preferably 23.5 MPa or less, and even more preferably 23.2 MPa or less.
  • the lower limit is not particularly limited, but is preferably 9.4 MPa or higher, more preferably 9.5 MPa or higher, even more preferably 19.2 MPa or higher, even more preferably 20.0 MPa or higher, and 23.0 MPa or higher. It is more preferable that it is above.
  • the tread portion is preferably formed of only one layer of the cap rubber layer, but the tread portion is multi-layered by providing a base rubber layer inside the cap rubber layer.
  • the thickness of the cap rubber layer over the entire tread portion is preferably 10% or more. This makes it easier to absorb the energy generated between the tread surface and the road surface at the interface between the cap rubber layer and the base rubber layer, further improving wear resistance during high-speed running. Conceivable. Note that the thickness of the cap rubber layer in the entire tread portion is more preferably 70% or more.
  • the thickness of the cap rubber layer and the thickness of the base rubber layer can be calculated by summing the thickness of the cap rubber layer and the thickness of the base rubber layer in the thickness of the tread portion.
  • the 30°C tan ⁇ of the base rubber layer be smaller than the 30°C tan ⁇ of the cap rubber layer. It is thought that this suppresses heat generation inside the tread portion, makes it easier to suppress softening of the tread portion due to heat accumulation, and further improves wear resistance during high-speed running.
  • the temperature of the base rubber layer is 30°C
  • the frequency is 10Hz
  • the initial strain is 5%
  • the dynamic strain rate is 1%
  • the deformation mode is the complex modulus of elasticity measured in tension (30°CE * ) is preferably smaller than 30°C E * of the cap rubber layer, which is measured in the same manner.
  • the particle size (average primary particle size) of silica is preferably 17 nm or less, considering ease of friction with the polymer.
  • the average primary particle diameter is calculated by directly observing silica taken out from a rubber composition cut from a tire using an electron microscope (TEM), etc., and calculating the equal cross-sectional area diameter from the area of each silica particle obtained. It can be calculated by finding the average value.
  • TEM electron microscope
  • the rubber composition forming the cap rubber layer contains a resin component.
  • Preferred resin components include rosin resins, styrene resins, coumaron resins, terpene resins, C5 resins, C9 resins, C5C9 resins, and acrylic resins, which will be described later. Among these, ⁇ -methylstyrene, etc. More preferred are styrenic resins.
  • the content per 100 parts by mass of the rubber component is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more. More preferably, the amount is 60 parts by mass or more, even more preferably 65 parts by mass or more, and even more preferably 70 parts by mass or more.
  • the acetone extractable content (AE) of the cap rubber layer is preferably 28% by mass or more, more preferably 29.3% by mass or more, even more preferably 30% by mass or more, and 30% by mass or more. It is more preferably 7% by mass or more, even more preferably 31.5% by mass or more, and even more preferably 31.9% by mass or more.
  • the upper limit is not particularly limited, but is preferably 35% by mass or less, more preferably 34% by mass or less, even more preferably 33.4% by mass or less, and even more preferably 33% by mass or less. preferable.
  • Acetone extractables can be considered as an indicator of the amount of softener, etc. in a rubber composition, and can also be considered as an indicator of the ease of movement of the molecular chains of the rubber component. For this reason, as described above in the cap rubber layer, when the amount of AE is increased to a certain extent, the area in which the tire contacts the road surface is sufficiently secured to improve ground contact and sufficiently improve wear resistance during high-speed driving. be able to.
  • acetone extractables can be measured in accordance with JIS K 6229:2015. Specifically, AE (mass%) can be obtained by immersing a vulcanized rubber test piece cut out from the measurement site in acetone for a predetermined time and determining the mass reduction rate (%) of the test piece. .
  • each vulcanized rubber test piece is immersed in acetone for 72 hours at room temperature and under normal pressure to extract the soluble components, the mass of each test piece before and after extraction is measured, and the mass can be determined by the following formula.
  • Acetone extraction amount (%) ⁇ (mass of rubber test piece before extraction - mass of rubber test piece after extraction) /(mass of rubber test piece before extraction) ⁇ 100
  • acetone extract described above can be changed as appropriate by changing the blending ratio of the plasticizer in the rubber composition.
  • the land ratio in the tread portion of the tire is incorporated into a regular rim and has a regular internal pressure of 40% or more, and the styrene-butadiene rubber has a styrene content of 25% by mass or less in 100 parts by mass of the rubber component.
  • the ratio of the content (parts by mass) of (SBR) to the land ratio (%) in the tread portion (SBR amount (parts by mass) with styrene content of 25% by mass or less/land ratio (%)) is 1.23 or less It is preferably 1.2 or less, more preferably 1.0 or less, and even more preferably 0.92 or less.
  • the lower limit is not particularly limited, but is preferably 0.6 or more, more preferably 0.7 or more.
  • Land ratio is the ratio of the actual ground contact surface to the virtual ground contact surface that fills all the grooves arranged on the surface of the tread. If the land ratio is large, the area in contact with the road surface becomes large. It is possible to easily reduce the force generated per unit area when doing so. By setting the ratio of the SBR amount of 25% by mass or less of styrene to the land ratio to a certain level or less, it is possible to suppress excessive concentration of force on the styrene domains generated in the rubber composition, which become the starting point of wear. It is thought that this makes it easier to improve wear resistance during high-speed running.
  • the lower limit of the ratio of the above-mentioned SBR content with a styrene content of 25% by mass or less and the land ratio is not particularly limited, but is preferably 0.2 or more, and more preferably 0.5 or more.
  • the land ratio described above can be determined from the ground contact shape under conditions of a regular rim, a regular internal pressure, and a regular load.
  • the tire was assembled on a regular rim, the regular internal pressure was applied, and the tire was left to stand at 25°C for 24 hours.
  • the tire tread surface was then painted with black ink, and the regular load was applied and the tire was pressed against cardboard (the camber angle was 0°).
  • the ground contact shape can be obtained by transferring it to paper, so the tire is rotated by 72° in the circumferential direction and transferred at five locations. That is, the ground contact shape is obtained five times. At this time, for the five ground contact shapes, the interrupted portions of the contours of the ground contact shapes are smoothly connected by grooves, and the resulting shape is defined as a virtual ground contact surface.
  • the land ratio can be calculated from (average area of the five ground contact shapes (black parts) transferred to the cardboard/average value of the area of the virtual ground contact surface obtained from the five ground contact shapes) x 100 (%). .
  • “regular internal pressure” is the air pressure specified for each tire by the above standard, and for JATMA it is the maximum air pressure, for ETRTO it is "INFLATION PRESSURE", and for TRA it is the air pressure shown in the table "TIRE LOAD LIMITS AT VARIOUS COLD". JATMA, ETRTO, and TRA are referred to in that order and the standards are followed, as in the case of the "regular rim.” In the case of a tire that is not specified in the standard, it refers to the normal internal pressure (250 KPa or more) of another tire size (specified in the standard) in which the regular rim is described as a standard rim. In addition, when multiple normal internal pressures of 250 KPa or more are listed, it refers to the minimum value among them.
  • the "regular load” is the load specified for each tire by each standard in the standard system, including the standard on which the above-mentioned tires are based, and is the maximum mass that is allowed to be loaded on the tire.
  • JATMA it refers to the maximum load capacity
  • ETRTO it refers to "LOAD CAPACITY”
  • TRA it refers to the maximum value listed in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”, and the above-mentioned "regular rim”
  • regular internal pressure refer to JATMA, ETRTO, and TRA in that order and follow their standards.
  • the normal load WL is determined by the following calculation.
  • V Virtual volume of tire (mm 3 )
  • Dt Tire outer diameter
  • Ht Tire cross-sectional height (mm)
  • Wt Tire cross-sectional width (mm)
  • the amount of styrene in 100 parts by mass of the rubber component is, for example, SBR1 having an amount of S1% by mass of styrene (X1 parts by mass) and SBR2 having an amount of S2% by mass of styrene (X2 parts by mass). If it is contained, it can be calculated from the formula ⁇ (S1 ⁇ X1)+(S2 ⁇ X2) ⁇ /100.
  • the oblateness is 80% or less, and the ratio of the content of silica (parts by mass) to the oblateness (%) with respect to 100 parts by mass of the rubber component (silica content (parts by mass) )/oblateness (%)) is preferably 0.5 or more, more preferably 0.6 or more, even more preferably 0.7 or more, even more preferably 0.8 or more, It is more preferably 0.9 or more, even more preferably 1.0 or more, even more preferably 1.2 or more, even more preferably 1.4 or more, even more preferably 1.64 or more, It is more preferably 1.7 or more, and even more preferably 1.73 or more.
  • the upper limit is not particularly limited, but is preferably 3.5 or less, more preferably 3.3 or less, even more preferably 3.1 or less, even more preferably 2.9 or less, and 2. More preferably, it is .5 or less.
  • the aspect ratio is the cross-sectional height of the tire with respect to the cross-sectional width of the tire, and it is thought that the smaller this ratio is, the more easily the force from the rim is transmitted to the tread portion during rolling, and the easier it is for wear to progress in the tread portion. Therefore, by including a sufficient amount of silica in relation to the aspect ratio, it is possible to ensure the reinforcing properties of the silica network, making it easier to improve wear resistance during high-speed running. Conceivable.
  • the upper limit of the ratio of silica content to flatness is not particularly limited, but is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.
  • the rubber composition forming the cap rubber layer includes various compounding materials such as the rubber component, filler, softener, vulcanizing agent, and vulcanization accelerator described below. It can be obtained by adjusting the type and amount as appropriate.
  • Compounded materials (a) Rubber component
  • the rubber component is not particularly limited, and may include isoprene rubber, diene rubber such as butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber, etc. Rubbers (polymers) commonly used in tire manufacturing can be used, such as thermoplastic elastomers such as butyl rubber, styrene-butadiene-styrene block copolymer (SBS), and styrene-butadiene block copolymer (SB). Note that, as these rubber components, extensible rubber that has been expanded in advance with oil, resin, liquid rubber component, etc., which will be described later, may be used.
  • the rubber component contains SBR and other rubber components.
  • Other rubber components are not particularly limited, but combinations of BR and BR and isoprene rubber are preferred.
  • the weight average molecular weight of SBR is, for example, more than 100,000 and less than 2,000,000. In the present invention, as described above, the amount of styrene in the SBR component is 25% by mass or less.
  • the vinyl content (1,2-bonded butadiene content) of SBR is, for example, more than 5% by mass and less than 70% by mass. Note that the vinyl content of SBR refers to the 1,2-bonded butadiene content relative to the entire butadiene moiety in the SBR component.
  • structural identification of SBR (measurement of styrene content and vinyl content) can be performed using, for example, a JNM-ECA series device manufactured by JEOL Ltd.
  • the content of SBR in 100 parts by mass of the rubber component is, as described above, 60 parts by mass or more and 80 parts by mass or less, and more preferably 65 parts by mass or more and 75 parts by mass or less.
  • the amount of pure rubber excluding the amount of extended components is the content of SBR.
  • the SBR is not particularly limited, and for example, emulsion polymerization styrene butadiene rubber (E-SBR), solution polymerization styrene butadiene rubber (S-SBR), etc. can be used.
  • SBR may be either non-denatured SBR or modified SBR.
  • hydrogenated SBR obtained by hydrogenating the butadiene part in SBR may be used, and hydrogenated SBR may be obtained by subsequently hydrogenating the BR part in SBR, and styrene, ethylene, and butadiene can be hydrogenated.
  • a similar structure may be obtained by copolymerization.
  • the modified SBR may be any SBR that has a functional group that interacts with a filler such as silica; for example, an end-modified SBR in which at least one end of the SBR is modified with a compound (modifier) having the above-mentioned functional group.
  • SBR terminalally modified SBR having the above functional group at the end
  • main chain modified SBR having the above functional group in the main chain
  • main chain terminal modified SBR having the above functional group in the main chain and the end
  • the main chain end-modified SBR which has the above-mentioned functional group and has at least one end modified with the above-mentioned modifier, or is modified (coupled) with a polyfunctional compound having two or more epoxy groups in the molecule, and has a hydroxyl group. and terminal-modified SBR into which an epoxy group has been introduced.
  • Examples of the above functional groups include amino groups, amide groups, silyl groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups, carbonyl groups, oxycarbonyl groups, mercapto groups, sulfide groups, and disulfide groups. group, sulfonyl group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group, etc. . Note that these functional groups may have a substituent.
  • modified SBR for example, SBR modified with a compound (modifier) represented by the following formula can be used.
  • R 1 , R 2 and R 3 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group (-COOH), a mercapto group (-SH) or a derivative thereof.
  • R 4 and R 5 are the same or different and represent a hydrogen atom or an alkyl group. R 4 and R 5 may be combined to form a ring structure together with the nitrogen atom.
  • n represents an integer.
  • the modified SBR modified with the compound (modifier) represented by the above formula includes a solution polymerized styrene butadiene rubber (S-SBR) whose polymerized end (active end) is modified with the compound represented by the above formula.
  • SBR modified SBR described in JP-A No. 2010-111753, etc.
  • JP-A No. 2010-111753, etc. can be used.
  • An alkoxy group is suitable as R 1 , R 2 and R 3 (preferably an alkoxy group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms).
  • R 4 and R 5 an alkyl group (preferably an alkyl group having 1 to 3 carbon atoms) is suitable.
  • n is preferably 1 to 5, more preferably 2 to 4, and still more preferably 3.
  • R 4 and R 5 combine to form a ring structure together with a nitrogen atom, it is preferably a 4- to 8-membered ring.
  • the alkoxy group also includes a cycloalkoxy group (cyclohexyloxy group, etc.) and an aryloxy group (phenoxy group, benzyloxy group, etc.).
  • the above modifier include 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, 2-diethylaminoethyltriethoxysilane, Examples include methoxysilane, 3-diethylaminopropyltrimethoxysilane, 2-diethylaminoethyltriethoxysilane, and 3-diethylaminopropyltriethoxysilane. These may be used alone or in combination of two or more.
  • modified SBR modified SBR modified with the following compound (modifier) can also be used.
  • modifiers include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolethane triglycidyl ether, and trimethylolpropane triglycidyl ether; two or more of diglycidylated bisphenol A, etc.
  • Polyglycidyl ethers of aromatic compounds having phenol groups polyepoxy compounds such as 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, and polyepoxidized liquid polybutadiene; 4,4'-diglycidyl-diphenyl Epoxy group-containing tertiary amines such as methylamine, 4,4'-diglycidyl-dibenzylmethylamine; diglycidylaniline, N,N'-diglycidyl-4-glycidyloxyaniline, diglycidyl orthotoluidine, tetraglycidyl metaxylene diamine , diglycidylamino compounds such as tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, diglycidylaminomethylcyclohexane, and tetraglycidyl-1,3-bisaminomethylcyclohexane
  • silane compounds Containing silane compounds; N-substituted aziridine compounds such as ethyleneimine and propyleneimine; methyltriethoxysilane, N,N-bis(trimethylsilyl)-3-aminopropyltrimethoxysilane, N,N-bis(trimethylsilyl)-3- Alkoxysilanes such as aminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)aminoethyltriethoxysilane; 4-N,N-dimethylaminobenzophenone, 4- N,N-di-t-butylaminobenzophenone, 4-N,N-diphenylaminobenzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., ENEOS Materials Co., Ltd., Asahi Kasei Co., Ltd., Nippon Zeon Co., Ltd., etc. can be used. Note that SBR may be used alone or in combination of two or more types.
  • the rubber composition may contain BR.
  • the content of BR in 100 parts by mass of the rubber component is preferably 20 parts by mass or more and 40 parts by mass or less, more preferably 25 parts by mass or more and 35 parts by mass or less.
  • the weight average molecular weight of BR is, for example, more than 100,000 and less than 2,000,000.
  • the vinyl content of BR is, for example, more than 1% by weight and less than 30% by weight.
  • the cis amount of BR is, for example, more than 1% by mass and less than 98% by mass.
  • the amount of trans in BR is, for example, more than 1% by mass and less than 60% by mass.
  • the BR is not particularly limited, and BR with a high cis content (cis content of 90% or more), BR with a low cis content, BR containing syndiotactic polybutadiene crystals, etc. can be used.
  • the BR may be either unmodified BR or modified BR, and examples of the modified BR include modified BR into which the above-mentioned functional groups have been introduced. These may be used alone or in combination of two or more.
  • the cis content can be measured by infrared absorption spectroscopy.
  • BR for example, products manufactured by Ube Industries, Ltd., ENEOS Materials, Asahi Kasei, Nippon Zeon, etc. can be used.
  • the rubber composition may contain isoprene-based rubber, if necessary.
  • the content of the isoprene rubber in 100 parts by mass of the rubber component is preferably 20 parts by mass or more and 40 parts by mass or less, more preferably 25 parts by mass or more and 35 parts by mass or less.
  • isoprene rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR, and the like.
  • NR those commonly used in the tire industry, such as SIR20, RSS#3, TSR20, and SVR-L, can be used.
  • the IR is not particularly limited, and for example, one commonly used in the tire industry, such as IR2200, can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high purity natural rubber (UPNR), etc.; modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, and grafted isoprene rubber. These may be used alone or in combination of two or more.
  • rubber components may include rubbers (polymers) commonly used in tire manufacturing such as nitrile rubber (NBR).
  • NBR nitrile rubber
  • the rubber composition contains silica as a filler as described above, but it may also contain other fillers. good. Specific examples of fillers other than silica include carbon black, graphite, calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica.
  • the BET specific surface area of the silica contained in the rubber composition is preferably more than 140 m 2 /g, more preferably more than 160 m 2 /g, from the viewpoint of obtaining good durability performance. On the other hand, from the viewpoint of obtaining good rolling resistance during high-speed running, it is preferably less than 250 m 2 /g, more preferably less than 220 m 2 /g. Note that the BET specific surface area described above is the value of N 2 SA measured by the BET method according to ASTM D3037-93.
  • silica with a particle size of 17 nm or less it is preferable to use silica with a small particle size, the frequency of contact with the polymer (styrene domain) can be increased. Since the mobility of the polymer can be increased and energy loss can be caused, wear resistance during high-speed running can be improved.
  • the lower limit is not particularly limited, but from the viewpoint of dispersibility during mixing, it is preferably 10 nm or more.
  • the content of silica is 100 parts by mass or less per 100 parts by mass of the rubber component, which does not exceed the amount of the rubber component, but it is preferably 95 parts by mass or less, and 90 parts by mass or less. It is more preferable.
  • the lower limit is not particularly limited, but in consideration of the reinforcing properties of silica, it is preferably 70 parts by mass or more, more preferably 80 parts by mass or more.
  • silica examples include dry process silica (anhydrous silica), wet process silica (hydrated silica), and the like. Among these, wet process silica is preferred because it has a large number of silanol groups. Furthermore, silica made from hydrous glass or the like, silica made from biomass materials such as rice husks, etc. may be used.
  • silica for example, products from Evonik Industries, Rhodia, Tosoh Silica, Solvay Japan, Tokuyama, etc. can be used.
  • the rubber composition forming the cap rubber layer of the present invention preferably contains a silane coupling agent together with silica.
  • the silane coupling agent is not particularly limited, and examples thereof include bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(4-triethoxysilylbutyl)tetrasulfide, Bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, bis(2-triethoxysilylethyl)trisulfide, bis(4-trimethoxysilylbutyl)trisulfide, bis( 3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylethyl) disulfide, bis(4-triethoxysily
  • Vinyl types such as methoxysilane, amino types such as 3-aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane, and glycidoxy types such as ⁇ -glycidoxypropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane.
  • 3-nitropropyltrimethoxysilane, 3-nitropropyltriethoxysilane, and other nitro types and 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, and other chloro types. These may be used alone or in combination of two or more.
  • silane coupling agent for example, products from Evonik Industries, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Kasei Kogyo Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd., etc. can be used.
  • the content of the silane coupling agent is, for example, more than 3 parts by mass and less than 25 parts by mass based on 100 parts by mass of silica.
  • the rubber composition preferably contains carbon black from the viewpoint of reinforcing properties.
  • the content of carbon black per 100 parts by mass of the rubber component is preferably 10 parts by mass or more, more preferably 20 parts by mass or more. On the other hand, it is preferably 60 parts by mass or less, more preferably 50 parts by mass or less.
  • Carbon black is not particularly limited, and includes furnace black (furnace carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black) ; thermal blacks (thermal carbon blacks) such as FT and MT; channel blacks (channel carbon blacks) such as EPC, MPC and CC. These may be used alone or in combination of two or more.
  • the CTAB specific surface area (Cetyl Tri-methyl Ammonium Bromide) of carbon black is preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and even more preferably 170 m 2 /g or more. On the other hand, it is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less. Note that the CTAB specific surface area is a value measured in accordance with ASTM D3765-92.
  • Specific carbon blacks are not particularly limited, and include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762, and the like.
  • Commercially available products include, for example, products from Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Co., Ltd., Lion Corporation, Nippon Kaya Carbon Co., Ltd., and Columbia Carbon Co., Ltd. can be used. These may be used alone or in combination of two or more.
  • the rubber composition may optionally include fillers such as graphite, calcium carbonate, talc, alumina, etc., which are commonly used in the tire industry. It may further contain fillers such as clay, aluminum hydroxide, and mica. The content of these is, for example, more than 0.1 part by mass and less than 200 parts by mass based on 100 parts by mass of the rubber component.
  • the rubber composition may contain oil (including extender oil), liquid rubber, and resin as plasticizer components, which soften the rubber.
  • the plasticizer component is a component that can be extracted from the vulcanized rubber with acetone.
  • the total content of the plasticizer component is preferably 85 parts by mass or more, more preferably 100 parts by mass or more, based on 100 parts by mass of the rubber component. On the other hand, it is preferably 120 parts by mass or less, more preferably 110 parts by mass or less. Note that when extensible rubber is used as the rubber component, the amount of the extensible component is included in the amount of these plasticizer components.
  • Oil Oils include, for example, mineral oils (generally referred to as process oils), vegetable oils, or mixtures thereof.
  • mineral oil for example, paraffinic process oil, aromatic process oil, naphthenic process oil, etc. can be used.
  • Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, coconut oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, safflower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more. Furthermore, from the viewpoint of life cycle assessment, waste oil that has been used as a lubricating oil for rubber mixing mixers, automobile engines, etc., waste cooking oil, etc. may be used as appropriate.
  • PCA polycyclic aromatic compound
  • process oils include mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), heavy naphthenic oils, and the like.
  • Specific process oils include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., ENEOS Co., Ltd., Orisoi Co., Ltd., H&R Co., Ltd., Toyokuni Oil Co., Ltd., and Showa Shell Sekiyu Co., Ltd. ), Fuji Kosan Co., Ltd., etc. can be used.
  • liquid rubber mentioned as a plasticizer is a polymer that is in a liquid state at room temperature (25° C.), and is a rubber component that can be extracted from a vulcanized tire by acetone extraction.
  • the liquid rubber include farnesene polymers, liquid diene polymers, and hydrogenated products thereof.
  • a farnesene-based polymer is a polymer obtained by polymerizing farnesene, and has a constituent unit based on farnesene.
