WO2023248541A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2023248541A1
WO2023248541A1 PCT/JP2023/007764 JP2023007764W WO2023248541A1 WO 2023248541 A1 WO2023248541 A1 WO 2023248541A1 JP 2023007764 W JP2023007764 W JP 2023007764W WO 2023248541 A1 WO2023248541 A1 WO 2023248541A1
Authority
WO
WIPO (PCT)
Prior art keywords
input device
foam layer
vibration
detection
unit
Prior art date
Application number
PCT/JP2023/007764
Other languages
French (fr)
Japanese (ja)
Inventor
俊佑 梅村
雅典 矢吹
武晃 前畑
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2023248541A1 publication Critical patent/WO2023248541A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/84Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
    • H01H13/85Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback characterised by tactile feedback features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"

Definitions

  • the present disclosure relates to an input device.
  • the device includes a vibrating element that transmits vibrations to the operating surface and an electrostatic sensor that detects the position of the pressing operation of the operating body with respect to the operating surface, and when a pressing operation is performed on the operating surface, the vibrating element is driven and operated.
  • an input device that vibrates a surface (for example, see Patent Document 1).
  • conventional input devices are configured to vibrate the entire operation surface, and are not configured to vibrate only the operating section on which a pressing operation is performed.
  • An input device includes: a skin layer having an operation surface on which an operation input is performed by an operation body; a foam layer provided on the opposite side of the skin layer to the operation surface; a detection element arranged on the opposite side to the side where the operation surface is located and capable of detecting the operation body; a vibration element capable of imparting vibration to the foam layer; and a detection unit configured to detect a detection amount of the detection element.
  • a determining unit that determines that a pushing operation in which the operating body pushes the operating surface has been performed when a detection amount detected by the detecting unit is equal to or greater than a predetermined threshold; and a determining unit that determines that the pushing operation has been performed by the determining unit.
  • a drive control unit that drives the vibrating element when determined, and the predetermined threshold value is a value corresponding to a pushing amount that compresses the foam layer by a predetermined value or more.
  • FIG. 1 is a diagram showing an example of a planar configuration of an input device 100 according to an embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a configuration taken along the line AA in FIG. 1;
  • FIG. 2 is a cross-sectional view showing an example of an operating state of the input device 100 according to the embodiment.
  • 5 is a diagram showing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101.
  • FIG. It is a flowchart which shows the process which MCU160 performs. It is a figure showing input device 100M of a modification of an embodiment.
  • the XYZ coordinate system will be defined and explained. Further, for convenience of explanation, the ⁇ Z direction side is referred to as the lower side or lower side, and the +Z direction side is referred to as the upper side or upper side, but this does not represent a universal vertical relationship. Furthermore, viewing in the XY plane is referred to as planar viewing.
  • FIG. 1 is a diagram showing an example of a planar configuration of an input device 100 according to an embodiment.
  • FIG. 2A is a diagram illustrating a cross section and a block showing an example of a configuration taken along the line AA in FIG. 1.
  • FIG. 2B is a cross-sectional view showing an example of an operating state of the input device 100 according to the embodiment.
  • the input device 100 includes a soft pad 101, an electrostatic sensor 110, an actuator 120, an LED (Light Emitting Diode) 130, a light guide 131, a support structure 140, a detection unit 150, and an MCU (micro controller unit) 160.
  • the electrostatic sensor 110 is an example of a detection element
  • the actuator 120 is an example of a vibration element.
  • the LED 130 and the light guide section 131 are examples of a light illumination section.
  • the electrostatic sensor 110, actuator 120, LED 130, light guide section 131, and support structure 140 constitute an input drive section 100A.
  • the input drive unit 100A is an example of a combination body that indirectly couples the electrostatic sensor 110 and the actuator 120. Note that the electrostatic sensor 110 and the actuator 120 may be directly coupled.
  • the input device 100 is placed and fixed such that the case 141 of the support structure 140 is in direct contact with the main body 10 on the vehicle side.
  • the lower surface of the end along the outer edge of the rectangular shape in plan view of the soft pad 101 is adhered to the frame member 20, and the frame member 20 is fixed to the upper end 11 of the main body 10.
  • the soft pad 101 has cushioning properties, its shape is maintained by being adhesively held to the rigid synthetic resin frame member 20.
  • the main body 10 may be a part of the vehicle body, or may be a structure attached to the vehicle body.
  • the main body 10 is a rigid body made of metal or resin.
  • Support structure 140 is a structure that supports electrostatic sensor 110, actuator 120, and LED 130. Note that details of the support structure 140 and how to fix it to the main body 10 will be described later.
  • the input device 100 can be operated by a part of the human body other than the fingertip FT (for example, the palm or elbow), in the following, the fingertip FT is an example of an operating body that performs operation input to the input device 100. A mode in which operation input is performed using fingertip FT will be described.
  • the input device 100 has an operation surface 101S on which operation input can be performed using a fingertip FT.
  • the operation surface 101S is the upper surface of the soft pad 101 located at the top of the input device 100.
  • the input device 100 has, for example, two operation units 105 shown by broken lines on the operation surface 101S.
  • the input device 100 is a device that can perform a push operation input (push operation) to the operation unit 105 as shown in FIG. 2B.
  • the pushing operation is an operation of pushing down the operation unit 105, and the operation direction is downward as shown in FIG. 2B.
  • the operation input includes an operation of bringing a fingertip FT close to one of the operation sections 105 to select one of the operation sections 105, and an operation of selecting one of the operation sections 105 and pressing the operation section 105 to confirm the selected operation.
  • an operation of bringing the fingertip FT close to select one of the operation sections 105 is not necessarily necessary.
  • FIG. 1 shows two operation units 105 and the input device 100 will be described below as having two operation units 105, the input device 100 must include at least one operation unit 105. If desired, there may be three or more operation units 105. Details of the operation unit 105 will be described later.
  • the soft pad 101 is located at the top of the input device 100 and has a skin layer 101A that covers the outer surface and a foam layer 101B that is entirely covered by the skin layer 101A.
  • the skin layer 101A is a bag-shaped cover made of resin, synthetic fiber, synthetic leather, leather, etc., and covers the entire outer surface of the foam layer 101B, and is easily shaped according to the shape of the member in contact with it. changes.
  • the skin layer 101A has an operation surface 101S.
  • the operation surface 101S is the upper surface of the skin layer 101A, and is a decorative layer exposed in the interior of the vehicle. Note that although the skin layer 101A is a bag-shaped cover and covers the entire outer surface of the foam layer 101B, the skin layer 101A may have a structure as long as it covers at least the top surface of the foam layer 101B.
  • the structure may be such that only the top surface of the foam layer 101B is covered, a structure that covers the top surface and side surfaces of the foam layer 101B, or a structure that covers the top surface, side surfaces, and part of the bottom surface of the foam layer 101B. .
  • the entire outer surface of the foam layer 101B is covered by the skin layer 101A.
  • the foam layer 101B is provided on the side of the skin layer 101A opposite to the operation surface 101S.
  • the foam layer 101B can be made of a foam material such as foam urethane, foam sponge, or foam rubber, and has cushioning properties.
  • the soft pad 101 is provided to overlap the electrostatic sensor 110 and covers the top surface of the electrostatic sensor 110.
  • a symbol corresponding to each electrode 111 of the electrostatic sensor 110 is displayed on each operation unit 105 of the operation surface 101S.
  • the symbol of each operation unit 105 is illuminated by light output from the LED 130, guided by the light guide unit 131, and transmitted through the soft pad 101.
  • a symbol is provided on each operation section 105 of the operation surface 101S. Symbols are, for example, letters, numbers, symbols, diagrams, marks, etc. that have a predetermined meaning, and here represent the function, type, etc. of each operation unit 105.
  • AC is an abbreviation for air conditioner.
  • the operation unit 105 on the right side is an operation unit for an air conditioner (AC).
  • a symbol is displayed on the left operation unit 105, it is omitted in FIG. Note that a plurality of symbols may be formed on the upper surface of the soft pad 101 by printing or the like.
  • the soft pad 101 When a user performs an operation input on the input device 100, the soft pad 101 is operated by pushing the operation surface 101S downward as shown in FIG. 2B after bringing a hand or the like close to the operation area where a symbol is displayed. It is a member that elastically deforms when an input (pushing operation) is performed.
  • the input device 100 is an input device in which a selected operation input is determined by pushing the operation area downward with a hand or the like.
  • the soft pad 101 can be pushed into a portion of the operation surface 101S other than the operation section 105; however, in order to perform a push operation on the input device 100, the soft pad 101 must be pressed against the operation section 105 of the operation surface 101S. All you have to do is press it. Note that the soft pad 101 returns to its original shape when the fingertip FT performing the pressing operation is released.
  • Such a soft pad 101 can be used, for example, as a part of an interior member exposed inside a vehicle, and can be used for various parts such as a center console, door lining, or armrest.
  • the input device 100 can be placed on an interior member.
  • the electrostatic sensor 110 is provided on the back side (-Z direction side) of the soft pad 101. That is, the electrostatic sensor 110 is disposed on the opposite side (lower side) of the foam layer 101B to the side (upper side) where the operation surface 101S is located.
  • the electrostatic sensor 110 has two electrodes 111 (see FIG. 1) that can detect the fingertip FT. Two electrodes are formed on the surface of a substrate (not shown). Two electrodes 111 are provided, one corresponding to each of the two operating sections 105.
  • a configuration in which the input device 100 has two operation sections 105 and the electrostatic sensor 110 has two electrodes 111 will be described. It is sufficient if the electrode 111 is provided.
  • the electrostatic sensor 110 when the input device 100 has a plurality of operation sections 105, the electrostatic sensor 110 only needs to have a plurality of electrodes 111 corresponding to the plurality of operation sections 105. Note that each electrode 111 may be further divided into a plurality of electrode parts. Further, in this embodiment, the electrostatic sensor 110 uses a self-capacitance type electrostatic sensor, but a mutual capacitance type electrostatic sensor having two electrodes, a driving electrode (also referred to as a transmitting electrode) and a detection electrode (also referred to as a receiving electrode) is used. An electrostatic sensor may also be used.
  • Each electrode 111 may be made of a conductive material, such as a transparent electrode material such as ITO (Indium-Tin Oxide), and the substrate on which the electrode 111 is provided may be, for example, a transparent flexible material such as polyimide.
  • a substrate can be used.
  • the electrostatic sensor 110 is configured to allow light from the LED 130 to pass through the transparent electrode 111 and the transparent substrate.
  • each electrode 111 may be made of metal foil such as copper foil or aluminum foil.
  • the two electrodes 111 are arranged adjacent to each other.
  • a configuration in which two electrodes 111 are arranged in the X direction is shown here, but a plurality of electrodes 111 may be arranged in a matrix in the X direction and the Y direction.
  • the plurality of electrodes 111 may be arranged in a plane along the X direction or the Y direction, or along the X direction and the Y direction; for example, the positions in the Z direction are the same.
  • Each electrode 111 is connected to the detection unit 150 via wiring or the like.
  • the detection unit 150 detects the capacitance between the plurality of electrodes 111 and an operating body such as a fingertip FT.
  • the capacitance of the electrode 111 detected by the detection unit 150 is an example of a detected amount, and corresponds to the pressing force.
  • the capacitance of the electrode 111 has a value that depends on the distance between the fingertip FT and the electrode 111, but since the soft pad 101 with elasticity (cushioning properties) is interposed in between, the pressing force can be detected as a result. becomes.
  • the electrostatic sensor 110 is used to detect the capacitance between the electrode 111 and an operating body such as a fingertip FT to detect the pressing force.
  • the pressure caused by the pushing operation may be detected using a strain element, a piezoelectric element, or the like.
  • the actuator 120 is a vibration element capable of transmitting vibrations to the soft pad 101, and is provided, for example, on the lower surface of the lid 143 of the support structure 140.
  • the actuator 120 vibrates in the vertical direction. That is, the actuator 120 vibrates in a direction along the operating direction (downward) of the pushing operation.
  • the actuator 120 is connected to the MCU 160 via wiring or the like, and is driven by the drive control section 162 of the MCU 160.
  • the vibration of the actuator 120 is transmitted to the electrostatic sensor 110 via the lid 143, substrate 144, and spacer 145 of the support structure 140, and further transmitted from the electrostatic sensor 110 to the soft pad 101.
  • the actuator 120 starts vibrating, but in the portion where the soft pad 101 is not compressed in the vertical direction, it absorbs most of the vibration transmitted from the electrostatic sensor 110 and does not vibrate.
  • the rigidity of the portion of the soft pad 101 compressed in the vertical direction becomes high, and the vibrations transmitted from the electrostatic sensor 110 can be transmitted to the operation surface 101S compressed by the fingertip FT.
  • the vibration of the actuator 120 is transmitted to the operation surface 101S only in the portion compressed to some extent by the pushing operation, the vibration can be presented to the fingertip FT performing the pushing operation.
  • the user can perceive that the input device 100 has accepted the push operation by the vibration presented to the fingertip FT.
  • the vibration of the soft pad 101 is suppressed in the area not pressed by the fingertip FT.
  • the vibration direction of the actuator 120 is along the operating direction (downward) of the pressing operation, it is possible to present vibrations in a direction that repels the direction in which the user applies force to the fingertip FT (downward). can make vibrations more perceptible.
  • the actuator 120 since the actuator 120 only needs to be able to transmit vibrations to the soft pad 101, it may be provided not only on the bottom surface of the lid 143 but also on a portion of the support structure 140 other than the lid 143, the bottom surface of the soft pad 101, etc. good.
  • the actuator 120 is driven by the MCU 160 and presents vibrations to the user when a push operation performed by the user on the input device 100 is confirmed.
  • Two LEDs 130 are arranged on the upper surface of the substrate 144 at positions overlapping the two operation units 105 in a plan view.
  • the LED 130 is provided on the side opposite to the side where the foam layer 101B is located with respect to the electrostatic sensor 110.
  • each LED 130 is switched between on (state of emitting light) and off (state of not emitting light) by light emission control unit 163 of MCU 160.
  • a light guide section 131 is provided above each LED 130.
  • the light guiding section 131 may be any light guide that can guide the light emitted by the LED 130 to the electrostatic sensor 110, and may have a form that has a gap that guides the light or a form that is made of a transparent resin that guides the light. It's fine.
  • the support structure 140 is a structure that supports the electrostatic sensor 110, the actuator 120, and the LED 130.
  • the support structure 140 includes, for example, a case 141, a damper 142, a lid 143, a substrate 144, and a spacer 145.
  • the case 141 is a housing placed below the input device 100.
  • the case 141 has a rectangular shape when viewed from above, similar to the soft pad 101 shown in FIG. 1 .
  • Case 141 has a base portion 141A and an engaging portion 141B.
  • the base 141A is, for example, rectangular in plan view and is a concave container-shaped portion.
  • the base 141A has a concave shape with a concave upper side in the XZ cross-sectional view shown in FIG. 2A, and has the same shape in the YZ cross-sectional view.
  • the engaging portion 141B is a portion extending outward in the X direction and the Y direction in plan view from the upper end of the base portion 141A, and is placed on the step 12 inside the main body 10 and fixed with a screw (not shown) or the like. Ru.
  • the damper 142 is a rectangular annular member provided between the upper end of the base 141A and the lid 143 in plan view.
  • the damper 142 is a buffer member that suppresses the vibration of the actuator 120 from being transmitted to the main body 10 side via the case 141, and is made of an elastic body such as rubber.
  • the lid 143 is a rectangular plate member that is approximately the same size as the case 141 in plan view.
  • the board 144 is a wiring board on which the LED 130 is provided on the top surface.
  • the substrate 144 is a PWB (Printed Wiring Board) and has wiring connected to the LED 130.
  • the LED 130 is connected to the MCU 160 via wiring on the board 144 and a communication cable connected to the board 144.
  • the spacer 145 is provided between the upper surface of the substrate 144 and the lower surface of the electrostatic sensor 110 and is fixed to the substrate 144 and the electrostatic sensor 110.
  • the lower surface of the spacer 145 is bonded to the upper surface of the substrate 144, and the upper surface of the spacer 145 is bonded to the lower surface of the electrostatic sensor 110.
  • the spacer 145 is made of resin, for example. Spacer 145 may not be transparent. A plurality of spacers 145 are provided on a portion of the upper surface of the substrate 144 where the LEDs 130 and the light guide section 131 are not provided, and have a height equal to the combined height of the LEDs 130 and the light guide section 131. Note that instead of using the plurality of spacers 145, a plate-shaped member having through holes at the positions of the LED 130 and the light guide section 131 in plan view may be used. The spacer 145 is provided to hold the electrostatic sensor 110 above the substrate 144 and to determine the height position of the electrostatic sensor 110 with respect to the substrate 144.
