WO2023248599A1 - Water-softening device - Google Patents

Water-softening device Download PDF

Info

Publication number
WO2023248599A1
WO2023248599A1 PCT/JP2023/015611 JP2023015611W WO2023248599A1 WO 2023248599 A1 WO2023248599 A1 WO 2023248599A1 JP 2023015611 W JP2023015611 W JP 2023015611W WO 2023248599 A1 WO2023248599 A1 WO 2023248599A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow path
tank
regeneration
channel
Prior art date
Application number
PCT/JP2023/015611
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 土田
港 加藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023248599A1 publication Critical patent/WO2023248599A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present disclosure relates to a water softening device.
  • the weakly acidic cation exchange resin has a hydrogen ion at the end of its functional group, and softens the raw water by exchanging hard components (for example, calcium ions and magnesium ions) in the raw water with hydrogen ions.
  • a method for regenerating a cation exchange resin without using salt a method is known in which the cation exchange resin is regenerated using acidic electrolyzed water produced by electrolysis (for example, see Patent Document 1).
  • a weakly acidic cation exchange resin becomes acidic because hydrogen ions are released instead of hardening components.
  • a combination of a weakly acidic cation exchange resin and a weakly basic anion exchange resin may be used.
  • a method for regenerating weakly basic anion exchange resins a method using alkaline electrolyzed water produced by electrolysis is known (for example, see Patent Document 2).
  • the present disclosure solves the above-mentioned conventional problems, and provides a water softening device that can equalize the time each electrode of an electrolytic cell is used as an anode and extend the life of the electrodes.
  • the water softening device includes a water softening tank that generates acidic soft water by softening raw water containing hardness components using a weakly acidic cation exchange resin, and a weakly basic anion exchanger that changes the pH of the acidic soft water that has passed through the water softening tank.
  • a neutralization tank that generates neutralized soft water by neutralization with a resin
  • an electrolysis tank that generates acidic electrolyzed water and alkaline electrolyzed water, and at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin.
  • a control unit that controls a regeneration process, which is a process of regenerating.
  • the electrolytic cell includes a first chamber in which acidic electrolyzed water is generated during positive electrolysis and a first chamber electrode is provided, and a second chamber in which alkaline electrolyzed water is generated during positive operation and a second chamber electrode is provided. and has at least two types of operating states during the regeneration process: normal operation and reverse operation in which the normal operation is operated with the polarity of the first chamber electrode and the second chamber electrode reversed. .
  • the control unit determines the destination of the electrolyzed water sent from the first chamber and the electrolyzed water sent from the second chamber based on the operating state of the electrolytic cell during the regeneration process.
  • a water softening device that can equalize the time that each electrode of an electrolytic cell is used as an anode and extend the life of the electrode.
  • FIG. 1 is a conceptual diagram showing the configuration of a water softening device according to a first embodiment.
  • FIG. 2 is a diagram showing the configuration of the water softening channel of the water softening device according to the first embodiment.
  • FIG. 3 is a diagram showing the configuration of the water softening tank regeneration circulation flow path and the neutralization tank regeneration circulation flow path of the water softening device according to the first embodiment.
  • FIG. 4 is a diagram showing the configuration of the water softening tank regeneration circulation flow path and the neutralization tank regeneration circulation flow path of the water softening device according to the first embodiment.
  • FIG. 5 is a diagram showing the configuration of a water storage channel of the water softening device according to the first embodiment.
  • FIG. 12 is a diagram showing the configuration of the raw water introduction channel and the supply channel of the water softening device according to the first embodiment.
  • FIG. 13 is a diagram showing the configuration of the raw water introduction channel and the supply channel of the water softening device according to the first embodiment.
  • FIG. 14 is a diagram for explaining a method of controlling the water softening device according to the first embodiment.
  • FIG. 15 is a diagram for explaining a method of controlling the water softening device according to the first embodiment.
  • FIG. 16 is a functional block diagram of the water softening device according to the first embodiment.
  • FIG. 17 is a conceptual diagram showing the configuration of a water softening device according to the second embodiment.
  • FIG. 1 is a conceptual diagram showing the configuration of a water softening device 1 according to a first embodiment of the present disclosure.
  • each element of the water softening device 1 is conceptually shown.
  • the water softening device 1 is a device that generates neutral soft water from raw water containing hardness components supplied from the outside.
  • the raw water is water introduced into the apparatus from the inlet 2 (water to be treated), and is, for example, city water or well water.
  • Raw water contains hardness components (eg, calcium or magnesium ions).
  • FIG. It includes a tank 4a and a second neutralization tank 4b), a water intake 7, a regenerating device 8, a control section 15, and a mixing section 60.
  • the water softening device 1 also includes a drain port 13, a plurality of on-off valves (on-off valves 18 to 23, and an on-off valve 63), a plurality of flow path switching valves (flow path switching valves 24 to 27), and a plurality of switching valves (first discharge switching valve 91, second discharge switching valve 92, second inflow switching valve 94, and first inflow switching valve 93) and a plurality of channels (channels 28 to 32, channel 53). , the first supply channel 35, the second supply channel 36, the first recovery channel 37, the second recovery channel 38, the neutralization tank bypass channel 42, the water softener bypass channel 44, the drainage channel 54, and Flow paths 101 to 108), the details of which will be described later.
  • a plurality of channels channels 28 to 32, channel 53, first supply channel 35, second supply channel 36, first recovery channel 37, second recovery channel 38, neutralization tank bypass flow
  • pipes such as pipes are used as the passage 42, the water softener bypass passage 44, the drainage passage 54, and the passages 101 to 108).
  • raw water supplied from the outside is passed through the inlet 2, the flow path 28, the first water softening tank 3a, the flow path 29, the first neutralization tank 4a, the flow The water flows through the channel 30, the second soft water tank 3b, the channel 31, the second neutralization tank 4b, the channel 32, and the water intake port 7 in this order, and is discharged as neutral soft water.
  • the first weakly acidic cation exchange resin 33a and the second weakly acidic cation exchange resin 33b will be described as the weakly acidic cation exchange resin 33 unless it is particularly necessary to distinguish between the two.
  • the weakly acidic cation exchange resin 33 Since the terminal of the functional group of the weakly acidic cation exchange resin 33 is a hydrogen ion, the weakly acidic cation exchange resin 33 can be regenerated using acidic electrolyzed water in the regeneration process described below. At this time, the weakly acidic cation exchange resin 33 releases cations, which are hardness components taken in during the water softening treatment.
  • the neutralization tank 4 is equipped with a weakly basic anion exchange resin 34.
  • the neutralization tank 4 is configured, for example, by filling a cylindrical container with a weakly basic anion exchange resin 34. Further, the neutralization tank 4 includes a first neutralization tank 4a and a second neutralization tank 4b.
  • the weakly basic anion exchange resin 34 neutralizes hydrogen ions contained in the water that is passed through it, producing neutral water.
  • the weakly basic anion exchange resin 34 is regenerated using alkaline electrolyzed water in a regeneration process described below.
  • the regenerator 8 is a device that regenerates the weakly acidic cation exchange resin 33 in the soft water tank 3 and also regenerates the weakly basic anion exchange resin 34 in the neutralization tank 4.
  • the regeneration device 8 includes an electrolytic cell 9, a capturing section 10, a first water pump 11, a second water pump 12, a mixing section 60, and a post-regeneration water storage tank 64. be done.
  • the second water softening tank 3b, the second neutralization tank 4b, the flow path 28, and the flow path 29 are supplied with water through the first supply flow path 35 and the capture portion 10 via the mixing unit 60, respectively.
  • a second supply channel 36, a first recovery channel 37, and a second recovery channel 38 are connected to each other. Details of each flow path will be described later.
  • first supply flow path 35, the second supply flow path 36, the first recovery flow path 37, the second recovery flow path 38, the neutralization tank bypass flow path 42, and the soft water tank bypass flow path 44 provide soft water, which will be described later.
  • a water tank regeneration circulation flow path 39 and a neutralization tank regeneration circulation flow path 40 are formed.
  • the first chamber 81 includes a first chamber electrode 84, a first inlet 86, and a first outlet 87.
  • the second chamber 82 includes a second chamber electrode 85, a second inlet 88, and a second outlet 89.
  • the first inlet 86 is connected to the flow path 101 and the flow path 103.
  • the first discharge port 87 is connected to the flow path 105 and the flow path 107.
  • the second inlet 88 is connected to the flow path 102 and the flow path 104.
  • the second discharge port 89 is connected to the flow path 106 and the flow path 108.
  • the electrolytic cell 9 electrolyzes the inflowing water using the first chamber electrode 84 and the second chamber electrode 85 to generate acidic electrolyzed water and alkaline electrolyzed water and discharge them. More specifically, during electrolysis in the regeneration step, either the first chamber electrode 84 or the second chamber electrode 85 serves as an anode. Hydrogen ions are generated by electrolysis near the electrode, which serves as an anode, and acidic electrolyzed water is generated. Furthermore, the other electrode of the first chamber electrode 84 and the second chamber electrode 85 that is not used as an anode serves as a cathode. Hydroxide ions are generated by electrolysis near the electrode, which has become a cathode, and alkaline electrolyzed water is generated.
  • the electrolytic cell 9 is configured such that the state of energization of the first chamber electrode 84 and the second chamber electrode 85 is controlled by a control unit 15, which will be described later.
  • platinum electrodes can be used, for example.
  • the diaphragm 83 is a porous membrane that separates the liquid in the first chamber 81 and the liquid in the second chamber 82, and suppresses the mixing of liquid between the chambers by convection, while preventing the liquid from flowing between the chambers by electrophoresis. ion movement is possible.
  • the diaphragm 83 is a membrane provided in the electrolytic cell 9, and suppresses mixing of the acidic electrolyzed water generated near the first chamber electrode 84 and the alkaline electrolyzed water generated near the second chamber electrode 85, for example. Thereby, hydrogen ions in the acidic electrolyzed water and hydroxide ions in the alkaline electrolyzed water can be suppressed from being consumed by the neutralization reaction. Therefore, a decrease in the regeneration efficiency of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 can be suppressed.
  • the diaphragm 83 suppresses a decrease in the regeneration efficiency of the other ion exchange resin when the regeneration of one of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 is completed first. You can also. Specifically, when there is no diaphragm 83, the environment becomes such that acidic electrolyzed water and alkaline electrolyzed water are likely to mix.
  • the diaphragm 83 in the case where the diaphragm 83 is not provided, if the regeneration of one ion exchange resin is completed first, the regeneration efficiency of the other ion exchange resin tends to decrease.
  • the diaphragm 83 can also suppress a decrease in the regeneration efficiency of the other ion exchange resin when the regeneration of one ion exchange resin is completed first.
  • a fluorine-based porous membrane can be used as the diaphragm 83.
  • the porous membrane used for the diaphragm 83 other than fluorine-based porous membranes, commonly used porous membranes such as hydrocarbon-based porous membranes may be used; however, fluorine-based porous membranes have poor durability. For this reason, the water softening device 1 of this embodiment uses a fluorine-based porous membrane.
  • the first water pump 11 is a device that distributes acidic electrolyzed water to the soft water tank regeneration circulation channel 39 (see FIGS. 3 and 4) during regeneration processing by the regeneration device 8.
  • the first water pump 11 is provided in a first recovery channel 37 that communicates and connects the first soft water tank 3a and the electrolytic tank 9. The reason for this arrangement is to make it easier to circulate the acidic electrolyzed water in the soft water tank regeneration circulation channel 39 using only the first water pump 11.
  • the second water pump 12 is a device that allows alkaline electrolyzed water to flow through the neutralization tank regeneration circulation channel 40 (see FIGS. 3 and 4).
  • the second water pump 12 is provided in a second recovery channel 38 that communicates and connects the first neutralization tank 4a and the electrolytic tank 9. The reason for this arrangement is to facilitate the circulation of alkaline electrolyzed water in the neutralization tank regeneration circulation channel 40 using only the second water pump 12.
  • first water pump 11 and the second water pump 12 are communicably connected to a control unit 15, which will be described later, by wireless or wire.
  • the capture unit 10 is provided in the second supply channel 36 that communicates and connects the electrolytic cell 9 and the second neutralization tank 4b.
  • the capturing unit 10 captures precipitates contained in the alkaline electrolyzed water sent out from the electrolytic cell 9. Precipitates are reaction products produced when hardness components, which are cations released from the first water softening tank 3a and the second water softening tank 3b during regeneration treatment, react with alkaline electrolyzed water in the electrolytic cell 9. It is.
  • Precipitates derived from such hardness components are captured as precipitates in the capture section 10 provided in the second supply channel 36.
  • the precipitates accumulated in the second neutralization tank 4b react with the hydrogen ions released from the first water softening tank 3a and the second water softening tank 3b, and are ionized. It is possible to suppress an increase in the hardness of the soft water sent out from the second neutralization tank 4b due to this.
  • the alkaline electrolyzed water in which precipitates derived from hardness components have passed through the trapping section 10 flows through the second neutralization tank 4b and the first neutralization tank 4a, and then flows into the electrolytic tank 9. It is electrolyzed again and used again as alkaline electrolyzed water to regenerate the weakly basic anion exchange resin 34. At this time, the hardness component contained in the acidic electrolyzed water is reduced compared to the case where the capturing section 10 is not provided.
  • the trapping section 10 may have any form as long as it can separate the precipitate generated by the reaction between the hardness component and the alkaline electrolyzed water. Examples include configurations using cartridge type filters, filtration layers using granular filter media, cyclone type solid-liquid separators, and hollow fiber membranes.
  • a cartridge-type filter is a commonly used means for the capture unit 10.
  • a deep filtration type such as a thread-wound filter, a surface filtration type such as a pleated filter and a membrane filter, or a combination thereof can be used.
  • the trap 10 includes an on-off valve 22 and a trap drain port 14.
  • the on-off valve 22 is a valve provided at the bottom of the trap 10 and is a valve that controls drainage from the trap 10. By opening the on-off valve 22, the water in the trap 10 can be discharged from the trap drain 14 to the outside of the apparatus.
  • the trapping section drain port 14 is an opening that drains the water inside the trapping section 10 to the outside of the device. By opening the on-off valve 22 provided upstream of the trapping portion drain port 14, the water in the trapping portion 10 can be discharged from the trapping portion drain port 14 to the outside of the apparatus.
  • the post-regeneration water storage tank 64 is a tank that stores high hardness water (post-regeneration water) remaining in the soft water tank regeneration circulation flow path 39 after the regeneration process.
  • the regenerated water which is water containing a large amount of hardness components, is present in the soft water tank regeneration circulation flow path 39 after the regeneration process.
  • the mixing unit 60 mixes raw water and recycled water generated during a regeneration process to be described later, to obtain mixed water.
  • the mixing unit 60 can obtain mixed water having higher electrical conductivity than raw water.
  • the resulting mixed water is supplied to the electrolytic cell 9 through the supply channel 72 (see FIGS. 12 and 13).
  • the mixing section 60 is connected to a post-regeneration water storage tank 64 through a post-regeneration water introduction channel 62 .
  • the on-off valve 20 and the on-off valve 22 are in an open state during a regeneration channel cleaning process, an electrolytic cell cleaning process, a capturing part cleaning process, etc., which will be described later, and discharge the regenerated circulating water to the outside of the apparatus. Details will be described later.
  • the inflow and outflow ports are always “open”, and depending on the water flow direction, when either the inflow port or the outflow port is “open”, the other is “closed”. “are doing.
  • the flow path switching valves 24 to 27 the number of on-off valves required for each flow path in the water softening device 1 can be reduced, and the cost of the water softening device 1 can be reduced.
  • a plurality of switching valves (a first discharge switching valve 91, a second discharge switching valve 92, a first inflow switching valve 93, and a second inflow switching valve 94) are provided in each flow path, and have three openings. We are prepared. Among the three openings, one opening is always in an “open” state, and when one of the remaining two openings is “open", the other opening is "closed”.
  • One opening of the first discharge switching valve 91 that is always in the "open" state is connected to the first discharge port 87, into which water discharged from the first chamber 81 of the electrolytic cell 9 flows. Furthermore, one of the remaining two openings is connected to the flow path 105 and the other opening is connected to the flow path 107.
  • One opening of the first inflow switching valve 93 that is always in the "open” state is connected to the first water pump 11, and water discharged from the first water pump 11 flows therein. Furthermore, one of the remaining two openings is connected to the flow path 101 and the other opening is connected to the flow path 102.
  • One opening of the second inflow switching valve 94 that is always in the "open” state is connected to the second water pump 12, and water discharged from the second water pump 12 flows therein. Furthermore, one of the remaining two openings is connected to the flow path 103 and the other opening is connected to the flow path 104.
  • the drain port 13 is an opening provided at the end of the drain channel 54, and is an opening for draining water inside the device to the outside of the device in the regeneration path cleaning step and the electrolytic tank cleaning step.
  • An on-off valve 20 is provided upstream of the drain port 13, and by opening the on-off valve 20, water can be drained from the drain port 13.
  • FIG. 16 is a functional block diagram of the water softening device 1 according to the first embodiment.
  • control unit 15 switches from the water softening process to the mixing process, from the mixing process to the regeneration process, from the regeneration process to the water storage process, from the water storage process to the regeneration channel cleaning process, Controls switching from the regeneration channel cleaning process to the electrolytic tank cleaning process, switching from the electrolytic tank cleaning process to the trap cleaning process, and switching from the trap cleaning process to the water softening process.
  • the switching unit 111 switches the operating state of the electrolytic cell 9 during the regeneration process. Specifically, the switching unit 111 switches the operating state of the electrolytic cell 9 from normal operation to reverse operation, and from reverse operation to normal operation. That is, the switching unit 111 alternately switches the first chamber electrode 84 and the second chamber electrode 85 to a combination of an anode and a cathode or a combination of a cathode and an anode.
  • the elapsed time comparison unit 113 compares the elapsed time stored in the elapsed time storage unit 112 and a predetermined reference time.
  • the reversing operation time storage unit 115 stores the reversing operation time which is the execution time of the reversing operation. Note that the reversal operation time is the time during which the first chamber electrode 84 is used as a cathode and the second chamber electrode 85 is used as an anode.
  • control unit 15 has a computer system including a processor and a memory.
  • the computer system functions as a control unit by the processor executing the program stored in the memory.
  • the program executed by the processor is pre-recorded in the memory of the computer system here, it may also be recorded and provided on a non-temporary recording medium such as a memory card, or it may be provided via an electric network such as the Internet. It may also be provided through a communication line.
  • the recycled water introduction channel 62 is a channel that communicates and connects the mixing section 60 connected to the first supply channel 35 and the recycled water storage tank 64.
  • An on-off valve 63 is provided on the post-regeneration water introduction channel 62 .
  • the regeneration water introduction flow path 62 transfers the regeneration water remaining in the soft water tank regeneration circulation flow path 39, particularly the first supply flow path 35, to the regeneration water storage tank 64 when the on-off valve 63 is opened. to be introduced.
  • the regenerated water introduction channel 62 introduces the regenerated water stored in the regenerated water storage tank 64 into the mixing section 60 when the on-off valve 63 is opened during the mixing process.
  • FIG. 2 is a diagram showing the configuration of the water softening channel 43 of the water softening device 1.
  • the water softening channel 43 includes an inlet 2, a channel 28, a first water softening tank 3a, a channel 29, a first neutralizing tank 4a, a channel 30, a second water softening tank 3b, a channel 31, and a second neutralizing tank. It is formed by the tank 4b, the flow path 32, and the water intake port 7.
  • the flow path 31 is a flow path that connects the second water softening tank 3b to the second neutralization tank 4b. That is, the flow path 31 is a flow path that guides the water softened in the second water softening tank 3b to the second neutralization tank 4b.
  • FIG. 3 is a diagram showing the configuration of the water softening tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a of the water softening device 1.
  • FIG. 4 is a diagram showing the configuration of the water softening tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b of the water softening device 1.
  • the first inflow switching valve 93 allows water to flow from the first water pump 11 to the flow path 102
  • the second inflow switching valve 94 allows water to flow from the second water pump 12 to the flow path 103. is connected to. Note that in this state, the first chamber electrode 84 and the second chamber electrode 85 are not energized.
  • the water softener regeneration circulation flow path 39 (which may be described in this manner when the water softener regeneration circulation flow path 39a and the water softener regeneration circulation flow path 39b are described together) will be described.
  • the soft water tank regeneration circulation flow path 39 is a flow path that regenerates the first soft water tank 3a and the second soft water tank 3b by flowing acidic electrolyzed water during the regeneration process.
  • the water softening tank regeneration circulation channel 39a distributes the acidic electrolyzed water generated in the first chamber 81 of the electrolytic cell 9 to the first water softening tank 3a and the second water softening tank 3b. This is a flow path that performs regeneration.
  • the water softening tank regeneration circulation channel 39a includes the first water pump 11, the channel 101, the first inlet 86, the first chamber 81, the first outlet 87, the channel 105, the mixing section 60, the first 1 supply flow path 35, second soft water tank 3b, neutralization tank bypass flow path 42, first soft water tank 3a, and first recovery flow path 37.
  • the first supply flow path 35 is a flow path that communicates and connects from the end of the flow path 105 and the flow path 106 to the downstream side starting from the inlet 2 during water softening treatment of the second water softening tank 3b, This is a flow path that supplies acidic electrolyzed water generated in the electrolytic tank 9 to the second soft water tank 3b.
  • the first recovery channel 37 is a channel that communicates and connects the upstream side of the first soft water tank 3a to the first water pump 11.
  • the water softening tank regeneration circulation flow path 39b distributes the acidic electrolyzed water generated in the second chamber 82 of the electrolytic cell 9 to the first water softening tank 3a and the second water softening tank 3b. This is a flow path that performs regeneration by
  • the water softening tank regeneration circulation channel 39b includes the first water pump 11, the channel 102, the second inlet 88, the second chamber 82, the second outlet 89, the channel 106, the mixing section 60, and the second inlet 88. 1 supply flow path 35, second soft water tank 3b, neutralization tank bypass flow path 42, first soft water tank 3a, and first recovery flow path 37.
  • the water softening tank regeneration circulation flow path 39 introduces the acidic electrolyzed water sent out from the electrolytic tank 9 into the first water softening tank 3a and the second water softening tank 3b from the downstream sides of the first water softening tank 3a and the second water softening tank 3b, respectively.
  • the water flows out from the upstream side where a larger amount of hardness components is adsorbed than the downstream side.
  • the downstream side in each water softening tank refers to the downstream side from the inlet 2 at the time of water softening treatment.
  • the neutralization tank regeneration circulation flow path 40 is a flow path that regenerates the first neutralization tank 4a and the second neutralization tank 4b by flowing alkaline electrolyzed water during the regeneration process.
  • the neutralization tank regeneration circulation channel 40a (see the black arrow in FIG. 3) allows the alkaline electrolyzed water generated in the second chamber 82 to flow to the first neutralization tank 4a and the second neutralization tank 4b. This is a flow path that performs regeneration.
  • the neutralization tank regeneration circulation flow path 40a includes the second water pump 12, the flow path 104, the second inlet 88, the second chamber 82, the second discharge port 89, the flow path 108, the capture section 10, It is constituted by the second supply channel 36, the second neutralization tank 4b, the soft water tank bypass channel 44, the first neutralization tank 4a, and the second recovery channel 38.
  • the second supply flow path 36 is a flow path that communicates and connects the capture unit 10 to the downstream side of the second neutralization tank 4b, and is a flow path that supplies alkaline electrolyzed water to the second neutralization tank 4b.
  • the soft water tank bypass flow path 44 is a flow path that bypasses the second soft water tank 3b and communicates and connects the upstream side of the second neutralization tank 4b to the downstream side of the first neutralization tank 4a. This is a flow path that supplies alkaline electrolyzed water from the tank 4b to the first neutralization tank 4a.
  • the second recovery channel 38 is a channel that communicates and connects the upstream side of the first neutralization tank 4a to the second water pump 12.
  • the neutralization tank regeneration circulation channel 40b distributes the alkaline electrolyzed water generated in the first chamber 81 to the first neutralization tank 4a and the second neutralization tank 4b. This is a channel that performs regeneration.
  • the neutralization tank regeneration circulation flow path 40b includes the second water pump 12, the flow path 103, the first inlet 86, the first chamber 81, the first discharge port 87, the flow path 107, the capture section 10, It is constituted by the second supply channel 36, the second neutralization tank 4b, the soft water tank bypass channel 44, the first neutralization tank 4a, and the second recovery channel 38.
  • FIG. 5 is a diagram showing the configuration of the water storage channel 66a of the water softening device 1.
  • FIG. 6 is a diagram showing the configuration of the water storage channel 66b of the water softening device 1.
  • the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as described above. This is a flow path configured in the case of "regeneration end time a" shown in FIG. 15.
  • the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration are as follows. This is the flow path that is configured in the case of "regeneration end time b" shown in FIG. 15 described above.
  • the water storage flow path 66 is a flow path that sends recycled water, which is high hardness water remaining in the flow path, to the recycled water storage tank 64 during a water storage process to be described later.
  • the water storage flow path 66b includes the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, the first soft water tank 3a, the first recovery flow path 37, A flow for sending the regenerated water in the first water pump 11 , flow path 102 , second chamber 82 , flow path 106 , and mixing section 60 to the regenerated water storage tank 64 via the regenerated water introduction flow path 62 . It is a road.
  • FIG. 7 is a diagram showing the configuration of the regeneration channel cleaning channel 45a of the water softening device 1.
  • FIG. 8 is a diagram showing the configuration of the regeneration channel cleaning channel 45b of the water softening device 1.
  • regeneration flow path cleaning flow path 45b shown in FIG. This flow path is configured when the state is "regeneration end time b" shown in FIG. 15 described above.
  • the regeneration flow path cleaning flow path 45 allows the high hardness water remaining in the flow path to bypass the first neutralization tank 4a and the second neutralization tank 4b and drain it out of the apparatus during a regeneration flow path cleaning step to be described later. This is a channel for discharging water.
  • the regeneration channel cleaning channel 45a (see FIG. 7) is configured to include a first drainage channel 46a and a second drainage channel 47.
  • the drainage channel 54 is a channel that connects to the first supply channel 35 at one end, and connects to the drain port 13 at the other end.
  • the drainage flow path 54 is provided with an on-off valve 20. By opening the on-off valve 20, water in the flow path is drained out of the device, and by closing the on-off valve 20, water is drained from the drain port 13. It is possible to stop.
  • the regeneration channel cleaning channel 45b (see FIG. 8) is configured to include a first drainage channel 46b and a second drainage channel 47.
  • the first drainage channel 46b includes, from the inlet 2, the first water pump 11, the channel 102, the second inlet 88, the second chamber 82, the second discharge port 89, It is composed of a flow path 106, an on-off valve 20, and a flow path connecting the drain port 13.
  • the first drainage channel 46b drains the raw water flowing in from the inlet 2 through the channel 28, the first recovery channel 37, the first water pump 11, the channel 102, the second inlet 88, and the second inlet 88.
  • the second chamber 82 , the second discharge port 89 , the flow path 106 , the drainage flow path 54 , the on-off valve 20 , and the drain port 13 are flowed in this order.
  • the flow rate of water flowing through the second drainage flow path 47 is preferably controlled to be greater than the flow rate of water flowing through the first drainage flow path 46b.
  • the highly hard water in the second drainage flow path 47 which is a flow path including a water softening tank used during the water softening process, can be preferentially replaced with raw water. Therefore, the influence of highly hard water when starting the water softening process can be suppressed.
  • FIG. 9 is a diagram showing the configuration of the electrolytic cell cleaning channel 49a of the water softening device 1.
  • FIG. 10 is a diagram showing the configuration of the electrolytic cell cleaning channel 49b of the water softening device 1.
  • the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as follows at the end of the previous regeneration. This is a flow path that is configured in the case of "regeneration end time a" shown in FIG. 15 described above.
  • the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration are is the flow path configured when it is "regeneration end time b" shown in FIG. 15 described above.
  • the electrolytic cell cleaning channel 49 is a channel for removing precipitates caused by hardness components in the electrolytic cell 9 and in the neutralization tank regeneration circulation channel 40 during an electrolytic cell cleaning process described later.
  • the electrolytic cell cleaning channel 49a (see FIG. 9) is configured to include the aforementioned first drainage channel 46a (see white arrow) and third drainage channel 50a (see black arrow).
  • the third drainage channel 50a as shown by the black arrow in FIG.
  • the second discharge port 89, the flow path 108, the on-off valve 21, the capture section 10, the on-off valve 22, and the capture section drain port 14 are configured by channels that communicate with each other.
  • the third drainage flow path 50a transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3a, the flow path 29, the second recovery flow path 38, the second water pump 12, and the Flow through the channel 104, the second inlet 88, the second chamber 82, the second outlet 89, the flow channel 108, the on-off valve 21, the capture section 10, the on-off valve 22 in this order, and discharge to the outside of the device from the capture section drain port 14. It is a flow path where
  • the raw water that has flowed in from the inlet 2 flows into the first soft water tank 3a via the flow path 28, and becomes acidic soft water.
  • the generated acidic soft water flows into the second chamber 82 through the second recovery channel 38 and the second water pump 12 .
  • the acidic soft water flows through the flow path 108 in the order of the on-off valve 21, the capture section 10, and the on-off valve 22, dissolves the precipitate in the capture section 10, and discharges the precipitate from the capture section drain port 14 to the outside of the apparatus. .
  • the third drainage channel 50b includes, from the inlet 2, the first soft water tank 3a, the second water pump 12, the channel 103, the first inlet 86, the first chamber 81, The first discharge port 87, the flow path 107, the on-off valve 21, the capture section 10, the on-off valve 22, and the capture section drain port 14 are configured by channels that communicate with each other.
  • the raw water that has flowed in from the inlet 2 flows into the first soft water tank 3a via the flow path 28, and becomes acidic soft water.
  • the generated acidic soft water flows into the first chamber 81 through the second recovery channel 38 and the second water pump 12 .
  • the acidic soft water flows through the flow path 107 in the order of the on-off valve 21, the capture section 10, and the on-off valve 22, dissolves the precipitate in the capture section 10, and discharges the precipitate from the capture section drain port 14 to the outside of the apparatus. .
  • FIG. 11 is a diagram showing the configuration of the trap cleaning channel 51 of the water softening device 1. As shown in FIG. 11
  • the trapping portion cleaning flow path 51 is a flow path for removing precipitates derived from hardness components deposited in the trapping portion 10 during a trapping portion cleaning step to be described later.
  • the trap cleaning channel 51 is configured to include a fourth drainage channel 52.
  • the trap cleaning channel 51 transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first soft water tank 3a, the channel 29, the first neutralization tank 4a, the channel 30, and the second soft water tank.
  • the raw water introduction flow path 70a and the supply flow path 72a shown in FIG. This is the flow path configured when the state is “regeneration end time a” shown in FIG. 15.
  • raw water introduction flow path 70b and the supply flow path 72b shown in FIG. This flow path is configured when the state of the valve 94 is "regeneration end time b" shown in FIG.
  • the raw water introduction flow path 70a is a flow path that supplies raw water to the mixing section 60 during the mixing process described later.
  • the raw water introduction channel 70a is a channel that communicates and connects the inlet 2 to the mixing section 60.
  • the raw water introduction channel 70a transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first recovery channel 37, the first water pump 11, the channel 101, and the first inlet 86. , the first chamber 81 , the first discharge port 87 , the flow path 105 , and the first supply flow path 35 in this order, and flow into the mixing section 60 .
  • the supply flow path 72a is a flow path that supplies mixed water generated by the mixing unit 60 to the electrolytic cell 9 during the mixing process described later.
  • the supply channel 72a is a channel that communicates and connects the mixing section 60 and the electrolytic cell 9.
  • the supply flow path 72a transfers the mixed water generated in the mixing unit 60 to the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, and the first soft water tank 3a.
  • the first recovery channel 37 the first water pump 11 , the channel 101 , and the first inlet 86 in this order, and flow into the electrolytic cell 9 .
  • the raw water introduction flow path 70b is a flow path that supplies raw water to the mixing section 60 during the mixing process described later.
  • the raw water introduction channel 70b is a channel that communicates and connects the inlet 2 to the mixing section 60.
  • the raw water introduction channel 70b transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first recovery channel 37, the first water pump 11, the channel 102, and the second inlet 88. , the second chamber 82 , the second discharge port 89 , the flow path 106 , and the first supply flow path 35 in this order, and flow into the mixing section 60 .
  • the supply flow path 72b is a flow path that supplies mixed water generated by the mixing unit 60 to the electrolytic cell 9 during the mixing process described later.
  • the supply channel 72b is a channel that communicates and connects the mixing section 60 and the electrolytic cell 9.
  • the supply flow path 72b transfers the mixed water generated in the mixing unit 60 to the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, and the first soft water tank 3a.
  • the first recovery channel 37 the first water pump 11 , the channel 102 , and the second inlet 88 in this order, and flow into the electrolytic cell 9 .
  • FIG. 14 is a diagram showing the operating state of the water softening device 1, and is a diagram for explaining the control method.
  • a series of flows of a water softening process, a mixing process, a regeneration process, a water storage process, a regeneration channel cleaning process, an electrolytic tank cleaning process, and a capture part cleaning process may be called water softening regeneration process.
  • ON in FIG. 14 indicates a state in which the corresponding on-off valve is "open” and a state in which the corresponding water pump is operating.
  • a blank column indicates a state in which the corresponding on-off valve is "closed” and a state in which the corresponding water pump is stopped.
  • FIG. 14 indicates the direction in which the corresponding flow path switching valve sends water from the corresponding component A to the corresponding component B. This shows the state where the flow path is connected to.
  • the flow path switching valve 24 for the water softening process connects each flow path so that water can be sent from the flow path 28 to the flow path 29.
  • FIG. 14 indicates a state in which the corresponding flow path switching valve connects the flow path in a direction in which water may be sent to the corresponding component. show.
  • the environment is such that it is difficult for water to flow into or out of the softening water tank or neutralization tank where the relevant flow path switching valve is installed, so the flow path is connected. It is extremely difficult for water to flow from the switching valve.
  • first chamber electrode 84, second chamber electrode 85, first water pump 11, and second water pump 12 of the electrolytic cell 9 are also stopped. Further, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are the same as at the end of the previous regeneration process. That is, as shown in FIG. 15, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration process are as described above.
  • raw water is supplied from the inlet 2 through the channel 28 to the first water softening tank 3a by the pressure of the raw water flowing in from the outside.
  • the raw water supplied to the first soft water tank 3a flows through a weakly acidic cation exchange resin 33 provided in the first soft water tank 3a.
  • cations that are hardness components in the raw water are adsorbed by the action of the weakly acidic cation exchange resin 33, and hydrogen ions are released (ion exchange is performed).
  • the raw water is softened by removing cations from the raw water.
  • the water neutralized by the first neutralization tank 4a flows through the flow path 30 via the flow path switching valve 25 provided in the first neutralization tank 4a, and flows into the second soft water tank. 3b.
  • the second soft water tank 3b due to the action of the weakly acidic cation exchange resin 33, cations that are hardness components are adsorbed and hydrogen ions are released.
  • the second soft water tank 3b exchanges the hardness components that could not be removed in the first soft water tank 3a with hydrogen ions contained in the weakly acidic cation exchange resin 33. That is, the water flowing into the second soft water tank 3b is further softened and becomes soft water (second soft water).
  • the second soft water flows through the flow path 31 via the flow path switching valve 26 provided in the second soft water tank 3b, and flows into the second neutralization tank 4b.
  • hydrogen ions contained in the second soft water that has flowed in are adsorbed by the action of the weakly basic anion exchange resin 34. That is, since hydrogen ions are removed from the second soft water, the lowered pH increases, and the water becomes neutral soft water (neutralized second soft water) that can be used as domestic water.
  • the neutralized second soft water flows through the flow path 32 via the flow path switching valve 27 provided in the second neutralization tank 4b, and is taken out from the water intake port 7.
  • raw water flows through the first water softening tank 3a, the first neutralization tank 4a, the second water softening tank 3b, and the second neutralization tank 4b in this order.
  • the raw water containing hard components flows out of the first water softening tank 3a before the pH of the raw water progresses to decrease due to the water softening treatment in the first water softening tank 3a, and is neutralized in the first neutralization tank 4a.
  • the water is softened in the second water softening tank 3b, and neutralized in the second neutralization tank 4b.
  • the first water softening tank 3a and the second water softening tank 3b filled with the weakly acidic cation exchange resin 33 decrease or disappear in their cation exchange ability as they continue to be used. Therefore, it is necessary to regenerate the soft water tank 3 and the neutralization tank 4 through a regeneration process described below.
  • water is electrolyzed in the electrolytic cell 9, and the resulting acidic electrolyzed water and alkaline electrolyzed water are used to perform regeneration.
  • water with low conductivity such as raw water
  • the resistance generated when the same current value is applied becomes greater than when water with high conductivity is electrolyzed. Therefore, the voltage applied between the first chamber electrode 84 and the second chamber electrode 85 of the electrolytic cell 9 increases, and the power consumption when operating the electrolytic cell 9 increases.
  • a chemical such as sodium sulfate
  • the hardness components for example, calcium ions and magnesium ions released from the water softening tank 3 cause acid electrolysis. Water hardness increases. Therefore, in a system in which acidic electrolyzed water with increased hardness is re-electrolyzed and reused in the regeneration process, the hardness of the acidic electrolyzed water increases as time passes from the start of the regeneration process, resulting in high hardness. It becomes water.
  • the hardness component concentration of the high hardness water (post-regeneration water) after the completion of the regeneration step is, for example, about 1500 to 2000 ppm.
  • high hardness water which is water generated during the previous regeneration process and contains hardness components and has higher conductivity than the raw water
  • mixed water is mixed with the recycled water.
  • the recycled water produced in the n-th regeneration step is mixed with raw water during the n+1-th mixing step to obtain mixed water.
  • n is an integer of 1 or more.
  • the on-off valve 63 since the on-off valve 63 is open, the regenerated water stored in the regenerated water storage tank 64 flows into the mixing section 60 via the regenerated water introduction channel 62. Therefore, in the mixing section 60, the raw water and the recycled water are mixed to produce mixed water having higher conductivity than the raw water.
  • the conductivity of raw water varies depending on the water sampling location and water quality, but is 30 to 600 ⁇ s/cm, and the conductivity of recycled water is 1000 to 3000 ⁇ s/cm.
  • the flow path switching valve 24 is connected to allow water to be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37, and the flow path switching valve 25 is connected from the flow path 29 to the first recovery flow path 37.
  • the connection state is such that water can be sent to the water tank bypass channel 44.
  • the flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected from the water softening tank bypass flow path 44 to the second supply flow path 36.
  • the connection state is such that water can be sent to. In other words, the first soft water tank 3a and the second soft water tank 3b are in a communicating state.
  • the supply flow is changed as shown in FIGS. 12 and 13.
  • a channel 72a or supply channel 72b is formed. Note that at this time, the operations of the first chamber electrode 84, the second chamber electrode 85, the first water pump 11, and the second water pump 12 are stopped.
  • the conductivity of the mixed water can be set to 1000 to 3000 ⁇ s/cm, and the first chamber electrode during electrolysis in the regeneration process 84 and the voltage applied to the second chamber electrode 85 can be suppressed from increasing. Moreover, it is possible to suppress a state in which water becomes highly hard after regeneration and solids such as calcium carbonate are likely to precipitate.
  • control unit 15 ends the mixing process and executes the regeneration process when the specified time period has arrived or when the time of the mixing process exceeds a certain period of time (for example, 5 minutes). do.
  • the regeneration step is a step of regenerating at least one of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34.
  • the first water softening tank 3a and the second water softening tank 3b filled with the weakly acidic cation exchange resin 33 decrease or disappear in their cation exchange ability as they continue to be used. That is, after all the hydrogen ions, which are the functional groups of the cation exchange resin, are exchanged with calcium ions or magnesium ions, which are the hardness components, ion exchange becomes impossible. Even before all of the hydrogen ions are exchanged with hardness components, as the number of hydrogen ions decreases, the ion exchange reaction becomes more difficult to occur, resulting in a decrease in water softening performance.
  • the flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected to allow water to be transferred from the second supply flow path 36 to the neutralization tank bypass flow path 42.
  • a connection state is established in which water can be sent to the water tank bypass channel 44.
  • the first soft water tank 3a and the second soft water tank 3b are in a communicating state
  • the first neutralizing tank 4a and the second neutralizing tank 4b are in a communicating state
  • the drain port 13 and the trapping part drain port 14 The drainage of water will be stopped.
  • a soft water tank regeneration circulation passage 39a and a neutralization tank regeneration circulation passage 40a are formed, respectively.
  • the first chamber electrode 84 has a high potential with respect to the second chamber electrode 85.
  • the current is applied so that (forward operation). That is, the first chamber electrode 84 functions as an anode, and the second chamber electrode 85 functions as a cathode.
  • hydrogen ions are generated at the first chamber electrode 84 (anode), and acidic electrolyzed water is generated in the first chamber 81.
  • hydroxide ions are generated in the second chamber electrode 85 (cathode), and alkaline electrolyzed water is generated in the second chamber 82.
  • the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b shown in FIG. 4 will be explained.
  • the on-off valve 19, the on-off valve 20, the on-off valve 22, and the on-off valve 63 are closed, and the on-off valve 18, the on-off valve 21, and the on-off valve 23 are closed.
  • the flow path switching valve 24 is connected to allow water to be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37
  • the flow path switching valve 25 is connected to allow water to be sent from the water softener bypass flow path 44 to the second recovery flow path 38.
  • the flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected to allow water to be transferred from the second supply flow path 36 to the neutralization tank bypass flow path 42.
  • a connection state is established in which water can be sent to the water tank bypass channel 44.
  • the second chamber electrode 85 has a high potential with respect to the first chamber electrode 84.
  • the power is applied so that (reverse operation). That is, the first chamber electrode 84 functions as a cathode, and the second chamber electrode 85 functions as an anode.
  • hydrogen ions are generated at the second chamber electrode 85 (anode), and acidic electrolyzed water is generated in the second chamber 82.
  • hydroxide ions are generated in the first chamber electrode 84 (cathode), and alkaline electrolyzed water is generated in the first chamber 81.
  • the acidic electrolyzed water generated in the electrolytic cell 9 flows through the first supply flow path 35, is fed into the second soft water tank 3b via the flow path switching valve 26, and flows through the weakly acidic cation exchange resin 33 inside. do. Then, the acidic electrolyzed water that has passed through the second soft water tank 3b flows through the neutralization tank bypass flow path 42 and is sent into the first soft water tank 3a via the flow path switching valve 24, where the weakly acidic electrolyzed water inside is fed. It flows through the ion exchange resin 33.
  • the weakly acidic cation exchange resin 33 by passing acidic electrolyzed water through the weakly acidic cation exchange resin 33, the cations (hardness component) adsorbed on the weakly acidic cation exchange resin 33 are combined with hydrogen ions and ions contained in the acidic electrolyzed water. causess an exchange reaction. As a result, the weakly acidic cation exchange resin 33 is regenerated.
  • the water softener regeneration circulation flow path 39 is configured to allow acidic electrolyzed water to flow from the downstream side of the second water softener tank 3b and flow into the downstream side of the first water softener tank 3a.
  • the second soft water tank 3b is the soft water tank 3 located most downstream from the raw water inlet 2, and has a weakly acidic cation exchange resin 33 that adsorbs less hardness components than the upstream soft water tank 3. It is.
  • the first soft water tank 3a is located upstream, and is a soft water tank having a weakly acidic cation exchange resin 33 that adsorbs more hard components than the second soft water tank 3b.
  • the neutralization tank regeneration circulation flow path 40 is configured to allow alkaline electrolyzed water to flow from the downstream side of the second neutralization tank 4b and flow into the downstream side of the first neutralization tank 4a.
  • the second neutralization tank 4b is the neutralization tank 4 located most downstream from the raw water inlet 2, and is a weakly basic anion exchanger that has a smaller amount of anions adsorbed than the neutralization tank 4 on the upstream side.
  • the first neutralization tank 4a is located upstream, and is a neutralization tank 4 having a weakly basic anion exchange resin 34 that adsorbs more anions than the second neutralization tank 4b.
  • the neutralization tank regeneration circulation flow path 40 transfers the alkaline electrolyzed water sent out from the electrolytic tank 9 from the downstream side of the first neutralization tank 4a and the second neutralization tank 4b to the first neutralization tank 4a and the second neutralization tank 4b, respectively. 2 neutralization tanks 4b, and flow out from the upstream side where a larger amount of anions is adsorbed than the downstream side of each neutralization tank. As a result, alkaline electrolyzed water flows in from the downstream side where the amount of anion components adsorbed is smaller, and the neutralization tank is regenerated.
  • the consumption of hydroxide ions in the alkaline electrolyzed water is lower than that on the upstream side, so a reduction in the hydroxide ion concentration in the alkaline electrolyzed water can be suppressed. . Therefore, it is possible to suppress the anions contained in the alkaline electrolyzed water from the downstream side from being re-adsorbed on the upstream side. Therefore, it is possible to suppress a decrease in the regeneration processing efficiency of the neutralization tank, and the regeneration time can be shortened.
  • the downstream side refers to the downstream side in the flow path during water softening treatment.
  • the generated alkaline electrolyzed water is circulated to the neutralization tank regeneration circulation channel 40a.
  • the elapsed time storage unit 112 starts storing the normal operation time, which is the execution time of the normal operation, at the same time as the start of the normal operation.
  • a predetermined reference time for example, 6 hours
  • the elapsed time comparison section 113 compares the normal operation time stored in the elapsed time storage section 112 with the predetermined reference time.
  • the raw water passes through the flow path 53 from the inlet 2, and the water is taken out. Since it flows out from the port 7, the raw water can be used without waiting for the completion of the regeneration process.
  • the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as shown in FIG. ”, or “at the end of reproduction b”. If the state is "at the end of regeneration a”, a water storage channel 66a shown by the black arrow in FIG. 5 is formed, and if the state is "at the end of regeneration b", the water storage channel 66b shown by the black arrow in FIG. 6 is formed. is formed.
  • the high hardness water in the channel 28 , the first recovery channel 37 , the first water pump 11 , and the electrolyzer 9 is swept away by the pressure of the inflowing raw water, and flows into the drain channel 54 . and inflow.
  • the high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
  • the raw water that has flowed in flows through the channel 28, the first recovery channel 37, and the first water pump 11, and then flows into the electrolytic cell 9.
  • the second chamber electrode Electricity is applied to the electrode 85 so that the first chamber electrode 84 has a high potential.
  • the acidic electrolyzed water generated at the first chamber electrode 84 or the second chamber electrode 85 can dissolve the precipitates deposited on the electrodes. Therefore, it is possible to suppress deterioration of electrolytic performance due to attachment of precipitates to the surface of the first chamber electrode 84 or the second chamber electrode 85.
  • the alkaline electrolyzed water generated by the first chamber electrode 84 or the second chamber electrode 85 flows through the channel 105 or 106, flows into the drain channel 54, and is discharged from the drain port 13 to the outside of the apparatus.
  • the removal of precipitates in the electrolytic cell 9 and the precipitates in the trapping part 10 can be performed simultaneously, reducing the time required from the end of the regeneration process to the start of the water softening process. be able to.
  • the trapping section 10 becomes acidic, and the precipitates fixed to the trapping section 10 are dissolved by the acidic water. Therefore, since the trapping section 10 can be preliminarily cleaned, the time required for the next step, the trapping section cleaning step, can be shortened. That is, the removal of the precipitates in the electrolytic bath 9 and the precipitates in the trapping part 10 can be performed simultaneously, and the time required from the end of the regeneration process to the start of the water softening process can be shortened.
  • high hardness water containing hard components released from the first soft water tank 3a and the second soft water tank 3b flows into the electrolytic cell 9.
  • the hardness component moves to the cathode side during electrolysis, reacts with hydroxide ions generated at the cathode, and becomes a precipitate.
  • a part of the deposited precipitate is contained in the alkaline electrolyzed water discharged from the electrolytic cell 9, flows through the second supply channel 36, and is captured by the capture unit 10.
  • the control unit 15 opens the on-off valves 18, 19, 22, and 23, and closes the on-off valves 20, 21 and 63.
  • the control unit 15 sets the flow path switching valve 24 in a connected state in which water can be sent from the flow path 28 to the flow path 29, sets the flow path switching valve 25 in a connected state in which water can be sent from the flow path 29 to the flow path 30, and
  • the channel switching valve 26 is brought into a connected state where water can be sent from the channel 30 to the channel 31, and the channel switching valve 27 is brought into a connected state where water can be delivered from the channel 31 to the second supply channel 36.
  • a state in which the first soft water tank 3a and the first neutralization tank 4a are connected to each other, a state in which the first neutralization tank 4a and the second soft water tank 3b are connected to each other, and a state in which the second soft water tank 3b and the second neutralization tank are connected to each other are connected to each other.
  • the tank 4b is in a communicating state
  • the second neutralizing tank 4b and the trapping part drain port 14 are in a communicating state.
  • raw water flows into the flow path 28 from the outside.
  • neutral soft water flows from the opposite side to the water flow direction in the regeneration process.
  • the neutral soft water that flows in performs backwashing of the trapping section 10.
  • the trapping section 10 can be easily cleaned with neutral soft water.
  • Neutral soft water containing precipitates is discharged to the outside of the apparatus from a trapping section drain port 14 provided at the bottom of the trapping section 10.
  • control unit 15 ends the trap cleaning step when the specified time period has come or the trap cleaning step exceeds a certain period of time (for example, 5 minutes), and the controller 15 ends the trap cleaning step to soften the water. Execute the conversion process.
  • the flow path from the inlet 2 to the second neutralization tank 4b is the same flow path as the flow path during the water softening process. That is, by using the fourth drainage flow path 52, the second neutralization tank 4b, which is the final neutralization tank in the water softening process, is filled with softened water. Therefore, by performing the water softening process after performing the trapping part cleaning process using the fourth drainage channel 52, the user of the water softening device 1 can receive water softening treatment to reduce hardness immediately after starting the water softening process. Soft water can be obtained from the water intake port 7.
  • the raw water flows from the inlet 2 through the channel 53. Since it flows out from the water intake port 7, the raw water can be used without waiting for the completion of the trap cleaning process.
  • the water softening process, the mixing process, the regeneration process, the water storage process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trap cleaning process are repeatedly executed in this order.
  • the neutralization tank 4 at the last stage in the water softening step is filled with softened water. Therefore, when the user of the water softening device 1 opens the faucet, discharge of highly hard water from the water intake port 7 can be suppressed, and soft water with stable hardness can be provided immediately after the start of the water softening process.
  • the high hardness water has already been drained out of the equipment at the time of polarity reversal in the electrolytic tank cleaning process, making it possible to electrolyze the high hardness water. You can suppress your sexuality. Therefore, electrolysis of highly hard water can be suppressed, and generation of a large amount of scale in the channel through which alkaline electrolyzed water is fed during polarization can be suppressed.
  • the water softening device 1 includes a water softening tank 3 that softens raw water containing hard components using a weakly acidic cation exchange resin 33 to produce acidic soft water, and a water softening tank 3 that changes the pH of the acidic soft water that has passed through the water softening tank 3 to a weak base.
  • a neutralization tank 4 that generates neutralized soft water by neutralization with an anion exchange resin 34
  • an electrolysis tank 9 that generates acidic electrolyzed water and alkaline electrolyzed water
  • a weakly acidic cation exchange resin 33 and a weakly basic anion It includes a control unit 15 that controls a regeneration process that is a process of regenerating at least one of the ion exchange resins 34.
  • the electrolytic cell 9 has a first chamber 81 in which acidic electrolyzed water is generated during normal operation and a first chamber electrode is provided, and a second chamber 81 in which alkaline electrolyzed water is generated during normal operation and a second chamber electrode is provided. 82, and at least two types of operation are provided as operating states during the regeneration process: normal operation and reverse operation in which the normal operation is operated with the polarity of the first chamber electrode and the second chamber electrode reversed. It has a state.
  • the control unit 15 determines the destination of the electrolyzed water sent out from the first chamber 81 and the electrolyzed water sent out from the second chamber 82 based on the operating state of the electrolytic cell 9 during the regeneration process.
  • the destination of the electrolyzed water sent from the electrolytic cell 9 can be determined depending on the operating state during the regeneration process. Therefore, regardless of whether forward operation or reverse operation is performed, the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 can be regenerated. Therefore, since the regeneration process can be carried out even with the polarity of the electrodes reversed, the resin can be regenerated while dissolving the scale deposited on the electrodes.
  • the weakly acidic cation exchange resin 33 in the water softening tank 3 is regenerated by the acidic electrolyzed water sent out from the first chamber 81, and neutralized by the alkaline electrolyzed water sent out from the second chamber 82.
  • the weakly basic anion exchange resin 34 in the tank 4 can be regenerated.
  • the electrolyzed water sent out from the first chamber 81 is sent out to the neutralization tank 4, and the electrolyzed water sent out from the second chamber 82 is sent out to the water softening tank 3. It may be a configuration.
  • the weakly basic anion exchange resin 34 in the neutralization tank 4 is regenerated by the alkaline electrolyzed water sent out from the first chamber 81, and the acidic electrolyzed water sent out from the second chamber 82
  • the weakly acidic cation exchange resin 33 in the soft water tank 3 can be regenerated.
  • the control unit 15 provided in the water softening device 1 includes a switching unit 111 that switches the operating state of the electrolytic cell 9, and an elapsed time storage unit 112 that stores the elapsed time since the switching of the operating state was performed. , an elapsed time comparing section 113 that compares a predetermined reference time and an elapsed time, and the switching section 111 switches the operating state of the electrolytic cell 9 when the elapsed time exceeds the predetermined reference time.
  • the configuration may be such that
  • the control unit 15 provided in the water softening device 1 stores a normal operation time storage unit 114 that stores the normal operation time that is the execution time of the normal operation, and a reverse operation time that stores the reversal operation time that is the execution time of the reverse operation.
  • the electrolytic cell 9 may be configured to further include a comparing section 117 and determine the operating state of the electrolytic cell 9 based on the operating state stored in the operating state storage section 116 and the comparison result of the operating time comparing section 117.
  • the time during which the first chamber electrode 84 and the second chamber electrode 85 are used as anodes can be made substantially the same, so that the service life of the electrolytic cell 9 can be extended.
  • the operating time comparison unit 117 sets the predetermined reference time and normal operating time. If the normal operation time is less than a predetermined reference time, normal operation is performed until the predetermined reference time is reached, and if the normal operation time is greater than or equal to the predetermined reference time, the operating state is changed by the switching unit 111. If the operation state stored in the operation state storage unit 116 is reverse operation, the operation time comparison unit 117 compares a predetermined reference time with the reversal operation time, and the reversal operation time is determined to be the predetermined reference time.
  • the switching unit 111 may switch the operating state.
  • the first chamber electrode 84 and the second chamber electrode 85 so that the usage time as anodes does not exceed a predetermined reference time even during the regeneration process. Therefore, the time that the first chamber electrode 84 and the second chamber electrode 85 are used as anodes can be made to be approximately the same, so that the service life of the electrolytic cell 9 can be extended.
  • the electrolytic cell 9 provided in the water softening device 1 has a first discharge port 87 through which acidic electrolyzed water is discharged during normal operation, a first inlet 86 through which acidic electrolyzed water flows during normal operation, and a first inlet 86 through which acidic electrolyzed water flows during normal operation. It has a second discharge port 89 through which alkaline electrolyzed water is discharged during normal operation, and a second inflow port 88 through which alkaline electrolyzed water flows during normal operation, and the direction in which the electrolyzed water discharged from the first discharge port 87 is directed.
  • a first discharge switching valve 91 that switches, a second discharge switching valve 92 that switches the direction of electrolyzed water discharged from the second discharge port 89, and a destination of the electrolyzed water discharged from the water softening tank 3 during the regeneration process.
  • a first inflow switching valve 93 that switches the electrolyzed water discharged from the neutralization tank 4 during the regeneration process to either the first inflow port 86 or the second inflow port 88;
  • the controller 15 further includes a second inflow switching valve 94 that switches between the second inflow port 88 and the first discharge switching valve 91 during normal operation.
  • the first discharge port 87 and the neutralization tank 4 are switched in the direction in which they are connected in communication
  • the second discharge switching valve 92 is switched in the direction in which the second discharge port 89 and the soft water tank 3 are connected in communication
  • the first inflow switching valve 93 is switched in the direction in which the second discharge port 89 and the soft water tank 3 are connected in communication.
  • the second inflow switching valve 94 is switched in the direction in which the soft water tank 3 and the second inflow port 88 are connected in communication. Good too.
  • the voltage of the electrolytic cell 9 is detected by the detection unit 121, and the control unit 15 determines the operating state during the regeneration process based on the voltage detected by the detection unit 121.
  • the configuration other than this is the same as the water softening device 1 according to the first embodiment.
  • the content already explained in the first embodiment will not be explained again, and the points different from the first embodiment will be mainly explained.
  • FIG. 17 is a conceptual diagram showing the configuration of a water softening device 1a according to the second embodiment of the present disclosure.
  • each element of the water softening apparatus 1a is shown conceptually.
  • the detection unit 121 detects the voltage of the electrolytic cell 9 during the regeneration process. Further, the detection section 121 is connected to the control section 15. That is, based on the voltage detected by the detection unit 121, the control unit 15 determines whether to switch the operating state during the regeneration process.
  • the detection unit 121 detects the voltage of the electrolytic cell 9. Further, the control unit 15 compares the voltage detected in the electrolytic cell 9 with a predetermined first reference value.
  • control unit 15 continues the operating state during the regeneration process. For example, if it is in a normal operation state, normal operation is continued.
  • the control unit 15 switches the operating state during the regeneration process.
  • the operating time stored in the normal operating time storage section 114 or the reverse operating time storage section 115 is reset and returns to "0". For example, if it is in the normal operating state, it is switched to the reverse operating state, and the normal operating time stored in the normal operating time storage section 114 becomes "0".
  • the water softening device 1a further includes a detection unit 121 that detects the voltage of the electrolytic cell 9, and the control unit 15 controls, when the voltage detected by the detection unit 121 is less than the first reference value during the regeneration process, The operating state of the electrolytic cell 9 is continued to execute the regeneration process, and when the voltage detected by the detection unit 121 is equal to or higher than the first reference value, the operating state of the electrolytic cell 9 is switched and the regeneration process is executed.
  • a detection unit 121 that detects the voltage of the electrolytic cell 9
  • the control unit 15 controls, when the voltage detected by the detection unit 121 is less than the first reference value during the regeneration process, The operating state of the electrolytic cell 9 is continued to execute the regeneration process, and when the voltage detected by the detection unit 121 is equal to or higher than the first reference value, the operating state of the electrolytic cell 9 is switched and the regeneration process is executed.
  • the operating state can be switched at a more appropriate timing, and an increase in power consumption of the electrolytic cell 9 due to scale precipitation can be suppressed. Further, the possibility that the electrolytic cell 9 is continuously used with scale deposited on the electrodes can be reduced, and the service life of the electrolytic cell 9 can be extended.
  • the recycled water stored in the recycled water storage tank 64 is mixed with raw water during the mixing process, but the invention is not limited thereto.
  • raw water may be allowed to flow into the water softening tank regeneration circulation channel 39 and mixed with the recycled water in the channel. Even in this case, the raw water flows in through the raw water introduction channel 70, and the recycled water flows through the recycled water introduction channel.
  • the post-regeneration water introduction flow path in this case is a flow path corresponding to the water softening tank regeneration circulation flow path 39.
  • the regeneration channel cleaning step, the electrolytic tank cleaning step, and the trapping portion cleaning step are executed in this order after the regeneration step is completed, but the present invention is not limited to this.
  • the regeneration channel cleaning step may be performed after the electrolytic cell cleaning step
  • the trapping portion cleaning step may be performed as a pre-process of the water softening step. Even if the inside of the apparatus is cleaned in this order, the precipitates in the electrolytic cell 9 and the trapping section 10 can be removed, and the second neutralization tank 4b immediately before the water softening process can be filled with soft water.
  • the water softening process, the mixing process, the regeneration process, the water storage process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trapping part cleaning process are repeated in this order.
  • the present invention is not limited to this. It is not always necessary to perform all the steps; for example, basically, the water softening step and the regeneration step may be performed alternately, and other steps may be performed as necessary. Even in this manner, it is possible to realize a water softening device that can repeatedly soften raw water.
  • the water softening device according to the present disclosure is useful because it can be applied to a point of use (POU) water purification device, a point of entry (POE), or the like.
  • POU point of use
  • POE point of entry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A water softening device (1) comprises a water softening tank (3), a neutralizing tank (4), an electrolyzing tank (9), and a control unit (15). The electrolyzing tank (9) comprises: a first chamber (81) in which acidic electrolytic water is generated during normal operation; and a second chamber (82) in which alkaline electrolytic water is generated during normal operation. Operation states in a regeneration step include at least two types of operation states, namely, normal operation, and reverse operation in which the polarities of electrodes are reversed from those in the normal operation. The control unit (15) determines, on the basis of an operation state of the electrolyzing tank (9) in the regeneration step, a destination to which the electrolytic water sent from the first chamber (81) and the electrolytic water sent from the second chamber (82) are each sent.