  • Farnesene includes ⁇ -farnesene ((3E,7E)-3,7,11-trimethyl-1,3,6,10-dodecatetraene) and ⁇ -farnesene (7,11-dimethyl-3-methylene-1 , 6,10-dodecatriene).
  • the farnesene-based polymer may be a farnesene homopolymer (farnesene homopolymer) or a copolymer of farnesene and a vinyl monomer (farnesene-vinyl monomer copolymer).
  • liquid diene-based polymers examples include liquid styrene-butadiene copolymer (liquid SBR), liquid butadiene polymer (liquid BR), liquid isoprene polymer (liquid IR), liquid styrene-isoprene copolymer (liquid SIR), etc. It will be done.
  • the weight average molecular weight (Mw) of the liquid diene polymer measured by gel permeation chromatography (GPC) in terms of polystyrene is, for example, more than 1.0 ⁇ 10 3 and less than 2.0 ⁇ 10 5 .
  • the Mw of the liquid diene polymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • the content of liquid rubber (total content of liquid farnesene polymer, liquid diene polymer, etc.) is, for example, more than 1 part by mass and less than 100 parts by mass based on 100 parts by mass of the rubber component.
  • liquid rubber for example, products from Kuraray Co., Ltd., Clay Valley Co., Ltd., etc. can be used.
  • Resin component The resin component also functions as a tackifying component and may be solid or liquid at room temperature.
  • Specific resin components include rosin resin, styrene resin, etc. , coumarone resin, terpene resin, C5 resin, C9 resin, C5C9 resin, acrylic resin, etc., and two or more types may be used in combination.
  • the content of the resin component is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 65 parts by mass or more, based on 100 parts by mass of the rubber component. Note that these resin components may be provided with a modifying group capable of reacting with silica or the like, if necessary.
  • Rosin-based resin is a resin whose main component is rosin acid obtained by processing pine resin.
  • This rosin-based resin (rosin) can be classified according to the presence or absence of modification, and can be classified into unmodified rosin (unmodified rosin) and modified rosin (rosin derivative).
  • unmodified rosin include tall rosin (also known as tall oil rosin), gum rosin, wood rosin, disproportionated rosin, polymerized rosin, hydrogenated rosin, and other chemically modified rosins.
  • the modified rosin is a modified version of unmodified rosin, and includes rosin esters, unsaturated carboxylic acid-modified rosins, unsaturated carboxylic acid-modified rosin esters, amide compounds of rosin, and amine salts of rosin.
  • Styrenic resins are polymers using styrene monomers as constituent monomers, and include polymers polymerized with styrene monomers as the main component (50% by mass or more). Specifically, styrenic monomers (styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, Homopolymers of o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), copolymers of two or more styrene monomers, and styrene monomers. and copolymers of other monomers that can be copolymerized therewith.
  • styrenic monomers styrene, o-
  • Examples of the other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, acrylics, unsaturated carboxylic acids such as methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene, and butadiene.
  • Examples include dienes such as isoprene, olefins such as 1-butene and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride, or acid anhydrides thereof.
  • Coumaron indene resin is preferred.
  • Coumarone indene resin is a resin containing coumaron and indene as monomer components constituting the skeleton (main chain) of the resin.
  • monomer components contained in the skeleton include styrene, ⁇ -methylstyrene, methylindene, and vinyltoluene.
  • the content of the coumaron indene resin is, for example, more than 1.0 parts by mass and less than 50.0 parts by mass based on 100 parts by mass of the rubber component.
  • the hydroxyl value (OH value) of the coumaron indene resin is, for example, more than 15 mgKOH/g and less than 150 mgKOH/g.
  • the OH number is the amount of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group when acetylating 1 g of resin, expressed in milligrams, and is determined by the potentiometric titration method (JIS K 0070: (1992).
  • the softening point of the coumaron indene resin is, for example, higher than 30°C and lower than 160°C.
  • the softening point is the temperature at which the ball drops when the softening point specified in JIS K 6220-1:2001 is measured using a ring and ball softening point measuring device.
  • terpene resins include polyterpenes, terpene phenols, aromatic modified terpene resins, and the like.
  • Polyterpenes are resins obtained by polymerizing terpene compounds and hydrogenated products thereof.
  • Terpene compounds are hydrocarbons and their oxygen-containing derivatives represented by the composition (C 5 H 8 ) n , including monoterpenes (C 10 H 16 ), sesquiterpenes (C 15 H 24 ), and diterpenes (C 20 H 32 ) .
  • polyterpenes examples include terpene resins such as ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, dipentene resin, and ⁇ -pinene/limonene resin, which are made from the above-mentioned terpene compounds, as well as hydrogen obtained by hydrogenating the terpene resin. Also included are added terpene resins.
  • terpene resins include resins obtained by copolymerizing the above-mentioned terpene compounds and phenolic compounds, and resins obtained by hydrogenating the above-mentioned resins. Examples include resin. Note that examples of the phenolic compound include phenol, bisphenol A, cresol, xylenol, and the like.
  • aromatic modified terpene resins include resins obtained by modifying terpene resins with aromatic compounds, and resins obtained by hydrogenating the resins.
  • the aromatic compound is not particularly limited as long as it has an aromatic ring, but examples include phenol compounds such as phenol, alkylphenol, alkoxyphenol, and unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, Naphthol compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; coumaron, indene, and the like.
  • C5 resin refers to a resin obtained by polymerizing a C5 fraction.
  • the C5 fraction include petroleum fractions having 4 to 5 carbon atoms such as cyclopentadiene, pentene, pentadiene, and isoprene.
  • dicyclopentadiene resin DCPD resin
  • DCPD resin dicyclopentadiene resin
  • C9 resin refers to a resin obtained by polymerizing a C9 fraction, and may be a hydrogenated or modified resin.
  • the C9 fraction include petroleum fractions having 8 to 10 carbon atoms, such as vinyltoluene, alkylstyrene, indene, and methylindene.
  • coumaron indene resin, coumaron resin, indene resin, and aromatic vinyl resin are preferably used.
  • aromatic vinyl resin ⁇ -methylstyrene, a styrene homopolymer, or a copolymer of ⁇ -methylstyrene and styrene is preferred because it is economical, easy to process, and has excellent heat generation properties. , a copolymer of ⁇ -methylstyrene and styrene is more preferred.
  • the aromatic vinyl resin for example, those commercially available from Clayton Co., Eastman Chemical Co., etc. can be used.
  • C5C9 resin refers to a resin obtained by copolymerizing the C5 fraction and the C9 fraction, and may be hydrogenated or modified.
  • Examples of the C5 fraction and C9 fraction include the petroleum fractions described above.
  • As the C5C9 resin for example, those commercially available from Tosoh Corporation, LUHUA, etc. can be used.
  • acrylic resin is not particularly limited, for example, a solvent-free acrylic resin can be used.
  • Solvent-free acrylic resins are produced using a high-temperature continuous polymerization method (high-temperature continuous bulk polymerization method) (U.S. Patent No. 4,414,370), which uses as little as possible the use of auxiliary materials such as polymerization initiators, chain transfer agents, and organic solvents.
  • high-temperature continuous bulk polymerization method U.S. Patent No. 4,414,370
  • auxiliary materials such as polymerization initiators, chain transfer agents, and organic solvents.
  • Examples include (meth)acrylic resins (polymers) synthesized by the method described in -45, etc. Note that in the present invention, (meth)acrylic means methacryl and acrylic.
  • Examples of monomer components constituting the acrylic resin include (meth)acrylic acid, (meth)acrylic esters (alkyl esters, aryl esters, aralkyl esters, etc.), (meth)acrylamide, and (meth)acrylamide derivatives.
  • Examples include (meth)acrylic acid derivatives such as.
  • acrylic resin in addition to (meth)acrylic acid and (meth)acrylic acid derivatives, styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, divinylnaphthalene, etc. aromatic vinyl may be used.
  • the above-mentioned acrylic resin may be a resin composed only of a (meth)acrylic component, or a resin containing components other than the (meth)acrylic component. Further, the acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
  • Examples of the resin component include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Corporation, Rutgers Chemicals, BASF, Arizona Chemical Co., Ltd., Ninuri Chemical Co., Ltd. ) Products from Nippon Shokubai, ENEOS Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd., etc. can be used.
  • the rubber composition preferably contains stearic acid.
  • the content of stearic acid is, for example, more than 0.5 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component.
  • stearic acid conventionally known ones can be used, and for example, products from NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., Chiba Fatty Acid Co., Ltd., etc. can be used.
  • the rubber composition preferably contains an anti-aging agent.
  • the content of the anti-aging agent is, for example, more than 0.5 parts by mass and less than 10 parts by mass, and more preferably 1 part by mass or more, based on 100 parts by mass of the rubber component.
  • anti-aging agents examples include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis( ⁇ , ⁇ ′-dimethylbenzyl)diphenylamine; -isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N,N'-di-2-naphthyl-p-phenylenediamine, etc.
  • naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine
  • diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis( ⁇ , ⁇ ′-dimethylbenzyl)diphenylamine
  • p-phenylenediamine-based anti-aging agents p-phenylenediamine-based anti-aging agents
  • quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methylphenol
  • Monophenolic anti-aging agents such as styrenated phenol
  • bis-, tris-, and polyphenol-based aging agents such as tetrakis-[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane, etc.
  • Examples include inhibitors. These may be used alone or in combination of two or more.
  • anti-aging agent for example, products from Seiko Kagaku Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Flexis Co., Ltd., etc. can be used.
  • the rubber composition preferably contains wax.
  • the content of wax is, for example, 0.5 to 20 parts by weight, preferably 1.0 to 15 parts by weight, and more preferably 1.5 to 10 parts by weight, based on 100 parts by weight of the rubber component.
  • the wax is not particularly limited, and includes petroleum waxes such as paraffin wax and microcrystalline wax; natural waxes such as vegetable waxes and animal waxes; and synthetic waxes such as polymers of ethylene and propylene. These may be used alone or in combination of two or more.
  • wax for example, products manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., Seiko Kagaku Co., Ltd., etc. can be used.
  • the rubber composition may contain zinc oxide.
  • the content of zinc oxide is, for example, more than 0.5 parts by mass and less than 10 parts by mass based on 100 parts by mass of the rubber component.
  • zinc oxide conventionally known ones can be used, such as products from Mitsui Kinzoku Kogyo Co., Ltd., Toho Zinc Co., Ltd., Hakusui Tech Co., Ltd., Seido Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. can be used.
  • the rubber composition preferably contains a crosslinking agent such as sulfur.
  • the content of the crosslinking agent is, for example, more than 0.1 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component.
  • Sulfur includes powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersed sulfur, soluble sulfur, etc. commonly used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products manufactured by Tsurumi Chemical Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis, Nippon Karidome Kogyo Co., Ltd., Hosoi Chemical Co., Ltd., etc. can be used. .
  • cross-linking agents other than sulfur examples include sulfur atoms such as Tackirol V200 manufactured by Taoka Chemical Industry Co., Ltd. and KA9188 (1,6-bis(N,N'-dibenzylthiocarbamoyldithio)hexane) manufactured by Lanxess. and organic peroxides such as dicumyl peroxide.
  • the rubber composition preferably contains a vulcanization accelerator.
  • the content of the vulcanization accelerator is, for example, more than 0.3 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component.
  • vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiazyl sulfenamide; tetramethylthiuram disulfide (TMTD); ), thiuram-based vulcanization accelerators such as tetrabenzylthiuram disulfide (TBzTD), tetrakis(2-ethylhexyl)thiuram disulfide (TOT-N); N-cyclohexyl-2-benzothiazolesulfenamide, N-t-butyl- Sulfenamide vulcanization accelerators such as 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N,N'-diisopropyl-2-benzothiazolesulfenamide; diphenylguanidine; Examples include thi
  • the rubber composition may contain additives commonly used in the tire industry, such as fatty acid metal salts, carboxylic acid metal salts, organic peroxides, and reversion (reversion). ) An inhibitor or the like may be further added as necessary.
  • the content of these additives is, for example, more than 0.1 part by mass and less than 200 parts by mass based on 100 parts by mass of the rubber component.
  • the rubber composition forming the cap rubber layer is prepared by appropriately adjusting the above-mentioned various compounding materials and kneading the rubber component and filler such as carbon black using a general method. It is produced by a manufacturing method including a base kneading step and a finishing kneading step of kneading the kneaded material obtained in the base kneading step and a crosslinking agent.
  • Kneading can be performed using a known (closed) kneader such as a Banbury mixer, kneader, or open roll.
  • a known (closed) kneader such as a Banbury mixer, kneader, or open roll.
  • the kneading temperature in the base kneading step is, for example, more than 50°C and less than 200°C, and the kneading time is, for example, more than 30 seconds and less than 30 minutes.
  • compounding agents conventionally used in the rubber industry such as softeners such as oil, zinc oxide, anti-aging agents, wax, and vulcanization accelerators, are added as necessary. , may be kneaded.
  • the finishing kneading step the kneaded material obtained in the base kneading step and the crosslinking agent are kneaded.
  • the kneading temperature in the final kneading step is, for example, higher than room temperature and lower than 80° C.
  • the kneading time is, for example, higher than 1 minute and shorter than 15 minutes.
  • a vulcanization accelerator, zinc oxide, etc. may be appropriately added and kneaded as necessary.
  • the tire according to the present invention is produced by molding the rubber composition obtained above as a cap rubber layer into a tread rubber having a predetermined shape, and then molding the rubber composition along with other tire members on a tire molding machine using a normal method. By molding it, it is possible to produce an unvulcanized tire.
  • the tread part when making the tread part a multilayer structure with the base rubber layer, basically, by using the above-mentioned rubber components and compounding materials, changing the compounding amounts as appropriate, and kneading in the same manner. , a rubber composition forming a base rubber layer can be obtained. Then, it is extruded together with the cap rubber layer and molded into a tread rubber of a predetermined shape, and then molded together with other tire components using a normal method on a tire molding machine to produce an unvulcanized tire. can.
  • an inner liner as a member to ensure airtightness of the tire
  • a carcass as a member to withstand the load, impact, and filling air pressure that the tire receives
  • a carcass that is tightly tightened to increase the rigidity of the tread.
  • a belt member that serves as a lifting member is wound around the carcass, and both ends of the carcass are fixed to both side edges, and a bead part that is a member that fixes the tire to the rim is placed to form a toroid shape.
  • An unvulcanized tire is manufactured by laminating a tread to the center portion of the tire and a side wall to the outside in the radial direction to form a side portion.
  • a tire is obtained by heating and pressurizing the produced unvulcanized tire in a vulcanizer.
  • the vulcanization process can be carried out by applying known vulcanization means.
  • the vulcanization temperature is, for example, more than 120°C and less than 200°C, and the vulcanization time is, for example, more than 5 minutes and less than 15 minutes.
  • the resulting tire has the reinforcing effect of silica in the rubber composition, the moderating effect on deformation due to an appropriate amount of styrene, the suppressing effect of slipping on the tread surface due to an appropriate 30°C tan ⁇ , and the appropriate amount of styrene. Due to the effect of suppressing heat accumulation through thickness control, wear resistance during high-speed running can be sufficiently improved.
  • the tire according to the present invention is not particularly limited in category, and can be used as tires for passenger cars, tires for heavy-duty vehicles such as trucks and buses, tires for two-wheeled vehicles, run-flat tires, non-pneumatic tires, etc. However, it is preferable to use tires for passenger cars. Moreover, it is preferable to use a pneumatic tire.
  • Rubber composition for forming the cap rubber layer (1) Compounding materials
  • Rubber component (a) Rubber component (a) SBR-1: Modified S-SBR obtained by the method shown in the next paragraph (Styrene content: 25% by mass, vinyl content: 25% by mass)
  • SBR-2 HPR850 (modified S-SBR) manufactured by ENEOS Materials Co., Ltd. (Styrene content: 27.5% by mass, vinyl content: 59.0% by mass)
  • SBR-3 HPR840 (S-SBR) manufactured by ENEOS Materials Co., Ltd. (Styrene content: 10% by mass, vinyl content: 42% by mass)
  • BR Ubepol BR150B (Hisis BR) manufactured by Ube Industries, Ltd. (Cis content 97% by mass, trans content 2% by mass, vinyl content 1% by mass)
  • SBR-1 (Manufacture of SBR-1)
  • the above SBR-1 is produced according to the following procedure. First, two autoclaves with an internal volume of 10 L, an inlet at the bottom and an outlet at the head, equipped with a stirrer and a jacket were connected in series as reactors, and butadiene, styrene, and cyclohexane were mixed in a predetermined ratio. do.
  • This mixed solution is passed through a dehydration column packed with activated alumina, mixed with n-butyllithium in a static mixer to remove impurities, and then continuously fed from the bottom of the first reactor, and further 2,2-bis(2-oxolanyl)propane as a polar substance and n-butyllithium as a polymerization initiator were continuously supplied from the bottom of the first reactor at a predetermined rate, and the internal temperature of the reactor was brought to 95%. Keep at °C. The polymer solution is continuously extracted from the head of the reactor and supplied to the second reactor.
  • the temperature of the second reactor was maintained at 95°C, and a mixture of tetraglycidyl-1,3-bisaminomethylcyclohexane (monomer) as a modifier and the oligomer component was diluted 1000 times with cyclohexane at a predetermined rate.
  • the denaturation reaction is carried out by continuously adding as follows. This polymer solution is continuously extracted from the reactor, an antioxidant is continuously added using a static mixer, and then the solvent is removed to obtain the desired modified diene polymer (SBR-1).
  • the vinyl content (unit: mass %) of the SBR-1 is determined from the absorption intensity near 910 cm ⁇ 1 , which is the absorption peak of vinyl groups, by infrared spectroscopy. Moreover, the amount of styrene (unit: mass %) is determined from the refractive index according to JIS K6383:1995.
  • Vulcanization accelerator-1 Noxeler CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd. (N-cyclohexyl-2-benzothiazylsulfenamide (CBS))
  • Vulcanization accelerator-2 Soxil D (DPG) manufactured by Sumitomo Chemical Co., Ltd. (N,N'-diphenylguanidine)
  • sulfur and a vulcanization accelerator are added to the kneaded product and kneaded for 5 minutes at 80° C. using open rolls to obtain a rubber composition that will form the cap rubber layer.
  • Rubber Composition Forming the Base Rubber Layer In parallel, a rubber composition forming the base rubber layer was prepared based on the formulation shown in Table 1 in the same manner as in the production of the rubber composition forming the cap rubber layer. A rubber composition forming a layer is obtained.
  • (30° C. tan ⁇ /G) is calculated based on the 30° C. tan ⁇ of the cap rubber layer and the thickness G (mm) of the tread portion.
  • Tg A rubber test piece for measuring viscoelasticity, which was cut out from the cap rubber layer in the same manner and produced, was measured using GABO's "Iplexer (registered trademark)" at a frequency of 10 Hz, an initial strain of 2%, an amplitude of ⁇ 1%, and a temperature increase rate of 2. °C/min, temperature is changed from -60°C to 40°C, tan ⁇ is measured, and Tg is determined by the method described above.
  • (30°C E * / G) is calculated based on 30°C E* (MPa) and the thickness G (mm) of the tread portion.
  • AE Acetone extractables
  • Performance evaluation test evaluation of wear resistance performance during high-speed driving
  • a vehicle domestic front-wheel drive vehicle, displacement 2000cc
  • an internal pressure 250kPa (regular internal pressure for passenger cars)
  • the groove depth of the tread was measured and the degree of decrease was determined. Then, the travel distance corresponding to a 1 mm decrease in groove depth is calculated.
  • the present invention (1) is A tire including a tread portion,
  • the cap rubber layer forming the tread portion is Containing styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component, 60 parts by mass or more and 80 parts by mass or less, Containing less than 100 parts by mass of silica with respect to 100 parts by mass of the rubber component, Formed from a rubber composition whose loss tangent (30°C tan ⁇ ) measured in tensile deformation mode is more than 0.25 under the conditions of a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%. and
  • the tire is characterized in that the thickness of the tread portion is 15 mm or less.
  • the present invention (2) is The tire according to the present invention (1) is characterized in that the 30°C tan ⁇ is 0.30 or more.
  • the present invention (3) is The loss tangent (0°C tan ⁇ ) of the rubber composition forming the cap rubber layer measured under the conditions of a temperature of 0°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1% is as follows:
  • the tire according to the present invention (1) or (2) is characterized in that it is 0.60 or more.
  • the present invention (4) is The tire according to the present invention (3) is characterized in that the 0°C tan ⁇ is 0.70 or more.
  • the present invention (5) is The tire is characterized in that the cap rubber layer has a glass transition temperature (Tg) of ⁇ 15° C. or lower, and is any combination of the present invention (1) to (4).
  • Tg glass transition temperature
  • the present invention (6) is The temperature of the cap rubber layer is 30°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, and the deformation mode is that the complex modulus of elasticity (30°C E * ) measured in tension is 6.0 MPa or less.
  • the present invention is characterized by a tire in any combination with any one of the present inventions (1) to (5).
  • the present invention (7) is The present invention (1) is characterized in that the 30°C E * (MPa) and the thickness (mm) of the tread portion satisfy (30°C E * /thickness of the tread portion) ⁇ 0.50. It is a tire of any combination with any one of (6).
  • the present invention (8) is The temperature of the cap rubber layer is 0°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, the deformation mode is: the complex modulus of elasticity (0°C E * ) measured in tension is 25.0 MPa or less.
  • the present invention is characterized by a tire in any combination with any one of the present inventions (1) to (7).
  • the present invention (9) is The tire is characterized in that the thickness of the tread portion is 4 mm or more and 11 mm or less, and is any combination with any one of the present inventions (1) to (8).
  • the present invention (10) is A tire according to any combination of the present invention (1) to (9), characterized in that the thickness of the cap rubber layer is 10% or more and less than 100% of the total thickness of the tread portion. It is.
  • the present invention (11) is The cap rubber layer contains a resin component selected from the group of rosin resin, styrene resin, coumaron resin, terpene resin, C5 resin, C9 resin, C5C9 resin, and acrylic resin. , a tire in any combination with any one of the present inventions (1) to (10).
  • the present invention (12) is The present invention (1) is characterized in that the 30°C tan ⁇ of the cap rubber layer and the thickness (mm) of the tread portion satisfy (30°C tan ⁇ /thickness of the tread portion)>0.03. (11) Any combination of tires.
  • the present invention (13) is The land ratio in the tread portion is 40% or more, The ratio of the content (parts by mass) of styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component to the land ratio (%) in the tread portion (SBR having a styrene content of 25% by mass or less)
  • SBR styrene-butadiene rubber
  • the tire is characterized in that the content (parts by mass)/land ratio (%) is 1.2 or less, and is any combination of the present invention (1) to (12).
  • the present invention (14) is The flattening ratio is 80% or less, The ratio of the content (parts by mass) of the silica to 100 parts by mass of the rubber component and the oblateness (%) (silica content (parts by mass)/oblateness (%)) is 0.6 or more. It is a tire in any combination with any one of the present inventions (1) to (13).