  • the input drive unit 100A which includes the electrostatic sensor 110, actuator 120, LED 130, light guide unit 131, and support structure 140 as described above, is directly or indirectly supported by the support structure 140. Therefore, the input drive section 100A can be easily attached to the main body 10 by placing it inside the main body 10 and fixing the case 141 to the main body 10 with screws or the like.
  • the soft pad 101 with the frame member 20 attached is placed on the electrostatic sensor 110, and the soft pad 101 is attached to the main body 10 via the frame member 20. Therefore, the input device 100 can be easily attached to the main body 10.
  • the detection unit 150 detects a capacitance value (capacitance value) representing the capacitance of each electrode 111 of the electrostatic sensor 110, converts it into a digital value, and outputs it to the MCU 160.
  • a detection unit 150 can be realized by, for example, an IC (Integrated Circuit) including an A/D converter.
  • the MCU 160 is connected to the detection section 150.
  • the MCU 160 is realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input/output interface, an internal bus, and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the MCU 160 includes a determination section 161, a drive control section 162, and a light emission control section 163.
  • the determination unit 161, the drive control unit 162, and the light emission control unit 163 represent functions of a program executed by the MCU 160 as functional blocks.
  • the determination unit 161 determines from the capacitance value of each electrode 111 detected by the detection unit 150 that an operation input using the fingertip FT has been performed on any of the electrodes 111.
  • the capacitance value (capacitance value) between the fingertip FT and the electrode 111 changes, and when the user presses the operation part 105, the fingertip FT
  • the capacitance value (electrostatic capacitance value) between the electrode 111 and the electrode 111 changes further. Therefore, the determining unit 161 can determine whether any of the operating units 105 has been selected and a pushing operation has been performed, based on the capacitance value of the electrode 111.
  • the threshold value used for the capacitance value of each electrode 111 detected by the detection unit 150 when the determination unit 161 determines whether a push-in operation has been performed will be described later.
  • the drive control unit 162 drives the actuator 120 to vibrate.
  • the drive control unit 162 drives the actuator 120 to present vibrations to the user when the operation input performed by the user on the input device 100 is determined.
  • the user can perceive that the input device 100 has accepted the pressing operation by the vibration presented to the fingertip FT. Therefore, the input device 100 can be used, for example, as a switch that can be operated with a blind touch without looking at the user's hand, such as an in-vehicle input device.
  • the drive control unit 162 vibrates the actuator 120 at a frequency of 200 Hz or less. Since the foam material of the foam layer 101B absorbs high frequency components well, it is difficult to vibrate when driven at a relatively high frequency, so it is desirable to drive at a relatively low frequency. From this point of view, as an example, the actuator 120 is vibrated at a frequency of 200 kHz or less to ensure that the vibration is transmitted to the fingertip FT when the foam layer 101B is compressed (the soft pad 101 is compressed).
  • the light emission control unit 163 controls the light emission of the LED 130.
  • the light emission control unit 163 may turn on all the LEDs 130 when the input device 100 is powered on. For example, the light emission control unit 163 turns off all the LEDs 130 when none of the operation units 105 is selected, and turns off the LED 130 when the fingertip FT approaches one of the operation units 105 and selects the operation unit 105. may be made to emit light.
  • the light emission control unit 163 may switch the light emission color when the fingertip FT approaches, for example. Further, in the case where each LED 130 includes a plurality of LED elements emitting light of different colors, the light emission control unit 163 may switch the light emission color when a push-in operation is performed, for example. In addition, the light emission control unit 163 controls the light emission state (on or off) of the LED 130 or the light emission state of a plurality of LED elements in accordance with the selection of any of the operation units 105 and the push operation using methods other than these. You may switch.
  • FIG. 3 is a diagram showing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101.
  • the characteristics shown in FIG. 3 are, for example, the characteristics obtained when a soft polyurethane having a rebound resilience of 30% to 50% is used as the foam layer 101B.
  • FIG. 3 shows the relationship between compression ratio and vibration acceleration when three samples A to C are used as the foam layer 101B.
  • Sample A is a foam layer with a rebound resilience of 45%, a density of 50 kg/m 3 , and a 25% hardness of 178N.
  • Sample B is a foam layer with a rebound resilience of 45%, a density of 35 kg/m 3 , and a 25% hardness of 147N.
  • Sample C is a foam layer with a rebound resilience of 40%, a density of 26 kg/m 3 , and a 25% hardness of 108N.
  • the 25% hardness is, for example, the hardness according to JIS (Japanese Industrial Standards) K6400-2
  • the rebound resilience is, for example, the resilience according to JIS K6400-3.
  • the foam layer 101B of the soft pad 101 is made of a foam material, when it is not compressed in the vertical direction, it absorbs most of the vibration transmitted from the electrostatic sensor 110 and does not transmit it to the operation surface 101S. However, when the foam layer 101B is compressed to some extent, its rigidity increases and transmits the vibration transmitted from the electrostatic sensor 110 to the operation surface 101S. That is, when the soft pad 101 is compressed to some extent by the pushing operation, the soft pad 101 transmits the vibration transmitted from the electrostatic sensor 110 to the fingertip FT that is pushing the operating section 105.
  • the input device 100 can detect when the soft pad 101 is pushed in to a certain extent by a pushing operation and the foam layer 101B is compressed to the extent that vibration can be transmitted. Then, assuming that the operation input is confirmed by the pressing operation, the actuator 120 is driven to transmit the vibration to the fingertip FT.
  • the horizontal axis represents the compression ratio (%) of the soft pad 101
  • the vertical axis represents the vibration acceleration generated in the soft pad 101.
  • the compression rate is a value expressed as a percentage of the amount of compression in the vertical direction of the soft pad 101 in a state where no pushing operation is performed, and in this specification, it is expressed as (compression amount of the soft pad 101)/ (Thickness of soft pad 101 before compression) is shown. Acceleration is expressed as a normalized value (without units).
  • the compression ratio shown in FIG. 3 can be regarded as the compression ratio of the portion of the entire soft pad 101 that corresponds to one operating portion 105 where the pushing operation is performed. good. For example, if the thickness of the soft pad 101 in a state where no pushing operation is performed is 100, the thickness of the soft pad 101 is 60 when the compression rate is 40%, and the thickness of the soft pad 101 is 60 when the compression rate is 60%. Becomes 40. Note that in actual use, the upper limit of the compression rate of the soft pad 101 is 80%. If the soft pad 101 is compressed so that the compression ratio exceeds 80%, it will be difficult for the foam layer 101B to recover, so the upper limit of the compression ratio is set in this manner. By the way, as is clear from FIG. 3, when sample A has a compression ratio of 91%, sample B has a compression ratio of 88%, and sample C has a compression ratio of 83%, there are no gaps in the foam layer. accepted and no further compression will occur.
  • the determining unit 161 determines the amount of push by the pushing operation based on the capacitance value of each electrode 111 detected by the detecting unit 150. As the amount of pushing by the pushing operation increases, the distance between the fingertip FT and the electrode 111 narrows, so as the amount of pushing increases, the capacitance value of the electrode 111 detected by the detection unit 150 increases.
  • the capacitance value of the electrode 111 corresponding to the compression ratio when the slope of acceleration increases to a certain extent may be set as the threshold value used by the determination unit 161 to determine the pushing operation.
  • the input device 100 determines that a pushing operation was performed when the compression ratio became 40% or more. All you have to do is make a determination and confirm the operation input.
  • the threshold value used by the determination unit 161 for determination may be set to the capacitance value of each electrode 111 detected by the detection unit 150 when the compression ratio is 40%. Note that when the pressure caused by the pushing operation is detected by the detection unit 150 using a strain element, a piezoelectric element, etc. instead of the electrostatic sensor 110, the pressure detected by the detection unit 150 when the compression ratio is 40%. You can set it to a value.
  • the threshold value used by the determination unit 161 for determination is , 40% or more and 80% or less (40% to 80%) of the capacitance value of the electrode 111 may be set.
  • the capacitance value may be set to 80% or less from the capacitance value of the electrode 111 corresponding to a compression rate of 4%.
  • the compression ratio of 57.4% is the compression ratio at which the accelerations of samples A to C in FIG. 3 are approximately the same.
  • the characteristic representing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101 shown in FIG. 3 may be obtained, for example, as follows.
  • a cushion member corresponding to the soft pad 101 is placed on the substrate (corresponding to the combination of the substrate 144 and the lid 143), an actuator is attached under the substrate, and the substrate is held by a damper rubber (corresponding to the damper 142), etc. It is placed on a fixed part (corresponding to the combined member of the case 141 and the main body 10) via a member.
  • An acceleration sensor is attached to a push rod modeled on a fingertip FT, and while the actuator is driven, the push rod is pressed against the top surface of the cushion member, and the push-pull gauge measures the acceleration when the push rod is gradually pushed in.
  • the push-pull gauge measures the acceleration when the push rod is gradually pushed in.
  • the compression ratio for determining the pushing operation may be determined, and the capacitance value of the electrode 111 corresponding to the determined compression ratio may be set as the threshold value of the determination unit 161.
  • FIG. 4 is a flowchart showing the processing executed by the MCU 160.
  • the determining unit 161 acquires the capacitance value of each electrode 111 detected by the detecting unit 150 (step S1).
  • step S2 determines whether an operation input for selecting any of the operation units 105 has been performed. Since step S2 is a process of determining whether an operation input for selecting the operation unit 105 has been performed, the threshold value of the capacitance value is a threshold value smaller than the threshold value used in step S3 (determination of a push operation), which will be described later. .
  • the determination unit 161 determines that an operation input for selecting one of the operation units 105 has been performed (S2: YES)
  • the determination unit 161 causes the corresponding LED 130 to emit light, for example.
  • the threshold value of the capacitance value for determining whether a pushing operation has been performed is, for example, a value corresponding to the capacitance value of each electrode 111 detected by the detection unit 150 when the compression ratio is 60%.
  • the operation input by the push operation is determined.
  • the determination unit 161 notifies a device that uses the input device 100 as an input unit that the operation input by the push operation has been confirmed. As a result, the device that received the notification executes the function corresponding to the operation unit 105 on which the pressing operation was performed.
  • step S4 When the determination unit 161 determines that a pushing operation has been performed (S3: YES), the drive control unit 162 vibrates the actuator 120 in a predetermined pattern for a predetermined time or a predetermined number of times (step S4). As a result, vibrations are transmitted to the operation unit 105 that is compressed by the pressing operation, and the vibrations can be presented to the fingertip FT performing the pressing operation, and the user can confirm that the pressing operation has been accepted by the input device 100. can be perceived.
  • step S3 when it is determined that a pushing operation has been performed, the actuator 120 is vibrated in a predetermined pattern for a predetermined time or a predetermined number of times, and when the actuator 120 is vibrating, the capacitance value is No measurements will be taken.
  • the vibration operation does not stop.
  • the capacitance value may be always acquired at predetermined time intervals, but in that case, the comparison with the threshold value is not performed during the vibration operation, or even if the comparison is made, the result is ignored. etc.
  • the MCU 160 repeatedly executes the process from start to end in each control cycle. Note that the determination unit 161 determines that an operation input for selecting the operation unit 105 has not been performed in step S2 (S2: NO), and that a push operation has not been performed in step S3 (S3: NO). If it is determined, the processing of the control cycle is ended (end).
  • the input device 100 includes the skin layer 101A having the operation surface 101S on which operation input is performed using the fingertip FT, the foam layer 101B provided on the opposite side of the skin layer 101A from the operation surface 101S, and the foam layer 101B.
  • the device includes an electrostatic sensor 110 that can detect the fingertip FT, and an actuator 120 that can apply vibration to the foam layer 101B.
  • the input device 100 also includes a detection unit 150 that detects the capacitance of the capacitive sensor 110, and a push button in which the fingertip FT pushes the operation surface 101S when the capacitance detected by the detection unit 150 exceeds a predetermined threshold.
  • It includes a determination unit 161 that determines that an operation has been performed, and a drive control unit 162 that drives the actuator 120 when the determination unit 161 determines that a pushing operation has been performed.
  • This value corresponds to the amount of compression that is more than the value of .
  • the determination unit 161 determines that a pushing operation has been performed and generates vibration. This allows the operator to recognize that a press has been determined.
  • the input device 100 that can transmit vibrations only to the operating section 105.
  • the foamed material does not vibrate if the amount of compression is small, and only the compressed part (operation section 105) transmits vibrations, so the load required to vibrate can be suppressed, and the entire operation surface 101S Vibration can be presented to the fingertip FT that is pressing the operation unit 105 with less vibration energy than an input device that vibrates.
  • the soft pad 101 can be used as it is as an interior item such as a trim in the interior of a vehicle, and the operating section 105 can be provided at various locations in the interior of the vehicle. Further, since the soft pad 101 acts as a vibration damping material in the portion where it is not pushed in, transmission of vibrations to areas other than the operating section 105 can be minimized.
  • the predetermined threshold value is a value corresponding to the amount of pushing that compresses the foam layer 101B by 40% or more, so in that state, the foam layer 101B can transmit vibrations and exhibit vibrations to the fingertip FT. Can be done.
  • the predetermined threshold value is set to a value corresponding to a pushing amount that compresses the compressor by 80% or less, and when the predetermined threshold value is exceeded, vibrations are generated. This allows the operator to recognize that it has been determined that the button has been pressed, so there is little possibility that the operator will press the button any further. Therefore, it is unlikely that the foam layer 101B will be compressed by 80% or more. If the foam layer 101B is compressed by more than 80%, it will be difficult to recover, but this possibility can be reduced.
  • the actuator 120 vibrates in a direction along the operating direction of the push operation, it can present vibrations in a direction that repels the direction in which the user applies force to the fingertip FT (downward), and the vibration is easily transmitted to the fingertip FT. , it is possible to make it easier for users to perceive vibrations.
  • the actuator 120 and the electrostatic sensor 110 are coupled directly or indirectly, and the foam layer 101B is provided separately from the input drive unit 100A, which is a combination of the actuator 120 and the electrostatic sensor 110. and is assembled to the input drive section 100A. Therefore, by placing the soft pad 101 including the foam layer 101B on the electrostatic sensor 110 and attaching it to the main body 10 via the frame member 20 without bonding the soft pad 101 to the input drive unit 100A, input The device 100 can be easily attached to the main body 10. At the same time, since the actuator 120 vibrates in a direction along the operating direction of the push operation, the vibration can be transmitted to the fingertip FT without bonding the soft pad 101 to the input drive unit 100A.
  • the drive control unit 162 causes the actuator 120 to vibrate at a frequency of 200 Hz or less. Since the soft pad 101 has the property of absorbing vibrations with high frequency components well, by vibrating the actuator 120 with vibrations in a frequency band that is difficult to be absorbed by the soft pad 101, vibrations can be easily transmitted to the fingertip FT. Can be done.
  • the electrostatic sensor 110 further includes an LED 130 provided on the side opposite to the side where the foam layer 101B is located, and the electrostatic sensor 110 is transparent and can be visually recognized from the operation surface 101S side by illumination of the LED 130.
  • the epidermal layer 101A is illuminated. Since the foam layer 101B has a light diffusion effect, the operating section 105 can be uniformly illuminated. Furthermore, visibility and design can be improved by illuminating the operation unit 105.
  • the soft pad 101 is assembled onto the electrostatic sensor 110 in an uncompressed state.
  • the soft pad 101 may be assembled onto the electrostatic sensor 110 in a somewhat compressed state.
  • FIG. 5 is a diagram showing an input device 100M according to a modification of the embodiment.
  • the soft pad 101 is assembled on the electrostatic sensor 110 in a compressed state of about 30%, for example.
  • the other configurations are the same as the input device 100 shown in FIG. 2A.
  • the soft pad 101 is soft, so it can be assembled onto the electrostatic sensor 110 with the lower surface side compressed.
  • the soft pad 101 includes the foam layer 101B, the position of the operation surface 101S, which is the upper surface of the skin layer 101A, hardly changes. Therefore, even if the skin layer 101A is made of an interior item such as interior trim of a vehicle, for example, there will be almost no difference in level on the operation surface 101S.
  • Input device 100A Input drive section (an example of a combined body) 101 Soft pad 101A Skin layer 101B Foam layer 101S Operation surface 105 Operation section 110 Electrostatic sensor (an example of a detection element) 111 Electrode 120 Actuator (an example of a vibration element) 130 LED (example of lighting part) 131 Light guide section 140 Support structure 141 Case 142 Damper 143 Lid 144 Substrate 145 Spacer 150 Detection section 160 MCU 161 Judgment unit 162 Drive control unit 163 Light emission control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Push-Button Switches (AREA)