Description

軟水化装置water softener
 本開示は、軟水化装置に関する。 The present disclosure relates to a water softening device.
 従来の軟水化装置は、弱酸性陽イオン交換樹脂を備えている。弱酸性陽イオン交換樹脂は、官能基の末端に水素イオンを有しており、原水中の硬度成分(たとえば、カルシウムイオンおよびマグネシウムイオン)を水素イオンと交換して原水を軟水化している。食塩を使用しない陽イオン交換樹脂の再生方法として、電気分解で生成した酸性電解水により陽イオン交換樹脂を再生する方法が知られている(たとえば、特許文献1参照)。 Conventional water softening devices are equipped with weakly acidic cation exchange resins. The weakly acidic cation exchange resin has a hydrogen ion at the end of its functional group, and softens the raw water by exchanging hard components (for example, calcium ions and magnesium ions) in the raw water with hydrogen ions. As a method for regenerating a cation exchange resin without using salt, a method is known in which the cation exchange resin is regenerated using acidic electrolyzed water produced by electrolysis (for example, see Patent Document 1).
 弱酸性陽イオン交換樹脂により軟水化された水は、硬度成分の代わりに水素イオンが放出されるために酸性となる。これを中和するために、弱酸性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂とを組み合わせて利用されることがある。弱塩基性陰イオン交換樹脂の再生方法としては、電気分解で生成したアルカリ性電解水を用いる方法が知られている(たとえば、特許文献2参照)。 Water softened by a weakly acidic cation exchange resin becomes acidic because hydrogen ions are released instead of hardening components. In order to neutralize this, a combination of a weakly acidic cation exchange resin and a weakly basic anion exchange resin may be used. As a method for regenerating weakly basic anion exchange resins, a method using alkaline electrolyzed water produced by electrolysis is known (for example, see Patent Document 2).
特開2011-30973号公報Japanese Patent Application Publication No. 2011-30973 特開2010-142674号公報Japanese Patent Application Publication No. 2010-142674
 このような軟水化装置では、弱酸性陽イオン交換樹脂を再生する水素イオンと、弱塩基性陰イオン交換樹脂を再生する水酸化物イオンと、を水の電気分解により生成する電解槽が用いられている。電解槽の運転時には、陰極で生成された水酸化物イオンが水中のカルシウムイオンまたはマグネシウムイオンと反応し、主に陰極上に固体(スケール)として析出する。電解槽内で析出したスケールは、電解槽の運転電圧を上昇させるため、軟水化装置の消費電力上昇を惹き起こす。そこで、電解槽の電極に印加する電圧を前述の運転時とは反転させた状態で運転する転極運転を行い、固体を除去する必要がある。しかし、電極は、主に陽極として使用される際に劣化が進行するため、通常運転と転極運転との2つの運転を繰り返す中で、陽極として使用される時間が長い電極の方が早く劣化してしまうという課題がある。 Such water softening equipment uses an electrolytic cell that generates hydrogen ions, which regenerate weakly acidic cation exchange resins, and hydroxide ions, which regenerate weakly basic anion exchange resins, through electrolysis of water. ing. During operation of the electrolytic cell, hydroxide ions generated at the cathode react with calcium or magnesium ions in water, and are mainly deposited as solids (scale) on the cathode. The scale deposited in the electrolytic cell increases the operating voltage of the electrolytic cell, which causes an increase in the power consumption of the water softening device. Therefore, it is necessary to perform a polarity reversal operation in which the voltage applied to the electrodes of the electrolytic cell is reversed from that during the above-mentioned operation to remove the solids. However, since electrodes mainly deteriorate when used as anodes, the electrodes that have been used as anodes for a longer period of time deteriorate faster during repeated operations, normal operation and polarity reversal operation. There is an issue of doing so.
 本開示は、上記従来の課題を解決するものであり、電解槽の各電極が陽極として使用される時間を均等化し、電極の寿命を長寿命化することが可能な軟水化装置を提供する。 The present disclosure solves the above-mentioned conventional problems, and provides a water softening device that can equalize the time each electrode of an electrolytic cell is used as an anode and extend the life of the electrodes.
 本開示に係る軟水化装置は、硬度成分を含む原水を弱酸性陽イオン交換樹脂により軟水化して酸性軟水を生成する軟水槽と、軟水槽を通過した酸性軟水のpHを弱塩基性陰イオン交換樹脂により中和して中和軟水を生成する中和槽と、酸性電解水とアルカリ性電解水とを生成する電解槽と、弱酸性陽イオン交換樹脂および弱塩基性陰イオン交換樹脂のうち少なくとも一方の再生を行う工程である再生工程を制御する制御部と、を備えている。電解槽は、正電解時に酸性電解水が生成され、第1室電極が設けられた第1室と、正運転時にアルカリ性電解水が生成され、第2室電極が設けられた第2室と、を備え、再生工程時の運転状態として、正運転と、正運転とは第1室電極および第2室電極の極性を反転した状態で運転する反転運転と、の少なくとも2種の運転状態を有する。制御部は、再生工程時に、電解槽の運転状態に基づいて、第1室から送出される電解水および第2室から送出される電解水の送出先を決定する。 The water softening device according to the present disclosure includes a water softening tank that generates acidic soft water by softening raw water containing hardness components using a weakly acidic cation exchange resin, and a weakly basic anion exchanger that changes the pH of the acidic soft water that has passed through the water softening tank. A neutralization tank that generates neutralized soft water by neutralization with a resin, an electrolysis tank that generates acidic electrolyzed water and alkaline electrolyzed water, and at least one of a weakly acidic cation exchange resin and a weakly basic anion exchange resin. and a control unit that controls a regeneration process, which is a process of regenerating. The electrolytic cell includes a first chamber in which acidic electrolyzed water is generated during positive electrolysis and a first chamber electrode is provided, and a second chamber in which alkaline electrolyzed water is generated during positive operation and a second chamber electrode is provided. and has at least two types of operating states during the regeneration process: normal operation and reverse operation in which the normal operation is operated with the polarity of the first chamber electrode and the second chamber electrode reversed. . The control unit determines the destination of the electrolyzed water sent from the first chamber and the electrolyzed water sent from the second chamber based on the operating state of the electrolytic cell during the regeneration process.
 本開示によれば、電解槽の各電極が陽極として使用される時間を均等化し、電極の寿命を長寿命化することが可能な軟水化装置を提供することができる。 According to the present disclosure, it is possible to provide a water softening device that can equalize the time that each electrode of an electrolytic cell is used as an anode and extend the life of the electrode.
図1は、第1の実施の形態に係る軟水化装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing the configuration of a water softening device according to a first embodiment. 図2は、第1の実施の形態に係る軟水化装置の軟水化流路の構成を示す図である。FIG. 2 is a diagram showing the configuration of the water softening channel of the water softening device according to the first embodiment. 図3は、第1の実施の形態に係る軟水化装置の軟水槽再生循環流路および中和槽再生循環流路の構成を示す図である。FIG. 3 is a diagram showing the configuration of the water softening tank regeneration circulation flow path and the neutralization tank regeneration circulation flow path of the water softening device according to the first embodiment. 図4は、第1の実施の形態に係る軟水化装置の軟水槽再生循環流路および中和槽再生循環流路の構成を示す図である。FIG. 4 is a diagram showing the configuration of the water softening tank regeneration circulation flow path and the neutralization tank regeneration circulation flow path of the water softening device according to the first embodiment. 図5は、第1の実施の形態に係る軟水化装置の貯水流路の構成を示す図である。FIG. 5 is a diagram showing the configuration of a water storage channel of the water softening device according to the first embodiment. 図6は、第1の実施の形態に係る軟水化装置の貯水流路の構成を示す図である。FIG. 6 is a diagram showing the configuration of a water storage channel of the water softening device according to the first embodiment. 図7は、第1の実施の形態に係る軟水化装置の再生流路洗浄流路の構成を示す図である。FIG. 7 is a diagram showing the configuration of the regeneration channel cleaning channel of the water softening device according to the first embodiment. 図8は、第1の実施の形態に係る軟水化装置の再生流路洗浄流路の構成を示す図である。FIG. 8 is a diagram showing the configuration of the regeneration channel cleaning channel of the water softening device according to the first embodiment. 図9は、第1の実施の形態に係る軟水化装置の電解槽洗浄流路の構成を示す図である。FIG. 9 is a diagram showing the configuration of an electrolytic cell cleaning channel of the water softening device according to the first embodiment. 図10は、第1の実施の形態に係る軟水化装置の電解槽洗浄流路の構成を示す図である。FIG. 10 is a diagram showing the configuration of an electrolytic cell cleaning channel of the water softening device according to the first embodiment. 図11は、第1の実施の形態に係る軟水化装置の捕捉部洗浄流路の構成を示す図である。FIG. 11 is a diagram showing the configuration of the trap cleaning channel of the water softening device according to the first embodiment. 図12は、第1の実施の形態に係る軟水化装置の原水導入流路および供給流路の構成を示す図である。FIG. 12 is a diagram showing the configuration of the raw water introduction channel and the supply channel of the water softening device according to the first embodiment. 図13は、第1の実施の形態に係る軟水化装置の原水導入流路および供給流路の構成を示す図である。FIG. 13 is a diagram showing the configuration of the raw water introduction channel and the supply channel of the water softening device according to the first embodiment. 図14は、第1の実施の形態に係る軟水化装置の制御方法を説明するための図である。FIG. 14 is a diagram for explaining a method of controlling the water softening device according to the first embodiment. 図15は、第1の実施の形態に係る軟水化装置の制御方法を説明するための図である。FIG. 15 is a diagram for explaining a method of controlling the water softening device according to the first embodiment. 図16は、第1の実施の形態に係る軟水化装置の機能ブロック図である。FIG. 16 is a functional block diagram of the water softening device according to the first embodiment. 図17は、第2の実施の形態に係る軟水化装置の構成を示す概念図である。FIG. 17 is a conceptual diagram showing the configuration of a water softening device according to the second embodiment.
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、実施形態において説明する各図は模式的な図であり、各図中の構成要素の大きさおよび厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the following embodiments are examples that embody the present disclosure, and do not limit the technical scope of the present disclosure. Furthermore, each of the figures described in the embodiments is a schematic diagram, and the ratio of the sizes and thicknesses of the constituent elements in each figure does not necessarily reflect the actual size ratio.
 (第1の実施の形態)
 図1を参照して、本開示の第1の実施の形態に係る軟水化装置1について説明する。図1は、本開示の第1の実施の形態に係る軟水化装置1の構成を示す概念図である。なお、図1では、軟水化装置1の各要素を概念的に示している。
(First embodiment)
With reference to FIG. 1, a water softening device 1 according to a first embodiment of the present disclosure will be described. FIG. 1 is a conceptual diagram showing the configuration of a water softening device 1 according to a first embodiment of the present disclosure. In addition, in FIG. 1, each element of the water softening device 1 is conceptually shown.
 (1. 全体構成)
 軟水化装置1は、外部から供給される硬度成分を含む原水から、中性の軟水を生成する装置である。なお、原水とは、流入口2から装置内に導入された水(処理対象水)であり、たとえば、市水または井戸水である。原水は、硬度成分(たとえば、カルシウムイオンまたはマグネシウムイオン)を含む。軟水化装置1を用いて軟水化処理を行うことにより、硬度を低減した中性の軟水が得られ、原水の硬度が高い地域であっても、軟水を利用することができる。
(1. Overall composition)
The water softening device 1 is a device that generates neutral soft water from raw water containing hardness components supplied from the outside. Note that the raw water is water introduced into the apparatus from the inlet 2 (water to be treated), and is, for example, city water or well water. Raw water contains hardness components (eg, calcium or magnesium ions). By performing water softening treatment using the water softening device 1, neutral soft water with reduced hardness can be obtained, and the soft water can be used even in areas where the hardness of raw water is high.
 具体的には、図1に示すように、軟水化装置1は、流入口2と、軟水槽3(第1軟水槽3aおよび第2軟水槽3b)と、中和槽4(第1中和槽4aおよび第2中和槽4b)と、取水口7と、再生装置8と、制御部15と、混合部60と、を備えている。 Specifically, as shown in FIG. It includes a tank 4a and a second neutralization tank 4b), a water intake 7, a regenerating device 8, a control section 15, and a mixing section 60.
 また、軟水化装置1は、排水口13と、複数の開閉弁(開閉弁18~23、および、開閉弁63)と、複数の流路切替えバルブ(流路切替えバルブ24~27)と、複数の切換え弁(第1吐出切換え弁91、第2吐出切換え弁92、第2流入切換え弁94、および、第1流入切換え弁93)と、複数の流路(流路28~32、流路53、第1供給流路35、第2供給流路36、第1回収流路37、第2回収流路38、中和槽バイパス流路42、軟水槽バイパス流路44、排水流路54、および流路101~108)と、を備えており、詳細は後述する。なお、複数の流路(流路28~32、流路53、第1供給流路35、第2供給流路36、第1回収流路37、第2回収流路38、中和槽バイパス流路42、軟水槽バイパス流路44、排水流路54、および流路101~108)としては、たとえば、パイプなどの管が用いられる。 The water softening device 1 also includes a drain port 13, a plurality of on-off valves (on-off valves 18 to 23, and an on-off valve 63), a plurality of flow path switching valves (flow path switching valves 24 to 27), and a plurality of switching valves (first discharge switching valve 91, second discharge switching valve 92, second inflow switching valve 94, and first inflow switching valve 93) and a plurality of channels (channels 28 to 32, channel 53). , the first supply channel 35, the second supply channel 36, the first recovery channel 37, the second recovery channel 38, the neutralization tank bypass channel 42, the water softener bypass channel 44, the drainage channel 54, and Flow paths 101 to 108), the details of which will be described later. Note that a plurality of channels (channels 28 to 32, channel 53, first supply channel 35, second supply channel 36, first recovery channel 37, second recovery channel 38, neutralization tank bypass flow) For example, pipes such as pipes are used as the passage 42, the water softener bypass passage 44, the drainage passage 54, and the passages 101 to 108).
 (1.1 流入口および取水口)
 流入口2は、原水の供給元に接続されている。流入口2は、原水を軟水化装置1内に導入する開口である。
(1.1 Inlet and water intake)
The inlet 2 is connected to a source of raw water. The inlet 2 is an opening that introduces raw water into the water softening device 1 .
 取水口7は、軟水化装置1内を流通し、軟水化処理された水を装置外に供給する開口である。軟水化装置1は、流入口2から流入した原水の圧力により、取水口7から軟水化処理後の水を取り出すことができる。 The water intake port 7 is an opening that flows through the water softening device 1 and supplies softened water to the outside of the device. The water softening device 1 can take out the water after the water softening process from the water intake port 7 using the pressure of the raw water that flows in from the inflow port 2 .
 軟水化装置1では、軟水化処理を行う軟水化工程において、外部から供給された原水が、流入口2、流路28、第1軟水槽3a、流路29、第1中和槽4a、流路30、第2軟水槽3b、流路31、第2中和槽4b、流路32、取水口7の順に流通して、中性の軟水として排出される。 In the water softening device 1, raw water supplied from the outside is passed through the inlet 2, the flow path 28, the first water softening tank 3a, the flow path 29, the first neutralization tank 4a, the flow The water flows through the channel 30, the second soft water tank 3b, the channel 31, the second neutralization tank 4b, the channel 32, and the water intake port 7 in this order, and is discharged as neutral soft water.
 (1.2 軟水槽)
 軟水槽3は、内部に充填された弱酸性陽イオン交換樹脂33の作用により、硬度成分を含む原水を軟水化する。具体的には、軟水槽3において、流通する水(原水)に含まれる硬度成分である陽イオン(カルシウムイオン、およびマグネシウムイオン)が水素イオンと交換される。このため、原水の硬度が下がり、原水が軟水化される。軟水槽3は、官能基の末端に水素イオンを有する弱酸性陽イオン交換樹脂33を備えている。
(1.2 Soft water tank)
The water softening tank 3 softens raw water containing hard components by the action of a weakly acidic cation exchange resin 33 filled therein. Specifically, in the water softening tank 3, cations (calcium ions and magnesium ions), which are hardness components contained in the flowing water (raw water), are exchanged with hydrogen ions. Therefore, the hardness of the raw water decreases, and the raw water becomes soft. The soft water tank 3 is equipped with a weakly acidic cation exchange resin 33 having a hydrogen ion at the end of a functional group.
 軟水槽3は、たとえば、円筒状の容器に弱酸性陽イオン交換樹脂33が充填されて構成されている。軟水槽3は、第1軟水槽3aと第2軟水槽3bとを含んで構成される。 The soft water tank 3 is configured, for example, by filling a cylindrical container with a weakly acidic cation exchange resin 33. The soft water tank 3 includes a first soft water tank 3a and a second soft water tank 3b.
 第1軟水槽3aは、第1弱酸性陽イオン交換樹脂33aが充填されて構成されている。第1軟水槽3aは、流入口2から流入した原水の軟水化を行う。第1軟水槽3aは、流路切替えバルブ24を備える。流路切替えバルブについての詳細はまとめて後述する。 The first soft water tank 3a is filled with a first weakly acidic cation exchange resin 33a. The first water softening tank 3a softens the raw water that flows in from the inlet 2. The first soft water tank 3a includes a flow path switching valve 24. Details regarding the flow path switching valve will be described later.
 第2軟水槽3bは、第2弱酸性陽イオン交換樹脂33bが充填されて構成されている。第2軟水槽3bは、後述する第1中和槽4aを流通した水の軟水化を行う。第2軟水槽3bは、流路切替えバルブ26を備える。 The second soft water tank 3b is filled with a second weakly acidic cation exchange resin 33b. The second water softening tank 3b softens water that has passed through the first neutralization tank 4a, which will be described later. The second soft water tank 3b includes a flow path switching valve 26.
 なお、以下では、第1弱酸性陽イオン交換樹脂33aおよび第2弱酸性陽イオン交換樹脂33bに関して、特に両者を区別する必要がない場合には、弱酸性陽イオン交換樹脂33として説明する。 Note that, in the following, the first weakly acidic cation exchange resin 33a and the second weakly acidic cation exchange resin 33b will be described as the weakly acidic cation exchange resin 33 unless it is particularly necessary to distinguish between the two.
 弱酸性陽イオン交換樹脂33は、官能基の末端に水素イオンを有するイオン交換樹脂である。弱酸性陽イオン交換樹脂33は、通水される水に含まれる硬度成分である陽イオン(カルシウムイオンおよびマグネシウムイオン)を吸着し、水素イオンを放出する。弱酸性陽イオン交換樹脂33で処理された軟水は、硬度成分と交換されて出てきた水素イオンを多く含む。つまり、第1軟水槽3aおよび第2軟水槽3bから流出する軟水は、水素イオンを多く含んで酸性化した軟水(酸性軟水)である。 The weakly acidic cation exchange resin 33 is an ion exchange resin having a hydrogen ion at the end of a functional group. The weakly acidic cation exchange resin 33 adsorbs cations (calcium ions and magnesium ions), which are hard components contained in the water being passed through, and releases hydrogen ions. The soft water treated with the weakly acidic cation exchange resin 33 contains many hydrogen ions that have been exchanged with hardness components. That is, the soft water flowing out from the first soft water tank 3a and the second soft water tank 3b is soft water that contains many hydrogen ions and is acidified (acidic soft water).
 弱酸性陽イオン交換樹脂33の官能基の末端が水素イオンであるため、後述する再生処理において、酸性電解水を用いた弱酸性陽イオン交換樹脂33の再生を行うことができる。この際、弱酸性陽イオン交換樹脂33からは、軟水化処理の際に取り込んだ硬度成分である陽イオンが放出される。 Since the terminal of the functional group of the weakly acidic cation exchange resin 33 is a hydrogen ion, the weakly acidic cation exchange resin 33 can be regenerated using acidic electrolyzed water in the regeneration process described below. At this time, the weakly acidic cation exchange resin 33 releases cations, which are hardness components taken in during the water softening treatment.
 弱酸性陽イオン交換樹脂33としては、特に制限はなく、汎用的なものを使用することができ、たとえば、カルボキシル基(-COOH)を交換基とするものが挙げられる。また、弱酸性陽イオン交換樹脂33として、カルボキシル基の対イオンである水素イオン(H)が、金属イオンまたはアンモニウムイオン(NH )などの陽イオンとなっている樹脂を用いてもよい。 There are no particular limitations on the weakly acidic cation exchange resin 33, and general-purpose resins can be used, such as those having a carboxyl group (-COOH) as an exchange group. Further, as the weakly acidic cation exchange resin 33, a resin in which hydrogen ions (H + ), which are counter ions of carboxyl groups, are cations such as metal ions or ammonium ions (NH 4 + ) may be used. .
 (1.3 中和槽)
 中和槽4は、弱塩基性陰イオン交換樹脂34の作用により、軟水槽3から流出した水素イオンを含む軟水(酸性化した軟水、酸性軟水)のpHを中和し、中性の軟水とする。具体的には、中和槽4においては、軟水槽3から流入する軟水に含まれる水素イオンが陰イオンとともに吸着される。このため、軟水のpHが上がり、中性の軟水となる。
(1.3 Neutralization tank)
The neutralization tank 4 neutralizes the pH of the soft water containing hydrogen ions (acidified soft water, acidic soft water) flowing out from the water softening tank 3 by the action of the weakly basic anion exchange resin 34, and converts it into neutral soft water. do. Specifically, in the neutralization tank 4, hydrogen ions contained in the soft water flowing from the soft water tank 3 are adsorbed together with anions. For this reason, the pH of the soft water increases and becomes neutral soft water.
 中和槽4は、弱塩基性陰イオン交換樹脂34を備えている。 The neutralization tank 4 is equipped with a weakly basic anion exchange resin 34.
 中和槽4は、たとえば、円筒状の容器に弱塩基性陰イオン交換樹脂34が充填されて構成されている。また、中和槽4は、第1中和槽4aと第2中和槽4bとを含んで構成される。 The neutralization tank 4 is configured, for example, by filling a cylindrical container with a weakly basic anion exchange resin 34. Further, the neutralization tank 4 includes a first neutralization tank 4a and a second neutralization tank 4b.
 第1中和槽4aは、第1弱塩基性陰イオン交換樹脂34aが充填されて構成されている。第1中和槽4aは、第1軟水槽3aを流通した酸性軟水の中和を行う。第1中和槽4aは、流路切替えバルブ25を備える。 The first neutralization tank 4a is filled with a first weakly basic anion exchange resin 34a. The first neutralization tank 4a neutralizes the acidic soft water that has passed through the first soft water tank 3a. The first neutralization tank 4a includes a flow path switching valve 25.
 第2中和槽4bは、第2弱塩基性陰イオン交換樹脂34bが充填されて構成されている。第2中和槽4bは、第2軟水槽3bを流通した酸性軟水の中和を行う。第2中和槽4bは、流路切替えバルブ27を備える。 The second neutralization tank 4b is filled with a second weakly basic anion exchange resin 34b. The second neutralization tank 4b neutralizes the acidic soft water that has passed through the second soft water tank 3b. The second neutralization tank 4b includes a flow path switching valve 27.
 なお、以下では、第1弱塩基性陰イオン交換樹脂34aおよび第2弱塩基性陰イオン交換樹脂34bに関して、特に両者を区別する必要がない場合には、弱塩基性陰イオン交換樹脂34として説明する。 Note that in the following, the first weakly basic anion exchange resin 34a and the second weakly basic anion exchange resin 34b will be described as the weakly basic anion exchange resin 34 when there is no need to particularly distinguish between the two. do.
 弱塩基性陰イオン交換樹脂34は、通水される水に含まれる水素イオンを中和し、中性の水を生成する。弱塩基性陰イオン交換樹脂34は、後述する再生処理において、アルカリ性電解水を用いて再生される。 The weakly basic anion exchange resin 34 neutralizes hydrogen ions contained in the water that is passed through it, producing neutral water. The weakly basic anion exchange resin 34 is regenerated using alkaline electrolyzed water in a regeneration process described below.
 弱塩基性陰イオン交換樹脂34としては、特に制限はなく、汎用的なものを使用することができ、たとえば、遊離塩基型の陰イオン交換樹脂が挙げられる。 The weakly basic anion exchange resin 34 is not particularly limited, and any commonly used resin can be used, such as a free base type anion exchange resin.
 (1.4 再生装置)
 再生装置8は、軟水槽3の弱酸性陽イオン交換樹脂33を再生させ、かつ、中和槽4の弱塩基性陰イオン交換樹脂34を再生させる機器である。
(1.4 Playback device)
The regenerator 8 is a device that regenerates the weakly acidic cation exchange resin 33 in the soft water tank 3 and also regenerates the weakly basic anion exchange resin 34 in the neutralization tank 4.
 具体的には、再生装置8は、電解槽9と、捕捉部10と、第1送水ポンプ11と、第2送水ポンプ12と、混合部60と、再生後水貯留槽64とを含んで構成される。再生装置8では、第2軟水槽3b、第2中和槽4b、流路28、および流路29に対して、それぞれ、混合部60を介して第1供給流路35、捕捉部10を介して第2供給流路36、第1回収流路37、および第2回収流路38が接続されている。各流路の詳細については後述する。 Specifically, the regeneration device 8 includes an electrolytic cell 9, a capturing section 10, a first water pump 11, a second water pump 12, a mixing section 60, and a post-regeneration water storage tank 64. be done. In the regeneration device 8, the second water softening tank 3b, the second neutralization tank 4b, the flow path 28, and the flow path 29 are supplied with water through the first supply flow path 35 and the capture portion 10 via the mixing unit 60, respectively. A second supply channel 36, a first recovery channel 37, and a second recovery channel 38 are connected to each other. Details of each flow path will be described later.
 なお、第1供給流路35、第2供給流路36、第1回収流路37、第2回収流路38、中和槽バイパス流路42、および軟水槽バイパス流路44により、後述する軟水槽再生循環流路39と中和槽再生循環流路40とが形成される。 Note that the first supply flow path 35, the second supply flow path 36, the first recovery flow path 37, the second recovery flow path 38, the neutralization tank bypass flow path 42, and the soft water tank bypass flow path 44 provide soft water, which will be described later. A water tank regeneration circulation flow path 39 and a neutralization tank regeneration circulation flow path 40 are formed.
 (1.4.1 電解槽)
 電解槽9は、第1室81、第2室82、および隔膜83を備える。電解槽9は、内部に設けられた隔膜83により、第1室81と第2室82とに隔てられている。
(1.4.1 Electrolytic cell)
The electrolytic cell 9 includes a first chamber 81, a second chamber 82, and a diaphragm 83. The electrolytic cell 9 is separated into a first chamber 81 and a second chamber 82 by a diaphragm 83 provided inside.
 第1室81は、第1室電極84、第1流入口86、および第1吐出口87を備える。 The first chamber 81 includes a first chamber electrode 84, a first inlet 86, and a first outlet 87.
 第2室82は、第2室電極85、第2流入口88、および第2吐出口89を備える。 The second chamber 82 includes a second chamber electrode 85, a second inlet 88, and a second outlet 89.
 第1流入口86は、流路101および流路103と接続されている。 The first inlet 86 is connected to the flow path 101 and the flow path 103.
 第1吐出口87は、流路105および流路107と接続されている。 The first discharge port 87 is connected to the flow path 105 and the flow path 107.
 第2流入口88は、流路102および流路104と接続されている。 The second inlet 88 is connected to the flow path 102 and the flow path 104.
 第2吐出口89は、流路106および流路108と接続されている。 The second discharge port 89 is connected to the flow path 106 and the flow path 108.
 電解槽9は、第1室電極84および第2室電極85を用いて、流入した水を電気分解することにより、酸性電解水とアルカリ性電解水とを生成して排出する。より詳細には、再生工程での電気分解の際には、第1室電極84および第2室電極85のうちどちらか一方が陽極となる。陽極となった電極付近では、電気分解により水素イオンが生成し、酸性電解水が生成する。また、第1室電極84および第2室電極85のうち陽極として使用されていない他方の電極は陰極となる。陰極となった電極付近では、電気分解により水酸化物イオンが生成し、アルカリ性電解水が生成する。 The electrolytic cell 9 electrolyzes the inflowing water using the first chamber electrode 84 and the second chamber electrode 85 to generate acidic electrolyzed water and alkaline electrolyzed water and discharge them. More specifically, during electrolysis in the regeneration step, either the first chamber electrode 84 or the second chamber electrode 85 serves as an anode. Hydrogen ions are generated by electrolysis near the electrode, which serves as an anode, and acidic electrolyzed water is generated. Furthermore, the other electrode of the first chamber electrode 84 and the second chamber electrode 85 that is not used as an anode serves as a cathode. Hydroxide ions are generated by electrolysis near the electrode, which has become a cathode, and alkaline electrolyzed water is generated.
 なお、電解槽9は、後述する制御部15によって第1室電極84および第2室電極85への通電状態が制御されるように構成されている。 Note that the electrolytic cell 9 is configured such that the state of energization of the first chamber electrode 84 and the second chamber electrode 85 is controlled by a control unit 15, which will be described later.
 第1室電極84および第2室電極85としては、たとえば、白金電極を用いることができる。 As the first chamber electrode 84 and the second chamber electrode 85, platinum electrodes can be used, for example.
 隔膜83は、第1室81内の液体と、第2室82内の液体と、を隔てる多孔質膜であり、対流による各室間の液体の混合を抑制しながら、泳動による各室間でのイオン移動を可能とする。隔膜83は、電解槽9内に設けられる膜であり、たとえば、第1室電極84付近で生成する酸性電解水と第2室電極85付近で生成するアルカリ性電解水との混合を抑制する。これにより、酸性電解水中の水素イオンおよびアルカリ性電解水中の水酸化物イオンが中和反応により消費されることを抑制できる。このため、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34の再生効率低下を抑制できる。 The diaphragm 83 is a porous membrane that separates the liquid in the first chamber 81 and the liquid in the second chamber 82, and suppresses the mixing of liquid between the chambers by convection, while preventing the liquid from flowing between the chambers by electrophoresis. ion movement is possible. The diaphragm 83 is a membrane provided in the electrolytic cell 9, and suppresses mixing of the acidic electrolyzed water generated near the first chamber electrode 84 and the alkaline electrolyzed water generated near the second chamber electrode 85, for example. Thereby, hydrogen ions in the acidic electrolyzed water and hydroxide ions in the alkaline electrolyzed water can be suppressed from being consumed by the neutralization reaction. Therefore, a decrease in the regeneration efficiency of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 can be suppressed.
 また、隔膜83により、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34のうち、一方のイオン交換樹脂の再生が先に終わった場合の他方のイオン交換樹脂の再生効率低下を抑制することもできる。具体的には、隔膜83がない場合、酸性電解水とアルカリ性電解水とが混合しやすい環境となる。たとえば、弱塩基性陰イオン交換樹脂34の再生に対して、弱酸性陽イオン交換樹脂33の再生が先に完了すると、弱酸性陽イオン交換樹脂33の再生に供されていた酸性電解水中の水素イオンが、アルカリ性電解水中の水酸化物イオンと反応して、中和により水酸化物イオンが消費されてしまう。 Furthermore, the diaphragm 83 suppresses a decrease in the regeneration efficiency of the other ion exchange resin when the regeneration of one of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 is completed first. You can also. Specifically, when there is no diaphragm 83, the environment becomes such that acidic electrolyzed water and alkaline electrolyzed water are likely to mix. For example, if the regeneration of the weakly acidic cation exchange resin 33 is completed before the regeneration of the weakly basic anion exchange resin 34, hydrogen in the acidic electrolyzed water that was used for the regeneration of the weakly acidic cation exchange resin 33 is The ions react with hydroxide ions in the alkaline electrolyzed water, and the hydroxide ions are consumed by neutralization.
 つまり、隔膜83を有さない場合には、一方のイオン交換樹脂の再生が先に完了すると、他方のイオン交換樹脂の再生効率が低下しやすい。しかし、隔膜83により、電解槽9の内部を第1室81と第2室82とに隔てることで、一方のイオン交換樹脂の再生が完了した場合においても、その再生に供されていた電解水と、他方のイオン交換樹脂の再生に供される電解水との混合を抑制可能となる。したがって、隔膜83により、一方のイオン交換樹脂の再生が先に終わった場合の他方のイオン交換樹脂の再生効率低下についても抑制可能となる。 In other words, in the case where the diaphragm 83 is not provided, if the regeneration of one ion exchange resin is completed first, the regeneration efficiency of the other ion exchange resin tends to decrease. However, by dividing the inside of the electrolytic cell 9 into the first chamber 81 and the second chamber 82 by the diaphragm 83, even when the regeneration of one of the ion exchange resins is completed, the electrolyzed water that was used for the regeneration is It becomes possible to suppress mixing of the ion exchange resin and the electrolyzed water used for regenerating the other ion exchange resin. Therefore, the diaphragm 83 can also suppress a decrease in the regeneration efficiency of the other ion exchange resin when the regeneration of one ion exchange resin is completed first.
 隔膜83としては、たとえばフッ素系の多孔質膜を用いることができる。なお、隔膜83に用いる多孔質膜として、フッ素系の他に、炭化水素系の多孔質膜など、一般的に用いられる多孔質膜を用いてもよいが、フッ素系の多孔質膜は耐久性に優れるため、本実施の形態の軟水化装置1では、フッ素系の多孔質膜を用いている。 As the diaphragm 83, for example, a fluorine-based porous membrane can be used. Note that as the porous membrane used for the diaphragm 83, other than fluorine-based porous membranes, commonly used porous membranes such as hydrocarbon-based porous membranes may be used; however, fluorine-based porous membranes have poor durability. For this reason, the water softening device 1 of this embodiment uses a fluorine-based porous membrane.
 (1.4.2 送水ポンプ)
 第1送水ポンプ11は、再生装置8による再生処理の際に、軟水槽再生循環流路39(図3および図4参照)に酸性電解水を流通させる機器である。第1送水ポンプ11は、第1軟水槽3aと電解槽9との間を連通接続する第1回収流路37に設けられている。このような配置とするのは、第1送水ポンプ11だけで軟水槽再生循環流路39に酸性電解水を循環させやすくするためである。
(1.4.2 Water pump)
The first water pump 11 is a device that distributes acidic electrolyzed water to the soft water tank regeneration circulation channel 39 (see FIGS. 3 and 4) during regeneration processing by the regeneration device 8. The first water pump 11 is provided in a first recovery channel 37 that communicates and connects the first soft water tank 3a and the electrolytic tank 9. The reason for this arrangement is to make it easier to circulate the acidic electrolyzed water in the soft water tank regeneration circulation channel 39 using only the first water pump 11.
 第2送水ポンプ12は、中和槽再生循環流路40(図3および図4参照)にアルカリ性電解水を流通させる機器である。第2送水ポンプ12は、第1中和槽4aと電解槽9との間を連通接続する第2回収流路38に設けられている。このような配置とするのは、第2送水ポンプ12だけで中和槽再生循環流路40にアルカリ性電解水を循環させやすくするためである。 The second water pump 12 is a device that allows alkaline electrolyzed water to flow through the neutralization tank regeneration circulation channel 40 (see FIGS. 3 and 4). The second water pump 12 is provided in a second recovery channel 38 that communicates and connects the first neutralization tank 4a and the electrolytic tank 9. The reason for this arrangement is to facilitate the circulation of alkaline electrolyzed water in the neutralization tank regeneration circulation channel 40 using only the second water pump 12.
 また、第1送水ポンプ11および第2送水ポンプ12は、無線または有線により、後述する制御部15と通信可能に接続されている。 Furthermore, the first water pump 11 and the second water pump 12 are communicably connected to a control unit 15, which will be described later, by wireless or wire.
 (1.4.3 捕捉部)
 捕捉部10は、電解槽9と第2中和槽4bとを連通接続する第2供給流路36に設けられている。
(1.4.3 Capture part)
The capture unit 10 is provided in the second supply channel 36 that communicates and connects the electrolytic cell 9 and the second neutralization tank 4b.
 捕捉部10は、電解槽9から送出されたアルカリ性電解水に含まれる析出物を捕捉する。析出物とは、電解槽9内において、再生処理の際に第1軟水槽3aおよび第2軟水槽3bから放出された陽イオンである硬度成分がアルカリ性電解水と反応することにより生じる反応生成物である。 The capturing unit 10 captures precipitates contained in the alkaline electrolyzed water sent out from the electrolytic cell 9. Precipitates are reaction products produced when hardness components, which are cations released from the first water softening tank 3a and the second water softening tank 3b during regeneration treatment, react with alkaline electrolyzed water in the electrolytic cell 9. It is.
 より詳細には、電解槽9で水の電気分解が行われている間、再生処理時に第1軟水槽3aと第2軟水槽3bとから放出される硬度成分(たとえば、カルシウムイオン、およびマグネシウムイオン)は、隔膜83を介して陰極側に移動する。陰極側ではアルカリ性電解水が生成しているため、硬度成分とアルカリ性電解水とが反応し、析出物が発生する。たとえば、硬度成分がカルシウムイオンの場合には、アルカリ性電解水と混合されることにより、炭酸カルシウムが生じる反応が起こったり、水酸化カルシウムが生じる反応が起こったりする。 More specifically, while water is being electrolyzed in the electrolytic cell 9, hardness components (for example, calcium ions and magnesium ions) released from the first water softening tank 3a and the second water softening tank 3b during the regeneration process are ) moves to the cathode side via the diaphragm 83. Since alkaline electrolyzed water is generated on the cathode side, the hardness component and alkaline electrolyzed water react to generate precipitates. For example, when the hardness component is calcium ion, when mixed with alkaline electrolyzed water, a reaction occurs that produces calcium carbonate or a reaction that produces calcium hydroxide.
 このような硬度成分に由来する析出物が、第2供給流路36に設けられた捕捉部10で析出物として捕捉される。硬度成分に由来する析出物を捕捉部10で捕捉することにより、析出物が第2中和槽4bに流入し、堆積することを抑制できる。したがって、再生処理の終了後に軟水化処理を再開する場合に、第2中和槽4bに堆積した析出物が第1軟水槽3aおよび第2軟水槽3bから放出された水素イオンと反応してイオン化することを原因とする、第2中和槽4bから送出される軟水の硬度上昇を抑制できる。 Precipitates derived from such hardness components are captured as precipitates in the capture section 10 provided in the second supply channel 36. By trapping precipitates derived from hardness components in the trapping section 10, it is possible to suppress the precipitates from flowing into the second neutralization tank 4b and accumulating. Therefore, when restarting the water softening process after the completion of the regeneration process, the precipitates accumulated in the second neutralization tank 4b react with the hydrogen ions released from the first water softening tank 3a and the second water softening tank 3b, and are ionized. It is possible to suppress an increase in the hardness of the soft water sent out from the second neutralization tank 4b due to this.
 また、再生処理の際に、硬度成分に由来する析出物が捕捉部10を通過したアルカリ性電解水は、第2中和槽4bと第1中和槽4aとを流通した後、電解槽9で再度電気分解され、再度アルカリ性電解水として、弱塩基性陰イオン交換樹脂34の再生に供される。このとき、捕捉部10を備えない場合と比較して、酸性電解水が含有する硬度成分は減少する。つまり、捕捉部10で析出物を捕捉することにより、酸性電解水の硬度が低下するため、第1軟水槽3aと第2軟水槽3bとに流入する硬度成分を減少させることができ、弱酸性陽イオン交換樹脂33の再生効率の低下を抑制できる。 In addition, during the regeneration process, the alkaline electrolyzed water in which precipitates derived from hardness components have passed through the trapping section 10 flows through the second neutralization tank 4b and the first neutralization tank 4a, and then flows into the electrolytic tank 9. It is electrolyzed again and used again as alkaline electrolyzed water to regenerate the weakly basic anion exchange resin 34. At this time, the hardness component contained in the acidic electrolyzed water is reduced compared to the case where the capturing section 10 is not provided. In other words, by capturing the precipitates in the capturing section 10, the hardness of the acidic electrolyzed water is reduced, so that the hardness component flowing into the first soft water tank 3a and the second soft water tank 3b can be reduced, and the weakly acidic electrolyzed water can be reduced. A decrease in the regeneration efficiency of the cation exchange resin 33 can be suppressed.
 なお、「硬度成分が反応する」とは、硬度成分すべてが反応することのみならず、反応しない成分または溶解度積を超えない成分が含まれている状態も含むものとする。 Note that "hardness components react" includes not only a state in which all hardness components react, but also a state in which components that do not react or components whose solubility product does not exceed are included.
 捕捉部10としては、硬度成分とアルカリ性電解水との反応により生じる析出物を分離可能であればその形態を問わない。たとえば、カートリッジタイプのフィルタ、粒状ろ材を用いたろ過層、サイクロン型の固液分離機、および中空糸膜などを用いる形態が挙げられる。 The trapping section 10 may have any form as long as it can separate the precipitate generated by the reaction between the hardness component and the alkaline electrolyzed water. Examples include configurations using cartridge type filters, filtration layers using granular filter media, cyclone type solid-liquid separators, and hollow fiber membranes.
 捕捉部10の形態として一般的に使用される手段としては、カートリッジタイプのフィルタが挙げられる。カートリッジタイプのフィルタとしては、糸巻きフィルタのような深層ろ過型、プリーツフィルタおよびメンブレンフィルタのような表面ろ過型、またはこれらを組み合わせて使用することができる。 A cartridge-type filter is a commonly used means for the capture unit 10. As the cartridge type filter, a deep filtration type such as a thread-wound filter, a surface filtration type such as a pleated filter and a membrane filter, or a combination thereof can be used.
 捕捉部10は、開閉弁22および捕捉部排水口14を備える。 The trap 10 includes an on-off valve 22 and a trap drain port 14.
 開閉弁22は、捕捉部10の下部に設けられる弁であり、捕捉部10からの排水を制御する弁である。開閉弁22を開放することにより、捕捉部10内の水を捕捉部排水口14から装置外に排出できる。 The on-off valve 22 is a valve provided at the bottom of the trap 10 and is a valve that controls drainage from the trap 10. By opening the on-off valve 22, the water in the trap 10 can be discharged from the trap drain 14 to the outside of the apparatus.
 捕捉部排水口14は、捕捉部10内の水を装置外に排出する開口である。捕捉部排水口14の上流に設けられる開閉弁22を開放することにより、捕捉部排水口14から捕捉部10内の水を装置外に排出できる。 The trapping section drain port 14 is an opening that drains the water inside the trapping section 10 to the outside of the device. By opening the on-off valve 22 provided upstream of the trapping portion drain port 14, the water in the trapping portion 10 can be discharged from the trapping portion drain port 14 to the outside of the apparatus.
 (1.4.4 再生後水貯留槽)
 再生後水貯留槽64は、再生工程後に軟水槽再生循環流路39に残留する高硬度水(再生後水)を貯留する槽である。詳細は後述するが、再生工程後の軟水槽再生循環流路39には、軟水槽3から放出された硬度成分を大量に含む水である再生後水が存在する。この再生後水を貯留し、原水と混合させて混合水とすることで、次回の再生工程時において、電解槽9に電気伝導度の高い混合水を充填することができる。
(1.4.4 Water storage tank after regeneration)
The post-regeneration water storage tank 64 is a tank that stores high hardness water (post-regeneration water) remaining in the soft water tank regeneration circulation flow path 39 after the regeneration process. Although the details will be described later, after the regeneration process, the regenerated water, which is water containing a large amount of hardness components, is present in the soft water tank regeneration circulation flow path 39 after the regeneration process. By storing this regenerated water and mixing it with raw water to obtain mixed water, the electrolytic cell 9 can be filled with mixed water having high electrical conductivity during the next regeneration step.
 再生後水貯留槽64は、再生後水導入流路62により、混合部60と連通接続されており、槽内の再生後水を混合部60へと送出することが可能である。 The recycled water storage tank 64 is connected to the mixing section 60 through the recycled water introduction channel 62, and can send the recycled water in the tank to the mixing section 60.
 なお、再生後水貯留槽64の設置場所は、軟水槽再生循環流路39内であれば場所を問わないが、軟水槽再生循環流路39における電解槽9を起点として、電解槽9の下流側、かつ、第2軟水槽3bの上流側に設けられることが好ましい。このように設けることで、再生後水による軟水化工程への影響を抑制しつつ、貯水することができる。また、酸性である再生後水を貯留することができるため、下流の弱酸性陽イオン交換樹脂33への吸着を防ぐことができるとともに、中性の水から電解するときと比較して、電解時の第1室電極84および第2室電極85の負担を低減できる。 Note that the post-regeneration water storage tank 64 may be installed anywhere as long as it is within the soft water tank regeneration circulation flow path 39; It is preferable that the second soft water tank 3b be provided on the upstream side of the second soft water tank 3b. By providing in this way, it is possible to store water while suppressing the influence of water after regeneration on the water softening process. In addition, since the acidic regenerated water can be stored, it is possible to prevent adsorption to the downstream weakly acidic cation exchange resin 33, and it is possible to prevent the water from being adsorbed to the downstream weakly acidic cation exchange resin 33. The burden on the first chamber electrode 84 and the second chamber electrode 85 can be reduced.
 (1.4.5 混合部)
 混合部60は、原水と、後述する再生工程の際に生じる再生後水とを混合し、混合水とする。混合部60により、原水よりも電気伝導度の高い混合水を得ることができる。生じた混合水は、供給流路72(図12および図13参照)により電解槽9へと供給される。
(1.4.5 Mixing section)
The mixing unit 60 mixes raw water and recycled water generated during a regeneration process to be described later, to obtain mixed water. The mixing unit 60 can obtain mixed water having higher electrical conductivity than raw water. The resulting mixed water is supplied to the electrolytic cell 9 through the supply channel 72 (see FIGS. 12 and 13).
 混合部60は、再生後水導入流路62により、再生後水貯留槽64と連通接続される。 The mixing section 60 is connected to a post-regeneration water storage tank 64 through a post-regeneration water introduction channel 62 .
 なお、混合部60の設置場所は、軟水槽再生循環流路39内であれば場所を問わないが、軟水槽再生循環流路39における電解槽9を起点として、電解槽9の下流側、かつ、第2軟水槽3bの上流側に設けられることが好ましい。 Note that the mixing section 60 may be installed anywhere within the water softener regeneration circulation flow path 39, but it may be located downstream of the electrolytic cell 9 in the water softener regeneration circulation flow path 39, starting from the electrolytic cell 9, and , is preferably provided upstream of the second soft water tank 3b.
 (1.5 開閉弁、流路切替えバルブ、および切換え弁)
 複数の開閉弁(開閉弁18~23および開閉弁63)は、それぞれ、各流路に設けられ、各流路において「開放」した状態と、「閉止」した状態とを切替える。
(1.5 On-off valve, flow path switching valve, and switching valve)
A plurality of on-off valves (on-off valves 18 to 23 and on-off valve 63) are provided in each flow path, and switch between an "open" state and a "closed" state in each flow path.
 複数の開閉弁のうち、開閉弁18、開閉弁19、開閉弁21、開閉弁23、および開閉弁63は、弁の開閉により、各流路への水の流通を開始または停止する。 Among the plurality of on-off valves, on-off valve 18, on-off valve 19, on-off valve 21, on-off valve 23, and on-off valve 63 start or stop the flow of water to each flow path by opening and closing the valves.
 開閉弁20および開閉弁22は、後述する再生流路洗浄工程、電解槽洗浄工程、または捕捉部洗浄工程などの際に開放した状態となり、再生循環水を装置外に排出する。詳細については後述する。 The on-off valve 20 and the on-off valve 22 are in an open state during a regeneration channel cleaning process, an electrolytic cell cleaning process, a capturing part cleaning process, etc., which will be described later, and discharge the regenerated circulating water to the outside of the apparatus. Details will be described later.
 複数の流路切替えバルブ(流路切替えバルブ24~27)は、それぞれ、第1軟水槽3a、第2軟水槽3b、第1中和槽4a、および第2中和槽4bに設けられる。複数の流路切替えバルブはいずれも、3つの開口を備えている。1つ目の開口は水の流入および流出が可能な流入流出口であり、2つ目の開口は流出口としては機能せず流入口として機能する流入口であり、3つ目の開口は流入口としては機能せず流出口として機能する流出口である。 A plurality of flow path switching valves (flow path switching valves 24 to 27) are provided in the first soft water tank 3a, the second soft water tank 3b, the first neutralization tank 4a, and the second neutralization tank 4b, respectively. Each of the plurality of flow path switching valves has three openings. The first opening is an inlet/outlet that allows water to flow in and out, the second opening is an inlet that does not function as an outlet but as an inlet, and the third opening is an inlet that allows water to flow in and out. This is an outlet that does not function as an inlet but as an outlet.
 複数の流路切替えバルブはいずれも、流入流出口が常に「開放」しており、通水方向により、流入口および流出口のうちどちらか一方が「開放」している時には、他方は「閉止」している。流路切替えバルブ24~27を備えることにより、軟水化装置1内の各流路に必要な開閉弁の数を減少でき、軟水化装置1のコストを低減できる。 In all of the multiple flow path switching valves, the inflow and outflow ports are always "open", and depending on the water flow direction, when either the inflow port or the outflow port is "open", the other is "closed". "are doing. By providing the flow path switching valves 24 to 27, the number of on-off valves required for each flow path in the water softening device 1 can be reduced, and the cost of the water softening device 1 can be reduced.
 複数の切換え弁(第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および、第2流入切換え弁94)は、それぞれ、各流路に設けられ、3つの開口を備えている。3つの開口のうち、1つの開口は常に「開放」状態であり、残り2つの開口は、どちらか一方が「開放」しているときには、他方の開口は「閉止」している。 A plurality of switching valves (a first discharge switching valve 91, a second discharge switching valve 92, a first inflow switching valve 93, and a second inflow switching valve 94) are provided in each flow path, and have three openings. We are prepared. Among the three openings, one opening is always in an "open" state, and when one of the remaining two openings is "open", the other opening is "closed".
 第1吐出切換え弁91の常に「開放」状態である1つの開口は第1吐出口87と接続されており、電解槽9の第1室81から吐出される水が流入する。また、残り2つの開口のうち一方の開口は、流路105と接続されており、他方の開口は流路107と接続されている。 One opening of the first discharge switching valve 91 that is always in the "open" state is connected to the first discharge port 87, into which water discharged from the first chamber 81 of the electrolytic cell 9 flows. Furthermore, one of the remaining two openings is connected to the flow path 105 and the other opening is connected to the flow path 107.