Abstract

The present invention improves wear resistance during high-speed travel. A tire comprising a tread section, wherein: a cap rubber layer forming the tread section is formed from a rubber composition containing 60-80 parts by mass of styrene butadiene rubber (SBR) having a styrene content of 25% by mass or less per 100 parts by mass of a rubber component, and also containing 100 parts by mass or less of silica per 100 parts by mass of the rubber component, the rubber composition being such that, at a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%, the loss tangent (30°C tan δ) of the rubber composition measured in a tension deformation mode is greater than 0.25; and the thickness of the tread section is 6-15 mm.

Description

タイヤtire
 本発明は、タイヤに関する。 The present invention relates to tires.
 タイヤは、走行により摩耗を招くため、従来より、耐摩耗性の向上に関して、種々の技術が提案されている(例えば、特許文献1~4)。 Since tires are subject to wear due to running, various techniques have been proposed to improve wear resistance (for example, Patent Documents 1 to 4).
特開2021-187860号公報JP2021-187860A WO2019/235526号公報WO2019/235526 publication WO2019/240226号公報WO2019/240226 publication
 しかしながら、近年の高速道の整備に伴い、高速で長距離を移動する機会が飛躍的に増加している状況下、上記した従来技術に基づいて製造されたタイヤでは、高速走行時における耐摩耗性は、未だ、十分とは言えず、さらなる改善が強く望まれている。 However, with the development of expressways in recent years, opportunities to travel long distances at high speeds have increased dramatically. is still not sufficient, and further improvements are strongly desired.
 そこで、本発明は、高速走行時における耐摩耗性の向上を図ることを課題とする。 Therefore, an object of the present invention is to improve wear resistance during high-speed running.
 本発明は、
 トレッド部を備えたタイヤであって、
 前記トレッド部を形成するキャップゴム層が、
 スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
 前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
 温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
 前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤである。
The present invention
A tire including a tread portion,
The cap rubber layer forming the tread portion is
Containing styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component, 60 parts by mass or more and 80 parts by mass or less,
Containing less than 100 parts by mass of silica with respect to 100 parts by mass of the rubber component,
Formed from a rubber composition whose loss tangent (30°C tan δ) measured in tensile deformation mode is more than 0.25 under the conditions of a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%. and
The tire is characterized in that the thickness of the tread portion is 15 mm or less.
 本発明によれば、高速走行時における耐摩耗性の向上を図ることができる。 According to the present invention, it is possible to improve wear resistance during high-speed running.
[1]本発明に係るタイヤの特徴
 最初に、本発明に係るタイヤの特徴について説明する。
[1] Features of the tire according to the present invention First, the features of the tire according to the present invention will be explained.
1.概要
 本発明に係るタイヤは、トレッド部を備えたタイヤであって、トレッド部を形成するキャップゴム層が、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、ゴム成分100質量部に対してシリカを100質量部未満含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されている。そして、トレッド部の厚みが、15mm以下である。
1. Summary The tire according to the present invention is a tire having a tread portion, in which the cap rubber layer forming the tread portion contains SBR containing 25% by mass or less of styrene, 60 parts by mass or more in 100 parts by mass of the rubber component, Contains 80 parts by mass or less, and contains less than 100 parts by mass of silica per 100 parts by mass of the rubber component, under the conditions of temperature 30 ° C., frequency 10 Hz, initial strain 5%, dynamic strain rate 1%, deformation mode: tensile. The rubber composition has a loss tangent (tan δ at 30°C) of more than 0.25. The thickness of the tread portion is 15 mm or less.
 なお、ここにいうキャップゴム層は、トレッド部の最外層を形成するゴム層に限られず、トレッド表面から内側に向かって5mm以内に2層以上ある場合は、少なくともいずれか1つの層が、前記ゴム組成物の要件を満たしていればよい。 Note that the cap rubber layer referred to herein is not limited to the rubber layer that forms the outermost layer of the tread portion, but if there are two or more layers within 5 mm inward from the tread surface, at least one of the layers is It is sufficient as long as it satisfies the requirements of the rubber composition.
 これらの特徴を有することにより、後述するように、高速走行時における耐摩耗性の向上を図ることができる。 By having these characteristics, as will be described later, it is possible to improve the wear resistance during high-speed running.
2.本発明に係るタイヤにおける効果発現のメカニズム
 本発明に係るタイヤにおける上記した効果発現のメカニズムについては、以下のように考えられる。
2. Mechanism of the effect exerted in the tire according to the present invention The mechanism of the above-mentioned effect exerted in the tire according to the present invention is considered as follows.
 上記したように、本発明に係るタイヤのキャップゴム層を形成するゴム組成物は、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、シリカをゴム成分100質量部に対して100質量部以下含有している。 As described above, the rubber composition forming the cap rubber layer of the tire according to the present invention contains 60 parts by mass or more and 80 parts by mass or less of SBR with a styrene content of 25% by mass or less in 100 parts by mass of the rubber component. In addition, silica is contained in an amount of 100 parts by mass or less based on 100 parts by mass of the rubber component.
 ゴム成分100質量部中のSBR成分を60質量部以上、80質量部以下とすることにより、ゴムマトリックス中に、SBR相が連続相となった相分離構造を形成させることができ、そして、SBR中のスチレン量を25質量%以下とすることにより、ゴムマトリックス中のSBR相内で、補強剤としてゴム組成物に含有されるシリカが相互作用を発揮し易くなり、シリカによる補強効果が得られ易くなると考えられる。 By setting the SBR component in 100 parts by mass of the rubber component to 60 parts by mass or more and 80 parts by mass or less, it is possible to form a phase-separated structure in which the SBR phase is a continuous phase in the rubber matrix. By setting the amount of styrene in the rubber composition to 25% by mass or less, the silica contained in the rubber composition as a reinforcing agent can easily interact with the SBR phase in the rubber matrix, and the reinforcing effect of silica can be obtained. It is thought that it will become easier.
 また、スチレン量が少ない(スチレン量25質量%以下)SBRを、適量含有させることによって、ゴムマトリックス系内にスチレン部に由来する微小なスチレンドメインを適切に形成させることができる。この形成される微小なスチレンドメインは、他のポリマー分子鎖との界面で力を緩和させやすいため、タイヤの高速走行時における路面との摩擦によって発生する変形を緩和させ易くできると考えられる。 Furthermore, by containing an appropriate amount of SBR with a small amount of styrene (styrene amount of 25% by mass or less), minute styrene domains derived from the styrene portion can be appropriately formed in the rubber matrix system. These minute styrene domains that are formed tend to relax force at the interface with other polymer molecular chains, and are therefore thought to be able to ease deformation caused by friction with the road surface when the tire runs at high speed.
 なお、前記したスチレン量は、20質量%以下であるとより好ましく、15質量%以下であるとさらに好ましく、10質量%以下であるとさらに好ましい。一方、下限としては、4質量%以上であることが好ましく、5質量%以上であるとより好ましく、6質量%以上であるとさらに好ましい。 Note that the amount of styrene described above is more preferably 20% by mass or less, even more preferably 15% by mass or less, and even more preferably 10% by mass or less. On the other hand, the lower limit is preferably 4% by mass or more, more preferably 5% by mass or more, and even more preferably 6% by mass or more.
 そして、本発明において、「スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有」とは、ゴム成分100質量部中に占めるSBR量が60質量部以上、80質量部以下であり、SBR全体におけるスチレン量が25質量%以下であることを示している。 In the present invention, "containing 60 parts by mass or more and 80 parts by mass or less of SBR with an amount of styrene of 25 parts by mass or less in 100 parts by mass of the rubber component" means that the amount of SBR in 100 parts by mass of the rubber component is 60 parts by mass or less. The amount is 80 parts by mass or more, and 80 parts by mass or less, indicating that the amount of styrene in the entire SBR is 25% by mass or less.
 即ち、ゴム成分中にスチレン含有ポリマー(SBR)が単独で含有されている場合には、そのスチレン量が25質量%以下であることを示し、ゴム成分中にスチレン含有ポリマー(SBR)が複数含有されている場合には、それぞれのポリマー中のスチレン量(質量%)と、そのポリマーのゴム成分100質量部に対する配合量(質量部)との積の総和により求められるスチレン量が25質量%以下であることを示している。 That is, when a styrene-containing polymer (SBR) is contained alone in the rubber component, it indicates that the amount of styrene is 25% by mass or less, and if the rubber component contains multiple styrene-containing polymers (SBR). , the amount of styrene determined by the sum of the products of the amount of styrene (% by mass) in each polymer and the amount (parts by mass) of that polymer per 100 parts by mass of the rubber component is 25% by mass or less. It shows that.
 より具体的には、ゴム成分100質量部中に、スチレン量S1質量%のSBR1(X1質量部)とスチレン量S2質量%のSBR2(X2質量部)とが含有されている場合、{(S1×X1)+(S2×X2)}/(X1+X2)の式から算出されるスチレン量が、25質量%以下であることを示している。 More specifically, when 100 parts by mass of the rubber component contains SBR1 with a styrene content of S1% by mass (X1 parts by mass) and SBR2 with a styrene content of S2% by mass (X2 parts by mass), {(S1 ×X1)+(S2×X2)}/(X1+X2) The amount of styrene calculated from the formula is 25% by mass or less.
 また、加硫後のゴム組成物においては、アセトン抽出後のゴム成分中に含まれるスチレン量を固体核磁気共鳴(固体NMR)やフーリエ変換赤外分光光度計(FTIR)により求めることによっても、算出することが可能である。 In addition, in the rubber composition after vulcanization, the amount of styrene contained in the rubber component after acetone extraction can also be determined by solid-state nuclear magnetic resonance (solid-state NMR) or Fourier transform infrared spectrophotometer (FTIR). It is possible to calculate.
 本発明において、キャップゴム層を形成するゴム組成物は、ゴム成分100質量部に対して100質量部未満と、ゴム成分を上回らない量のシリカを含有している。これにより、前記したシリカの相互作用による補強効果に加えて、微小なスチレンドメインとシリカとが摩擦を生じて発熱することにより、変形のエネルギーを逃がすことができるため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。 In the present invention, the rubber composition forming the cap rubber layer contains less than 100 parts by mass of silica per 100 parts by mass of the rubber component, which is not more than the rubber component. As a result, in addition to the reinforcing effect due to the interaction of silica, the minute styrene domains and silica create friction and generate heat, which makes it possible to release the energy of deformation, which improves wear resistance during high-speed running. It is thought that this can be sufficiently improved.
 さらに、本発明においては、キャップゴム層を形成するゴム組成物の、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(30℃tanδ)を、0.25超としている。 Furthermore, in the present invention, the deformation mode: loss tangent ( 30° C. tan δ) is set to exceed 0.25.
 損失正接tanδは、エネルギーの吸収性能を示す粘弾性パラメータであり、値が大きいほどエネルギーを吸収して、熱に変換することができる。本発明においては、走行温度に近い30℃tanδを、0.25超と高くしているため、高周波数の振動が発生する高速走行時においても、振動のエネルギーを十分に吸収して熱に変換し、放出することで、ゴム組成物内で十分なエネルギーロスを生じさせて、グリップ性能を高めることができる。そして、グリップ性能の向上に合わせて、トレッド部表面における滑りの発生を抑制することができるため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。 The loss tangent tan δ is a viscoelastic parameter indicating energy absorption performance, and the larger the value, the more energy can be absorbed and converted into heat. In the present invention, the tan δ of 30°C, which is close to the running temperature, is set to a high value exceeding 0.25, so even when running at high speeds where high-frequency vibrations occur, vibration energy is sufficiently absorbed and converted into heat. By releasing the energy, sufficient energy loss can be caused within the rubber composition, and the grip performance can be improved. In addition to improving the grip performance, it is possible to suppress the occurrence of slippage on the tread surface, so it is thought that the wear resistance during high-speed running can be sufficiently improved.
 なお、30℃tanδは、0.28以上であるとより好ましく、0.30以上であるとさらに好ましく、0.33以上であるとさらに好ましく、0.34以上であるとさらに好ましく、0.35以上であるとさらに好ましく、0.36以上であるとさらに好ましい。上限は特に限定されないが、0.50以下であることが好ましく、0.45以下であるとより好ましく、0.40以下であるとさらに好ましい。 The 30°C tan δ is more preferably 0.28 or more, further preferably 0.30 or more, even more preferably 0.33 or more, even more preferably 0.34 or more, and 0.35 It is more preferable that it is 0.36 or more, and even more preferable that it is 0.36 or more. Although the upper limit is not particularly limited, it is preferably 0.50 or less, more preferably 0.45 or less, and even more preferably 0.40 or less.
 上記において、損失正接(tanδ)は、例えば、GABO社製「イプレクサー(登録商標)」などの粘弾性測定装置を用いて、測定することができる。 In the above, the loss tangent (tan δ) can be measured, for example, using a viscoelasticity measuring device such as “Iplexer (registered trademark)” manufactured by GABO.
 なお、tanδの調整方法は特に限定されないが、例えば、ポリマーのスチレン量を増やす、樹脂成分の含有量を増やす、カーボンブラックの含有量を増やす等の方法で高く、ポリマーのスチレン量を減らす、樹脂成分の含有量を減らす、カーボンブラックの含有量を減らす、とすることで低くすることができる。 The method for adjusting tan δ is not particularly limited, but for example, tan δ can be increased by increasing the amount of styrene in the polymer, increasing the content of resin components, increasing the content of carbon black, etc.; It can be lowered by reducing the content of the components and the content of carbon black.
 さらに、本発明に係るタイヤにおいては、上記したように、トレッド部の厚みを、15mm以下としている。このような適切な厚みに制御することにより、路面との摩擦によって発生する熱のトレッド部での蓄熱を抑制し、蓄熱によるトレッド部の温度上昇に伴う耐摩耗性の低下を抑制することができると考えられる。前記トレッド部の厚みは13mm以下であるとより好ましく、11mm以下であるとさらに好ましく、10mm以下であるとさらに好ましく、9mm以下であるとさらに好ましい。なお、下限としては特に限定されないが、4mm以上であることが好ましく、5mm以上であるとより好ましく、6mm以上であるとさらに好ましく、8mm以上であるとさらに好ましい。 Furthermore, in the tire according to the present invention, as described above, the thickness of the tread portion is 15 mm or less. By controlling the thickness to an appropriate level in this way, it is possible to suppress the accumulation of heat generated by friction with the road surface in the tread, and to suppress the decline in wear resistance caused by the rise in temperature of the tread due to heat accumulation. it is conceivable that. The thickness of the tread portion is more preferably 13 mm or less, even more preferably 11 mm or less, even more preferably 10 mm or less, and even more preferably 9 mm or less. Although the lower limit is not particularly limited, it is preferably 4 mm or more, more preferably 5 mm or more, even more preferably 6 mm or more, and even more preferably 8 mm or more.
 なお、本発明において、トレッド部の厚みとは、タイヤ半径方向断面におけるタイヤ赤道面上でのトレッド部の厚みを指し、単一のゴム組成物でトレッド部が形成される場合においては、当該ゴム組成物の厚みであり、後述する複数のゴム組成物の積層構造で形成される場合においては、これらの層の全厚を指す。 In addition, in the present invention, the thickness of the tread portion refers to the thickness of the tread portion on the tire equatorial plane in the tire radial cross section, and when the tread portion is formed of a single rubber composition, the thickness of the tread portion is This refers to the thickness of the composition, and in the case where it is formed of a laminated structure of a plurality of rubber compositions described below, it refers to the total thickness of these layers.
 タイヤ赤道面上に溝を有する場合においては当該溝のタイヤ半径方向最外部の端点を繋いだ直線とタイヤ赤道面の交点から、トレッド部のタイヤ半径方向最内部の界面までの厚みを指す。 When a tire has a groove on the equatorial plane, it refers to the thickness from the intersection of the tire equatorial plane with a straight line connecting the outermost end points of the groove in the tire radial direction to the innermost interface in the tire radial direction of the tread portion.
 なお、トレッド部とはタイヤの接地面を形成する領域の部材であるが、カーカス、ベルト層、ベルト補強層などの繊維材料等を含む部材よりタイヤ半径方向外側の部分を指す。前記したトレッド部の厚みは、タイヤを半径方向に切り出した断面において、ビード部を正規リム幅に合わせた状態にすることで測定することが可能である。 Note that the tread portion refers to a member in the region that forms the ground contact surface of the tire, and refers to a portion outside in the tire radial direction from members including fiber materials such as the carcass, belt layer, and belt reinforcing layer. The thickness of the tread portion described above can be measured by aligning the bead portion with the regular rim width in a cross section cut out of the tire in the radial direction.
 上記において、「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMA(日本自動車タイヤ協会)であれば「JATMA YEAR BOOK」に記載されている適用サイズにおける標準リム、ETRTO(The European Tyre and Rim Technical Organisation)であれば「STANDARDS MANUAL」に記載されている“Measuring Rim”、TRA(The Tire and Rim Association,Inc.)であれば「YEAR BOOK」に記載されている“Design Rim”を指し、JATMA、ETRTO、TRAの順に参照し、参照時に適用サイズがあればその規格に従う。そして、規格に定められていないタイヤの場合には、リム組み可能であって、内圧が保持できるリム、即ちリム/タイヤ間からエア漏れを生じさせないリムの内、最もリム径が小さく、次いでリム幅が最も狭いものを指す。 In the above, "regular rim" is a rim specified for each tire by the standard in the standard system including the standard on which the tire is based, for example, in the case of JATMA (Japan Automobile Tire Association), "JATMA YEAR BOOK" For standard rims in the applicable sizes listed in ETRTO (The European Tire and Rim Technical Organization), "Measuring Rim" listed in "STANDARDS MANUAL", TRA (The Tire and Rim Association, Inc.) If there is, it refers to "Design Rim" described in "YEAR BOOK", and refers to JATMA, ETRTO, and TRA in that order, and if there is an applicable size at the time of reference, that standard is followed. In the case of a tire that is not specified by the standard, the rim that can be assembled into a rim and that can maintain internal pressure, that is, the rim that does not cause air leakage between the rim and the tire, has the smallest diameter, and then the rim. Refers to the narrowest width.
 以上のように、本発明に係るタイヤにおいては、ゴム組成物中におけるシリカの補強効果、適切なスチレン量による変形に対する緩和効果、適切な30℃tanδによるトレッド部表面における滑りの抑制効果、および、適切な厚み制御による蓄熱の抑制効果などのため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。 As described above, in the tire according to the present invention, the reinforcing effect of silica in the rubber composition, the moderating effect on deformation due to an appropriate amount of styrene, the suppressing effect on slipping on the tread surface due to an appropriate 30°C tan δ, and It is thought that wear resistance during high-speed running can be sufficiently improved due to the effect of suppressing heat accumulation through appropriate thickness control.
[2]本発明に係るタイヤにおけるより好ましい態様
 本発明に係るタイヤは、以下の態様を採ることにより、さらに大きな効果を得ることができる。
[2] More preferred embodiments of the tire according to the present invention The tire according to the present invention can obtain even greater effects by adopting the following embodiments.
1.キャップゴム層の30℃tanδとトレッド部の厚みとの関係
 本発明者は、高速走行時における耐摩耗性の向上には、30℃tanδとトレッド部の厚みG(mm)との間に好ましい関係があると考え検討を行った。その結果、30℃tanδ/G>0.03であれば、前記した適切な30℃tanδによるトレッド部表面における滑りの抑制効果と、適切な厚み制御による蓄熱の抑制効果との協働がさらに十分に発揮されて、高速走行時における耐摩耗性がさらに向上すると考えた。なお、上記30℃tanδ/Gは、0.034以上であるとより好ましく、0.035以上であるとさらに好ましく、0.036以上であるとさらに好ましい。一方、上限としては、0.045以下であることが好ましく、0.041以下であるとより好ましい。
1. Relationship between the 30°C tan δ of the cap rubber layer and the thickness of the tread portion The present inventor has found that in order to improve wear resistance during high-speed running, there is a preferable relationship between the 30° C. tan δ and the thickness G (mm) of the tread portion. We considered that there is a possibility. As a result, if 30°C tan δ/G > 0.03, the effect of suppressing slippage on the tread surface due to the appropriate 30°C tan δ described above and the effect of suppressing heat accumulation due to appropriate thickness control will work together more fully. We believe that this will further improve wear resistance during high-speed driving. The 30° C. tan δ/G is more preferably 0.034 or more, even more preferably 0.035 or more, and even more preferably 0.036 or more. On the other hand, the upper limit is preferably 0.045 or less, more preferably 0.041 or less.
2.キャップゴム層のガラス転移温度(Tg)
 本発明において、キャップゴム層のガラス転移温度(Tg)は、-10.8℃以下であることが好ましく、-12.6℃以下であるとより好ましく、-15℃以下であるとさらに好ましく、-19.1℃以下であるとさらに好ましく、-40℃以下であるとさらに好ましく、-40.8℃以下であるとさらに好ましく、-41℃以下であるとさらに好ましい。ガラス転移温度(Tg)が高いゴム組成物を用いてキャップゴム層を形成した場合、走行温度付近において、トレッド部が硬くなり、路面との摩擦によって耐摩耗性の低下を招く恐れがある。-15℃以下のTgとすることにより、トレッド部の硬化を抑制して、高速走行時における耐摩耗性をさらに向上させることができると考えられる。なお、Tgの下限は特に限定されないが、-60℃以上であることが好ましく、-50℃以上であるとより好ましい。
2. Glass transition temperature (Tg) of cap rubber layer
In the present invention, the glass transition temperature (Tg) of the cap rubber layer is preferably -10.8°C or lower, more preferably -12.6°C or lower, even more preferably -15°C or lower, The temperature is more preferably -19.1°C or lower, even more preferably -40°C or lower, even more preferably -40.8°C or lower, and even more preferably -41°C or lower. When the cap rubber layer is formed using a rubber composition with a high glass transition temperature (Tg), the tread portion becomes hard near the running temperature, and there is a risk that wear resistance may be reduced due to friction with the road surface. It is believed that by setting the Tg to -15°C or less, it is possible to suppress hardening of the tread portion and further improve wear resistance during high-speed running. Note that the lower limit of Tg is not particularly limited, but it is preferably -60°C or higher, and more preferably -50°C or higher.
 なお、前記したゴム組成物のガラス転移温度(Tg)は、GABO社製のイプレクサーシリーズなどの粘弾性測定装置を用い、周波数10Hz、初期歪10%、振幅±0.5%及び昇温速度2℃/minの条件下で測定されるtanδの温度分布曲線を基にして求めることができ、本発明の場合には、測定される温度分布曲線の-60℃以上、40℃以下の範囲における最も大きいtanδ値に対応する温度をガラス転移点(Tg)とする。なお、-60℃以上、40℃以下の範囲内に、最も大きいtanδ値の点が2点以上ある場合は、最も温度が低い点をTgとする。例えば、本発明において、tanδの最大値が-60℃以上、40℃以下の範囲内にあれば、上記の定義により、その最大値を示す温度がTgとなる。また、例えば、-60℃以上、40℃以下の範囲内では温度上昇に従いtanδが漸減するなど、tanδの最大値を示す温度が-60℃となる温度分布曲線が得られる場合、上記の定義により、ガラス転移温度(Tg)は、-60℃となる。 The glass transition temperature (Tg) of the rubber composition described above was determined using a viscoelasticity measuring device such as the Iplexer series manufactured by GABO, and was measured at a frequency of 10 Hz, an initial strain of 10%, an amplitude of ±0.5%, and a temperature increase rate. It can be determined based on the temperature distribution curve of tan δ measured under the condition of 2 °C/min, and in the case of the present invention, in the range of -60 °C or more and 40 °C or less of the measured temperature distribution curve The temperature corresponding to the largest tan δ value is defined as the glass transition point (Tg). Note that if there are two or more points with the highest tan δ value within the range of −60° C. or higher and 40° C. or lower, the point with the lowest temperature is taken as Tg. For example, in the present invention, if the maximum value of tan δ is within the range of −60° C. or more and 40° C. or less, the temperature at which the maximum value occurs is Tg according to the above definition. Furthermore, if a temperature distribution curve is obtained in which the maximum value of tan δ is -60°C, for example, tanδ gradually decreases as the temperature rises within the range of -60°C or higher and 40°C or lower, based on the above definition. , the glass transition temperature (Tg) is -60°C.