Abstract

Provided is an input device which makes it possible to transmit vibration to only an operation part. An input device (100) comprises: an outer skin layer (101A) that has an operation surface (101S) on which operation input is performed by an operation body (FT); a foam layer (101B) that is provided to the opposite side of the outer skin layer (101A) from the operation surface (101S); a detection element (110) that disposed to the opposite side of the foam layer (101B) from the side on which the operation surface (101S) is positioned, and that is capable of detecting the operation body (FT); a vibration element (120) that is capable of imparting a vibration to the foam layer (101B); a detection unit (150) that detects a detection amount of the detection element (110); a determination unit (161) that, when the detection amount detected by the detection unit (150) is equal to or greater than a prescribed threshold value, determines that the operation body (FT) has performed a push-in operation in which the operation surface (101S) is pushed in; and a drive control unit (162) that drives the vibration element (120) when the determination unit (161) determines that a push-in operation has been performed, wherein the prescribed threshold value is a value corresponding to a push-in amount that compresses the foam layer by a prescribed value or greater.

Description

入力装置input device
 本開示は、入力装置に関する。 The present disclosure relates to an input device.
 従来より、操作面に振動を伝達する振動素子と、操作面に対する操作体の押圧操作の位置を検出する静電センサとを含み、操作面に押圧操作が行われると振動素子を駆動して操作面を振動させる入力装置がある(例えば、特許文献1参照)。 Conventionally, the device includes a vibrating element that transmits vibrations to the operating surface and an electrostatic sensor that detects the position of the pressing operation of the operating body with respect to the operating surface, and when a pressing operation is performed on the operating surface, the vibrating element is driven and operated. There is an input device that vibrates a surface (for example, see Patent Document 1).
国際公開第2021/157294号International Publication No. 2021/157294
 ところで、従来の入力装置は、操作面の全体を振動させる構成であり、押圧操作が行われる操作部のみを振動させる構成ではない。 By the way, conventional input devices are configured to vibrate the entire operation surface, and are not configured to vibrate only the operating section on which a pressing operation is performed.
 そこで、操作部のみに振動を伝達可能な入力装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide an input device that can transmit vibrations only to the operating section.
 本開示の実施形態の入力装置は、操作体によって操作入力が行われる操作面を有する表皮層と、前記表皮層の前記操作面とは反対側に設けられる発泡層と、前記発泡層に対して前記操作面が位置する側の反対側に配置され、前記操作体を検出可能な検出素子と、前記発泡層に振動を付与可能な振動素子と、前記検出素子の検出量を検出する検出部と、前記検出部によって検出される検出量が所定の閾値以上になると、前記操作体が前記操作面を押し込む押し込み操作が行われたと判定する判定部と、前記判定部によって前記押し込み操作が行われたと判定されると、前記振動素子を駆動する駆動制御部とを含み、前記所定の閾値は、前記発泡層を所定の値以上圧縮する押し込み量に相当する値である。 An input device according to an embodiment of the present disclosure includes: a skin layer having an operation surface on which an operation input is performed by an operation body; a foam layer provided on the opposite side of the skin layer to the operation surface; a detection element arranged on the opposite side to the side where the operation surface is located and capable of detecting the operation body; a vibration element capable of imparting vibration to the foam layer; and a detection unit configured to detect a detection amount of the detection element. a determining unit that determines that a pushing operation in which the operating body pushes the operating surface has been performed when a detection amount detected by the detecting unit is equal to or greater than a predetermined threshold; and a determining unit that determines that the pushing operation has been performed by the determining unit. and a drive control unit that drives the vibrating element when determined, and the predetermined threshold value is a value corresponding to a pushing amount that compresses the foam layer by a predetermined value or more.
 操作部のみに振動を伝達可能な入力装置を提供することができる。 It is possible to provide an input device that can transmit vibrations only to the operating section.
実施形態の入力装置100の平面構成の一例を示す図である。FIG. 1 is a diagram showing an example of a planar configuration of an input device 100 according to an embodiment. 図1のA-A矢視断面の構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a configuration taken along the line AA in FIG. 1; 実施形態の入力装置100の操作状態の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an operating state of the input device 100 according to the embodiment. ソフトパッド101の圧縮率と、ソフトパッド101に生じる振動加速度との関係を示す図である。5 is a diagram showing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101. FIG. MCU160が実行する処理を示すフローチャートである。It is a flowchart which shows the process which MCU160 performs. 実施形態の変形例の入力装置100Mを示す図である。It is a figure showing input device 100M of a modification of an embodiment.
 以下、本開示の入力装置を適用した実施形態について説明する。 Hereinafter, embodiments to which the input device of the present disclosure is applied will be described.
 以下では、XYZ座標系を定義して説明する。また、説明の便宜上、-Z方向側を下側又は下、+Z方向側を上側又は上と称すが、普遍的な上下関係を表すものではない。また、XY面視することを平面視と称す。 Below, the XYZ coordinate system will be defined and explained. Further, for convenience of explanation, the −Z direction side is referred to as the lower side or lower side, and the +Z direction side is referred to as the upper side or upper side, but this does not represent a universal vertical relationship. Furthermore, viewing in the XY plane is referred to as planar viewing.
 <実施形態>
 <入力装置100の構成>
 図1は、実施形態の入力装置100の平面構成の一例を示す図である。図2Aは、図1のA-A矢視断面の構成の一例を示す断面及びブロックを示す図である。図2Bは、実施形態の入力装置100の操作状態の一例を示す断面図である。入力装置100は、ソフトパッド101、静電センサ110、アクチュエータ120、LED(Light Emitting Diode)130、導光部131、支持構造体140、検出部150、及びMCU(micro controller unit)160を含む。静電センサ110は検出素子の一例であり、アクチュエータ120は振動素子の一例である。LED130及び導光部131は照光部の一例である。
<Embodiment>
<Configuration of input device 100>
FIG. 1 is a diagram showing an example of a planar configuration of an input device 100 according to an embodiment. FIG. 2A is a diagram illustrating a cross section and a block showing an example of a configuration taken along the line AA in FIG. 1. FIG. FIG. 2B is a cross-sectional view showing an example of an operating state of the input device 100 according to the embodiment. The input device 100 includes a soft pad 101, an electrostatic sensor 110, an actuator 120, an LED (Light Emitting Diode) 130, a light guide 131, a support structure 140, a detection unit 150, and an MCU (micro controller unit) 160. The electrostatic sensor 110 is an example of a detection element, and the actuator 120 is an example of a vibration element. The LED 130 and the light guide section 131 are examples of a light illumination section.
 入力装置100のうち、静電センサ110、アクチュエータ120、LED130、導光部131、及び支持構造体140は、入力駆動部100Aを構築する。入力駆動部100Aは、静電センサ110及びアクチュエータ120を間接的に結合する結合体の一例である。なお、静電センサ110及びアクチュエータ120は、直接的に結合されていてもよい。 Of the input device 100, the electrostatic sensor 110, actuator 120, LED 130, light guide section 131, and support structure 140 constitute an input drive section 100A. The input drive unit 100A is an example of a combination body that indirectly couples the electrostatic sensor 110 and the actuator 120. Note that the electrostatic sensor 110 and the actuator 120 may be directly coupled.
 入力装置100は、支持構造体140のケース141が車両側の本体10に直接接触するように載置されて固定される。この状態で、ソフトパッド101の平面視における矩形状の外縁に沿った端部の下面は、枠部材20に接着されており、枠部材20は、本体10の上端11に固定されている。なお、ソフトパッド101は、クッション性を有しているが、剛性を持つ合成樹脂の枠部材20に接着保持されることで形状が保たれている。また、本体10は、車両の車体の一部であってもよいし、車体に取り付けられた構造物であってもよい。本体10は、金属製又は樹脂製等の剛体である。支持構造体140は、静電センサ110、アクチュエータ120、及びLED130を支持する構造体である。なお、支持構造体140の詳細や、本体10への固定の仕方の詳細については後述する。 The input device 100 is placed and fixed such that the case 141 of the support structure 140 is in direct contact with the main body 10 on the vehicle side. In this state, the lower surface of the end along the outer edge of the rectangular shape in plan view of the soft pad 101 is adhered to the frame member 20, and the frame member 20 is fixed to the upper end 11 of the main body 10. Although the soft pad 101 has cushioning properties, its shape is maintained by being adhesively held to the rigid synthetic resin frame member 20. Moreover, the main body 10 may be a part of the vehicle body, or may be a structure attached to the vehicle body. The main body 10 is a rigid body made of metal or resin. Support structure 140 is a structure that supports electrostatic sensor 110, actuator 120, and LED 130. Note that details of the support structure 140 and how to fix it to the main body 10 will be described later.
 入力装置100は、人体のうちの指先FT以外の部分(例えば、掌や肘等)でも操作可能であるが、以下では、入力装置100に対して操作入力を行う操作体の一例が指先FTであり、指先FTで操作入力が行われる形態について説明する。 Although the input device 100 can be operated by a part of the human body other than the fingertip FT (for example, the palm or elbow), in the following, the fingertip FT is an example of an operating body that performs operation input to the input device 100. A mode in which operation input is performed using fingertip FT will be described.
 入力装置100は、指先FTによって操作入力を行うことが可能な操作面101Sを有する。操作面101Sは、入力装置100の最上部に位置するソフトパッド101の上面である。入力装置100は、図1に示すように、一例として、破線で示す2つの操作部105を操作面101Sに有する。入力装置100は、操作部105に対して、図2Bに示すように押し込む操作入力(押し込み操作)を行うことができる装置である。押し込み操作は、操作部105を押し下げる操作であり、操作方向は、図2Bに示すように下向きである。本実施形態の入力装置100において、操作入力には、いずれかの操作部105に指先FTを近づけて操作部105の一方を選択する操作と、該選択した操作を確定する為に操作部105を押し込む押し込み操作とがあるが、指先FTを近づけて操作部105の一方を選択する操作については必ずしも必要ではない。 The input device 100 has an operation surface 101S on which operation input can be performed using a fingertip FT. The operation surface 101S is the upper surface of the soft pad 101 located at the top of the input device 100. As shown in FIG. 1, the input device 100 has, for example, two operation units 105 shown by broken lines on the operation surface 101S. The input device 100 is a device that can perform a push operation input (push operation) to the operation unit 105 as shown in FIG. 2B. The pushing operation is an operation of pushing down the operation unit 105, and the operation direction is downward as shown in FIG. 2B. In the input device 100 of this embodiment, the operation input includes an operation of bringing a fingertip FT close to one of the operation sections 105 to select one of the operation sections 105, and an operation of selecting one of the operation sections 105 and pressing the operation section 105 to confirm the selected operation. Although there is a push-in operation, an operation of bringing the fingertip FT close to select one of the operation sections 105 is not necessarily necessary.
 なお、図1には、2つの操作部105を示し、以下では入力装置100が2つの操作部105を有するものとして説明するが、入力装置100は、少なくとも1つの操作部105を有していればよく、操作部105は3つ以上あってもよい。操作部105の詳細については後述する。 Note that although FIG. 1 shows two operation units 105 and the input device 100 will be described below as having two operation units 105, the input device 100 must include at least one operation unit 105. If desired, there may be three or more operation units 105. Details of the operation unit 105 will be described later.
 ソフトパッド101は、入力装置100の最上部に位置し、外表面を覆う表皮層101Aと、表皮層101Aに全体が覆われる発泡層101Bとを有する。 The soft pad 101 is located at the top of the input device 100 and has a skin layer 101A that covers the outer surface and a foam layer 101B that is entirely covered by the skin layer 101A.
 表皮層101Aは、樹脂、合成繊維、合成皮革、又は皮革等で構成される袋状のカバーであり、発泡層101Bの外表面の全体を覆って、接触した部材の形状に沿って容易に形状が変わる。表皮層101Aは、操作面101Sを有する。操作面101Sは、表皮層101Aの上面であり、車両の室内に表出する加飾層である。なお、ここでは表皮層101Aが袋状のカバーであって、発泡層101Bの外表面の全体を覆う形態について説明するが、表皮層101Aは、少なくとも発泡層101Bの上面を覆う構成であればよく、例えば、発泡層101Bの上面のみを覆う構成、発泡層101Bの上面及び側面を覆う構成、又は、発泡層101Bの上面と、側面と、下面の一部とを覆う構成等であってもよい。 The skin layer 101A is a bag-shaped cover made of resin, synthetic fiber, synthetic leather, leather, etc., and covers the entire outer surface of the foam layer 101B, and is easily shaped according to the shape of the member in contact with it. changes. The skin layer 101A has an operation surface 101S. The operation surface 101S is the upper surface of the skin layer 101A, and is a decorative layer exposed in the interior of the vehicle. Note that although the skin layer 101A is a bag-shaped cover and covers the entire outer surface of the foam layer 101B, the skin layer 101A may have a structure as long as it covers at least the top surface of the foam layer 101B. For example, the structure may be such that only the top surface of the foam layer 101B is covered, a structure that covers the top surface and side surfaces of the foam layer 101B, or a structure that covers the top surface, side surfaces, and part of the bottom surface of the foam layer 101B. .
 発泡層101Bは、外表面の全体が表皮層101Aによって包まれている。発泡層101Bは、表皮層101Aの操作面101Sとは反対側に設けられる。発泡層101Bは、発泡ウレタン、発泡スポンジ、又は発泡ゴム等の発泡材で作製可能でありクッション性を有する。 The entire outer surface of the foam layer 101B is covered by the skin layer 101A. The foam layer 101B is provided on the side of the skin layer 101A opposite to the operation surface 101S. The foam layer 101B can be made of a foam material such as foam urethane, foam sponge, or foam rubber, and has cushioning properties.