 第2吐出切換え弁92の常に「開放」状態である1つの開口は第2吐出口89と接続されており、電解槽9の第2室82から吐出される水が流入する。また、残り2つの開口のうち一方の開口は、流路106と接続されており、他方の開口は流路108と接続されている。 One opening of the second discharge switching valve 92 that is always in the "open" state is connected to the second discharge port 89, into which water discharged from the second chamber 82 of the electrolytic cell 9 flows. Furthermore, one of the remaining two openings is connected to the flow path 106 and the other opening is connected to the flow path 108.
 第1流入切換え弁93の常に「開放」状態である1つの開口は第1送水ポンプ11と接続されており、第1送水ポンプ11より吐出された水が流入する。また、残り2つの開口のうち一方の開口は、流路101と接続されており、他方の開口は流路102と接続されている。 One opening of the first inflow switching valve 93 that is always in the "open" state is connected to the first water pump 11, and water discharged from the first water pump 11 flows therein. Furthermore, one of the remaining two openings is connected to the flow path 101 and the other opening is connected to the flow path 102.
 第2流入切換え弁94の常に「開放」状態である1つの開口は第2送水ポンプ12と接続されており、第2送水ポンプ12より吐出された水が流入する。また、残り2つの開口のうち一方の開口は、流路103と接続されており、他方の開口は流路104と接続されている。 One opening of the second inflow switching valve 94 that is always in the "open" state is connected to the second water pump 12, and water discharged from the second water pump 12 flows therein. Furthermore, one of the remaining two openings is connected to the flow path 103 and the other opening is connected to the flow path 104.
 また、複数の開閉弁(開閉弁18~23および開閉弁63)、複数の流路切替えバルブ(流路切替えバルブ24~27)、ならびに、複数の切換え弁(第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94)のそれぞれは、無線または有線により、後述する制御部15と通信可能に接続されている。 In addition, a plurality of on-off valves (on-off valves 18 to 23 and an on-off valve 63), a plurality of flow path switching valves (flow path switching valves 24 to 27), and a plurality of switching valves (a first discharge switching valve 91, a second discharge switching valve 91, a second Each of the discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94) is communicably connected to a control unit 15, which will be described later, by wireless or wire.
 (1.6 排水口)
 排水口13は、排水流路54の端部に設けられた開口であり、再生経路洗浄工程および電解槽洗浄工程において、装置内の水を装置外に排出する開口である。排水口13の上流には開閉弁20が設けられており、開閉弁20を開放することにより、排水口13から排水を行うことができる。
(1.6 Drain port)
The drain port 13 is an opening provided at the end of the drain channel 54, and is an opening for draining water inside the device to the outside of the device in the regeneration path cleaning step and the electrolytic tank cleaning step. An on-off valve 20 is provided upstream of the drain port 13, and by opening the on-off valve 20, water can be drained from the drain port 13.
 (1.7 制御部)
 図16を参照して、制御部15について説明する。図16は、第1の実施の形態に係る軟水化装置1の機能ブロック図である。
(1.7 Control section)
The control section 15 will be explained with reference to FIG. 16. FIG. 16 is a functional block diagram of the water softening device 1 according to the first embodiment.
 制御部15は、再生工程時に、電解槽9の運転状態に基づいて、第1室81から送出される電解水および第2室82から送出される電解水の送出先を決定する。 During the regeneration process, the control unit 15 determines the destination of the electrolyzed water sent from the first chamber 81 and the electrolyzed water sent from the second chamber 82 based on the operating state of the electrolytic cell 9.
 また、制御部15は、軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程の各工程の実行ならびに各工程間の切替えを制御する。 Further, the control unit 15 controls execution of each process of a water softening process, a mixing process, a regeneration process, a water storage process, a regeneration flow path cleaning process, an electrolytic tank cleaning process, and a trap cleaning process, and switching between each process. .
 具体的には、制御部15は、軟水化工程から混合工程への切替え、混合工程から再生工程への切替え、再生工程から貯水工程への切替え、貯水工程から再生流路洗浄工程への切替え、再生流路洗浄工程から電解槽洗浄工程への切替え、電解槽洗浄工程から捕捉部洗浄工程への切替え、および、捕捉部洗浄工程から軟水化工程への切替えを制御する。 Specifically, the control unit 15 switches from the water softening process to the mixing process, from the mixing process to the regeneration process, from the regeneration process to the water storage process, from the water storage process to the regeneration channel cleaning process, Controls switching from the regeneration channel cleaning process to the electrolytic tank cleaning process, switching from the electrolytic tank cleaning process to the trap cleaning process, and switching from the trap cleaning process to the water softening process.
 また、制御部15は、開閉弁20および開閉弁22を制御し、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程の際の排水を制御する。 Further, the control unit 15 controls the on-off valve 20 and the on-off valve 22, and controls drainage during the regeneration flow path cleaning process, the electrolytic tank cleaning process, and the trap cleaning process.
 制御部15は、流路切替えバルブ24~27、開閉弁18、開閉弁19、開閉弁21、開閉弁23、開閉弁63、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および、第2流入切換え弁94を制御し、流路の切替えを実行する。 The control unit 15 includes flow path switching valves 24 to 27, an on-off valve 18, an on-off valve 19, an on-off valve 21, an on-off valve 23, an on-off valve 63, a first discharge switching valve 91, a second discharge switching valve 92, and a first inflow switching valve. The switching valve 93 and the second inflow switching valve 94 are controlled to switch the flow path.
 制御部15は、切替部111と、経過時間記憶部112と、経過時間比較部113と、正運転時間記憶部114と、反転運転時間記憶部115と、運転状態記憶部116と、運転時間比較部117と、を備える。 The control section 15 includes a switching section 111, an elapsed time storage section 112, an elapsed time comparison section 113, a normal operation time storage section 114, a reverse operation time storage section 115, an operation state storage section 116, and an operation time comparison section. 117.
 切替部111は、再生工程時の電解槽9の運転状態を切替える。具体的には、切替部111は、電解槽9の運転状態を正運転から反転運転に切替える切替えと、反転運転から正運転に切替える切替えと、を行う。つまり、切替部111により、第1室電極84と第2室電極85とが、陽極と陰極との組み合わせ、または陰極と陽極との組み合わせになるように交互に切替えられる。 The switching unit 111 switches the operating state of the electrolytic cell 9 during the regeneration process. Specifically, the switching unit 111 switches the operating state of the electrolytic cell 9 from normal operation to reverse operation, and from reverse operation to normal operation. That is, the switching unit 111 alternately switches the first chamber electrode 84 and the second chamber electrode 85 to a combination of an anode and a cathode or a combination of a cathode and an anode.
 経過時間記憶部112は、切替部111による電解槽9の運転状態の切替えが実行されてからの経過時間を記憶する。具体的には、たとえば、電解槽が正運転から反転運転に切り替わった場合、反転運転を開始してからの経過時間を記憶する。 The elapsed time storage unit 112 stores the elapsed time since the switching unit 111 switched the operating state of the electrolytic cell 9. Specifically, for example, when the electrolytic cell is switched from normal operation to reverse operation, the elapsed time after starting the reverse operation is stored.
 経過時間比較部113は、経過時間記憶部112が記憶した経過時間と、所定の基準時間と、を比較する。 The elapsed time comparison unit 113 compares the elapsed time stored in the elapsed time storage unit 112 and a predetermined reference time.
 なお、所定の基準時間とは、たとえば、6時間であり、再生運転時に陰極として使用される電極に析出する固体量によって決定される。陰極上に固体が析出した状態で運転を行うと、電解槽9の消費電力が増加する。そのため、電解槽9の運転を開始してから電極上への固体の析出もしくは堆積が起こる時間、または、電極上に固体が大量に析出する(たとえば、陰極表面を全面的に被覆する状態)までの時間を所定の基準時間とすることが好ましい。これにより、電解槽9の消費電力を抑制でき、電極上にスケールが堆積したまま電解槽9が継続的に使用される可能性を低減できるので、電解槽9の耐用期間を長期化することができる。 Note that the predetermined reference time is, for example, 6 hours, and is determined by the amount of solids deposited on the electrode used as a cathode during regeneration operation. If the electrolytic cell 9 is operated with solids deposited on the cathode, the power consumption of the electrolytic cell 9 will increase. Therefore, from the start of operation of the electrolytic cell 9 to the time when solids are precipitated or deposited on the electrodes, or until a large amount of solids are deposited on the electrodes (for example, until the cathode surface is completely covered). It is preferable to set the time as the predetermined reference time. As a result, the power consumption of the electrolytic cell 9 can be suppressed, and the possibility that the electrolytic cell 9 will be used continuously with scale deposited on the electrodes can be reduced, so the service life of the electrolytic cell 9 can be extended. can.
 正運転時間記憶部114は、正運転の実行時間である正運転時間を記憶する。なお、正運転時間とは、第1室電極84が陽極、第2室電極85が陰極として使用される時間である。 The normal operation time storage unit 114 stores the normal operation time, which is the execution time of the normal operation. Note that the normal operation time is the time during which the first chamber electrode 84 is used as an anode and the second chamber electrode 85 is used as a cathode.
 反転運転時間記憶部115は、反転運転の実行時間である反転運転時間を記憶する。なお、反転運転時間とは、第1室電極84が陰極、第2室電極85が陽極として使用される時間である。 The reversing operation time storage unit 115 stores the reversing operation time which is the execution time of the reversing operation. Note that the reversal operation time is the time during which the first chamber electrode 84 is used as a cathode and the second chamber electrode 85 is used as an anode.
 運転状態記憶部116は、再生工程終了時における電解槽9の運転状態を記憶する。 The operating state storage unit 116 stores the operating state of the electrolytic cell 9 at the end of the regeneration process.
 運転時間比較部117は、所定の基準時間と、正運転時間または反転運転時間と、を比較する。 The operation time comparison unit 117 compares a predetermined reference time with the normal operation time or the reverse operation time.
 なお、制御部15は、プロセッサおよびメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部として機能する。なお、プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカードなどの非一時的な記録媒体に記録されて提供されてもよいし、インターネットなどの電気通信回線を通じて提供されてもよい。 Note that the control unit 15 has a computer system including a processor and a memory. The computer system functions as a control unit by the processor executing the program stored in the memory. Note that although the program executed by the processor is pre-recorded in the memory of the computer system here, it may also be recorded and provided on a non-temporary recording medium such as a memory card, or it may be provided via an electric network such as the Internet. It may also be provided through a communication line.
 (1.8 各流路)
 (1.8.1 流路)
 流路53は、流入口2と取水口7とを連通接続する流路であり、流路53上には開閉弁18が設けられている。流路53により、再生工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程のいずれを実施している場合でも、軟水化装置1の利用者は、取水口7から原水を得ることができる。
(1.8 Each flow path)
(1.8.1 Flow path)
The flow path 53 is a flow path that communicates and connects the inlet 2 and the water intake 7, and an on-off valve 18 is provided on the flow path 53. Regardless of whether a regeneration process, a regeneration flow path cleaning process, an electrolytic tank cleaning process, or a trapping part cleaning process is being performed through the flow path 53, the user of the water softening device 1 can obtain raw water from the water intake port 7. be able to.
 (1.8.2 再生後水導入流路)
 再生後水導入流路62は、再生工程終了後において再生後水貯留槽64に再生後水を供給し、後述する混合工程時において混合部60に再生後水を供給する流路である。
(1.8.2 Water introduction channel after regeneration)
The regenerated water introduction flow path 62 is a flow path that supplies regenerated water to the regenerated water storage tank 64 after the regeneration process is completed, and supplies the regenerated water to the mixing section 60 during the mixing process described later.
 再生後水導入流路62は、第1供給流路35と接続する混合部60と、再生後水貯留槽64と、を連通接続する流路である。再生後水導入流路62上に開閉弁63が設けられる。再生後水導入流路62は、再生工程終了後に、開閉弁63の開放に伴い、軟水槽再生循環流路39、特に第1供給流路35に残存する再生後水を再生後水貯留槽64に導入する。また、再生後水導入流路62は、混合工程時に、開閉弁63の開放に伴い、再生後水貯留槽64に貯留された再生後水を混合部60に導入する。 The recycled water introduction channel 62 is a channel that communicates and connects the mixing section 60 connected to the first supply channel 35 and the recycled water storage tank 64. An on-off valve 63 is provided on the post-regeneration water introduction channel 62 . After the regeneration process is completed, the regeneration water introduction flow path 62 transfers the regeneration water remaining in the soft water tank regeneration circulation flow path 39, particularly the first supply flow path 35, to the regeneration water storage tank 64 when the on-off valve 63 is opened. to be introduced. Further, the regenerated water introduction channel 62 introduces the regenerated water stored in the regenerated water storage tank 64 into the mixing section 60 when the on-off valve 63 is opened during the mixing process.
 (1.8.3 軟水化流路)
 図2を参照して、軟水化装置1の軟水化工程の際に形成される軟水化流路43について説明する。図2は、軟水化装置1の軟水化流路43の構成を示す図である。
(1.8.3 Water softening channel)
With reference to FIG. 2, the water softening channel 43 formed during the water softening process of the water softening device 1 will be described. FIG. 2 is a diagram showing the configuration of the water softening channel 43 of the water softening device 1.
 軟水化流路43(図2の斜線矢印)は、原水の軟水化を行う流路である。軟水化流路43を流通した原水は、中性の軟水となり、取水口7から装置外に排出される。 The water softening channel 43 (diagonal arrow in FIG. 2) is a channel that softens raw water. The raw water flowing through the water softening channel 43 becomes neutral soft water and is discharged from the water intake port 7 to the outside of the apparatus.
 軟水化流路43は、流入口2、流路28、第1軟水槽3a、流路29、第1中和槽4a、流路30、第2軟水槽3b、流路31、第2中和槽4b、流路32、および取水口7により形成される。 The water softening channel 43 includes an inlet 2, a channel 28, a first water softening tank 3a, a channel 29, a first neutralizing tank 4a, a channel 30, a second water softening tank 3b, a channel 31, and a second neutralizing tank. It is formed by the tank 4b, the flow path 32, and the water intake port 7.
 流路28は、流入口2から第1軟水槽3aまでを接続する流路である。つまり、流路28は、硬度成分を含む原水を流入口2から第1軟水槽3aへ導く流路である。 The flow path 28 is a flow path that connects the inlet 2 to the first soft water tank 3a. In other words, the flow path 28 is a flow path that guides raw water containing hardness components from the inlet 2 to the first soft water tank 3a.
 流路29は、第1軟水槽3aから第1中和槽4aまでを接続する流路である。つまり、流路29は、第1軟水槽3aで軟水化された水を第1中和槽4aへ導く流路である。 The flow path 29 is a flow path that connects the first soft water tank 3a to the first neutralization tank 4a. In other words, the flow path 29 is a flow path that guides the water softened in the first water softening tank 3a to the first neutralization tank 4a.
 流路30は、第1中和槽4aから第2軟水槽3bまでを接続する流路である。つまり、流路30は、第1中和槽4aで中和された水を第2軟水槽3bへ導く流路である。 The flow path 30 is a flow path that connects the first neutralization tank 4a to the second soft water tank 3b. That is, the flow path 30 is a flow path that guides the water neutralized in the first neutralization tank 4a to the second soft water tank 3b.
 流路31は、第2軟水槽3bから第2中和槽4bまでを接続する流路である。つまり、流路31は、第2軟水槽3bで軟水化された水を第2中和槽4bへ導く流路である。 The flow path 31 is a flow path that connects the second water softening tank 3b to the second neutralization tank 4b. That is, the flow path 31 is a flow path that guides the water softened in the second water softening tank 3b to the second neutralization tank 4b.
 流路32は、第2中和槽4bから取水口7までを接続する流路である。つまり、流路32は、第2中和槽4bで中和された水を取水口7へ導く流路である。 The flow path 32 is a flow path that connects the second neutralization tank 4b to the water intake 7. That is, the flow path 32 is a flow path that guides the water neutralized in the second neutralization tank 4b to the water intake port 7.
 図2に示すように、流入口2の下流側かつ第1軟水槽3aの上流側の流路28上に、開閉弁19が設置されている。また、上述した流路53には、開閉弁18が設置されている。開閉弁18を閉止して、開閉弁19を開放することにより、第1軟水槽3aと流入口2とが連通接続される。 As shown in FIG. 2, an on-off valve 19 is installed on the flow path 28 downstream of the inlet 2 and upstream of the first soft water tank 3a. Furthermore, an on-off valve 18 is installed in the flow path 53 described above. By closing the on-off valve 18 and opening the on-off valve 19, the first soft water tank 3a and the inlet 2 are connected to each other.
 また、流路切替えバルブ24を第1軟水槽3aと第1中和槽4aとが連通接続するように切替え、流路切替えバルブ25を第1中和槽4aと第2軟水槽3bとが連通接続するように切替え、流路切替えバルブ26を第2軟水槽3bと第2中和槽4bとが連通接続するように切替え、流路切替えバルブ27を第2中和槽4bと取水口7とが連通接続するように切替える。 Further, the flow path switching valve 24 is switched so that the first soft water tank 3a and the first neutralization tank 4a are connected to each other, and the flow path switching valve 25 is changed so that the first neutralization tank 4a and the second soft water tank 3b are connected to each other. The flow path switching valve 26 is switched so that the second water softening tank 3b and the second neutralization tank 4b are connected to each other, and the flow path switching valve 27 is switched so that the second neutralization tank 4b and the water intake 7 are connected to each other. Switch so that they are connected continuously.
 これにより、流入口2から流路28、第1軟水槽3a、流路29、第1中和槽4a、流路30、第2軟水槽3b、流路31、第2中和槽4b、流路32、取水口7までを連通接続する軟水化流路43が形成される。なお、このとき、開閉弁20、開閉弁21、および開閉弁23は閉止している。 Thereby, from the inlet 2 to the flow path 28, the first soft water tank 3a, the flow path 29, the first neutralization tank 4a, the flow path 30, the second soft water tank 3b, the flow path 31, the second neutralization tank 4b, the flow A water softening channel 43 is formed which communicates and connects the channel 32 and the water intake port 7. Note that at this time, the on-off valve 20, the on-off valve 21, and the on-off valve 23 are closed.
 (1.8.4 再生循環流路)
 次に、図3、図4、および図15を参照して、軟水化装置1の再生工程の際に形成される軟水槽再生循環流路39および中和槽再生循環流路40について説明する。図3は、軟水化装置1の軟水槽再生循環流路39aと中和槽再生循環流路40aとの構成を示す図である。図4は、軟水化装置1の軟水槽再生循環流路39bと中和槽再生循環流路40bとの構成を示す図である。図15は、軟水化装置1の第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、第2流入切換え弁94、第1室電極84、および第2室電極85の動作時の状態について説明するための図である。
(1.8.4 Regeneration circulation channel)
Next, with reference to FIGS. 3, 4, and 15, the water softening tank regeneration circulation flow path 39 and the neutralization tank regeneration circulation flow path 40 that are formed during the regeneration process of the water softening device 1 will be described. FIG. 3 is a diagram showing the configuration of the water softening tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a of the water softening device 1. FIG. 4 is a diagram showing the configuration of the water softening tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b of the water softening device 1. FIG. 15 shows the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, the second inflow switching valve 94, the first chamber electrode 84, and the second chamber electrode 85 of the water softening device 1. FIG. 3 is a diagram for explaining a state during operation.
 なお、図15に示す「再生終了時a」とは、第1吐出切換え弁91が第1吐出口87から流路105へ、第2吐出切換え弁92が第2吐出口89から流路108へ、第1流入切換え弁93が第1送水ポンプ11から流路101へ、第2流入切換え弁94が第2送水ポンプ12から流路104へと、それぞれの切換え弁が各流路を送水可能となるように接続している状態である。なお、この状態においては、第1室電極84および第2室電極85は通電していない状態である。 Note that "at the end of regeneration a" shown in FIG. 15 means that the first discharge switching valve 91 moves from the first discharge port 87 to the flow path 105, and the second discharge switch valve 92 moves from the second discharge port 89 to the flow path 108. , the first inflow switching valve 93 allows water to flow from the first water pump 11 to the flow path 101, and the second inflow switching valve 94 allows water to flow from the second water pump 12 to the flow path 104. The connection is as follows. Note that in this state, the first chamber electrode 84 and the second chamber electrode 85 are not energized.
 図15に示す「再生終了時b」とは、第1吐出切換え弁91が第1吐出口87から流路106へ、第2吐出切換え弁92が第2吐出口89から流路107へ、第1流入切換え弁93が第1送水ポンプ11から流路102へ、第2流入切換え弁94が第2送水ポンプ12から流路103へと、それぞれの切換え弁が各流路を送水可能となるように接続している状態である。なお、この状態において、第1室電極84および第2室電極85は通電していない状態である。 "Regeneration end time b" shown in FIG. The first inflow switching valve 93 allows water to flow from the first water pump 11 to the flow path 102, and the second inflow switching valve 94 allows water to flow from the second water pump 12 to the flow path 103. is connected to. Note that in this state, the first chamber electrode 84 and the second chamber electrode 85 are not energized.
 図3に示す軟水槽再生循環流路39aおよび中和槽再生循環流路40aは、前回の再生終了時に第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、第2流入切換え弁94、第1室電極84、および第2室電極85の状態が、前述した図15に示す「再生終了時a」である場合に構成される再生循環流路である。 The soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a shown in FIG. This is the regeneration circulation flow path configured when the inflow switching valve 94, the first chamber electrode 84, and the second chamber electrode 85 are in the “regeneration end time a” shown in FIG. 15 described above.
 また、図4に示す軟水槽再生循環流路39bおよび中和槽再生循環流路40bは、前回の再生終了時に第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、第2流入切換え弁94、第1室電極84、および第2室電極85の状態が、前述した図15に示す「再生終了時b」である場合に構成される再生循環流路である。 In addition, the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b shown in FIG. This is a regeneration circulation flow path configured when the second inflow switching valve 94, the first chamber electrode 84, and the second chamber electrode 85 are in the “regeneration end time b” shown in FIG. 15 described above.
 なお、図15に示す「再生時a」および「再生時b」では、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94による送水方向については、それぞれ、「再生終了時a」および「再生終了時b」と同一であるが、第1室電極84および第2室電極85への通電状態が異なる。「再生時a」では、第1室電極84は陽極として作用し、第2室電極85は陰極として作用する。つまり「再生時a」は電解槽9が正運転する場合を示している。一方、「再生時b」では、第1室電極84は陰極として作用し、第2室電極85は陽極として作用する。つまり「再生時b」は電解槽9が反転運転する場合を示している。 In addition, in "regeneration time a" and "regeneration time b" shown in FIG. are respectively the same as "at the end of regeneration a" and "at the end of regeneration b", but the energization states to the first chamber electrode 84 and the second chamber electrode 85 are different. At "regeneration time a", the first chamber electrode 84 acts as an anode, and the second chamber electrode 85 acts as a cathode. In other words, "regeneration time a" indicates a case where the electrolytic cell 9 is in normal operation. On the other hand, during "regeneration time b", the first chamber electrode 84 acts as a cathode, and the second chamber electrode 85 acts as an anode. In other words, "regeneration time b" indicates a case where the electrolytic cell 9 is operated in reverse.
 (1.8.4.1 軟水槽再生循環流路)
 軟水槽再生循環流路39(軟水槽再生循環流路39aおよび軟水槽再生循環流路39bをまとめて説明する場合にこのように記載する場合がある)について説明する。
(1.8.4.1 Soft water tank regeneration circulation flow path)
The water softener regeneration circulation flow path 39 (which may be described in this manner when the water softener regeneration circulation flow path 39a and the water softener regeneration circulation flow path 39b are described together) will be described.
 軟水槽再生循環流路39は、再生工程時に酸性電解水が流通することにより、第1軟水槽3aおよび第2軟水槽3bの再生を行う流路である。 The soft water tank regeneration circulation flow path 39 is a flow path that regenerates the first soft water tank 3a and the second soft water tank 3b by flowing acidic electrolyzed water during the regeneration process.
 まず、軟水槽再生循環流路39a(図3の白矢印を参照)は、電解槽9の第1室81で生成された酸性電解水を第1軟水槽3aおよび第2軟水槽3bへ流通させることにより再生を行う流路である。 First, the water softening tank regeneration circulation channel 39a (see the white arrow in FIG. 3) distributes the acidic electrolyzed water generated in the first chamber 81 of the electrolytic cell 9 to the first water softening tank 3a and the second water softening tank 3b. This is a flow path that performs regeneration.
 具体的には、軟水槽再生循環流路39aは、第1送水ポンプ11、流路101、第1流入口86、第1室81、第1吐出口87、流路105、混合部60、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、および第1回収流路37によって構成される。 Specifically, the water softening tank regeneration circulation channel 39a includes the first water pump 11, the channel 101, the first inlet 86, the first chamber 81, the first outlet 87, the channel 105, the mixing section 60, the first 1 supply flow path 35, second soft water tank 3b, neutralization tank bypass flow path 42, first soft water tank 3a, and first recovery flow path 37.
 第1供給流路35は、流路105および流路106の端部から、第2軟水槽3bの軟水化処理時の流入口2を起点とした下流側までを連通接続する流路であり、第2軟水槽3bへ電解槽9で生成された酸性電解水を供給する流路である。 The first supply flow path 35 is a flow path that communicates and connects from the end of the flow path 105 and the flow path 106 to the downstream side starting from the inlet 2 during water softening treatment of the second water softening tank 3b, This is a flow path that supplies acidic electrolyzed water generated in the electrolytic tank 9 to the second soft water tank 3b.
 中和槽バイパス流路42は、第1中和槽4aを迂回して第2軟水槽3bの上流側から第1軟水槽3aの下流側までを連通接続する流路であり、第2軟水槽3bから第1軟水槽3aへ酸性電解水を供給する流路である。 The neutralization tank bypass flow path 42 is a flow path that bypasses the first neutralization tank 4a and communicates and connects the upstream side of the second soft water tank 3b to the downstream side of the first soft water tank 3a. This is a flow path that supplies acidic electrolyzed water from 3b to the first soft water tank 3a.
 第1回収流路37は、第1軟水槽3aの上流側から第1送水ポンプ11までを連通接続する流路である。 The first recovery channel 37 is a channel that communicates and connects the upstream side of the first soft water tank 3a to the first water pump 11.
 次に、軟水槽再生循環流路39b(図4の白矢印を参照)は、電解槽9の第2室82で生成された酸性電解水を第1軟水槽3aおよび第2軟水槽3bへ流通させることにより再生を行う流路である。 Next, the water softening tank regeneration circulation flow path 39b (see the white arrow in FIG. 4) distributes the acidic electrolyzed water generated in the second chamber 82 of the electrolytic cell 9 to the first water softening tank 3a and the second water softening tank 3b. This is a flow path that performs regeneration by
 具体的には、軟水槽再生循環流路39bは、第1送水ポンプ11、流路102、第2流入口88、第2室82、第2吐出口89、流路106、混合部60、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、および第1回収流路37によって構成される。 Specifically, the water softening tank regeneration circulation channel 39b includes the first water pump 11, the channel 102, the second inlet 88, the second chamber 82, the second outlet 89, the channel 106, the mixing section 60, and the second inlet 88. 1 supply flow path 35, second soft water tank 3b, neutralization tank bypass flow path 42, first soft water tank 3a, and first recovery flow path 37.
 軟水槽再生循環流路39は、電解槽9から送出された酸性電解水を、第1軟水槽3aおよび第2軟水槽3bそれぞれの下流側から第1軟水槽3aおよび第2軟水槽3bに導入し、各軟水槽における下流側に比べて硬度成分の吸着量が多い上流側から流出させる流路である。なお、各軟水槽における下流側とは、軟水化処理時の流入口2を起点とした下流側のことをいう。 The water softening tank regeneration circulation flow path 39 introduces the acidic electrolyzed water sent out from the electrolytic tank 9 into the first water softening tank 3a and the second water softening tank 3b from the downstream sides of the first water softening tank 3a and the second water softening tank 3b, respectively. However, in each soft water tank, the water flows out from the upstream side where a larger amount of hardness components is adsorbed than the downstream side. Note that the downstream side in each water softening tank refers to the downstream side from the inlet 2 at the time of water softening treatment.
 (1.8.4.2 中和槽再生循環流路)
 次に、中和槽再生循環流路40(中和槽再生循環流路40aおよび中和槽再生循環流路40bをまとめて説明する場合にこのように記載する場合がある)について説明する。
(1.8.4.2 Neutralization tank regeneration circulation flow path)
Next, the neutralization tank regeneration circulation flow path 40 (which may be described in this manner when the neutralization tank regeneration circulation flow path 40a and the neutralization tank regeneration circulation flow path 40b are described together) will be described.
 中和槽再生循環流路40は、再生工程時にアルカリ性電解水が流通することにより、第1中和槽4aおよび第2中和槽4bの再生を行う流路である。 The neutralization tank regeneration circulation flow path 40 is a flow path that regenerates the first neutralization tank 4a and the second neutralization tank 4b by flowing alkaline electrolyzed water during the regeneration process.
 まず、中和槽再生循環流路40a(図3の黒矢印を参照)は、第2室82で生成されたアルカリ性電解水を第1中和槽4aおよび第2中和槽4bへ流通させることにより再生を行う流路である。 First, the neutralization tank regeneration circulation channel 40a (see the black arrow in FIG. 3) allows the alkaline electrolyzed water generated in the second chamber 82 to flow to the first neutralization tank 4a and the second neutralization tank 4b. This is a flow path that performs regeneration.
 具体的には、中和槽再生循環流路40aは、第2送水ポンプ12、流路104、第2流入口88、第2室82、第2吐出口89、流路108、捕捉部10、第2供給流路36、第2中和槽4b、軟水槽バイパス流路44、第1中和槽4a、および第2回収流路38によって構成される。 Specifically, the neutralization tank regeneration circulation flow path 40a includes the second water pump 12, the flow path 104, the second inlet 88, the second chamber 82, the second discharge port 89, the flow path 108, the capture section 10, It is constituted by the second supply channel 36, the second neutralization tank 4b, the soft water tank bypass channel 44, the first neutralization tank 4a, and the second recovery channel 38.
 第2供給流路36は、捕捉部10から、第2中和槽4bの下流側までを連通接続する流路であり、第2中和槽4bへアルカリ性電解水を供給する流路である。 The second supply flow path 36 is a flow path that communicates and connects the capture unit 10 to the downstream side of the second neutralization tank 4b, and is a flow path that supplies alkaline electrolyzed water to the second neutralization tank 4b.
 軟水槽バイパス流路44は、第2軟水槽3bを迂回して第2中和槽4bの上流側から第1中和槽4aの下流側までを連通接続する流路であり、第2中和槽4bから第1中和槽4aへアルカリ性電解水を供給する流路である。 The soft water tank bypass flow path 44 is a flow path that bypasses the second soft water tank 3b and communicates and connects the upstream side of the second neutralization tank 4b to the downstream side of the first neutralization tank 4a. This is a flow path that supplies alkaline electrolyzed water from the tank 4b to the first neutralization tank 4a.
 第2回収流路38は、第1中和槽4aの上流側から第2送水ポンプ12までを連通接続する流路である。 The second recovery channel 38 is a channel that communicates and connects the upstream side of the first neutralization tank 4a to the second water pump 12.
 次に、中和槽再生循環流路40b(図4の黒矢印を参照)は、第1室81で生成されたアルカリ性電解水を第1中和槽4aおよび第2中和槽4bへ流通させることにより再生を行う流路である。 Next, the neutralization tank regeneration circulation channel 40b (see the black arrow in FIG. 4) distributes the alkaline electrolyzed water generated in the first chamber 81 to the first neutralization tank 4a and the second neutralization tank 4b. This is a channel that performs regeneration.
 具体的には、中和槽再生循環流路40bは、第2送水ポンプ12、流路103、第1流入口86、第1室81、第1吐出口87、流路107、捕捉部10、第2供給流路36、第2中和槽4b、軟水槽バイパス流路44、第1中和槽4a、および第2回収流路38によって構成される。 Specifically, the neutralization tank regeneration circulation flow path 40b includes the second water pump 12, the flow path 103, the first inlet 86, the first chamber 81, the first discharge port 87, the flow path 107, the capture section 10, It is constituted by the second supply channel 36, the second neutralization tank 4b, the soft water tank bypass channel 44, the first neutralization tank 4a, and the second recovery channel 38.
 (1.8.5 貯水流路)
 次に、図5、図6、および図15を参照して、軟水化装置1の貯水工程の際に形成される貯水流路66について説明する。なお、貯水流路66aおよび貯水流路66bをまとめて説明する場合に貯水流路66と記載する場合がある。図5は、軟水化装置1の貯水流路66aの構成を示す図である。図6は、軟水化装置1の貯水流路66bの構成を示す図である。
(1.8.5 Water storage channel)
Next, with reference to FIGS. 5, 6, and 15, the water storage channel 66 formed during the water storage process of the water softening device 1 will be described. In addition, when explaining the water storage flow path 66a and the water storage flow path 66b together, it may be described as the water storage flow path 66. FIG. 5 is a diagram showing the configuration of the water storage channel 66a of the water softening device 1. FIG. 6 is a diagram showing the configuration of the water storage channel 66b of the water softening device 1.
 図5に示す貯水流路66aは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時a」である場合に構成される流路である。また、図6に示す貯水流路66bは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時b」である場合に構成される流路である。 In the water storage channel 66a shown in FIG. 5, at the end of the previous regeneration, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as described above. This is a flow path configured in the case of "regeneration end time a" shown in FIG. 15. In addition, in the water storage channel 66b shown in FIG. 6, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration are as follows. This is the flow path that is configured in the case of "regeneration end time b" shown in FIG. 15 described above.
 貯水流路66は、後述する貯水工程の際に、流路内に残存する高硬度水である再生後水を再生後水貯留槽64に送水する流路である。 The water storage flow path 66 is a flow path that sends recycled water, which is high hardness water remaining in the flow path, to the recycled water storage tank 64 during a water storage process to be described later.
 貯水流路66aは、図5における黒矢印で示すように、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、第1回収流路37、第1送水ポンプ11、流路101、第1室81、流路105、および混合部60内の再生後水を、再生後水導入流路62を介して再生後水貯留槽64に送水する流路である。 As shown by the black arrow in FIG. 5, the water storage flow path 66a includes the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, the first soft water tank 3a, the first recovery flow path 37, A flow for sending the regenerated water in the first water pump 11 , flow path 101 , first chamber 81 , flow path 105 , and mixing section 60 to the regenerated water storage tank 64 via the regenerated water introduction flow path 62 . It is a road.
 貯水流路66bは、図6における黒矢印で示すように、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、第1回収流路37、第1送水ポンプ11、流路102、第2室82、流路106、および混合部60内の再生後水を、再生後水導入流路62を介して再生後水貯留槽64に送水する流路である。 As shown by the black arrow in FIG. 6, the water storage flow path 66b includes the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, the first soft water tank 3a, the first recovery flow path 37, A flow for sending the regenerated water in the first water pump 11 , flow path 102 , second chamber 82 , flow path 106 , and mixing section 60 to the regenerated water storage tank 64 via the regenerated water introduction flow path 62 . It is a road.
 (1.8.6 再生流路洗浄流路)
 次に、図7、図8、および図15を参照して、軟水化装置1の再生流路洗浄工程の際に形成される再生流路洗浄流路45について説明する。なお、再生流路洗浄流路45aおよび再生流路洗浄流路45bをまとめて説明する場合に再生流路洗浄流路45と記載する場合がある。図7は、軟水化装置1の再生流路洗浄流路45aの構成を示す図である。図8は、軟水化装置1の再生流路洗浄流路45bの構成を示す図である。
(1.8.6 Regeneration channel cleaning channel)
Next, with reference to FIGS. 7, 8, and 15, the regeneration channel cleaning channel 45 formed during the regeneration channel cleaning process of the water softening device 1 will be described. Note that when the regeneration channel cleaning channel 45a and the regeneration channel cleaning channel 45b are collectively described, they may be referred to as the regeneration channel cleaning channel 45. FIG. 7 is a diagram showing the configuration of the regeneration channel cleaning channel 45a of the water softening device 1. FIG. 8 is a diagram showing the configuration of the regeneration channel cleaning channel 45b of the water softening device 1.
 図7に示す再生流路洗浄流路45aは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時a」である場合に構成される流路である。 In the regeneration channel cleaning channel 45a shown in FIG. 7, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are the same at the end of the previous regeneration. , which is a flow path configured in the case of "regeneration end time a" shown in FIG. 15 described above.
 また、図8に示す再生流路洗浄流路45bは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時b」である場合に構成される流路である。 In addition, the regeneration flow path cleaning flow path 45b shown in FIG. This flow path is configured when the state is "regeneration end time b" shown in FIG. 15 described above.
 再生流路洗浄流路45は、後述する再生流路洗浄工程の際に、流路内に残存する高硬度水を第1中和槽4aおよび第2中和槽4bを迂回させ、装置外に排出する流路である。 The regeneration flow path cleaning flow path 45 allows the high hardness water remaining in the flow path to bypass the first neutralization tank 4a and the second neutralization tank 4b and drain it out of the apparatus during a regeneration flow path cleaning step to be described later. This is a channel for discharging water.
 再生流路洗浄流路45a(図7参照)は、第1排水流路46aおよび第2排水流路47を含んで構成される。 The regeneration channel cleaning channel 45a (see FIG. 7) is configured to include a first drainage channel 46a and a second drainage channel 47.
 第1排水流路46aは、図7における白矢印で示すように、流入口2から、第1送水ポンプ11、流路101、第1流入口86、第1室81、第1吐出口87、流路105、開閉弁20、および排水口13を接続する各流路によって構成される。具体的には、第1排水流路46aは、流入口2から流入した原水を、流路28、第1回収流路37、第1送水ポンプ11、流路101、第1流入口86、第1室81,第1吐出口87、流路105、排水流路54、開閉弁20、排水口13の順に流通させる流路である。 As shown by the white arrow in FIG. 7, the first drainage channel 46a includes, from the inlet 2, the first water pump 11, the channel 101, the first inlet 86, the first chamber 81, the first discharge port 87, It is composed of a flow path 105, an on-off valve 20, and a flow path connecting the drain port 13. Specifically, the first drainage flow path 46a transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first recovery flow path 37, the first water pump 11, the flow path 101, the first inflow port 86, and the first drainage flow path 46a. The flow path includes the first chamber 81, the first discharge port 87, the flow path 105, the drainage flow path 54, the on-off valve 20, and the drain port 13 in this order.
 排水流路54は、一端部で第1供給流路35と接続する流路であり、他端部で排水口13と接続する流路である。排水流路54には開閉弁20が設けられており、開閉弁20を開放することで流路内の水を装置外に排水し、開閉弁20を閉止することで排水口13からの排水を停止することが可能である。 The drainage channel 54 is a channel that connects to the first supply channel 35 at one end, and connects to the drain port 13 at the other end. The drainage flow path 54 is provided with an on-off valve 20. By opening the on-off valve 20, water in the flow path is drained out of the device, and by closing the on-off valve 20, water is drained from the drain port 13. It is possible to stop.
 第2排水流路47は、図7および図8における黒矢印で示すように、流入口2から、第1軟水槽3a、第2軟水槽3b、混合部60、開閉弁20、および排水口13までを連通接続する各流路によって構成される。具体的には、第2排水流路47は、流入口2から流入した原水を、流路28、第1軟水槽3a、中和槽バイパス流路42、第2軟水槽3b、第1供給流路35、混合部60、排水流路54、開閉弁20、排水口13の順に流通させる流路である。 As shown by the black arrows in FIG. 7 and FIG. It is composed of channels that communicate and connect up to. Specifically, the second drainage flow path 47 transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3a, the neutralization tank bypass flow path 42, the second soft water tank 3b, and the first supply flow. The passage 35, the mixing part 60, the drainage passage 54, the on-off valve 20, and the drainage port 13 are made to flow in this order.
 なお、第2排水流路47を流通する水の流量は、第1排水流路46aを流通する水の流量よりも大きくなるよう制御されることが好ましい。これにより、軟水化工程時に使用される軟水槽を含む流路である第2排水流路47内の高硬度水を優先的に原水に置換することができる。したがって、軟水化工程を開始した際の高硬度水の影響を抑制できる。 Note that the flow rate of water flowing through the second drainage flow path 47 is preferably controlled to be greater than the flow rate of water flowing through the first drainage flow path 46a. Thereby, the highly hard water in the second drainage flow path 47, which is a flow path including a water softening tank used during the water softening process, can be preferentially replaced with raw water. Therefore, the influence of highly hard water when starting the water softening process can be suppressed.
 次に、再生流路洗浄流路45b(図8参照)は、第1排水流路46bおよび第2排水流路47を含んで構成される。 Next, the regeneration channel cleaning channel 45b (see FIG. 8) is configured to include a first drainage channel 46b and a second drainage channel 47.
 第1排水流路46bは、図8における白矢印で示すように、流入口2から、第1送水ポンプ11、流路102、第2流入口88、第2室82、第2吐出口89、流路106、開閉弁20、および排水口13を接続する各流路によって構成される。具体的には、第1排水流路46bは、流入口2から流入した原水を、流路28、第1回収流路37、第1送水ポンプ11、流路102、第2流入口88、第2室82、第2吐出口89、流路106、排水流路54、開閉弁20、排水口13の順に流通させる流路である。 As shown by the white arrow in FIG. 8, the first drainage channel 46b includes, from the inlet 2, the first water pump 11, the channel 102, the second inlet 88, the second chamber 82, the second discharge port 89, It is composed of a flow path 106, an on-off valve 20, and a flow path connecting the drain port 13. Specifically, the first drainage channel 46b drains the raw water flowing in from the inlet 2 through the channel 28, the first recovery channel 37, the first water pump 11, the channel 102, the second inlet 88, and the second inlet 88. The second chamber 82 , the second discharge port 89 , the flow path 106 , the drainage flow path 54 , the on-off valve 20 , and the drain port 13 are flowed in this order.
 なお、第2排水流路47を流通する水の流量は、第1排水流路46bを流通する水の流量よりも大きくなるよう制御されることが好ましい。これにより、軟水化工程時に使用される軟水槽を含む流路である第2排水流路47内の高硬度水を優先的に原水に置換することができる。したがって、軟水化工程を開始した際の高硬度水の影響を抑制できる。 Note that the flow rate of water flowing through the second drainage flow path 47 is preferably controlled to be greater than the flow rate of water flowing through the first drainage flow path 46b. Thereby, the highly hard water in the second drainage flow path 47, which is a flow path including a water softening tank used during the water softening process, can be preferentially replaced with raw water. Therefore, the influence of highly hard water when starting the water softening process can be suppressed.
 (1.8.7 電解槽洗浄流路)
 次に、図9、図10、および図15を参照して、軟水化装置1の電解槽洗浄工程の際に形成される電解槽洗浄流路49について説明する。なお、電解槽洗浄流路49aおよび電解槽洗浄流路49bをまとめて説明する場合に電解槽洗浄流路49と記載する場合がある。図9は、軟水化装置1の電解槽洗浄流路49aの構成を示す図である。図10は、軟水化装置1の電解槽洗浄流路49bの構成を示す図である。
(1.8.7 Electrolyzer cleaning channel)
Next, with reference to FIGS. 9, 10, and 15, the electrolytic cell cleaning channel 49 formed during the electrolytic cell cleaning process of the water softening device 1 will be described. Note that when the electrolytic cell cleaning channel 49a and the electrolytic cell cleaning channel 49b are collectively described, they may be referred to as an electrolytic cell cleaning channel 49. FIG. 9 is a diagram showing the configuration of the electrolytic cell cleaning channel 49a of the water softening device 1. FIG. 10 is a diagram showing the configuration of the electrolytic cell cleaning channel 49b of the water softening device 1.
 図9に示す電解槽洗浄流路49aは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時a」である場合に構成される流路である。 In the electrolytic cell cleaning channel 49a shown in FIG. 9, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as follows at the end of the previous regeneration. This is a flow path that is configured in the case of "regeneration end time a" shown in FIG. 15 described above.
 また、図10に示す電解槽洗浄流路49bは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した図15に示す「再生終了時b」である場合に構成される流路である。 Further, in the electrolytic cell cleaning channel 49b shown in FIG. 10, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration are is the flow path configured when it is "regeneration end time b" shown in FIG. 15 described above.
 電解槽洗浄流路49は、後述する電解槽洗浄工程の際に、電解槽9内および中和槽再生循環流路40内の硬度成分に起因する析出物を除去する流路である。 The electrolytic cell cleaning channel 49 is a channel for removing precipitates caused by hardness components in the electrolytic cell 9 and in the neutralization tank regeneration circulation channel 40 during an electrolytic cell cleaning process described later.
 まず、電解槽洗浄流路49a(図9参照)は、前述した第1排水流路46a(白矢印参照)および第3排水流路50a(黒矢印参照)を含んで構成される。 First, the electrolytic cell cleaning channel 49a (see FIG. 9) is configured to include the aforementioned first drainage channel 46a (see white arrow) and third drainage channel 50a (see black arrow).
 第3排水流路50aは、図9における黒矢印で示すように、流入口2から、第1軟水槽3a、第2送水ポンプ12、流路104、第2流入口88、第2室82、第2吐出口89、流路108、開閉弁21、捕捉部10、開閉弁22、および捕捉部排水口14までを連通接続する各流路によって構成される。 The third drainage channel 50a, as shown by the black arrow in FIG. The second discharge port 89, the flow path 108, the on-off valve 21, the capture section 10, the on-off valve 22, and the capture section drain port 14 are configured by channels that communicate with each other.
 具体的には、第3排水流路50aは、流入口2から流入した原水を、流路28、第1軟水槽3a、流路29、第2回収流路38、第2送水ポンプ12、流路104、第2流入口88、第2室82、第2吐出口89、流路108、開閉弁21、捕捉部10、開閉弁22の順に流通させ、捕捉部排水口14から装置外に排出する流路である。 Specifically, the third drainage flow path 50a transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3a, the flow path 29, the second recovery flow path 38, the second water pump 12, and the Flow through the channel 104, the second inlet 88, the second chamber 82, the second outlet 89, the flow channel 108, the on-off valve 21, the capture section 10, the on-off valve 22 in this order, and discharge to the outside of the device from the capture section drain port 14. It is a flow path where
 より具体的には、第3排水流路50aでは、流入口2から流入した原水が、流路28を介して第1軟水槽3aに流入し、酸性軟水となる。生成した酸性軟水が、第2回収流路38により第2送水ポンプ12を介して、第2室82に流入する。その後、酸性軟水が、流路108を介して、開閉弁21、捕捉部10、開閉弁22の順に流通し、捕捉部10の析出物を溶解し、捕捉部排水口14から装置外に排出する。 More specifically, in the third drainage flow path 50a, the raw water that has flowed in from the inlet 2 flows into the first soft water tank 3a via the flow path 28, and becomes acidic soft water. The generated acidic soft water flows into the second chamber 82 through the second recovery channel 38 and the second water pump 12 . Thereafter, the acidic soft water flows through the flow path 108 in the order of the on-off valve 21, the capture section 10, and the on-off valve 22, dissolves the precipitate in the capture section 10, and discharges the precipitate from the capture section drain port 14 to the outside of the apparatus. .