 また、前記したガラス転移温度(Tg)の調整方法は特に限定されないが、例えば、ゴム成分中のTgが高いポリマー成分の比率を増やす、ゴム成分中のスチレン量を増やす、樹脂成分の含有量を増やすなどの方法で高くすることができ、逆に、ゴム成分中のTgが高いポリマー成分の比率を減らす、ゴム成分中のスチレン量を減らす、樹脂成分の含有量を減らすなどの方法で低くすることができる。 The method for adjusting the glass transition temperature (Tg) described above is not particularly limited, but examples include increasing the proportion of a polymer component with a high Tg in the rubber component, increasing the amount of styrene in the rubber component, and increasing the content of the resin component. Conversely, it can be lowered by reducing the ratio of polymer components with high Tg in the rubber component, reducing the amount of styrene in the rubber component, or reducing the content of resin components. be able to.
3.キャップゴム層の複素弾性率(E
 本発明において、温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定されるキャップゴム層の複素弾性率(30℃E)は、6.1MPa以下であることが好ましく、6.0MPa以下であるとより好ましく、5.9MPa以下であるとさらに好ましく、5.6MPa以下であるとさらに好ましく、5.5MPa以下であるとさらに好ましく、5.4MPa以下であるとさらに好ましい。複素弾性率Eは、ゴム層の剛性を示すパラメータであり、30℃Eを6.0MPa以下とした場合、剛性が高くなり過ぎることを抑制して、高速走行時において、路面とのすべりを抑制し、耐摩耗性をさらに向上させることができると考えられる。なお、下限は特に限定されないが、4.00MPa以上であることが好ましく、5.00MPa以上であるとより好ましく、5.30MPa以上であるとさらに好ましい。
3. Complex modulus of elasticity of cap rubber layer (E * )
In the present invention, the complex modulus of elasticity (30°C E*) of the cap rubber layer measured at a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, a dynamic strain rate of 1%, and a deformation mode in tension (30°C E * ) is 6.1 MPa or less. It is preferably 6.0 MPa or less, more preferably 5.9 MPa or less, even more preferably 5.6 MPa or less, even more preferably 5.5 MPa or less, and even more preferably 5.4 MPa or less. It is even more preferable. The complex modulus of elasticity E * is a parameter that indicates the rigidity of the rubber layer, and when E * at 30°C is set to 6.0 MPa or less, the rigidity is suppressed from becoming too high and the slippage with the road surface is reduced during high-speed driving. It is thought that this can suppress the wear resistance and further improve the wear resistance. Although the lower limit is not particularly limited, it is preferably 4.00 MPa or more, more preferably 5.00 MPa or more, and even more preferably 5.30 MPa or more.
 そして、上記した30℃E(MPa)は、前記したトレッド部の厚みG(mm)との間で、(30℃E/G)≧0.50を満足していることが好ましく、0.54以上であるとより好ましく、0.55以上であるとさらに好ましく、0.56以上であるとさらに好ましく、0.59以上であるとさらに好ましく、0.61以上であるとさらに好ましい。一方、上限としては、1.00以下であることが好ましく、0.98以下であるとより好ましく、0.77以下であるとさらに好ましく、0.75以下であるとさらに好ましく、0.65以下であるとさらに好ましい。トレッド部の厚みが厚いほど、転動時の熱が蓄熱しやすくなり、ゴムの強度が低下し、転動時の変形量が大きくなり、摩耗しやすくなると考えられる。従って、トレッドゴムの厚みに対して、十分な剛性が確保できるよう、30℃Eとトレッド部の厚みとの関係を適切に制御することにより、高速走行時においてトレッド部の変形を最適化し、耐摩耗性をさらに向上させることができると考えられる。 The above 30°C E * (MPa) preferably satisfies (30°C E * /G)≧0.50 between the above-mentioned thickness G (mm) of the tread portion, and 0. It is more preferably .54 or more, even more preferably 0.55 or more, even more preferably 0.56 or more, even more preferably 0.59 or more, and even more preferably 0.61 or more. On the other hand, the upper limit is preferably 1.00 or less, more preferably 0.98 or less, even more preferably 0.77 or less, even more preferably 0.75 or less, and 0.65 or less. It is even more preferable. It is thought that the thicker the tread portion, the easier it is for heat to accumulate during rolling, the lower the strength of the rubber, the greater the amount of deformation during rolling, and the more likely it is to wear out. Therefore, in order to ensure sufficient rigidity for the thickness of the tread rubber, by appropriately controlling the relationship between 30℃E * and the thickness of the tread, the deformation of the tread during high-speed running can be optimized. It is believed that wear resistance can be further improved.
 上記した複素弾性率は、例えば、GABO社製「イプレクサー(登録商標)」などの粘弾性測定装置を用いて、測定することができる。 The above-mentioned complex modulus of elasticity can be measured, for example, using a viscoelasticity measuring device such as "Iprexor (registered trademark)" manufactured by GABO.
 また、上記した30℃Eの調整方法は特に限定されないが、例えば、ポリマーのスチレン量を増やす、シリカ、カーボンブラックなどの充填剤量を増やす、可塑剤成分の含有量を減らす、樹脂成分の含有量を増やす等の方法で高く、ポリマーのスチレン量を減らす、シリカ、カーボンブラックなどの充填剤量を減らす、可塑剤成分の含有量を増やす、樹脂成分の含有量を減らす等の方法で低くすることができる。 In addition, the above-mentioned method for adjusting 30℃E * is not particularly limited, but examples include increasing the amount of styrene in the polymer, increasing the amount of fillers such as silica and carbon black, decreasing the content of the plasticizer component, and increasing the amount of the resin component. The content can be increased by increasing the content, and the content can be lowered by reducing the amount of styrene in the polymer, reducing the amount of fillers such as silica and carbon black, increasing the content of plasticizer components, and reducing the content of resin components. can do.
4.0℃における損失正接(0℃tanδ)および複素弾性率(0℃E
 上記では、走行中を想定して、30℃tanδおよび30℃Eを規定しているが、走行開始時にタイヤは冷えた状態であり、低温時における走行を考慮すると、キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(0℃tanδ)は、0.30以上であることが好ましく、0.34以上であるとより好ましく、0.60以上であるとさらに好ましく、0.70以上であるとさらに好ましく、0.76以上であるとさらに好ましく、0.77以上であるとさらに好ましく、0.80以上であるとさらに好ましく、0.83以上であるとさらに好ましく、0.84以上であるとさらに好ましい。上限は特に限定されないが、1.00以下であることが好ましく、0.95以下であるとより好ましく、0.90以下であるとさらに好ましい。
4. Loss tangent at 0°C (0°C tan δ) and complex modulus of elasticity (0°C E * )
In the above, 30°C tan δ and 30°C E * are specified assuming that the tire is running, but the tire is in a cold state at the start of running, and considering running at low temperatures, the cap rubber layer is formed. The loss tangent (0°C tan δ) of the rubber composition measured in tensile deformation mode under the conditions of temperature 0°C, frequency 10Hz, initial strain 5%, and dynamic strain rate 1% must be 0.30 or more. is preferably 0.34 or more, more preferably 0.60 or more, even more preferably 0.70 or more, even more preferably 0.76 or more, and 0.77 or more. More preferably, it is 0.80 or more, even more preferably 0.83 or more, and even more preferably 0.84 or more. Although the upper limit is not particularly limited, it is preferably 1.00 or less, more preferably 0.95 or less, and even more preferably 0.90 or less.
 同様に、温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定されるキャップゴム層の複素弾性率(0℃E)は、25.0MPa以下であることが好ましく、24.0MPa以下であるとより好ましく、23.8MPa以下であるとさらに好ましく、23.5MPa以下であるとさらに好ましく、23.2MPa以下であるとさらに好ましい。下限は特に限定されないが、9.4MPa以上であることが好ましく、9.5MPa以上であるとより好ましく、19.2MPa以上であるとさらに好ましく、20.0MPa以上であるとさらに好ましく、23.0MPa以上であるとさらに好ましい。 Similarly, the complex modulus of elasticity (0°C E * ) of the cap rubber layer measured by temperature 0°C, frequency 10Hz, initial strain 5%, dynamic strain rate 1%, deformation mode: tension is 25.0 MPa or less. It is preferably 24.0 MPa or less, more preferably 23.8 MPa or less, even more preferably 23.5 MPa or less, and even more preferably 23.2 MPa or less. The lower limit is not particularly limited, but is preferably 9.4 MPa or higher, more preferably 9.5 MPa or higher, even more preferably 19.2 MPa or higher, even more preferably 20.0 MPa or higher, and 23.0 MPa or higher. It is more preferable that it is above.
 なお上記した0℃tanδおよび0℃Eの調整方法は特に限定されないが、例えば、0℃tanδであれば、ゴム成分中のスチレン量を増やす、樹脂成分の含有量を増やす等の方法で高く、ゴム成分中のスチレン量を減らす、樹脂成分の含有量を減らすことで低くすることができる。また、0℃Eであればゴム成分中のスチレン量を増やす、シリカ、カーボンブラックなどの充填剤量を増やす、可塑剤成分の含有量を減らす、樹脂成分の含有量を増やす等の方法で高くすることができ、ゴム成分中のスチレン量を減らす、シリカ、カーボンブラックなどの充填剤量を減らす、可塑剤成分の含有量を増やす、樹脂成分の含有量を減らす等の方法で低くすることができる。 There are no particular limitations on the method for adjusting the 0°C tan δ and 0°C E * described above, but for example, if it is 0°C tan δ, it can be increased by increasing the amount of styrene in the rubber component, increasing the content of the resin component, etc. It can be lowered by reducing the amount of styrene in the rubber component or by reducing the content of the resin component. In addition, if it is 0℃E * , you can increase the amount of styrene in the rubber component, increase the amount of fillers such as silica and carbon black, reduce the content of plasticizer components, and increase the content of resin components. It can be lowered by reducing the amount of styrene in the rubber component, reducing the amount of fillers such as silica and carbon black, increasing the content of plasticizer components, and reducing the content of resin components. Can be done.
5.トレッド部の複層化
 本発明において、トレッド部は、キャップゴム層の1層のみで形成されていることが好ましいが、キャップゴム層の内側にベースゴム層を設けて複層化されたトレッド部を形成してもよく、この場合、トレッド部全体におけるキャップゴム層の厚みは、10%以上であることが好ましい。これにより、トレッド部表面と路面との間に生じたエネルギーをキャップゴム層とベースゴム層の界面において、吸収させやすくすることができ、高速走行時における耐摩耗性をさらに向上させることができると考えられる。なお、トレッド部全体におけるキャップゴム層の厚みは、70%以上であるとより好ましい。
5. Multi-layering of the tread portion In the present invention, the tread portion is preferably formed of only one layer of the cap rubber layer, but the tread portion is multi-layered by providing a base rubber layer inside the cap rubber layer. In this case, the thickness of the cap rubber layer over the entire tread portion is preferably 10% or more. This makes it easier to absorb the energy generated between the tread surface and the road surface at the interface between the cap rubber layer and the base rubber layer, further improving wear resistance during high-speed running. Conceivable. Note that the thickness of the cap rubber layer in the entire tread portion is more preferably 70% or more.
 キャップゴム層の厚みおよびベースゴム層の厚みは、前記したように、トレッド部の厚みにおけるキャップゴム層の厚みおよびベースゴム層の厚みを合計することにより算出することが出来る。 As described above, the thickness of the cap rubber layer and the thickness of the base rubber layer can be calculated by summing the thickness of the cap rubber layer and the thickness of the base rubber layer in the thickness of the tread portion.
 なお、この場合には、ベースゴム層の30℃tanδをキャップゴム層の30℃tanδよりも小さくすることが好ましい。これにより、トレッド部の内側での発熱を抑制し、蓄熱によりトレッド部が軟化することを抑制しやすくなり、高速走行時における耐摩耗性をさらに向上させることができると考えられる。 In this case, it is preferable that the 30°C tan δ of the base rubber layer be smaller than the 30°C tan δ of the cap rubber layer. It is thought that this suppresses heat generation inside the tread portion, makes it easier to suppress softening of the tread portion due to heat accumulation, and further improves wear resistance during high-speed running.
 そして、複層化されたトレッド部の場合、ベースゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定される複素弾性率(30℃E)が、同様に測定されるキャップゴム層の30℃Eよりも小さいことが好ましい。 In the case of a multi-layered tread part, the temperature of the base rubber layer is 30℃, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, and the deformation mode is the complex modulus of elasticity measured in tension (30℃E * ) is preferably smaller than 30°C E * of the cap rubber layer, which is measured in the same manner.
6.シリカの粒子径 6. Silica particle size
 本発明において、シリカの粒子径(平均一次粒子径)としては、ポリマーとの摩擦のし易さなどを考慮すると、17nm以下であることが好ましい。 In the present invention, the particle size (average primary particle size) of silica is preferably 17 nm or less, considering ease of friction with the polymer.
 なお、平均一次粒子径は、タイヤから切り出したゴム組成物から取り出したシリカを電子顕微鏡(TEM)などを用いて直接観察し、得られるそれぞれのシリカの粒子の面積から、等断面積径を算出し、平均値を求めることにより算出することができる。 The average primary particle diameter is calculated by directly observing silica taken out from a rubber composition cut from a tire using an electron microscope (TEM), etc., and calculating the equal cross-sectional area diameter from the area of each silica particle obtained. It can be calculated by finding the average value.
7.キャップゴム層における樹脂成分の含有
 本発明において、キャップゴム層を形成するゴム組成物には、樹脂成分が含有されていることが好ましい。
7. Containment of Resin Component in Cap Rubber Layer In the present invention, it is preferable that the rubber composition forming the cap rubber layer contains a resin component.
 ゴム組成物に樹脂成分が含有されることにより、樹脂成分の粘着性によって路面に対する接地性が向上し、高速走行時における耐摩耗性を十分に向上させることができると考えられる。 It is thought that by containing the resin component in the rubber composition, the adhesiveness of the resin component improves the ground contact with the road surface, and it is possible to sufficiently improve the wear resistance during high-speed running.
 好ましい樹脂成分としては、後述するロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂などが好ましく、これらの内でも、α-メチルスチレンなどのスチレン系樹脂がより好ましい。そして、ゴム成分100質量部に対する含有量としては、5質量部以上であることが好ましく、10質量部以上であるとより好ましく、50質量部以上であるとさらに好ましく、55質量部以上であるとさらに好ましく、60質量部以上であるとさらに好ましく、65質量部以上であるとさらに好ましく、70質量部以上であるとさらに好ましい。 Preferred resin components include rosin resins, styrene resins, coumaron resins, terpene resins, C5 resins, C9 resins, C5C9 resins, and acrylic resins, which will be described later. Among these, α-methylstyrene, etc. More preferred are styrenic resins. The content per 100 parts by mass of the rubber component is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, even more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more. More preferably, the amount is 60 parts by mass or more, even more preferably 65 parts by mass or more, and even more preferably 70 parts by mass or more.
8.キャップゴム層のアセトン抽出分(AE)
 本発明において、キャップゴム層のアセトン抽出分(AE)は、28質量%以上であることが好ましく、29.3質量%以上であるとより好ましく、30質量%以上であるとさらに好ましく、30.7質量%以上であるとさらに好ましく、31.5質量%以上であるとさらに好ましく、31.9質量%以上であるとさらに好ましい。一方、上限としては特に限定されないが、35質量%以下であることが好ましく、34質量%以下であるとより好ましく、33.4質量%以下であるとさらに好ましく、33質量%以下であるとさらに好ましい。
8. Acetone extract (AE) of cap rubber layer
In the present invention, the acetone extractable content (AE) of the cap rubber layer is preferably 28% by mass or more, more preferably 29.3% by mass or more, even more preferably 30% by mass or more, and 30% by mass or more. It is more preferably 7% by mass or more, even more preferably 31.5% by mass or more, and even more preferably 31.9% by mass or more. On the other hand, the upper limit is not particularly limited, but is preferably 35% by mass or less, more preferably 34% by mass or less, even more preferably 33.4% by mass or less, and even more preferably 33% by mass or less. preferable.
 アセトン抽出分(AE)は、ゴム組成物において、軟化剤などの量を示す指標と考えることができ、ゴム成分の分子鎖の動きやすさを示す指標とも考えることができる。このため、キャップゴム層において上記したように、AE量をある程度多くした場合、タイヤが路面と接する面積を十分に確保して接地性が向上し、高速走行時における耐摩耗性を十分に向上させることができる。 Acetone extractables (AE) can be considered as an indicator of the amount of softener, etc. in a rubber composition, and can also be considered as an indicator of the ease of movement of the molecular chains of the rubber component. For this reason, as described above in the cap rubber layer, when the amount of AE is increased to a certain extent, the area in which the tire contacts the road surface is sufficiently secured to improve ground contact and sufficiently improve wear resistance during high-speed driving. be able to.
 なお、アセトン抽出分(AE)の測定は、JIS K 6229:2015に準拠して行うことができる。具体的には、測定部位から切り出した加硫ゴム試験片を所定の時間、アセトンに浸漬して、試験片の質量減少率(%)を求めることにより、AE(質量%)を得ることができる。 Note that the acetone extractables (AE) can be measured in accordance with JIS K 6229:2015. Specifically, AE (mass%) can be obtained by immersing a vulcanized rubber test piece cut out from the measurement site in acetone for a predetermined time and determining the mass reduction rate (%) of the test piece. .
 より詳細には、常温、常圧下、各加硫ゴム試験片を72時間アセトンに浸漬して可溶成分を抽出し、抽出前後の各試験片の質量を測定し、下記式により求めることができる。
 アセトン抽出量(%)
     ={(抽出前のゴム試験片の質量-抽出後のゴム試験片の質量)
             /(抽出前のゴム試験片の質量)}×100
More specifically, each vulcanized rubber test piece is immersed in acetone for 72 hours at room temperature and under normal pressure to extract the soluble components, the mass of each test piece before and after extraction is measured, and the mass can be determined by the following formula. .
Acetone extraction amount (%)
= {(mass of rubber test piece before extraction - mass of rubber test piece after extraction)
/(mass of rubber test piece before extraction)}×100
 また、前記したアセトン抽出分は、ゴム組成物内の可塑剤の配合比率を変更することにより、適宜変更することが可能である。 Furthermore, the acetone extract described above can be changed as appropriate by changing the blending ratio of the plasticizer in the rubber composition.
9.ランド比
 本発明に係るタイヤにおいては、正規リムに組み込み、正規内圧としたタイヤのトレッド部におけるランド比が40%以上であり、ゴム成分100質量部中におけるスチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBR量(質量部)/ランド比(%))が、1.23以下であることが好ましく、1.2以下であるとより好ましく、1.0以下であるとさらに好ましく、0.92以下であるとさらに好ましい。一方、下限としては特に限定されないが、0.6以上であることが好ましく、0.7以上であるとより好ましい。
9. Land Ratio In the tire according to the present invention, the land ratio in the tread portion of the tire is incorporated into a regular rim and has a regular internal pressure of 40% or more, and the styrene-butadiene rubber has a styrene content of 25% by mass or less in 100 parts by mass of the rubber component. The ratio of the content (parts by mass) of (SBR) to the land ratio (%) in the tread portion (SBR amount (parts by mass) with styrene content of 25% by mass or less/land ratio (%)) is 1.23 or less It is preferably 1.2 or less, more preferably 1.0 or less, and even more preferably 0.92 or less. On the other hand, the lower limit is not particularly limited, but is preferably 0.6 or more, more preferably 0.7 or more.
 「ランド比」は、トレッド部の表面に配された溝部を全て埋めた仮想の接地面に対する、実際の接地面の比率であり、ランド比が大きいと、路面と接する面積が大きくなるため、接地する際に単位面積当たり生じる力を小さくし易くすることができる。そして、そのランド比に対するスチレン25質量%以下のSBR量の比を一定以下とすることにより、ゴム組成物内に生じたスチレンドメインに過度に力が集中し、摩耗の起点となることを抑制しやすくなるため、高速走行時の耐摩耗性を向上させやすくすることができると考えられる。 "Land ratio" is the ratio of the actual ground contact surface to the virtual ground contact surface that fills all the grooves arranged on the surface of the tread. If the land ratio is large, the area in contact with the road surface becomes large. It is possible to easily reduce the force generated per unit area when doing so. By setting the ratio of the SBR amount of 25% by mass or less of styrene to the land ratio to a certain level or less, it is possible to suppress excessive concentration of force on the styrene domains generated in the rubber composition, which become the starting point of wear. It is thought that this makes it easier to improve wear resistance during high-speed running.
 なお、上記したスチレン量25質量%以下のSBRの含有量とランド比との比の下限は特に限定されないが0.2以上が好ましく、0.5以上がより好ましい。 Note that the lower limit of the ratio of the above-mentioned SBR content with a styrene content of 25% by mass or less and the land ratio is not particularly limited, but is preferably 0.2 or more, and more preferably 0.5 or more.
 前記したランド比は、正規リム、正規内圧、正規荷重条件下における接地形状から求めることができる。 The land ratio described above can be determined from the ground contact shape under conditions of a regular rim, a regular internal pressure, and a regular load.
 具体的には、タイヤを正規リムに組み付け、正規内圧を加え、25℃で24時間静置した後、タイヤトレッド表面に墨を塗り、正規荷重を負荷して厚紙に押しつけ(キャンバー角は0°)、紙に転写させることにより、接地形状を得ることができるため、タイヤを周方向に72°ずつ回転させて、5か所で転写させる。すなわち、5回、接地形状を得る。このとき、5つの接地形状について、その接地形状の輪郭の溝で途切れた部分を滑らかに繋ぎ、得られる形状を仮想接地面とする。 Specifically, the tire was assembled on a regular rim, the regular internal pressure was applied, and the tire was left to stand at 25°C for 24 hours.The tire tread surface was then painted with black ink, and the regular load was applied and the tire was pressed against cardboard (the camber angle was 0°). ), the ground contact shape can be obtained by transferring it to paper, so the tire is rotated by 72° in the circumferential direction and transferred at five locations. That is, the ground contact shape is obtained five times. At this time, for the five ground contact shapes, the interrupted portions of the contours of the ground contact shapes are smoothly connected by grooves, and the resulting shape is defined as a virtual ground contact surface.