 ソフトパッド101は、静電センサ110の上に重ねて設けられており、静電センサ110の上面を覆っている。操作面101Sの各操作部105には、静電センサ110の各電極111に対応したシンボルが表示される。各操作部105のシンボルは、LED130が出力し、導光部131によって導かれてソフトパッド101を透過した光によって照光される。シンボルは、操作面101Sの各操作部105に設けられる。シンボルとは、例えば所定の意味を持つ文字、数字、記号、線図、マーク等であり、ここでは各操作部105の機能や種類等を表す。 The soft pad 101 is provided to overlap the electrostatic sensor 110 and covers the top surface of the electrostatic sensor 110. A symbol corresponding to each electrode 111 of the electrostatic sensor 110 is displayed on each operation unit 105 of the operation surface 101S. The symbol of each operation unit 105 is illuminated by light output from the LED 130, guided by the light guide unit 131, and transmitted through the soft pad 101. A symbol is provided on each operation section 105 of the operation surface 101S. Symbols are, for example, letters, numbers, symbols, diagrams, marks, etc. that have a predetermined meaning, and here represent the function, type, etc. of each operation unit 105.
 図1には、一例として、2つの操作部105のうちの右側の操作部105に「AC」の文字を記す。ACは、エアコンディショナの略である。右側の操作部105はエアコンディショナ(AC)の操作部である。左側の操作部105にものシンボルが表示されるが、図1では省略する。なお、ソフトパッド101の上面に印刷等で複数のシンボルを形成してもよい。 In FIG. 1, as an example, the letters "AC" are written on the right operating section 105 of the two operating sections 105. AC is an abbreviation for air conditioner. The operation unit 105 on the right side is an operation unit for an air conditioner (AC). Although a symbol is displayed on the left operation unit 105, it is omitted in FIG. Note that a plurality of symbols may be formed on the upper surface of the soft pad 101 by printing or the like.
 ソフトパッド101は、利用者が入力装置100に対して操作入力を行う際に、シンボルが表示される操作領域に手等を近づけた後に、図2Bに示すように操作面101Sを下方に押し込む操作入力(押し込み操作)が行われると、弾性変形する部材である。入力装置100は、このように操作領域を手等で下方に押し込むことによって、選択した操作入力が確定する入力装置である。ソフトパッド101は、操作面101Sのうちの操作部105以外の部分を押し込むことが可能であるが、入力装置100に対する押し込み操作を行うためには、操作面101Sのうちの操作部105に対して押し込み操作を行えばよい。なお、ソフトパッド101は、押し込み操作を行う指先FTを離せば、元の形状に復帰する。 When a user performs an operation input on the input device 100, the soft pad 101 is operated by pushing the operation surface 101S downward as shown in FIG. 2B after bringing a hand or the like close to the operation area where a symbol is displayed. It is a member that elastically deforms when an input (pushing operation) is performed. The input device 100 is an input device in which a selected operation input is determined by pushing the operation area downward with a hand or the like. The soft pad 101 can be pushed into a portion of the operation surface 101S other than the operation section 105; however, in order to perform a push operation on the input device 100, the soft pad 101 must be pressed against the operation section 105 of the operation surface 101S. All you have to do is press it. Note that the soft pad 101 returns to its original shape when the fingertip FT performing the pressing operation is released.
 このようなソフトパッド101は、例えば、車両の室内に表出する内装部材の一部として利用可能であり、例えば、センターコンソール、ドアの内張、又はアームレスト等の各部に用いることにより、各部の内装部材に入力装置100を配置することができる。 Such a soft pad 101 can be used, for example, as a part of an interior member exposed inside a vehicle, and can be used for various parts such as a center console, door lining, or armrest. The input device 100 can be placed on an interior member.
 静電センサ110は、ソフトパッド101の裏面側(-Z方向側)に設けられている。すなわち、静電センサ110は、発泡層101Bに対して操作面101Sが位置する側(上側)の反対側(下側)に配置されている。静電センサ110は、指先FTを検出可能な2つの電極111(図1参照)を有する。2つの電極は、図示しない基板の表面に形成されている。2つの電極111は、2つの操作部105の各々に対応して、1つずつ設けられている。ここでは一例として、入力装置100が2つの操作部105を有し、静電センサ110が2つの電極111を有する形態について説明するが、静電センサ110は、操作部105の数に応じた数の電極111を有していればよい。すなわち、入力装置100が複数の操作部105を有する場合には、静電センサ110は、複数の操作部105に応じた複数の電極111を有していればよい。なお、各電極111は、さらに複数の電極部に分けられていてもよい。又、本実施例において静電センサ110は自己容量式の静電センサを用いているが、駆動電極(送信電極ともいう)と検出電極(受信電極ともいう)の2つの電極を有する相互容量方式の静電センサを用いても良い。 The electrostatic sensor 110 is provided on the back side (-Z direction side) of the soft pad 101. That is, the electrostatic sensor 110 is disposed on the opposite side (lower side) of the foam layer 101B to the side (upper side) where the operation surface 101S is located. The electrostatic sensor 110 has two electrodes 111 (see FIG. 1) that can detect the fingertip FT. Two electrodes are formed on the surface of a substrate (not shown). Two electrodes 111 are provided, one corresponding to each of the two operating sections 105. Here, as an example, a configuration in which the input device 100 has two operation sections 105 and the electrostatic sensor 110 has two electrodes 111 will be described. It is sufficient if the electrode 111 is provided. That is, when the input device 100 has a plurality of operation sections 105, the electrostatic sensor 110 only needs to have a plurality of electrodes 111 corresponding to the plurality of operation sections 105. Note that each electrode 111 may be further divided into a plurality of electrode parts. Further, in this embodiment, the electrostatic sensor 110 uses a self-capacitance type electrostatic sensor, but a mutual capacitance type electrostatic sensor having two electrodes, a driving electrode (also referred to as a transmitting electrode) and a detection electrode (also referred to as a receiving electrode) is used. An electrostatic sensor may also be used.
 各電極111は、導電材料製であればよく、ITO(Indium-Tin Oxide)のような透明電極材料で作製すればよく、電極111が設けられる基板としては、一例としてポリイミド製等の透明なフレキシブル基板を用いることができる。ここでは、一例として、静電センサ110が透明な電極111と透明な基板とによって、LED130の光を透過可能な構成である形態について説明する。しかしながら、静電センサ110を透明にする必要がなければ、各電極111は、銅箔やアルミニウム箔等の金属箔で作製すればよい。また、部分的に透明にする場合には、透明電極材料で作製する部分と、金属箔で作製する部分とを設ければよい。 Each electrode 111 may be made of a conductive material, such as a transparent electrode material such as ITO (Indium-Tin Oxide), and the substrate on which the electrode 111 is provided may be, for example, a transparent flexible material such as polyimide. A substrate can be used. Here, as an example, a configuration will be described in which the electrostatic sensor 110 is configured to allow light from the LED 130 to pass through the transparent electrode 111 and the transparent substrate. However, if the electrostatic sensor 110 does not need to be transparent, each electrode 111 may be made of metal foil such as copper foil or aluminum foil. Furthermore, in the case of partially making the electrode transparent, it is sufficient to provide a portion made of transparent electrode material and a portion made of metal foil.
 2つの電極111は、隣り合うように配置される。一例として、ここでは2つの電極111がX方向に配列されている構成を示すが、複数の電極111がX方向及びY方向にマトリクス状に配列されていてもよい。複数の電極111は、X方向若しくはY方向に沿って、又は、X方向及びY方向に沿って、平面的に配列されていればよく、一例として、Z方向の位置は等しい。 The two electrodes 111 are arranged adjacent to each other. As an example, a configuration in which two electrodes 111 are arranged in the X direction is shown here, but a plurality of electrodes 111 may be arranged in a matrix in the X direction and the Y direction. The plurality of electrodes 111 may be arranged in a plane along the X direction or the Y direction, or along the X direction and the Y direction; for example, the positions in the Z direction are the same.
 各電極111は、配線等を介して検出部150に接続されている。複数の電極111と指先FT等の操作体との間の静電容量は、検出部150によって検出される。検出部150によって検出される電極111の静電容量は、検出量の一例であり、押圧力に対応する。すなわち電極111の静電容量は、指先FTと電極111との距離に応じた値となるが、間に弾性(クッション性)をもったソフトパッド101が介在するので結果として押圧力の検出が可能となる。なお、ここでは、静電センサ110を用いて電極111と指先FT等の操作体との間の静電容量を検出して押圧力を検出する形態について説明するが、静電センサ110の代わりに、歪素子や圧電素子等を用いて、押し込み操作による圧力を検出してもよい。 Each electrode 111 is connected to the detection unit 150 via wiring or the like. The detection unit 150 detects the capacitance between the plurality of electrodes 111 and an operating body such as a fingertip FT. The capacitance of the electrode 111 detected by the detection unit 150 is an example of a detected amount, and corresponds to the pressing force. In other words, the capacitance of the electrode 111 has a value that depends on the distance between the fingertip FT and the electrode 111, but since the soft pad 101 with elasticity (cushioning properties) is interposed in between, the pressing force can be detected as a result. becomes. Note that here, a mode will be described in which the electrostatic sensor 110 is used to detect the capacitance between the electrode 111 and an operating body such as a fingertip FT to detect the pressing force. , the pressure caused by the pushing operation may be detected using a strain element, a piezoelectric element, or the like.
 アクチュエータ120は、ソフトパッド101に振動を伝達可能な振動素子であり、一例として、支持構造体140の蓋143の下面に設けられている。アクチュエータ120は、上下方向に振動する。すなわち、アクチュエータ120は、押し込み操作の操作方向(下向き)に沿った方向に振動する。アクチュエータ120は、配線等を介してMCU160に接続されており、MCU160の駆動制御部162によって駆動される。 The actuator 120 is a vibration element capable of transmitting vibrations to the soft pad 101, and is provided, for example, on the lower surface of the lid 143 of the support structure 140. The actuator 120 vibrates in the vertical direction. That is, the actuator 120 vibrates in a direction along the operating direction (downward) of the pushing operation. The actuator 120 is connected to the MCU 160 via wiring or the like, and is driven by the drive control section 162 of the MCU 160.
 アクチュエータ120の振動は、支持構造体140の蓋143、基板144、及びスペーサ145を介して静電センサ110に伝わり、さらに静電センサ110からソフトパッド101に伝わる。ソフトパッド101が所定以上押圧されるとアクチュエータ120は、振動を開始するが、ソフトパッド101が、上下方向に圧縮されていない部分においては、静電センサ110から伝わる振動を殆ど吸収し、振動しないが、ソフトパッド101が上下方向に圧縮された部分においては剛性が高くなって、静電センサ110から伝わる振動を、指先FTで圧縮した操作面101Sに伝達可能になる。すなわち、アクチュエータ120の振動は、押し込み操作によってある程度圧縮されている部分のみにおいて操作面101Sに伝達されるため、押し込み操作を行う指先FTに振動を呈示することができる。この結果、利用者は、指先FTに呈示される振動によって、押し込み操作が入力装置100に受け付けられたことを知覚することができる。同時に、指先FTが押圧していない領域においてはソフトパッド101の振動は抑えられる。 The vibration of the actuator 120 is transmitted to the electrostatic sensor 110 via the lid 143, substrate 144, and spacer 145 of the support structure 140, and further transmitted from the electrostatic sensor 110 to the soft pad 101. When the soft pad 101 is pressed to a predetermined level or more, the actuator 120 starts vibrating, but in the portion where the soft pad 101 is not compressed in the vertical direction, it absorbs most of the vibration transmitted from the electrostatic sensor 110 and does not vibrate. However, the rigidity of the portion of the soft pad 101 compressed in the vertical direction becomes high, and the vibrations transmitted from the electrostatic sensor 110 can be transmitted to the operation surface 101S compressed by the fingertip FT. That is, since the vibration of the actuator 120 is transmitted to the operation surface 101S only in the portion compressed to some extent by the pushing operation, the vibration can be presented to the fingertip FT performing the pushing operation. As a result, the user can perceive that the input device 100 has accepted the push operation by the vibration presented to the fingertip FT. At the same time, the vibration of the soft pad 101 is suppressed in the area not pressed by the fingertip FT.
 また、アクチュエータ120の振動方向は、押し込み操作の操作方向(下向き)に沿っているため、利用者が指先FTに力を加える方向(下向き)に反発するような方向の振動を呈示でき、利用者が振動をより知覚しやすくすることができる。 In addition, since the vibration direction of the actuator 120 is along the operating direction (downward) of the pressing operation, it is possible to present vibrations in a direction that repels the direction in which the user applies force to the fingertip FT (downward). can make vibrations more perceptible.
 なお、アクチュエータ120は、ソフトパッド101に振動を伝達可能であればよいため、蓋143の下面に限らず、支持構造体140の蓋143以外の部分や、ソフトパッド101の下面等に設けてもよい。 Note that since the actuator 120 only needs to be able to transmit vibrations to the soft pad 101, it may be provided not only on the bottom surface of the lid 143 but also on a portion of the support structure 140 other than the lid 143, the bottom surface of the soft pad 101, etc. good.
 アクチュエータ120は、一例として、利用者が入力装置100に対して行う押し込み操作が確定したときに、MCU160によって駆動され、振動を利用者に呈示する。 For example, the actuator 120 is driven by the MCU 160 and presents vibrations to the user when a push operation performed by the user on the input device 100 is confirmed.
 LED130は、平面視で2つの操作部105と重なる位置において、基板144の上面に2つ配置されている。LED130は、静電センサ110に対して発泡層101Bが位置する側とは反対側に設けられている。 Two LEDs 130 are arranged on the upper surface of the substrate 144 at positions overlapping the two operation units 105 in a plan view. The LED 130 is provided on the side opposite to the side where the foam layer 101B is located with respect to the electrostatic sensor 110.
 ここでは、入力装置100が2つのLED130を含む形態について説明するが、LED130は、一例として各操作部105に対応して1つずつ設けられていればよいため、入力装置100が複数の操作部105を有する場合には、複数の操作部105に応じて複数設けられていればよい。各LED130は、MCU160の発光制御部163によって、オン(発光している状態)とオフ(発光していない状態)とに切り換えられる。 Here, a mode in which the input device 100 includes two LEDs 130 will be described. However, as an example, it is only necessary to provide one LED 130 corresponding to each operation section 105. 105, a plurality of them may be provided corresponding to the plurality of operation parts 105. Each LED 130 is switched between on (state of emitting light) and off (state of not emitting light) by light emission control unit 163 of MCU 160.