 次に、電解槽洗浄流路49b(図10参照)は、前述した第1排水流路46b(白矢印参照)および第3排水流路50b(黒矢印参照)を含んで構成される。 Next, the electrolytic cell cleaning channel 49b (see FIG. 10) is configured to include the aforementioned first drainage channel 46b (see white arrow) and third drainage channel 50b (see black arrow).
 第3排水流路50bは、図10における黒矢印で示すように、流入口2から、第1軟水槽3a、第2送水ポンプ12、流路103、第1流入口86、第1室81、第1吐出口87、流路107、開閉弁21、捕捉部10、開閉弁22、および捕捉部排水口14までを連通接続する各流路によって構成される。 As shown by the black arrow in FIG. 10, the third drainage channel 50b includes, from the inlet 2, the first soft water tank 3a, the second water pump 12, the channel 103, the first inlet 86, the first chamber 81, The first discharge port 87, the flow path 107, the on-off valve 21, the capture section 10, the on-off valve 22, and the capture section drain port 14 are configured by channels that communicate with each other.
 具体的には、第3排水流路50bは、流入口2から流入した原水を、流路28、第1軟水槽3a、流路29、第2回収流路38、第2送水ポンプ12、流路103、第1流入口86、第1室81、第1吐出口87、流路107、開閉弁21、捕捉部10、開閉弁22の順に流通させ、捕捉部排水口14から装置外に排出する流路である。 Specifically, the third drainage flow path 50b transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3a, the flow path 29, the second recovery flow path 38, the second water pump 12, and the Flow through the passage 103, the first inlet 86, the first chamber 81, the first outlet 87, the flow passage 107, the on-off valve 21, the capture section 10, the on-off valve 22 in this order, and discharge to the outside of the device from the capture section drain port 14. It is a flow path where
 より具体的には、第3排水流路50bでは、流入口2から流入した原水が、流路28を介して第1軟水槽3aに流入し、酸性軟水となる。生成した酸性軟水が、第2回収流路38により第2送水ポンプ12を介して、第1室81に流入する。その後、酸性軟水が、流路107を介して、開閉弁21、捕捉部10、開閉弁22の順に流通し、捕捉部10の析出物を溶解し、捕捉部排水口14から装置外に排出する。 More specifically, in the third drainage flow path 50b, the raw water that has flowed in from the inlet 2 flows into the first soft water tank 3a via the flow path 28, and becomes acidic soft water. The generated acidic soft water flows into the first chamber 81 through the second recovery channel 38 and the second water pump 12 . Thereafter, the acidic soft water flows through the flow path 107 in the order of the on-off valve 21, the capture section 10, and the on-off valve 22, dissolves the precipitate in the capture section 10, and discharges the precipitate from the capture section drain port 14 to the outside of the apparatus. .
 (1.8.8 捕捉部洗浄流路))
 次に、図11を参照して、軟水化装置1の捕捉部洗浄工程の際に形成される捕捉部洗浄流路51について説明する。図11は、軟水化装置1の捕捉部洗浄流路51の構成を示す図である。
(1.8.8 Capture section cleaning channel))
Next, with reference to FIG. 11, the trap cleaning channel 51 formed during the trap cleaning step of the water softening device 1 will be described. FIG. 11 is a diagram showing the configuration of the trap cleaning channel 51 of the water softening device 1. As shown in FIG.
 捕捉部洗浄流路51は、後述する捕捉部洗浄工程の際に、捕捉部10に析出した硬度成分由来の析出物を除去する流路である。捕捉部洗浄流路51は、第4排水流路52を含んで構成される。 The trapping portion cleaning flow path 51 is a flow path for removing precipitates derived from hardness components deposited in the trapping portion 10 during a trapping portion cleaning step to be described later. The trap cleaning channel 51 is configured to include a fourth drainage channel 52.
 図11に示すように、捕捉部洗浄流路51は、流入口2から、第1軟水槽3a、第1中和槽4a、第2軟水槽3b、第2中和槽4b、捕捉部10、および捕捉部排水口14までを連通接続する各流路によって構成される。 As shown in FIG. 11, the trapping section cleaning channel 51 includes, from the inlet 2, a first soft water tank 3a, a first neutralization tank 4a, a second soft water tank 3b, a second neutralization tank 4b, a trapping section 10, It is constituted by each channel that communicates with and connects to the trapping part drainage port 14.
 具体的には、捕捉部洗浄流路51は、流入口2から流入した原水を、流路28、第1軟水槽3a、流路29、第1中和槽4a、流路30、第2軟水槽3b、流路31、第2中和槽4b、第2供給流路36、開閉弁23、捕捉部10、開閉弁22の順に流通させ、捕捉部排水口14から装置外に排出する流路である。 Specifically, the trap cleaning channel 51 transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first soft water tank 3a, the channel 29, the first neutralization tank 4a, the channel 30, and the second soft water tank. A flow path that flows through the water tank 3b, the flow path 31, the second neutralization tank 4b, the second supply flow path 36, the on-off valve 23, the capture section 10, and the on-off valve 22 in this order, and discharges out of the device from the capture section drain port 14. It is.
 (1.8.9 原水導入流路および供給流路)
 次に、図12、図13、および図15を参照して、後述する混合工程の際に形成される原水導入流路70および供給流路72について説明する。なお、原水導入流路70aおよび原水導入流路70bをまとめて説明する場合に原水導入流路70と記載する場合があり、供給流路72aおよび供給流路72bをまとめて説明する場合に供給流路72と記載する場合がある。図12は、軟水化装置1の原水導入流路70aおよび供給流路72aの構成を示す図である。図13は、軟水化装置1の原水導入流路70bおよび供給流路72bの構成を示す図である。
(1.8.9 Raw water introduction channel and supply channel)
Next, with reference to FIGS. 12, 13, and 15, a raw water introduction channel 70 and a supply channel 72 that are formed during the mixing step described later will be described. Note that when the raw water introduction channel 70a and the raw water introduction channel 70b are collectively described, they may be referred to as the raw water introduction channel 70, and when the supply channel 72a and the supply channel 72b are collectively described, they may be referred to as the "supply flow channel 70". It may be written as road 72. FIG. 12 is a diagram showing the configuration of the raw water introduction channel 70a and the supply channel 72a of the water softening device 1. FIG. 13 is a diagram showing the configuration of the raw water introduction channel 70b and the supply channel 72b of the water softening device 1.
 図12に示す原水導入流路70aおよび供給流路72aは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、図15に示す「再生終了時a」である場合に構成される流路である。 The raw water introduction flow path 70a and the supply flow path 72a shown in FIG. This is the flow path configured when the state is “regeneration end time a” shown in FIG. 15.
 また、図13に示す原水導入流路70bおよび供給流路72bは、前回の再生終了時に、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、図15に示す「再生終了時b」である場合に構成される流路である。 Further, the raw water introduction flow path 70b and the supply flow path 72b shown in FIG. This flow path is configured when the state of the valve 94 is "regeneration end time b" shown in FIG.
 原水導入流路70aは、後述する混合工程時に、混合部60に原水を供給する流路である。 The raw water introduction flow path 70a is a flow path that supplies raw water to the mixing section 60 during the mixing process described later.
 図12における白矢印で示すように、原水導入流路70aは、流入口2から混合部60までを連通接続する流路である。第1の実施の形態では、原水導入流路70aは、流入口2から流入した原水を、流路28、第1回収流路37、第1送水ポンプ11、流路101、第1流入口86、第1室81、第1吐出口87、流路105、第1供給流路35の順に流通させ、混合部60に流入させる流路である。 As shown by the white arrow in FIG. 12, the raw water introduction channel 70a is a channel that communicates and connects the inlet 2 to the mixing section 60. In the first embodiment, the raw water introduction channel 70a transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first recovery channel 37, the first water pump 11, the channel 101, and the first inlet 86. , the first chamber 81 , the first discharge port 87 , the flow path 105 , and the first supply flow path 35 in this order, and flow into the mixing section 60 .
 供給流路72aは、後述する混合工程時に、混合部60により生成した混合水を電解槽9に供給する流路である。 The supply flow path 72a is a flow path that supplies mixed water generated by the mixing unit 60 to the electrolytic cell 9 during the mixing process described later.
 図12における黒矢印で示すように、供給流路72aは、混合部60と電解槽9とを連通接続する流路である。第1の実施の形態では、供給流路72aは、混合部60において生成した混合水を、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、第1回収流路37、第1送水ポンプ11、流路101、第1流入口86の順に流通させ、電解槽9に流入させる流路である。 As shown by the black arrow in FIG. 12, the supply channel 72a is a channel that communicates and connects the mixing section 60 and the electrolytic cell 9. In the first embodiment, the supply flow path 72a transfers the mixed water generated in the mixing unit 60 to the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, and the first soft water tank 3a. , the first recovery channel 37 , the first water pump 11 , the channel 101 , and the first inlet 86 in this order, and flow into the electrolytic cell 9 .
 次に、原水導入流路70bは、後述する混合工程時に、混合部60に原水を供給する流路である。 Next, the raw water introduction flow path 70b is a flow path that supplies raw water to the mixing section 60 during the mixing process described later.
 図13における白矢印で示すように、原水導入流路70bは、流入口2から混合部60までを連通接続する流路である。第1の実施の形態では、原水導入流路70bは、流入口2から流入した原水を、流路28、第1回収流路37、第1送水ポンプ11、流路102、第2流入口88、第2室82、第2吐出口89、流路106、第1供給流路35の順に流通させ、混合部60に流入させる流路である。 As shown by the white arrow in FIG. 13, the raw water introduction channel 70b is a channel that communicates and connects the inlet 2 to the mixing section 60. In the first embodiment, the raw water introduction channel 70b transfers the raw water that has flowed in from the inlet 2 to the channel 28, the first recovery channel 37, the first water pump 11, the channel 102, and the second inlet 88. , the second chamber 82 , the second discharge port 89 , the flow path 106 , and the first supply flow path 35 in this order, and flow into the mixing section 60 .
 供給流路72bは、後述する混合工程時に、混合部60により生成した混合水を電解槽9に供給する流路である。 The supply flow path 72b is a flow path that supplies mixed water generated by the mixing unit 60 to the electrolytic cell 9 during the mixing process described later.
 図13における黒矢印で示すように、供給流路72bは、混合部60と電解槽9とを連通接続する流路である。第1の実施の形態では、供給流路72bは、混合部60において生成した混合水を、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、第1回収流路37、第1送水ポンプ11、流路102、第2流入口88の順に流通させ、電解槽9に流入させる流路である。 As shown by the black arrow in FIG. 13, the supply channel 72b is a channel that communicates and connects the mixing section 60 and the electrolytic cell 9. In the first embodiment, the supply flow path 72b transfers the mixed water generated in the mixing unit 60 to the first supply flow path 35, the second soft water tank 3b, the neutralization tank bypass flow path 42, and the first soft water tank 3a. , the first recovery channel 37 , the first water pump 11 , the channel 102 , and the second inlet 88 in this order, and flow into the electrolytic cell 9 .
 以上が軟水化装置1の構成である。 The above is the configuration of the water softening device 1.
 (2. 動作)
 次に、軟水化装置1の動作について説明する。
(2. Operation)
Next, the operation of the water softening device 1 will be explained.
 (2.1 軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程)
 図14を参照して、軟水化装置1の軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程について説明する。図14は、軟水化装置1の動作時の状態を示す図であり、制御方法を説明するための図である。なお、以下では、軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程の一連の流れを軟水化再生処理と称することがある。
(2.1 Water softening process, mixing process, regeneration process, water storage process, regeneration channel cleaning process, electrolytic tank cleaning process, and trap cleaning process)
With reference to FIG. 14, the water softening process, mixing process, regeneration process, water storage process, regeneration channel cleaning process, electrolytic tank cleaning process, and trapping part cleaning process of the water softening device 1 will be described. FIG. 14 is a diagram showing the operating state of the water softening device 1, and is a diagram for explaining the control method. In addition, below, a series of flows of a water softening process, a mixing process, a regeneration process, a water storage process, a regeneration channel cleaning process, an electrolytic tank cleaning process, and a capture part cleaning process may be called water softening regeneration process.
 軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程では、制御部15は、図14に示すように、開閉弁18~23、開閉弁63、流路切替えバルブ24~27、第1送水ポンプ11および第2送水ポンプ12を切替えてそれぞれの流通状態となるように制御する。 In the water softening process, the mixing process, the regeneration process, the water storage process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trap cleaning process, the control unit 15 controls the on-off valves 18 to 23, the on-off valves 18 to 23, and the on-off valves 18 to 23, as shown in FIG. The valve 63, the flow path switching valves 24 to 27, the first water pump 11, and the second water pump 12 are switched and controlled to each flow state.
 ここで、図14中の「ON」は、該当の開閉弁が「開放」した状態、および該当の送水ポンプが動作している状態をそれぞれ示す。空欄は、該当の開閉弁が「閉止」した状態、および該当の送水ポンプが停止している状態をそれぞれ示す。 Here, "ON" in FIG. 14 indicates a state in which the corresponding on-off valve is "open" and a state in which the corresponding water pump is operating. A blank column indicates a state in which the corresponding on-off valve is "closed" and a state in which the corresponding water pump is stopped.
 また、図14中の「(構成要素Aの番号)から(構成要素Bの番号)へ」は、該当の流路切替えバルブが該当の構成要素Aから該当の構成要素Bへと送水される方向へと流路を接続している状態を示す。たとえば、軟水化工程の流路切替えバルブ24は、流路28から流路29へと送水可能となるように各流路を接続している。 In addition, "from (number of component A) to (number of component B)" in FIG. 14 indicates the direction in which the corresponding flow path switching valve sends water from the corresponding component A to the corresponding component B. This shows the state where the flow path is connected to. For example, the flow path switching valve 24 for the water softening process connects each flow path so that water can be sent from the flow path 28 to the flow path 29.
 また、図14中の「(構成要素Cの番号)へ」は、該当の流路切替えバルブが、該当の構成要素へ送水される可能性のある方向へと流路を接続している状態を示す。この際には、流路は接続されているものの、該当の流路切替えバルブが設けられた軟水槽または中和槽への水の流出入が発生しづらい環境下にあるため、該当の流路切替えバルブからの送水が極めて起こりづらい。 In addition, "to (number of component C)" in FIG. 14 indicates a state in which the corresponding flow path switching valve connects the flow path in a direction in which water may be sent to the corresponding component. show. In this case, although the flow path is connected, the environment is such that it is difficult for water to flow into or out of the softening water tank or neutralization tank where the relevant flow path switching valve is installed, so the flow path is connected. It is extremely difficult for water to flow from the switching valve.
 また、各工程における第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態、ならびに、第1室電極84、および第2室電極85の通電状態については、各工程の説明において図15を参照して後述する。 Also, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94, and the first chamber electrode 84 and the second chamber electrode 85 in each step are also shown. The energization state will be described later with reference to FIG. 15 in the description of each process.
 図15中の「(構成要素Dの番号)から(構成要素Eの番号)へ」は、該当の切換え弁が該当の構成要素Dから該当の構成要素Eへと送水される方向へと流路を接続している状態を示す。たとえば、「再生時a」の第1吐出切換え弁91は、第1吐出口87から流路105へと送水可能となるように各流路を接続している。 “From (number of component D) to (number of component E)” in FIG. Indicates the connected state. For example, the first discharge switching valve 91 in “regeneration time a” connects each flow path so that water can be sent from the first discharge port 87 to the flow path 105.
 (2.2 軟水化工程)
 まず、軟水化装置1による軟水化工程時の動作について、図2、図14の「軟水化時」の欄、および、図15の「再生終了時a」、「再生終了時b」の欄を参照して説明する。
(2.2 Water softening process)
First, regarding the operation of the water softening device 1 during the water softening process, see the "During water softening" column in FIGS. 2 and 14, and the "At the end of regeneration a" and "At the end of regeneration b" columns in FIG. Refer to and explain.
 軟水化装置1では、図14に示すように、軟水化工程において、開閉弁18を閉止した状態で流路28に設けた開閉弁19を開放する。これにより、外部から硬度成分を含む原水が流入する。流入した原水は、第1軟水槽3a、第1中和槽4a、第2軟水槽3b、および第2中和槽4bの順で流通するので、軟水化装置1は、取水口7から軟水化した水(中性の軟水)を取り出すことができる。 In the water softening device 1, as shown in FIG. 14, in the water softening process, the on-off valve 19 provided in the flow path 28 is opened while the on-off valve 18 is closed. As a result, raw water containing hardness components flows in from the outside. The inflowing raw water flows through the first water softening tank 3a, the first neutralization tank 4a, the second water softening tank 3b, and the second neutralization tank 4b in this order, so the water softening device 1 softens the water from the water intake 7. water (neutral soft water) can be taken out.
 このとき、流路切替えバルブ24は流路28から流路29へ送水可能な接続状態であり、流路切替えバルブ25は流路29から流路30へ送水可能な接続状態であり、流路切替えバルブ26は流路30から流路31へ送水可能な接続状態であり、流路切替えバルブ27は流路31から流路32へ送水可能な接続状態である。開閉弁20~23および開閉弁63は、いずれも閉止した状態になっている。 At this time, the flow path switching valve 24 is in a connected state that allows water to be sent from the flow path 28 to the flow path 29, and the flow path switching valve 25 is in a connected state that allows water to be sent from the flow path 29 to the flow path 30, and the flow path switching valve The valve 26 is in a connected state that allows water to be sent from the flow path 30 to the flow path 31, and the flow path switching valve 27 is in a connected state that allows water to be sent from the flow path 31 to the flow path 32. The on-off valves 20 to 23 and the on-off valve 63 are all in a closed state.
 また、電解槽9の第1室電極84、第2室電極85、第1送水ポンプ11、および第2送水ポンプ12の動作も停止した状態である。また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態は、前回の再生工程終了時と同じ状態である。すなわち、図15に示すように、前回の再生工程終了時の第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、第2流入切換え弁94の状態が、前述した「再生終了時a」の状態であった場合は軟水化工程においても「再生終了時a」の状態であり、前述した「再生終了時b」の状態であった場合は軟水化工程においても「再生終了時b」の状態である。 Furthermore, the operations of the first chamber electrode 84, second chamber electrode 85, first water pump 11, and second water pump 12 of the electrolytic cell 9 are also stopped. Further, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are the same as at the end of the previous regeneration process. That is, as shown in FIG. 15, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration process are as described above. If the state is "a" at the end of regeneration, the state is "a" at the end of regeneration in the water softening process, and if the state is "b at the end of regeneration" mentioned above, the state is "a" in the water softening process. At the end of the process, the state is "b".
 具体的には、図2に示すように、軟水化工程では、外部から流入する原水の圧力によって、原水は、流入口2から流路28を通って、第1軟水槽3aに供給される。そして、第1軟水槽3aに供給された原水は、第1軟水槽3a内に備えられた弱酸性陽イオン交換樹脂33を流通する。このとき、原水中の硬度成分である陽イオンが弱酸性陽イオン交換樹脂33の作用により吸着され、水素イオンが放出される(イオン交換が行われる)。そして、原水から陽イオンが除去されることで原水が軟水化される。 Specifically, as shown in FIG. 2, in the water softening process, raw water is supplied from the inlet 2 through the channel 28 to the first water softening tank 3a by the pressure of the raw water flowing in from the outside. The raw water supplied to the first soft water tank 3a flows through a weakly acidic cation exchange resin 33 provided in the first soft water tank 3a. At this time, cations that are hardness components in the raw water are adsorbed by the action of the weakly acidic cation exchange resin 33, and hydrogen ions are released (ion exchange is performed). Then, the raw water is softened by removing cations from the raw water.
 第1軟水槽3aで軟水化された水は、硬度成分と交換されて流出した水素イオンを多く含むため、酸性化してpHが低い酸性水(第1軟水)となっている。ここで、硬度成分として永久硬度成分(たとえば、硫酸カルシウムなどの硫酸塩または塩化マグネシウムなどの塩化物)を多く含有する水は、軟水化を行った際、一時硬度成分(たとえば、炭酸カルシウムなどの炭酸塩)を多く含有する水よりもpHが低下しやすい。pHが低下した状態では軟水化が進行しにくくなるため、第1軟水槽3aを流通した水を、第1中和槽4aへ通水させ、中和を行う。 The water softened in the first water softening tank 3a contains many hydrogen ions that have been exchanged with hard components and flowed out, so it is acidified and becomes acidic water (first soft water) with a low pH. Here, when water that contains a large amount of permanent hardness components (for example, sulfates such as calcium sulfate or chlorides such as magnesium chloride), temporary hardness components (for example, calcium carbonate, etc.) are removed when water is softened. The pH decreases more easily than water containing a large amount of carbonate. Since water softening is difficult to proceed in a state where the pH is lowered, the water that has passed through the first water softening tank 3a is passed through the first neutralization tank 4a to be neutralized.
 第1軟水槽3aで軟水化された水は、第1軟水槽3aに設けられた流路切替えバルブ24を介して流路29を流通し、第1中和槽4aへ流入する。第1中和槽4aでは、弱塩基性陰イオン交換樹脂34の作用によって、軟水化された水に含まれる水素イオンが吸着される。つまり、第1軟水槽3aにより軟水化された水から水素イオンが除去されるので、低下したpHが上昇して中和される。そのため、第1軟水槽3aにおいて軟水化した水をそのまま第2軟水槽3bで軟水化する場合と比較して、第2軟水槽3bでの軟水化処理が進行しやすくなる。 The water softened in the first water softening tank 3a flows through the flow path 29 via the flow path switching valve 24 provided in the first water softening tank 3a, and flows into the first neutralization tank 4a. In the first neutralization tank 4a, hydrogen ions contained in the softened water are adsorbed by the action of the weakly basic anion exchange resin 34. That is, since hydrogen ions are removed from the water softened by the first water softening tank 3a, the decreased pH is increased and neutralized. Therefore, compared to the case where the water softened in the first water softening tank 3a is directly softened in the second water softening tank 3b, the water softening process in the second water softening tank 3b progresses more easily.
 第1中和槽4aにより中和された水(中和第1軟水)は、第1中和槽4aに設けられた流路切替えバルブ25を介して流路30を流通し、第2軟水槽3bに流入する。第2軟水槽3bでは、弱酸性陽イオン交換樹脂33の作用により、硬度成分である陽イオンが吸着され、水素イオンが放出される。第2軟水槽3bは、第1軟水槽3aで除去できなかった硬度成分を、弱酸性陽イオン交換樹脂33の有する水素イオンと交換する。つまり、第2軟水槽3bに流入した水がさらに軟水化され、軟水(第2軟水)となる。 The water neutralized by the first neutralization tank 4a (neutralized first soft water) flows through the flow path 30 via the flow path switching valve 25 provided in the first neutralization tank 4a, and flows into the second soft water tank. 3b. In the second soft water tank 3b, due to the action of the weakly acidic cation exchange resin 33, cations that are hardness components are adsorbed and hydrogen ions are released. The second soft water tank 3b exchanges the hardness components that could not be removed in the first soft water tank 3a with hydrogen ions contained in the weakly acidic cation exchange resin 33. That is, the water flowing into the second soft water tank 3b is further softened and becomes soft water (second soft water).
 第2軟水は、第2軟水槽3bに設けられた流路切替えバルブ26を介して流路31を流通し、第2中和槽4bに流入する。第2中和槽4bでは、弱塩基性陰イオン交換樹脂34の作用により、流入した第2軟水に含まれる水素イオンが吸着される。つまり、第2軟水から水素イオンが除去されるので、低下したpHが上昇し、生活用水として使用可能な中性の軟水(中和第2軟水)となる。中和第2軟水は、第2中和槽4bに設けられた流路切替えバルブ27を介して流路32を流通し、取水口7から取り出される。 The second soft water flows through the flow path 31 via the flow path switching valve 26 provided in the second soft water tank 3b, and flows into the second neutralization tank 4b. In the second neutralization tank 4b, hydrogen ions contained in the second soft water that has flowed in are adsorbed by the action of the weakly basic anion exchange resin 34. That is, since hydrogen ions are removed from the second soft water, the lowered pH increases, and the water becomes neutral soft water (neutralized second soft water) that can be used as domestic water. The neutralized second soft water flows through the flow path 32 via the flow path switching valve 27 provided in the second neutralization tank 4b, and is taken out from the water intake port 7.
 つまり、軟水化処理では、原水は、第1軟水槽3a、第1中和槽4a、第2軟水槽3b、および第2中和槽4bの順に流通する。これにより、硬度成分を含む原水は、第1軟水槽3aでの軟水化処理によって原水のpHの低下が進行する前に第1軟水槽3aを流出し、第1中和槽4aにおいて中和され、第2軟水槽3bで軟水化され、第2中和槽4bにおいて中和される。そのため、軟水槽および中和槽をそれぞれ単体で構成する場合と比較して、軟水槽内を流通する水のpHの低下すなわち酸性化を抑制できるので、硬度成分と、軟水槽(特に第2軟水槽3b)の弱酸性陽イオン交換樹脂33が保持する水素イオンと、の交換が起こりやすくなる。したがって、軟水化性能を向上させることが可能となる。 That is, in the water softening process, raw water flows through the first water softening tank 3a, the first neutralization tank 4a, the second water softening tank 3b, and the second neutralization tank 4b in this order. As a result, the raw water containing hard components flows out of the first water softening tank 3a before the pH of the raw water progresses to decrease due to the water softening treatment in the first water softening tank 3a, and is neutralized in the first neutralization tank 4a. , the water is softened in the second water softening tank 3b, and neutralized in the second neutralization tank 4b. Therefore, compared to a case in which a water softening tank and a neutralization tank are each configured separately, it is possible to suppress a decrease in the pH of the water flowing through the water softening tank, that is, acidification. Exchange with the hydrogen ions held by the weakly acidic cation exchange resin 33 in the water tank 3b) is likely to occur. Therefore, it becomes possible to improve water softening performance.
 軟水化装置1では、制御部15が、特定された時間帯になった場合または軟水化工程での処理水量が一定水量を超えた場合に軟水化工程を終了し、混合工程を実行する。 In the water softening device 1, the control unit 15 ends the water softening process and executes the mixing process when the specified time period arrives or when the amount of water treated in the water softening process exceeds a certain amount of water.
 (2.3 混合工程)
 次に、軟水化装置1による混合工程時の動作について、図12、図13、図14の「混合時」の欄、および図15の「再生終了時a」、「再生終了時b」の欄を参照して説明する。
(2.3 Mixing process)
Next, regarding the operation of the water softening device 1 during the mixing process, the columns ``During mixing'' in FIGS. 12, 13, and 14, and the columns ``At the end of regeneration a'' and ``At the end of regeneration b'' in FIG. Explain with reference to.
 軟水化装置1において、弱酸性陽イオン交換樹脂33を充填した第1軟水槽3aおよび第2軟水槽3bは、使用を続けると陽イオン交換能力が低下または消失する。したがって、後述する再生工程により、軟水槽3および中和槽4の再生を行う必要が生じる。 In the water softening device 1, the first water softening tank 3a and the second water softening tank 3b filled with the weakly acidic cation exchange resin 33 decrease or disappear in their cation exchange ability as they continue to be used. Therefore, it is necessary to regenerate the soft water tank 3 and the neutralization tank 4 through a regeneration process described below.
 再生工程の際には、電解槽9で水の電気分解を行い、生じた酸性電解水およびアルカリ性電解水を用いて再生を行う。電気分解時に原水などの導電率が低い水を使用した場合には、導電率が高い水を電気分解する場合と比較して、同じ電流値を加える場合に生じる抵抗が大きくなる。このため、電解槽9の第1室電極84および第2室電極85間に印加される電圧が上がり、電解槽9を運転する際の消費電力が上昇してしまう。これを防止する手段として、原水に硫酸ナトリウムなどの薬剤を加えて導電率を上げる方法が考えられるが、薬剤の供給が必要となる。 During the regeneration process, water is electrolyzed in the electrolytic cell 9, and the resulting acidic electrolyzed water and alkaline electrolyzed water are used to perform regeneration. When water with low conductivity, such as raw water, is used during electrolysis, the resistance generated when the same current value is applied becomes greater than when water with high conductivity is electrolyzed. Therefore, the voltage applied between the first chamber electrode 84 and the second chamber electrode 85 of the electrolytic cell 9 increases, and the power consumption when operating the electrolytic cell 9 increases. One possible way to prevent this is to add a chemical such as sodium sulfate to the raw water to increase the conductivity, but this requires supply of the chemical.
 そのため、本実施の形態では、原水よりも導電率の高い水を調製するために混合工程を行う。混合工程では、前回の再生工程により生じた再生後水を利用する。 Therefore, in this embodiment, a mixing step is performed to prepare water with higher conductivity than raw water. In the mixing step, the recycled water produced in the previous recycling step is used.
 再生工程では、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34の再生工程が進行するにつれ、軟水槽3から放出される硬度成分(たとえば、カルシウムイオンおよびマグネシウムイオン)により、酸性電解水の硬度が上昇する。そのため、硬度が上昇した酸性電解水を再度電解して再生工程に再利用するようなシステムにおいては、再生処理開始からの時間が経過するにつれ、酸性電解水の硬度が上昇していき、高硬度水となる。再生工程終了後の高硬度水(再生後水)の硬度成分濃度は、たとえば1500~2000ppm程度となる。 In the regeneration process, as the regeneration process of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 progresses, the hardness components (for example, calcium ions and magnesium ions) released from the water softening tank 3 cause acid electrolysis. Water hardness increases. Therefore, in a system in which acidic electrolyzed water with increased hardness is re-electrolyzed and reused in the regeneration process, the hardness of the acidic electrolyzed water increases as time passes from the start of the regeneration process, resulting in high hardness. It becomes water. The hardness component concentration of the high hardness water (post-regeneration water) after the completion of the regeneration step is, for example, about 1500 to 2000 ppm.
 つまり、再生後水は、電解質である硬度成分を大量に含んでいるため、原水と混合することで導電率を上昇させることができる。したがって、再生後水を利用することで、硫酸ナトリウムなどの薬剤を添加することなく、電解槽9に供給される液体の導電率を上昇させることができ、第1室電極84および第2室電極85への印加電圧の上昇を抑制可能である。 In other words, since the recycled water contains a large amount of hardness components that are electrolytes, the conductivity can be increased by mixing it with raw water. Therefore, by using the recycled water, the conductivity of the liquid supplied to the electrolytic cell 9 can be increased without adding chemicals such as sodium sulfate, and the conductivity of the liquid supplied to the first chamber electrode 84 and the second chamber electrode can be increased. It is possible to suppress an increase in the voltage applied to 85.
 また、再生工程で発生した高硬度水が装置内に残存したままの状態で軟水化工程を開始すると、軟水化工程の初期には原水よりも硬度の高い水が取水口7から排出されてしまうため、再生後水の全量を排水する必要があった。しかし、再生後水を混合工程に利用すれば、再生後水の排水量を低減することができる。 Additionally, if the water softening process is started while the highly hard water generated in the regeneration process remains in the equipment, water that is harder than the raw water will be discharged from the water intake port 7 at the beginning of the water softening process. Therefore, it was necessary to drain the entire amount of water after regeneration. However, if the recycled water is used in the mixing process, the amount of drained water can be reduced.
 混合工程では、具体的には、前回の再生工程の際に生じた水であり、硬度成分を含み原水よりも導電率の上昇した高硬度水(再生後水)を、原水と混合することにより、混合水とする。言い換えると、n回目の再生工程により生じた再生後水を、n+1回目の混合工程時に原水と混合することにより混合水とする。なお、nは1以上の整数である。 In the mixing process, specifically, high hardness water (regenerated water), which is water generated during the previous regeneration process and contains hardness components and has higher conductivity than the raw water, is mixed with the raw water. , mixed water. In other words, the recycled water produced in the n-th regeneration step is mixed with raw water during the n+1-th mixing step to obtain mixed water. Note that n is an integer of 1 or more.
 より具体的には、図14に示すように、開閉弁18および開閉弁20~23を閉止して、開閉弁19および開閉弁63を開放する。また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態は前回の再生工程終了時と同じ状態である。すなわち、図15に示すように、前回の再生工程終了時の第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が、前述した「再生終了時a」の状態であった場合は、混合工程においても「再生終了時a」の状態であり、また前述した「再生終了時b」の状態であった場合は、混合工程においても「再生終了時b」の状態である。 More specifically, as shown in FIG. 14, the on-off valve 18 and on-off valves 20 to 23 are closed, and the on-off valve 19 and on-off valve 63 are opened. Further, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are the same as at the end of the previous regeneration process. That is, as shown in FIG. 15, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the end of the previous regeneration process are as described above. If the state is "a at the end of regeneration," the state is also "a at the end of regeneration" in the mixing process, and if the state is in the state "b at the end of regeneration," also in the mixing process. This is the state "at the end of reproduction b".
 これにより、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態が「再生終了時a」の場合は、図12に示す原水導入流路70aが形成され、「再生終了時b」の場合は、図13に示す原水導入流路70bが形成されることになる。 As a result, when the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are "at the end of regeneration a", the raw water is introduced as shown in FIG. A flow path 70a is formed, and in the case of "regeneration end time b", a raw water introduction flow path 70b shown in FIG. 13 is formed.
 混合工程において、開閉弁19を開放することにより、外部から原水が原水導入流路70に流入する。 In the mixing process, by opening the on-off valve 19, raw water flows into the raw water introduction channel 70 from the outside.
 原水導入流路70aでは、流入した原水は、その圧力により、流路28、第1回収流路37、第1送水ポンプ11、第1流入切換え弁93、流路101、第1流入口86、第1室81、第1吐出口87、第1吐出切換え弁91、流路105、第1供給流路35の順に流通し、混合部60に流入する。 In the raw water introduction flow path 70a, the raw water that has flowed into the flow path 28, the first recovery flow path 37, the first water pump 11, the first inflow switching valve 93, the flow path 101, the first inflow port 86, It flows through the first chamber 81 , the first discharge port 87 , the first discharge switching valve 91 , the flow path 105 , and the first supply flow path 35 in this order, and flows into the mixing section 60 .
 原水導入流路70bでは、流入した原水は、その圧力により、流路28、第1回収流路37、第1送水ポンプ11、第1流入切換え弁93、流路102、第2流入口88、第2室82、第2吐出口89、第2吐出切換え弁92、流路106、第1供給流路35の順に流通し、混合部60に流入する。 In the raw water introduction flow path 70b, the raw water that has flowed into the flow path 28, the first recovery flow path 37, the first water pump 11, the first inflow switching valve 93, the flow path 102, the second inflow port 88, It flows through the second chamber 82 , the second discharge port 89 , the second discharge switching valve 92 , the flow path 106 , and the first supply flow path 35 in this order, and flows into the mixing section 60 .
 また、開閉弁63が開放されているため、再生後水貯留槽64に貯留されている再生後水が、再生後水導入流路62を介して混合部60に流入する。したがって、混合部60では、原水と再生後水とが混合され、原水よりも導電率の高い混合水が生成する。 Furthermore, since the on-off valve 63 is open, the regenerated water stored in the regenerated water storage tank 64 flows into the mixing section 60 via the regenerated water introduction channel 62. Therefore, in the mixing section 60, the raw water and the recycled water are mixed to produce mixed water having higher conductivity than the raw water.
 なお、原水の導電率は、採水地および水質により変化するが、30~600μs/cmであり、再生後水の導電率は1000~3000μs/cmである。 Note that the conductivity of raw water varies depending on the water sampling location and water quality, but is 30 to 600 μs/cm, and the conductivity of recycled water is 1000 to 3000 μs/cm.
 ここで、図14に示すように、流路切替えバルブ24は中和槽バイパス流路42から第1回収流路37へ送水可能な接続状態とされ、流路切替えバルブ25は流路29から軟水槽バイパス流路44へ送水可能な接続状態とされている。また、流路切替えバルブ26は第1供給流路35から中和槽バイパス流路42へ送水可能な接続状態とされ、流路切替えバルブ27は軟水槽バイパス流路44から第2供給流路36へ送水可能な接続状態とされている。つまり、第1軟水槽3aと第2軟水槽3bとが連通接続する状態とされている。 Here, as shown in FIG. 14, the flow path switching valve 24 is connected to allow water to be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37, and the flow path switching valve 25 is connected from the flow path 29 to the first recovery flow path 37. The connection state is such that water can be sent to the water tank bypass channel 44. Further, the flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected from the water softening tank bypass flow path 44 to the second supply flow path 36. The connection state is such that water can be sent to. In other words, the first soft water tank 3a and the second soft water tank 3b are in a communicating state.
 また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の再生終了時の状態によって、図12および図13に示すように、供給流路72aまたは供給流路72bが形成される。なお、このとき、第1室電極84、第2室電極85、第1送水ポンプ11、および第2送水ポンプ12の動作は停止している。 In addition, depending on the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 at the time of completion of regeneration, the supply flow is changed as shown in FIGS. 12 and 13. A channel 72a or supply channel 72b is formed. Note that at this time, the operations of the first chamber electrode 84, the second chamber electrode 85, the first water pump 11, and the second water pump 12 are stopped.
 このため、生成した混合水は、混合部60から放出され、第1供給流路35、第2軟水槽3b、中和槽バイパス流路42、第1軟水槽3a、第1回収流路37、および第1送水ポンプ11、を流通する。そして、流通した混合水は、供給流路72aが形成されている場合には、第1流入切換え弁93、流路101、および第1流入口86を介して電解槽9へと流入する一方、供給流路72bが形成されている場合には、第1流入切換え弁93、流路102、および第2流入口88を介して電解槽9へと流入する。 For this reason, the generated mixed water is released from the mixing part 60, the first supply channel 35, the second soft water tank 3b, the neutralization tank bypass channel 42, the first soft water tank 3a, the first recovery channel 37, and the first water pump 11. Then, when the supply channel 72a is formed, the mixed water that flows flows into the electrolytic cell 9 via the first inflow switching valve 93, the channel 101, and the first inlet 86, while When the supply flow path 72b is formed, it flows into the electrolytic cell 9 via the first inflow switching valve 93, the flow path 102, and the second inflow port 88.
 このようにして、混合工程により、原水を再生後水と混合して混合水を生成させ、生成した混合水を電解槽9に供給することが可能となる。したがって、後述する再生工程時に電解槽9への印加電圧を低減することができ、消費電力の上昇を抑制することができる。 In this way, in the mixing step, it is possible to mix the raw water with the recycled water to generate mixed water, and to supply the generated mixed water to the electrolytic cell 9. Therefore, it is possible to reduce the voltage applied to the electrolytic cell 9 during the regeneration process described later, and it is possible to suppress an increase in power consumption.
 なお、混合水に占める再生後水の割合は、15%以上であることが好ましい。言い換えると、混合水に占める原水の割合は、85%以下であることが好ましい。このようにすることで、混合水中のイオン濃度を高めることができるため、混合水の導電率を上昇させて1000μs/cm以上の導電率とすることができる。したがって、再生工程の電解時における第1室電極84および第2室電極85への印加電圧の上昇を抑制することができる。 Note that the proportion of the recycled water in the mixed water is preferably 15% or more. In other words, the proportion of raw water in the mixed water is preferably 85% or less. By doing so, the ion concentration in the mixed water can be increased, so that the electrical conductivity of the mixed water can be increased to 1000 μs/cm or more. Therefore, an increase in the voltage applied to the first chamber electrode 84 and the second chamber electrode 85 during electrolysis in the regeneration process can be suppressed.
 また、混合水に占める再生後水の割合は、25%以下であることが好ましい。言い換えると、混合水に占める原水の割合は75%以上であることが好ましい。このようにすることで、混合水中の硬度成分濃度が著しく上昇することを抑制できる。したがって、混合水が高硬度になることを原因とした、炭酸カルシウムなどの固体が析出しやすくなる状態の発生を抑制することができる。なお、この場合の混合水の導電率は、3000μs/cm以下であることが好ましい。 Furthermore, the proportion of the recycled water in the mixed water is preferably 25% or less. In other words, the proportion of raw water in the mixed water is preferably 75% or more. By doing so, it is possible to suppress the concentration of hardness components in the mixed water from increasing significantly. Therefore, it is possible to suppress the occurrence of a state in which solids such as calcium carbonate tend to precipitate due to the high hardness of the mixed water. In addition, it is preferable that the electrical conductivity of the mixed water in this case is 3000 μs/cm or less.
 つまり、混合水に占める再生後水の割合を15%以上25%以下とすることで、混合水の導電率を1000~3000μs/cmとすることができ、再生工程の電解時における第1室電極84および第2室電極85への印加電圧の上昇を抑制することができる。また、再生後水が高硬度になり、炭酸カルシウムなどの固体が析出しやすくなる状態を抑制することができる。 In other words, by setting the proportion of the recycled water in the mixed water to 15% or more and 25% or less, the conductivity of the mixed water can be set to 1000 to 3000 μs/cm, and the first chamber electrode during electrolysis in the regeneration process 84 and the voltage applied to the second chamber electrode 85 can be suppressed from increasing. Moreover, it is possible to suppress a state in which water becomes highly hard after regeneration and solids such as calcium carbonate are likely to precipitate.
 軟水化装置1では、制御部15が、特定された時間帯になった場合、または混合工程の時間が一定時間(たとえば、5分)を超えた場合に混合工程を終了し、再生工程を実行する。 In the water softening device 1, the control unit 15 ends the mixing process and executes the regeneration process when the specified time period has arrived or when the time of the mixing process exceeds a certain period of time (for example, 5 minutes). do.
 (2.4 再生工程)
 次に、軟水化装置1の再生装置8による再生工程時の動作について、図3、図4、図14の「再生時」の欄および図15を参照して順に説明する。
(2.4 Regeneration process)
Next, the operation of the regeneration device 8 of the water softening device 1 during the regeneration process will be described in order with reference to the "During Regeneration" column in FIGS. 3, 4, and 14, and FIG. 15.
 再生工程は、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34のうち少なくとも一方の再生を行う工程である。 The regeneration step is a step of regenerating at least one of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34.
 軟水化装置1において、弱酸性陽イオン交換樹脂33を充填した第1軟水槽3aおよび第2軟水槽3bは、使用を続けると陽イオン交換能力が低下または消失する。すなわち、陽イオン交換樹脂の官能基である水素イオンすべてが、硬度成分であるカルシウムイオンまたはマグネシウムイオンと交換された後は、イオン交換ができなくなる。水素イオンすべてが硬度成分と交換される前であっても、水素イオンが減少するにしたがってイオン交換反応が起こりにくくなるため、軟水化性能が低下する。 In the water softening device 1, the first water softening tank 3a and the second water softening tank 3b filled with the weakly acidic cation exchange resin 33 decrease or disappear in their cation exchange ability as they continue to be used. That is, after all the hydrogen ions, which are the functional groups of the cation exchange resin, are exchanged with calcium ions or magnesium ions, which are the hardness components, ion exchange becomes impossible. Even before all of the hydrogen ions are exchanged with hardness components, as the number of hydrogen ions decreases, the ion exchange reaction becomes more difficult to occur, resulting in a decrease in water softening performance.
 このような状態になると、硬度成分が処理水中に含まれるようになる。このため、軟水化装置1では、再生装置8による第1軟水槽3a、第2軟水槽3b、第1中和槽4a、および第2中和槽4bの再生処理を行う必要が生じる。 In such a state, hardness components will be included in the treated water. Therefore, in the water softening device 1, it is necessary to perform regeneration processing of the first water softening tank 3a, the second water softening tank 3b, the first neutralization tank 4a, and the second neutralization tank 4b by the regeneration device 8.
 再生工程時においては、図3に示す軟水槽再生循環流路39aおよび中和槽再生循環流路40aからなる状態と、図4に示す軟水槽再生循環流路39bおよび中和槽再生循環流路40bからなる状態の2つの状態を制御部15によって切替えながら運転を行う。制御部15による切替えについては後述する。 During the regeneration process, a state consisting of the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a shown in FIG. Operation is performed while the control unit 15 switches between the two states consisting of the state 40b. The switching by the control unit 15 will be described later.
 まず、図3に示す軟水槽再生循環流路39aおよび中和槽再生循環流路40aについて説明する。軟水槽再生循環流路39aおよび中和槽再生循環流路40aでは、開閉弁19、開閉弁20、開閉弁22、および開閉弁63が閉止され、開閉弁18、開閉弁21、および開閉弁23が開放される。流路切替えバルブ24は中和槽バイパス流路42から第1回収流路37へ送水可能な接続状態とされ、流路切替えバルブ25は軟水槽バイパス流路44から第2回収流路38へ送水可能な接続状態とされ、流路切替えバルブ26は第1供給流路35から中和槽バイパス流路42へ送水可能な接続状態とされ、流路切替えバルブ27は第2供給流路36から軟水槽バイパス流路44へ送水可能な接続状態とされる。 First, the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a shown in FIG. 3 will be explained. In the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a, the on-off valve 19, the on-off valve 20, the on-off valve 22, and the on-off valve 63 are closed, and the on-off valve 18, the on-off valve 21, and the on-off valve 23 are closed. will be released. The flow path switching valve 24 is connected to allow water to be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37, and the flow path switching valve 25 is connected to allow water to be sent from the water softener bypass flow path 44 to the second recovery flow path 38. The flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected to allow water to be transferred from the second supply flow path 36 to the neutralization tank bypass flow path 42. A connection state is established in which water can be sent to the water tank bypass channel 44.
 さらに、第1吐出切換え弁91は、第1吐出口87から流路105へ送水可能な接続状態とされ、第2吐出切換え弁92は、第2吐出口89から流路108へ送水可能な接続状態とされ、第1流入切換え弁93は、第1送水ポンプ11から流路101へ送水可能な接続状態とされ、第2流入切換え弁94は、第2送水ポンプ12から流路104へ送水可能な接続状態とされる。 Further, the first discharge switching valve 91 is connected to allow water to be delivered from the first discharge port 87 to the flow path 105, and the second discharge changeover valve 92 is connected to allow water to be delivered from the second discharge port 89 to the flow path 108. state, the first inflow switching valve 93 is connected to allow water to be sent from the first water pump 11 to the channel 101, and the second inflow switching valve 94 is connected to enable water to be delivered from the second water pump 12 to the channel 104. connection state.
 つまり、第1軟水槽3aと第2軟水槽3bとが連通接続する状態、第1中和槽4aと第2中和槽4bとが連通接続する状態とし、排水口13および捕捉部排水口14の排水を停止した状態とする。これにより、図3に示すように、軟水槽再生循環流路39aおよび中和槽再生循環流路40aがそれぞれ形成される。 In other words, the first soft water tank 3a and the second soft water tank 3b are in a communicating state, the first neutralizing tank 4a and the second neutralizing tank 4b are in a communicating state, and the drain port 13 and the trapping part drain port 14 The drainage of water will be stopped. As a result, as shown in FIG. 3, a soft water tank regeneration circulation passage 39a and a neutralization tank regeneration circulation passage 40a are formed, respectively.
 この状態で、第1送水ポンプ11および第2送水ポンプ12を動作させると、電解槽9内の酸性電解水およびアルカリ性電解水が、それぞれ、軟水槽再生循環流路39aおよび中和槽再生循環流路40aを循環する。 In this state, when the first water pump 11 and the second water pump 12 are operated, the acidic electrolyzed water and the alkaline electrolyzed water in the electrolytic cell 9 are transferred to the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path, respectively. It circulates through path 40a.