 そして、ランド比は、(厚紙に転写された5つの接地形状(墨部分)の平均面積/5つの接地形状から得られる仮想接地面の面積の平均値)×100(%)から求めることができる。 Then, the land ratio can be calculated from (average area of the five ground contact shapes (black parts) transferred to the cardboard/average value of the area of the virtual ground contact surface obtained from the five ground contact shapes) x 100 (%). .
 なお、「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、ETRTOであれば“INFLATION PRESSURE”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、「正規リム」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合、前記正規リムを標準リムとして記載されている別のタイヤサイズ(規格に定められているもの)の正規内圧(但し、250KPa以上)を指す。なお、250KPa以上の正規内圧が複数記載されている場合には、その中の最小値を指す。 In addition, "regular internal pressure" is the air pressure specified for each tire by the above standard, and for JATMA it is the maximum air pressure, for ETRTO it is "INFLATION PRESSURE", and for TRA it is the air pressure shown in the table "TIRE LOAD LIMITS AT VARIOUS COLD". JATMA, ETRTO, and TRA are referred to in that order and the standards are followed, as in the case of the "regular rim." In the case of a tire that is not specified in the standard, it refers to the normal internal pressure (250 KPa or more) of another tire size (specified in the standard) in which the regular rim is described as a standard rim. In addition, when multiple normal internal pressures of 250 KPa or more are listed, it refers to the minimum value among them.
 ここで、「正規荷重」とは、前記したタイヤが基づいている規格を含む規格体系における各規格がタイヤ毎に定めている荷重であり、タイヤに負荷されることが許容される最大の質量を指しており、JATMAであれば最大負荷能力、ETRTOであれば“LOAD CAPACITY”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、前記した「正規リム」や「正規内圧」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合は、以下の計算により、正規荷重Wを求める。
   V={(Dt/2)-(Dt/2-Ht)}×π×Wt
   W=0.000011×V+175
      W:正規荷重(kg)
      V:タイヤの仮想体積(mm
     Dt:タイヤ外径Dt(mm)
     Ht:タイヤの断面高さ(mm)
      Wt:タイヤの断面幅(mm)
Here, the "regular load" is the load specified for each tire by each standard in the standard system, including the standard on which the above-mentioned tires are based, and is the maximum mass that is allowed to be loaded on the tire. For JATMA, it refers to the maximum load capacity, for ETRTO, it refers to "LOAD CAPACITY", for TRA, it refers to the maximum value listed in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES", and the above-mentioned "regular rim" As in the case of "regular internal pressure", refer to JATMA, ETRTO, and TRA in that order and follow their standards. In the case of tires that are not specified by the standard, the normal load WL is determined by the following calculation.
V={(Dt/2) 2 - (Dt/2-Ht) 2 }×π×Wt
W L =0.000011×V+175
W L : Regular load (kg)
V: Virtual volume of tire (mm 3 )
Dt: Tire outer diameter Dt (mm)
Ht: Tire cross-sectional height (mm)
Wt: Tire cross-sectional width (mm)
 そして、ゴム成分100質量部中におけるスチレン量は、例えば、ゴム成分100質量部中に、スチレン量S1質量%のSBR1(X1質量部)とスチレン量S2質量%のSBR2(X2質量部)とが含有されている場合、{(S1×X1)+(S2×X2)}/100の式から算出することができる。 The amount of styrene in 100 parts by mass of the rubber component is, for example, SBR1 having an amount of S1% by mass of styrene (X1 parts by mass) and SBR2 having an amount of S2% by mass of styrene (X2 parts by mass). If it is contained, it can be calculated from the formula {(S1×X1)+(S2×X2)}/100.
10.扁平率
 本発明に係るタイヤにおいては、扁平率が80%以下であり、ゴム成分100質量部に対するシリカの含有量(質量部)と、扁平率(%)との比(シリカ含有量(質量部)/扁平率(%))が、0.5以上であることが好ましく、0.6以上であるとより好ましく、0.7以上であるとさらに好ましく、0.8以上であるとさらに好ましく、0.9以上であるとさらに好ましく、1.0以上であるとさらに好ましく、1.2以上であるとさらに好ましく、1.4以上であるとさらに好ましく、1.64以上であるとさらに好ましく、1.7以上であるとさらに好ましく、1.73以上であるとさらに好ましい。一方、上限は特に限定されないが、3.5以下であることが好ましく、3.3以下であるとより好ましく、3.1以下であるとさらに好ましく、2.9以下であるとさらに好ましく、2.5以下であるとさらに好ましい。
10. Oblateness In the tire according to the present invention, the oblateness is 80% or less, and the ratio of the content of silica (parts by mass) to the oblateness (%) with respect to 100 parts by mass of the rubber component (silica content (parts by mass) )/oblateness (%)) is preferably 0.5 or more, more preferably 0.6 or more, even more preferably 0.7 or more, even more preferably 0.8 or more, It is more preferably 0.9 or more, even more preferably 1.0 or more, even more preferably 1.2 or more, even more preferably 1.4 or more, even more preferably 1.64 or more, It is more preferably 1.7 or more, and even more preferably 1.73 or more. On the other hand, the upper limit is not particularly limited, but is preferably 3.5 or less, more preferably 3.3 or less, even more preferably 3.1 or less, even more preferably 2.9 or less, and 2. More preferably, it is .5 or less.
 扁平率は、タイヤ断面幅に対する断面高さであり、この比率が小さいほどトレッド部で転動時のリムからの力がトレッド部に伝わりやすく、トレッド部での摩耗を進行させやすくなると考えられる。そのため、扁平率に対して、十分な量のシリカ量を含ませることにより、シリカによるネットワークでの補強性を担保させることができ、高速走行時の耐摩耗性を向上させやすくすることができると考えられる。 The aspect ratio is the cross-sectional height of the tire with respect to the cross-sectional width of the tire, and it is thought that the smaller this ratio is, the more easily the force from the rim is transmitted to the tread portion during rolling, and the easier it is for wear to progress in the tread portion. Therefore, by including a sufficient amount of silica in relation to the aspect ratio, it is possible to ensure the reinforcing properties of the silica network, making it easier to improve wear resistance during high-speed running. Conceivable.
 なお、前記した扁平率(%)は、内圧を250kPaとしたときのタイヤの断面高さHt(mm)と断面幅Wt(mm)とタイヤ外径Dt(mm)とリム径R(mm)を用いて、下式により求めることができる。
    扁平率(%)=(Ht/Wt)×100(%)
    Ht=(Dt-R)/2
In addition, the above-mentioned aspect ratio (%) is based on the cross-sectional height Ht (mm) of the tire, the cross-sectional width Wt (mm), the tire outer diameter Dt (mm), and the rim diameter R (mm) when the internal pressure is 250 kPa. It can be calculated using the following formula.
Oblateness (%) = (Ht/Wt) x 100 (%)
Ht=(Dt-R)/2
 また、上記した、扁平率に対するシリカ含有量の比の上限は特に限定されないが、4.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましい。 Further, the upper limit of the ratio of silica content to flatness is not particularly limited, but is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.0 or less.
[3]実施の形態
 以下、実施の形態に基づいて、本発明を具体的に説明する。
[3] Embodiments Hereinafter, the present invention will be specifically described based on embodiments.
1.ゴム組成物
 本発明に係るタイヤにおいて、キャップゴム層を形成するゴム組成物は、以下に記載するゴム成分、充填剤、軟化剤、加硫剤および加硫促進剤などの各種配合材料について、その種類や量を、適宜、調整することにより得ることができる。
1. Rubber Composition In the tire according to the present invention, the rubber composition forming the cap rubber layer includes various compounding materials such as the rubber component, filler, softener, vulcanizing agent, and vulcanization accelerator described below. It can be obtained by adjusting the type and amount as appropriate.
(1)配合材料
(a)ゴム成分
 ゴム成分としては特に限定されず、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)などのジエン系ゴム、ブチルゴムなどのブチル系ゴム、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンブタジエンブロック共重合体(SB)などの熱可塑性エラストマーなど、タイヤの製造に一般的に用いられるゴム(ポリマー)を用いることができる。なお、これらのゴム成分は、後述のオイル、樹脂、液状ゴム成分などで予め伸展した伸展ゴムを用いても良い。
(1) Compounded materials (a) Rubber component The rubber component is not particularly limited, and may include isoprene rubber, diene rubber such as butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber, etc. Rubbers (polymers) commonly used in tire manufacturing can be used, such as thermoplastic elastomers such as butyl rubber, styrene-butadiene-styrene block copolymer (SBS), and styrene-butadiene block copolymer (SB). Note that, as these rubber components, extensible rubber that has been expanded in advance with oil, resin, liquid rubber component, etc., which will be described later, may be used.
 本発明においては、これらの中でも、ゴム成分中にSBRと他のゴム成分を含む。他のゴム成分としては特に限定されないが、BRとの併用、BRとイソプレン系ゴムとの併用が好ましい。 In the present invention, among these, the rubber component contains SBR and other rubber components. Other rubber components are not particularly limited, but combinations of BR and BR and isoprene rubber are preferred.
(イ)SBR
 SBRの重量平均分子量は、例えば、10万超、200万未満である。そして、本発明においては、前記したように、SBR成分中におけるスチレン量を25質量%以下とする。SBRのビニル含量(1,2-結合ブタジエン含量)は、例えば、5質量%超、70質量%未満である。なお、SBRのビニル含量とは、SBR成分内におけるブタジエン部全体に対する1,2-結合ブタジエン含量のことを指す。また、SBRの構造同定(スチレン量、ビニル含量の測定)は、例えば、日本電子(株)製JNM-ECAシリーズの装置を用いて行うことができる。
(b) SBR
The weight average molecular weight of SBR is, for example, more than 100,000 and less than 2,000,000. In the present invention, as described above, the amount of styrene in the SBR component is 25% by mass or less. The vinyl content (1,2-bonded butadiene content) of SBR is, for example, more than 5% by mass and less than 70% by mass. Note that the vinyl content of SBR refers to the 1,2-bonded butadiene content relative to the entire butadiene moiety in the SBR component. Further, structural identification of SBR (measurement of styrene content and vinyl content) can be performed using, for example, a JNM-ECA series device manufactured by JEOL Ltd.
 本発明において、ゴム成分100質量部中のSBRの含有量は、前記したように、60質量部以上、80質量部以下であるが、65質量部以上、75質量部以下であるとより好ましい。なお、伸展SBRの場合には、伸展成分量を除いた純ゴム量が、SBRの含有量となる。 In the present invention, the content of SBR in 100 parts by mass of the rubber component is, as described above, 60 parts by mass or more and 80 parts by mass or less, and more preferably 65 parts by mass or more and 75 parts by mass or less. In addition, in the case of extended SBR, the amount of pure rubber excluding the amount of extended components is the content of SBR.
 SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。SBRは、非変性SBR、変性SBRのいずれであってもよい。また、SBR中のブタジエン部を水素添加させた水添SBRを用いてもよく、水添SBRはSBR中のBR部を後発的に水素添加処理して得てもよく、スチレン、エチレン、ブタジエンを共重合させて同様の構造を得てもよい。 The SBR is not particularly limited, and for example, emulsion polymerization styrene butadiene rubber (E-SBR), solution polymerization styrene butadiene rubber (S-SBR), etc. can be used. SBR may be either non-denatured SBR or modified SBR. Further, hydrogenated SBR obtained by hydrogenating the butadiene part in SBR may be used, and hydrogenated SBR may be obtained by subsequently hydrogenating the BR part in SBR, and styrene, ethylene, and butadiene can be hydrogenated. A similar structure may be obtained by copolymerization.
 変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖および末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。 The modified SBR may be any SBR that has a functional group that interacts with a filler such as silica; for example, an end-modified SBR in which at least one end of the SBR is modified with a compound (modifier) having the above-mentioned functional group. SBR (terminally modified SBR having the above functional group at the end), main chain modified SBR having the above functional group in the main chain, main chain terminal modified SBR having the above functional group in the main chain and the end (e.g. The main chain end-modified SBR which has the above-mentioned functional group and has at least one end modified with the above-mentioned modifier, or is modified (coupled) with a polyfunctional compound having two or more epoxy groups in the molecule, and has a hydroxyl group. and terminal-modified SBR into which an epoxy group has been introduced.
 上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。 Examples of the above functional groups include amino groups, amide groups, silyl groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups, carbonyl groups, oxycarbonyl groups, mercapto groups, sulfide groups, and disulfide groups. group, sulfonyl group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group, etc. . Note that these functional groups may have a substituent.
 また、変性SBRとして、例えば、下記式で表される化合物(変性剤)により変性されたSBRを使用できる。 Furthermore, as the modified SBR, for example, SBR modified with a compound (modifier) represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、式中、R、RおよびRは、同一または異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)またはこれらの誘導体を表す。RおよびRは、同一または異なって、水素原子またはアルキル基を表す。RおよびRは結合して窒素原子と共に環構造を形成してもよい。nは整数を表す。 In the formula, R 1 , R 2 and R 3 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group (-COOH), a mercapto group (-SH) or a derivative thereof. represent. R 4 and R 5 are the same or different and represent a hydrogen atom or an alkyl group. R 4 and R 5 may be combined to form a ring structure together with the nitrogen atom. n represents an integer.
 上記式で表される化合物(変性剤)により変性された変性SBRとしては、溶液重合のスチレンブタジエンゴム(S-SBR)の重合末端(活性末端)を上記式で表される化合物により変性されたSBR(特開2010-111753号公報に記載の変性SBR等)を使用できる。 The modified SBR modified with the compound (modifier) represented by the above formula includes a solution polymerized styrene butadiene rubber (S-SBR) whose polymerized end (active end) is modified with the compound represented by the above formula. SBR (modified SBR described in JP-A No. 2010-111753, etc.) can be used.
 R、RおよびRとしてはアルコキシ基が好適である(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)。RおよびRとしてはアルキル基(好ましくは炭素数1~3のアルキル基)が好適である。nは、好ましくは1~5、より好ましくは2~4、更に好ましくは3である。また、RおよびRが結合して窒素原子と共に環構造を形成する場合、4~8員環であることが好ましい。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等)も含まれる。 An alkoxy group is suitable as R 1 , R 2 and R 3 (preferably an alkoxy group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms). As R 4 and R 5 , an alkyl group (preferably an alkyl group having 1 to 3 carbon atoms) is suitable. n is preferably 1 to 5, more preferably 2 to 4, and still more preferably 3. Furthermore, when R 4 and R 5 combine to form a ring structure together with a nitrogen atom, it is preferably a 4- to 8-membered ring. Note that the alkoxy group also includes a cycloalkoxy group (cyclohexyloxy group, etc.) and an aryloxy group (phenoxy group, benzyloxy group, etc.).
 上記変性剤の具体例としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the above modifier include 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, 2-diethylaminoethyltriethoxysilane, Examples include methoxysilane, 3-diethylaminopropyltrimethoxysilane, 2-diethylaminoethyltriethoxysilane, and 3-diethylaminopropyltriethoxysilane. These may be used alone or in combination of two or more.
 また、変性SBRとしては、以下の化合物(変性剤)により変性された変性SBRも使用できる。変性剤としては、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、N,N’-ジグリシジル-4-グリシジルオキシアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物;ビス-(1-メチルプロピル)カルバミン酸クロリド、4-モルホリンカルボニルクロリド、1-ピロリジンカルボニルクロリド、N,N-ジメチルカルバミド酸クロリド、N,N-ジエチルカルバミド酸クロリド等のアミノ基含有酸クロリド;1,3-ビス-(グリシジルオキシプロピル)-テトラメチルジシロキサン、(3-グリシジルオキシプロピル)-ペンタメチルジシロキサン等のエポキシ基含有シラン化合物;(トリメチルシリル)[3-(トリメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリブトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジブトキシシリル)プロピル]スルフィド等のスルフィド基含有シラン化合物;エチレンイミン、プロピレンイミン等のN-置換アジリジン化合物;メチルトリエトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン等のアルコキシシラン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、N,N,N’,N’-ビス-(テトラエチルアミノ)ベンゾフェノン等のアミノ基および/または置換アミノ基を有する(チオ)ベンゾフェノン化合物;4-N,N-ジメチルアミノベンズアルデヒド、4-N,N-ジフェニルアミノベンズアルデヒド、4-N,N-ジビニルアミノベンズアルデヒド等のアミノ基および/または置換アミノ基を有するベンズアルデヒド化合物;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン等のN-置換ピロリドンN-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン等のN-置換ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム等のN-置換ラクタム類;の他、N,N-ビス-(2,3-エポキシプロポキシ)-アニリン、4,4-メチレン-ビス-(N,N-グリシジルアニリン)、トリス-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-トリオン類、N,N-ジエチルアセトアミド、N-メチルマレイミド、N,N-ジエチル尿素、1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、4-N,N-ジメチルアミノアセトフェン、4-N,N-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等を挙げることができる。なお、上記化合物(変性剤)による変性は公知の方法で実施可能である。 Furthermore, as the modified SBR, modified SBR modified with the following compound (modifier) can also be used. Examples of modifiers include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolethane triglycidyl ether, and trimethylolpropane triglycidyl ether; two or more of diglycidylated bisphenol A, etc. Polyglycidyl ethers of aromatic compounds having phenol groups; polyepoxy compounds such as 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, and polyepoxidized liquid polybutadiene; 4,4'-diglycidyl-diphenyl Epoxy group-containing tertiary amines such as methylamine, 4,4'-diglycidyl-dibenzylmethylamine; diglycidylaniline, N,N'-diglycidyl-4-glycidyloxyaniline, diglycidyl orthotoluidine, tetraglycidyl metaxylene diamine , diglycidylamino compounds such as tetraglycidylaminodiphenylmethane, tetraglycidyl-p-phenylenediamine, diglycidylaminomethylcyclohexane, and tetraglycidyl-1,3-bisaminomethylcyclohexane; bis-(1-methylpropyl)carbamic acid chloride; Amino group-containing acid chlorides such as 4-morpholine carbonyl chloride, 1-pyrrolidine carbonyl chloride, N,N-dimethylcarbamate acid chloride, N,N-diethylcarbamate acid chloride; 1,3-bis-(glycidyloxypropyl)-tetra Epoxy group-containing silane compounds such as methyldisiloxane, (3-glycidyloxypropyl)-pentamethyldisiloxane; (trimethylsilyl)[3-(trimethoxysilyl)propyl]sulfide, (trimethylsilyl)[3-(triethoxysilyl) propyl] sulfide, (trimethylsilyl) [3-(tripropoxysilyl) propyl] sulfide, (trimethylsilyl) [3-(tributoxysilyl) propyl] sulfide, (trimethylsilyl) [3-(methyldimethoxysilyl) propyl] sulfide, ( Sulfide groups such as (trimethylsilyl)[3-(methyldiethoxysilyl)propyl]sulfide, (trimethylsilyl)[3-(methyldipropoxysilyl)propyl]sulfide, (trimethylsilyl)[3-(methyldibutoxysilyl)propyl]sulfide, etc. Containing silane compounds; N-substituted aziridine compounds such as ethyleneimine and propyleneimine; methyltriethoxysilane, N,N-bis(trimethylsilyl)-3-aminopropyltrimethoxysilane, N,N-bis(trimethylsilyl)-3- Alkoxysilanes such as aminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)aminoethyltriethoxysilane; 4-N,N-dimethylaminobenzophenone, 4- N,N-di-t-butylaminobenzophenone, 4-N,N-diphenylaminobenzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'- (thio)benzophenone compounds having an amino group and/or substituted amino group such as bis(diphenylamino)benzophenone, N,N,N',N'-bis-(tetraethylamino)benzophenone; 4-N,N-dimethylamino Benzaldehyde compounds having an amino group and/or substituted amino group such as benzaldehyde, 4-N,N-diphenylaminobenzaldehyde, 4-N,N-divinylaminobenzaldehyde; N-methyl-2-pyrrolidone, N-vinyl-2- N-substituted pyrrolidone such as pyrrolidone, N-phenyl-2-pyrrolidone, N-t-butyl-2-pyrrolidone, N-methyl-5-methyl-2-pyrrolidone, N-methyl-2-piperidone, N-vinyl-2 - N-substituted piperidones such as piperidone, N-phenyl-2-piperidone; N-methyl-ε-caprolactam, N-phenyl-ε-caprolactam, N-methyl-ω-laurirolactam, N-vinyl-ω-lau N-substituted lactams such as lilolactam, N-methyl-β-propiolactam, and N-phenyl-β-propiolactam; as well as N,N-bis-(2,3-epoxypropoxy)-aniline, 4,4-methylene-bis-(N,N-glycidylaniline), tris-(2,3-epoxypropyl)-1,3,5-triazine-2,4,6-triones, N,N-diethyl Acetamide, N-methylmaleimide, N,N-diethylurea, 1,3-dimethylethyleneurea, 1,3-divinylethyleneurea, 1,3-diethyl-2-imidazolidinone, 1-methyl-3-ethyl- 2-imidazolidinone, 4-N,N-dimethylaminoacetophene, 4-N,N-diethylaminoacetophenone, 1,3-bis(diphenylamino)-2-propanone, 1,7-bis(methylethylamino) -4-heptanone and the like can be mentioned. Note that modification with the above compound (modifier) can be carried out by a known method.
 SBRとしては、例えば、住友化学(株)、(株)ENEOSマテリアル、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。なお、SBRは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the SBR, for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., ENEOS Materials Co., Ltd., Asahi Kasei Co., Ltd., Nippon Zeon Co., Ltd., etc. can be used. Note that SBR may be used alone or in combination of two or more types.
(ロ)BR
 本発明において、ゴム組成物には、BRを含んでもよい。この場合、ゴム成分100質量部中のBRの含有量は、20質量部以上、40質量部以下であることが好ましく、25質量部以上、35質量部以下であるとより好ましい。
(b) BR
In the present invention, the rubber composition may contain BR. In this case, the content of BR in 100 parts by mass of the rubber component is preferably 20 parts by mass or more and 40 parts by mass or less, more preferably 25 parts by mass or more and 35 parts by mass or less.
 BRの重量平均分子量は、例えば、10万超、200万未満である。BRのビニル含量は、例えば1質量%超、30質量%未満である。BRのシス量は、例えば1質量%超、98質量%未満である。BRのトランス量は、例えば1質量%超、60質量%未満である。 The weight average molecular weight of BR is, for example, more than 100,000 and less than 2,000,000. The vinyl content of BR is, for example, more than 1% by weight and less than 30% by weight. The cis amount of BR is, for example, more than 1% by mass and less than 98% by mass. The amount of trans in BR is, for example, more than 1% by mass and less than 60% by mass.
 BRとしては特に限定されず、高シス含量(シス含量が90%以上)のBR、低シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。BRは、非変性BR、変性BRのいずれでもよく、変性BRとしては、前述の官能基が導入された変性BRが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、シス含量は、赤外吸収スペクトル分析法によって測定できる。 The BR is not particularly limited, and BR with a high cis content (cis content of 90% or more), BR with a low cis content, BR containing syndiotactic polybutadiene crystals, etc. can be used. The BR may be either unmodified BR or modified BR, and examples of the modified BR include modified BR into which the above-mentioned functional groups have been introduced. These may be used alone or in combination of two or more. Note that the cis content can be measured by infrared absorption spectroscopy.