 各LED130の上には、導光部131が設けられている。導光部131は、LED130が発光する光を静電センサ110に案内できる光ガイドであればよく、光を案内する空隙を有する形態や、光を案内する透明樹脂等によって構成される形態であってよい。 A light guide section 131 is provided above each LED 130. The light guiding section 131 may be any light guide that can guide the light emitted by the LED 130 to the electrostatic sensor 110, and may have a form that has a gap that guides the light or a form that is made of a transparent resin that guides the light. It's fine.
 支持構造体140は、静電センサ110、アクチュエータ120、及びLED130を支持する構造体である。支持構造体140は、一例として、ケース141、ダンパ142、蓋143、基板144、及びスペーサ145を有する。 The support structure 140 is a structure that supports the electrostatic sensor 110, the actuator 120, and the LED 130. The support structure 140 includes, for example, a case 141, a damper 142, a lid 143, a substrate 144, and a spacer 145.
 ケース141は、入力装置100の下側に配置される筐体である。ケース141は、一例として平面視では図1に示すソフトパッド101と同様に矩形状である。ケース141は、基部141Aと、係合部141Bとを有する。基部141Aは、一例として平面視で矩形状であり、凹型の容器状の部分である。基部141Aは、図2Aに示すXZ断面視では上側が凹んだ凹形状であり、YZ断面視においても同様の形状を有する。係合部141Bは、基部141Aの上端から平面視でX方向及びY方向の外側に延在する部分であり、本体10の内側の段差12に載置され、ネジ(図示省略)等によって固定される。 The case 141 is a housing placed below the input device 100. For example, the case 141 has a rectangular shape when viewed from above, similar to the soft pad 101 shown in FIG. 1 . Case 141 has a base portion 141A and an engaging portion 141B. The base 141A is, for example, rectangular in plan view and is a concave container-shaped portion. The base 141A has a concave shape with a concave upper side in the XZ cross-sectional view shown in FIG. 2A, and has the same shape in the YZ cross-sectional view. The engaging portion 141B is a portion extending outward in the X direction and the Y direction in plan view from the upper end of the base portion 141A, and is placed on the step 12 inside the main body 10 and fixed with a screw (not shown) or the like. Ru.
 ダンパ142は、基部141Aの上端と、蓋143と間に設けられる平面視で矩形環状の部材である。ダンパ142は、アクチュエータ120の振動がケース141を介して本体10側に伝わるのを抑制する緩衝部材であり、ゴム等の弾性体で構成される。また、蓋143は、平面視でケース141と略同一サイズの矩形状の板部材である。平面視で矩形環状のダンパ142を介してケース141の上側を蓋143で覆うことにより、蓋143の下面に設けられるアクチュエータ120が設けられる空間を封止でき、アクチュエータ120を塵埃等から保護することができる。 The damper 142 is a rectangular annular member provided between the upper end of the base 141A and the lid 143 in plan view. The damper 142 is a buffer member that suppresses the vibration of the actuator 120 from being transmitted to the main body 10 side via the case 141, and is made of an elastic body such as rubber. Further, the lid 143 is a rectangular plate member that is approximately the same size as the case 141 in plan view. By covering the upper side of the case 141 with the lid 143 via the rectangular annular damper 142 in plan view, the space in which the actuator 120 is provided on the lower surface of the lid 143 can be sealed, and the actuator 120 can be protected from dust and the like. Can be done.
 基板144は、上面にLED130が設けられる配線基板である。基板144は、PWB(Printed Wiring Board)であり、LED130に接続される配線を有する。LED130は、基板144の配線と、基板144に接続される通信ケーブル等を介してMCU160に接続される。 The board 144 is a wiring board on which the LED 130 is provided on the top surface. The substrate 144 is a PWB (Printed Wiring Board) and has wiring connected to the LED 130. The LED 130 is connected to the MCU 160 via wiring on the board 144 and a communication cable connected to the board 144.
 スペーサ145は、基板144の上面と静電センサ110の下面との間に設けられ、基板144及び静電センサ110に対して固定されている。一例として、スペーサ145の下面は基板144の上面に接着され、スペーサ145の上面は静電センサ110の下面に接着されている。 The spacer 145 is provided between the upper surface of the substrate 144 and the lower surface of the electrostatic sensor 110 and is fixed to the substrate 144 and the electrostatic sensor 110. As an example, the lower surface of the spacer 145 is bonded to the upper surface of the substrate 144, and the upper surface of the spacer 145 is bonded to the lower surface of the electrostatic sensor 110.
 スペーサ145は、一例として樹脂製である。スペーサ145は、透明ではなくてよい。スペーサ145は、基板144の上面のうちのLED130及び導光部131が設けられない部分に複数設けられており、LED130及び導光部131を合わせた高さと等しい高さを有する。なお、複数のスペーサ145を用いる代わりに、平面視でLED130及び導光部131の位置に貫通孔を有する板状の部材を用いても良い。スペーサ145は、基板144の上方で静電センサ110を保持し、基板144に対する静電センサ110の高さ位置を決めるために設けられている。 The spacer 145 is made of resin, for example. Spacer 145 may not be transparent. A plurality of spacers 145 are provided on a portion of the upper surface of the substrate 144 where the LEDs 130 and the light guide section 131 are not provided, and have a height equal to the combined height of the LEDs 130 and the light guide section 131. Note that instead of using the plurality of spacers 145, a plate-shaped member having through holes at the positions of the LED 130 and the light guide section 131 in plan view may be used. The spacer 145 is provided to hold the electrostatic sensor 110 above the substrate 144 and to determine the height position of the electrostatic sensor 110 with respect to the substrate 144.
 上述のような静電センサ110、アクチュエータ120、LED130、及び導光部131、及び支持構造体140で構成される入力駆動部100Aは、支持構造体140によって直接的又は間接的に支持されていることによって一体化されているので、本体10の内部に配置し、ケース141をネジ留め等で本体10に固定することで、入力駆動部100Aを本体10に簡単に取り付けることができる。 The input drive unit 100A, which includes the electrostatic sensor 110, actuator 120, LED 130, light guide unit 131, and support structure 140 as described above, is directly or indirectly supported by the support structure 140. Therefore, the input drive section 100A can be easily attached to the main body 10 by placing it inside the main body 10 and fixing the case 141 to the main body 10 with screws or the like.
 また、入力駆動部100Aを本体10に取り付けた状態で、枠部材20を取り付けたソフトパッド101を静電センサ110の上に配置し、枠部材20を介してソフトパッド101を本体10に取り付けることで、入力装置100を本体10に簡単に取り付けることができる。 Further, with the input drive unit 100A attached to the main body 10, the soft pad 101 with the frame member 20 attached is placed on the electrostatic sensor 110, and the soft pad 101 is attached to the main body 10 via the frame member 20. Therefore, the input device 100 can be easily attached to the main body 10.
 検出部150は、静電センサ110の各電極111の静電容量を表す容量値(静電容量値)を検出し、デジタル値に変換してMCU160に出力する。このような検出部150は、一例として、A/Dコンバータを含むIC(Integrated Circuit)で実現可能である。 The detection unit 150 detects a capacitance value (capacitance value) representing the capacitance of each electrode 111 of the electrostatic sensor 110, converts it into a digital value, and outputs it to the MCU 160. Such a detection unit 150 can be realized by, for example, an IC (Integrated Circuit) including an A/D converter.
 MCU160は、検出部150に接続されている。MCU160は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入出力インターフェース、及び内部バス等を含むコンピュータによって実現される。 The MCU 160 is connected to the detection section 150. The MCU 160 is realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input/output interface, an internal bus, and the like.
 MCU160は、判定部161、駆動制御部162、及び発光制御部163を有する。判定部161、駆動制御部162、及び発光制御部163は、MCU160が実行するプログラムの機能(ファンクション)を機能ブロックとして示したものである。 The MCU 160 includes a determination section 161, a drive control section 162, and a light emission control section 163. The determination unit 161, the drive control unit 162, and the light emission control unit 163 represent functions of a program executed by the MCU 160 as functional blocks.
 判定部161は、検出部150によって検出される各電極111の容量値から、いずれかの電極111に対して指先FTによる操作入力が行われたことを判定する。利用者が指先FTでソフトパッド101の操作面101Sの操作部105に触れると指先FTと電極111との間の容量値(静電容量値)が変化し、操作部105を押し込むと、指先FTと電極111との間の容量値(静電容量値)がさらに大きく変化する。このため、判定部161は、電極111の容量値に基づいて、いずれかの操作部105の選択と、押し込み操作とが行われたかどうかを判定することができる。押し込み操作が行われたかどうかを判定部161が判定する際に、検出部150によって検出される各電極111の容量値に対して用いる閾値については後述する。 The determination unit 161 determines from the capacitance value of each electrode 111 detected by the detection unit 150 that an operation input using the fingertip FT has been performed on any of the electrodes 111. When the user touches the operation part 105 of the operation surface 101S of the soft pad 101 with the fingertip FT, the capacitance value (capacitance value) between the fingertip FT and the electrode 111 changes, and when the user presses the operation part 105, the fingertip FT The capacitance value (electrostatic capacitance value) between the electrode 111 and the electrode 111 changes further. Therefore, the determining unit 161 can determine whether any of the operating units 105 has been selected and a pushing operation has been performed, based on the capacitance value of the electrode 111. The threshold value used for the capacitance value of each electrode 111 detected by the detection unit 150 when the determination unit 161 determines whether a push-in operation has been performed will be described later.
 駆動制御部162は、判定部161によって押し込み操作が行われたと判定されると、アクチュエータ120を駆動して振動させる。ここでは、一例として、駆動制御部162は、利用者が入力装置100に対して行う操作入力が確定したときにアクチュエータ120を駆動して、振動を利用者に呈示する。利用者は、指先FTに呈示される振動によって、押し込み操作が入力装置100に受け付けられたことを知覚することができる。このため、入力装置100は、一例として、車載用の入力装置など、手元を注視せずにブラインドタッチで操作する可能性のあるスイッチとして利用可能である。 When the determination unit 161 determines that a pushing operation has been performed, the drive control unit 162 drives the actuator 120 to vibrate. Here, as an example, the drive control unit 162 drives the actuator 120 to present vibrations to the user when the operation input performed by the user on the input device 100 is determined. The user can perceive that the input device 100 has accepted the pressing operation by the vibration presented to the fingertip FT. Therefore, the input device 100 can be used, for example, as a switch that can be operated with a blind touch without looking at the user's hand, such as an in-vehicle input device.
 駆動制御部162は、アクチュエータ120を200Hz以下の周波数で振動させる。発泡層101Bの発泡材は高周波成分をよく吸収するので、比較的高い周波数で駆動した場合には、振動しにくく、よって、比較的低い周波数で駆動することが望ましい。このような観点から、一例として、200kHz以下の周波数でアクチュエータ120を振動させて、発泡層101Bが圧縮(ソフトパッド101が圧縮)されたときに、振動を確実に指先FTに伝達させる。 The drive control unit 162 vibrates the actuator 120 at a frequency of 200 Hz or less. Since the foam material of the foam layer 101B absorbs high frequency components well, it is difficult to vibrate when driven at a relatively high frequency, so it is desirable to drive at a relatively low frequency. From this point of view, as an example, the actuator 120 is vibrated at a frequency of 200 kHz or less to ensure that the vibration is transmitted to the fingertip FT when the foam layer 101B is compressed (the soft pad 101 is compressed).
 発光制御部163は、LED130の発光制御を行う。発光制御部163は、入力装置100の電源がオンのときに、すべてのLED130をオンにしてもよい。また、発光制御部163は、例えば、いずれの操作部105も選択されていない状態では、すべてのLED130をオフにしておき、いずれかの操作部105に指先FTが近づいて選択されたときにLED130を発光させてもよい。 The light emission control unit 163 controls the light emission of the LED 130. The light emission control unit 163 may turn on all the LEDs 130 when the input device 100 is powered on. For example, the light emission control unit 163 turns off all the LEDs 130 when none of the operation units 105 is selected, and turns off the LED 130 when the fingertip FT approaches one of the operation units 105 and selects the operation unit 105. may be made to emit light.
 また、発光制御部163は、各LED130が発光色の異なる複数のLED素子を含む場合には、例えば、指先FTが近づいたときに発光色を切り替えてもよい。また、発光制御部163は、各LED130が発光色の異なる複数のLED素子を含む場合には、例えば、押し込み操作が行われたときに発光色を切り替えてもよい。また、発光制御部163は、これら以外の手法で、いずれかの操作部105の選択と、押し込み操作とに応じて、LED130の発光状態(オン又はオフ)や、複数のLED素子の発光状態を切り替えてもよい。 Further, in the case where each LED 130 includes a plurality of LED elements emitting different colors of light, the light emission control unit 163 may switch the light emission color when the fingertip FT approaches, for example. Further, in the case where each LED 130 includes a plurality of LED elements emitting light of different colors, the light emission control unit 163 may switch the light emission color when a push-in operation is performed, for example. In addition, the light emission control unit 163 controls the light emission state (on or off) of the LED 130 or the light emission state of a plurality of LED elements in accordance with the selection of any of the operation units 105 and the push operation using methods other than these. You may switch.
 <押し込み操作のためのソフトパッド101の押し込み量>
 図3は、ソフトパッド101の圧縮率と、ソフトパッド101に生じる振動加速度との関係を示す図である。図3に示す特性は、一例として、反発弾性が30%~50%の軟質ポリウレタンを発泡層101Bとして用いた場合に得られる特性である。
<Press amount of soft pad 101 for push operation>
FIG. 3 is a diagram showing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101. The characteristics shown in FIG. 3 are, for example, the characteristics obtained when a soft polyurethane having a rebound resilience of 30% to 50% is used as the foam layer 101B.
 図3には、発泡層101Bとして、3つのサンプルA~Cを用いた場合の圧縮率と振動加速度との関係を示す。サンプルAは反発弾性45%、密度50kg/mの発泡層であり、25%硬さ178Nである。サンプルBは反発弾性45%、密度35kg/mの発泡層であり、25%硬さ147Nである。サンプルCは反発弾性40%、密度26kg/mの発泡層であり、25%硬さ108Nである。なお、25%硬さとは、一例として、JIS(日本産業規格) K6400-2による硬さであり、反発弾性は、一例として、JIS K6400-3による反発弾性である。 FIG. 3 shows the relationship between compression ratio and vibration acceleration when three samples A to C are used as the foam layer 101B. Sample A is a foam layer with a rebound resilience of 45%, a density of 50 kg/m 3 , and a 25% hardness of 178N. Sample B is a foam layer with a rebound resilience of 45%, a density of 35 kg/m 3 , and a 25% hardness of 147N. Sample C is a foam layer with a rebound resilience of 40%, a density of 26 kg/m 3 , and a 25% hardness of 108N. Note that the 25% hardness is, for example, the hardness according to JIS (Japanese Industrial Standards) K6400-2, and the rebound resilience is, for example, the resilience according to JIS K6400-3.