 また、図3に示すように、軟水槽再生循環流路39aおよび中和槽再生循環流路40aがそれぞれ形成されている状態では、第1室電極84が第2室電極85に対して高電位となるように通電される(正運転)。すなわち、第1室電極84が陽極、第2室電極85が陰極として機能する。これにより、電気分解の際に、第1室電極84(陽極)では水素イオンが生じ、第1室81では、酸性電解水が生成する。一方、第2室電極85(陰極)では水酸化物イオンが生じ、第2室82ではアルカリ性電解水が生成する。 Further, as shown in FIG. 3, when the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a are formed, the first chamber electrode 84 has a high potential with respect to the second chamber electrode 85. The current is applied so that (forward operation). That is, the first chamber electrode 84 functions as an anode, and the second chamber electrode 85 functions as a cathode. As a result, during electrolysis, hydrogen ions are generated at the first chamber electrode 84 (anode), and acidic electrolyzed water is generated in the first chamber 81. On the other hand, hydroxide ions are generated in the second chamber electrode 85 (cathode), and alkaline electrolyzed water is generated in the second chamber 82.
 次に、図4に示す軟水槽再生循環流路39bおよび中和槽再生循環流路40bについて説明する。軟水槽再生循環流路39bおよび中和槽再生循環流路40bでは、開閉弁19、開閉弁20、開閉弁22、および開閉弁63が閉止され、開閉弁18、開閉弁21、および開閉弁23が開放される。流路切替えバルブ24は中和槽バイパス流路42から第1回収流路37へ送水可能な接続状態とされ、流路切替えバルブ25は軟水槽バイパス流路44から第2回収流路38へ送水可能な接続状態とされ、流路切替えバルブ26は第1供給流路35から中和槽バイパス流路42へ送水可能な接続状態とされ、流路切替えバルブ27は第2供給流路36から軟水槽バイパス流路44へ送水可能な接続状態とされる。 Next, the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b shown in FIG. 4 will be explained. In the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b, the on-off valve 19, the on-off valve 20, the on-off valve 22, and the on-off valve 63 are closed, and the on-off valve 18, the on-off valve 21, and the on-off valve 23 are closed. will be released. The flow path switching valve 24 is connected to allow water to be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37, and the flow path switching valve 25 is connected to allow water to be sent from the water softener bypass flow path 44 to the second recovery flow path 38. The flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected to allow water to be transferred from the second supply flow path 36 to the neutralization tank bypass flow path 42. A connection state is established in which water can be sent to the water tank bypass channel 44.
 さらに、第1吐出切換え弁91は、第1吐出口87から流路107へ送水可能な接続状態とされ、第2吐出切換え弁92は、第2吐出口89から流路106へ送水可能な接続状態とされ、第1流入切換え弁93は、第1送水ポンプ11から流路102へ送水可能な接続状態とされ、第2流入切換え弁94は、第2送水ポンプ12から流路103へ送水可能な接続状態とされる。 Furthermore, the first discharge switching valve 91 is connected to allow water to be delivered from the first discharge port 87 to the flow path 107, and the second discharge changeover valve 92 is connected to allow water to be delivered from the second discharge port 89 to the flow path 106. state, the first inflow switching valve 93 is connected to allow water to be sent from the first water pump 11 to the channel 102, and the second inflow switching valve 94 is connected to enable water to be delivered from the second water pump 12 to the channel 103. connection state.
 つまり、第1軟水槽3aと第2軟水槽3bとが連通接続する状態、第1中和槽4aと第2中和槽4bとが連通接続する状態とし、排水口13および捕捉部排水口14の排水を停止した状態とする。これにより、図4に示すように、軟水槽再生循環流路39bおよび中和槽再生循環流路40bがそれぞれ形成される。 In other words, the first soft water tank 3a and the second soft water tank 3b are in a communicating state, the first neutralizing tank 4a and the second neutralizing tank 4b are in a communicating state, and the drain port 13 and the trapping part drain port 14 The drainage of water will be stopped. As a result, as shown in FIG. 4, a soft water tank regeneration circulation passage 39b and a neutralization tank regeneration circulation passage 40b are formed, respectively.
 この状態で、第1送水ポンプ11および第2送水ポンプ12を動作させると、電解槽9内の酸性電解水およびアルカリ性電解水が、それぞれ、軟水槽再生循環流路39bおよび中和槽再生循環流路40bを循環する。 In this state, when the first water pump 11 and the second water pump 12 are operated, the acidic electrolyzed water and the alkaline electrolyzed water in the electrolytic cell 9 are transferred to the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path, respectively. It circulates through path 40b.
 また、図4に示すように、軟水槽再生循環流路39bおよび中和槽再生循環流路40bがそれぞれ形成されている状態では、第2室電極85が第1室電極84に対して高電位となるように通電される(反転運転)。すなわち、第1室電極84が陰極、第2室電極85が陽極として機能する。これにより、電気分解の際に、第2室電極85(陽極)では水素イオンが生じ、第2室82では、酸性電解水が生成する。一方、第1室電極84(陰極)では水酸化物イオンが生じ、第1室81ではアルカリ性電解水が生成する。 Further, as shown in FIG. 4, when the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b are formed, the second chamber electrode 85 has a high potential with respect to the first chamber electrode 84. The power is applied so that (reverse operation). That is, the first chamber electrode 84 functions as a cathode, and the second chamber electrode 85 functions as an anode. As a result, during electrolysis, hydrogen ions are generated at the second chamber electrode 85 (anode), and acidic electrolyzed water is generated in the second chamber 82. On the other hand, hydroxide ions are generated in the first chamber electrode 84 (cathode), and alkaline electrolyzed water is generated in the first chamber 81.
 電解槽9で生成した酸性電解水は、第1供給流路35を流通して流路切替えバルブ26を介して第2軟水槽3b内に送水され、内部の弱酸性陽イオン交換樹脂33を流通する。そして、第2軟水槽3bを流通した酸性電解水は、中和槽バイパス流路42を流通して流路切替えバルブ24を介して、第1軟水槽3a内に送水され、内部の弱酸性陽イオン交換樹脂33を流通する。 The acidic electrolyzed water generated in the electrolytic cell 9 flows through the first supply flow path 35, is fed into the second soft water tank 3b via the flow path switching valve 26, and flows through the weakly acidic cation exchange resin 33 inside. do. Then, the acidic electrolyzed water that has passed through the second soft water tank 3b flows through the neutralization tank bypass flow path 42 and is sent into the first soft water tank 3a via the flow path switching valve 24, where the weakly acidic electrolyzed water inside is fed. It flows through the ion exchange resin 33.
 すなわち、酸性電解水を弱酸性陽イオン交換樹脂33に通水することで、弱酸性陽イオン交換樹脂33に吸着されている陽イオン(硬度成分)が、酸性電解水に含まれる水素イオンとイオン交換反応を起こす。これにより、弱酸性陽イオン交換樹脂33が再生される。 That is, by passing acidic electrolyzed water through the weakly acidic cation exchange resin 33, the cations (hardness component) adsorbed on the weakly acidic cation exchange resin 33 are combined with hydrogen ions and ions contained in the acidic electrolyzed water. Causes an exchange reaction. As a result, the weakly acidic cation exchange resin 33 is regenerated.
 その後、第1軟水槽3aを流通した酸性電解水は、陽イオンを含み、第1回収流路37へ流入する。すなわち、弱酸性陽イオン交換樹脂33を流通した陽イオンを含む酸性電解水は、第1回収流路37を介して電解槽9に回収される。 Thereafter, the acidic electrolyzed water flowing through the first soft water tank 3a contains cations and flows into the first recovery channel 37. That is, the acidic electrolyzed water containing cations that has passed through the weakly acidic cation exchange resin 33 is recovered into the electrolytic cell 9 via the first recovery channel 37 .
 このように、軟水槽再生循環流路39は、酸性電解水を、第2軟水槽3bの下流側から流通させ、第1軟水槽3aの下流側へと流入させるように構成される。第2軟水槽3bは、原水の流入口2から最も下流に位置する軟水槽3であり、上流側の軟水槽3より硬度成分の吸着量が少ない弱酸性陽イオン交換樹脂33を有する軟水槽3である。第1軟水槽3aは上流に位置しており、第2軟水槽3bに比べて硬度成分がより多く吸着している弱酸性陽イオン交換樹脂33を有する軟水槽である。 In this way, the water softener regeneration circulation flow path 39 is configured to allow acidic electrolyzed water to flow from the downstream side of the second water softener tank 3b and flow into the downstream side of the first water softener tank 3a. The second soft water tank 3b is the soft water tank 3 located most downstream from the raw water inlet 2, and has a weakly acidic cation exchange resin 33 that adsorbs less hardness components than the upstream soft water tank 3. It is. The first soft water tank 3a is located upstream, and is a soft water tank having a weakly acidic cation exchange resin 33 that adsorbs more hard components than the second soft water tank 3b.
 つまり、軟水槽再生循環流路39は、電解槽9から送出された酸性電解水を、第2軟水槽3bに流通させた後、中和槽バイパス流路42によって第1軟水槽3aへと送出し、第1軟水槽3aを流通させ、第1回収流路37を介して電解槽9へ流入させる流路である。これにより、再生工程の際には、第1軟水槽3aと比べて硬度成分の吸着量が少ない第2軟水槽3bに、電解槽9から吐出された酸性電解水が流入し、硬度成分を含んだ酸性電解水が第2軟水槽3bから第1軟水槽3aへと吐出される。第2軟水槽3bの弱酸性陽イオン交換樹脂33の再生では、第1軟水槽3aと比較し、酸性電解水中の水素イオンの消費が少ないため、第1軟水槽3aの再生と比べ、水素イオン濃度の低減を抑制できる。そのため、水素イオンを多く含有する酸性電解水が第1軟水槽3aに流入し、硬度成分が第1軟水槽3aにおいて再吸着するのを抑制することができる。したがって、再生処理効率の低下を抑制でき、再生時間を短縮できる。 In other words, the water softener regeneration circulation flow path 39 circulates the acidic electrolyzed water sent from the electrolytic cell 9 to the second water softener tank 3b, and then sends it to the first water softener tank 3a through the neutralization tank bypass flow path 42. This is a flow path through which the first soft water tank 3a flows and flows into the electrolytic cell 9 via the first recovery flow path 37. As a result, during the regeneration process, the acidic electrolyzed water discharged from the electrolytic tank 9 flows into the second softened water tank 3b, which has a smaller adsorption amount of hardness components than the first softened water tank 3a, and absorbs the hardness components. The acidic electrolyzed water is discharged from the second soft water tank 3b to the first soft water tank 3a. In the regeneration of the weakly acidic cation exchange resin 33 in the second soft water tank 3b, hydrogen ions are consumed less in the acidic electrolyzed water than in the first soft water tank 3a. The reduction in concentration can be suppressed. Therefore, acidic electrolyzed water containing a large amount of hydrogen ions can be prevented from flowing into the first soft water tank 3a, and the hard components can be prevented from being re-adsorbed in the first soft water tank 3a. Therefore, it is possible to suppress a decrease in the regeneration processing efficiency and shorten the regeneration time.
 一方、電解槽9の陰極付近で生成したアルカリ性電解水は、第2供給流路36、および捕捉部10を流通して流路切替えバルブ27を介して第2中和槽4b内に送水され、内部の弱塩基性陰イオン交換樹脂34を流通する。第2中和槽4bを流通したアルカリ性電解水は、軟水槽バイパス流路44を流通し、流路切替えバルブ25を介して第1中和槽4a内に送水され、内部の弱塩基性陰イオン交換樹脂34を流通する。 On the other hand, the alkaline electrolyzed water generated near the cathode of the electrolytic cell 9 flows through the second supply flow path 36 and the capture section 10, and is sent into the second neutralization tank 4b via the flow path switching valve 27, It flows through the weakly basic anion exchange resin 34 inside. The alkaline electrolyzed water that has passed through the second neutralization tank 4b flows through the soft water tank bypass flow path 44, and is sent into the first neutralization tank 4a via the flow path switching valve 25, and the weak basic anions inside The exchange resin 34 is circulated.
 すなわち、アルカリ性電解水を弱塩基性陰イオン交換樹脂34に通水させることで、弱塩基性陰イオン交換樹脂34に吸着されている陰イオンが、アルカリ性電解水に含まれる水酸化物イオンとイオン交換反応を起こす。これにより、弱塩基性陰イオン交換樹脂34が再生される。 That is, by passing alkaline electrolyzed water through the weakly basic anion exchange resin 34, the anions adsorbed on the weakly basic anion exchange resin 34 are combined with hydroxide ions and ions contained in the alkaline electrolyzed water. Causes an exchange reaction. As a result, the weakly basic anion exchange resin 34 is regenerated.
 第1中和槽4aを流通したアルカリ性電解水は、陰イオンを含み、第2回収流路38へ流入する。すなわち、弱塩基性陰イオン交換樹脂34を流通した陰イオンを含むアルカリ性電解水は、第2回収流路38を介して電解槽9に回収される。 The alkaline electrolyzed water that has passed through the first neutralization tank 4a contains anions and flows into the second recovery channel 38. That is, the alkaline electrolyzed water containing anions that has passed through the weakly basic anion exchange resin 34 is recovered into the electrolytic cell 9 via the second recovery channel 38 .
 このように、中和槽再生循環流路40は、アルカリ性電解水を、第2中和槽4bの下流側から流通させ、第1中和槽4aの下流側へと流入させるように構成されている。第2中和槽4bは、原水の流入口2から最も下流に位置する中和槽4であり、上流側の中和槽4と比較して陰イオンの吸着量が少ない弱塩基性陰イオン交換樹脂34を有する中和槽4である。第1中和槽4aは上流に位置しており、第2中和槽4bに比べて陰イオンがより多く吸着している弱塩基性陰イオン交換樹脂34を有する中和槽4である。 In this way, the neutralization tank regeneration circulation flow path 40 is configured to allow alkaline electrolyzed water to flow from the downstream side of the second neutralization tank 4b and flow into the downstream side of the first neutralization tank 4a. There is. The second neutralization tank 4b is the neutralization tank 4 located most downstream from the raw water inlet 2, and is a weakly basic anion exchanger that has a smaller amount of anions adsorbed than the neutralization tank 4 on the upstream side. This is a neutralization tank 4 having a resin 34. The first neutralization tank 4a is located upstream, and is a neutralization tank 4 having a weakly basic anion exchange resin 34 that adsorbs more anions than the second neutralization tank 4b.
 つまり、中和槽再生循環流路40は、電解槽9から送出されたアルカリ性電解水を、第2中和槽4bに流通させた後、軟水槽バイパス流路44によって第1中和槽4aへと送出し、第1中和槽4aを流通させ、第2回収流路38を介して電解槽9へ流入させる流路である。これにより、再生工程時には、第1中和槽4aと比べて陰イオンの吸着量が少ない第2中和槽4bに、アルカリ性電解水が流入し、陰イオンを含んだアルカリ性電解水が第2中和槽4bから第1中和槽4aへと吐出される。第2中和槽4bの弱塩基性陰イオン交換樹脂34の再生では、第1中和槽4aと比較し、アルカリ性電解水中の水酸化物イオンの消費が少ないため、第1中和槽4aの再生と比べ、水酸化物イオン濃度の低減を抑制できる。そのため、水酸化物イオンを多く含有するアルカリ性電解水が第1中和槽4aに流入し、陰イオンが第1中和槽4aにおいて再吸着するのを抑制することができる。したがって、再生処理効率の低下を抑制でき、再生時間を短縮できる。 In other words, the neutralization tank regeneration circulation flow path 40 circulates the alkaline electrolyzed water sent out from the electrolyzer 9 to the second neutralization tank 4b, and then flows it to the first neutralization tank 4a via the water softener bypass flow path 44. This is a flow path in which the electrolyte is sent out, flows through the first neutralization tank 4a, and flows into the electrolytic cell 9 via the second recovery flow path 38. As a result, during the regeneration process, alkaline electrolyzed water flows into the second neutralization tank 4b, which has a smaller adsorption amount of anions than the first neutralization tank 4a, and the alkaline electrolyzed water containing anions flows into the second neutralization tank 4b. It is discharged from the Japanese tank 4b to the first neutralization tank 4a. In the regeneration of the weakly basic anion exchange resin 34 in the second neutralization tank 4b, hydroxide ions in the alkaline electrolyzed water are consumed less than in the first neutralization tank 4a. Compared to regeneration, reduction in hydroxide ion concentration can be suppressed. Therefore, alkaline electrolyzed water containing a large amount of hydroxide ions flows into the first neutralization tank 4a, and anions can be prevented from being re-adsorbed in the first neutralization tank 4a. Therefore, it is possible to suppress a decrease in the regeneration processing efficiency and shorten the regeneration time.
 また、中和槽再生循環流路40は、電解槽9から送出されたアルカリ性電解水を、第1中和槽4aおよび第2中和槽4bそれぞれの下流側から第1中和槽4aおよび第2中和槽4bに導入し、各中和槽の下流側に比べて陰イオンの吸着量が多い上流側から流出させる。これにより、より陰イオン成分の吸着量が少ない下流側からアルカリ性電解水が流入し、中和槽の再生を行う。 Further, the neutralization tank regeneration circulation flow path 40 transfers the alkaline electrolyzed water sent out from the electrolytic tank 9 from the downstream side of the first neutralization tank 4a and the second neutralization tank 4b to the first neutralization tank 4a and the second neutralization tank 4b, respectively. 2 neutralization tanks 4b, and flow out from the upstream side where a larger amount of anions is adsorbed than the downstream side of each neutralization tank. As a result, alkaline electrolyzed water flows in from the downstream side where the amount of anion components adsorbed is smaller, and the neutralization tank is regenerated.
 下流側の弱塩基性陰イオン交換樹脂34の再生では、上流側と比較して、アルカリ性電解水中の水酸化物イオンの消費が少ないため、アルカリ性電解水の水酸化物イオン濃度の低減を抑制できる。そのため、下流側からのアルカリ性電解水に含まれる陰イオンが上流側において再吸着するのを抑制することができる。したがって、中和槽の再生処理効率の低下を抑制でき、再生時間が短縮できる。なお、下流側とは、軟水化処理時の流路における下流側を指す。 In the regeneration of the weakly basic anion exchange resin 34 on the downstream side, the consumption of hydroxide ions in the alkaline electrolyzed water is lower than that on the upstream side, so a reduction in the hydroxide ion concentration in the alkaline electrolyzed water can be suppressed. . Therefore, it is possible to suppress the anions contained in the alkaline electrolyzed water from the downstream side from being re-adsorbed on the upstream side. Therefore, it is possible to suppress a decrease in the regeneration processing efficiency of the neutralization tank, and the regeneration time can be shortened. Note that the downstream side refers to the downstream side in the flow path during water softening treatment.
 以下、再生工程時における、軟水槽再生循環流路39aおよび中和槽再生循環流路40aの流路状態と、軟水槽再生循環流路39bおよび中和槽再生循環流路40bの流路状態と、の制御部15による切替え、ならびに、第1室電極84および第2室電極85の運転状態(正運転と反転運転)の制御部15による切替えについて説明する。 Below, the flow path states of the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a, and the flow path conditions of the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b during the regeneration process are described below. , and the switching by the control unit 15 of the operating states (normal operation and reverse operation) of the first chamber electrode 84 and the second chamber electrode 85 will be explained.
 まず、軟水化装置1は、軟水槽再生循環流路39aおよび中和槽再生循環流路40aの流路状態で、第1送水ポンプ11および第2送水ポンプ12を動作させて、図15の「再生時a」の欄に示すように第1室電極84が陽極、第2室電極85が陰極となるように通電する。つまり、電解槽9を正運転させることで、第1室81で酸性電解水を生成させ、第2室82でアルカリ性電解水を生成させ、生成した酸性電解水を軟水槽再生循環流路39aに循環させ、生成したアルカリ性電解水を中和槽再生循環流路40aに循環させる。このとき、経過時間記憶部112は、正運転の開始と同時に正運転の実行時間である正運転時間を記憶し始める。制御部15では、所定の基準時間(たとえば6時間)が設定されており、経過時間比較部113は、経過時間記憶部112が記憶した正運転時間と所定の基準時間とを比較する。 First, the water softening device 1 operates the first water pump 11 and the second water pump 12 in the flow path state of the water softening tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a, as shown in FIG. As shown in the column ``during reproduction a'', electricity is applied so that the first chamber electrode 84 becomes an anode and the second chamber electrode 85 becomes a cathode. That is, by operating the electrolytic cell 9 in the forward direction, acidic electrolyzed water is generated in the first chamber 81, alkaline electrolyzed water is generated in the second chamber 82, and the generated acidic electrolyzed water is sent to the soft water tank regeneration circulation flow path 39a. The generated alkaline electrolyzed water is circulated to the neutralization tank regeneration circulation channel 40a. At this time, the elapsed time storage unit 112 starts storing the normal operation time, which is the execution time of the normal operation, at the same time as the start of the normal operation. In the control section 15, a predetermined reference time (for example, 6 hours) is set, and the elapsed time comparison section 113 compares the normal operation time stored in the elapsed time storage section 112 with the predetermined reference time.
 経過時間比較部113が比較した結果、正運転時間が所定の基準時間未満である場合には、制御部15は、正運転時間が所定の基準時間に達するまで、正運転の状態で再生工程を実施する。また、正運転時間が所定の基準時間以上となった場合には、制御部15は、再生工程を反転運転にて実施する。具体的には、切替部111が各種弁を切替えることにより、軟水槽再生循環流路39bおよび中和槽再生循環流路40bの流路状態とし、第1室電極84が陰極、第2室電極85が陽極となるように通電し、反転運転となるように切替えを行う。 As a result of the comparison by the elapsed time comparison unit 113, if the normal operation time is less than the predetermined reference time, the control unit 15 continues the regeneration process in the normal operation state until the normal operation time reaches the predetermined reference time. implement. Further, when the normal operation time is equal to or longer than the predetermined reference time, the control unit 15 performs the regeneration process in reverse operation. Specifically, the switching unit 111 switches various valves to set the flow path states of the soft water tank regeneration circulation flow path 39b and the neutralization tank regeneration circulation flow path 40b, and the first chamber electrode 84 is set as the cathode and the second chamber electrode is set as the flow path state. Electricity is applied so that 85 becomes the anode, and switching is performed so that the operation is reversed.
 このように、制御部15によって、再生運転状態が正運転から反転運転に切替えられた時には、経過時間記憶部112に記憶されていた正運転時間はリセットされ、「0」に戻る。このとき、経過時間記憶部112は、反転運転の開始と同時に反転運転の実行時間である反転運転時間を記憶し始める。制御部15は、その後、正運転の時と同様に、経過時間比較部113にて反転運転時間と所定の基準時間とを比較しながら再生工程を実施する。 In this way, when the regeneration operation state is switched from normal operation to reverse operation by the control unit 15, the normal operation time stored in the elapsed time storage unit 112 is reset and returns to "0". At this time, the elapsed time storage unit 112 starts storing the reversing operation time, which is the execution time of the reversing operation, at the same time as the reversing operation starts. Thereafter, the control unit 15 performs the regeneration process while comparing the reverse operation time and a predetermined reference time in the elapsed time comparison unit 113, as in the case of the normal operation.
 経過時間比較部113が比較した結果、反転運転時間が所定の基準時間未満である場合には、制御部15は、反転運転時間が所定の基準時間に達するまで、反転運転の状態で再生工程を実施する。また、反転運転時間が所定の基準時間以上となった場合には、制御部15は、再生工程を正運転にて実施する。具体的には、切替部111が各種弁を切替えることにより、軟水槽再生循環流路39aおよび中和槽再生循環流路40aの流路状態とし、第1室電極84が陽極、第2室電極85が陰極となるように通電し、正運転となるように切替えを行う。 As a result of the comparison by the elapsed time comparing section 113, if the reversing operation time is less than the predetermined reference time, the control section 15 continues the regeneration process in the reversing operation state until the reversing operation time reaches the predetermined reference time. implement. Further, when the reverse operation time is equal to or longer than the predetermined reference time, the control unit 15 performs the regeneration process in the forward operation. Specifically, the switching unit 111 switches various valves to set the flow path states of the soft water tank regeneration circulation flow path 39a and the neutralization tank regeneration circulation flow path 40a, and the first chamber electrode 84 is set as the anode, and the second chamber electrode is set as the anode. Electricity is applied so that 85 becomes a cathode, and switching is performed so that normal operation is performed.
 そして、再生運転状態が反転運転から正運転に切替えられた時には、経過時間記憶部112に記憶されていた反転運転時間はリセットされ「0」に戻り、経過時間記憶部112は正運転時間を記憶し始める。 When the regeneration operation state is switched from reverse operation to normal operation, the reverse operation time stored in the elapsed time storage section 112 is reset and returns to "0", and the elapsed time storage section 112 stores the normal operation time. Begin to.
 そして、軟水化装置1では、制御部15が、特定された時間帯になった場合または再生工程が一定時間(たとえば4時間)を超えた場合に再生工程を終了し、貯水工程を実行する。 Then, in the water softening device 1, the control unit 15 ends the regeneration process and executes the water storage process when the specified time period arrives or when the regeneration process exceeds a certain period of time (for example, 4 hours).
 なお、再生工程が終了するときに、経過時間記憶部112が記憶していた正運転時間または反転運転時間が所定の基準時間未満である場合には、制御部15は、流路状態の切替えを行わずに第1室電極84および第2室電極85への通電を停止する。 Note that when the regeneration process ends, if the normal operation time or the reverse operation time stored in the elapsed time storage section 112 is less than the predetermined reference time, the control section 15 switches the flow path state. Without doing so, the energization to the first chamber electrode 84 and the second chamber electrode 85 is stopped.
 このとき、運転状態記憶部116は、再生工程終了時の運転状態が正運転であったか反転運転であったかを記憶する。そして、次回の再生工程の開始時には、運転状態記憶部116の記憶した運転状態で再生工程が開始される。また、経過時間記憶部112が記憶していた正運転時間または反転運転時間についても、次回の再生工程までは記憶され、次回の再生工程が開始されたときに引き続き運転時間の記憶が実施される。 At this time, the operating state storage unit 116 stores whether the operating state at the end of the regeneration process was normal operation or reverse operation. Then, at the start of the next regeneration process, the regeneration process is started in the operating state stored in the operating state storage section 116. Further, the normal operation time or reverse operation time stored in the elapsed time storage unit 112 is also stored until the next regeneration process, and the operation time is continuously stored when the next regeneration process is started. .
 たとえば、正運転状態で再生工程が終了され、正運転時間が所定の基準時間未満である場合には、図15に示す「再生時a」から「再生終了時a」の状態となり、制御部15においては、運転状態として正運転状態が記憶され、正運転時間は記憶されたままの状態である。そして、次回の再生工程は、正運転で開始され、記憶されていた正運転時間に引き続いて正運転時間が加算されて記憶されていく。 For example, if the regeneration process is finished in the normal operation state and the normal operation time is less than a predetermined reference time, the state changes from "regeneration time a" to "regeneration end time a" shown in FIG. In this case, the normal operating state is stored as the operating state, and the normal operating time remains in the stored state. Then, the next regeneration step is started with normal operation, and the normal operation time is added to and stored in succession to the stored normal operation time.
 また、再生工程が終了するときに制御部15において記憶されていた正運転時間または反転運転時間が所定の基準時間以上である場合は、流路状態が切替えられ、第1室電極84および第2室電極85の通電が停止する。このとき、制御部15においては、切替え後の運転状態(正運転または反転運転)が記憶され、次回の再生工程はこの記憶された運転状態で開始される。また、経過時間記憶部112が記憶していた正運転時間または反転運転時間についてはリセットされて「0」に戻り、次回の再生工程では切替え後の運転について運転時間の記憶が実施される。 Further, when the normal operation time or the reverse operation time stored in the control unit 15 is equal to or longer than a predetermined reference time when the regeneration process is finished, the flow path state is switched, and the first chamber electrode 84 and the second chamber electrode The energization of the chamber electrode 85 is stopped. At this time, in the control unit 15, the operating state after switching (normal operation or reverse operation) is stored, and the next regeneration process is started in this stored operating state. Further, the normal operation time or reverse operation time stored in the elapsed time storage unit 112 is reset and returns to "0", and in the next regeneration process, the operation time is stored for the operation after switching.
 たとえば、正運転状態で再生工程が終了し、正運転時間が所定の基準時間以上である場合には、図15に示す「再生時a」から「再生終了時b」の状態となり、制御部15においては、運転状態として反転運転状態が記憶され、正運転時間は「0」に戻る。そして、次回の再生工程は、反転運転で開始され、反転運転時間が「0」から記憶されていく。 For example, if the regeneration process ends in the normal operation state and the normal operation time is longer than a predetermined reference time, the state changes from "regeneration time a" to "regeneration end time b" shown in FIG. In this case, the reverse operation state is stored as the operation state, and the normal operation time returns to "0". Then, the next regeneration process is started with a reversal operation, and the reversal operation time is stored from "0".
 なお、再生工程中に利用者が水を得たい場合には、軟水化装置1と接続された蛇口(不図示)などを開放することにより、原水が流入口2から流路53を通り、取水口7から流出するため、再生工程の終了を待たずとも、原水を利用することができる。 In addition, if the user wants to obtain water during the regeneration process, by opening a faucet (not shown) connected to the water softening device 1, the raw water passes through the flow path 53 from the inlet 2, and the water is taken out. Since it flows out from the port 7, the raw water can be used without waiting for the completion of the regeneration process.
 (2.5 貯水工程)
 次に、軟水化装置1の貯水工程時の動作について、図5、図6、図14の「貯水時」の欄および図15の「再生終了時a」、「再生終了時b」の欄を参照して順に説明する。
(2.5 Water storage process)
Next, regarding the operation of the water softening device 1 during the water storage process, see the "Water storage" column in FIGS. 5, 6, and 14, and the "Regeneration end time a" and "Regeneration end time b" columns in FIG. I will refer to it and explain it in order.
 軟水化装置1では、再生工程から軟水化工程までの間に、後述する再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程が実行される。これらの工程ではいずれも、軟水槽再生循環流路39に原水を流入させる。このため、前述の混合工程における再生後水を確保するために、貯水工程を行う。 In the water softening device 1, between the regeneration process and the water softening process, a regeneration channel cleaning process, an electrolytic tank cleaning process, and a trapping part cleaning process, which will be described later, are executed. In all of these steps, raw water is caused to flow into the water softening tank regeneration circulation channel 39. Therefore, in order to secure water after regeneration in the above-mentioned mixing step, a water storage step is performed.
 貯水工程時においては、開閉弁19~開閉弁23が閉止され、開閉弁18および開閉弁63が開放される。流路切替えバルブ24は中和槽バイパス流路42から第1回収流路37へ送水可能な接続状態とされ、流路切替えバルブ25は流路29から軟水槽バイパス流路44へ送水可能な接続状態とされる。また、流路切替えバルブ26は第1供給流路35から中和槽バイパス流路42へ送水可能な接続状態とされ、流路切替えバルブ27は軟水槽バイパス流路44から第2供給流路36へ送水可能な接続状態とされる。また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態については、再生終了時の前述した図15に示す「再生終了時a」、「再生終了時b」のいずれかの状態である。「再生終了時a」の状態であれば、図5において黒矢印で示す貯水流路66aが形成され、「再生終了時b」の状態であれば、図6において黒矢印で示す貯水流路66bが形成される。 During the water storage process, the on-off valves 19 to 23 are closed, and the on-off valves 18 and 63 are opened. The flow path switching valve 24 is connected so that water can be sent from the neutralization tank bypass flow path 42 to the first recovery flow path 37, and the flow path switching valve 25 is connected so that water can be sent from the flow path 29 to the water softening tank bypass flow path 44. state. Further, the flow path switching valve 26 is connected to allow water to be sent from the first supply flow path 35 to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected from the water softening tank bypass flow path 44 to the second supply flow path 36. The connection state is such that water can be sent to. Furthermore, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as shown in FIG. ”, or “at the end of reproduction b”. If the state is "at the end of regeneration a", a water storage channel 66a shown by the black arrow in FIG. 5 is formed, and if the state is "at the end of regeneration b", the water storage channel 66b shown by the black arrow in FIG. 6 is formed. is formed.
 なお、このとき、第1室電極84、第2室電極85、第1送水ポンプ11、および第2送水ポンプ12の動作は停止している。 Note that at this time, the operations of the first chamber electrode 84, the second chamber electrode 85, the first water pump 11, and the second water pump 12 are stopped.
 このため、軟水槽再生循環流路39に残存する再生後水は、軟水槽再生循環流路39内を流通し、再生後水導入流路62を介して再生後水貯留槽64に流入する。 Therefore, the regenerated water remaining in the water softener tank regeneration circulation flow path 39 flows through the water softener regeneration circulation flow path 39 and flows into the regeneration water storage tank 64 via the regeneration water introduction flow path 62.
 このようにして、貯水工程により、再生工程後の軟水槽再生循環流路39内の再生後水を、再生後水貯留槽64に貯留することができる。したがって、再生工程と軟水化工程との間に、流路洗浄、および電解槽9の洗浄などを行う場合においても、次回の混合工程時に、再生後水を利用することができる。 In this way, by the water storage process, the recycled water in the soft water tank regeneration circulation flow path 39 after the regeneration process can be stored in the regenerated water storage tank 64. Therefore, even when cleaning the flow path and cleaning the electrolytic cell 9 between the regeneration step and the water softening step, the regenerated water can be used in the next mixing step.
 軟水化装置1では、制御部15が、特定された時間帯になった場合、貯水工程が一定時間(たとえば5分)を超えた場合、または、再生後水貯留槽64の貯水量が一定値を超えた場合に貯水工程を終了し、再生流路洗浄工程を実行する。 In the water softening device 1, the control unit 15 controls the control unit 15 when a specified time period has arrived, when the water storage process exceeds a certain period of time (for example, 5 minutes), or when the amount of water stored in the post-regeneration water storage tank 64 is set to a certain value. If the water exceeds the water storage level, the water storage process is terminated and the regeneration channel cleaning process is executed.
 なお、貯水工程中に利用者が水を得たい場合には、軟水化装置1と接続された蛇口(不図示)などを開放することにより、原水が流入口2から流路53を通り、取水口7から流出するため、貯水工程の終了を待たずとも、原水を利用することができる。 In addition, if the user wants to obtain water during the water storage process, by opening a faucet (not shown) connected to the water softening device 1, the raw water passes through the flow path 53 from the inlet 2, and the water is taken out. Since it flows out from the port 7, the raw water can be used without waiting for the completion of the water storage process.
 (2.6 再生流路洗浄工程)
 次に、軟水化装置1の再生流路洗浄工程時の動作について、図7、図8、および図14の「再生流路洗浄時」の欄および図15の「再生終了時a」、「再生終了時b」の欄を参照して順に説明する。
(2.6 Regeneration channel cleaning process)
Next, regarding the operation of the water softening device 1 during the regeneration flow path cleaning process, the column "During regeneration flow path cleaning" in FIGS. 7, 8, and 14, and the "At the end of regeneration a" and "Regeneration The steps will be explained in order with reference to the "End time b" column.
 軟水化装置1において、再生工程中には、第1軟水槽3aおよび第2軟水槽3bから硬度成分が酸性電解水中に放出され、酸性電解水は軟水槽再生循環流路39から排出されることなく流路内を循環する。したがって、再生工程終了後の軟水槽再生循環流路39内は、第1軟水槽3aおよび第2軟水槽3bから放出された硬度成分を含む高硬度水で満たされている。 In the water softening device 1, during the regeneration process, hardness components are released into the acidic electrolyzed water from the first water softening tank 3a and the second water softening tank 3b, and the acidic electrolyzed water is discharged from the water softening tank regeneration circulation flow path 39. It circulates in the flow path without any problem. Therefore, after the completion of the regeneration process, the inside of the soft water tank regeneration circulation channel 39 is filled with high hardness water containing hardness components released from the first soft water tank 3a and the second soft water tank 3b.
 この高硬度水の硬度は、原水の硬度(たとえば450ppm)よりも著しく高くなっており、たとえば2000ppm程度まで上昇する場合がある。この高硬度水が軟水化装置1内に残存した状態で軟水化工程に移行すると、取水口7からは高硬度水、または原水と高硬度水とが混合した水が排出される。したがって、軟水化装置1の利用者には、再生工程終了後に軟水化工程を実行した場合に、軟水化工程開始直後には軟水を得られないどころか原水よりも硬度の高い水を得ることになるという問題が生じる。これらの問題を解決するために、軟水槽再生循環流路39内の高硬度水を排水する再生流路洗浄工程を行う。 The hardness of this high-hardness water is significantly higher than the hardness of raw water (for example, 450 ppm), and may rise to about 2000 ppm, for example. When the water softening process is started with this high hardness water remaining in the water softening device 1, high hardness water or water in which raw water and high hardness water are mixed is discharged from the water intake port 7. Therefore, users of the water softening device 1 should note that if the water softening process is executed after the regeneration process is finished, they will not be able to obtain soft water immediately after the start of the water softening process, but will instead obtain water that is harder than the raw water. A problem arises. In order to solve these problems, a regeneration channel cleaning process is performed to drain the high hardness water in the water softening tank regeneration circulation channel 39.
 なお、再生流路洗浄工程の前に行われる貯水工程において、流路内の再生後水の一部は再生後水貯留槽64に流入するが、貯水工程後にも流路内に残存する再生後水を排出するために、再生流路洗浄工程を行う。 In addition, in the water storage step performed before the regeneration channel cleaning step, some of the regenerated water in the flow path flows into the regenerated water storage tank 64, but the regenerated water remaining in the flow path even after the water storage step To drain the water, a regeneration channel cleaning step is performed.
 再生流路洗浄工程時において、制御部15は、開閉弁21~23および開閉弁63を閉止して、開閉弁18~20を開放する。また、制御部15は、流路切替えバルブ24を流路28から中和槽バイパス流路42へ送水可能な接続状態とし、流路切替えバルブ25を軟水槽バイパス流路44へ送水可能な接続状態とし、流路切替えバルブ26を中和槽バイパス流路42から第1供給流路35へ送水可能な接続状態とし、流路切替えバルブ27を第2供給流路36へ送水可能な接続状態とする。 During the regeneration channel cleaning step, the control unit 15 closes the on-off valves 21 to 23 and the on-off valve 63, and opens the on-off valves 18 to 20. Further, the control unit 15 sets the flow path switching valve 24 in a connected state in which water can be sent from the flow path 28 to the neutralization tank bypass flow path 42, and the flow path switching valve 25 in a connected state in which water can be sent to the water softening tank bypass flow path 44. Then, the flow path switching valve 26 is brought into a connected state where water can be sent from the neutralization tank bypass flow path 42 to the first supply flow path 35, and the flow path switching valve 27 is brought into a connected state where water can be sent to the second supply flow path 36. .
 つまり、第1軟水槽3aと第2軟水槽3bとが連通接続する状態とし、第2軟水槽3bと排水口13とが連通接続する状態とし、電解槽9と排水口13とが連通接続する状態とし、捕捉部排水口14の排水を停止した状態とする。また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態については、再生終了時の、前述した図15に示す「再生終了時a」、「再生終了時b」のいずれかの状態である。「再生終了時a」の状態であれば、図7に示すように、第1排水流路46aおよび第2排水流路47がそれぞれ形成され、「再生終了時b」の状態であれば、図8に示すように、第1排水流路46bおよび第2排水流路47がそれぞれ形成される。なお、このとき、第1室電極84、第2室電極85、第1送水ポンプ11、および第2送水ポンプ12の動作は停止している。 In other words, the first soft water tank 3a and the second soft water tank 3b are connected to each other, the second soft water tank 3b and the drain port 13 are connected to each other, and the electrolytic cell 9 and the drain port 13 are connected to each other. In this state, drainage from the trapping part drain port 14 is stopped. Further, regarding the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94, the states of the "at the end of regeneration" shown in FIG. The state is either "a" or "b at the end of playback." If the state is "at the end of regeneration a", the first drainage channel 46a and the second drainage channel 47 are formed, as shown in FIG. 7, and if the state is "at the end of regeneration b", as shown in FIG. As shown in 8, a first drainage channel 46b and a second drainage channel 47 are respectively formed. Note that at this time, the operations of the first chamber electrode 84, the second chamber electrode 85, the first water pump 11, and the second water pump 12 are stopped.
 再生流路洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が第1排水流路46および第2排水流路47に流入する。 In the regeneration channel cleaning step, specifically, by opening the on-off valve 19, raw water flows into the first drainage channel 46 and the second drainage channel 47 from the outside.
 第1排水流路46では、流入した原水の圧力により、流路28、第1回収流路37、第1送水ポンプ11、および電解槽9内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。 In the first drainage channel 46 , the high hardness water in the channel 28 , the first recovery channel 37 , the first water pump 11 , and the electrolyzer 9 is swept away by the pressure of the inflowing raw water, and flows into the drain channel 54 . and inflow. The high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
 第2排水流路47では、流入した原水の圧力により、流路28、第1軟水槽3a、中和槽バイパス流路42、第2軟水槽3b、および第1供給流路35内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。 In the second drainage channel 47, due to the pressure of the inflowing raw water, the high hardness in the channel 28, the first soft water tank 3a, the neutralization tank bypass channel 42, the second soft water tank 3b, and the first supply channel 35 is increased. The water is swept away and flows into the drainage channel 54. The high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
 このようにして、再生流路洗浄工程により、再生工程後の主な高硬度水の残留箇所である第1排水流路46および第2排水流路47内の高硬度水を、中和槽4への流通を抑制しつつ原水に置換可能である。したがって、再生流路洗浄工程において、中和槽4内の弱塩基性陰イオン交換樹脂34への水素イオンの吸着を抑制可能なため、充填された水酸化物イオンの消費を抑制でき、中和性能を保つことができる。したがって、高硬度水を原因とする軟水化性能の低下を抑制できる。 In this way, by the regeneration flow path cleaning step, the high hardness water in the first drainage flow path 46 and the second drainage flow path 47, which are the main remaining locations of high hardness water after the regeneration step, is removed from the neutralization tank 4. It is possible to replace it with raw water while suppressing the flow to the water. Therefore, in the regeneration channel cleaning step, adsorption of hydrogen ions to the weakly basic anion exchange resin 34 in the neutralization tank 4 can be suppressed, so consumption of the filled hydroxide ions can be suppressed, and the neutralization performance can be maintained. Therefore, deterioration in water softening performance caused by highly hard water can be suppressed.
 軟水化装置1では、制御部15が、特定された時間帯になった場合、再生流路洗浄工程が一定時間(たとえば1分)を超えた場合、または再生流路洗浄工程での通水量が一定値を超えた場合に再生流路洗浄工程を終了し、電解槽洗浄工程を実行する。 In the water softening device 1, the control unit 15 controls the control unit 15 when a specified time period is reached, when the regeneration channel cleaning process exceeds a certain period of time (for example, 1 minute), or when the water flow rate in the regeneration channel cleaning process is When the value exceeds a certain value, the regeneration channel cleaning step is terminated and the electrolytic cell cleaning step is executed.
 なお、再生流路洗浄工程中に利用者が水を得たい場合には、軟水化装置1と接続された蛇口(不図示)などを開放することにより、原水が流入口2から流路53を通り、取水口7から流出するため、再生流路洗浄工程の終了を待たずとも、原水を利用することができる。 Note that if the user wants to obtain water during the regeneration channel cleaning process, by opening a faucet (not shown) connected to the water softening device 1, raw water flows from the inlet 2 to the channel 53. Since the raw water flows out from the water intake port 7, the raw water can be used without waiting for the completion of the regeneration channel cleaning process.
 (2.7 電解槽洗浄工程)
 次に、軟水化装置1の電解槽洗浄工程時の動作について、図9、図10、図14の「電解槽洗浄時」の欄、および図15の「再生終了時a」、「再生終了時b」の欄を参照して順に説明する。
(2.7 Electrolytic tank cleaning process)
Next, regarding the operation of the water softening device 1 during the electrolytic tank cleaning process, see the column "When cleaning the electrolytic tank" in FIGS. 9, 10, and 14, and the "At the end of regeneration a" and "At the end of regeneration" in FIG. This will be explained in order with reference to the column ``b''.
 再生工程において、電解槽9が動作していると、陰極には水中の硬度成分(カルシウムイオンまたはマグネシウムイオン)が固体(スケール)として析出する。陰極へ析出した析出物は不導体であるため、電解槽9の運転電圧を上昇させ、再生工程時の消費電力を上昇させてしまう。そこで、陰極に析出した析出物を除去する電解槽洗浄工程を行う必要がある。 In the regeneration process, when the electrolytic cell 9 is operating, hardness components (calcium ions or magnesium ions) in the water are deposited as solids (scale) on the cathode. Since the precipitate deposited on the cathode is a nonconductor, it increases the operating voltage of the electrolytic cell 9 and increases the power consumption during the regeneration process. Therefore, it is necessary to perform an electrolytic cell cleaning step to remove the precipitates deposited on the cathode.
 電解槽洗浄工程において、制御部15は、開閉弁18~22を開放し、開閉弁23および開閉弁63を閉止する。また、制御部15は、流路切替えバルブ24を流路28から流路29へ送水可能な接続状態とし、流路切替えバルブ25を軟水槽バイパス流路44へと送水可能な接続状態とし、流路切替えバルブ26を第1供給流路35へ送水可能な接続状態とし、流路切替えバルブ27を第2供給流路36へ送水可能な接続状態とする。 In the electrolytic cell cleaning step, the control unit 15 opens the on-off valves 18 to 22 and closes the on-off valve 23 and the on-off valve 63. In addition, the control unit 15 connects the flow path switching valve 24 to a connected state where water can be sent from the flow path 28 to the flow path 29, and connects the flow path switching valve 25 to a connected state where water can be sent to the water softening tank bypass flow path 44. The path switching valve 26 is connected to allow water to be sent to the first supply path 35, and the path switching valve 27 is connected to the second supply path 36.
 つまり、第1軟水槽3aと電解槽9とが連通接続する状態、電解槽9と排水口13とが連通接続する状態、電解槽9と捕捉部排水口14とが連通接続する状態とする。また、第1吐出切換え弁91、第2吐出切換え弁92、第1流入切換え弁93、および第2流入切換え弁94の状態については、前述した図15に示す「再生終了時a」、「再生終了時b」のいずれかの状態である。「再生終了時a」の状態であれば、図9に示すように、第1排水流路46aおよび第3排水流路50aがそれぞれ形成され、「再生終了時b」の状態であれば、図10に示すように、第1排水流路46bおよび第3排水流路50bがそれぞれ形成される。 In other words, the first water softening tank 3a and the electrolytic tank 9 are in a communicating state, the electrolytic tank 9 and the drain port 13 are in a communicating state, and the electrolytic tank 9 and the trapping part drain port 14 are in a communicating state. Furthermore, the states of the first discharge switching valve 91, the second discharge switching valve 92, the first inflow switching valve 93, and the second inflow switching valve 94 are as shown in FIG. At the end of the process, the state is either "b". If the state is "at the end of regeneration a", the first drainage channel 46a and the third drainage channel 50a are formed, respectively, as shown in FIG. 9, and if the state is "at the end of regeneration b", as shown in FIG. As shown in FIG. 10, a first drainage channel 46b and a third drainage channel 50b are respectively formed.
 電解槽洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が第1排水流路46および第3排水流路50に流入する。 In the electrolytic cell cleaning step, specifically, by opening the on-off valve 19, raw water flows into the first drainage channel 46 and the third drainage channel 50 from the outside.
 第1排水流路46では、流入した原水は、流路28、第1回収流路37、および第1送水ポンプ11を流通し、電解槽9に流入する。 In the first drainage channel 46, the raw water that has flowed in flows through the channel 28, the first recovery channel 37, and the first water pump 11, and then flows into the electrolytic cell 9.