 BRとしては、例えば、宇部興産(株)、(株)ENEOSマテリアル、旭化成(株)、日本ゼオン(株)等の製品を使用できる。 As the BR, for example, products manufactured by Ube Industries, Ltd., ENEOS Materials, Asahi Kasei, Nippon Zeon, etc. can be used.
(ハ)イソプレン系ゴム
 本発明において、ゴム組成物には、必要に応じて、イソプレン系ゴムを含んでもよい。この場合、ゴム成分100質量部中のイソプレン系ゴムの含有量は、20質量部以上、40質量部以下であることが好ましく、25質量部以上、35質量部以下であるとより好ましい。
(iii) Isoprene-based rubber In the present invention, the rubber composition may contain isoprene-based rubber, if necessary. In this case, the content of the isoprene rubber in 100 parts by mass of the rubber component is preferably 20 parts by mass or more and 40 parts by mass or less, more preferably 25 parts by mass or more and 35 parts by mass or less.
 イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。 Examples of isoprene rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR, and the like.
 NRとしては、例えば、SIR20、RSS♯3、TSR20、SVR-L等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 As the NR, those commonly used in the tire industry, such as SIR20, RSS#3, TSR20, and SVR-L, can be used. The IR is not particularly limited, and for example, one commonly used in the tire industry, such as IR2200, can be used. Modified NR includes deproteinized natural rubber (DPNR), high purity natural rubber (UPNR), etc.; modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, and grafted isoprene rubber. These may be used alone or in combination of two or more.
(ニ)その他のゴム成分
 また、その他のゴム成分として、ニトリルゴム(NBR)などのタイヤの製造に一般的に用いられるゴム(ポリマー)を含んでもよい。
(d) Other rubber components In addition, other rubber components may include rubbers (polymers) commonly used in tire manufacturing such as nitrile rubber (NBR).
(b)ゴム成分以外の配合材料
(イ)充填剤
 本発明において、ゴム組成物には、前記したように、充填剤として、シリカを含有しているが、その他の充填剤を含有してもよい。シリカ以外の具体的な充填剤としては、例えば、カーボンブラック、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどを挙げることができる。
(b) Compounded materials other than rubber components (a) Filler In the present invention, the rubber composition contains silica as a filler as described above, but it may also contain other fillers. good. Specific examples of fillers other than silica include carbon black, graphite, calcium carbonate, talc, alumina, clay, aluminum hydroxide, and mica.
(i―1)シリカ
 本発明において、ゴム組成物に含有されるシリカのBET比表面積は、良好な耐久性能が得られる観点から140m/g超が好ましく、160m/g超がより好ましい。一方、良好な高速走行時の転がり抵抗性を得られる観点からは250m/g未満が好ましく、220m/g未満であることがより好ましい。なお、上記したBET比表面積は、ASTM D3037-93に準じてBET法で測定されるNSAの値である。
(i-1) Silica In the present invention, the BET specific surface area of the silica contained in the rubber composition is preferably more than 140 m 2 /g, more preferably more than 160 m 2 /g, from the viewpoint of obtaining good durability performance. On the other hand, from the viewpoint of obtaining good rolling resistance during high-speed running, it is preferably less than 250 m 2 /g, more preferably less than 220 m 2 /g. Note that the BET specific surface area described above is the value of N 2 SA measured by the BET method according to ASTM D3037-93.
 本発明において、シリカとしては、前記したように、粒子径が17nm以下のシリカを使用することが好ましく、小粒子径のシリカを使用することにより、ポリマー(スチレンドメイン)との接触頻度を上げて、ポリマーの運動性を高めさせてエネルギーロスを生じさせることができるため、高速走行時における耐摩耗性を向上させることができる。なお、下限は特に限定されないが、混合時の分散性の観点から10nm以上であると好ましい。 In the present invention, as described above, it is preferable to use silica with a particle size of 17 nm or less, and by using silica with a small particle size, the frequency of contact with the polymer (styrene domain) can be increased. Since the mobility of the polymer can be increased and energy loss can be caused, wear resistance during high-speed running can be improved. Note that the lower limit is not particularly limited, but from the viewpoint of dispersibility during mixing, it is preferably 10 nm or more.
 シリカの含有量は、前記したように、ゴム成分100質量部に対して、100質量部以下と、ゴム成分を上回らない量とするが、95質量部以下であることが好ましく、90質量部以下であるとより好ましい。下限は特に限定されないが、シリカによる補強性の発揮を考慮すると、70質量部以上であることが好ましく、80質量部以上であるとより好ましい。 As mentioned above, the content of silica is 100 parts by mass or less per 100 parts by mass of the rubber component, which does not exceed the amount of the rubber component, but it is preferably 95 parts by mass or less, and 90 parts by mass or less. It is more preferable. The lower limit is not particularly limited, but in consideration of the reinforcing properties of silica, it is preferably 70 parts by mass or more, more preferably 80 parts by mass or more.
 シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。また、含水ガラスなどを原料としたシリカや、もみ殻などのバイオマス材用を原料としたシリカなどを用いてもよい。 Examples of the silica include dry process silica (anhydrous silica), wet process silica (hydrated silica), and the like. Among these, wet process silica is preferred because it has a large number of silanol groups. Furthermore, silica made from hydrous glass or the like, silica made from biomass materials such as rice husks, etc. may be used.
 シリカとしては、例えば、エボニックインダストリーズ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。 As the silica, for example, products from Evonik Industries, Rhodia, Tosoh Silica, Solvay Japan, Tokuyama, etc. can be used.
(i-2)シランカップリング剤
 本発明のキャップゴム層を形成するゴム組成物には、シリカと共にシランカップリング剤を含むことが好ましい。シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(i-2) Silane coupling agent The rubber composition forming the cap rubber layer of the present invention preferably contains a silane coupling agent together with silica. The silane coupling agent is not particularly limited, and examples thereof include bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(4-triethoxysilylbutyl)tetrasulfide, Bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, bis(2-triethoxysilylethyl)trisulfide, bis(4-trimethoxysilylbutyl)trisulfide, bis( 3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylethyl) disulfide, bis(4-triethoxysilylbutyl) disulfide, bis(3-trimethoxysilylpropyl) disulfide, bis(2-trimethoxysilylethyl) ) disulfide, bis(4-trimethoxysilylbutyl) disulfide, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N,N-dimethylthiocarbamoyltetrasulfide, 3- Sulfide types such as triethoxysilylpropyl methacrylate monosulfide, 3-mercaptopropyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, mercapto types such as NXT and NXT-Z manufactured by Momentive, vinyltriethoxysilane, and vinyl triethoxysilane. Vinyl types such as methoxysilane, amino types such as 3-aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane, and glycidoxy types such as γ-glycidoxypropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane. , 3-nitropropyltrimethoxysilane, 3-nitropropyltriethoxysilane, and other nitro types, and 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, and other chloro types. These may be used alone or in combination of two or more.
 シランカップリング剤としては、例えば、エボニックインダストリーズ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。 As the silane coupling agent, for example, products from Evonik Industries, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Kasei Kogyo Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd., etc. can be used.
 シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、3質量部超、25質量部未満である。 The content of the silane coupling agent is, for example, more than 3 parts by mass and less than 25 parts by mass based on 100 parts by mass of silica.
(ii)カーボンブラック
 本発明において、ゴム組成物には、補強性の観点からカーボンブラックを含むことが好ましい。
(ii) Carbon black In the present invention, the rubber composition preferably contains carbon black from the viewpoint of reinforcing properties.
 ゴム成分100質量部に対するカーボンブラックの含有量は、10質量部以上であることが好ましく、20質量部以上であるとより好ましい。一方、60質量部以下であることが好ましく、50質量部以下であるとより好ましい。 The content of carbon black per 100 parts by mass of the rubber component is preferably 10 parts by mass or more, more preferably 20 parts by mass or more. On the other hand, it is preferably 60 parts by mass or less, more preferably 50 parts by mass or less.
 カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCFおよびECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FTおよびMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPCおよびCCのようなチャンネルブラック(チャンネルカーボンブラック)などを挙げることができる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。 Carbon black is not particularly limited, and includes furnace black (furnace carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black) ; thermal blacks (thermal carbon blacks) such as FT and MT; channel blacks (channel carbon blacks) such as EPC, MPC and CC. These may be used alone or in combination of two or more.
 カーボンブラックのCTAB比表面積(Cetyl Tri-methyl Ammonium Bromide)は、130m/g以上が好ましく、160m/g以上であるとより好ましく、170m/g以上であるとさらに好ましい。一方、250m/g以下が好ましく、200m/g以下であるであるとより好ましい。なお、CTAB比表面積は、ASTM  D3765-92に準拠して測定される値である。 The CTAB specific surface area (Cetyl Tri-methyl Ammonium Bromide) of carbon black is preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and even more preferably 170 m 2 /g or more. On the other hand, it is preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less. Note that the CTAB specific surface area is a value measured in accordance with ASTM D3765-92.
 具体的なカーボンブラックとしては特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Specific carbon blacks are not particularly limited, and include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762, and the like. Commercially available products include, for example, products from Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Co., Ltd., Lion Corporation, Nippon Kaya Carbon Co., Ltd., and Columbia Carbon Co., Ltd. can be used. These may be used alone or in combination of two or more.
(iii)その他の充填剤
 ゴム組成物には、必要に応じて、上記したシリカやカーボンブラックの他に、タイヤ工業において一般的に用いられている、例えば、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤をさらに含有してもよい。これらの含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(iii) Other fillers In addition to the above-mentioned silica and carbon black, the rubber composition may optionally include fillers such as graphite, calcium carbonate, talc, alumina, etc., which are commonly used in the tire industry. It may further contain fillers such as clay, aluminum hydroxide, and mica. The content of these is, for example, more than 0.1 part by mass and less than 200 parts by mass based on 100 parts by mass of the rubber component.
(ロ)可塑剤成分
 ゴム組成物は、ゴムを軟化させる成分として、オイル(伸展油を含む)、液状ゴム、および樹脂を可塑剤成分として含んでもよい。なお、可塑剤成分は、加硫ゴム中からアセトンにより抽出可能な成分である。可塑剤成分の合計含有量は、ゴム成分100質量部に対して、85質量部以上であることが好ましく、100質量部以上であるとより好ましい。一方、120質量部以下であることが好ましく、110質量部以下であるとより好ましい。なお、ゴム成分として伸展ゴムが使用されている場合には、伸展成分量はこれらの可塑剤成分量に含まれる。
(B) Plasticizer component The rubber composition may contain oil (including extender oil), liquid rubber, and resin as plasticizer components, which soften the rubber. Note that the plasticizer component is a component that can be extracted from the vulcanized rubber with acetone. The total content of the plasticizer component is preferably 85 parts by mass or more, more preferably 100 parts by mass or more, based on 100 parts by mass of the rubber component. On the other hand, it is preferably 120 parts by mass or less, more preferably 110 parts by mass or less. Note that when extensible rubber is used as the rubber component, the amount of the extensible component is included in the amount of these plasticizer components.
(i)オイル
 オイルとしては、例えば、鉱物油(一般にプロセスオイルと言われる)、植物油脂、またはその混合物が挙げられる。鉱物油(プロセスオイル)としては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、ライフサイクルアセスメントの観点から、ゴム混合用のミキサーや自動車用エンジンなどの潤滑油として用いられた後の廃オイルや、廃食用油などを適宜用いてもよい。
(i) Oil Oils include, for example, mineral oils (generally referred to as process oils), vegetable oils, or mixtures thereof. As the mineral oil (process oil), for example, paraffinic process oil, aromatic process oil, naphthenic process oil, etc. can be used. Vegetable oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, coconut oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, rice bran oil, safflower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more. Furthermore, from the viewpoint of life cycle assessment, waste oil that has been used as a lubricating oil for rubber mixing mixers, automobile engines, etc., waste cooking oil, etc. may be used as appropriate.
 また、環境対策で多環式芳香族(polycyclic  aromatic  compound:PCA)化合物の含量の低いプロセスオイルを使用することもできる。前記低PCA含量プロセスオイルとしては、軽度抽出溶媒和物(MES)、処理留出物芳香族系抽出物(TDAE)、重ナフテン系オイル等が挙げられる。 Furthermore, for environmental reasons, it is also possible to use process oil with a low content of polycyclic aromatic compound (PCA) compounds. The low PCA content process oils include mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), heavy naphthenic oils, and the like.
 具体的なプロセスオイル(鉱物油)としては、例えば、出光興産(株)、三共油化工業(株)、ENEOS(株)、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。 Specific process oils (mineral oils) include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., ENEOS Co., Ltd., Orisoi Co., Ltd., H&R Co., Ltd., Toyokuni Oil Co., Ltd., and Showa Shell Sekiyu Co., Ltd. ), Fuji Kosan Co., Ltd., etc. can be used.
(ii)液状ゴム
 可塑剤として挙げた液状ゴムとは、常温(25℃)で液体状態の重合体であり、加硫後のタイヤからアセトン抽出により抽出可能なゴム成分である。液状ゴムとしては、ファルネセン系ポリマー、液状ジエン系重合体及びそれらの水素添加物等が挙げられる。
(ii) Liquid rubber The liquid rubber mentioned as a plasticizer is a polymer that is in a liquid state at room temperature (25° C.), and is a rubber component that can be extracted from a vulcanized tire by acetone extraction. Examples of the liquid rubber include farnesene polymers, liquid diene polymers, and hydrogenated products thereof.
 ファルネセン系ポリマーとは、ファルネセンを重合することで得られる重合体であり、ファルネセンに基づく構成単位を有する。ファルネセンには、α-ファルネセン((3E,7E)-3,7,11-トリメチル-1,3,6,10-ドデカテトラエン)やβ-ファルネセン(7,11-ジメチル-3-メチレン-1,6,10-ドデカトリエン)などの異性体が存在する。 A farnesene-based polymer is a polymer obtained by polymerizing farnesene, and has a constituent unit based on farnesene. Farnesene includes α-farnesene ((3E,7E)-3,7,11-trimethyl-1,3,6,10-dodecatetraene) and β-farnesene (7,11-dimethyl-3-methylene-1 , 6,10-dodecatriene).
 ファルネセン系ポリマーは、ファルネセンの単独重合体(ファルネセン単独重合体)でも、ファルネセンとビニルモノマーとの共重合体(ファルネセン-ビニルモノマー共重合体)でもよい。 The farnesene-based polymer may be a farnesene homopolymer (farnesene homopolymer) or a copolymer of farnesene and a vinyl monomer (farnesene-vinyl monomer copolymer).
 液状ジエン系重合体としては、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)などが挙げられる。 Examples of liquid diene-based polymers include liquid styrene-butadiene copolymer (liquid SBR), liquid butadiene polymer (liquid BR), liquid isoprene polymer (liquid IR), liquid styrene-isoprene copolymer (liquid SIR), etc. It will be done.
 液状ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が、例えば、1.0×10超、2.0×10未満である。なお、本明細書において、液状ジエン系重合体のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算値である。 The weight average molecular weight (Mw) of the liquid diene polymer measured by gel permeation chromatography (GPC) in terms of polystyrene is, for example, more than 1.0×10 3 and less than 2.0×10 5 . In this specification, the Mw of the liquid diene polymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC).
 液状ゴムの含有量(液状ファルネセン系ポリマー、液状ジエン系重合体等の合計含有量)は、ゴム成分100質量部に対して、例えば、1質量部超、100質量部未満である。 The content of liquid rubber (total content of liquid farnesene polymer, liquid diene polymer, etc.) is, for example, more than 1 part by mass and less than 100 parts by mass based on 100 parts by mass of the rubber component.
 液状ゴムとしては、例えば、クラレ(株)、クレイバレー社等の製品を使用できる。 As the liquid rubber, for example, products from Kuraray Co., Ltd., Clay Valley Co., Ltd., etc. can be used.
(iii)樹脂成分
 樹脂成分は、粘着性付与成分としても機能し、常温で固体であっても、液体であってもよく、具体的な樹脂成分としては、例えば、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂などの樹脂が挙げられ、2種以上を併用しても良い。樹脂成分の含有量は、ゴム成分100質量部に対して、50質量部以上であることが好ましく、60質量部以上であるとより好ましく、65質量部以上であるとさらに好ましい。なお、これらの樹脂成分は、必要に応じて、シリカ等と反応できる変性基を付与してもよい。
(iii) Resin component The resin component also functions as a tackifying component and may be solid or liquid at room temperature. Specific resin components include rosin resin, styrene resin, etc. , coumarone resin, terpene resin, C5 resin, C9 resin, C5C9 resin, acrylic resin, etc., and two or more types may be used in combination. The content of the resin component is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 65 parts by mass or more, based on 100 parts by mass of the rubber component. Note that these resin components may be provided with a modifying group capable of reacting with silica or the like, if necessary.
 ロジン系樹脂は、松脂を加工することにより得られるロジン酸を主成分とする樹脂である。このロジン系樹脂(ロジン類)は、変性の有無によって分類可能であり、無変性ロジン(未変性ロジン)、ロジン変性体(ロジン誘導体)に分類できる。無変性ロジンとしては、トールロジン(別名トール油ロジン)、ガムロジン、ウッドロジン、不均斉化ロジン、重合ロジン、水素化ロジン、その他の化学的に修飾されたロジンなどが挙げられる。ロジン変性体は無変性ロジンの変性体であって、ロジンエステル類、不飽和カルボン酸変性ロジン類、不飽和カルボン酸変性ロジンエステル類、ロジンのアミド化合物、ロジンのアミン塩などが挙げられる。 Rosin-based resin is a resin whose main component is rosin acid obtained by processing pine resin. This rosin-based resin (rosin) can be classified according to the presence or absence of modification, and can be classified into unmodified rosin (unmodified rosin) and modified rosin (rosin derivative). Examples of unmodified rosin include tall rosin (also known as tall oil rosin), gum rosin, wood rosin, disproportionated rosin, polymerized rosin, hydrogenated rosin, and other chemically modified rosins. The modified rosin is a modified version of unmodified rosin, and includes rosin esters, unsaturated carboxylic acid-modified rosins, unsaturated carboxylic acid-modified rosin esters, amide compounds of rosin, and amine salts of rosin.
 スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体およびこれと共重合し得る他の単量体のコポリマーも挙げられる。 Styrenic resins are polymers using styrene monomers as constituent monomers, and include polymers polymerized with styrene monomers as the main component (50% by mass or more). Specifically, styrenic monomers (styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, Homopolymers of o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), copolymers of two or more styrene monomers, and styrene monomers. and copolymers of other monomers that can be copolymerized therewith.
 前記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸またはその酸無水物等が例示できる。 Examples of the other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, acrylics, unsaturated carboxylic acids such as methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene, and butadiene. Examples include dienes such as isoprene, olefins such as 1-butene and 1-pentene; α,β-unsaturated carboxylic acids such as maleic anhydride, or acid anhydrides thereof.
 クマロン系樹脂の中でも、クマロンインデン樹脂が好ましい。クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロンおよびインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。 Among coumaron-based resins, coumaron indene resin is preferred. Coumarone indene resin is a resin containing coumaron and indene as monomer components constituting the skeleton (main chain) of the resin. In addition to coumaron and indene, monomer components contained in the skeleton include styrene, α-methylstyrene, methylindene, and vinyltoluene.
 クマロンインデン樹脂の含有量は、ゴム成分100質量部に対して、例えば、1.0質量部超、50.0質量部未満である。 The content of the coumaron indene resin is, for example, more than 1.0 parts by mass and less than 50.0 parts by mass based on 100 parts by mass of the rubber component.
 クマロンインデン樹脂の水酸基価(OH価)は、例えば、15mgKOH/g超、150mgKOH/g未満である。なお、OH価とは、樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムの量をミリグラム数で表したものであり、電位差滴定法(JIS K 0070:1992)により測定した値である。 The hydroxyl value (OH value) of the coumaron indene resin is, for example, more than 15 mgKOH/g and less than 150 mgKOH/g. The OH number is the amount of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group when acetylating 1 g of resin, expressed in milligrams, and is determined by the potentiometric titration method (JIS K 0070: (1992).
 クマロンインデン樹脂の軟化点は、例えば、30℃超、160℃未満である。なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。 The softening point of the coumaron indene resin is, for example, higher than 30°C and lower than 160°C. The softening point is the temperature at which the ball drops when the softening point specified in JIS K 6220-1:2001 is measured using a ring and ball softening point measuring device.
 テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。ポリテルペンは、テルペン化合物を重合して得られる樹脂およびそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素およびその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。 Examples of terpene resins include polyterpenes, terpene phenols, aromatic modified terpene resins, and the like. Polyterpenes are resins obtained by polymerizing terpene compounds and hydrogenated products thereof. Terpene compounds are hydrocarbons and their oxygen-containing derivatives represented by the composition (C 5 H 8 ) n , including monoterpenes (C 10 H 16 ), sesquiterpenes (C 15 H 24 ), and diterpenes (C 20 H 32 ) . ) and other compounds whose basic skeletons are terpenes, such as α-pinene, β-pinene, dipentene, limonene, myrcene, alloocimene, ocimene, α-phellandrene, α-terpinene, γ-terpinene, and terpinolene. , 1,8-cineole, 1,4-cineole, α-terpineol, β-terpineol, γ-terpineol, and the like.
 ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。テルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した樹脂、および該樹脂に水素添加処理した樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物およびホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、および該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。 Examples of polyterpenes include terpene resins such as α-pinene resin, β-pinene resin, limonene resin, dipentene resin, and β-pinene/limonene resin, which are made from the above-mentioned terpene compounds, as well as hydrogen obtained by hydrogenating the terpene resin. Also included are added terpene resins. Examples of terpene phenols include resins obtained by copolymerizing the above-mentioned terpene compounds and phenolic compounds, and resins obtained by hydrogenating the above-mentioned resins. Examples include resin. Note that examples of the phenolic compound include phenol, bisphenol A, cresol, xylenol, and the like. Examples of aromatic modified terpene resins include resins obtained by modifying terpene resins with aromatic compounds, and resins obtained by hydrogenating the resins. The aromatic compound is not particularly limited as long as it has an aromatic ring, but examples include phenol compounds such as phenol, alkylphenol, alkoxyphenol, and unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, Naphthol compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; coumaron, indene, and the like.
 「C5樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。 "C5 resin" refers to a resin obtained by polymerizing a C5 fraction. Examples of the C5 fraction include petroleum fractions having 4 to 5 carbon atoms such as cyclopentadiene, pentene, pentadiene, and isoprene. As the C5 petroleum resin, dicyclopentadiene resin (DCPD resin) is preferably used.
 「C9樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、および芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体またはα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。 "C9 resin" refers to a resin obtained by polymerizing a C9 fraction, and may be a hydrogenated or modified resin. Examples of the C9 fraction include petroleum fractions having 8 to 10 carbon atoms, such as vinyltoluene, alkylstyrene, indene, and methylindene. As specific examples, for example, coumaron indene resin, coumaron resin, indene resin, and aromatic vinyl resin are preferably used. As the aromatic vinyl resin, α-methylstyrene, a styrene homopolymer, or a copolymer of α-methylstyrene and styrene is preferred because it is economical, easy to process, and has excellent heat generation properties. , a copolymer of α-methylstyrene and styrene is more preferred. As the aromatic vinyl resin, for example, those commercially available from Clayton Co., Eastman Chemical Co., etc. can be used.