 ソフトパッド101の下には静電センサ110があり、アクチュエータ120の振動は、支持構造体140の蓋143、基板144、及びスペーサ145を介して静電センサ110に伝わり、さらに静電センサ110からソフトパッド101に伝わる。 There is an electrostatic sensor 110 under the soft pad 101, and the vibration of the actuator 120 is transmitted to the electrostatic sensor 110 via the lid 143, the substrate 144, and the spacer 145 of the support structure 140, and is further transmitted from the electrostatic sensor 110. The information is transmitted to the soft pad 101.
 ソフトパッド101の発泡層101Bは、発泡材で構成されるため、上下方向に圧縮されていない状態では、静電センサ110から伝わる振動を殆ど吸収し、操作面101Sに伝達しない。しかしながら、発泡層101Bは、ある程度圧縮されると、剛性が高くなって、静電センサ110から伝わる振動を操作面101Sに伝達する。すなわち、押し込み操作によってソフトパッド101がある程度圧縮されると、ソフトパッド101は、操作部105を押し込んでいる指先FTに静電センサ110から伝わる振動を伝達する。 Since the foam layer 101B of the soft pad 101 is made of a foam material, when it is not compressed in the vertical direction, it absorbs most of the vibration transmitted from the electrostatic sensor 110 and does not transmit it to the operation surface 101S. However, when the foam layer 101B is compressed to some extent, its rigidity increases and transmits the vibration transmitted from the electrostatic sensor 110 to the operation surface 101S. That is, when the soft pad 101 is compressed to some extent by the pushing operation, the soft pad 101 transmits the vibration transmitted from the electrostatic sensor 110 to the fingertip FT that is pushing the operating section 105.
 このようなソフトパッド101の発泡層101Bの特性を利用して、入力装置100は、押し込み操作によって、ソフトパッド101がある程度押し込まれて、発泡層101Bが振動を伝達可能な程度まで圧縮されたときに、押し込み操作によって操作入力が確定したことにして、アクチュエータ120を駆動することで振動を指先FTに伝達する。 Utilizing such characteristics of the foam layer 101B of the soft pad 101, the input device 100 can detect when the soft pad 101 is pushed in to a certain extent by a pushing operation and the foam layer 101B is compressed to the extent that vibration can be transmitted. Then, assuming that the operation input is confirmed by the pressing operation, the actuator 120 is driven to transmit the vibration to the fingertip FT.
 図3に示す特性では、横軸はソフトパッド101の圧縮率(%)を表し、縦軸はソフトパッド101に生じる振動加速度を表す。圧縮率は、押し込み操作が行われていない状態のソフトパッド101を上下方向に圧縮した圧縮量を、百分率で表した値であり、本願明細書においては(ソフトパッド101を圧縮する圧縮量)/(ソフトパッド101圧縮前の厚さ)を示す。加速度は、規格化した値(単位なし)で表す。 In the characteristics shown in FIG. 3, the horizontal axis represents the compression ratio (%) of the soft pad 101, and the vertical axis represents the vibration acceleration generated in the soft pad 101. The compression rate is a value expressed as a percentage of the amount of compression in the vertical direction of the soft pad 101 in a state where no pushing operation is performed, and in this specification, it is expressed as (compression amount of the soft pad 101)/ (Thickness of soft pad 101 before compression) is shown. Acceleration is expressed as a normalized value (without units).
 ソフトパッド101は、均一な構成を有するため、図3に示す圧縮率は、ソフトパッド101の全体のうち、押し込み操作が行われている1つの操作部105に相当する部分における圧縮率として捉えてよい。例えば、押し込み操作が行われていない状態のソフトパッド101の厚さを100とすると、圧縮率40%ではソフトパッド101の厚さは60になり、圧縮率60%ではソフトパッド101の厚さは40になる。なお、実際に使用する際には、ソフトパッド101の圧縮率の上限は80%である。圧縮率が80%を超えるようにソフトパッド101を圧縮すると、発泡層101Bの復帰に支障が生じるため、圧縮率の上限をこのように設定する。ところで、図3を参照すれば明らかなように、サンプルAでは圧縮率が91%,サンプルBでは圧縮率が88%、サンプルCでは圧縮率が83%において発泡層中の隙間は無くなったものと認められ、それ以上は圧縮されない。 Since the soft pad 101 has a uniform configuration, the compression ratio shown in FIG. 3 can be regarded as the compression ratio of the portion of the entire soft pad 101 that corresponds to one operating portion 105 where the pushing operation is performed. good. For example, if the thickness of the soft pad 101 in a state where no pushing operation is performed is 100, the thickness of the soft pad 101 is 60 when the compression rate is 40%, and the thickness of the soft pad 101 is 60 when the compression rate is 60%. Becomes 40. Note that in actual use, the upper limit of the compression rate of the soft pad 101 is 80%. If the soft pad 101 is compressed so that the compression ratio exceeds 80%, it will be difficult for the foam layer 101B to recover, so the upper limit of the compression ratio is set in this manner. By the way, as is clear from FIG. 3, when sample A has a compression ratio of 91%, sample B has a compression ratio of 88%, and sample C has a compression ratio of 83%, there are no gaps in the foam layer. accepted and no further compression will occur.
 判定部161は、検出部150によって検出される各電極111の容量値に基づいて押し込み操作による押し込み量を判定する。押し込み操作による押し込み量が増大すると、指先FTと電極111との間の間隔が狭まるため、押し込み量が増大するほど、検出部150によって検出される電極111の容量値は増大する。 The determining unit 161 determines the amount of push by the pushing operation based on the capacitance value of each electrode 111 detected by the detecting unit 150. As the amount of pushing by the pushing operation increases, the distance between the fingertip FT and the electrode 111 narrows, so as the amount of pushing increases, the capacitance value of the electrode 111 detected by the detection unit 150 increases.
 このため、図3の特性において、加速度の傾きがある程度大きくなるときの圧縮率に相当する電極111の容量値を判定部161が押し込み操作の判定に用いる閾値に設定すればよい。 Therefore, in the characteristics shown in FIG. 3, the capacitance value of the electrode 111 corresponding to the compression ratio when the slope of acceleration increases to a certain extent may be set as the threshold value used by the determination unit 161 to determine the pushing operation.
 図3の特性において、圧縮率が40%未満の場合は加速度の値は小さい。その為、指先FTには殆ど振動は感じない。そして圧縮率が40%以上になると、サンプルA~Cの加速度の傾きが大きくなっているため、入力装置100は、一例として、圧縮率が40%以上になったときに押し込み操作が行われたと判定し、操作入力を確定させればよい。判定部161が判定に用いる閾値は、圧縮率が40%のときに検出部150によって検出される各電極111の容量値に設定すればよい。なお、静電センサ110の代わりに、歪素子や圧電素子等を用いて、押し込み操作による圧力を検出部150よって検出する場合は、圧縮率が40%のときに検出部150によって検出される圧力値に設定すれば良い。 In the characteristics shown in FIG. 3, when the compression ratio is less than 40%, the acceleration value is small. Therefore, almost no vibration is felt at the fingertip FT. Then, when the compression ratio becomes 40% or more, the slope of the acceleration of samples A to C becomes large. Therefore, as an example, the input device 100 determines that a pushing operation was performed when the compression ratio became 40% or more. All you have to do is make a determination and confirm the operation input. The threshold value used by the determination unit 161 for determination may be set to the capacitance value of each electrode 111 detected by the detection unit 150 when the compression ratio is 40%. Note that when the pressure caused by the pushing operation is detected by the detection unit 150 using a strain element, a piezoelectric element, etc. instead of the electrostatic sensor 110, the pressure detected by the detection unit 150 when the compression ratio is 40%. You can set it to a value.
 なお、前述した通り、圧縮率が80%を超えると発泡層101Bの復帰に支障が生じるため、圧縮率の上限は80%とする必要があり、この為、判定部161が判定に用いる閾値は、40%以上、80%以下(40%~80%)の圧縮率に相当する電極111の容量値に設定すればよい。 As mentioned above, if the compression ratio exceeds 80%, it will be difficult for the foam layer 101B to recover, so the upper limit of the compression ratio needs to be 80%. Therefore, the threshold value used by the determination unit 161 for determination is , 40% or more and 80% or less (40% to 80%) of the capacitance value of the electrode 111 may be set.
 また、図3では、サンプルA~Cの圧縮率が57.4%以上になると、さらに加速度の傾きが一段と大きくなっているため、より好適には、判定部161が判定に用いる閾値を57.4%の圧縮率に相当する電極111の容量値から80%以下の容量値に設定すればよい。圧縮率57.4%は、図3において、サンプルA~Cの加速度が略一致する圧縮率である。 Further, in FIG. 3, when the compression ratio of samples A to C becomes 57.4% or more, the slope of the acceleration becomes even larger. The capacitance value may be set to 80% or less from the capacitance value of the electrode 111 corresponding to a compression rate of 4%. The compression ratio of 57.4% is the compression ratio at which the accelerations of samples A to C in FIG. 3 are approximately the same.
 また、図3に示すソフトパッド101の圧縮率とソフトパッド101に生じる振動加速度との関係を表す特性は、例えば、次のようにして求めればよい。基板(基板144と蓋143を合わせた部材に相当)の上にソフトパッド101に相当するクッション部材を配置し、基板の下にアクチュエータを取り付け、基板をダンパーゴム(ダンパ142に相当)等の保持部材を介して固定部(ケース141と本体10を合わせた部材に相当)に配置する。指先FTに模した押し棒に加速度センサを取り付け、アクチュエータを駆動した状態で、クッション部材の上面に押し棒を押し当てて、プッシュプルゲージで押し棒を徐々に押し込んだときに加速度センサで加速度を計測すれば、図3に示す圧縮率と加速度との関係を表す特性を得ることができる。なお、ダンパーゴムや、指先FTに模した押し棒として用いるウレタン部材等が潰れるのでプッシュプルゲージによるストロークの測定値は実際のソフトパッド101の圧縮量と同じにはならないが、ダンパーゴムやウレタン部材の硬度は既知であるため、潰れた量に応じた補正を行うことで、図3に示す特性を求めればよい。 Further, the characteristic representing the relationship between the compression ratio of the soft pad 101 and the vibration acceleration generated in the soft pad 101 shown in FIG. 3 may be obtained, for example, as follows. A cushion member corresponding to the soft pad 101 is placed on the substrate (corresponding to the combination of the substrate 144 and the lid 143), an actuator is attached under the substrate, and the substrate is held by a damper rubber (corresponding to the damper 142), etc. It is placed on a fixed part (corresponding to the combined member of the case 141 and the main body 10) via a member. An acceleration sensor is attached to a push rod modeled on a fingertip FT, and while the actuator is driven, the push rod is pressed against the top surface of the cushion member, and the push-pull gauge measures the acceleration when the push rod is gradually pushed in. By measuring, it is possible to obtain a characteristic representing the relationship between compression ratio and acceleration shown in FIG. Note that the stroke measured by the push-pull gauge will not be the same as the actual compression amount of the soft pad 101 because the damper rubber and the urethane member used as a push rod imitating the fingertip FT will be crushed. Since the hardness of is known, the characteristics shown in FIG. 3 can be obtained by performing correction according to the amount of collapse.
 そして、得られた特性に基づいて、押し込み操作を判定する際の圧縮率を決定し、決定した圧縮率に相当する電極111の容量値を判定部161の閾値に設定すればよい。 Then, based on the obtained characteristics, the compression ratio for determining the pushing operation may be determined, and the capacitance value of the electrode 111 corresponding to the determined compression ratio may be set as the threshold value of the determination unit 161.
 <フローチャート>
 図4は、MCU160が実行する処理を示すフローチャートである。
<Flowchart>
FIG. 4 is a flowchart showing the processing executed by the MCU 160.
 判定部161は、処理がスタートすると、検出部150によって検出される各電極111の容量値を取得する(ステップS1)。 When the process starts, the determining unit 161 acquires the capacitance value of each electrode 111 detected by the detecting unit 150 (step S1).
 判定部161は、各電極111の容量値に基づいて、いずれかの操作部105を選択する操作入力が行われたかどうかを判定する(ステップS2)。ステップS2は、操作部105を選択する操作入力が行われたかどうかを判定する処理であるため、容量値の閾値は、後述するステップS3(押し込み操作の判定)に用いる閾値よりも小さい閾値である。 Based on the capacitance value of each electrode 111, the determination unit 161 determines whether an operation input for selecting any of the operation units 105 has been performed (step S2). Since step S2 is a process of determining whether an operation input for selecting the operation unit 105 has been performed, the threshold value of the capacitance value is a threshold value smaller than the threshold value used in step S3 (determination of a push operation), which will be described later. .
 判定部161は、いずれかの操作部105を選択する操作入力が行われた(S2:YES)と判定すると、例えば対応するLED130を発光させる。そして、その後、各電極111の容量値に基づいて、押し込み操作が行われたかどうかを判定する(ステップS3)。押し込み操作が行われたかどうかを判定するための容量値の閾値は、一例として、圧縮率が60%のときに検出部150によって検出される各電極111の容量値に相当する値である。また、1回閾値を越えた場合に押し込み操作が行われたと判定しても良いが、ノイズなどを考慮して所定の時間内に所定回数、閾値を越えた場合に押し込み操作が行われたと判定しても良い。押し込み操作が行われることにより、押し込み操作による操作入力が確定する。判定部161は、入力装置100を入力部とする機器に、押し込み操作による操作入力が確定したことを通知する。この結果、通知を受けた機器が、押し込み操作が行われた操作部105に対応する機能を実行する。 If the determination unit 161 determines that an operation input for selecting one of the operation units 105 has been performed (S2: YES), the determination unit 161 causes the corresponding LED 130 to emit light, for example. Then, based on the capacitance value of each electrode 111, it is determined whether a pushing operation has been performed (step S3). The threshold value of the capacitance value for determining whether a pushing operation has been performed is, for example, a value corresponding to the capacitance value of each electrode 111 detected by the detection unit 150 when the compression ratio is 60%. Also, it may be determined that a push operation has been performed when the threshold value is exceeded once, but considering noise etc., it may be determined that a push operation has been performed when the threshold value is exceeded a predetermined number of times within a predetermined time. You may do so. By performing the push operation, the operation input by the push operation is determined. The determination unit 161 notifies a device that uses the input device 100 as an input unit that the operation input by the push operation has been confirmed. As a result, the device that received the notification executes the function corresponding to the operation unit 105 on which the pressing operation was performed.