 一方、第3排水流路50では、流入した原水は、流路28、第1軟水槽3a、第2回収流路38、および第2送水ポンプ12を流通し、電解槽9に流入する。 On the other hand, in the third drainage channel 50, the raw water that has flowed in flows through the channel 28, the first soft water tank 3a, the second recovery channel 38, and the second water pump 12, and then flows into the electrolytic cell 9.
 電解槽洗浄工程では、制御部15で記憶されている正運転時間および反転運転時間のうちのいずれかが「0」ではない場合、かつ、記憶されている再生運転状態が正運転の場合には、第1室電極84に対して第2室電極85が高電位となるように通電する。 In the electrolytic tank cleaning process, if either the normal operation time or the reverse operation time stored in the control unit 15 is not "0" and the stored regeneration operation state is normal operation, , electricity is applied so that the second chamber electrode 85 has a high potential with respect to the first chamber electrode 84 .
 一方、制御部15で記憶されている正運転時間および反転運転時間のうちのいずれかが「0」ではない場合、かつ、記憶されている再生運転状態が反転運転の場合には第2室電極85に対して第1室電極84が高電位となるように通電する。 On the other hand, if either the normal operation time or the reverse operation time stored in the control unit 15 is not "0" and the stored regeneration operation state is the reverse operation, the second chamber electrode Electricity is applied to the electrode 85 so that the first chamber electrode 84 has a high potential.
 また、制御部15で記憶されている正運転時間および反転運転時間のいずれもが「0」であり、かつ、記憶されている再生運転状態が正運転の場合には、第2室電極85に対して第1室電極84が高電位となるように通電する。 Further, if both the normal operation time and the reverse operation time stored in the control unit 15 are "0" and the stored regeneration operation state is the normal operation, the second chamber electrode 85 On the other hand, electricity is applied so that the first chamber electrode 84 has a high potential.
 さらに、制御部15で記憶されている正運転時間および反転運転時間のいずれもが「0」であり、かつ、記憶されている再生運転状態が反転運転の場合には第1室電極84に対して第2室電極85が高電位となるように通電する。 Further, if both the normal operation time and the reverse operation time stored in the control unit 15 are "0" and the stored regeneration operation state is the reverse operation, the first chamber electrode 84 is Then, electricity is applied so that the second chamber electrode 85 has a high potential.
 このとき、電解槽9は、電解槽9内に流入した原水を電気分解し、低電位側ではアルカリ性電解水を生成し、高電位側では酸性電解水を生成する。 At this time, the electrolytic cell 9 electrolyzes the raw water that has flowed into the electrolytic cell 9, producing alkaline electrolyzed water on the low potential side and producing acidic electrolyzed water on the high potential side.
 この際、第1室電極84または第2室電極85で生成された酸性電解水により、電極上に析出した析出物を溶解させることができる。したがって、第1室電極84または第2室電極85の表面への析出物の付着を原因とした電解性能の低下を抑制できる。 At this time, the acidic electrolyzed water generated at the first chamber electrode 84 or the second chamber electrode 85 can dissolve the precipitates deposited on the electrodes. Therefore, it is possible to suppress deterioration of electrolytic performance due to attachment of precipitates to the surface of the first chamber electrode 84 or the second chamber electrode 85.
 第1室電極84または第2室電極85で生成されたアルカリ性電解水は、流路105または流路106を流通して排水流路54に流入し、排水口13から装置外に排出される。 The alkaline electrolyzed water generated by the first chamber electrode 84 or the second chamber electrode 85 flows through the channel 105 or 106, flows into the drain channel 54, and is discharged from the drain port 13 to the outside of the apparatus.
 一方、第1室電極84または第2室電極85で生成された酸性電解水は、陰極に析出した析出物を溶解し、流路107または流路108を流通して捕捉部10に流入する。捕捉部10に流入した酸性電解水は、捕捉部10に固着した析出物を溶解させることができ、捕捉部10を予備的に洗浄できる。したがって、次の工程である捕捉部洗浄工程に要する時間を短縮することができる。そして酸性電解水は、捕捉部10の下部に設けられた捕捉部排水口14から装置外に排出される。 On the other hand, the acidic electrolyzed water generated at the first chamber electrode 84 or the second chamber electrode 85 dissolves the precipitates deposited on the cathode, flows through the flow path 107 or the flow path 108, and flows into the trapping section 10. The acidic electrolyzed water that has flowed into the trapping section 10 can dissolve precipitates stuck to the trapping section 10, and can preliminarily clean the trapping section 10. Therefore, the time required for the next step, the capturing section cleaning step, can be shortened. The acidic electrolyzed water is then discharged to the outside of the apparatus from a trapping section drain port 14 provided at the lower part of the trapping section 10.
 つまり、電解槽洗浄工程では、電解槽9内の析出物の除去と捕捉部10内の析出物の除去とを同時に行うことができ、再生工程終了から軟水化工程開始までに要する時間を短縮することができる。 That is, in the electrolytic cell cleaning process, the removal of precipitates in the electrolytic cell 9 and the precipitates in the trapping part 10 can be performed simultaneously, reducing the time required from the end of the regeneration process to the start of the water softening process. be able to.
 軟水化装置1では、制御部15が、特定された時間帯になった場合、または電解槽洗浄工程が一定時間(たとえば5分)を超えた場合に電解槽洗浄工程を終了し、捕捉部洗浄工程を実行する。 In the water softening device 1, the control unit 15 ends the electrolytic tank cleaning process when the specified time period has come or when the electrolytic tank cleaning process exceeds a certain period of time (for example, 5 minutes), and starts cleaning the trapping part. Execute the process.
 なお、第3排水流路50において、原水が第1軟水槽3aを通過するため、酸性になった水が捕捉部10を通過する。そのため、捕捉部10が酸性下になり、捕捉部10に固着した析出物が酸性水により溶解する。したがって、捕捉部10を予備的に洗浄できるため、次の工程である捕捉部洗浄工程に要する時間を短縮することができる。つまり、電解槽9内の析出物の除去と捕捉部10内の析出物の除去とを同時に行うことができ、再生工程終了から軟水化工程開始までに要する時間を短縮することができる。 Note that in the third drainage channel 50, since the raw water passes through the first soft water tank 3a, the acidified water passes through the trapping section 10. Therefore, the trapping section 10 becomes acidic, and the precipitates fixed to the trapping section 10 are dissolved by the acidic water. Therefore, since the trapping section 10 can be preliminarily cleaned, the time required for the next step, the trapping section cleaning step, can be shortened. That is, the removal of the precipitates in the electrolytic bath 9 and the precipitates in the trapping part 10 can be performed simultaneously, and the time required from the end of the regeneration process to the start of the water softening process can be shortened.
 なお、電解槽洗浄工程中に利用者が水を得たい場合には、軟水化装置1と接続された蛇口(不図示)などを開放することにより、原水が流入口2から流路53を通り、取水口7から流出するため、電解槽洗浄工程の終了を待たずとも、原水を利用することができる。 In addition, if the user wants to obtain water during the electrolytic cell cleaning process, by opening a faucet (not shown) connected to the water softening device 1, the raw water flows from the inlet 2 through the channel 53. Since the raw water flows out from the water intake port 7, the raw water can be used without waiting for the completion of the electrolytic cell cleaning process.
 (2.8 捕捉部洗浄工程)
 次に、軟水化装置1の捕捉部洗浄工程時の動作について、図11および図14の「捕捉部洗浄時」の欄を参照して順に説明する。
(2.8 Capture part cleaning process)
Next, the operation of the water softening device 1 during the trapping section cleaning process will be described in order with reference to the column "When cleaning the trapping section" in FIGS. 11 and 14.
 再生工程において、電解槽9には第1軟水槽3aおよび第2軟水槽3bから放出された硬度成分を含む高硬度水が流入する。硬度成分は、電気分解の際に陰極側へと移動し、陰極で生成される水酸化物イオンと反応し、析出物となる。析出した析出物の一部は、電解槽9から放出されるアルカリ性電解水に含まれ、第2供給流路36を流通し、捕捉部10によって捕捉される。 In the regeneration process, high hardness water containing hard components released from the first soft water tank 3a and the second soft water tank 3b flows into the electrolytic cell 9. The hardness component moves to the cathode side during electrolysis, reacts with hydroxide ions generated at the cathode, and becomes a precipitate. A part of the deposited precipitate is contained in the alkaline electrolyzed water discharged from the electrolytic cell 9, flows through the second supply channel 36, and is captured by the capture unit 10.
 再生工程中の捕捉部10には析出物が徐々に堆積するため、捕捉部10を原因とした圧力損失が徐々に増大し、中和槽再生循環流路40を流通するアルカリ性電解水の流量が徐々に低下する。したがって、析出物を放置すると、第1中和槽4aおよび第2中和槽4bの弱塩基性陰イオン交換樹脂34の再生に要する時間が延び、最終的には弱塩基性陰イオン交換樹脂34への水酸化物イオンの充填が完了しなくなる虞がある。そのため、捕捉部10に固着または析出した析出物を除去する捕捉部洗浄工程を行う必要がある。 Since precipitates gradually accumulate in the trapping section 10 during the regeneration process, the pressure loss caused by the trapping section 10 gradually increases, and the flow rate of alkaline electrolyzed water flowing through the neutralization tank regeneration circulation channel 40 decreases. gradually decreases. Therefore, if the precipitate is allowed to stand, the time required to regenerate the weakly basic anion exchange resin 34 in the first neutralization tank 4a and the second neutralization tank 4b will be extended, and eventually the weakly basic anion exchange resin 34 There is a risk that the filling of hydroxide ions into the tank may not be completed. Therefore, it is necessary to perform a trap cleaning step to remove precipitates that have adhered to or deposited on the trap 10.
 捕捉部洗浄工程において、制御部15は、開閉弁18、開閉弁19、開閉弁22、および開閉弁23を開放し、開閉弁20,21および開閉弁63を閉止する。また、制御部15は、流路切替えバルブ24を流路28から流路29へ送水可能な接続状態とし、流路切替えバルブ25を流路29から流路30へ送水可能な接続状態とし、流路切替えバルブ26を流路30から流路31へ送水可能な接続状態とし、流路切替えバルブ27を流路31から第2供給流路36へ送水可能な接続状態とする。 In the trap cleaning step, the control unit 15 opens the on-off valves 18, 19, 22, and 23, and closes the on-off valves 20, 21 and 63. In addition, the control unit 15 sets the flow path switching valve 24 in a connected state in which water can be sent from the flow path 28 to the flow path 29, sets the flow path switching valve 25 in a connected state in which water can be sent from the flow path 29 to the flow path 30, and The channel switching valve 26 is brought into a connected state where water can be sent from the channel 30 to the channel 31, and the channel switching valve 27 is brought into a connected state where water can be delivered from the channel 31 to the second supply channel 36.
 つまり、第1軟水槽3aと第1中和槽4aとが連通接続する状態、第1中和槽4aと第2軟水槽3bとが連通接続する状態、第2軟水槽3bと第2中和槽4bとが連通接続する状態、第2中和槽4bと捕捉部排水口14とが連通接続する状態とする。これにより、図11に示すように、第4排水流路52が形成される。 That is, a state in which the first soft water tank 3a and the first neutralization tank 4a are connected to each other, a state in which the first neutralization tank 4a and the second soft water tank 3b are connected to each other, and a state in which the second soft water tank 3b and the second neutralization tank are connected to each other are connected to each other. The tank 4b is in a communicating state, and the second neutralizing tank 4b and the trapping part drain port 14 are in a communicating state. Thereby, as shown in FIG. 11, a fourth drainage channel 52 is formed.
 捕捉部洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が流路28に流入する。流入した原水は、流路28、第1軟水槽3a、流路29、第1中和槽4a、流路30、第2軟水槽3b、流路31、第2中和槽4b、第2供給流路36を流通し、捕捉部10に流入する。 In the trap cleaning step, specifically, by opening the on-off valve 19, raw water flows into the flow path 28 from the outside. The raw water that has flowed into the flow path 28, the first soft water tank 3a, the flow path 29, the first neutralization tank 4a, the flow path 30, the second soft water tank 3b, the flow path 31, the second neutralization tank 4b, and the second supply. It flows through the flow path 36 and flows into the trapping section 10 .
 捕捉部10では、再生工程の通水方向とは反対側から中性軟水が流入する。つまり、流入した中性軟水により、捕捉部10の逆洗浄が行われる。このとき、電解槽洗浄工程によって捕捉部10に固着または析出した析出物の一部が予め溶解しているため、中性軟水による捕捉部10の洗浄を容易に行うことができる。析出物を含む中性軟水は、捕捉部10の下部に設けられた捕捉部排水口14から装置外に排出される。 In the trapping section 10, neutral soft water flows from the opposite side to the water flow direction in the regeneration process. In other words, the neutral soft water that flows in performs backwashing of the trapping section 10. At this time, since some of the precipitates that have adhered or deposited on the trapping section 10 in the electrolytic cell cleaning step have been dissolved in advance, the trapping section 10 can be easily cleaned with neutral soft water. Neutral soft water containing precipitates is discharged to the outside of the apparatus from a trapping section drain port 14 provided at the bottom of the trapping section 10.
 このようにして、捕捉部10を逆洗浄することができるため、捕捉部10に残留する析出物を除去できる。したがって、捕捉部10の閉塞を抑制でき、再度、再生工程を行う際に、捕捉部10に起因する圧力損失を低減できる。その結果、捕捉部10を含む再生流路である中和槽再生循環流路40の流量低減を抑制でき、アルカリ性電解水の流量を担保できるため、再生性能を確保できる。 In this way, since the trapping section 10 can be backwashed, precipitates remaining in the trapping section 10 can be removed. Therefore, clogging of the trapping section 10 can be suppressed, and pressure loss caused by the trapping section 10 can be reduced when performing the regeneration process again. As a result, it is possible to suppress a reduction in the flow rate of the neutralization tank regeneration circulation flow path 40, which is a regeneration flow path including the capture section 10, and to ensure the flow rate of alkaline electrolyzed water, thereby ensuring regeneration performance.
 そして、軟水化装置1では、制御部15が、特定された時間帯になった場合、または捕捉部洗浄工程が一定時間(たとえば5分)を超えた場合に捕捉部洗浄工程を終了し、軟水化工程を実行する。 In the water softening device 1, the control unit 15 ends the trap cleaning step when the specified time period has come or the trap cleaning step exceeds a certain period of time (for example, 5 minutes), and the controller 15 ends the trap cleaning step to soften the water. Execute the conversion process.
 なお、流入口2から第2中和槽4bまでの流路は、軟水化工程時の流路と同様の流路である。つまり、第4排水流路52を使用することにより、軟水化工程における最後段の中和槽である第2中和槽4bは軟水化された水で充填された状態となる。したがって、第4排水流路52を用いて捕捉部洗浄工程を行った後に軟水化工程を行うことにより、軟水化装置1の利用者は、軟水化工程開始直後から軟水化処理され硬度の低減した軟水を取水口7から得ることができる。 Note that the flow path from the inlet 2 to the second neutralization tank 4b is the same flow path as the flow path during the water softening process. That is, by using the fourth drainage flow path 52, the second neutralization tank 4b, which is the final neutralization tank in the water softening process, is filled with softened water. Therefore, by performing the water softening process after performing the trapping part cleaning process using the fourth drainage channel 52, the user of the water softening device 1 can receive water softening treatment to reduce hardness immediately after starting the water softening process. Soft water can be obtained from the water intake port 7.
 なお、捕捉部洗浄工程中に利用者が水を得たい場合には、軟水化装置1と接続された蛇口(不図示)などを開放することにより、原水が流入口2から流路53を通り、取水口7から流出するため、捕捉部洗浄工程の終了を待たずとも、原水を利用することができる。 Note that if the user wants to obtain water during the trap cleaning process, by opening a faucet (not shown) connected to the water softening device 1, the raw water flows from the inlet 2 through the channel 53. Since it flows out from the water intake port 7, the raw water can be used without waiting for the completion of the trap cleaning process.
 以上のようにして、軟水化装置1では、軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程がこの順で繰り返し実行される。軟水化工程の直前に捕捉部洗浄工程を実施することで、軟水化工程における最後段の中和槽4は、軟水化された水で充填された状態になる。したがって、軟水化装置1の利用者が蛇口を開けた際に、取水口7からの高硬度水の排出を抑制でき、軟水化工程開始直後から硬度の安定した軟水を提供することができる。 As described above, in the water softening device 1, the water softening process, the mixing process, the regeneration process, the water storage process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trap cleaning process are repeatedly executed in this order. By carrying out the trap cleaning step immediately before the water softening step, the neutralization tank 4 at the last stage in the water softening step is filled with softened water. Therefore, when the user of the water softening device 1 opens the faucet, discharge of highly hard water from the water intake port 7 can be suppressed, and soft water with stable hardness can be provided immediately after the start of the water softening process.
 また、再生流路洗浄工程を行ってから電解槽洗浄工程を行うことにより、電解槽洗浄工程での転極時には、高硬度水が既に装置外に排水されており、高硬度水を電解する可能性を抑制できる。したがって、硬度の高い水の電解を抑制でき、転極時にアルカリ性電解水が送水される流路における多量のスケール発生を抑制できる。 In addition, by performing the electrolytic tank cleaning process after performing the regeneration channel cleaning process, the high hardness water has already been drained out of the equipment at the time of polarity reversal in the electrolytic tank cleaning process, making it possible to electrolyze the high hardness water. You can suppress your sexuality. Therefore, electrolysis of highly hard water can be suppressed, and generation of a large amount of scale in the channel through which alkaline electrolyzed water is fed during polarization can be suppressed.
 (3. 効果など)
 以上、第1の実施の形態に係る軟水化装置1によれば、以下の効果を享受することができる。
(3. Effects, etc.)
As mentioned above, according to the water softening device 1 according to the first embodiment, the following effects can be enjoyed.
 (1)軟水化装置1は、硬度成分を含む原水を弱酸性陽イオン交換樹脂33により軟水化して酸性軟水を生成する軟水槽3と、軟水槽3を通過した酸性軟水のpHを弱塩基性陰イオン交換樹脂34により中和して中和軟水を生成する中和槽4と、酸性電解水とアルカリ性電解水とを生成する電解槽9と、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34のうち少なくとも一方の再生を行う工程である再生工程を制御する制御部15と、を備えている。電解槽9は、正運転時に酸性電解水が生成され、第1室電極が設けられた第1室81と、正運転時にアルカリ性電解水が生成され、第2室電極が設けられた第2室82と、を備え、再生工程時の運転状態として、正運転と、正運転とは第1室電極および第2室電極の極性を反転した状態で運転する反転運転と、の少なくとも2種の運転状態を有している。制御部15は、再生工程時に、電解槽9の運転状態に基づいて、第1室81から送出される電解水および第2室82から送出される電解水の送出先を決定する。 (1) The water softening device 1 includes a water softening tank 3 that softens raw water containing hard components using a weakly acidic cation exchange resin 33 to produce acidic soft water, and a water softening tank 3 that changes the pH of the acidic soft water that has passed through the water softening tank 3 to a weak base. A neutralization tank 4 that generates neutralized soft water by neutralization with an anion exchange resin 34, an electrolysis tank 9 that generates acidic electrolyzed water and alkaline electrolyzed water, and a weakly acidic cation exchange resin 33 and a weakly basic anion. It includes a control unit 15 that controls a regeneration process that is a process of regenerating at least one of the ion exchange resins 34. The electrolytic cell 9 has a first chamber 81 in which acidic electrolyzed water is generated during normal operation and a first chamber electrode is provided, and a second chamber 81 in which alkaline electrolyzed water is generated during normal operation and a second chamber electrode is provided. 82, and at least two types of operation are provided as operating states during the regeneration process: normal operation and reverse operation in which the normal operation is operated with the polarity of the first chamber electrode and the second chamber electrode reversed. It has a state. The control unit 15 determines the destination of the electrolyzed water sent out from the first chamber 81 and the electrolyzed water sent out from the second chamber 82 based on the operating state of the electrolytic cell 9 during the regeneration process.
 こうした構成によれば、再生工程時の運転状態に応じて、電解槽9から送出される電解水の送出先を決定できる。したがって、正運転を行うか、反転運転を行うかに関わらず、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34の再生を行うことができる。そのため、電極の極性を反転させた状態でも再生工程を実施することができるため、電極上に析出するスケールを溶解させつつ樹脂の再生を行うことができる。 According to such a configuration, the destination of the electrolyzed water sent from the electrolytic cell 9 can be determined depending on the operating state during the regeneration process. Therefore, regardless of whether forward operation or reverse operation is performed, the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 can be regenerated. Therefore, since the regeneration process can be carried out even with the polarity of the electrodes reversed, the resin can be regenerated while dissolving the scale deposited on the electrodes.
 (2)軟水化装置1は、正運転時には、第1室81から送出される電解水が軟水槽3へ送出され、第2室82から送出される電解水が中和槽へ送出される構成であってもよい。 (2) During normal operation, the water softening device 1 has a configuration in which electrolyzed water sent from the first chamber 81 is sent to the water softening tank 3, and electrolyzed water sent from the second chamber 82 is sent to the neutralization tank. It may be.
 これにより、さらに、正運転時には、第1室81から送出される酸性電解水により軟水槽3の弱酸性陽イオン交換樹脂33を再生し、第2室82から送出されるアルカリ性電解水により中和槽4の弱塩基性陰イオン交換樹脂34を再生することができる。 As a result, during normal operation, the weakly acidic cation exchange resin 33 in the water softening tank 3 is regenerated by the acidic electrolyzed water sent out from the first chamber 81, and neutralized by the alkaline electrolyzed water sent out from the second chamber 82. The weakly basic anion exchange resin 34 in the tank 4 can be regenerated.
 (3)軟水化装置1は、反転運転時には、第1室81から送出される電解水が中和槽4へ送出され、第2室82から送出される電解水が軟水槽3へ送出される構成であってもよい。 (3) When the water softening device 1 is in reverse operation, the electrolyzed water sent out from the first chamber 81 is sent out to the neutralization tank 4, and the electrolyzed water sent out from the second chamber 82 is sent out to the water softening tank 3. It may be a configuration.
 これにより、さらに、反転運転時には、第1室81から送出されるアルカリ性電解水により中和槽4の弱塩基性陰イオン交換樹脂34を再生し、第2室82から送出される酸性電解水により軟水槽3の弱酸性陽イオン交換樹脂33を再生することができる。 As a result, during reversal operation, the weakly basic anion exchange resin 34 in the neutralization tank 4 is regenerated by the alkaline electrolyzed water sent out from the first chamber 81, and the acidic electrolyzed water sent out from the second chamber 82 The weakly acidic cation exchange resin 33 in the soft water tank 3 can be regenerated.
 (4)軟水化装置1に備えられた制御部15は、電解槽9の運転状態を切替える切替部111と、運転状態の切替えが実行されてからの経過時間を記憶する経過時間記憶部112と、所定の基準時間と経過時間とを比較する経過時間比較部113と、を備え、切替部111は、経過時間が所定の基準時間を超過した場合に、電解槽9の運転状態の切替えを実行する構成であってもよい。 (4) The control unit 15 provided in the water softening device 1 includes a switching unit 111 that switches the operating state of the electrolytic cell 9, and an elapsed time storage unit 112 that stores the elapsed time since the switching of the operating state was performed. , an elapsed time comparing section 113 that compares a predetermined reference time and an elapsed time, and the switching section 111 switches the operating state of the electrolytic cell 9 when the elapsed time exceeds the predetermined reference time. The configuration may be such that
 こうした構成によれば、さらに、第1室電極84または第2室電極85の運転時間を所定の基準時間と比較して、正運転と反転運転とを切替えることができる。したがって、第1室電極84および第2室電極85が陽極として使用される時間を実質的に同一にすることができる。一般に電極は陽極として使用されるときに触媒層の溶解が生じ、消耗するため、陽極として使用される時間を実質的に同一にすることで、一方の電極のみが消耗していくことを抑制できる。したがって、電解槽9の耐用期間を長期化できる。 According to such a configuration, the operating time of the first chamber electrode 84 or the second chamber electrode 85 can be compared with a predetermined reference time to switch between normal operation and reverse operation. Therefore, the time during which the first chamber electrode 84 and the second chamber electrode 85 are used as anodes can be made substantially the same. Generally, when an electrode is used as an anode, the catalyst layer dissolves and is consumed, so by making the time that it is used as an anode substantially the same, it is possible to suppress the consumption of only one electrode. . Therefore, the service life of the electrolytic cell 9 can be extended.
 (5)軟水化装置1に備えられた制御部15は、正運転の実行時間である正運転時間を記憶する正運転時間記憶部114と、反転運転の実行時間である反転運転時間を記憶する反転運転時間記憶部115と、前回の再生工程終了時における電解槽9の運転状態を記憶する運転状態記憶部116と、所定の基準時間と、正運転時間または反転運転時間とを比較する運転時間比較部117と、をさらに備え、運転状態記憶部116の記憶した運転状態と運転時間比較部117の比較結果とに基づいて、電解槽9の運転状態を決定する構成であってもよい。 (5) The control unit 15 provided in the water softening device 1 stores a normal operation time storage unit 114 that stores the normal operation time that is the execution time of the normal operation, and a reverse operation time that stores the reversal operation time that is the execution time of the reverse operation. A reverse operation time storage section 115, an operation state storage section 116 that stores the operation state of the electrolytic cell 9 at the end of the previous regeneration process, and an operation time that compares a predetermined reference time with the normal operation time or the reverse operation time. The electrolytic cell 9 may be configured to further include a comparing section 117 and determine the operating state of the electrolytic cell 9 based on the operating state stored in the operating state storage section 116 and the comparison result of the operating time comparing section 117.
 こうした構成によれば、さらに、第1室電極84または第2室電極85の陽極としての使用時間を所定の基準時間と比較し、正運転と反転運転とを切替えることができる。したがって、第1室電極84および第2室電極85が陽極として使用される時間を実質的に同一にすることができるため、電解槽9の耐用期間を長期化できる。 According to such a configuration, it is further possible to compare the usage time of the first chamber electrode 84 or the second chamber electrode 85 as an anode with a predetermined reference time and switch between normal operation and reverse operation. Therefore, the time during which the first chamber electrode 84 and the second chamber electrode 85 are used as anodes can be made substantially the same, so that the service life of the electrolytic cell 9 can be extended.
 (6)制御部15は、再生工程を複数回実行する場合に、運転状態記憶部116が記憶する運転状態が正運転の場合に、運転時間比較部117により所定の基準時間と正運転時間とを比較し、正運転時間が所定の基準時間未満の場合には、所定の基準時間に達するまで正運転を行い、正運転時間が所定の基準時間以上の場合には、切替部111による運転状態の切替えを行い、運転状態記憶部116が記憶する運転状態が反転運転の場合には、運転時間比較部117により所定の基準時間と反転運転時間とを比較し、反転運転時間が所定の基準時間未満の場合には、所定の基準時間に達するまで反転運転を行い、反転運転時間が所定の基準時間以上の場合には、切替部111による運転状態の切替えを行う構成であってもよい。 (6) When performing the regeneration step multiple times, when the operating state stored in the operating state storage unit 116 is normal operating, the operating time comparison unit 117 sets the predetermined reference time and normal operating time. If the normal operation time is less than a predetermined reference time, normal operation is performed until the predetermined reference time is reached, and if the normal operation time is greater than or equal to the predetermined reference time, the operating state is changed by the switching unit 111. If the operation state stored in the operation state storage unit 116 is reverse operation, the operation time comparison unit 117 compares a predetermined reference time with the reversal operation time, and the reversal operation time is determined to be the predetermined reference time. If the reversal operation time is less than the predetermined reference time, the reversal operation is performed until a predetermined reference time is reached, and if the reversal operation time is equal to or longer than the predetermined reference time, the switching unit 111 may switch the operating state.
 こうした構成によれば、さらに、再生工程の途中においても、第1室電極84および第2室電極85の陽極としての使用時間が所定の基準時間以上にならないように運転することが可能になる。したがって、第1室電極84および第2室電極85が陽極として使用される時間を同程度にすることができるため、電解槽9の耐用期間を長期化できる。 According to such a configuration, it is further possible to operate the first chamber electrode 84 and the second chamber electrode 85 so that the usage time as anodes does not exceed a predetermined reference time even during the regeneration process. Therefore, the time that the first chamber electrode 84 and the second chamber electrode 85 are used as anodes can be made to be approximately the same, so that the service life of the electrolytic cell 9 can be extended.
 (7)軟水化装置1に備えられる電解槽9は、正運転時に酸性電解水が吐出される第1吐出口87と、正運転時に酸性電解水が流入する第1流入口86と、正運転時にアルカリ性電解水が吐出される第2吐出口89と、正運転時にアルカリ性電解水が流入する第2流入口88と、を有し、第1吐出口87から吐出される電解水の送水方向を切替える第1吐出切換え弁91と、第2吐出口89から吐出される電解水の送水方向を切替える第2吐出切換え弁92と、前記再生工程時に前記軟水槽3から吐出される電解水の送水先を第1流入口86および第2流入口88のいずれかに切替える第1流入切換え弁93と、前記再生工程時に前記中和槽4から吐出される電解水の送水先を第1流入口86および第2流入口88のいずれかに切替える第2流入切換え弁94と、をさらに備え、制御部15は、正運転時には、第1吐出切換え弁91を、第1吐出口87と軟水槽3とが連通接続する方向へ切替え、第2吐出切換え弁92を、第2吐出口89と中和槽4とが連通接続する方向へ切替え、第1流入切換え弁93を、軟水槽3と第1流入口86とが連通接続する方向へ切替え、第2流入切換え弁94を、中和槽4と第2流入口88とが連通接続する方向へ切替え、反転運転時には、第1吐出切換え弁91を、第1吐出口87と中和槽4とが連通接続する方向へ切替え、第2吐出切換え弁92を、第2吐出口89と軟水槽3とが連通接続する方向へ切替え、第1流入切換え弁93を、中和槽4と第1流入口86とが連通接続する方向へ切替え、第2流入切換え弁94を、軟水槽3と第2流入口88とが連通接続する方向へ切替える構成であってもよい。 (7) The electrolytic cell 9 provided in the water softening device 1 has a first discharge port 87 through which acidic electrolyzed water is discharged during normal operation, a first inlet 86 through which acidic electrolyzed water flows during normal operation, and a first inlet 86 through which acidic electrolyzed water flows during normal operation. It has a second discharge port 89 through which alkaline electrolyzed water is discharged during normal operation, and a second inflow port 88 through which alkaline electrolyzed water flows during normal operation, and the direction in which the electrolyzed water discharged from the first discharge port 87 is directed. A first discharge switching valve 91 that switches, a second discharge switching valve 92 that switches the direction of electrolyzed water discharged from the second discharge port 89, and a destination of the electrolyzed water discharged from the water softening tank 3 during the regeneration process. a first inflow switching valve 93 that switches the electrolyzed water discharged from the neutralization tank 4 during the regeneration process to either the first inflow port 86 or the second inflow port 88; The controller 15 further includes a second inflow switching valve 94 that switches between the second inflow port 88 and the first discharge switching valve 91 during normal operation. The second discharge switching valve 92 is switched in the direction where the second discharge port 89 and the neutralization tank 4 are connected in communication, and the first inflow switching valve 93 is switched between the soft water tank 3 and the first inflow port. 86, the second inflow switching valve 94 is switched in the direction where the neutralization tank 4 and the second inflow port 88 are connected, and during reverse operation, the first discharge switching valve 91 is switched to the direction where the neutralization tank 4 and the second inflow port 88 are connected. The first discharge port 87 and the neutralization tank 4 are switched in the direction in which they are connected in communication, the second discharge switching valve 92 is switched in the direction in which the second discharge port 89 and the soft water tank 3 are connected in communication, and the first inflow switching valve 93 is switched in the direction in which the second discharge port 89 and the soft water tank 3 are connected in communication. is switched in the direction in which the neutralization tank 4 and the first inflow port 86 are connected in communication, and the second inflow switching valve 94 is switched in the direction in which the soft water tank 3 and the second inflow port 88 are connected in communication. Good too.
 こうした構成によれば、さらに、流路を切替えても酸性電解水を軟水槽3、アルカリ性電解水を中和槽4にそれぞれ通水することが可能であり、第1室電極84および第2室電極85の陽極としての使用時間が所定の基準時間以上にならないように運転することが可能になる。したがって、第1室電極84および第2室電極85の陽極としての使用時間を同程度にすることができるため、電解槽9の耐用期間を長期化できる。 According to such a configuration, even if the flow paths are switched, acidic electrolyzed water can be passed through the soft water tank 3 and alkaline electrolyzed water can be passed through the neutralization tank 4, respectively, and the first chamber electrode 84 and the second chamber It becomes possible to operate so that the usage time of the electrode 85 as an anode does not exceed a predetermined reference time. Therefore, the usage time of the first chamber electrode 84 and the second chamber electrode 85 as anodes can be made to be approximately the same, so that the service life of the electrolytic cell 9 can be extended.
 (第2の実施の形態)
 本開示の第2の実施の形態に係る軟水化装置1aは、電解槽9の電圧を検知部121により検知し、検知部121が検知した電圧により、制御部15が再生工程時の運転状態を制御する点で第1の実施の形態の軟水化装置1と異なる。これ以外の構成は第1の実施の形態に係る軟水化装置1と同様である。以下、第1の実施の形態で説明済みの内容は再度の説明を適宜省略し、第1の実施の形態と異なる点を主に説明する。
(Second embodiment)
In the water softening device 1a according to the second embodiment of the present disclosure, the voltage of the electrolytic cell 9 is detected by the detection unit 121, and the control unit 15 determines the operating state during the regeneration process based on the voltage detected by the detection unit 121. This differs from the water softening device 1 of the first embodiment in that it is controlled. The configuration other than this is the same as the water softening device 1 according to the first embodiment. Hereinafter, the content already explained in the first embodiment will not be explained again, and the points different from the first embodiment will be mainly explained.
 図17を参照して、本開示の第2の実施の形態に係る軟水化装置1aについて説明する。図17は、本開示の第2の実施の形態に係る軟水化装置1aの構成を示す概念図である。なお、図17では、軟水化装置1aの各要素を概念的に示している。 With reference to FIG. 17, a water softening device 1a according to a second embodiment of the present disclosure will be described. FIG. 17 is a conceptual diagram showing the configuration of a water softening device 1a according to the second embodiment of the present disclosure. In addition, in FIG. 17, each element of the water softening apparatus 1a is shown conceptually.
 (4.1 検知部)
 検知部121は、再生工程時に電解槽9の電圧を検知する。また、検知部121は、制御部15に接続されている。つまり、検知部121で検知された電圧にもとづいて、制御部15では、再生工程時の運転状態の切替えを判断する。
(4.1 Detection part)
The detection unit 121 detects the voltage of the electrolytic cell 9 during the regeneration process. Further, the detection section 121 is connected to the control section 15. That is, based on the voltage detected by the detection unit 121, the control unit 15 determines whether to switch the operating state during the regeneration process.
 (4.2 再生工程)
 再生工程時には、検知部121が電解槽9の電圧を検知する。また、制御部15では電解槽9で検知した電圧と所定の第1基準値とを比較する。
(4.2 Regeneration process)
During the regeneration process, the detection unit 121 detects the voltage of the electrolytic cell 9. Further, the control unit 15 compares the voltage detected in the electrolytic cell 9 with a predetermined first reference value.
 検知部121が検知した電圧が所定の第1基準値未満である場合は、制御部15は、再生工程時の運転状態を継続する。たとえば、正運転状態であれば、正運転を継続する。 If the voltage detected by the detection unit 121 is less than the predetermined first reference value, the control unit 15 continues the operating state during the regeneration process. For example, if it is in a normal operation state, normal operation is continued.
 一方、検知部121が検知した電圧が所定の第1基準値以上である場合は、再生工程時の運転状態が制御部15により切替えられる。このとき、正運転時間記憶部114または反転運転時間記憶部115によって記憶される運転時間はリセットされて「0」に戻る。たとえば、正運転状態であれば、反転運転状態に切替えられ、正運転時間記憶部114によって記憶される正運転時間は「0」になる。 On the other hand, if the voltage detected by the detection unit 121 is equal to or higher than the predetermined first reference value, the control unit 15 switches the operating state during the regeneration process. At this time, the operating time stored in the normal operating time storage section 114 or the reverse operating time storage section 115 is reset and returns to "0". For example, if it is in the normal operating state, it is switched to the reverse operating state, and the normal operating time stored in the normal operating time storage section 114 becomes "0".
 (4.3 効果など)
 以上、第2の実施の形態に係る軟水化装置1aによれば、以下の効果を享受することができる。
(4.3 Effects etc.)
As mentioned above, according to the water softening device 1a according to the second embodiment, the following effects can be enjoyed.
 (8)軟水化装置1aは電解槽9の電圧を検知する検知部121をさらに備え、制御部15は、再生工程時に、検知部121が検知した電圧が第1基準値未満の場合には、電解槽9の運転状態を継続して再生工程を実行し、検知部121が検知した電圧が第1基準値以上の場合には、電解槽9の運転状態を切替えて再生工程を実行するように構成されていてもよい。 (8) The water softening device 1a further includes a detection unit 121 that detects the voltage of the electrolytic cell 9, and the control unit 15 controls, when the voltage detected by the detection unit 121 is less than the first reference value during the regeneration process, The operating state of the electrolytic cell 9 is continued to execute the regeneration process, and when the voltage detected by the detection unit 121 is equal to or higher than the first reference value, the operating state of the electrolytic cell 9 is switched and the regeneration process is executed. may be configured.
 こうした構成によれば、さらに、陰極として使用されていた第1室電極84または第2室電極85へのスケール析出により電圧上昇を検知することができ、運転状態の切替えを実施可能である。したがって、より適切なタイミングで運転状態を切替えることができ、スケール析出による電解槽9の消費電力増加を抑制することができる。また、電極上にスケールが堆積したまま電解槽9が継続的に使用される可能性を低減でき、電解槽9の耐用期間を長期化できる。 According to such a configuration, it is further possible to detect a voltage increase due to scale deposition on the first chamber electrode 84 or the second chamber electrode 85 used as a cathode, and it is possible to switch the operating state. Therefore, the operating state can be switched at a more appropriate timing, and an increase in power consumption of the electrolytic cell 9 due to scale precipitation can be suppressed. Further, the possibility that the electrolytic cell 9 is continuously used with scale deposited on the electrodes can be reduced, and the service life of the electrolytic cell 9 can be extended.
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素または各処理プロセスの組み合わせについては様々な変形例が可能なこと、および、そうした変形例も本開示の範囲にあることが当業者に理解されている。 The present disclosure has been described above based on the embodiments. Those skilled in the art will understand that these embodiments are merely illustrative, and that various modifications can be made to the combinations of their constituent elements or processing processes, and that such modifications are also within the scope of the present disclosure. has been done.
 (5. 変形例)
 第1の実施の形態に係る軟水化装置1では、混合工程の際に、再生後水貯留槽64に貯留した再生後水を原水と混合するようにしたが、これに限定されない。
(5. Variations)
In the water softening device 1 according to the first embodiment, the recycled water stored in the recycled water storage tank 64 is mixed with raw water during the mixing process, but the invention is not limited thereto.
 たとえば、軟水槽再生循環流路39内に原水を流入させ、流路内の再生後水と混合するようにしてもよい。この場合であっても、原水は原水導入流路70により流入し、再生後水は再生後水導入流路によって流通する。ただし、この場合の再生後水導入流路は、軟水槽再生循環流路39に相当する流路である。このようにして混合水を得る場合、再生流路洗浄工程、電解槽洗浄工程、または捕捉部洗浄工程を実行すると、再生後水または混合水が、装置外に排水されてしまう、または原水によって希釈されてしまうため、軟水化工程、混合工程、および再生工程の3工程を繰り返すことが好ましい。 For example, raw water may be allowed to flow into the water softening tank regeneration circulation channel 39 and mixed with the recycled water in the channel. Even in this case, the raw water flows in through the raw water introduction channel 70, and the recycled water flows through the recycled water introduction channel. However, the post-regeneration water introduction flow path in this case is a flow path corresponding to the water softening tank regeneration circulation flow path 39. When mixed water is obtained in this way, if the regeneration channel cleaning process, electrolytic tank cleaning process, or trap cleaning process is performed, the recycled water or mixed water may be drained outside the device or diluted with raw water. Therefore, it is preferable to repeat the three steps of water softening, mixing, and regeneration.
 また、第1の実施の形態に係る軟水化装置1では、再生工程終了後に、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程の順に実行するようにしたが、これに限定されない。たとえば、電解槽洗浄工程を行ってから再生流路洗浄工程を行ってもよく、軟水化工程の前工程として捕捉部洗浄工程が実行されればよい。このような順番で装置内の洗浄を行っても、電解槽9および捕捉部10の析出物を除去でき、軟水化工程直前の第2中和槽4b内に軟水を充填することができる。 Furthermore, in the water softening device 1 according to the first embodiment, the regeneration channel cleaning step, the electrolytic tank cleaning step, and the trapping portion cleaning step are executed in this order after the regeneration step is completed, but the present invention is not limited to this. . For example, the regeneration channel cleaning step may be performed after the electrolytic cell cleaning step, and the trapping portion cleaning step may be performed as a pre-process of the water softening step. Even if the inside of the apparatus is cleaned in this order, the precipitates in the electrolytic cell 9 and the trapping section 10 can be removed, and the second neutralization tank 4b immediately before the water softening process can be filled with soft water.
 また、第1の実施の形態に係る軟水化装置1では、軟水化工程、混合工程、再生工程、貯水工程、再生流路洗浄工程、電解槽洗浄工程、および捕捉部洗浄工程がこの順で繰り返し実行されるとしたが、これに限定されない。必ずしも全ての工程を行う必要はなく、たとえば、基本的には軟水化工程と再生工程とを交互に実行し、必要に応じて他の工程を行うようにしてもよい。このようにしても、繰り返し原水の軟水化を行うことのできる軟水化装置を実現することができる。 Further, in the water softening device 1 according to the first embodiment, the water softening process, the mixing process, the regeneration process, the water storage process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trapping part cleaning process are repeated in this order. However, the present invention is not limited to this. It is not always necessary to perform all the steps; for example, basically, the water softening step and the regeneration step may be performed alternately, and other steps may be performed as necessary. Even in this manner, it is possible to realize a water softening device that can repeatedly soften raw water.
 本開示に係る軟水化装置は、使用場所設置型浄水装置(POU:Point of Use)あるいは建物入口設置型浄水装置(POE: Point of Entry)などに適用することが可能であり、有用である。 The water softening device according to the present disclosure is useful because it can be applied to a point of use (POU) water purification device, a point of entry (POE), or the like.
 1、1a  軟水化装置
 2  流入口
 3  軟水槽
 3a  第1軟水槽
 3b  第2軟水槽
 4  中和槽
 4a  第1中和槽
 4b  第2中和槽
 7  取水口
 8  再生装置
 9  電解槽
 10  捕捉部
 11  第1送水ポンプ
 12  第2送水ポンプ
 13  排水口
 14  捕捉部排水口
 15  制御部
 18、19、20、21、22、23、63  開閉弁
 24、25、26、27  流路切替えバルブ
 28、29、30、31、32  流路
 33  弱酸性陽イオン交換樹脂
 33a  第1弱酸性陽イオン交換樹脂
 33b  第2弱酸性陽イオン交換樹脂
 34  弱塩基性陰イオン交換樹脂
 34a  第1弱塩基性陰イオン交換樹脂
 34b  第2弱塩基性陰イオン交換樹脂
 35  第1供給流路
 36  第2供給流路
 37  第1回収流路
 38  第2回収流路
 39  軟水槽再生循環流路
 39a  軟水槽再生循環流路
 39b  軟水槽再生循環流路
 40  中和槽再生循環流路
 40a  中和槽再生循環流路
 40b  中和槽再生循環流路
 42  中和槽バイパス流路
 43  軟水化流路
 44  軟水槽バイパス流路
 45  再生流路洗浄流路
 45a  再生流路洗浄流路
 45b  再生流路洗浄流路
 46  第1排水流路
 46a  第1排水流路
 46b  第1排水流路
 47  第2排水流路
 49  電解槽洗浄流路
 49a  電解槽洗浄流路
 49b  電解槽洗浄流路
 50  第3排水流路
 50a  第3排水流路
 50b  第3排水流路
 51  捕捉部洗浄流路
 52  第4排水流路
 53  流路
 54  排水流路
 60  混合部
 62  再生後水導入流路
 64  再生後水貯留槽
 66  貯水流路
 66a  貯水流路
 66b  貯水流路
 70  原水導入流路
 70a  原水導入流路
 70b  原水導入流路
 72  供給流路
 72a  供給流路
 72b  供給流路
 81  第1室
 82  第2室
 83  隔膜
 84  第1室電極
 85  第2室電極
 86  第1流入口
 87  第1吐出口
 88  第2流入口
 89  第2吐出口
 91  第1吐出切換え弁
 92  第2吐出切換え弁
 93  第1流入切換え弁
 94  第2流入切換え弁
 101、102、103、104、105、106、107、108  流路
 111  切替部
 112  経過時間記憶部
 113  経過時間比較部
 114  正運転時間記憶部
 115  反転運転時間記憶部
 116  運転状態記憶部
 117  運転時間比較部
 121  検知部
1, 1a Water softening device 2 Inlet 3 Water softening tank 3a First water softening tank 3b Second water softening tank 4 Neutralization tank 4a First neutralization tank 4b Second neutralization tank 7 Water intake 8 Regeneration device 9 Electrolytic tank 10 Capture section 11 First water pump 12 Second water pump 13 Drain port 14 Capture part drain port 15 Control part 18, 19, 20, 21, 22, 23, 63 On-off valve 24, 25, 26, 27 Flow path switching valve 28, 29 , 30, 31, 32 flow path 33 weakly acidic cation exchange resin 33a first weakly acidic cation exchange resin 33b second weakly acidic cation exchange resin 34 weakly basic anion exchange resin 34a first weakly basic anion exchange resin Resin 34b Second weakly basic anion exchange resin 35 First supply channel 36 Second supply channel 37 First recovery channel 38 Second recovery channel 39 Soft water tank regeneration circulation channel 39a Soft water tank regeneration circulation channel 39b Water softening tank regeneration circulation flow path 40 Neutralization tank regeneration circulation flow path 40a Neutralization tank regeneration circulation flow path 40b Neutralization tank regeneration circulation flow path 42 Neutralization tank bypass flow path 43 Water softening flow path 44 Water softening tank bypass flow path 45 Regeneration Channel cleaning channel 45a Regeneration channel cleaning channel 45b Regeneration channel cleaning channel 46 First drainage channel 46a First drainage channel 46b First drainage channel 47 Second drainage channel 49 Electrolytic cell cleaning channel 49a Electrolytic cell cleaning channel 49b Electrolytic cell cleaning channel 50 Third drain channel 50a Third drain channel 50b Third drain channel 51 Capture section cleaning channel 52 Fourth drain channel 53 Channel 54 Drain channel 60 Mixing Part 62 Regeneration water introduction channel 64 Regeneration water storage tank 66 Water storage channel 66a Water storage channel 66b Water storage channel 70 Raw water introduction channel 70a Raw water introduction channel 70b Raw water introduction channel 72 Supply channel 72a Supply channel 72b Supply channel 81 First chamber 82 Second chamber 83 Diaphragm 84 First chamber electrode 85 Second chamber electrode 86 First inlet 87 First discharge port 88 Second inlet 89 Second discharge port 91 First discharge switching valve 92 Second discharge switching valve 93 First inflow switching valve 94 Second inflow switching valve 101, 102, 103, 104, 105, 106, 107, 108 Flow path 111 Switching section 112 Elapsed time storage section 113 Elapsed time comparison section 114 Normal operation Time storage unit 115 Reverse operation time storage unit 116 Operation state storage unit 117 Operation time comparison unit 121 Detection unit