 「C5C9樹脂」とは、前記C5留分と前記C9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分およびC9留分としては、前記の石油留分が挙げられる。C5C9樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。 "C5C9 resin" refers to a resin obtained by copolymerizing the C5 fraction and the C9 fraction, and may be hydrogenated or modified. Examples of the C5 fraction and C9 fraction include the petroleum fractions described above. As the C5C9 resin, for example, those commercially available from Tosoh Corporation, LUHUA, etc. can be used.
 アクリル系樹脂としては特に限定されないが、例えば、無溶剤型アクリル系樹脂を使用できる。 Although the acrylic resin is not particularly limited, for example, a solvent-free acrylic resin can be used.
 無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリルおよびアクリルを意味する。 Solvent-free acrylic resins are produced using a high-temperature continuous polymerization method (high-temperature continuous bulk polymerization method) (U.S. Patent No. 4,414,370), which uses as little as possible the use of auxiliary materials such as polymerization initiators, chain transfer agents, and organic solvents. specification, JP-A-59-6207, JP-A-5-58005, JP-A-1-313522, US Patent No. 5,010,166, Toagosei Research Annual Report TREND 2000 No. 3 p42 Examples include (meth)acrylic resins (polymers) synthesized by the method described in -45, etc. Note that in the present invention, (meth)acrylic means methacryl and acrylic.
 上記アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、および(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。 Examples of monomer components constituting the acrylic resin include (meth)acrylic acid, (meth)acrylic esters (alkyl esters, aryl esters, aralkyl esters, etc.), (meth)acrylamide, and (meth)acrylamide derivatives. Examples include (meth)acrylic acid derivatives such as.
 また、上記アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。 In addition, as monomer components constituting the above acrylic resin, in addition to (meth)acrylic acid and (meth)acrylic acid derivatives, styrene, α-methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, divinylnaphthalene, etc. aromatic vinyl may be used.
 上記アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。また、上記アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していても良い。 The above-mentioned acrylic resin may be a resin composed only of a (meth)acrylic component, or a resin containing components other than the (meth)acrylic component. Further, the acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
 樹脂成分としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、ENEOS(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。 Examples of the resin component include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Corporation, Rutgers Chemicals, BASF, Arizona Chemical Co., Ltd., Ninuri Chemical Co., Ltd. ) Products from Nippon Shokubai, ENEOS Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd., etc. can be used.
(ハ)ステアリン酸
 本発明において、ゴム組成物には、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10.0質量部未満である。ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
(c) Stearic acid In the present invention, the rubber composition preferably contains stearic acid. The content of stearic acid is, for example, more than 0.5 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component. As the stearic acid, conventionally known ones can be used, and for example, products from NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., Chiba Fatty Acid Co., Ltd., etc. can be used.
(ニ)老化防止剤
 本発明において、ゴム組成物には、老化防止剤を含むことが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10質量部未満であり、1質量部以上がより好ましい。
(d) Anti-aging agent In the present invention, the rubber composition preferably contains an anti-aging agent. The content of the anti-aging agent is, for example, more than 0.5 parts by mass and less than 10 parts by mass, and more preferably 1 part by mass or more, based on 100 parts by mass of the rubber component.
 老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Examples of anti-aging agents include naphthylamine-based anti-aging agents such as phenyl-α-naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis(α,α′-dimethylbenzyl)diphenylamine; -isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N,N'-di-2-naphthyl-p-phenylenediamine, etc. p-phenylenediamine-based anti-aging agents; quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methylphenol; Monophenolic anti-aging agents such as styrenated phenol; bis-, tris-, and polyphenol-based aging agents such as tetrakis-[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane, etc. Examples include inhibitors. These may be used alone or in combination of two or more.
 なお、老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。 As the anti-aging agent, for example, products from Seiko Kagaku Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Flexis Co., Ltd., etc. can be used.
(ホ)ワックス
 本発明において、ゴム組成物には、ワックスを含むことが好ましい。ワックスの含有量は、ゴム成分100質量部に対して、例えば、0.5~20質量部、好ましくは1.0~15質量部、より好ましくは1.5~10質量部である。
(e) Wax In the present invention, the rubber composition preferably contains wax. The content of wax is, for example, 0.5 to 20 parts by weight, preferably 1.0 to 15 parts by weight, and more preferably 1.5 to 10 parts by weight, based on 100 parts by weight of the rubber component.
 ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 The wax is not particularly limited, and includes petroleum waxes such as paraffin wax and microcrystalline wax; natural waxes such as vegetable waxes and animal waxes; and synthetic waxes such as polymers of ethylene and propylene. These may be used alone or in combination of two or more.
 なお、ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。 As the wax, for example, products manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., Seiko Kagaku Co., Ltd., etc. can be used.
(ヘ)酸化亜鉛
 ゴム組成物は、酸化亜鉛を含んでもよい。酸化亜鉛の含有量は、ゴム成分100質量部に対し、例えば、0.5質量部超、10質量部未満である。酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
(f) Zinc oxide The rubber composition may contain zinc oxide. The content of zinc oxide is, for example, more than 0.5 parts by mass and less than 10 parts by mass based on 100 parts by mass of the rubber component. As zinc oxide, conventionally known ones can be used, such as products from Mitsui Kinzoku Kogyo Co., Ltd., Toho Zinc Co., Ltd., Hakusui Tech Co., Ltd., Seido Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. can be used.
(ト)架橋剤および加硫促進剤
 ゴム組成物は、硫黄等の架橋剤を含むことが好ましい。架橋剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、10.0質量部未満である。
(g) Crosslinking agent and vulcanization accelerator The rubber composition preferably contains a crosslinking agent such as sulfur. The content of the crosslinking agent is, for example, more than 0.1 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component.
 硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Sulfur includes powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersed sulfur, soluble sulfur, etc. commonly used in the rubber industry. These may be used alone or in combination of two or more.
 なお、硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。 As the sulfur, for example, products manufactured by Tsurumi Chemical Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis, Nippon Karidome Kogyo Co., Ltd., Hosoi Chemical Co., Ltd., etc. can be used. .
 硫黄以外の架橋剤としては、例えば、田岡化学工業(株)製のタッキロールV200、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。 Examples of cross-linking agents other than sulfur include sulfur atoms such as Tackirol V200 manufactured by Taoka Chemical Industry Co., Ltd. and KA9188 (1,6-bis(N,N'-dibenzylthiocarbamoyldithio)hexane) manufactured by Lanxess. and organic peroxides such as dicumyl peroxide.
 ゴム組成物は、加硫促進剤を含むことが好ましい。加硫促進剤の含有量は、ゴム成分100質量部に対して、例えば、0.3質量部超、10.0質量部未満である。 The rubber composition preferably contains a vulcanization accelerator. The content of the vulcanization accelerator is, for example, more than 0.3 parts by mass and less than 10.0 parts by mass based on 100 parts by mass of the rubber component.
 加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Examples of vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiazyl sulfenamide; tetramethylthiuram disulfide (TMTD); ), thiuram-based vulcanization accelerators such as tetrabenzylthiuram disulfide (TBzTD), tetrakis(2-ethylhexyl)thiuram disulfide (TOT-N); N-cyclohexyl-2-benzothiazolesulfenamide, N-t-butyl- Sulfenamide vulcanization accelerators such as 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N,N'-diisopropyl-2-benzothiazolesulfenamide; diphenylguanidine; Examples include guanidine-based vulcanization accelerators such as di-ortho-tolyl guanidine and ortho-tolyl biguanidine. These may be used alone or in combination of two or more.
(チ)その他
 ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、脂肪酸金属塩、カルボン酸金属塩、有機過酸化物、リバージョン(加硫戻り)防止剤等を、必要に応じて、さらに配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(H) Others In addition to the above-mentioned components, the rubber composition may contain additives commonly used in the tire industry, such as fatty acid metal salts, carboxylic acid metal salts, organic peroxides, and reversion (reversion). ) An inhibitor or the like may be further added as necessary. The content of these additives is, for example, more than 0.1 part by mass and less than 200 parts by mass based on 100 parts by mass of the rubber component.
(2)ゴム組成物の作製
 キャップゴム層を形成するゴム組成物は、上記した各種配合材料の適宜、調整して、一般的な方法、例えば、ゴム成分とカーボンブラック等のフィラーとを混練するベース練り工程と、前記ベース練り工程で得られる混練物と架橋剤とを混練する仕上げ練り工程とを含む製造方法により作製される。
(2) Preparation of rubber composition The rubber composition forming the cap rubber layer is prepared by appropriately adjusting the above-mentioned various compounding materials and kneading the rubber component and filler such as carbon black using a general method. It is produced by a manufacturing method including a base kneading step and a finishing kneading step of kneading the kneaded material obtained in the base kneading step and a crosslinking agent.
 混練は、例えば、バンバリーミキサー、ニーダー、オープンロールなどの公知の(密閉式)混練機を用いて行うことができる。 Kneading can be performed using a known (closed) kneader such as a Banbury mixer, kneader, or open roll.
 ベース練り工程の混練温度は、例えば、50℃超、200℃未満であり、混練時間は、例えば、30秒超、30分未満である。ベース練り工程では、上記成分以外にも、従来ゴム工業で使用される配合剤、例えば、オイル等の軟化剤、酸化亜鉛、老化防止剤、ワックス、加硫促進剤などを必要に応じて適宜添加、混練してもよい。 The kneading temperature in the base kneading step is, for example, more than 50°C and less than 200°C, and the kneading time is, for example, more than 30 seconds and less than 30 minutes. In the base kneading process, in addition to the above ingredients, compounding agents conventionally used in the rubber industry, such as softeners such as oil, zinc oxide, anti-aging agents, wax, and vulcanization accelerators, are added as necessary. , may be kneaded.
 仕上げ練り工程では、前記ベース練り工程で得られる混練物と架橋剤とが混練される。仕上げ練り工程の混練温度は、例えば、室温超、80℃未満であり、混練時間は、例えば、1分超、15分未満である。仕上げ練り工程では、上記成分以外にも、加硫促進剤、酸化亜鉛等を必要に応じて適宜添加、混練してもよい。 In the finishing kneading step, the kneaded material obtained in the base kneading step and the crosslinking agent are kneaded. The kneading temperature in the final kneading step is, for example, higher than room temperature and lower than 80° C., and the kneading time is, for example, higher than 1 minute and shorter than 15 minutes. In the finishing kneading step, in addition to the above-mentioned components, a vulcanization accelerator, zinc oxide, etc. may be appropriately added and kneaded as necessary.
2.タイヤの製造
 本発明に係るタイヤは、上記で得られるゴム組成物をキャップゴム層として、所定の形状のトレッドゴムに成形し、その後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。
2. Manufacture of Tire The tire according to the present invention is produced by molding the rubber composition obtained above as a cap rubber layer into a tread rubber having a predetermined shape, and then molding the rubber composition along with other tire members on a tire molding machine using a normal method. By molding it, it is possible to produce an unvulcanized tire.
 なお、トレッド部をベースゴム層との複層構造とする場合には、基本的には、上記したゴム成分および配合材料を用いて、その配合量を適宜変更して、同様に混練することにより、ベースゴム層を形成するゴム組成物を得ることができる。そして、キャップゴム層と共に押し出して所定の形状のトレッドゴムに成形し、その後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。 In addition, when making the tread part a multilayer structure with the base rubber layer, basically, by using the above-mentioned rubber components and compounding materials, changing the compounding amounts as appropriate, and kneading in the same manner. , a rubber composition forming a base rubber layer can be obtained. Then, it is extruded together with the cap rubber layer and molded into a tread rubber of a predetermined shape, and then molded together with other tire components using a normal method on a tire molding machine to produce an unvulcanized tire. can.
 具体的には、成形ドラム上に、タイヤの気密保持性を確保するための部材としてのインナーライナー、タイヤの受ける荷重、衝撃、充填空気圧に耐える部材としてのカーカス、カーカスを強く締付けトレッドの剛性を高める部材としてのベルト部材などを巻回し、両側縁部にカーカスの両端を固定すると共に、タイヤをリムに固定させるための部材としてのビード部を配置して、トロイド状に成形し、その後、外周の中央部にトレッド、径方向外側にサイドウォールを貼り合せてサイド部を構成させることにより、未加硫タイヤを作製する。 Specifically, on the forming drum, there is an inner liner as a member to ensure airtightness of the tire, a carcass as a member to withstand the load, impact, and filling air pressure that the tire receives, and a carcass that is tightly tightened to increase the rigidity of the tread. A belt member that serves as a lifting member is wound around the carcass, and both ends of the carcass are fixed to both side edges, and a bead part that is a member that fixes the tire to the rim is placed to form a toroid shape. An unvulcanized tire is manufactured by laminating a tread to the center portion of the tire and a side wall to the outside in the radial direction to form a side portion.
 その後、作製された未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。加硫工程は、公知の加硫手段を適用することで実施できる。加硫温度としては、例えば、120℃超、200℃未満であり、加硫時間は、例えば、5分超、15分未満である。 Thereafter, a tire is obtained by heating and pressurizing the produced unvulcanized tire in a vulcanizer. The vulcanization process can be carried out by applying known vulcanization means. The vulcanization temperature is, for example, more than 120°C and less than 200°C, and the vulcanization time is, for example, more than 5 minutes and less than 15 minutes.
 得られるタイヤは、先に述べたように、ゴム組成物中におけるシリカの補強効果、適切なスチレン量による変形に対する緩和効果、適切な30℃tanδによるトレッド部表面における滑りの抑制効果、および、適切な厚み制御による蓄熱の抑制効果などのため、高速走行時における耐摩耗性を十分に向上させることができる。 As mentioned above, the resulting tire has the reinforcing effect of silica in the rubber composition, the moderating effect on deformation due to an appropriate amount of styrene, the suppressing effect of slipping on the tread surface due to an appropriate 30°C tan δ, and the appropriate amount of styrene. Due to the effect of suppressing heat accumulation through thickness control, wear resistance during high-speed running can be sufficiently improved.
 なお、本発明に係るタイヤは、特にカテゴリーは限定されず、乗用車用タイヤ、トラックやバス等の重荷重車用タイヤ、二輪自動車用タイヤ、ランフラットタイヤ、非空気入りタイヤ等として使用することができるが、乗用車用タイヤとすることが好ましい。また、空気入りタイヤとすることが好ましい。 The tire according to the present invention is not particularly limited in category, and can be used as tires for passenger cars, tires for heavy-duty vehicles such as trucks and buses, tires for two-wheeled vehicles, run-flat tires, non-pneumatic tires, etc. However, it is preferable to use tires for passenger cars. Moreover, it is preferable to use a pneumatic tire.
 以下では、実施をする際に好ましいと考えられる例(実施例)を示すが、本発明の範囲は当該実施例に限られない。実施例においては、以下に示す各種薬品を用いて各表に従って配合を変化させて得られる組成物から作製される空気入りタイヤ(タイヤサイズ205/55R16、扁平率:55%、ランド比:65%)を検討して下記評価方法に基づいて算出した結果を表2、表3に示す。 In the following, examples (examples) that are considered preferable for implementation will be shown, but the scope of the present invention is not limited to these examples. In the examples, a pneumatic tire (tire size 205/55R16, flatness: 55%, land ratio: 65%) was manufactured from a composition obtained by changing the formulation according to each table using the various chemicals shown below. ) and calculated based on the following evaluation method are shown in Tables 2 and 3.
1.キャップゴム層を形成するゴム組成物
(1)配合材料
(a)ゴム成分
(イ)SBR-1:次段落に示す方法により得られる変性S-SBR
   (スチレン量:25質量%、ビニル含量:25質量%)
(ロ)SBR-2:(株)ENEOSマテリアル製のHPR850(変性S-SBR)
   (スチレン量:27.5質量%、ビニル含量:59.0質量%)
(ハ)SBR-3:(株)ENEOSマテリアル製のHPR840(S-SBR)
   (スチレン量:10質量%、ビニル含量:42質量%)
(ニ)BR:宇部興産(株)製のウベポールBR150B(ハイシスBR)
  (シス含量97質量%、トランス含量2質量%、ビニル含量1質量%)
1. Rubber composition for forming the cap rubber layer (1) Compounding materials (a) Rubber component (a) SBR-1: Modified S-SBR obtained by the method shown in the next paragraph
(Styrene content: 25% by mass, vinyl content: 25% by mass)
(b) SBR-2: HPR850 (modified S-SBR) manufactured by ENEOS Materials Co., Ltd.
(Styrene content: 27.5% by mass, vinyl content: 59.0% by mass)
(c) SBR-3: HPR840 (S-SBR) manufactured by ENEOS Materials Co., Ltd.
(Styrene content: 10% by mass, vinyl content: 42% by mass)
(d) BR: Ubepol BR150B (Hisis BR) manufactured by Ube Industries, Ltd.
(Cis content 97% by mass, trans content 2% by mass, vinyl content 1% by mass)
(SBR-1の製造)
 上記SBR-1は、以下の手順に従って作製する。まず、内容積10Lで、底部に入口、頭部に出口を有し、撹拌機およびジャケットを付けたオートクレーブを反応器として2基直列に連結し、ブタジエン、スチレン、シクロヘキサンを各々所定の比率で混合する。この混合溶液を、活性アルミナを充填した脱水カラムを経由し、不純物を除去するためにn-ブチルリチウムをスタティックミキサー中で混合した後、1基目の反応器底部より連続的に供給し、さらに極性物質として2,2-ビス(2-オキソラニル)プロパンを、重合開始剤としてn-ブチルリチウムを所定の速度でそれぞれ1基目の反応器底部より連続的に供給し、反応器内温を95℃に保持する。反応器頭部より重合体溶液を連続的に抜き出し、2基目の反応器へ供給する。2基目の反応器の温度を95℃に保ち、変性剤としてテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン(単量体)と、オリゴマー成分との混合物を所定の速度でシクロヘキサン1000倍希釈液として連続的に加えて変性反応を行なう。この重合体溶液を反応器から連続的に抜き出し、スタティックミキサーで連続的に酸化防止剤を添加した後、溶媒を除去して、目的とする変性ジエン系重合体(SBR-1)を得る。
(Manufacture of SBR-1)
The above SBR-1 is produced according to the following procedure. First, two autoclaves with an internal volume of 10 L, an inlet at the bottom and an outlet at the head, equipped with a stirrer and a jacket were connected in series as reactors, and butadiene, styrene, and cyclohexane were mixed in a predetermined ratio. do. This mixed solution is passed through a dehydration column packed with activated alumina, mixed with n-butyllithium in a static mixer to remove impurities, and then continuously fed from the bottom of the first reactor, and further 2,2-bis(2-oxolanyl)propane as a polar substance and n-butyllithium as a polymerization initiator were continuously supplied from the bottom of the first reactor at a predetermined rate, and the internal temperature of the reactor was brought to 95%. Keep at ℃. The polymer solution is continuously extracted from the head of the reactor and supplied to the second reactor. The temperature of the second reactor was maintained at 95°C, and a mixture of tetraglycidyl-1,3-bisaminomethylcyclohexane (monomer) as a modifier and the oligomer component was diluted 1000 times with cyclohexane at a predetermined rate. The denaturation reaction is carried out by continuously adding as follows. This polymer solution is continuously extracted from the reactor, an antioxidant is continuously added using a static mixer, and then the solvent is removed to obtain the desired modified diene polymer (SBR-1).
 当該SBR-1のビニル含量(単位:質量%)は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求める。また、スチレン量(単位:質量%)は、JIS K6383:1995に従って、屈折率より求める。 The vinyl content (unit: mass %) of the SBR-1 is determined from the absorption intensity near 910 cm −1 , which is the absorption peak of vinyl groups, by infrared spectroscopy. Moreover, the amount of styrene (unit: mass %) is determined from the refractive index according to JIS K6383:1995.
(b)ゴム成分以外の配合材料
(イ)カーボンブラック:三菱化学社製のダイヤブラックN220
            (NSA:115m/g)
(ロ)シリカ:エボニックインダストリーズ社製のウルトラシルVN3
        (NSA:175m/g、平均一次粒子径:17nm)
(ハ)シランカップリング剤:エボニックインダストリーズ社製のSi266
       (ビス(3-トリエトキシシリルプロピル)ジスルフィド)
(ニ)樹脂:クレイトン社製のSYLVATRAXX4401
      (α-メチルスチレン系樹脂)
(ホ)オイル:出光興産(株)製のダイアナプロセスNH-70S
      (アロマ系プロセスオイル)
(ヘ)ステアリン酸:日油(株)製のビーズステアリン酸「椿」
(ト)酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
(チ)老化防止剤-1:住友化学(株)製のアンチゲン6C
  (N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
(リ)老化防止剤-2:住友化学(株)製のアンチゲンRD
  (2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物)
(ヌ)ワックス:日本精蝋(株)製のオゾエース0355
(ル)硫黄:鶴見化学工業(株)製の粉末硫黄(5%オイル含有)
(ヲ)加硫促進剤-1:大内新興化学工業(株)製のノクセラーCZ
    (N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS))
(ワ)加硫促進剤-2:住友化学工業(株)製のソクシールD(DPG)
      (N,N’-ジフェニルグアニジン)
(b) Compounding materials other than rubber components (a) Carbon black: Diablack N220 manufactured by Mitsubishi Chemical Corporation
(N 2 SA: 115 m 2 /g)
(b) Silica: Ultrasil VN3 manufactured by Evonik Industries
(N 2 SA: 175 m 2 /g, average primary particle diameter: 17 nm)
(c) Silane coupling agent: Si266 manufactured by Evonik Industries
(Bis(3-triethoxysilylpropyl)disulfide)
(d) Resin: SYLVATRAXX4401 manufactured by Clayton
(α-methylstyrene resin)
(E) Oil: Diana Process NH-70S manufactured by Idemitsu Kosan Co., Ltd.
(Aromatic process oil)
(F) Stearic acid: Beaded stearic acid "Tsubaki" manufactured by NOF Corporation
(h) Zinc oxide: Type 2 zinc oxide manufactured by Mitsui Mining & Mining Co., Ltd. (h) Anti-aging agent-1: Antigen 6C manufactured by Sumitomo Chemical Co., Ltd.
(N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine)
(li) Anti-aging agent-2: Antigen RD manufactured by Sumitomo Chemical Co., Ltd.
(Polymer of 2,2,4-trimethyl-1,2-dihydroquinoline)
(nu) Wax: Ozoace 0355 manufactured by Nippon Seiro Co., Ltd.
(Le) Sulfur: Powdered sulfur manufactured by Tsurumi Chemical Industry Co., Ltd. (contains 5% oil)
(w) Vulcanization accelerator-1: Noxeler CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
(N-cyclohexyl-2-benzothiazylsulfenamide (CBS))
(W) Vulcanization accelerator-2: Soxil D (DPG) manufactured by Sumitomo Chemical Co., Ltd.
(N,N'-diphenylguanidine)
(2)キャップゴム層を形成するゴム組成物
 表2、表3に示す各配合内容に従い、バンバリーミキサーを用いて、硫黄および加硫促進剤以外の材料を150℃の条件下で5分間混練りして、混練物を得る。なお、各配合量は、質量部である。
(2) Rubber composition forming the cap rubber layer According to each formulation shown in Tables 2 and 3, materials other than sulfur and vulcanization accelerator were kneaded for 5 minutes at 150°C using a Banbury mixer. to obtain a kneaded product. Note that each blending amount is in parts by mass.