 駆動制御部162は、押し込み操作が行われた(S3:YES)と判定部161が判定すると、所定のパターンで所定の時間、或いは所定の回数にわたってアクチュエータ120を振動する(ステップS4)。これにより、押し込み操作によって圧縮されている操作部105に振動が伝達し、押し込み操作を行っている指先FTに振動を呈示することができ、利用者は、押し込み操作が入力装置100に受け付けられたことを知覚することができる。なお、ステップS3において、押し込み操作が行われたと判定した場合には、アクチュエータ120を所定のパターンで所定の時間、或いは所定の回数振動させるものであり、振動動作している際には容量値の測定は行わない。従って仮に振動動作の間に容量値が閾値以下となった場合にも振動動作は停止しない。なお、所定の時間間隔で常に容量値を取得するようにしても良いが、その場合には、振動動作の途中においては閾値との比較を行わない、或いは比較をしてもその結果を無視する等とすれば良い。 When the determination unit 161 determines that a pushing operation has been performed (S3: YES), the drive control unit 162 vibrates the actuator 120 in a predetermined pattern for a predetermined time or a predetermined number of times (step S4). As a result, vibrations are transmitted to the operation unit 105 that is compressed by the pressing operation, and the vibrations can be presented to the fingertip FT performing the pressing operation, and the user can confirm that the pressing operation has been accepted by the input device 100. can be perceived. In addition, in step S3, when it is determined that a pushing operation has been performed, the actuator 120 is vibrated in a predetermined pattern for a predetermined time or a predetermined number of times, and when the actuator 120 is vibrating, the capacitance value is No measurements will be taken. Therefore, even if the capacitance value becomes equal to or less than the threshold value during the vibration operation, the vibration operation does not stop. Note that the capacitance value may be always acquired at predetermined time intervals, but in that case, the comparison with the threshold value is not performed during the vibration operation, or even if the comparison is made, the result is ignored. etc.
 MCU160は、制御周期毎にスタートからエンドの処理を繰り返し実行する。なお、判定部161は、ステップS2において操作部105を選択する操作入力が行われていない(S2:NO)と判定した場合と、ステップS3において押し込み操作が行われていない(S3:NO)と判定した場合には、当該制御周期の処理を終了する(エンド)。 The MCU 160 repeatedly executes the process from start to end in each control cycle. Note that the determination unit 161 determines that an operation input for selecting the operation unit 105 has not been performed in step S2 (S2: NO), and that a push operation has not been performed in step S3 (S3: NO). If it is determined, the processing of the control cycle is ended (end).
 <効果>
 以上のように、入力装置100は、指先FTによって操作入力が行われる操作面101Sを有する表皮層101Aと、表皮層101Aの操作面101Sとは反対側に設けられる発泡層101Bと、発泡層101Bに対して操作面101Sが位置する側の反対側に配置され、指先FTを検出可能な静電センサ110と、発泡層101Bに振動を付与可能なアクチュエータ120とを含む。また、入力装置100は、静電センサ110の静電容量を検出する検出部150と、検出部150によって検出される静電容量が所定の閾値以上になると、指先FTが操作面101Sを押し込む押し込み操作が行われたと判定する判定部161と、判定部161によって押し込み操作が行われたと判定されると、アクチュエータ120を駆動する駆動制御部162とを含み、所定の閾値は、発泡層101Bを所定の値以上圧縮する押し込み量に相当する値である。
<Effect>
As described above, the input device 100 includes the skin layer 101A having the operation surface 101S on which operation input is performed using the fingertip FT, the foam layer 101B provided on the opposite side of the skin layer 101A from the operation surface 101S, and the foam layer 101B. The device includes an electrostatic sensor 110 that can detect the fingertip FT, and an actuator 120 that can apply vibration to the foam layer 101B. The input device 100 also includes a detection unit 150 that detects the capacitance of the capacitive sensor 110, and a push button in which the fingertip FT pushes the operation surface 101S when the capacitance detected by the detection unit 150 exceeds a predetermined threshold. It includes a determination unit 161 that determines that an operation has been performed, and a drive control unit 162 that drives the actuator 120 when the determination unit 161 determines that a pushing operation has been performed. This value corresponds to the amount of compression that is more than the value of .
 このため、表皮層101Aを押し込んで発泡層101Bを所定の値だけ圧縮すると、判定部161は押し込み操作が行われたと判定して、振動を発生させる。これによって、操作者は、押圧判定されたことを認識できる。 Therefore, when the skin layer 101A is pushed in and the foamed layer 101B is compressed by a predetermined value, the determination unit 161 determines that a pushing operation has been performed and generates vibration. This allows the operator to recognize that a press has been determined.
 したがって、操作部105のみに振動を伝達可能な入力装置100を提供することができる。また、発泡材は圧縮量が少ないと振動せず、圧縮されている部分(操作部105)だけが振動を伝えるので、振動させるのに必要な負荷を抑えることができ、操作面101Sの全体を振動させる入力装置に比べて少ない振動エネルギで操作部105を押し込んでいる指先FTに振動を呈示することができる。また、ソフトパッド101を車両の室内のトリム等の内装品としてそのまま使うことができ、車両の室内の様々な場所に操作部105を設けることができる。また、ソフトパッド101は、押し込まれていない部分では制振材として作用するため、操作部105以外への振動の伝達を極小化できる。 Therefore, it is possible to provide the input device 100 that can transmit vibrations only to the operating section 105. In addition, the foamed material does not vibrate if the amount of compression is small, and only the compressed part (operation section 105) transmits vibrations, so the load required to vibrate can be suppressed, and the entire operation surface 101S Vibration can be presented to the fingertip FT that is pressing the operation unit 105 with less vibration energy than an input device that vibrates. Further, the soft pad 101 can be used as it is as an interior item such as a trim in the interior of a vehicle, and the operating section 105 can be provided at various locations in the interior of the vehicle. Further, since the soft pad 101 acts as a vibration damping material in the portion where it is not pushed in, transmission of vibrations to areas other than the operating section 105 can be minimized.
 また、所定の閾値は、発泡層101Bを40%以上圧縮する押し込み量に相当する値としているので、その状態において発泡層101Bは振動を伝達する事が可能であり指先FTに振動を呈示することができる。また、所定の閾値は80%以下圧縮する押し込み量に相当する値としていて、それを越えると振動を発生させる。これによって、操作者は、押圧判定されたことを認識できるので、それ以上押し込む可能性は少ない。よって、発泡層101Bは80%以上圧縮される可能性は少ない。発泡層101Bは圧縮量が80%を超えた場合、復帰に支障が生じるが、このような可能性を少なくすることができる。 In addition, the predetermined threshold value is a value corresponding to the amount of pushing that compresses the foam layer 101B by 40% or more, so in that state, the foam layer 101B can transmit vibrations and exhibit vibrations to the fingertip FT. Can be done. Further, the predetermined threshold value is set to a value corresponding to a pushing amount that compresses the compressor by 80% or less, and when the predetermined threshold value is exceeded, vibrations are generated. This allows the operator to recognize that it has been determined that the button has been pressed, so there is little possibility that the operator will press the button any further. Therefore, it is unlikely that the foam layer 101B will be compressed by 80% or more. If the foam layer 101B is compressed by more than 80%, it will be difficult to recover, but this possibility can be reduced.
 アクチュエータ120は、押し込み操作の操作方向に沿った方向に振動するので、利用者が指先FTに力を加える方向(下向き)に反発するような方向の振動を呈示でき、指先FTに振動が伝わりやすく、利用者が振動をより知覚しやすくすることができる。 Since the actuator 120 vibrates in a direction along the operating direction of the push operation, it can present vibrations in a direction that repels the direction in which the user applies force to the fingertip FT (downward), and the vibration is easily transmitted to the fingertip FT. , it is possible to make it easier for users to perceive vibrations.
 また、アクチュエータ120及び静電センサ110は、直接的又は間接的に結合されており、発泡層101Bは、アクチュエータ120及び静電センサ110の結合体である入力駆動部100Aに対して別体として設けられ、入力駆動部100Aに対して組み付けられている。このため、発泡層101Bを含むソフトパッド101を入力駆動部100Aに接着などすることなく、ソフトパッドを静電センサ110の上に配置し、枠部材20を介して本体10に取り付けることで、入力装置100を本体10に簡単に取り付けることができる。また同時に、アクチュエータ120は押し込み操作の操作方向に沿った方向に振動するので、ソフトパッド101を入力駆動部100Aに接着などせずとも指先FTに振動を伝えることができる。 Further, the actuator 120 and the electrostatic sensor 110 are coupled directly or indirectly, and the foam layer 101B is provided separately from the input drive unit 100A, which is a combination of the actuator 120 and the electrostatic sensor 110. and is assembled to the input drive section 100A. Therefore, by placing the soft pad 101 including the foam layer 101B on the electrostatic sensor 110 and attaching it to the main body 10 via the frame member 20 without bonding the soft pad 101 to the input drive unit 100A, input The device 100 can be easily attached to the main body 10. At the same time, since the actuator 120 vibrates in a direction along the operating direction of the push operation, the vibration can be transmitted to the fingertip FT without bonding the soft pad 101 to the input drive unit 100A.
 また、駆動制御部162は、アクチュエータ120を200Hz以下の周波数で振動させる。ソフトパッド101は、周波数の高い高周波成分の振動を良く吸収する特性があるため、ソフトパッド101に吸収されにくい周波数帯の振動でアクチュエータ120を振動させることによって、指先FTに振動を伝えやすくすることができる。 Additionally, the drive control unit 162 causes the actuator 120 to vibrate at a frequency of 200 Hz or less. Since the soft pad 101 has the property of absorbing vibrations with high frequency components well, by vibrating the actuator 120 with vibrations in a frequency band that is difficult to be absorbed by the soft pad 101, vibrations can be easily transmitted to the fingertip FT. Can be done.
 また、静電センサ110に対して発泡層101Bが位置する側とは反対側に設けられるLED130をさらに含み、静電センサ110は透明であり、LED130の照光によって、操作面101S側から視認可能に表皮層101Aが照光される。発泡層101Bは光拡散効果があるため、操作部105を均一に照光することができる。また、操作部105を照光して視認性及び意匠性を高めることができる。 The electrostatic sensor 110 further includes an LED 130 provided on the side opposite to the side where the foam layer 101B is located, and the electrostatic sensor 110 is transparent and can be visually recognized from the operation surface 101S side by illumination of the LED 130. The epidermal layer 101A is illuminated. Since the foam layer 101B has a light diffusion effect, the operating section 105 can be uniformly illuminated. Furthermore, visibility and design can be improved by illuminating the operation unit 105.
 なお、以上では、静電センサ110の上にソフトパッド101が圧縮されていない状態で組み付けられる形態について説明した。しかしながら、ソフトパッド101をある程度圧縮した状態で静電センサ110の上に組み付けてもよい。 Note that the above description has been made of a form in which the soft pad 101 is assembled onto the electrostatic sensor 110 in an uncompressed state. However, the soft pad 101 may be assembled onto the electrostatic sensor 110 in a somewhat compressed state.
 図5は、実施形態の変形例の入力装置100Mを示す図である。入力装置100Mでは、ソフトパッド101は、一例として30%ほど圧縮された状態で静電センサ110の上に組み付けられている。その他の構成は、図2Aに示す入力装置100と同一である。 FIG. 5 is a diagram showing an input device 100M according to a modification of the embodiment. In the input device 100M, the soft pad 101 is assembled on the electrostatic sensor 110 in a compressed state of about 30%, for example. The other configurations are the same as the input device 100 shown in FIG. 2A.
 枠部材20を図2Aに示すものよりも薄いものを用いれば、ソフトパッド101は柔らかいので、下面側を圧縮した状態で静電センサ110の上に組み付けることが可能である。 If the frame member 20 is thinner than that shown in FIG. 2A, the soft pad 101 is soft, so it can be assembled onto the electrostatic sensor 110 with the lower surface side compressed.
 このようにすれば、押し込み操作が確定するまでの押し込み量を少なくできるため、押し込み操作の確定によって振動が呈示される押し込み量を調整できる。なお、ソフトパッド101は発泡層101Bを含むため、表皮層101Aの上面である操作面101Sの位置は殆ど変わらない。このため、例えば表皮層101Aを車両の室内のトリム等の内装品で構成した場合であっても、操作面101Sに段差は殆ど生じない。 In this way, the amount of pressing until the pressing operation is confirmed can be reduced, so the amount of pressing at which vibration is exhibited when the pressing operation is confirmed can be adjusted. Note that, since the soft pad 101 includes the foam layer 101B, the position of the operation surface 101S, which is the upper surface of the skin layer 101A, hardly changes. Therefore, even if the skin layer 101A is made of an interior item such as interior trim of a vehicle, for example, there will be almost no difference in level on the operation surface 101S.
 以上、本開示の例示的な実施形態の入力装置について説明したが、本開示は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the input device of the exemplary embodiment of the present disclosure has been described above, the present disclosure is not limited to the specifically disclosed embodiment, and various modifications may be made without departing from the scope of the claims. It is possible to transform and change.
 なお、本国際出願は、2022年6月24日に出願した日本国特許出願2022-102203に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application No. 2022-102203 filed on June 24, 2022, the entire contents of which are incorporated into this international application by reference herein. shall be taken as a thing.
 100 入力装置
 100A 入力駆動部(結合体の一例)
 101 ソフトパッド
 101A 表皮層
 101B 発泡層
 101S 操作面
 105 操作部
 110 静電センサ(検出素子の一例)
 111 電極
 120 アクチュエータ(振動素子の一例)
 130 LED(照光部の一例)
 131 導光部
 140 支持構造体
 141 ケース
 142 ダンパ
 143 蓋
 144 基板
 145 スペーサ
 150 検出部
 160 MCU
 161 判定部
 162 駆動制御部
 163 発光制御部
100 Input device 100A Input drive section (an example of a combined body)
101 Soft pad 101A Skin layer 101B Foam layer 101S Operation surface 105 Operation section 110 Electrostatic sensor (an example of a detection element)
111 Electrode 120 Actuator (an example of a vibration element)
130 LED (example of lighting part)
131 Light guide section 140 Support structure 141 Case 142 Damper 143 Lid 144 Substrate 145 Spacer 150 Detection section 160 MCU
161 Judgment unit 162 Drive control unit 163 Light emission control unit