Claims (8)

  1.  硬度成分を含む原水を弱酸性陽イオン交換樹脂により軟水化して酸性軟水を生成する軟水槽と、
     前記軟水槽を通過した前記酸性軟水のpHを弱塩基性陰イオン交換樹脂により中和して中和軟水を生成する中和槽と、
     酸性電解水とアルカリ性電解水とを生成する電解槽と、
     前記弱酸性陽イオン交換樹脂および前記弱塩基性陰イオン交換樹脂のうち少なくとも一方の再生を行う工程である再生工程を制御する制御部と、
    を備え、
     前記電解槽は、
      正運転時に前記酸性電解水が生成され、第1室電極が設けられた第1室と、
      前記正運転時に前記アルカリ性電解水が生成され、第2室電極が設けられた第2室と、を備え、
      前記再生工程時の運転状態として、前記正運転と、前記正運転とは前記第1室電極および前記第2室電極の極性を反転した状態で運転する反転運転と、の少なくとも2種の運転状態を有し、
     前記制御部は、
      前記再生工程時に、前記電解槽の前記運転状態に基づいて、前記第1室から送出される電解水および前記第2室から送出される電解水の送出先を決定する
    軟水化装置。
    a water softening tank that generates acidic soft water by softening raw water containing hard components using a weakly acidic cation exchange resin;
    a neutralization tank that neutralizes the pH of the acidic soft water that has passed through the soft water tank with a weakly basic anion exchange resin to produce neutralized soft water;
    an electrolytic cell that generates acidic electrolyzed water and alkaline electrolyzed water;
    a control unit that controls a regeneration step that is a step of regenerating at least one of the weakly acidic cation exchange resin and the weakly basic anion exchange resin;
    Equipped with
    The electrolytic cell is
    a first chamber in which the acidic electrolyzed water is generated during normal operation, and a first chamber electrode is provided;
    a second chamber in which the alkaline electrolyzed water is generated during the normal operation and a second chamber electrode is provided;
    As the operating state during the regeneration step, at least two operating states are the normal operation and the reverse operation in which the normal operation is an operation in which the polarity of the first chamber electrode and the second chamber electrode is reversed. has
    The control unit includes:
    A water softening device that determines a destination of electrolyzed water sent from the first chamber and electrolyzed water sent from the second chamber based on the operating state of the electrolytic cell during the regeneration step.
  2.  前記正運転時には、
      前記第1室から送出される電解水が前記軟水槽へ送出され、
      前記第2室から送出される電解水が前記中和槽へ送出される
    請求項1に記載の軟水化装置。
    During the normal operation,
    Electrolyzed water sent from the first chamber is sent to the soft water tank,
    The water softening device according to claim 1, wherein the electrolyzed water sent from the second chamber is sent to the neutralization tank.
  3.  前記反転運転時には、
      前記第1室から送出される電解水が前記中和槽へ送出され、
      前記第2室から送出される電解水が前記軟水槽へ送出される
    請求項1または2に記載の軟水化装置。
    During the reversal operation,
    Electrolyzed water sent from the first chamber is sent to the neutralization tank,
    The water softening device according to claim 1 or 2, wherein the electrolyzed water sent from the second chamber is sent to the water softening tank.
  4.  前記制御部は、
      前記電解槽の前記運転状態を切替える切替部と、
      前記運転状態の切替えが実行されてからの経過時間を記憶する経過時間記憶部と、
      所定の基準時間と前記経過時間とを比較する経過時間比較部と、を備え、
      前記切替部は、前記経過時間が前記所定の基準時間を超過した場合に、前記電解槽の前記運転状態の切替えを実行する
    請求項1から3のいずれか一項に記載の軟水化装置。
    The control unit includes:
    a switching unit that switches the operating state of the electrolytic cell;
    an elapsed time storage unit that stores the elapsed time since the switching of the operating state was performed;
    an elapsed time comparison unit that compares a predetermined reference time and the elapsed time,
    The water softening device according to any one of claims 1 to 3, wherein the switching unit switches the operating state of the electrolytic cell when the elapsed time exceeds the predetermined reference time.
  5.  前記制御部は、
      前記正運転の実行時間である正運転時間を記憶する正運転時間記憶部と、
      前記反転運転の実行時間である反転運転時間を記憶する反転運転時間記憶部と、
      前回の再生工程終了時における前記電解槽の前記運転状態を記憶する運転状態記憶部と、
      前記所定の基準時間と、前記正運転時間または前記反転運転時間とを比較する運転時間比較部と、
    をさらに備え、
     前記運転状態記憶部の記憶した運転状態と前記運転時間比較部の比較結果とに基づいて、前記電解槽の運転状態を決定する
    請求項4に記載の軟水化装置。
    The control unit includes:
    a normal operation time storage unit that stores a normal operation time that is an execution time of the normal operation;
    a reversing operation time storage unit that stores a reversing operation time that is an execution time of the reversing operation;
    an operating state storage unit that stores the operating state of the electrolytic cell at the end of the previous regeneration step;
    an operation time comparison unit that compares the predetermined reference time and the normal operation time or the reverse operation time;
    Furthermore,
    The water softening device according to claim 4, wherein the operating state of the electrolytic cell is determined based on the operating state stored in the operating state storage unit and the comparison result of the operating time comparison unit.
  6.  前記制御部は、
      前記再生工程を複数回実行する場合に、
      前記運転状態記憶部が記憶する前記運転状態が前記正運転の場合に、前記運転時間比較部により前記所定の基準時間と前記正運転時間とを比較し、
      前記正運転時間が前記所定の基準時間未満の場合には、前記所定の基準時間に達するまで正運転を行い、
      前記正運転時間が前記所定の基準時間以上の場合には、前記切替部による前記運転状態の切替えを行い、
      前記運転状態記憶部が記憶する前記運転状態が前記反転運転の場合には、前記運転時間比較部により前記所定の基準時間と前記反転運転時間とを比較し、
      前記反転運転時間が前記所定の基準時間未満の場合には、前記所定の基準時間に達するまで反転運転を行い、
      前記反転運転時間が前記所定の基準時間以上の場合には、前記切替部による前記運転状態の切替えを行う
    請求項5に記載の軟水化装置。
    The control unit includes:
    When performing the regeneration step multiple times,
    When the operating state stored in the operating state storage unit is the normal operating time, the operating time comparison unit compares the predetermined reference time and the normal operating time,
    If the normal operation time is less than the predetermined reference time, normal operation is performed until the predetermined reference time is reached;
    If the normal operation time is equal to or longer than the predetermined reference time, the switching unit switches the operation state;
    When the operating state stored in the operating state storage unit is the reversing operation, the operating time comparing unit compares the predetermined reference time and the reversing operating time,
    If the reversal operation time is less than the predetermined reference time, perform the reversal operation until the predetermined reference time is reached;
    The water softening device according to claim 5, wherein when the reversal operation time is longer than the predetermined reference time, the switching unit switches the operation state.
  7.  前記電解槽の電圧を検知する検知部をさらに備え、
     前記制御部は、
      前記再生工程時に、
      前記検知部が検知した前記電圧が第1基準値未満の場合には、前記電解槽の前記運転状態を継続して前記再生工程を実行し、
      前記検知部が検知した前記電圧が第1基準値以上の場合には、前記電解槽の前記運転状態を切替えて前記再生工程を実行する
    請求項1から3のいずれか一項に記載の軟水化装置。
    Further comprising a detection unit that detects the voltage of the electrolytic cell,
    The control unit includes:
    During the regeneration step,
    If the voltage detected by the detection unit is less than a first reference value, continue the operating state of the electrolytic cell and perform the regeneration step,
    Water softening according to any one of claims 1 to 3, wherein when the voltage detected by the detection unit is equal to or higher than a first reference value, the operating state of the electrolytic cell is switched to execute the regeneration step. Device.
  8.  前記電解槽は、
      前記正運転時に前記酸性電解水が吐出される第1吐出口と、
      前記正運転時に前記酸性電解水が流入する第1流入口と、
      前記正運転時に前記アルカリ性電解水が吐出される第2吐出口と、
      前記正運転時に前記アルカリ性電解水が流入する第2流入口と、
     を有し、
     前記第1吐出口から吐出される電解水の送水方向を切替える第1吐出切換え弁と、
     前記第2吐出口から吐出される電解水の送水方向を切替える第2吐出切換え弁と、
     前記再生工程時に前記軟水槽から吐出される電解水の送水先を前記第1流入口および前記第2流入口のいずれかに切替える第1流入切換え弁と、
     前記再生工程時に前記中和槽から吐出される電解水の送水先を前記第1流入口および前記第2流入口のいずれかに切替える第2流入切換え弁と、
    をさらに備え、
     前記制御部は、
      前記正運転時には、
       前記第1吐出切換え弁を、前記第1吐出口と前記軟水槽とが連通接続する方向へ切替え、
       前記第2吐出切換え弁を、前記第2吐出口と前記中和槽とが連通接続する方向へ切替え、
       前記第1流入切換え弁を、前記軟水槽と前記第1流入口とが連通接続する方向へ切替え、
       前記第2流入切換え弁を、前記中和槽と前記第2流入口とが連通接続する方向へ切替え、
      前記反転運転時には、
       前記第1吐出切換え弁を、前記第1吐出口と前記中和槽とが連通接続する方向へ切替え、
       前記第2吐出切換え弁を、前記第2吐出口と前記軟水槽とが連通接続する方向へ切替え、
       前記第1流入切換え弁を、前記中和槽と前記第1流入口とが連通接続する方向へ切替え、
       前記第2流入切換え弁を、前記軟水槽と前記第2流入口とが連通接続する方向へ切替える
    請求項1に記載の軟水化装置。
    The electrolytic cell is
    a first discharge port through which the acidic electrolyzed water is discharged during the normal operation;
    a first inlet into which the acidic electrolyzed water flows during the normal operation;
    a second discharge port through which the alkaline electrolyzed water is discharged during the normal operation;
    a second inlet into which the alkaline electrolyzed water flows during the normal operation;
    has
    a first discharge switching valve that switches the direction of electrolyzed water discharged from the first discharge port;
    a second discharge switching valve that switches the direction of electrolyzed water discharged from the second discharge port;
    a first inflow switching valve that switches the destination of electrolyzed water discharged from the water softening tank during the regeneration step to either the first inlet or the second inlet;
    a second inflow switching valve that switches the destination of electrolyzed water discharged from the neutralization tank during the regeneration step to either the first inlet or the second inlet;
    Furthermore,
    The control unit includes:
    During the normal operation,
    switching the first discharge switching valve in a direction in which the first discharge port and the soft water tank are connected in communication;
    switching the second discharge switching valve in a direction in which the second discharge port and the neutralization tank are connected in communication;
    switching the first inflow switching valve in a direction in which the soft water tank and the first inflow port are connected in communication;
    switching the second inflow switching valve in a direction in which the neutralization tank and the second inflow port are connected in communication;
    During the reversal operation,
    switching the first discharge switching valve in a direction in which the first discharge port and the neutralization tank are connected in communication;
    switching the second discharge switching valve in a direction in which the second discharge port and the soft water tank are connected in communication;
    switching the first inflow switching valve in a direction in which the neutralization tank and the first inflow port are connected in communication;
    The water softening device according to claim 1, wherein the second inflow switching valve is switched in a direction in which the water softening tank and the second inlet are connected in communication.
PCT/JP2023/015611 2022-06-24 2023-04-19 Water-softening device WO2023248599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101553 2022-06-24
JP2022101553A JP2024002398A (en) 2022-06-24 2022-06-24 Water softening device