 次に、当該混練物に、硫黄および加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、キャップゴム層を形成するゴム組成物を得る。 Next, sulfur and a vulcanization accelerator are added to the kneaded product and kneaded for 5 minutes at 80° C. using open rolls to obtain a rubber composition that will form the cap rubber layer.
2.ベースゴム層を形成するゴム組成物
 並行して、ベースゴム層を形成するゴム組成物を表1に示す配合に基づいて、キャップゴム層を形成するゴム組成物の製造と同様にして、ベースゴム層を形成するゴム組成物を得る。
2. Rubber Composition Forming the Base Rubber Layer In parallel, a rubber composition forming the base rubber layer was prepared based on the formulation shown in Table 1 in the same manner as in the production of the rubber composition forming the cap rubber layer. A rubber composition forming a layer is obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.空気入りタイヤの製造
 各ゴム組成物を用いて、(キャップゴム層の厚み/ベースゴム層の厚み)比率が80/20となるように、所定の形状で押出成形して、表2、表3に示す厚みG(mm)のトレッド部を形成する。
3. Manufacture of pneumatic tires Each rubber composition was extruded into a predetermined shape so that the ratio (thickness of cap rubber layer/thickness of base rubber layer) was 80/20. A tread portion having a thickness G (mm) shown in is formed.
 その後、他のタイヤ部材と共に貼り合わせて未加硫タイヤを形成し、170℃の条件下で10分間プレス加硫して、表2および表3に示す実施例1~実施例10および比較例1~比較例11の各空気入りタイヤ(試験用タイヤ)を製造する。 Thereafter, an unvulcanized tire was formed by bonding with other tire members, and press vulcanization was performed for 10 minutes at 170°C. Examples 1 to 10 and Comparative Example 1 shown in Tables 2 and 3 - Each pneumatic tire (test tire) of Comparative Example 11 is manufactured.
4.パラメータの算出
 その後、各試験用タイヤについて、以下のパラメータを求める。
4. Calculation of parameters After that, calculate the following parameters for each test tire.
(1)損失正接(tanδ)
 各試験用タイヤのトレッド部のキャップゴム層から、タイヤ周方向が長辺となるように、長さ20mm×幅4mm×厚さ2mmで切り出して、粘弾性測定用ゴム試験片を作製し、各ゴム試験片について、GABO社製のイプレクサーシリーズを用いて、周波数10Hz、初期歪5%、動歪1%、変形モード:引張の条件下、測定温度:0℃、30℃で、tanδを測定し、それぞれ、0℃tanδ、30℃tanδを求める。なお、ベースゴム層の30℃tanδは0.07とする。
(1) Loss tangent (tanδ)
A rubber test piece for measuring viscoelasticity was prepared by cutting out a piece measuring 20 mm long x 4 mm wide x 2 mm thick from the cap rubber layer of the tread of each test tire, with the long side in the tire circumferential direction. For the rubber test piece, tan δ was measured using the Iplexer series manufactured by GABO under the conditions of a frequency of 10 Hz, initial strain of 5%, dynamic strain of 1%, deformation mode: tensile, and measurement temperature: 0 ° C. and 30 ° C. Then, 0°C tan δ and 30°C tan δ are determined, respectively. Note that the tan δ at 30° C. of the base rubber layer is 0.07.
 そして、キャップゴム層の30℃tanδとトレッド部の厚みG(mm)とに基づいて、(30℃tanδ/G)を算出する。 Then, (30° C. tan δ/G) is calculated based on the 30° C. tan δ of the cap rubber layer and the thickness G (mm) of the tread portion.
(2)Tg
 キャップゴム層から同様に切り出して作製する粘弾性測定用ゴム試験片について、GABO社製「イプレクサー(登録商標)」を用いて、周波数10Hz、初期歪2%、振幅±1%及び昇温速度2℃/minの条件下、-60℃から40℃まで温度を変化させてtanδを測定し、前記の方法によりTgを求める。
(2) Tg
A rubber test piece for measuring viscoelasticity, which was cut out from the cap rubber layer in the same manner and produced, was measured using GABO's "Iplexer (registered trademark)" at a frequency of 10 Hz, an initial strain of 2%, an amplitude of ±1%, and a temperature increase rate of 2. ℃/min, temperature is changed from -60°C to 40°C, tan δ is measured, and Tg is determined by the method described above.
(3)複素弾性率(E
 キャップゴム層から同様に切り出して作製する粘弾性測定用ゴム試験片について、GABO社製のイプレクサーシリーズを用いて、周波数10Hz、初期歪5%、動歪1%、変形モード:引張の条件下、測定温度:0℃、30℃で、E(MPa)を測定し、それぞれ、0℃E、30℃Eを求める。なお、ベースゴム層の30℃Eは、4.0MPaとする。
(3) Complex modulus of elasticity (E * )
A rubber test piece for measuring viscoelasticity, which was similarly cut out from the cap rubber layer, was tested using the Iplexer series manufactured by GABO under the conditions of a frequency of 10 Hz, an initial strain of 5%, a dynamic strain of 1%, and a deformation mode of tensile. , Measurement temperature: E * (MPa) is measured at 0°C and 30°C, and 0°C E * and 30°C E * are determined, respectively. Note that the 30°C E * of the base rubber layer is 4.0 MPa.
 そして、30℃E(MPa)とトレッド部の厚みG(mm)とに基づいて、(30℃E/G)を算出する。 Then, (30°C E * / G) is calculated based on 30°C E* (MPa) and the thickness G (mm) of the tread portion.
(4)キャップゴム層のアセトン抽出分(AE)
 各試験用タイヤのトレッド部のキャップゴム層から切り出した加硫ゴム試験片を用い、JIS K 6229:2015に準拠してAE(質量%)を求める。
(4) Acetone extractables (AE) of cap rubber layer
Using a vulcanized rubber test piece cut from the cap rubber layer of the tread portion of each test tire, AE (mass %) is determined in accordance with JIS K 6229:2015.
(5)(SBR含有量/ランド比)、(シリカ含有量/扁平率)
 併せて、各試験用タイヤの仕様、および、配合内容に基づいて、ゴム成分100質量部中におけるスチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)とトレッド部におけるランド比(%)との比(SBR含有量/ランド比)、ゴム成分100質量部に対するシリカの含有量(質量部)と扁平率(%)との比(シリカ含有量/扁平率)を算出する。
(5) (SBR content/land ratio), (Silica content/oblateness)
In addition, based on the specifications of each test tire and the formulation content, the content (parts by mass) of styrene-butadiene rubber (SBR) with an amount of styrene of 25% by mass or less in 100 parts by mass of the rubber component and the land in the tread part. Calculate the ratio (SBR content/land ratio) to the ratio (%) and the ratio of the silica content (parts by mass) to 100 parts by mass of the rubber component and the flatness (%) (silica content/flatness) .
5.性能評価試験(高速走行時における耐摩耗性能の評価)
 各試験用タイヤを車輌(国産のFF車、排気量2000cc)の全輪に装着させて、内圧が250kPa(乗用車の正規内圧)となるように空気を充填して、テストコース上を100km/hで8000km走行した後、トレッド部の溝深さを測定し、その減少の程度を求めた。そして、溝深さの1mm減少に相当する走行距離を算出する。
5. Performance evaluation test (evaluation of wear resistance performance during high-speed driving)
Each test tire was attached to all wheels of a vehicle (domestic front-wheel drive vehicle, displacement 2000cc), filled with air to an internal pressure of 250kPa (regular internal pressure for passenger cars), and driven at 100km/h on a test course. After driving for 8,000 km, the groove depth of the tread was measured and the degree of decrease was determined. Then, the travel distance corresponding to a 1 mm decrease in groove depth is calculated.
 次いで、比較例8における結果を100として、下式に基づいて指数化し、高速走行時における耐摩耗性能の評価とする。数値が大きいほど、高速走行時における耐摩耗性能が優れていることを示す。
   高速走行時における耐摩耗性能
     =[(試験用タイヤの結果)/(比較例8の結果)]×100
Next, the result in Comparative Example 8 was set as 100, and the result was expressed as an index based on the formula below to evaluate the wear resistance performance during high-speed running. The larger the value, the better the wear resistance performance during high-speed running.
Wear resistance performance during high-speed running = [(results of test tires)/(results of comparative example 8)] x 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above embodiments. Various changes can be made to the above embodiments within the same and equivalent scope as the present invention.
 本発明(1)は、
 トレッド部を備えたタイヤであって、
 前記トレッド部を形成するキャップゴム層が、
 スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
 前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
 温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
 前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤである。
The present invention (1) is
A tire including a tread portion,
The cap rubber layer forming the tread portion is
Containing styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component, 60 parts by mass or more and 80 parts by mass or less,
Containing less than 100 parts by mass of silica with respect to 100 parts by mass of the rubber component,
Formed from a rubber composition whose loss tangent (30°C tan δ) measured in tensile deformation mode is more than 0.25 under the conditions of a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%. and
The tire is characterized in that the thickness of the tread portion is 15 mm or less.
 本発明(2)は、
 前記30℃tanδが、0.30以上であることを特徴とし、本発明(1)に記載のタイヤである。
The present invention (2) is
The tire according to the present invention (1) is characterized in that the 30°C tan δ is 0.30 or more.
 本発明(3)は、
 前記キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(0℃tanδ)が、0.60以上であることを特徴とし、本発明(1)または(2)に記載のタイヤである。
The present invention (3) is
The loss tangent (0°C tan δ) of the rubber composition forming the cap rubber layer measured under the conditions of a temperature of 0°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1% is as follows: The tire according to the present invention (1) or (2) is characterized in that it is 0.60 or more.
 本発明(4)は、
 前記0℃tanδが、0.70以上であることを特徴とし、本発明(3)に記載のタイヤである。
The present invention (4) is
The tire according to the present invention (3) is characterized in that the 0°C tan δ is 0.70 or more.
 本発明(5)は、
 前記キャップゴム層のガラス転移温度(Tg)が、-15℃以下であることを特徴とし、本発明(1)から(4)のいずれかとの任意の組合せのタイヤである。
The present invention (5) is
The tire is characterized in that the cap rubber layer has a glass transition temperature (Tg) of −15° C. or lower, and is any combination of the present invention (1) to (4).
 本発明(6)は、
 前記キャップゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定される複素弾性率(30℃E)が、6.0MPa以下であることを特徴とし、本発明(1)から(5)のいずれかとの任意の組合せのタイヤである。
The present invention (6) is
The temperature of the cap rubber layer is 30°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, and the deformation mode is that the complex modulus of elasticity (30°C E * ) measured in tension is 6.0 MPa or less. The present invention is characterized by a tire in any combination with any one of the present inventions (1) to (5).
 本発明(7)は、
 前記30℃E(MPa)と前記トレッド部の厚み(mm)とが、(30℃E/トレッド部の厚み)≧0.50を満足していることを特徴とし、本発明(1)から(6)のいずれかとの任意の組合せのタイヤである。
The present invention (7) is
The present invention (1) is characterized in that the 30°C E * (MPa) and the thickness (mm) of the tread portion satisfy (30°C E * /thickness of the tread portion)≧0.50. It is a tire of any combination with any one of (6).
 本発明(8)は、
 前記キャップゴム層の温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定される複素弾性率(0℃E)が、25.0MPa以下であることを特徴とし、本発明(1)から(7)のいずれかとの任意の組合せのタイヤである。
The present invention (8) is
The temperature of the cap rubber layer is 0°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, the deformation mode is: the complex modulus of elasticity (0°C E * ) measured in tension is 25.0 MPa or less. The present invention is characterized by a tire in any combination with any one of the present inventions (1) to (7).
 本発明(9)は、
 前記トレッド部の厚みが、4mm以上、11mm以下であることを特徴とし、本発明(1)から(8)のいずれかとの任意の組合せのタイヤである。
The present invention (9) is
The tire is characterized in that the thickness of the tread portion is 4 mm or more and 11 mm or less, and is any combination with any one of the present inventions (1) to (8).
 本発明(10)は、
 前記キャップゴム層の厚みが、前記トレッド部全体の厚みに対して、10%以上、100%未満であることを特徴とし、本発明(1)から(9)のいずれかとの任意の組合せのタイヤである。
The present invention (10) is
A tire according to any combination of the present invention (1) to (9), characterized in that the thickness of the cap rubber layer is 10% or more and less than 100% of the total thickness of the tread portion. It is.
 本発明(11)は、
 前記キャップゴム層に、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂の群から選択される樹脂成分が含有されることを特徴とし、本発明(1)から(10)のいずれかとの任意の組合せのタイヤである。
The present invention (11) is
The cap rubber layer contains a resin component selected from the group of rosin resin, styrene resin, coumaron resin, terpene resin, C5 resin, C9 resin, C5C9 resin, and acrylic resin. , a tire in any combination with any one of the present inventions (1) to (10).
 本発明(12)は、
 前記キャップゴム層の30℃tanδと前記トレッド部の厚み(mm)とが、(30℃tanδ/トレッド部の厚み)>0.03を満足していることを特徴とし、本発明(1)から(11)のいずれかとの任意の組合せのタイヤである。
The present invention (12) is
The present invention (1) is characterized in that the 30°C tan δ of the cap rubber layer and the thickness (mm) of the tread portion satisfy (30°C tan δ/thickness of the tread portion)>0.03. (11) Any combination of tires.
 本発明(13)は、
 前記トレッド部におけるランド比が、40%以上であり、
 ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBRの含有量(質量部)/ランド比(%))が、1.2以下であることを特徴とし、本発明(1)から(12)のいずれかとの任意の組合せのタイヤである。
The present invention (13) is
The land ratio in the tread portion is 40% or more,
The ratio of the content (parts by mass) of styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component to the land ratio (%) in the tread portion (SBR having a styrene content of 25% by mass or less) The tire is characterized in that the content (parts by mass)/land ratio (%) is 1.2 or less, and is any combination of the present invention (1) to (12).
 本発明(14)は、
 扁平率が、80%以下であり、
 ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率(%)との比(シリカの含有量(質量部)/扁平率(%))が、0.6以上であることを特徴とし、本発明(1)から(13)のいずれかとの任意の組合せのタイヤである。
The present invention (14) is
The flattening ratio is 80% or less,
The ratio of the content (parts by mass) of the silica to 100 parts by mass of the rubber component and the oblateness (%) (silica content (parts by mass)/oblateness (%)) is 0.6 or more. It is a tire in any combination with any one of the present inventions (1) to (13).

Claims (14)

  1.  トレッド部を備えたタイヤであって、
     前記トレッド部を形成するキャップゴム層が、
     スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
     前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
     温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
     前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤ。
    A tire including a tread portion,
    The cap rubber layer forming the tread portion is
    Containing styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component, 60 parts by mass or more and 80 parts by mass or less,
    Containing less than 100 parts by mass of silica with respect to 100 parts by mass of the rubber component,
    Formed from a rubber composition whose loss tangent (30°C tan δ) measured in tensile deformation mode is more than 0.25 under the conditions of a temperature of 30°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1%. and
    A tire characterized in that the thickness of the tread portion is 15 mm or less.
  2.  前記30℃tanδが、0.30以上であることを特徴とする請求項1に記載のタイヤ。 The tire according to claim 1, wherein the 30°C tan δ is 0.30 or more.
  3.  前記キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定される損失正接(0℃tanδ)が、0.60以上であることを特徴とする請求項1または請求項2に記載のタイヤ。 The loss tangent (0°C tan δ) of the rubber composition forming the cap rubber layer measured under the conditions of a temperature of 0°C, a frequency of 10Hz, an initial strain of 5%, and a dynamic strain rate of 1% is as follows: The tire according to claim 1 or 2, characterized in that it is 0.60 or more.
  4.  前記0℃tanδが、0.70以上であることを特徴とする請求項3に記載のタイヤ。 The tire according to claim 3, wherein the 0°C tan δ is 0.70 or more.
  5.  前記キャップゴム層のガラス転移温度(Tg)が、-15℃以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のタイヤ。 The tire according to any one of claims 1 to 4, wherein the cap rubber layer has a glass transition temperature (Tg) of -15°C or lower.
  6.  前記キャップゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定される複素弾性率(30℃E)が、6.0MPa以下であることを特徴とする請求項1ないし請求項5のいずれか1項に記載のタイヤ。 The temperature of the cap rubber layer is 30°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, and the deformation mode is that the complex modulus of elasticity (30°C E * ) measured in tension is 6.0 MPa or less. The tire according to any one of claims 1 to 5, characterized in that:
  7.  前記30℃E(MPa)と前記トレッド部の厚み(mm)とが、(30℃E/トレッド部の厚み)≧0.50を満足していることを特徴とする請求項1ないし請求項6のいずれか1項に記載のタイヤ。 The 30°C E * (MPa) and the thickness (mm) of the tread portion satisfy (30°C E * /thickness of the tread portion)≧0.50. The tire according to any one of item 6.
  8.  前記キャップゴム層の温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:引張で測定される複素弾性率(0℃E)が、25.0MPa以下であることを特徴とする請求項1ないし請求項7のいずれか1項に記載のタイヤ。 The temperature of the cap rubber layer is 0°C, the frequency is 10Hz, the initial strain is 5%, the dynamic strain rate is 1%, the deformation mode is: the complex modulus of elasticity (0°C E * ) measured in tension is 25.0 MPa or less. The tire according to any one of claims 1 to 7, characterized in that:
  9.  前記トレッド部の厚みが、4mm以上、11mm以下であることを特徴とする請求項1ないし請求項8のいずれか1項に記載のタイヤ。 The tire according to any one of claims 1 to 8, wherein the tread portion has a thickness of 4 mm or more and 11 mm or less.
  10.  前記キャップゴム層の厚みが、前記トレッド部全体の厚みに対して、10%以上、100%未満であることを特徴とする請求項1ないし請求項9のいずれか1項に記載のタイヤ。 The tire according to any one of claims 1 to 9, wherein the thickness of the cap rubber layer is 10% or more and less than 100% of the thickness of the entire tread portion.
  11.  前記キャップゴム層に、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂の群から選択される樹脂成分が含有されることを特徴とする請求項1ないし請求項10のいずれか1項に記載のタイヤ。 The cap rubber layer contains a resin component selected from the group of rosin resin, styrene resin, coumaron resin, terpene resin, C5 resin, C9 resin, C5C9 resin, and acrylic resin. The tire according to any one of claims 1 to 10.
  12.  前記キャップゴム層の30℃tanδと前記トレッド部の厚み(mm)とが、(30℃tanδ/トレッド部の厚み)>0.03を満足していることを特徴とする請求項1ないし請求項11のいずれか1項に記載のタイヤ。 30° C. tan δ of the cap rubber layer and the thickness (mm) of the tread portion satisfy (30° C. tan δ/thickness of tread portion)>0.03. 11. The tire according to any one of Item 11.
  13.  前記トレッド部におけるランド比が、40%以上であり、
     ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBRの含有量(質量部)/ランド比(%))が、1.2以下であることを特徴とする請求項1ないし請求項12のいずれか1項に記載のタイヤ。
    The land ratio in the tread portion is 40% or more,
    The ratio of the content (parts by mass) of styrene-butadiene rubber (SBR) having a styrene content of 25% by mass or less in 100 parts by mass of the rubber component to the land ratio (%) in the tread portion (SBR having a styrene content of 25% by mass or less) The tire according to any one of claims 1 to 12, wherein the content (parts by mass)/land ratio (%) is 1.2 or less.
  14.  扁平率が、80%以下であり、
     ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率(%)との比(シリカの含有量(質量部)/扁平率(%))が、0.6以上であることを特徴とする請求項1ないし請求項13のいずれか1項に記載のタイヤ。
    The flattening ratio is 80% or less,
    The ratio of the content (parts by mass) of the silica to 100 parts by mass of the rubber component and the oblateness (%) (silica content (parts by mass)/oblateness (%)) is 0.6 or more. The tire according to any one of claims 1 to 13, characterized by:
PCT/JP2023/021485 2022-06-24 2023-06-09 Tire WO2023248828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101538A JP2024002386A (en) 2022-06-24 2022-06-24 tire
JP2022-101538 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248828A1 true WO2023248828A1 (en) 2023-12-28

Family

ID=89379682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021485 WO2023248828A1 (en) 2022-06-24 2023-06-09 Tire

Country Status (2)

Country Link
JP (1) JP2024002386A (en)
WO (1) WO2023248828A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094552A (en) * 2014-11-14 2016-05-26 住友ゴム工業株式会社 Pneumatic tire
JP2017218042A (en) * 2016-06-08 2017-12-14 住友ゴム工業株式会社 Pneumatic tire
JP2020023640A (en) * 2018-08-08 2020-02-13 住友ゴム工業株式会社 Tread rubber composition and pneumatic tire
JP2021001267A (en) * 2019-06-21 2021-01-07 住友ゴム工業株式会社 Rubber composition, tread, tire and manufacturing method
JP2021142862A (en) * 2020-03-11 2021-09-24 株式会社ブリヂストン tire
WO2021215279A1 (en) * 2020-04-24 2021-10-28 住友ゴム工業株式会社 Tire
WO2021256123A1 (en) * 2020-06-15 2021-12-23 住友ゴム工業株式会社 Tire
JP2022086476A (en) * 2020-11-30 2022-06-09 住友ゴム工業株式会社 tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094552A (en) * 2014-11-14 2016-05-26 住友ゴム工業株式会社 Pneumatic tire
JP2017218042A (en) * 2016-06-08 2017-12-14 住友ゴム工業株式会社 Pneumatic tire
JP2020023640A (en) * 2018-08-08 2020-02-13 住友ゴム工業株式会社 Tread rubber composition and pneumatic tire
JP2021001267A (en) * 2019-06-21 2021-01-07 住友ゴム工業株式会社 Rubber composition, tread, tire and manufacturing method
JP2021142862A (en) * 2020-03-11 2021-09-24 株式会社ブリヂストン tire
WO2021215279A1 (en) * 2020-04-24 2021-10-28 住友ゴム工業株式会社 Tire
WO2021256123A1 (en) * 2020-06-15 2021-12-23 住友ゴム工業株式会社 Tire
JP2022086476A (en) * 2020-11-30 2022-06-09 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JP2024002386A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2022025006A1 (en) Pneumatic tire
US20230415516A1 (en) Tire
JP2022024795A (en) Pneumatic tire
JP7321429B1 (en) tire
JP7282319B1 (en) tire
JP7278538B1 (en) tire
JP7337333B1 (en) tire
JP7282320B1 (en) tire
JP7312363B1 (en) tire
WO2023248828A1 (en) Tire
JP7459448B2 (en) Pneumatic tires
WO2023248826A1 (en) Tire
WO2023248655A1 (en) Tire
WO2023248553A1 (en) Tire
JP2024002375A (en) tire
JP2024002911A (en) tire
JP2024002393A (en) tire
JP2024002387A (en) tire
JP2024002394A (en) tire
JP2023078783A (en) pneumatic tire
JP2023078762A (en) pneumatic tire
JP2022105946A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827014

Country of ref document: EP

Kind code of ref document: A1