Claims (8)

  1.  操作体によって操作入力が行われる操作面を有する表皮層と、
     前記表皮層の前記操作面とは反対側に設けられる発泡層と、
     前記発泡層に対して前記操作面が位置する側の反対側に配置され、前記操作体を検出可能な検出素子と、
     前記発泡層に振動を付与可能な振動素子と、
     前記検出素子の検出量を検出する検出部と、
     前記検出部によって検出される検出量が所定の閾値以上になると、前記操作体が前記操作面を押し込む押し込み操作が行われたと判定する判定部と、
     前記判定部によって前記押し込み操作が行われたと判定されると、前記振動素子を駆動する駆動制御部と
     を含み、
     前記所定の閾値は、前記発泡層を所定の値以上圧縮する押し込み量に相当する値である、入力装置。
    an epidermal layer having an operation surface on which operation input is performed by an operation body;
    a foam layer provided on the opposite side of the operating surface of the skin layer;
    a detection element that is arranged on a side opposite to the side where the operation surface is located with respect to the foam layer and is capable of detecting the operation body;
    a vibration element capable of imparting vibration to the foam layer;
    a detection unit that detects the detection amount of the detection element;
    a determining unit that determines that a pushing operation in which the operating body pushes the operating surface has been performed when the detection amount detected by the detecting unit exceeds a predetermined threshold;
    a drive control unit that drives the vibration element when the determination unit determines that the pushing operation has been performed;
    The predetermined threshold value is a value corresponding to a pushing amount that compresses the foam layer by a predetermined value or more.
  2.  前記所定の閾値は前記発泡層を40~80%圧縮する押し込み量に相当する値である、請求項1に記載の入力装置。 The input device according to claim 1, wherein the predetermined threshold value is a value corresponding to a pushing amount that compresses the foam layer by 40 to 80%.
  3.  前記振動素子は、前記押し込み操作の操作方向に沿った方向に振動する、請求項2に記載の入力装置。 The input device according to claim 2, wherein the vibration element vibrates in a direction along the operating direction of the pushing operation.
  4.  前記振動素子及び前記検出素子は、直接的又は間接的に結合されており、前記発泡層は、前記振動素子及び前記検出素子の結合体に対して別体として設けられ、前記結合体に対して組み付けられている、請求項3に記載の入力装置。 The vibrating element and the detecting element are coupled directly or indirectly, and the foam layer is provided separately from the combined body of the vibrating element and the detecting element, and the foam layer is provided separately from the combined body of the vibrating element and the detecting element. The input device according to claim 3, wherein the input device is assembled.
  5.  前記駆動制御部は、前記振動素子を200Hz以下の周波数で振動させる、請求項2に記載の入力装置。 The input device according to claim 2, wherein the drive control section vibrates the vibration element at a frequency of 200Hz or less.
  6.  前記振動素子及び前記検出素子は、直接的又は間接的に結合された結合体を構成しており、
     前記発泡層は、圧縮された状態で、前記結合体に組み付けられている、請求項2に記載の入力装置。
    The vibration element and the detection element constitute a combined body that is directly or indirectly connected,
    The input device according to claim 2, wherein the foam layer is assembled to the composite body in a compressed state.
  7.  前記発泡層は、圧縮された状態で、前記結合体に組み付けられている、請求項4に記載の入力装置。 The input device according to claim 4, wherein the foam layer is assembled to the composite body in a compressed state.
  8.  前記検出素子に対して前記発泡層が位置する側とは反対側に設けられる照光部をさらに含み、
     前記検出素子は透明であり、
     前記照光部の照光によって、前記操作面側から視認可能に前記表皮層が照光される、請求項2に記載の入力装置。
    further comprising a lighting section provided on a side opposite to the side where the foam layer is located with respect to the detection element,
    the detection element is transparent;
    The input device according to claim 2, wherein the epidermal layer is illuminated by the illumination of the illumination section so as to be visible from the operation surface side.
PCT/JP2023/007764 2022-06-24 2023-03-02 Input device WO2023248541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102203 2022-06-24
JP2022-102203 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248541A1 true WO2023248541A1 (en) 2023-12-28

Family

ID=89379409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007764 WO2023248541A1 (en) 2022-06-24 2023-03-02 Input device

Country Status (1)

Country Link
WO (1) WO2023248541A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041268A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Detection sensor and input device
WO2021131580A1 (en) * 2019-12-27 2021-07-01 アルプスアルパイン株式会社 Tactile-sensation presentation device
JP2022072098A (en) * 2020-10-29 2022-05-17 パナソニックIpマネジメント株式会社 Input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041268A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Detection sensor and input device
WO2021131580A1 (en) * 2019-12-27 2021-07-01 アルプスアルパイン株式会社 Tactile-sensation presentation device
JP2022072098A (en) * 2020-10-29 2022-05-17 パナソニックIpマネジメント株式会社 Input device

Similar Documents

Publication Publication Date Title
JP5919025B2 (en) Electronics
JP5038422B2 (en) Control module for automobile
TWI489503B (en) Haptic feedback keyboard structure
KR101177610B1 (en) Touch screen device
EP2709134A1 (en) Two-stage switch
KR20120049307A (en) Tactile sensation providing apparatus and control method for tactile sensation providing apparatus
US20200271218A1 (en) Gear selector for a motor vehicle and method for detecting an actuation of a gear selector for a motor vehicle
KR20150028888A (en) Apparatus for Providing of Customized Input-Service
JP6086146B2 (en) Vehicle control device
WO2023248541A1 (en) Input device
JP2016120890A (en) Vehicular switching device
JP2010529595A (en) Touch control device with feedback function
US11379046B2 (en) Input device and control method
CN115461831A (en) Decorative board
JP5333995B2 (en) Display device
CN210721417U (en) Touch feedback device and electronic equipment
KR101908973B1 (en) Switch apparatus for an automobile
WO2024116684A1 (en) Input device and panel
US20230292453A1 (en) Display device, input device, and front cover member
US20190012030A1 (en) Input apparatus and input system
EP4160360A1 (en) System for decoupling haptic feedback on vehicle internal component
US20230347740A1 (en) Display device and input device
KR102378857B1 (en) Haptic Generator for Panels of Vehicles and Interior Panel for Vehicles using thereof
JP2024077580A (en) Input Device and Panel
KR101059600B1 (en) Touch screen with piezo actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826730

Country of ref document: EP

Kind code of ref document: A1