Publications (1)

Publication Number Publication Date
WO2023248599A1 true WO2023248599A1 (en) 2023-12-28

Family

ID=89379557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015611 WO2023248599A1 (en) 2022-06-24 2023-04-19 Water-softening device

Country Status (2)

Country Link
JP (1) JP2024002398A (en)
WO (1) WO2023248599A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271773A (en) * 1996-04-03 1997-10-21 Hoshizaki Electric Co Ltd Electrolytic water generating device
JP2018012077A (en) * 2016-07-21 2018-01-25 株式会社日本トリム Electrolytic water generator
WO2021024938A1 (en) * 2019-08-02 2021-02-11 パナソニックIpマネジメント株式会社 Water softener

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271773A (en) * 1996-04-03 1997-10-21 Hoshizaki Electric Co Ltd Electrolytic water generating device
JP2018012077A (en) * 2016-07-21 2018-01-25 株式会社日本トリム Electrolytic water generator
WO2021024938A1 (en) * 2019-08-02 2021-02-11 パナソニックIpマネジメント株式会社 Water softener

Also Published As

Publication number Publication date
JP2024002398A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5146437B2 (en) Water heater
WO2022113741A1 (en) Water softening device, recycling method for water softening device, and method for cleaning water softening device
WO2023032478A1 (en) Water softening device
JP5729062B2 (en) Water treatment method and water treatment system
WO2023248599A1 (en) Water-softening device
JP2022013569A (en) Water softening device
JP2022095010A (en) Water softening device
JP2023142337A (en) water softener
WO2023248920A1 (en) Water softener
WO2024053399A1 (en) Water softening device
JP2024002399A (en) Water softening device
WO2023233812A1 (en) Water softener and control method for water softener
JP2023126107A (en) Water softening device
JP2024090113A (en) Water softener
JP2024021106A (en) Softening device
JP2024049424A (en) Water softener
JP2023091796A (en) Water softening device
JP2022086033A (en) Water softening apparatus
JP2023037102A (en) water softener
JP2023093807A (en) water softener
JP6407734B2 (en) Operation method of electric deionized water production apparatus and pure water production system provided with electric deionized water production apparatus
WO2023145312A1 (en) Water softening device
JP2024017437A (en) Softening apparatus
JPH1157420A (en) Water run treatment method for electric deionized water manufacturing device
JP2022116415A (en) Water softening apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826788

Country of ref document: EP

Kind code of ref document: A1